

NUREG/CR-3814 ORNL/TM-9166

# OAK RIDGE NATIONAL LABORATORY



# Determination of Damage Exposure Parameter Values in the PSF Metallurgical Irradiation Experiment

F. W. Stailman

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

8411280229 841031 PDR NUREG CR-3814 R PDR

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

#### NOTICE

#### Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources.

- 1. The NRC Public Document Room, 1717 H Street, N.W., Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NHC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Decument Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program formal NRC staff and contractor reports, NRC sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes rind standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018

#### Notice

P

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily coment or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-3814 ORNL/TM-9166 Dist. Category R5

#### Operations Division

### DETERMINATION OF DAMAGE EXPOSURE PARAMETER VALUES IN THE PSF METALLURGICAL IRRADIATION EXPERIMENT\*

F. W. Stallmann

Manuscript Completed - May 10, 1984

Date Published - October 1984

\*Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555 under Interagency Agreements DOE 40-551-75 and 40-552-75

NRC FIN No. B0415

Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 operated by Martin Marietta Energy Systems, Inc. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400

#### ACKNOWLEDGEMENTS

The author wishes to express appreciation to R. E. Maerker for providing the transport calculation including variance-covariance matrices and to L. S. Kellogg and E. P. Lippincott from HEDL for the dosimetry data. C. A. Baldwin made the cosine fits and prepared the resulting graphs and tables. Last, but not least, thanks to Brenda Taylor for doing a tremendous job in relieving me of all the tedious and unrewarding details, starting from the preparation of input files for the computer to the final assembly of the manuscript.

# TABLE OF CONTENTS

Page

| CKNOWLEDGEMENTS                            |
|--------------------------------------------|
| IGURE LIST                                 |
| ABLE LIST $\ldots$ $\ldots$ $\cdots$ $vii$ |
| NTRODUCTION                                |
| ATA AND PROCEDURES                         |
| Determination of Gradients                 |
| Determination of Uncertainties             |
| ONCLUSIONS                                 |
| EFERENCES                                  |
| PPENDIX                                    |

## FIGURE LIST

Ś

.

|    |                                                                                                                                                   | Page |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. | View of the PSF facility                                                                                                                          | . 7  |
| 2. | Illustration of dosimeter and metallurgical specimen locations in the irradiation capsule                                                         | . 8  |
| 3. | Coordinate system for the ORR-PSF<br>metallurgical experiment                                                                                     | . 9  |
| 4. | Methodology for the determination of exposure parameter values and uncertainties                                                                  | . 10 |
| 5. | Cosine fit of the <sup>54</sup> Fe(n,p) reaction along the gradient wire positioned at the left rear row of Charpy specimens in the 1/4 T capsule | . 11 |
| 6. | Cosine fit of dpa determined from the gradient<br>sets H-16 to H-20 at the axial centerline of<br>the 1/4 T capsule                               | . 12 |
| 7. | Cosine fit of dpa in the lateral direction<br>long the centerline of the 1/4 T capsule                                                            | . 13 |

.

9.1

14

8

υ

# TABLE LIST

| 1.  | Encrgy groups used for the LSL-M2 adjustment<br>procedure in the ORR-PSF metallurgical irradiation |
|-----|----------------------------------------------------------------------------------------------------|
|     | experiment                                                                                         |
| 2.  | Fluence perturbation due to water in the void box 15                                               |
| 3.  | Fluences and dpa at capsule centers                                                                |
| 4.  | Cosine fit to the gradient wires                                                                   |
| 5.  | Fitting parameters for formula (1)                                                                 |
| 6.  | Coordinates of the locations of the metallurgical specimens relative to the capsule center         |
| 7.  | Damage parameter values at the locations of metallurgical specimens - capsule SSC1                 |
| 8.  | Damage parameter values at the locations of metallurgical specimens - capsule SSC2                 |
| 9.  | Damage parameter values at the locations of metallurgical specimens - SPV-capsule 0-T              |
| 10. | Damage parameter values at the locations of metallurgical specimens - SPV-capsule 1/4 T            |
| 11. | Damage parameter values at the locations of metallurgical specimens - SPV-capsule 1/2 T            |
| 12. | Average and extreme values of damage parameters<br>for different sets of Charpy specimen           |
| A.1 | Reaction probabilities estimated with LSL-M2                                                       |
| A.2 | Irradiation time-history correction terms<br>for <sup>239</sup> Pu burn-in                         |
| A.3 | Correction terms for Pu burn-in at<br>different locations in the PSF                               |

#### DETERMINATION OF DAMAGE EXPOSURE PARAMETER VALUES IN THE PSF METALLURGICAL IRRADIATION EXPERIMENT

#### INTRODUCTION

This report describes the neutron spectral characterization of the metallurgical experiment in the Oak Ridge Research Reactor (ORR) Poolside Facility (PSF) pressure vessel simulation (PVS) configuration (Figs. 1 and 2).

Values for the damage exposure parameters  $\phi t (\phi t = fluence) > 1.0$  MeV,  $\phi t > 0.1$  MeV, and displacements per atom (dpa) were estimated with uncertainties for all locations of metallurgical specimens in the test assembly in the ORR-PSF irradiation experiment. In addition, maps of reaction probabilities were determined for all major threshold dosimetry reactions in order to test consistency of this evaluation with dosimetry measurements which were not included. The fluence maps can be expressed as cosine functions in the axial (z) and lateral (x) direction and by an exponential attenuation perpendicular to the core (y) of the form:

$$P(x, y, z) = P_0 \cdot \cos B_x (x - x_0) \cos B_z (z - z_0) e^{-\lambda (y - y_0)}$$
(1)

where P(x,y,z) is the integral response in question (see Table 5). The coordinates are adapted from the system described in the ORR-PSF Blind Test (see Fig. 3). The LSL-M2 adjustment procedure<sup>1</sup> was used followed by cosine fits of the adjusted integral parameters. The method is similar to the one described in NUREG/CR3333;<sup>10</sup> for details see the flow diagram (Fig. 4).

#### DATA AND PROCEDURES

The spectral fluence calculations by R. E. Maerker and B. A. Worley<sup>2</sup>,<sup>3</sup> were used as the input spectra for the adjustment procedure. These spectra are obtained as a three-dimensional synthesis of two-dimensional transport calculations. Special attention was paid to the changing core configurations during the two-year irradiation. This calculation contained only evergy groups above 0.1 MeV. The spectrum was extended to the epithermal range (>0.4 eV) using the results of a one-dimensional ANISN calculation of the same configuration fitted smoothly to the three-dimensional calculation. Two more thermal groups were added by extrapolating with a 20°C Maxwellian spectrum. One high-energy group (17.33-18 MeV) was also added extrapolating with a Watt fission spectrum. These extrapolations are needed to obtain correct calculated reaction rates from the ENDF/B-V dosimetry cross-section file, which extends from  $10^{-4}$  eV to 18 MeV.

The calculated spectra with extensions were condensed to 37 energy groups as input for the LSL-M2 adjustment procedure. The energy boundaries are listed in Table 1. The one-dimensional ANISN calculation was also used to determine the amount of fluence perturbation resulting from a water leak which filled the void box capsule with water instead of gas. The ratios of fluences water/void for 11 energy groups are listed in Table 2. No significant perturbations are found in the capsules for energies above 0.1 MeV. The ANISN calculation for water was used for the input fluences at lower energies.

Variances and covariances for the calulated spectra were based on calculations by R. E. Maerker<sup>4</sup> with some modifications reflecting the different energy-group structures. Simplified and somewhat more conservative variance-covariance data were tried before Maerker's results became available. The resulting damage parameter values differ by less than 2%, indicating that the input variances are not critical.

The dosimetry data were taken from the tables in the Blind Test package, which was distributed February 17, 1984.<sup>2</sup> The "gradient" (GS) dosimetry sets H-1 to H-25, the "backbone" (BB) dosimetry sets HB1 to H10, the HEDL surveillance non-fission sets (HSNF) in SSC1, and the gradient wires along the Charpy specimens were used as input for the LSL procedure (see Fig. 2). No other dosimeters were considered; the remaining dosimetry sensors either duplicated the above data or were widely scattered across the metallurgical capsules, at locations where no spectrum calculations are available. Thus, the additional dosimetry is not likely to improve the results of the adjustment procedure. However, the fluence map obtained from the adjustment procedure can be used to test the remaining dosimetry for consistency.

The H-1 to H-25 capsules each contained a set of non-fission sensors consisting of  $63_{Cu(n,\alpha)}60_{Co}$ ,  $46_{Ti(r,p)}46_{Sc}$ ,  $58_{Ni(n,p)}58_{Co}$ ,  $54_{Fe(n,p)}54_{Mn}$ ,  $59_{Co(n,\gamma)}60_{Co}$ ,  $58_{Fe(n,\gamma)}59_{Fe}$ ,  $45_{Sc(n,\gamma)}46_{Sc,and}$   $109_{Ag(n,\gamma)}110_{Ag}$ . The  $109_{Ag}(n, \gamma)$  reaction was excluded because its cross section is not listed in the ENDF/B-V dosimetry file, and three other non-threshold reactions are available. The HBl to HBlO capsules contained, in addition, the three fission sensors <sup>238</sup>U(n,f), <sup>237</sup>Np(n,f), and <sup>235</sup>U(n,f), with all sensors encapsulated in gadolinium. The count rates published in Ref. 2 for all sensors were converted to reaction probabilities time integrated reaction rates on the basis of the time power history of the irradiation taking into account the difference in core leakage for the different core configurations.<sup>2</sup> Nuclear data were obtained from Ref. 5 and fission yields from Ref. 6. There are slight differences between our evaluation of reaction probabilities and Ref. 2 due to differences in nuclear data, none of them significantly affecting the results of the adjustment procedure. The reaction rate uncertainties were estimated to be 4% for non-fission and 8% for fission reactions (one standard deviation). Averages were calculated whenever more than one reaction was measured at the same location or more than one fission product for the same fission sensor. No photo-fission corrections were made since the measurements and calculations for an identical configuration in the Pool Critical Assembly (PCA) reactor shows negligible effect of photo-fission.

Group cross sections and covariances were obtained from the ENDF/B-V dosimetry file as presented in the IRDF-83 file8 through the PUFF9 processing code. The first adjustment runs showed strong inconsistencies which were traced to the  $238_{U(n,f)}$  reaction. Its uncertainties were then increased to 500%, resulting in ajustments of the 238U(n,f) reaction rates in the order of 30 to 50% in the SSC2 and 0-T positions. [Relative changes are given as the natural logarithm of quotients of the two quantities, e.g., 50% adjustment means | ln  $(x_{adj}/x_{orig.})$  = 0.5; the same definition applies to relative variances.] There were also large differences in reaction probabilities when calculated for the same sensor based on different fission products. These discrepancies can be explained as a consequence of 239pu "burn-in," that is the production of plutonium by neutron capture of 238U. A detailed investigation of the effects is given in the Appendix. Correction terms can be determined, but the uncertainties in these corrections are very large so that no useful spectral information can be obtained from the  $^{238}$ U(n,f) reaction at the SSC2 and O-T locations.

The LSL-M2 method allows both absolute and relative adjustments. In the latter, only the shape of the calulated spectrum is used with an unrestricted scale factor determined from the differences in magnitude between dosimetry and calculation. Both were tried and no significant difference in the results were found. This means that calculation agrees with the dosimetry equally well in terms of absolute fluences, as in terms of the shape of the fluence spectrum. All results, which are reported here, are based on absolute values of the fluence calculation. Values of Chi-square per degree of freedom are in the order of 0.8, which indicates a good consistency within the input data, and uncertainties that are somewhat on the conservative side. Values of the damage parameters at the center gradient capsules with uncertainties are listed in Table 3. The values of the total and thermal fluences are also included for completeness.

#### Determination of Gradients

It is possible, in theory, to determine damage parameter values or any other integral responses at any point through a suitable adjustment procedure, such as LSL-M2, even if no dosimeters are located at that position. However, there are practical limitations to the number of spectra and dosimeter measurements which can be processed simultaneously. The direct determination of damage parameters was, therefore, restricted to relatively few points, completing the map through suitable interpolation and extrapolation procedures. Experience has shown that a cosine curve describes fairly accurately the fluences along lines parallel to the core, provided regions of boundary reflection are avoided and the peripheral core loading is sufficiently uniform. It is also reasonable to assume that there is an exponential attenuation of fluences in directions perpendicular to the reactor, at least for sufficiently small distances and not too close to boundaries between different materials. Experience from this and other experiments with similar configurations (Refs. 10 and 11) have shown that a combined cosine-exponential fit describes accurately the fluence distributions if the interpolation/extrapolation is confined within the boundaries of each metallurgical capsule. A more detailed discussion of the uncertainties is given below.

The first step in the fitting procedure was to fit the <sup>54</sup>Fe(n,p) reaction probabilities of the gradient wires to a cosine function

$$P(z) = P_C \cos B_z(z-z_0) \quad .$$

The measurements fit the cosine curve very well, as expected. The residuals are consistent with measuring and positioning errors and appear to be random. A typical example is given in Fig. 5. The two exceptions are the right front of the 1/4T capsule and the right rear of the 1/2T capsule. The data for these two wires are incomplete and appear to be mislabelled since the parallel wire does not show any irregularity. The fitting parameters with standard deviations are listed in Table 4. Fits at the center, which are explained below, are included for comparison.

Ratios of the peak values of parallel gradient wires determine the attenuation of  $^{54}$ Fe(n,p) reaction rates along lines perpendicular to the core. There are no significant differences between the left and the right sides but definite changes from capsule to capsule. It was, therefore, assumed that one attenuation coefficient can be applied to all positions within the same capsule but that each capsule has a different coefficient (for experimental confirmation of exponential attenuation, see Ref. 11). The attenuation coefficients for several other integral parameters (damage parameters and threshold reaction rates) were determined by applying the adjustment procedure to positions of the gradient wires and taking the ratios of the adjusted parameter values (see Table 5).

The final lateral (x) and axial (z) cosine fits were made using adjusted values at dosimeter locations along the centerlines, including gradient wires for the x-direction. Typical fits are shown in Figs. 6 and 7. Typical uncertainties for these fits can be found in Table 4 for the center  $^{54}$ Fe(n,p) fits. All other fitting parameters, both axial and lateral, have standard deviations of the same size, which are somewhat larger than the standard deviations for the gradient wire fits since there are fewer data points. There are no significant differences in the B<sub>z</sub> and z<sub>0</sub> values between center and gradient wire fits within the same capsule, but again, there are significant capsule-to-capsule variations. Thus, one set of fitting parameters can be used within each capsule for a particular integral parameter. Peak values P<sub>0</sub> are also consistent for lateral and axial fits. A complete list of fitting parameters is given in Table 5.

Formula (1) with the parameters from Table 5 provides a complete map of integral parameters, where each set of coefficients is valid within a given metallurgical capsule. Tables 7-11 list the damage parameter values at the crack tips of every metallurgical specimen. These values were calculated for the specimen coordinates in Table 6. Using the values in Tables 7-11, average, maximum, and minimum values are determined for each set of Charpy specimens from the same material and listed in Table 12.

(2)

#### Determination of Uncertainties

The LSL-M2 adjustment procedure provides variances and covariances for all values of adjusted integral parameters. Typical values are found in Table 3. These values are based on the uncertainties for the input data, i.e., transport calculation, dosimetry measurements, and cross sections. For the specimen values in Tables 7-12, however, additional uncertainties are introduced through the use of the fitting-interpolation formula (1). These uncertainties are not the same for all locations but depend on the distance of the specimen from the center. The uncertainties for the attenuation coefficient  $\lambda$  can to calculated directly to be about 3%/cm. Typical uncertainties for the coefficients of the cosine fits are given in Table 4. This translates to additional uncertainties ranging from zero at the center to about 5% at the corners of the capsule. All these uncertainties are in themselves rather uncertain, and a more detailed assignment of uncertainties to individual specimens is, therefore, rather pointless. It suffices to say that none of the estimated standard deviation for damage parameters exceeds 10%. This should be sufficiently accurate for damage correlation studies considering the large variability in metallurgical test results.

#### CONCLUSIONS

Damage fluences received by the metallurgical specimens in the PSF-PVS experiment can be determined to an accuracy of better than 10%. This is accomplished by combining neutron physics calculations with dosimetry measurement in the multiple spectrum adjustment method LSL-M2. The spatial fluence distribution can be approximated by a cosine-exponential fit which is accurate to better than 5% within each capsule. The same procedure can be used to test the consistency of dosimetry measurements. The accuracy of the spectral characterization is sufficient to establish the PSF-PVS experiment as a benchmark as intended.

#### REFERENCES

- F. W. Stallmann, "LSL-M1 and LSL-M2: Two Extensions of the LSL Adjustment Procedure for Including Multiple Spectrum Locations," to be presented at the 5th ASTM-EURATOM Symposium on Reactor Dosimetry, Geesthacht, FRG, September 24-28, 1984.
- W. N. McElroy and F. B. K. Kam, eds., PSF Blind Test SSC, SPVC Physics, Dosimetry, and Metallurgy Data packages, distributed to Blind Test participants, February 17, 1984.
- R. E. Maerker and B. A. Worley, "Calculated Spectral Fluences and Dosimeter Activities for the Metallurgical Blind Test Irradiations at the ORR-PSF," to be presented at the 5th ASTM-EURATOM Symposium on Reactor Dosimetry, Geesthacht, FRG, September 24-28, 1984.

- R. E. Maerker, M. L. Williams, B. L. Broadhead, J. J. Wagschal, and C. V. Fu, "Revision and Extension of the Data Base in the LEPRICON Dosimetry Methodology," EPRI Report, (in press), 1984.
- W. L. Zijp and J. H. Baard, Nuclear Data Guide for Reactor Neutron Metrology, Part 1 and Part 2, ECN70/71, 1979.
- B. F. Rider, et al., "Evaluation of Fission Product Yields for the U.S National Nuclear Data Files," <u>Workshop on Evaluation Methods and</u> Procedures for Applied Data, Upton, NY, September 22-26, 1980.
- E. D. McGarry, et al., "Gamma-Ray Response of Integral Neutron Dosimeters and Review of Measured <sup>235</sup>U Fission Rates," NUREG/CR-3318, Section 4.5, U.S. Nuclear Regulatory Commission, Washington, DC, 1984.
- D. E. Cullen, N. Kocherov, and P. M. McLaughlain, <u>The International</u> Reactor Dosimetry File (IRDF-83), IAEA-NDS-41/R, 1982.
- J. D. Smith, III, and B. L. Broadhead, PUFF-2, "Determination of Multigroup Covariance Matrices from ENDF/B-V Uncertainty File," RSIC-PSR-157, Radiation Shielding Information Center, Oak Ridge, TN.
- F. W. Stallmann, C. A. Baldwin, and F. B. K. Kam, <u>Neutron Spectral</u> <u>Characterization of the Fourth Nuclear Regulatory Commission Heavy</u> <u>Section Steel Technology 1T-CT Irradiation Experiments: Dosimetry</u> <u>and Uncertainty Analysis</u>, NUREG/CR-3333, ORNL/TM-8789, U.S. Nuclear <u>Regulatory Commission</u>, Washington, DC, 1983.
- 11. C. A. Baldwin, F. B. K. Kam, and F. W. Stallmann, <u>Neutron Spectral</u> <u>Characterization for the Fifth Nuclear Regulatory Commission Heavy</u> <u>Section Steel Technology Program, Part 1. Simulator Experiments,</u> (in publication).



Fig. 1. View of the PSF facility.

ORNL DWG. 84-9122



Illustration of dosimeter and metallurgical specimen locations in the irradiation capsules. Fig. 2.

4

· 1980



Fig. 3. Coordinate system for the ORR-PSF metallurgical experiment.

ORNL DWG 83-12862

.

.



Fig. 4. Methodology for the determination of exposure parameter values and uncertainties.



4.



.

.



\*

| Group no.     | Upper energy boundary<br>(eV) |
|---------------|-------------------------------|
| 1             | 1.800 E+7                     |
| 2             | 1.733 E+7                     |
| 3             | 1.221 E+7                     |
| 4             | 1.000 E+7                     |
| 5             | 7.408 E+6                     |
| 6             | 6.065 E+6                     |
| 7             | 4.066 E+6                     |
| 8             | 2.725 E+6                     |
| 9             | 2.466 E+6                     |
| 10            | 2.123 E+6                     |
| 11            | 1.827 E+6                     |
| 12            | 1.496 E+6                     |
| 13            | 1.353 E+6                     |
| 14            | 1.003 E+6                     |
| 15            | 8.209 E+5                     |
| 16            | 6.081 E+5                     |
| 17            | 3.020 E+5                     |
| 18            | 1.832 E+5                     |
| 19            | 9.804 E+4                     |
| 20            | 8.652 E+4                     |
| 21            | 6.738 E+4                     |
| 22            | 4.087 E+4                     |
| 23            | 3.431 E+4                     |
| 24            | 2.606 E+4                     |
| 25            | 2.418 E+4                     |
| 26            | 2.188 E+4                     |
| 27            | 1.503 E+4                     |
| 28            | 1.171 E+4                     |
| 29            | 7.102 E+3                     |
| 30            | 5.531 E+3                     |
| 31            | 3.355 E+3                     |
| 32            | 2.612 E+3                     |
| 33            | 1.585 E+3                     |
| 34            | 1.023 E+2                     |
| 35            | 1.068 E+1                     |
| 36            | 4.140 E-1                     |
| 37            | 1.265 E-1                     |
| lowest energy | 1.000 E-4                     |

Table 1. Energy groups used for the LSL-M2 adjustment procedure in the ORR-PSF metallurgical irradiation experiment

| Upper energy |      | Fluence ratio water/void |      |      |      |          |  |  |  |
|--------------|------|--------------------------|------|------|------|----------|--|--|--|
| (eV)         | SSC  | 0-T                      | 1/4T | 1/2T | 3/4T | Void box |  |  |  |
| 1.7333 E+7   | 1.00 | 1.00                     | 1.00 | 1.00 | 1.00 | 0.59     |  |  |  |
| 8.6071 E+6   | 1.00 | 1.00                     | 1.00 | 1.00 | 1.00 | 0.53     |  |  |  |
| 4.9659 E+6   | 1.00 | 1.00                     | 1.00 | 1.00 | 0.99 | 0.33     |  |  |  |
| 2.5924 E+6   | 1.00 | 1.00                     | 1.00 | 1.00 | 0.98 | 0.23     |  |  |  |
| 2.1225 E+6   | 1.00 | 1.00                     | 1.00 | 1.00 | 0.97 | 0.14     |  |  |  |
| 1.3534 E+6   | 1.00 | 1.00                     | 1.00 | 0.99 | 0.95 | 0.06     |  |  |  |
| 7.4274 E+5   | 1.00 | 0.98                     | 0.96 | 0.93 | 0.86 | 0.03     |  |  |  |
| 2.1280 E+5   | 1.00 | 0.97                     | 0.94 | 0.89 | 0.80 | 0.03     |  |  |  |
| 6.7379 E+4   | 1.00 | 0.96                     | 0.93 | 0.88 | 0.80 | 0.04     |  |  |  |
| 2.1875 E+4   | 1.00 | 0.97                     | 0.94 | 0.88 | 0.79 | 0.06     |  |  |  |
| 3.3546 E+3   | 1.00 | 0.99                     | 0.98 | 0.95 | 0.93 | 0.17     |  |  |  |

Table 2. Fluence perturbation due to water in the void box

|            |                                                   | Std  |                                                      | Std.        |                                                | Std.        |                                                          | Std.        |               | Std.        |
|------------|---------------------------------------------------|------|------------------------------------------------------|-------------|------------------------------------------------|-------------|----------------------------------------------------------|-------------|---------------|-------------|
|            | φ>1.0 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> * | dev. | $\phi > 0.1 \text{ MeV}$<br>$10^{19} \text{ n/cm}^2$ | dev.<br>(%) | φ<0.4 eV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dev.<br>(%) | <sup>¢</sup> total<br>10 <sup>19</sup> n/cm <sup>2</sup> | dev.<br>(%) | dpa<br>(10-2) | dev.<br>(%) |
| SSC1       |                                                   |      |                                                      |             |                                                |             |                                                          |             |               |             |
| H-4        | 2.56                                              | 5.1% | 7.74                                                 | 5.8%        | 1.26                                           | 7.4%        | 14.20                                                    | 5.8%        | 4.07          | 4.9%        |
| SSC2       |                                                   |      |                                                      |             |                                                |             |                                                          |             |               |             |
| H-9        | 5.50                                              | 5.1% | 16.84                                                | 5.8%        | 2.79                                           | 7.4%        | 30.55                                                    | 5.5%        | 8.80          | 4.9%        |
| <u>0-T</u> |                                                   |      |                                                      |             |                                                |             |                                                          |             |               |             |
| H-14       | 4.10                                              | 5.1% | 12.26                                                | 5.8%        | 6.29                                           | 7.6%        | 27.66                                                    | 5.8%        | 6.56          | 4.9%        |
| 1/4T       |                                                   |      |                                                      |             |                                                |             |                                                          |             |               |             |
| H-19       | 2.21                                              | 5.2% | 8.98                                                 | 6.0%        | 0.84                                           | 7.9%        | 14.75                                                    | 5.5%        | 4.13          | 5.2%        |
| 1/2T       |                                                   |      |                                                      |             |                                                |             |                                                          |             |               |             |
| H-24       | 1.05                                              | 5.4% | 5.83                                                 | 6.0%        | 0.27                                           | 8.3%        | 9.17                                                     | 5.6%        | 2.39          | 5.4%        |

Table 3. Fluences and dpa at capsule centers

 $\star 10^{19} \text{ n/cm}^2$  is  $10^{19} \text{ neutrons/cm}^2$ , which was shortened for the table heading.

|      | Position    | P0*     | Bz                  | Std.<br>dev.        | z <sub>0</sub> | Std.<br>dev. |
|------|-------------|---------|---------------------|---------------------|----------------|--------------|
|      |             |         | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm)           | (cm)         |
| SSC1 | left front  | 1,90E-6 | 0.0424              | +0.0009             | 0.43           | +0.15        |
|      | left rear   | 1.11E-6 | 0.0420              | +0.0009             | 1.49           | +0.11        |
|      | right front | 1.84E-6 | 0.0429              | +0.0006             | 1.13           | +0.11        |
|      | right rear  | 1.13E-6 | 0.0449              | +0.0010             | 1.10           | +0.15        |
|      | center      | 1.62E-6 | 0.0419              | +0.0150             | 1.47           | +0.03        |
| 0-T  | left front  | 3.08E-6 | 0.0377              | +0.0026             | 1.29           | +0.47        |
|      | left rear   | 2.06E-6 | 0.0379              | +0.0011             | 1.93           | +0.20        |
|      | right front | 2.94E-6 | 0.0382              | +0.0009             | 1.53           | +0.16        |
|      | right rear  | 1.96E-6 | 0.0374              | +0.0010             | 1.80           | +0.19        |
|      | center      | 2.8     | 0.0363              | +0.0084             | 0.91           | +0.02        |
| 1/4T | left front  | 1.39E-6 | 0.0357              | +0.0009             | 2.87           | +0.20        |
|      | left rear   | 9.10E-7 | 0.0354              | +0.0016             | 2.85           | +0.38        |
|      | right front | 1.31E-6 | 0.0242              | +0.0080             | -0.75          | +2.40**      |
|      | right rear  | 8.68E-7 | 0.0339              | +0.0016             | 3.03           | +0.38        |
|      | center      | 1.24E-6 | 0.0331              | +0.0144             | 1.88           | +0.04        |
| 1/2T | left front  | 5.47E-7 | 0.0318              | +0.0010             | 4.34           | +0.29        |
|      | left rear   | 3.55E-7 | 0.0315              | +0.0011             | 4.61           | +0.34        |
|      | right front | 5.21E-7 | 0.0332              | +0.0008             | 2.93           | +0.20        |
|      | right rear  | 3.39E-7 | 0.0203              | +0.0079             | 1.30           | +2.00**      |
|      | center      | 4.78E-7 | 0.0307              | +0.0169             | 4.27           | +0.06        |

÷

Table 4. Cosine fit to the gradient wires

\*P<sub>0</sub> = peak value of the reaction probability of the <sup>54</sup>Fe(n,p)<sup>54</sup>Mn reaction. Standard deviation is less than 2% in all cases. \*\*Incomplete and irregular data, possible mislabelling.

|                        | D.        |                      |       | в      | 20    | λ                   | No    |
|------------------------|-----------|----------------------|-------|--------|-------|---------------------|-------|
|                        | r0        | D <sub>X</sub>       | ~0    |        | 20    | (1)                 | 30    |
|                        |           | ( cm <sup>-1</sup> ) | (cm)  | (cm-1) | (cm)  | (cm <sup>-1</sup> ) | (cm)  |
| SSC1                   |           |                      |       |        |       |                     |       |
| ¢t>1.0 MeV*            | 2.500E+19 | 0.0499               | 0.41  | 0.0436 | 0.97  | 0.176               | 13.29 |
|                        | 7.607E+19 | 0.0507               | 0.37  | 0.0464 | 0.80  | 0.134               | 13.29 |
| dpa                    | 3.995E-02 | 0.0502               | 0.38  | 0.0449 | 0.90  | 0.156               | 13.29 |
| 237Np(n,f)             | 6.679E-05 | 0.0504               | 0.38  | 0.0449 | 0.89  | 0.152               | 13.29 |
| 93ND(n,n')             | 5.598E-06 | 0.0497               | 0.41  | 0.0437 | 0.97  | 0.174               | 13.29 |
| 238U(n,f)              | 8.763E-06 | 0.0493               | 0.41  | 0.0428 | 1.04  | 0.191               | 13.29 |
| 58Ni(a,p)              | 2.212E-06 | 0,0471               | 0.41  | 0.0417 | 1.18  | 0.205               | 13.29 |
| 54Fe(n,p)              | 1.622E-06 | 0.0467               | 0.42  | 0.0419 | 1.47  | 0.20                | 13.29 |
| 46Ti(n,p)              | 2.077E-07 | 0.0439               | 0.40  | 0.0406 | 1.31  | 0.209               | 13.29 |
| $63$ Cu(n, $\alpha$ )  | 1.091E-08 | 0.0417               | 0.38  | 0.0402 | 1.38  | 0.202               | 13.29 |
| SSC2                   |           |                      |       |        |       |                     |       |
| ¢t>1.0 MeV*            | 5.341E+19 | 0.0528               | -0.95 | 0.0457 | 0.03  | 0.176               | 13.29 |
| ¢t>0.1 MeV*            | 1.648E+20 | 0.0539               | -0.88 | 0.0484 | -0.02 | 0.134               | 13.29 |
| dpa                    | 8.580E-02 | 0.0533               | -0.91 | 0.0470 | 0.02  | 0.156               | 13.29 |
| 237 <sub>Np(n,f)</sub> | 1.437E-04 | 0.0536               | -0.90 | 0.0470 | 0.02  | 0.152               | 13.29 |
| 93Nb(n,n')             | 1.196E-05 | 0.0526               | -0.94 | 0.0458 | 0.03  | 0.174               | 13.29 |
| 238U(n,f)              | 1.862E-05 | 0.0521               | -0.97 | 0.0449 | 0.06  | 0.191               | 13.29 |
| 58Ni(n,p)              | 4.644E-06 | 0.0497               | -1.08 | 0.0437 | 0.12  | 0.205               | 13.29 |
| 54Fe(n,p)              | 3.407E-06 | 0.0483               | -1.15 | 0.0415 | 0.63  | 0.207               | 13.29 |
| 46Ti(n,p)              | 4.309E-07 | 0.0467               | -1.24 | 0.0426 | 0.20  | 0.209               | 13.29 |
| $63Cu(n,\alpha)$       | 2.252E-08 | 0.0449               | -1.33 | 0.0421 | 0.24  | 0.202               | 13.29 |
| <u>0-T</u>             |           |                      |       |        |       |                     |       |
| ¢t>1.0 MeV*            | 3.924E+19 | 0.0517               | -0.69 | 0.0395 | 0.72  | 0.107               | 24.05 |
| φ≤>0.1 MeV*            | 1.214E+20 | 0.0522               | -0.64 | 0.0432 | 0.71  | 0.042               | 24.05 |
| dpa                    | 6.452E-02 | 0.0516               | -0.67 | 0.0414 | 0.71  | 0.079               | 24.05 |
| 237 <sub>Np(n,f)</sub> | 1.055E-04 | 0.0523               | -0.66 | 0.0416 | 0.69  | 0.071               | 24.05 |
| 93Nb(n,n')             | 8.897E-06 | 0.0514               | -0.69 | 0.0397 | 0.73  | 0.107               | 24.05 |
| 238U(n,f)              | 1.4326-05 | 0.0509               | -0.72 | 0.0386 | 0.76  | 0.133               | 24.05 |
| 58 <sub>Ni(n,p)</sub>  | 3.796E-06 | 0.0488               | -0.80 | 0.0366 | 0.89  | 0.169               | 24.05 |
| 54Fe(n,p)              | 2.805E-06 | 0.0482               | -0.83 | 0.0363 | 0.91  | 0.174               | 24.05 |
| 46Ti(n,p)              | 3.987E-07 | 0.0467               | -0.92 | 0.0354 | 0.97  | 0.186               | 24.05 |
| 63cu(n, a)             | 2.304E-08 | 0.0458               | -0.96 | 0.0354 | 0.92  | 0.183               | 24.05 |

isting.

Table 5. Fitting parameters for formula (1)

- 0

.

.

4

4

Table 5. Continued

|                                                                      | Po        | B <sub>x</sub>      | ×0    | Bz                  | z <sub>0</sub> | λ                   | УО    |
|----------------------------------------------------------------------|-----------|---------------------|-------|---------------------|----------------|---------------------|-------|
|                                                                      |           | (cm <sup>-1</sup> ) | (cm)  | (cm <sup>-1</sup> ) | (cm)           | (cm <sup>-1</sup> ) | (cm)  |
| 1/4T                                                                 |           |                     |       |                     |                |                     |       |
| <pre>\$\$\$1.0 MeV*</pre>                                            | 2.143E+19 | 0.0478              | -0.96 | 0.0378              | 1.30           | 0.134               | 28.56 |
| ¢t>0.1 MeV*                                                          | 8.823E+19 | 0.0486              | -0.86 | 0.0425              | 1.14           | 0.070               | 28.56 |
| dpa                                                                  | 4.037E-02 | 0.0481              | -0.91 | 0.0407              | 1.21           | 0.097               | 28.56 |
| 237 <sub>Np(n,f)</sub>                                               | 6.650E-05 | 0.0483              | -0.92 | 0.0407              | 1.16           | 0.098               | 28.56 |
| 93Nb(n,n')                                                           | 4.957E-06 | 0.0478              | -0.95 | 0.0385              | 1.27           | 0.127               | 28.56 |
| 238U(n,f)                                                            | 7.137E-06 | 0.0479              | -0.97 | 0.0366              | 1.41           | 0.153               | 28.56 |
| 58 <sub>Ni(n,p)</sub>                                                | 1.697E-06 | 0.0468              | -1.06 | 0.0336              | 1.80           | 0.177               | 28.56 |
| 54Fe(n,p)                                                            | 1.237E-06 | 0.0460              | -1.10 | 0.0331              | 1.88           | 0.181               | 28.56 |
| 46Ti(n,p)                                                            | 1.714E-07 | 0.0462              | -1.11 | 0.0318              | 2.08           | 0.187               | 28.56 |
| $63Cu(n, \alpha)$                                                    | 1.018E-08 | 0.0463              | -1.12 | 0.0321              | 2.01           | 0.181               | 28.56 |
| <u>1/2T</u>                                                          |           |                     |       |                     |                |                     |       |
| <pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre> | 1.016E+19 | 0.0441              | -0.94 | 0.0349              | 1.94           | 0.146               | 33.70 |
| ¢t>0.1 MeV*                                                          | 5.727E+19 | 0.0452              | -0.79 | 0.0413              | 1.48           | 0.089               | 33.70 |
| dpa                                                                  | 2.333E-02 | 0.0450              | -0.83 | 0.0395              | 1.59           | 0.107               | 33.70 |
| 237 <sub>Np(n,f)</sub>                                               | 3.773E-05 | 0.0450              | -0.84 | 0.0393              | 1.54           | 0.111               | 33.70 |
| 93Nb(n,n')                                                           | 2.468E-06 | 0.0443              | -0.91 | 0.0365              | 1.80           | 0.135               | 33.70 |
| 238U(n,f)                                                            | 3.085E-06 | 0.0436              | -1.00 | 0.0330              | 2.20           | 0.163               | 33.70 |
| 58Ni(n,p)                                                            | 6.588E-07 | 0.0423              | -1.10 | 0.0281              | 3.38           | 0.183               | 33.70 |
| 54Fe(n,p)                                                            | 4.777E-07 | 0.0448              | -0.98 | 0.0307              | 4.27           | 0.186               | 33.70 |
| 46Ti(n,p)                                                            | 6.389E-08 | 0.0419              | -1.20 | 0.0246              | 4.74           | 0.190               | 33.70 |
| $63Cu(n,\alpha)$                                                     | 3.924E-09 | 0.0428              | -1.16 | 0.0255              | 4.36           | 0.182               | 33.70 |

-

\*Neutrons/cm<sup>2</sup>.

6

-

.

-- 8

.

.

i.

|                   | z      | x      | x              | (y-y_)b | (y-y_)b |  |
|-------------------|--------|--------|----------------|---------|---------|--|
| No. <sup>4</sup>  |        | (left) | (right)        | (front) | (rear)  |  |
|                   |        | Cha    | arpy Specimens |         |         |  |
| 1                 | 12.20  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 2                 | 11.20  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 3                 | 10.20  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 4                 | 9.20   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 5                 | 8.20   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 6                 | 7.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 7                 | 6.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 8                 | 5.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 9                 | 4.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 10                | 3.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 11                | 2.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 12                | 1.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 13                | 0.19   | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 14                | -0.81  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 15                | -1.81  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 16                | -2.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 17                | -3.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 18                | -4.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 19                | -5.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 20                | -6.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 21                | -7.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 22                | -8.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 23                | -9.82  | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 24                | -10.82 | -10.37 | +10.37         | -1.07   | +1.07   |  |
| 25                | -11.82 | -10.37 | +10.37         | -1.07   | +1.07   |  |
|                   |        | 1/:    | 2 CT Specimens |         |         |  |
| 29                | 11.39  | 0.0    |                | -0.64   | +0.64   |  |
| 31TC              | 8.22   | 0.0    |                | -0.64   | +0.64   |  |
| 31 B <sup>C</sup> | 4.48   | 0.0    |                | -0.64   | +0.64   |  |
| 32T               | 1.87   | 0.0    |                | -0.64   | +0.64   |  |
| 32B               | -1.87  | 0.0    |                | -0.64   | +0.64   |  |
| 33T               | -4.48  | 0.0    |                | -0.64   | +0.64   |  |
| 33B               | -8.22  | 0.0    |                | -0.64   | +0.64   |  |
| 30                | -11.39 | 0.0    |                | -0.64   | +0.64   |  |

Table 6. Coordinates of the locations of the metallurgical specimens relative to the capsule center (all coordinates in cm)

| No.c | z      | x<br>(left) | x<br>(right) | (y-y <sub>0</sub> ) <sup>b</sup><br>(front) | (y-y <sub>o</sub> ) <sup>b</sup><br>(rear) |
|------|--------|-------------|--------------|---------------------------------------------|--------------------------------------------|
|      |        | 1           | CT Specimens |                                             |                                            |
| 34   | 10.05  | -4.57       |              | 0.0                                         |                                            |
| 38T  | 3.70   | -4.57       |              | 0.0                                         |                                            |
| 38B  | -3.70  | -4.57       |              | 0.0                                         |                                            |
| 36   | -10.05 | -4.57       |              | 0.0                                         |                                            |
| 35   | 10.05  |             | 4.57         | 0.0                                         |                                            |
| 39T  | 3.70   |             | 4.57         | 0.0                                         |                                            |
| 39B  | -3.70  |             | 4.57         | 0.0                                         |                                            |
| 37   | -10.05 |             | 4.57         | 0.0                                         |                                            |

...

Table 6. Continued

aFor numbers of specimens, refer to Fig. 2.

bFor values of y<sub>o</sub> for different capsules, see Table 2.

c3lT = specimen on top of hole 31.

0

8

\* \*

...

31B = specimen below hole 31, etc.

| Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> s/cm <sup>2</sup> * | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>> 1 MeV<br>10 <sup>19</sup> a/cm <sup>2</sup> | dpa<br>(ASTN)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>.1 NeV<br>10 <sup>19</sup> s/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) |
|--------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
|              |                                                           |                                                          |                                      | 1.21         |                                                         |                                                          | Charpy 1                             | Specimen     |                                                         |                                                          |                                      |              | 1.2.9                                                   |                                                          |                                      |
|              | Left F                                                    | ront                                                     |                                      |              | Right                                                   | Front                                                    |                                      |              | Left R                                                  | lear                                                     |                                      |              | Right                                                   | Rear                                                     |                                      |
| 1.           | 2.287                                                     | 6.483                                                    | 3.539                                | 1            | 2.341                                                   | 6.626                                                    | 3.617                                | 1.1          | 1.570                                                   | 4.868                                                    | 2.535                                | 1            | 1.607                                                   | 4.975                                                    | 2.597                                |
| 2            | 2.338                                                     | 6.652                                                    | 3.674                                | 2            | 2 393                                                   | 6 798                                                    | 3 704                                | 2            | 1 605                                                   | 4.005                                                    | 2 596                                | 2            | 1.643                                                   | 5 105                                                    | 2 654                                |
| 3            | 2.384                                                     | 6.805                                                    | 3,702                                | 1            | 2.441                                                   | 6 956                                                    | 3 783                                |              | 1.637                                                   | 5.111                                                    | 2 652                                | 1            | 1 675                                                   | 5 223                                                    | 2 710                                |
| 4            | 2.426                                                     | 6.946                                                    | 3.772                                | 4            | 2.484                                                   | 7.099                                                    | 3.855                                | 4            | 1.666                                                   | 5 216                                                    | 2 707                                |              | 1 705                                                   | 5 331                                                    | 2 76.2                               |
| 5            | 2.464                                                     | 7.071                                                    | 3.834                                | 5            | 2.522                                                   | 7.227                                                    | 3,919                                | 5            | 1.691                                                   | 5.310                                                    | 2.747                                | 5            | 1.731                                                   | 5.427                                                    | 2.807                                |
| 6            | 2.497                                                     | 7.181                                                    | 3.889                                | 6            | 2.555                                                   | 7 339                                                    | 3 975                                | 6            | 1 714                                                   | 5 302                                                    | 2 786                                |              | 1.754                                                   | 5 511                                                    | 2 847                                |
| 7            | 2.524                                                     | 7.275                                                    | 3.935                                | 7            | 2.584                                                   | 7.435                                                    | 6 022                                | 7            | 1.733                                                   | 5 463                                                    | 2.819                                | 7            | 1 774                                                   | 5 583                                                    | 2 882                                |
| 8            | 2.548                                                     | 7.354                                                    | 3.974                                |              | 2.608                                                   | 7.515                                                    | 4.062                                | 8            | 1.749                                                   | 5.522                                                    | 2.867                                |              | 1.790                                                   | 5.643                                                    | 2.910                                |
| 9            | 2.566                                                     | 7,416                                                    | 4.005                                | 9            | 2.626                                                   | 7.579                                                    | 4.094                                | 9            | 1.761                                                   | 5.569                                                    | 2.869                                | 9            | 1.803                                                   | 5.691                                                    | 2.933                                |
| 10           | 2.579                                                     | 7.463                                                    | 4.028                                | 10           | 2.640                                                   | 7.627                                                    | 4.117                                | 10           | 1.770                                                   | 5.604                                                    | 2.885                                | 10           | 1.812                                                   | 5.727                                                    | 2.949                                |
| 11           | 2.588                                                     | 7.493                                                    | 4.042                                | 11           | 2.649                                                   | 7.658                                                    | 4.132                                | 11           | 1.776                                                   | 5.627                                                    | 2.896                                | 11           | 1.618                                                   | 5.751                                                    | 2.960                                |
| 12           | 2,591                                                     | 7,508                                                    | 4.049                                | 12           | 2.652                                                   | 7.673                                                    | 4.138                                | 12           | 1.779                                                   | 5.638                                                    | 2,901                                | 12           | 1.821                                                   | 5.762                                                    | 2.965                                |
| 13           | 2,590                                                     | 7.506                                                    | 4.047                                | 13           | 2.651                                                   | 7.671                                                    | 4-137                                | 13           | 1.778                                                   | 5.636                                                    | 2.899                                | 13           | 1.820                                                   | 5.760                                                    | 2.963                                |
| 14           | 2.584                                                     | 7.488                                                    | 4.037                                | 14           | 2.644                                                   | 7.653                                                    | 4.127                                | 14           | 1.773                                                   | 5.623                                                    | 2.892                                | 14           | 1.815                                                   | 5 766                                                    | 2.956                                |
| 15           | 2.572                                                     | 7.454                                                    | 4.019                                | 15           | 2.633                                                   | 7.618                                                    | 4,108                                | 15           | 1.766                                                   | 5.597                                                    | 2.879                                | 15           | 1.807                                                   | 5 720                                                    | 2 941                                |
| 16           | 2.556                                                     | 7.404                                                    | 3,993                                | 16           | 2.616                                                   | 7,567                                                    | 4.081                                | 16           | 1.755                                                   | 5,559                                                    | 2.861                                | 16           | 1.796                                                   | 5 682                                                    | 2.026                                |
| 17           | 2.535                                                     | 7.337                                                    | 3,959                                | 17           | 2.595                                                   | 7.499                                                    | 4.046                                | 17           | 1.740                                                   | 5,510                                                    | 2.836                                | 17           | 1.781                                                   | 5 631                                                    | 2 800                                |
| 18           | 2.509                                                     | 7.255                                                    | 3,917                                | 18           | 2.568                                                   | 7-415                                                    | 4.003                                | 18           | 1.722                                                   | 5.448                                                    | 2.806                                | 18           | 1.763                                                   | 5 568                                                    | 2 868                                |
| 19           | 2.479                                                     | 7,158                                                    | 3,866                                | 19           | 2.537                                                   | 7.315                                                    | 3,952                                | 19           | 1.701                                                   | 5.375                                                    | 2.770                                | 19           | 1.741                                                   | 5 493                                                    | 2.851                                |
| 20           | 2.443                                                     | 7.045                                                    | 3,808                                | 20           | 2,501                                                   | 7.200                                                    | 3.893                                | 20           | 1.677                                                   | 5,290                                                    | 2.728                                | 20           | 1.717                                                   | 5.406                                                    | 2 789                                |
| 21           | 2,403                                                     | 6.916                                                    | 3.743                                | 21           | 2,460                                                   | 7.069                                                    | 3,826                                | 21           | 1.650                                                   | 5,193                                                    | 2,681                                | 21           | 1.689                                                   | 5 308                                                    | 2 7/1                                |
| 22           | 2.359                                                     | 6.773                                                    | 3.670                                | 22           | 2.414                                                   | 6.922                                                    | 3,751                                | 22           | 1.619                                                   | 5,086                                                    | 2.629                                | 22           | 1.657                                                   | 5.198                                                    | 2 6.7                                |
| 23           | 2.310                                                     | 6.615                                                    | 3.589                                | 23           | 2.364                                                   | 6,761                                                    | 3.668                                | 23           | 1.585                                                   | 4.967                                                    | 2.571                                | 23           | 1.623                                                   | 5.077                                                    | 2 678                                |
| 24           | 2.256                                                     | 6.443                                                    | 3,501                                | 24           | 2.309                                                   | 6.585                                                    | 3.579                                | 24           | 1.549                                                   | 4.838                                                    | 2.508                                | 24           | 1.585                                                   | 4 945                                                    | 2 564                                |
| 25           | 2.199                                                     | 6.257                                                    | 3 406                                | 25           | 2.250                                                   | 6.395                                                    | 3.482                                | 25           | 1.509                                                   | 4.698                                                    | 2.440                                | 25           | 1.545                                                   | 4.802                                                    | 2.494                                |
|              |                                                           |                                                          | 1/2 CT Sp                            | ecimen       |                                                         | 7.5                                                      | -                                    |              |                                                         |                                                          | 1 CT Spe                             | cimen        |                                                         |                                                          |                                      |
|              | From                                                      | t                                                        |                                      |              | Rea                                                     | r                                                        |                                      |              | Left                                                    |                                                          |                                      |              | Righ                                                    | t                                                        |                                      |
| F 23-10P     | 2 511                                                     | 7.301                                                    | 3 030                                | #23-40#      | 1 008                                                   | 6 158                                                    | 3 336                                | 821-58       | 2 226                                                   | 6 701                                                    | 2 550                                |              |                                                         |                                                          |                                      |

Table 7. Damage parameter values at the locations of metallurgical specimens - capsule SSC1

|                                                                                            |                                                                      |                                                                      | 1/2 CT 51                                                            | pecimen                                                                           |                                                                      |                                                                      |                                                                      | 1.00                                  |                                  |                                  | 1 CT Spe                         | cimen                                  |                                  |                                  |                                  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                                            | Fro                                                                  | at                                                                   |                                                                      |                                                                                   | Rea                                                                  | ir .                                                                 |                                                                      | L 93                                  | Left                             |                                  |                                  |                                        | Righ                             | t                                |                                  |
| F23-10R<br>F23-15R<br>F23-208<br>F23-258<br>F23-258<br>F23-30R<br>38%-1<br>32%-9<br>3PU-13 | 2.511<br>2.657<br>2.762<br>2.793<br>2.774<br>2.716<br>2.574<br>2.399 | 7.301<br>7.796<br>8.161<br>8.271<br>8.218<br>8.034<br>7.567<br>6.991 | 3.930<br>4.174<br>4.353<br>4.406<br>4.376<br>4.282<br>4.046<br>3.755 | F23-40R<br>F23-42R<br>F23-52R<br>F23-63R<br>F23-66R<br>3PU-21<br>3PU-29<br>3PU-33 | 1.008<br>2.125<br>2.209<br>2.233<br>2.218<br>2.172<br>2.058<br>1.918 | 6.158<br>6.576<br>6.884<br>6.977<br>6.932<br>6.776<br>6.383<br>5.897 | 3,224<br>3,424<br>3,571<br>3,614<br>3,590<br>3,512<br>3,319<br>3,080 | F23-5R<br>F23-9R<br>F23-13R<br>3PS-11 | 2.236<br>2.406<br>2.373<br>2.149 | 6.701<br>7.303<br>7.210<br>6.455 | 3.550<br>3.842<br>3.790<br>3.414 | F23-17R<br>F23-21R<br>3PS-12<br>3PS-14 | 2.257<br>2.429<br>2.396<br>2.169 | 6.761<br>7.368<br>7.274<br>6.513 | 3.582<br>3.876<br>3.824<br>3.444 |

.

1

| Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> * | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No.                             | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>11 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dps<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) |
|--------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
|              |                                                           | 1.00                                                    |                                      |              |                                                         |                                                          | Charpy                               | Specimen                                 |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
|              | Left F                                                    | ront                                                    |                                      |              | Right                                                   | Front                                                    |                                      |                                          | Left R                                                  | tear                                                     |                                      |              | Right                                                   | Rear                                                     |                                      |
|              |                                                           |                                                         |                                      |              |                                                         |                                                          |                                      | 1.1                                      | 3 303                                                   | 10 116                                                   | 5 345                                |              | 3,107                                                   | 9.742                                                    | 5.034                                |
| 1            | 4.812                                                     | 13.767                                                  | 7.461                                | 1            | 4.526                                                   | 12.973                                                   | 7.027                                | 2                                        | 3,303                                                   | 10.662                                                   | 5.501                                | 2            | 3.192                                                   | 10.047                                                   | 5.181                                |
| 2            | 4.944                                                     | 14.199                                                  | 7.679                                | 2            | 4.650                                                   | 13.380                                                   | 7 4 21                               | 3                                        | 3 477                                                   | 10,961                                                   | 5.645                                | 3            | 3.270                                                   | 10.329                                                   | 5.317                                |
| 3            | 5.065                                                     | 14.597                                                  | 7.879                                | 3            | 4.764                                                   | 13,733                                                   | 7 594                                | 4                                        | 3.555                                                   | 11.234                                                   | 5.770                                | 4            | 3.342                                                   | 10.586                                                   | 5.440                                |
| 4            | 5.176                                                     | 14.901                                                  | 8.063                                |              | 4,000                                                   | 14.608                                                   | 7 750                                | 5                                        | 3.621                                                   | 11.481                                                   | *                                    | 5            | 3.406                                                   | 10.819                                                   | 5.552                                |
| 5            | 5.276                                                     | 15.290                                                  | 8.228                                | 2            | 4.902                                                   | 14.405                                                   | 7 889                                | 6                                        | 3,682                                                   | 11.701                                                   | 6.000                                | 6            | 3.464                                                   | 11.027                                                   | 5.651                                |
| 6            | 5.365                                                     | 15.583                                                  | 0.3/0                                | 0            | 5,119                                                   | 14.926                                                   | 8.010                                | 7                                        | 3,736                                                   | 11.894                                                   | 6.093                                | 7            | 3.514                                                   | 11.208                                                   | 5.738                                |
| 1            | 5,442                                                     | 15.040                                                  | 8 615                                |              | 5.181                                                   | 15,133                                                   | 8.114                                | 8                                        | 3.781                                                   | 12.059                                                   | 6.171                                | 8            | 3.557                                                   | 11.363                                                   | 5.813                                |
| 8            | 5,509                                                     | 16.261                                                  | 8 706                                | 9            | 5.233                                                   | 15.304                                                   | 8,199                                | 9                                        | 3.819                                                   | 12.195                                                   | 6.237                                | 9            | 3.592                                                   | 11.492                                                   | 5.874                                |
| 9            | 5,503                                                     | 16 384                                                  | 8,777                                | 10           | 5.274                                                   | 15.439                                                   | 8.267                                | 10                                       | 3.848                                                   | 12.303                                                   | 6.288                                | 10           | 3.620                                                   | 11.593                                                   | 5.922                                |
| 10           | 5.638                                                     | 16.489                                                  | 8.829                                | 11           | 5,303                                                   | 15.538                                                   | 8.316                                | 11                                       | 3.870                                                   | 12.382                                                   | 6.325                                | 11           | 3.640                                                   | 11.668                                                   | 5.958                                |
| 12           | 5.658                                                     | 16.556                                                  | 8,862                                | 12           | 5.322                                                   | 15.601                                                   | 8.347                                | 12                                       | 3.883                                                   | 12.431                                                   | 6.349                                | 12           | 3.653                                                   | 11.715                                                   | 5,980                                |
| 13           | 5.665                                                     | 16.583                                                  | 8.875                                | 13           | 5.329                                                   | 15.627                                                   | 8,359                                | 13                                       | 3.889                                                   | 12.452                                                   | 6.358                                | 13           | 3.658                                                   | 11.734                                                   | 5.988                                |
| 14           | 5.661                                                     | 16.572                                                  | 8.869                                | 14           | 5.325                                                   | 15.616                                                   | 8.353                                | 14                                       | 3.886                                                   | 12.444                                                   | 6.353                                | 14           | 3.655                                                   | 11.726                                                   | 3.984                                |
| 15           | 5.645                                                     | 16.521                                                  | 8.843                                | 15           | 5.310                                                   | 15.569                                                   | 8.328                                | 15                                       | 3.875                                                   | 12.406                                                   | 6.335                                | 15           | 3.645                                                   | 11.690                                                   | 5.900                                |
| 16           | 5,618                                                     | 16.432                                                  | 8.797                                | 16           | 5.284                                                   | 15.485                                                   | 8.285                                | 16                                       | 3.856                                                   | 12.339                                                   | 6.302                                | 16           | 3.627                                                   | 11.62/                                                   | 5,930                                |
| 17           | 5.578                                                     | 16.305                                                  | 8.732                                | 17           | 5.247                                                   | 15.365                                                   | 8.224                                | 17                                       | 3.829                                                   | 12.243                                                   | 6.255                                | 17           | 3.001                                                   | 11.537                                                   | 5 835                                |
| 18           | 5.527                                                     | 16.139                                                  | 8.647                                | 18           | 5.199                                                   | 15.208                                                   | 8.144                                | 18                                       | 3.794                                                   | 12.119                                                   | 0.195                                | 10           | 3.300                                                   | 11.420                                                   | 5 765                                |
| 19           | 5.464                                                     | 15.935                                                  | 8.544                                | 19           | 5.140                                                   | 15.016                                                   | 8.047                                | 19                                       | 3.751                                                   | 11.900                                                   | 6.121                                | 19           | 3,520                                                   | 11 105                                                   | 5.682                                |
| 20           | 5.390                                                     | 15.694                                                  | 8.421                                | 20           | 5.070                                                   | 14.789                                                   | 7.931                                | 20                                       | 3.700                                                   | 11.783                                                   | 5.033                                | 20           | 3.400                                                   | 10 908                                                   | 5.587                                |
| 21           | 5.305                                                     | 15.416                                                  | 8.280                                | 21           | 4.990                                                   | 14.527                                                   | 7.798                                | 21                                       | 3.041                                                   | 11,370                                                   | 5 817                                | 22           | 3 363                                                   | 10.686                                                   | 5.479                                |
| 22           | 5.208                                                     | 15.102                                                  | 8.120                                | 22           | 4.899                                                   | 14.231                                                   | 7,648                                | 22                                       | 3.5/5                                                   | 11.340                                                   | 5 690                                | 22           | 3 293                                                   | 10.439                                                   | 5.359                                |
| 23           | 5.101                                                     | 14.752                                                  | 7.943                                | 23           | 4.798                                                   | 13.902                                                   | 7.481                                | 23                                       | 3.501                                                   | 10 789                                                   | 5.550                                | 24           | 3,217                                                   | 10,167                                                   | 5.228                                |
| 24<br>25     | 4.983<br>4.854                                            | 14.368                                                  | 7.748                                | 24           | 4.566                                                   | 13.146                                                   | 7.097                                | 25                                       | 3.332                                                   | 10.475                                                   | 5.398                                | 25           | 3.134                                                   | 9.871                                                    | 5.084                                |
|              |                                                           |                                                         | 1/2 CT S                             | pecimen      |                                                         |                                                          |                                      |                                          |                                                         | 1                                                        | CT Specin                            | men          |                                                         |                                                          |                                      |
|              |                                                           |                                                         |                                      |              | Rea                                                     |                                                          |                                      | 1000                                     | Left                                                    |                                                          |                                      |              | Righ                                                    | ht                                                       |                                      |
|              | From                                                      | ic .                                                    |                                      |              | ac.                                                     |                                                          |                                      | Sec. 1.2                                 |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| F23-78       | 5,179                                                     | 15.258                                                  | 8.143                                | F23-38R      | 4.141                                                   | 12.871                                                   | 6.679                                | F23-2R                                   | 4.704                                                   | 14.274                                                   | 7.459                                | F23-24R      | 4.589                                                   | 13.938                                                   | 7.321                                |
| F23-17       | 8 5,552                                                   | 16.518                                                  | 8.769                                | F23-46R      | 4.440                                                   | 13.933                                                   | 7.193                                | F23-6R                                   | 5.170                                                   | 15.394                                                   | 8.292                                | F23-28R      | 5.044                                                   | 15.519                                                   | 8.094                                |
| ¥23-19       | 8 5.842                                                   | 17.499                                                  | 9.255                                | F23-54R      | 4.672                                                   | 14.761                                                   | 7.592                                | F23-20R                                  | 5.168                                                   | 15.899                                                   | 8.289                                | 3PS-7        | 3.042                                                   | 15.524                                                   | 8.091                                |
| F23-27       | R 5.944                                                   | 17.849                                                  | 9.427                                | F23-58R      | 4.753                                                   | 15.056                                                   | 7.732                                | 3PS-6                                    | 4.697                                                   | 14.289                                                   | 1.492                                | 362-9        | 4.283                                                   | 13.952                                                   | 7.313                                |
| F23-29       | R 5.943                                                   | 17.852                                                  | 9.425                                | F23-62R      | 4.752                                                   | 15.058                                                   | 7.731                                |                                          |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 3PU-8        | 5.839                                                     | 17.507                                                  | 9.251                                | 3PU-30       | 4.669                                                   | 14.757                                                   | 7.588                                | 10.10                                    |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 3PU-16       | 5.546                                                     | 16.531                                                  | 8.762                                | 3PU-32       | 4.435                                                   | 13.944                                                   | 7,187                                |                                          |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 3PU-17       | 5.171                                                     | 15.276                                                  | 8.134                                | 3PU-37       | 4.135                                                   | 12.886                                                   | 0.0/2                                | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |

Table 8. Damage parameter values at the locations of metallurgical specimens - capsule SSC2

\*Hectrons per cm2.

| Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> * | Fluence<br>> 1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>,1 MeV<br>10 <sup>19</sup> u/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>,1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM<br>(10 <sup>-2</sup> |
|--------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------|
|              |                                                           |                                                          | -                                    |              |                                                         |                                                          | Charpy S                             | pecimen      |                                                         |                                                          |                                      |              |                                                         |                                                          |                                   |
|              | Left F                                                    | ront                                                     |                                      |              | Right                                                   | Front                                                    |                                      |              | Left F                                                  | lear                                                     |                                      |              | Right                                                   | Rear                                                     |                                   |
|              |                                                           |                                                          |                                      |              |                                                         |                                                          |                                      |              | 2.760                                                   |                                                          | 4.675                                | 1. 1.        | 2.646                                                   | 8.567                                                    | 4.43                              |
| 1            | 3.470                                                     | 9.756                                                    | 5.476                                | 1            | 3.326                                                   | 9.372                                                    | 5.256                                | 1.1          | 2.700                                                   | 0,910                                                    | 4.027                                |              | 2.695                                                   | 8.759                                                    | 4.53                              |
| 2            | 3.534                                                     | 9.975                                                    | 5.588                                | 2            | 3.387                                                   | 9.582                                                    | 5.363                                |              | 2,011                                                   | 9,119                                                    | 4 806                                | 3            | 2.739                                                   | 8,935                                                    | 4.61                              |
| 3            | 3.593                                                     | 10,176                                                   | 5.690                                | 3            | 3.443                                                   | 9.775                                                    | 5.462                                | 1.1          | 2.000                                                   | 9.302                                                    | 4.000                                | 4            | 2 780                                                   | 9.095                                                    | 4.68                              |
| 4            | 3.646                                                     | 10.357                                                   | 5.783                                | 4            | 3.494                                                   | 9.949                                                    | 3.331                                |              | 2.900                                                   | 9,400                                                    | 4.004                                |              | 2.816                                                   | 9.237                                                    | 4.75                              |
| 5            | 3.693                                                     | 10.520                                                   | 5.866                                | 5            | 3.540                                                   | 10,105                                                   | 2.630                                | 2            | 2.930                                                   | 9.010                                                    | 5 016                                |              | 2.847                                                   | 9.363                                                    | 4.81                              |
| 6            | 3.734                                                     | 10.662                                                   | 5.939                                | 6            | 3.579                                                   | 10.242                                                   | 5,700                                | 0            | 2.9/1                                                   | 9.141                                                    | 5.069                                | 7            | 2.875                                                   | 9.470                                                    | 4.86                              |
| 7            | 3.770                                                     | 10.785                                                   | 6.001                                | 7            | 3.614                                                   | 10.360                                                   | 5.760                                | 0            | 2.999                                                   | 9.039                                                    | 5 113                                |              | 2.897                                                   | 9.560                                                    | 4.90                              |
| 8            | 3,800                                                     | 10.887                                                   | 6.054                                | 8            | 3.642                                                   | 10,458                                                   | 5.810                                | 0            | 3.023                                                   | 10 027                                                   | 5 148                                | 9            | 2.916                                                   | 9.632                                                    | 4.94                              |
| 9            | 3.824                                                     | 10.969                                                   | 6.096                                | 9            | 3.665                                                   | 10.537                                                   | 5,851                                |              | 3.042                                                   | 10.02/                                                   | 5 175                                | 10           | 2 929                                                   | 9.686                                                    | 4.96                              |
| 10           | 3.842                                                     | 11.031                                                   | 6.127                                | 10           | 3.682                                                   | 10.596                                                   | 5,881                                | 10           | 3.056                                                   | 10,004                                                   | 5 102                                | 11           | 2 918                                                   | 9.722                                                    | 4.98                              |
| 11           | 3.853                                                     | 11.072                                                   | 6.148                                | 11           | 3.693                                                   | 10.030                                                   | 5.901                                | 11           | 3.065                                                   | 10.121                                                   | 5 201                                | 12           | 2 943                                                   | 9.740                                                    | 4.99                              |
| 12           | 3.859                                                     | 11.092                                                   | 6.158                                | 12           | 3.699                                                   | 16.655                                                   | 5,911                                | 12           | 3.070                                                   | 10,140                                                   | 5.201                                | 12           | 2 943                                                   | 9 740                                                    | 4.99                              |
| 13           | 3.859                                                     | 11,092                                                   | 6,158                                | 13           | 3.699                                                   | 10.655                                                   | 5.910                                | 13           | 3.070                                                   | 10.139                                                   | 5 102                                | 16           | 2 938                                                   | 9.721                                                    | 4.98                              |
| 14           | 3.853                                                     | 11.071                                                   | 6.147                                | 14           | 3.693                                                   | 10.634                                                   | 5.900                                | 19           | 3.065                                                   | 10.120                                                   | 5.192                                | 16           | 2.930                                                   | 9 684                                                    | 4 96                              |
| 15           | 3.841                                                     | 11,029                                                   | 6.126                                | 15           | 3.681                                                   | 10.594                                                   | 5.880                                | 15           | 3.055                                                   | 10.082                                                   | 2.1/4                                | 15           | 2.920                                                   | 9.630                                                    | A 96                              |
| 16           | 3.822                                                     | 10.966                                                   | 6.094                                | 16           | 3.664                                                   | 10.534                                                   | 5.849                                | 16           | 3,041                                                   | 10.024                                                   | 5.147                                | 10           | 2.914                                                   | 9.030                                                    | 4.74                              |
| 17           | 3.798                                                     | 10.883                                                   | 6.052                                | 17           | 3.640                                                   | 10.454                                                   | 5.808                                | 17           | 3.022                                                   | 9.949                                                    | 5,111                                | 17           | 2.090                                                   | 9.337                                                    | 4.90                              |
| 18           | 3.768                                                     | 10.780                                                   | 5.999                                | 18           | 3.612                                                   | 10.355                                                   | 5.758                                | 18           | 2.998                                                   | 9.834                                                    | 5.007                                | 10           | 2.0/3                                                   | 9.400                                                    | 4.00                              |
| 19           | 3.732                                                     | 10.656                                                   | 5.936                                | 19           | 3.577                                                   | 10.237                                                   | 5.697                                | 19           | 2.969                                                   | 9.741                                                    | 5.013                                | 19           | 2.040                                                   | 9.357                                                    | 4.01                              |
| 20           | 3.690                                                     | 10.511                                                   | 5.863                                | 20           | 3.537                                                   | 10.099                                                   | 5.627                                | 20           | 2.936                                                   | 9.610                                                    | 4.951                                | 20           | 2.814                                                   | 9.231                                                    | 4.15                              |
| 21           | 3.642                                                     | 10.350                                                   | 5.779                                | 21           | 3.491                                                   | 9.942                                                    | 5.547                                | 21           | 2.898                                                   | 9.461                                                    | 4,881                                | 21           | 2.777                                                   | 9.088                                                    | 4.68                              |
| 22           | 3.589                                                     | 10.167                                                   | 5.686                                | 22           | 3.440                                                   | 9.767                                                    | 5.458                                | 22           | 2.855                                                   | 9.294                                                    | 4.802                                | 2.           | 2.737                                                   | 8.928                                                    | 4,60                              |
| 23           | 3.530                                                     | 9.966                                                    | 5.583                                | 23           | 3.384                                                   | 9.573                                                    | 5.359                                | 23           | 2.808                                                   | 9.110                                                    | 4.715                                | 23           | 2.692                                                   | 8,751                                                    | 4.52                              |
| 24           | 3,466                                                     | 9.746                                                    | 5.471                                | 24           | 3.322                                                   | 9.362                                                    | 5.251                                | 24           | 2.757                                                   | 8.909                                                    | 4.620                                | 24           | 2.64.                                                   | 8.558                                                    | 4.43                              |
| 25           | 3.396                                                     | 9.508                                                    | 5.349                                | 25           | 3.255                                                   | 9.133                                                    | 5.134                                | 25           | 2.701                                                   | 8.691                                                    | 4.517                                | 25           | 2.589                                                   | 8.349                                                    | 4.33                              |
|              |                                                           |                                                          | 1/2 CT Se                            | ecimen       |                                                         |                                                          |                                      |              |                                                         |                                                          | 1 CT Spe                             | cimen        |                                                         |                                                          |                                   |

Table 9. Damage parameter values at the locations of metallurgical specimens - SPV-capsule 0-T

|                                                                                |                                                                      |                                                                              | 1/2 CT S                                                             | pecimen                                                                           |                                                                      |                                                                              |                                                                      |                                        |                                  |                                      | 1 CT Spe                         | cimen                                 |                                  |                                      |                                  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------|--------------------------------------|----------------------------------|---------------------------------------|----------------------------------|--------------------------------------|----------------------------------|
|                                                                                | From                                                                 | at                                                                           |                                                                      |                                                                                   | Rei                                                                  | ar .                                                                         |                                                                      |                                        | Left                             |                                      |                                  |                                       | Righ                             | it                                   |                                  |
| F23-1R<br>F23-5R<br>F23-11R<br>F23-21R<br>F23-31R<br>3PU-2<br>3PU-10<br>3PU-26 | 2 830<br>4.015<br>4.151<br>4.193<br>4.175<br>4.109<br>3.938<br>3.726 | 11.158<br>11.812<br>12.296<br>12.446<br>12.384<br>12.149<br>11.546<br>10.797 | 6.128<br>6.455<br>6.697<br>6.772<br>6.741<br>6.624<br>6.322<br>5.947 | F23-39R<br>F23-43R<br>F23-51R<br>F23-59R<br>F23-67R<br>3PU-18<br>3PU-14<br>3FU-34 | 3.343<br>3.504<br>3.624<br>3.660<br>3.645<br>3.587<br>3.438<br>3.253 | 10.578<br>11.198<br>11.657<br>11.799<br>11.741<br>11.518<br>10.946<br>10.236 | 5.543<br>5.839<br>6.058<br>6.126<br>6.090<br>5.991<br>5.719<br>5.379 | F23-15R<br>723-19R<br>F23-23R<br>3PS-9 | 3,587<br>3,619<br>3,787<br>3,503 | 10.931<br>11.786<br>11.670<br>10.625 | 5.855<br>6.273<br>6.217<br>5.705 | F23-27R<br>F23-1R<br>3PS-10<br>3PS-15 | 3.526<br>3.754<br>3.722<br>3.443 | 10.755<br>11.596<br>11.482<br>10.453 | 5.759<br>6.170<br>6.114<br>5.611 |

\*Neutrons per cm<sup>2</sup>.

.

| Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> * | Fluence<br>>.1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTN)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> a/cm <sup>2</sup> | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>> 1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | Fluence<br>>11 MeV<br>10 <sup>19</sup> n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) |
|--------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
|              |                                                           |                                                          |                                      |              |                                                         | 1.00                                                    | Charpy                               | Specimen     |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
|              | Left F                                                    | ront                                                     |                                      |              | Right                                                   | Front                                                   |                                      |              | Left #                                                  | lear                                                     |                                      |              | Right                                                   | Ren.                                                     |                                      |
| 1            | 2.041                                                     | 7.588                                                    | 3.627                                |              | 1.942                                                   | 7.246                                                   | 3,458                                | 1            | 1.532                                                   | 6.533                                                    | 2.948                                | 1            | 1.458                                                   | 6.239                                                    | 3.712                                |
| 2            | 2.073                                                     | 7.745                                                    | 3.695                                | 2            | 1,973                                                   | 7.396                                                   | 3.522                                | 2            | 1.557                                                   | 6,669                                                    | 3,003                                | 2            | 1.481                                                   | 5.368                                                    | 2.863                                |
| 3            | 2.102                                                     | 7.888                                                    | 3.756                                | 3            | 2,000                                                   | 7.533                                                   | 3.581                                | 3            | 1.579                                                   | 6.792                                                    | 3.053                                | 3            | 1.502                                                   | 6.485                                                    | 2.911                                |
| 4            | 2.129                                                     | 8.017                                                    | 3.812                                | 4            | 2.025                                                   | 7.655                                                   | 3,634                                | 4            | 1.598                                                   | 6.903                                                    | 3.098                                | 4            | 1.521                                                   | 6.591                                                    | 2.954                                |
| 5            | 2.152                                                     | 8.131                                                    | 3.861                                | 5            | 2.048                                                   | 7.765                                                   | 3.681                                | 5            | 1.616                                                   | 7.001                                                    | 3-138                                | 5            | 1.538                                                   | 6.685                                                    | 2.992                                |
| 6            | 2.172                                                     | 8.231                                                    | 3.904                                | 6            | 2.067                                                   | 7.860                                                   | 3.722                                | 6            | 1,631                                                   | 7.087                                                    | 3.173                                | 6            | 1.552                                                   | 6.767                                                    | 3.025                                |
| 7            | 2.189                                                     | 8.315                                                    | 3.940                                | 7            | 2.083                                                   | 7.940                                                   | 3.756                                | 7.           | 1.644                                                   | 7.160                                                    | 3.202                                | 7            | 1.564                                                   | 6.837                                                    | 3.053                                |
| 8            | 2.203                                                     | 8.385                                                    | 3.970                                | 8            | 2.096                                                   | 8.007                                                   | 3.785                                | 8            | 1.654                                                   | 7.220                                                    | 3.226                                | 8            | 1.574                                                   | 6.894                                                    | 3.076                                |
| 9            | 2.214                                                     | 8.439                                                    | 3.993                                | 9            | 2.107                                                   | 8.059                                                   | 3.807                                | 9            | 1.662                                                   | 7.266                                                    | 3.245                                | 9            | 1.582                                                   | 6.939                                                    | 3.094                                |
| 10           | 2.221                                                     | 8.479                                                    | 4.009                                | 10           | 2.114                                                   | 8.096                                                   | 3.823                                | 10           | 1.668                                                   | 7.300                                                    | 3.258                                | 10           | 1.587                                                   | 6.97:                                                    | 3.107                                |
| 11           | 2.226                                                     | 8.502                                                    | 4.019                                | 11           | 2.118                                                   | 8.119                                                   | 3.832                                | 11           | 1.671                                                   | 7.321                                                    | 3.266                                | 11           | 1.590                                                   | 6.991                                                    | 3.114                                |
| 12           | 2.227                                                     | 8.511                                                    | 4.022                                | 12           | 2.119                                                   | 8.127                                                   | 3.815                                | 12           | 1.672                                                   | 7.328                                                    | 3.269                                | 12           | 1.591                                                   | 6.997                                                    | 3.117                                |
| 13           | 2.225                                                     | 8.504                                                    | 4.019                                | 13           | 2.117                                                   | 8.121                                                   | 3.832                                | 13           | 1.671                                                   | 7.322                                                    | 3.266                                | 13           | 1.590                                                   | 6.992                                                    | 3.114                                |
| 14           | 2.220                                                     | 8.482                                                    | 4.009                                | 14           | 2.112                                                   | 8.099                                                   | 3.822                                | 14           | 1.667                                                   | 7.303                                                    | 3.258                                | 14           | 1.586                                                   | 6.973                                                    | 3.106                                |
| 15           | 2.212                                                     | 8.444                                                    | 3.992                                | 15           | 2.104                                                   | 8.063                                                   | 3.806                                | 15           | 1.661                                                   | 7.270                                                    | 3.244                                | 15           | 1.580                                                   | 6.942                                                    | 3.093                                |
| 16           | 2.200                                                     | 8.391                                                    | 3.969                                | 16           | 2.094                                                   | 8.013                                                   | 3.784                                | 16           | 1.652                                                   | 7.225                                                    | 3.225                                | 16           | 1.572                                                   | 6.899                                                    | 3.075                                |
| 17           | 2.186                                                     | 8.323                                                    | 3.939                                | 17           | 2.080                                                   | 7.948                                                   | 3.755                                | 17           | 1.641                                                   | 7.166                                                    | 3.201                                | 17           | 1.562                                                   | 6.843                                                    | 3.052                                |
| 18           | 2.168                                                     | 8.240                                                    | 3.902                                | 18           | 2.063                                                   | 7.868                                                   | 3.720                                | 18           | 1.628                                                   | 7.094                                                    | 3.171                                | 18           | 1.549                                                   | 6.774                                                    | 3.023                                |
| 19           | 2.147                                                     | 8.141                                                    | 3.859                                | 19           | 2,043                                                   | 7.774                                                   | 3.679                                | 19           | 1.612                                                   | 7.010                                                    | 3.136                                | 19           | 1.534                                                   | 6.694                                                    | 2.990                                |
| 20           | 2.123                                                     | 8.029                                                    | 3.810                                | 20           | 2.020                                                   | 7.667                                                   | 3.632                                | 20           | 1.594                                                   | 6.913                                                    | 3.096                                | 20           | 1.517                                                   | 6.601                                                    | 2.952                                |
| 21           | 2.096                                                     | 7.901                                                    | 3.754                                | 21           | 1.994                                                   | 7.545                                                   | 3.579                                | 21           | 1.574                                                   | 6.803                                                    | 3.051                                | 21           | 1.498                                                   | 6.496                                                    | 2.909                                |
| 22           | 2.066                                                     | 7.760                                                    | 3.692                                | 22           | 1.966                                                   | 7.410                                                   | 3.520                                | 22           | 1.351                                                   | 6.681                                                    | 3.000                                | 22           | 1.476                                                   | 6.380                                                    | 2.861                                |
| 23           | 2.033                                                     | 7.604                                                    | 3.624                                | 23           | 1.935                                                   | 7.251                                                   | 3.455                                | 23           | 1.527                                                   | 0.547                                                    | 2,945                                | 23           | 1.453                                                   | 6.252                                                    | 2,808                                |
| 24           | 1.959                                                     | 7.434                                                    | 3.550                                | 24           | 1.864                                                   | 6.925                                                   | 3.308                                | 25           | 1.471                                                   | 6.244                                                    | 2.885                                | 24<br>25     | 1.427                                                   | 6.112<br>5.962                                           | 2.750 2.688                          |
|              | 1.24                                                      |                                                          | 1/2 CT 5                             | pecimen      |                                                         |                                                         |                                      |              |                                                         |                                                          | 1 CT Spe                             | cimen        |                                                         |                                                          |                                      |
|              | From                                                      | 12                                                       |                                      |              | Rea                                                     | r                                                       |                                      | 1.1          | Left                                                    |                                                          |                                      |              | Righ                                                    | NE.                                                      |                                      |
|              |                                                           | 0.355                                                    | 2.022                                |              | 1 975                                                   | 2 444                                                   |                                      |              | 1.001                                                   |                                                          |                                      |              |                                                         |                                                          | 1.                                   |
| F23-38       | 2.163                                                     | 8.355                                                    | 3.926                                | F23-45R      | 1,825                                                   | 7.644                                                   | 3.471                                | F23-48       | 1.997                                                   | 8.065                                                    | 3.720                                | 23-168       | 1.956                                                   | 7.914                                                    | 3.648                                |
| F23-8R       | 2.252                                                     | 8.802                                                    | 4.110                                | #23-47R      | 1.899                                                   | 8.034                                                   | 3.039                                | F23-5R       | 2.102                                                   | 8.629                                                    | 3.954                                | F23-309      | 2.060                                                   | 8.467                                                    | 3.878                                |
| F23-138      | 2.314                                                     | 9.123                                                    | 4.201                                | P23-338      | 1.952                                                   | 9.347                                                   | 3.759                                | 23-12R       | 2.074                                                   | 8.497                                                    | 3.896                                | 3PS-16       | 2.032                                                   | 8.338                                                    | 3.820                                |
| F23-188      | 2.330                                                     | 9.212                                                    | 4.280                                | #23-35K      | 1.900                                                   | 0.420                                                   | 3.791                                | 385-13       | 1.920                                                   | 1.111                                                    | 3.000                                | 3PT-1        | 1.881                                                   | 7.572                                                    | 3.495                                |
| F23-238      | 2.314                                                     | 9,141                                                    | 4.230                                | 301-27       | 1.992                                                   | 8 102                                                   | 3.703                                |              |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 3PU-3        | 2.275                                                     | 8.407                                                    | 4.175                                | 300-27       | 1.919                                                   | 7 774                                                   | 3.691                                | 0.000        |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 3PU-11       | 2.182                                                     | 7 979                                                    | 3.978                                | 300-15       | 1.040                                                   | 7.766                                                   | 3.316                                | 1. S. S. S.  |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |
| 380-19       | 2.000                                                     | 1.939                                                    | 3.131                                | 310-35       | 1                                                       | 1.204                                                   | 3.30                                 | 1            |                                                         |                                                          |                                      |              |                                                         |                                                          |                                      |

Table 10. Damage parameter values at the locations of metallurgical specimens - SPV-capsule 1/4 T

\*Neutrons per cm<sup>2</sup>.

. .

| Autron State         Autron State           Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State         Autron State           Autron State         Autron State         Autron State         Autron State           Autron State         Autron State <th colspa="&lt;/th"><th>Fluence<br/>&gt;1 MeV<br/>19 n/cm2e</th><th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th><th>dpa<br/>(ASTH)<br/>(10<sup>-2</sup>)</th><th>Spec.</th><th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th><th>Fluence<br/>&gt;,1 MeV<br/>1019 n/cm<sup>2</sup></th><th>dpa<br/>(ASTM)<br/>(10<sup>-2</sup>)</th><th>Spec.<br/>No.</th><th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm<sup>2</sup></th><th>Fluence<br/>&gt;.1 MeV<br/>1019 n/cm2</th><th>dpa<br/>(ASTH)<br/>(10<sup>-2</sup>)</th><th>Spec.<br/>No.</th><th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th><th>Fluence<br/>&gt;.1 MeV<br/>1019 n/cm2</th><th>dpa<br/>(ASTN)<br/>(10-2)</th></th> | <th>Fluence<br/>&gt;1 MeV<br/>19 n/cm2e</th> <th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th> <th>dpa<br/>(ASTH)<br/>(10<sup>-2</sup>)</th> <th>Spec.</th> <th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th> <th>Fluence<br/>&gt;,1 MeV<br/>1019 n/cm<sup>2</sup></th> <th>dpa<br/>(ASTM)<br/>(10<sup>-2</sup>)</th> <th>Spec.<br/>No.</th> <th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm<sup>2</sup></th> <th>Fluence<br/>&gt;.1 MeV<br/>1019 n/cm2</th> <th>dpa<br/>(ASTH)<br/>(10<sup>-2</sup>)</th> <th>Spec.<br/>No.</th> <th>Fluence<br/>&gt;1 MeV<br/>1019 n/cm2</th> <th>Fluence<br/>&gt;.1 MeV<br/>1019 n/cm2</th> <th>dpa<br/>(ASTN)<br/>(10-2)</th> | Fluence<br>>1 MeV<br>19 n/cm2e | Fluence<br>>1 MeV<br>1019 n/cm2 | dpa<br>(ASTH)<br>(10 <sup>-2</sup> ) | Spec.   | Fluence<br>>1 MeV<br>1019 n/cm2 | Fluence<br>>,1 MeV<br>1019 n/cm <sup>2</sup> | dpa<br>(ASTM)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>1019 n/cm <sup>2</sup> | Fluence<br>>.1 MeV<br>1019 n/cm2 | dpa<br>(ASTH)<br>(10 <sup>-2</sup> ) | Spec.<br>No. | Fluence<br>>1 MeV<br>1019 n/cm2 | Fluence<br>>.1 MeV<br>1019 n/cm2 | dpa<br>(ASTN)<br>(10-2) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------------|---------|---------------------------------|----------------------------------------------|--------------------------------------|--------------|---------------------------------------------|----------------------------------|--------------------------------------|--------------|---------------------------------|----------------------------------|-------------------------|
| Left Point         Left Point <thleft point<="" th="">         Left Point         Left Po</thleft>                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                 |                                      |         |                                 | Charpy S                                     | pecimen                              |              |                                             |                                  |                                      |              |                                 |                                  |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Front                          |                                 |                                      | Right   | Front                           |                                              |                                      | Left 8       | ear                                         |                                  |                                      | Right        | Rear                            |                                  |                         |
| $ \begin{array}{                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                 |                                      |         |                                 |                                              |                                      |              |                                             | . 440                            |                                      | 0 715        | 4 110                           | 1.664                            |                         |
| $ \begin{array}{  c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.166                          | 2.173                           | -                                    | 0.977   | 4.983                           | 2.092                                        |                                      | 0.745        | 4.271                                       | 27/ 1                            |                                      | 762 0        | 4 106                           | 1.692                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.263                          | 2.209                           | 2                                    | 0.989   | 5.076                           | 2.127                                        |                                      | 0.154        | 102.4                                       | 101.1                            |                                      | 0 737        | 4.766                           | 1.718                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.351                          | 2.242                           | 3                                    | 1.000   | 5.161                           | 2.159                                        |                                      | 0.762        | 878.8                                       | 1.104                            |                                      | 0 730        | 4.320                           | 1.740                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.429                          | 2.272                           | 4                                    | 1.010   | 5.237                           | 2.188                                        | 4                                    | 0.770        | 4.489                                       | 1001                             |                                      | 0.715        | 195. 1                          | 1 740                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.499                          | 2.298                           | 5                                    | 1.018   | 5.303                           | 2.213                                        | 5                                    | 0.776        | 4.546                                       | 1.628                            | ~                                    | 0.140        | 4.304                           | 1 776                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.559                          | 2.320                           | 9                                    | 1.025   | 5.361                           | 2.235                                        | 0                                    | 0.782        | 4.596                                       | 1.845                            |                                      | 0.120        | 4.432                           | 1.110                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.609                          | 2.339                           |                                      | 1.031   | 5.410                           | 2.253                                        | 1                                    | 0.786        | 4.637                                       | 1.861                            |                                      | 0.755        | 4.473                           | 1.192                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.450                          | 3.354                           | 00                                   | 1.036   | 5.449                           | 2.267                                        | 80                                   | 0.790        | 4.671                                       | 1.873                            | 80                                   | 0.758        | 4.505                           | 1.804                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 187 5                          | 3 36.6                          |                                      | 070     | 5.480                           | 2.278                                        | 6                                    | 0.793        | 4.697                                       | 1.882                            | 6                                    | 0.761        | 4.530                           | 1.812                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2012 3                         | 712 6                           | 01                                   | 1 04.2  | 5.500                           | 2.286                                        | 10                                   | 0.794        | 4.715                                       | 1.888                            | 10                                   | 0.763        | 4.547                           | 1.818                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 00-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2110                           | 975 6                           | 11                                   | 1 041   | 5.512                           | 2.290                                        | 11                                   | 0.795        | 4.725                                       | 1.891                            | 11                                   | 0.763        | 4.557                           | 1.822                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CT1-C                          | are e                           |                                      | 1 0.43  | 5 514                           | 2.290                                        | 12                                   | 0.795        | 4.726                                       | 1.892                            | 12                                   | 0.763        | 4.558                           | 1.822                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.0                          | 0.010                           |                                      | 170 1   | 5 506                           | 2 287                                        | 11                                   | 0.794        | 4.720                                       | 1.889                            | 13                                   | 0.762        | 4.552                           | 1.819                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                           | C10.2                           | 71                                   | 10.0 I  | 5 480                           | 2.280                                        | 14                                   | 0.791        | 4.705                                       | 1.884                            | 14                                   | 0.760        | 4.538                           | 1.814                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 760.0                          | 4.300                           | ***                                  | 720 1   | 1.44.2                          | 2.270                                        | 15                                   | 0.788        | 4.683                                       | 1.875                            | 15                                   | 0.757        | 4.517                           | 1.806                            |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5000                           | 100.1                           |                                      | *CO. 1  | 6 2 38                          | 3 356                                        | 16                                   | 0.784        | 4.652                                       | 1.853                            | 16                                   | 0.753        | 4.487                           | 1.795                            |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.628                          | 2,342                           |                                      | 670.1   | 282 3                           | 316 6                                        | 17                                   | 0.779        | 4.614                                       | 1.849                            | 17                                   | 0.748        | 4.450                           | 1.781                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190.0                          | 476.7                           |                                      | 1 014   | 5 290                           | 3 218                                        |                                      | 0.773        | 4.568                                       | 1.832                            | 18                                   | 0.742        | 4.405                           | 1.764                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.525                          | 2.303                           | 2                                    | 1.014   | 2.32.7                          | 1017 1                                       |                                      | 0 766        | 4 514                                       | 1 812                            |                                      | 0.735        | 4.353                           | 1.745                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.460                          | 2.277                           | 61                                   | C00'1   | 007.0                           | 21173                                        | 106                                  | 0.758        | 6 46 9                                      | 1 780                            | 20                                   | 0 728        | 4 794                           | 1.723                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.385                          | 2.248                           | 20                                   | \$66.0  | 561.6                           | C01-7                                        | 22                                   | 071.0        | 192 4                                       | 1 763                            | 16                                   | 0 710        | 100 4                           | 1.698                            |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.2                          | 2.216                           | 21                                   | 0.983   | 211.0                           | 4.139                                        | 17                                   | 0 110        | 1 305                                       | 726 1                            |                                      | 0 710        | 4 153                           | 1 670                            |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.208                          | 2.180                           | 22                                   | 0.970   | 5.023                           | 2.100                                        | 27                                   | 0. 140       | 166 7                                       | 1 745                            | 22                                   | 0 700        | 4 071                           | 1 640                            |                         |
| 0.980         4.995         2.098         2.098         2.093         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.095         2.097         3.868         1.572           Pront         1/2 CT Speciaen         kear         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.106                          | 2.141                           | 52                                   | 0.956   | 576.5                           | 160 6                                        | 57                                   | 0 718        | 4.129                                       | 1.669                            | 34                                   | 0.689        | 3.983                           | 1.607                            |                         |
| 0.963         4.876         2.052         25         0.925         4.703         1.976         25         0.003         4.001         1.003         4.001         1.003         4.001         1.003         4.001         1.003         4.001         1.003         4.001         2.017         4.001         2.011         1.003         4.001         2.011         1.001         5.201         2.118         0.001         5.215         2.119         5.215         2.113         81ght         5.215         2.113         812-258         0.947         5.215         2.113           1.004         5.423         2.410         723-418         0.903         5.201         2.104         723-38         0.947         5.215         2.139           1.004         5.429         723-418         0.903         5.201         2.104         723-38         0.947         5.315         2.139           1.109         5.443         723-418         0.903         2.118         0.944         5.515         2.213         2.431         2.213         2.431         2.213           1.109         5.913         2.446         5.118         0.944         5.515         2.213         2.431         2.213         2.431         2.213                                                                                                                                                                                                                                                                                                                                                                                                    | 0.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.995                          | 2.098                           | 24                                   | 0.941   | 110.4                           | 170.7                                        | 4                                    | 011*0        | 100 7                                       |                                  |                                      | 0 677        | 2 880                           | 1 673                            |                         |
| I/2 CT Speciaen         Left         Left         Left         Left         State         Kight           #roat         \$ 5.356         2.111         \$ 723-378         0.875         4.962         2.017         \$ 723-38         0.947         5.215         2.119           1.005         5.823         2.410         \$ 723-418         0.903         5.201         2.104         \$ 723-78         0.947         5.215         2.119           1.006         5.010         2.479         \$ 723-418         0.903         5.201         2.104         \$ 723-78         0.947         5.515         2.113         \$ 723-28         0.947         5.536         2.139           1.109         6.010         2.479         \$ 723-58         0.947         5.536         2.215         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.139         2.1                                                                                                                                                                                                                                                                                                                                                                            | 0.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.876                          | 2.052                           | 25                                   | 0.925   | 4.703                           | 1.976                                        | 52                                   | co/ .0       | 4.031                                       | 560.1                            | G                                    | 110.0        | 000.6                           |                                  |                         |
| Front         Left         Left         Right           1.054         5.556         2.311         F23-378         0.875         4.962         2.017         F23-38         0.963         5.294         2.173         F23-258         0.947         5.215         2.139           1.087         5.823         2.410         F23-418         0.903         5.204         2.173         F23-258         0.947         5.215         2.139           1.0087         5.823         2.410         F23-418         0.903         5.204         2.173         F23-258         0.947         5.215         2.139           1.109         6.010         2.479         F23-578         0.922         5.104         F23-118         0.984         5.515         2.220         3.730         2.139         2.2135         2.139         2.2135         2.139         2.2135         2.139         2.2135         2.139         2.2135         2.139         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.139         2.2135         2.139         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135         2.2135 <td< td=""><td></td><td></td><td>1/2 CT SP</td><td>ec imen</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I CT Spe</td><td>cimen</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 1/2 CT SP                       | ec imen                              |         |                                 |                                              |                                      |              |                                             | I CT Spe                         | cimen                                |              |                                 |                                  |                         |
| Front         Lett         Lett         Lett         Lett           1.054         5.556         2.311         F23-378         0.815         4.962         2.017         F23-38         0.943         5.215         2.139           1.054         5.825         2.311         F23-418         0.903         5.201         2.104         F23-78         1.001         5.620         2.173         F23-258         0.947         5.215         2.139           1.087         5.823         2.410         F23-48         0.903         5.201         2.104         F23-78         1.001         5.620         2.173         F23-258         0.947         5.215         2.139           1.109         6.010         2.479         F23-578         0.925         5.408         2.178         9.72         0.916         5.016         2.061         5.433         2.215         2.215           1.114         6.035         2.424         91-24         0.925         5.408         2.118         9.750         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                 |                                      |         |                                 |                                              |                                      |              |                                             |                                  |                                      |              |                                 |                                  |                         |
| 1.054         5.556         2.311         Y23-378         0.875         4.962         2.017         Y23-38         0.963         5.294         2.173         Y23-258         0.947         5.215         2.139           1.087         5.823         2.410         Y23-418         0.903         5.201         2.104         Y23-78         1.001         5.620         2.173         Y23-298         0.947         5.215         2.135           1.109         6.010         2.479         Y23-498         0.922         5.408         2.178         1.001         5.620         2.236         3743         5.235         2.433         2.215         2.135         2.135         2.135         2.135         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215         2.215                                                                                                                                                                                                                                                                                                                                                                                   | Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ant                            |                                 |                                      | Re      |                                 |                                              |                                      | Tel          |                                             |                                  |                                      | RIN          |                                 |                                  |                         |
| 1.007         5.823         2.410         F23-418         0.903         5.201         2.104         F23-78         1.001         5.620         2.298         0.994         5.536         2.253           1.109         6.010         2.479         F23-418         0.903         5.204         F23-118         0.994         5.515         2.230         397-3         0.967         5.433         2.215           1.114         6.058         2.427         F23-578         0.917         5.194         F23-118         397-3         0.967         5.433         2.215           1.114         5.958         2.472         F23-578         0.917         5.158         377-4         0.901         4.941         2.029           1.114         5.958         2.472         F23-578         0.917         5.156         377-4         0.901         4.941         2.029           1.104         5.873         2.472         F21-578         0.917         5.156         2.118         377-4         0.901         4.941         2.029           1.006         5.873         2.424         370-24         0.902         5.2156         2.116         1.064         5.016         2.061         4.941         2.029 <t< td=""><td>1 054</td><td>5.556</td><td>2.311</td><td>F23-376</td><td>a 0.875</td><td>4.962</td><td>2.017</td><td>F23-38</td><td>0.963</td><td>5.294</td><td>2.173</td><td>F23-251</td><td>R 0.947</td><td>5.215</td><td>2.139</td></t<>                                                                                                                                                                                | 1 054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.556                          | 2.311                           | F23-376                              | a 0.875 | 4.962                           | 2.017                                        | F23-38                               | 0.963        | 5.294                                       | 2.173                            | F23-251                              | R 0.947      | 5.215                           | 2.139                            |                         |
| 1.109         6.010         2.479         F23-498         0.922         5.367         2.164         F23-118         0.984         5.515         2.250         377-3         0.967         5.433         2.215           1.114         6.055         2.495         F23-578         0.917         5.316         377-3         0.967         5.433         2.215           1.114         5.958         2.495         7.215         5.118         377-2         0.916         5.016         2.061         377-4         0.901         4.941         2.029           1.044         5.373         2.426         2.116         377-2         0.916         5.016         2.061         377-4         0.901         4.941         2.029           1.064         5.373         2.426         2.116         0.916         5.016         2.061         377-4         0.901         4.941         2.029           1.064         5.577         2.310         370-4         0.902         5.246         2.116         1.064         5.511         1.064         5.016         2.061         377-4         0.901         4.941         2.029           1.044         5.577         2.310         370-4         0.902         5.017                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.823                          | 2.410                           | F23-418                              | 0.903   | 5.201                           | 2.104                                        | F23-78                               | 1,001        | 5.620                                       | 2.292                            | P23-291                              | R 0.984      | 5.536                           | 2.257                            |                         |
| 1.114         6.035         2.495         F23-57R         0.925         5.408         2.178         3PT-2         0.916         5.016         2.061         3PT-4         0.901         4.941         2.029           1.104         5.998         2.472         F23-65R         0.917         5.357         2.118         3PT-2         0.916         2.061         3PT-4         0.901         4.941         2.029           1.004         5.873         2.424         3PU-24         0.902         5.246         2.116         1.086         5.873         2.310         3PT-4         0.901         4.941         2.029           1.004         5.577         2.310         3PU-24         0.902         5.246         2.116         1.086         4.981         2.017           1.004         5.577         2.310         3PU-31         0.868         4.981         2.017           1.004         5.577         2.310         3PU-4         0.877         4.981         2.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 010                          | 2.474                           | \$23-49k                             | a 0.922 | 5.367                           | 2.164                                        | F23-118                              | 0.984        | 5.515                                       | 2.250                            | 3PT-3                                | 0.967        | 5.433                           | 2.215                            |                         |
| 1.104 5.498 2.472 F23-658 0.917 5.357 2.158<br>1.086 5.873 2.424 3PU-24 0.902 5.246 2.116<br>1.044 5.577 2.310 3PU-24 0.868 4.981 2.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 055                         | 2.495                           | #23-578                              | 0.925   | 5.408                           | 2.178                                        | 3PT-2                                | 0.916        | 5.016                                       | 2.061                            | 3PT-4                                | 0.901        | 4.941                           | 2.029                            |                         |
| 1.046 5.873 2.424 3PU-24 0.902 5.246 2.116<br>1.044 5.577 2.310 3PU-24 0.968 4.981 2.017<br>1.044 5.577 2.310 3PU-31 0.868 4.981 2.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108                            | 2 477                           | \$23-651                             | 110.0   | 5.357                           | 2.158                                        |                                      |              |                                             |                                  |                                      |              |                                 |                                  |                         |
| 1.044 5.577 2.310 3PU-31 0.868 4.981 2.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 873                          | 2 474                           | 3011-24                              | 0.902   | 5.246                           | 2.116                                        |                                      |              |                                             |                                  |                                      |              |                                 |                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.012                          | 015 6                           | 1011-31                              | 0.868   | 4.981                           | 2.017                                        |                                      |              |                                             |                                  |                                      |              |                                 |                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.0                          | 21210                           | 10-010                               | 0 837   | 1 463                           | 1 808                                        |                                      |              |                                             |                                  |                                      |              |                                 |                                  |                         |

Table 11. Damage parameter values at the locations of metallurgical specimens - SPV-capsule 1/2 T

26

"Neutrons per cm2.

|           | Fluend<br>(10 | ce > 1.0<br>)19 n/cr | 0 MeV<br>∎²) | Fluen<br>(1 | ce > 0.<br>0 <sup>19</sup> n/c | 1 MeV<br>m <sup>2</sup> ) |      | dpa<br>(10-2) |      |
|-----------|---------------|----------------------|--------------|-------------|--------------------------------|---------------------------|------|---------------|------|
|           | Min.          | Avg.                 | Max.         | Min.        | Avg.                           | Max.                      | Min. | Avg.          | Max, |
| A302-B P1 | ate           |                      |              |             |                                |                           |      |               |      |
| SSC1      | 2.51          | 2.59                 | 2.65         | 7.25        | 7.48                           | 7.67                      | 3.92 | 4.04          | 4.14 |
| SSC2      | 5.14          | 5.41                 | 5.66         | 15.02       | 15.82                          | 16.57                     | 8.05 | 8.47          | 8.87 |
| 0-T       | 3.58          | 3.73                 | 3.86         | 10.24       | 10.72                          | 11.09                     | 5.70 | 5.96          | 6.16 |
| 1/4T      | 2.04          | 2.15                 | 2.23         | 7.77        | 8.21                           | 8.51                      | 3.68 | 3.88          | 4.02 |
| 1/2T      | 1.00          | 1.05                 | 1.09         | 5.27        | 5.53                           | 5.72                      | 2.19 | 2.30          | 2.38 |
| A533-B P1 | ate           |                      |              |             |                                |                           |      |               |      |
| SSC1      | 2.20          | 2.35                 | 2.50         | 6.26        | 6.73                           | 7.20                      | 3.41 | 3.65          | 3.89 |
| SSC2      | 4.57          | 4.97                 | 5.39         | 13.15       | 14.41                          | 15.69                     | 7.10 | 7.75          | 8.42 |
| 0-T       | 3.25          | 3.47                 | 3.69         | 9.13        | 9.82                           | 10.51                     | 5.13 | 5.50          | 5.86 |
| 1/4T      | 1.86          | 1.99                 | 2.12         | 6.93        | 7.47                           | 8.03                      | 3.31 | 3.56          | 3.81 |
| 1/2T      | 0.92          | 0.98                 | 1.04         | 4.70        | 5.04                           | 5.38                      | 1.98 | 2.11          | 2.25 |
| 22NiMoCr3 | 7 Forging     |                      |              |             |                                |                           |      |               |      |
| SSC1      | 1.51          | 1.64                 | 1.76         | 4.70        | 5.14                           | 5.57                      | 2.44 | 2.66          | 2.87 |
| SSC2      | 3.13          | 3.44                 | 3.79         | 9.87        | 10.93                          | 12.12                     | 5.08 | 5.61          | 6.19 |
| 0-T       | 2.59          | 2.80                 | 3.00         | 8.35        | 9.12                           | 9.85                      | 4.34 | 4.71          | 5.07 |
| 1/4T      | 1.40          | 1.51                 | 1.63         | 5.96        | 6.51                           | 7.09                      | 2.69 | 2.92          | 3.17 |
| 1/2T      | 0.68          | 0.73                 | 0.77         | 3.89        | 4.23                           | 4.57                      | 1.57 | 1.70          | 1.83 |
| A508-3 Fo | rging         |                      |              |             |                                |                           |      |               |      |
| SSC1      | 1.74          | 1.79                 | 1.82         | 5.51        | 5.67                           | 5.76                      | 2.84 | 2.92          | 2.97 |
| SSC2      | 3.60          | 3.72                 | 3.89         | 11.54       | 11.92                          | 12.45                     | 5.89 | 6.09          | 6.36 |
| 0-T       | 2.90          | 2.97                 | 3.07         | 9.56        | 9.82                           | 10.14                     | 4.91 | 5.04          | 5.20 |
| 1/4T      | 1.56          | 1.61                 | 1.67         | 6.84        | 7.06                           | 7.30                      | 3.05 | 3.15          | 3.26 |
| 1/2T      | 0.75          | 0.77                 | 0.79         | 4.45        | 4.58                           | 4.72                      | 1.78 | 1.83          | 1.89 |
| Submerged | Arc Weld      | (EC)                 |              |             |                                |                           |      |               |      |
| SSC1      | 1.64          | 1.73                 | 1.80         | 5.11        | 5.44                           | 5.69                      | 2.65 | 2.81          | 2.93 |
| SSC2      | 3.27          | 3.57                 | 3.82         | 10.33       | 11.34                          | 12.20                     | 5.32 | 5.81          | 6.24 |
| 0-T       | 2.74          | 2.90                 | 3.04         | 8.93        | 9.53                           | 10.03                     | 4.61 | 4.91          | 5.15 |
| 1/4T      | 1.50          | 1.59                 | 1.66         | 6.49        | 6.91                           | 7.27                      | 2.91 | 3.09          | 3.25 |
| 1/2T      | 0.73          | 0.76                 | 0.79         | 4.27        | 4.50                           | 4.70                      | 1.72 | 1.81          | 1.88 |
| Submerged | Arc Weld      | (R)                  |              |             |                                |                           |      |               |      |
| SSC1      | 2.34          | 2.47                 | 2.58         | 6.65        | 7.07                           | 7.44                      | 3.62 | 3.83          | 4.02 |
| SSC2      | 4.65          | 5.06                 | 5.44         | 13.38       | 14.64                          | 15.84                     | 7.23 | 7.89          | 8.50 |
| 0-T       | 3.39          | 3.59                 | 3.77         | 9.58        | 10,21                          | 10.78                     | 5.36 | 5.69          | 6.00 |
| 1/4T      | 1.97          | 2.08                 | 2.19         | 7.40        | 7.87                           | 8.32                      | 3.52 | 3.74          | 3.94 |
| 1/2T      | 0.99          | 1.03                 | 1.07         | 5.08        | 5.33                           | 5.61                      | 2.13 | 2.23          | 2.34 |

Table 12. Average and extreme values of damage parameters for different sets of Charpy specimens

10<sup>m</sup>

#### APPENDIX:

## CALCULATION OF CORRECTIONS FOR 239Pu "BURN-IN" IN THE 238U(n,f) FISSION RATE

Neutron fluence determination through measurement of fission products of <sup>238</sup>U detectors becomes unreliable for high fluences at low neutron energies due to the production and subsequent fission of <sup>239</sup>Pu. The pluton:um is produced through disintegration of

$$239_{\text{U}} \xrightarrow{23.54 \text{ min}} 239_{\text{Np}} \xrightarrow{2.355 \text{ d}} 239_{\text{Pu}}$$

of the  $^{239}$ U generated by the  $^{238}$ U(n, $_{\gamma}$ ) $^{239}$ U reaction. The process can be described by a system of differential equations for the quantities q<sub>x</sub>, which are the number of nuclides of isotope x with time t as the independent variable. The parameters of the differential equations are the reaction rates r<sub>x</sub> and the decay constants, which govern the transmutation from one nuclide to another. The reaction rates describe the rate of transmutation in a given neutron field

$$r_x = p \int \phi(E) \sigma_x(E) dE$$
 (A.1)

where p is the power level of the reactor,  $\phi(E)$  the fluence rate per unit power at energy E, and  $\sigma_{\mathbf{x}}(E)$  the reaction cross section at thi energy. Specifically, we define

$$r_{1} = reaction rate \frac{238}{U(n,\gamma)} r_{2}$$
  

$$r_{2} = reaction rate \frac{238}{U(n,\gamma)} r_{3}$$
  

$$r_{3} = reaction rate \frac{239}{Pu(n,f)} r_{P}.$$
(A.2)

Further, let  $\lambda$  be the decay rate of the given fission product (F.P.) and  $\mu$  be the rate of transmutation from  $^{239}$ U to  $^{239}$ Pu. To simplify matters, we disregard the conversion to  $^{239}$ Np considering it as instanteneous. We also disregar' burnout; the total burnout is not more than 1% for  $^{239}$ Pu fission and much less for all other reactions.

The quantities qx are defined as follows:

$$q_1 = \text{amount of } 238_U$$

$$q_2 = \text{amount of } 239_U \text{ (or } 239_{Np}\text{)}$$

$$q_3 = \text{amount of } 239_{Pu}$$

$$q_4 = \text{amount of fission product (F.P.)} \quad . \qquad (A.3)$$

With these definitions and simplifications, we have the following system of differential equations:

 $q_1 = 0 (-r_1q_1 - r_2q_2)$   $\dot{q}_2 = -\mu q_2 + r_2q_1$   $\dot{q}_3 = \mu q_2 (-r_3q_3)$  $\dot{q}_4 = -\lambda q_4 + r_1q_1 + r_3q_3$ 

The dot means, as usual, the time derivative; the neglected burnout terms are added in parentheses.

We consider a time interval from t to t +  $\Delta t$ . The (constant) power level during this interval is  $p_t$ , so that  $r_x = p_t \rho_x$ , with  $\rho_x$  the reaction rate per unit power, i.e., the integral in formula (A.1). Thus,  $p_t = 0$ during reactor shutdown.

Assuming  $q_1(t) = 1$ , the solution of the differential equation yields  $q_1(t + \Delta t) = q_1(t) = 1$  (= constant)  $q_2(t + \Delta t) = q_2(t)e^{-\Delta t} + \rho_2 p_t \Delta t \frac{1 - e^{-\mu\Delta t}}{\mu\Delta t}$   $q_3(t + \Delta t) = q_3(t) + q_2(t)$  (1 -  $e^{-\mu\Delta t}$ ) +  $\rho_2 p_t \Delta t$   $\left(1 - \frac{1 - e^{-\mu\Delta t}}{\mu\Delta t}\right)$   $q_4(t + \Delta t) = q_4(t)e^{-\lambda\Delta t} + \rho_1 p_t \Delta t \frac{1 - e^{-\lambda\Delta t}}{\lambda\Delta t}$ +  $\rho_3 p_t \Delta t \left[q_3(t) \frac{1 - e^{-\lambda\Delta t}}{\lambda\Delta t} + q_2(t) \left(\frac{1 - e^{-\lambda\Delta t}}{\lambda\Delta t} - \frac{e^{-\mu\Delta t} - e^{-\lambda\Delta t}}{(\lambda - \mu)\Delta t}\right)$ +  $\rho_2 p_t \Delta t \left[\frac{e^{-\lambda\Delta t} + \lambda\Delta t - 1}{(\lambda\Delta t)^2} - \frac{1}{\mu\Delta t} \left(\frac{1 - e^{-\lambda\Delta t}}{\lambda\Delta t} - \frac{e^{-\mu\Delta t} - e^{-\lambda\Delta t}}{(\lambda - \mu)\Delta t}\right)\right]\right]$  (A.5)

Repeated application of this formula leads to the determination of the amount of fission product  $q_4$  at the end of an irradiation experiment,  $t = t_{end}$ , that extends over several periods of reactor operation at different power levels separated by reactor shutdowns.

Starting with  $q_2(0) = q_3(0) = q_4(0) = 0$ , the final amount at  $t = t_{end}$ ,  $q_4(t_{end})$ , consists of two independent components, one from the fission of 238U that is proportional to  $\rho_1$ , and the other from the fission of  $239_{Fu}$ , proportional to the product  $\rho_2 \cdot \rho_3$ . Defining the total reaction probability of the reaction as

 $R_{x} = \rho_{x} \Sigma P_{t} \Delta t , \qquad (A.6)$ 

we can express the final amount q4 as

.

2.

 $q_4(t_{end}) = R_1C_1 + R_2R_3C_2$  (A.7)

A-2

(A.4)

L

where the factors  $C_1$  and  $C_2$  depend only on the power-time history of the irradiation experiment and can be calculated from formula (A.5).

$$q_4(t_{end}) = R_1 C_1 \left( 1 + \frac{R_2 R_3}{R_1} \frac{C_2}{C_1} \right)$$
 (A.8)

so that

$$C_{Pu} = \frac{R_2 R_3}{R_1} \frac{C_2}{C_1}$$
(A.9)

represents the correction term which must be applied to the fission rate determination based on 238U fission alone. Table A.1 lists the values of R<sub>2</sub>R<sub>3</sub>/R<sub>1</sub> for different locations estimated from the adjustment procedure, and Table A.2 lists the ratios, C2/C1, for the different irradiation histories of SSC1, SSC2, and SPVC and different fission products. Uncertainties for  $R_2R_3/R_1$  are about 22%; the uncertainties for  $C_2/C_1$  are primarily due to fission yield uncertainties in the order of 2-3%. Table A.3 compares the correction terms determined from the differences between measurements of fission products in the <sup>238</sup>U detectors and the LSL-M2 estimates of the <sup>238</sup>U fission probability with the correction terms calculated from formula (9). The corrections from formula (A.9) do not contain corrections for self-shielding and are, therefore, consistently too large. Inspection of the ratios "(1)/(2)" in Table A.3, for the SSC2 and O-T positions, suggest a self-shielding factor of about 30%. The remaining discrepancies, including correction terms in the SSC1, 1/4T, and 1/2T positions, are less than 10% relative to the measurements and are in line with the measurement uncertainties of the other fission detectors.

Thus, Pu burn-in explains, at least qualitatively, the  $^{238}$ U fission product measurement, including apparent discrepancies between measurements for different fission products. However, there are large uncertainties connected with the correction terms so that the  $^{18}$ U(n,f) detectors are of questionable value for high-fluence applications (epithermal fluence >  $10^{19}$  neutrons/cm<sup>2</sup> per unit lethargy).

|            |                       |                       |                        | 238 <sub>U(n,Y)*239<sub>Pu(n,f)</sub></sub> |
|------------|-----------------------|-----------------------|------------------------|---------------------------------------------|
|            | 238 <sub>U(n,f)</sub> | 238 <sub>U(n,Y)</sub> | 239 <sub>Pu(n,f)</sub> | 238 <sub>U(n,f)</sub>                       |
| SSC1       |                       |                       |                        |                                             |
| HB3        | 8.49 E-6              | 8.18 E-4              | 4.64 E-3               | 0.45                                        |
| HB4        | 8.62 E-6              | 7.97 E-4              | 4.53 E-3               | 0.42                                        |
| SSC2       |                       |                       |                        |                                             |
| HB5        | 1.84 E-5              | 1.69 E-3              | 1.08 E-2               | 0.99                                        |
| нвб        | 1.80 E-5              | 1.64 E-3              | 1.04 E-2               | 0.94                                        |
| <u>0-T</u> |                       |                       |                        |                                             |
| HB1        | 1.42 E-5              | 1.62 E-3              | 1.02 E-2               | 1.16                                        |
| HB2        | 1.40 E-5              | 1.59 E-3              | 1.00 E-2               | 1.14                                        |
| 1/4T       |                       |                       |                        |                                             |
| HB7        | 7.05 E-6              | 7.10 E-4              | 4.70 E-3               | 0.47                                        |
| HB8        | 6.97 E-6              | 6.69 E-4              | 4.44 E-3               | 0.43                                        |
| 1/2T       |                       |                       |                        |                                             |
| HB9        | 3.06 E-6              | 3.38 E-4              | 1.94 E-3               | 0.21                                        |
| HB10       | 3.04 E-6              | 3.42 E-4              | 1.96 E-3               | 0.22                                        |

Table A.1. Reaction probabilities estimated with LSL-M2

Table A.2. Irradiation time-history correction terms for 239pu burn-in

| Piccica           | F                       | ission yiel              | d    | Time<br>(includ | -history t<br>ing fissio | erms<br>n yield) |
|-------------------|-------------------------|--------------------------|------|-----------------|--------------------------|------------------|
| product           | 238 <sub>U</sub><br>(%) | 239 <sub>Pu</sub><br>(%) | Pu/U | SSC1            | SSC2                     | SPVC             |
| 95 <sub>Zr</sub>  | 5.17                    | 4.72                     | 0.91 | 0.45            | 0.52                     | 0.80             |
| 103 <sub>Ru</sub> | 6.33                    | 6.87                     | 1.09 | 0.56            | 0.69                     | 1.00             |
| 137 <sub>Cs</sub> | 5.97                    | 6.50                     | 1.09 | 0.48            | 0.51                     | 0.54             |
| 140 <sub>Ba</sub> | 5.04                    | 5.29                     | 0.89 | 0.59            | 0.72                     | 0.87             |

50

\$ . .

|            |                               |                  | Fission           | n produc          | t                 | LSL-M2   |
|------------|-------------------------------|------------------|-------------------|-------------------|-------------------|----------|
|            |                               | 95 <sub>Zr</sub> | 102 <sub>Ru</sub> | 137 <sub>Cs</sub> | 140 <sub>Ba</sub> | estimate |
| SSC1       |                               |                  |                   |                   |                   |          |
| нвз        | Measurements*                 | 9.06             | 9.48              | 9.34              | 9.09              | 8.49     |
|            | Correction terms:             |                  |                   |                   |                   |          |
|            | (1) Measurements vs. LSL-M2   | 0.067            | 0.117             | 0.099             | 0.071             |          |
|            | (2) <sup>239</sup> Pu burn-in | 0.203            | 0.252             | 0.216             | 0.266             |          |
|            | Ratio (1)/(2)                 | 0.33             | 0.46              | 0.46              | 0.27              |          |
| HB4        | Measurements*                 | 8.85             | 9.27              | 9.16              | 8.80              | 8.62     |
|            | Correction terms:             |                  |                   |                   |                   |          |
|            | (1) Measurements vs. LSL-M2   | 0.027            | 0.075             | 0.062             | 0.021             |          |
|            | (2) 239Pu burn-in             | 0.189            | 0.235             | 0.202             | 0.248             |          |
|            | Ratio (1)/(2)                 | 0.14             | 0.32              | 0.31              | 0.08              |          |
| SSC2       |                               |                  |                   |                   |                   |          |
| HB5        | Measurements*                 | 25.38            | 28.02             | 26.33             |                   | 18.42    |
|            | Correction terms:             |                  |                   |                   |                   |          |
|            | (1) Measurements vs. LSL-M2   | 0.378            | 0.521             | 0.429             |                   |          |
|            | (2) <sup>239</sup> Pu burn-in | 0.515            | 0.683             | 0.505             |                   |          |
|            | Ratio (1)/(2)                 | 0.73             | 0.76              | 0.85              |                   |          |
| HB6        | Measurements*                 | 23.56            | 25.36             | 24.50             |                   | 17.96    |
|            | Correction terms:             |                  |                   |                   |                   |          |
|            | (1) Measurements vs. LSL-M2   | 0.312            | 0.412             | 0.364             |                   |          |
|            | (2) <sup>239</sup> Fu burn-in | 0.519            | 0.649             | 0.479             |                   |          |
|            | Ratio (1)/(2)                 | 0.62             | 0.63              | 0.76              |                   |          |
| <u>0-T</u> |                               |                  |                   |                   |                   |          |
| HB1        | Measurements*                 | 23.05            | 26.29             | 22.13             |                   | 14.18    |
|            | Correction terms:             |                  |                   |                   |                   |          |
|            | (1) Measurements vs. LSL-M2   | 0.626            | 0.854             | 0.561             |                   |          |
|            | (2) 239pu burn-in             | 0.928            | 1.160             | 0.627             |                   |          |
|            | Ratio $(1)/(2)$               | 0.67             | 0.74              | 0.89              |                   |          |

. \* \*

٠

# Table A.3. Correction terms for Pu burn-in at different locations is the PSF

# Table A.3. Continued

|             |                               |                  | Fission           | produc            | t                 | LSL-M2   |
|-------------|-------------------------------|------------------|-------------------|-------------------|-------------------|----------|
|             |                               | 95 <sub>Zr</sub> | 102 <sub>Ru</sub> | 137 <sub>Cs</sub> | 140 <sub>Ba</sub> | estimate |
| нв 2        | Measurements*                 | 21.77            | 24.56             | 20.84             |                   | 14.03    |
|             | Correction terms:             |                  |                   |                   |                   |          |
|             | (1) Measurements vs. LSL-M2   | 0.552            | 0.751             | 0.485             |                   |          |
|             | (2) <sup>239</sup> Pu burn-in | 0.912            | 1.140             | 0.616             |                   |          |
|             | Ratio (1)/(2)                 | 0.61             | 0.66              | 0.79              |                   |          |
| <u>1/4T</u> |                               |                  |                   |                   |                   |          |
| нв7         | Measurements*                 | 8.05             | 8.77              | 8.90              |                   | 7.05     |
|             | Correction terms:             |                  |                   |                   |                   |          |
|             | (1) Measurements vs. LSL-M2   | 0.142            | 0.244             | 0.262             |                   |          |
|             | (2) 239pu burn-in             | 0.376            | 0.470             | 0.254             |                   |          |
|             | Ratio (1)/(2)                 | 0.38             | 0.52              | 1.03              |                   |          |
| HB8         | Measurements*                 | 7.35             | 8.20              | 7.77              |                   | 6.97     |
|             | Correction terms:             |                  |                   |                   |                   |          |
|             | (1) Measurements vs. LSL-M2   | 0.054            | 0.176             | 0.115             |                   |          |
|             | (2) <sup>239</sup> Pu burn-in | 0.344            | 0.430             | 0.232             |                   |          |
|             | Ratio (1)/(2)                 | 0.16             | 0.41              | 0.50              |                   |          |
| <u>1/2T</u> |                               |                  |                   |                   |                   |          |
| HB9         | Measurements*                 | 3.23             | 3.27              | 3.38              |                   | 3.06     |
|             | Correction terms:             |                  |                   |                   |                   |          |
|             | (1) Measurements vs. LSL-M2   | 0.056            | 0.068             | 0.104             |                   |          |
|             | (2) 239pu burn-in             | 0.168            | 1.210             | 0.113             |                   |          |
|             | Ratio (1)/(2)                 | 0.13             | 0.32              | 0.92              |                   |          |
| HB10        | Measurements*                 | 3.00             | 3.24              | 3.35              |                   | 3.04     |
|             | Correction terms:             |                  |                   |                   |                   |          |
|             | (1) Measurements vs. LSL-M2   | -0.013           | 0.066             | 0.102             |                   |          |
|             | (2) <sup>239</sup> Pu burn-in | 0.176            | 1.220             | 0.119             |                   |          |
|             | Ratio (1)/(2)                 |                  | 0.30              | 0.86              |                   |          |
|             |                               |                  |                   |                   |                   |          |

 $*^{238}$ U fission probability determined from fission product counting but not corrected for Pu burn-in (\*10<sup>-6</sup>).

.

-

NUREG/CR-3814 ORNL/TM-9166 Dist. Category R5

#### INTERNAL DISTRIBUTION

| 1.    | C. / | A. Baldwin     | 17.    | C. E. Pugh                     |
|-------|------|----------------|--------|--------------------------------|
| 2.    | R. ( | G. Berggren    | 18.    | J. A. Setaro                   |
| 3.    | D. 1 | M. Eissenberg  | 19-25. | F. W. Stallmann                |
| 4.    | R. 1 | W. Hobbs       | 26.    | J. H. Swanks                   |
| 5.    | S. 5 | S. Hurt        | 27.    | G. Whitman                     |
| 6-12. | F. 1 | B. K. Kam      | 28.    | Document Reference Section     |
| 13.   | R. 1 | E. Maerker     | 29-30. | Central Research Library       |
| 14.   | A. 1 | P. Malinauskas | 31-32. | Laboratory Records Department  |
| 15.   | L. 1 | F. Miller      | 33.    | Laboratory Records - ORNL R.C. |
| 16.   | R. 1 | K. Nanstad     | 34.    | ORNL Patent Office             |
|       |      |                |        |                                |

#### EXTERNAL DISTRIBUTION

- 35. Assistant Manager for Energy Research and Development, U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge TN 37830
- 36-37. Technical Information Center, U.S. Department of Energy, Oak Ridge TN 37830
- 38-387. Given distribution under category R5 (10 copies NTIS)

a

| BIBLIOGRAPHIC DATA SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. REPORT NUMBER (Assigned by DDC)<br>NUREG/CR-3814                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITLE AND SUBTITLE (Add Volume No ( angrogram)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORNL/TM-9166                                                                                                                                                                                                 |
| DETERMINATION OF DAMAGE EXPOSURE PARAMETER VALUES IN TH<br>PSF METALLURGICAL IRKADIATION EXPERIMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E 3. RECIPIENT SACCESSION NO.                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |
| F. W. Stallmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S. DATE REPORT COMPLETED<br>MONTH May YEAR 1984                                                                                                                                                              |
| PERFORMIN 3 ORGANIZATION NAME AND MAILING ADDRESS (nelude Zip Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE REPORT ISSUED                                                                                                                                                                                           |
| Oak Ridge National Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NONTH YEAR                                                                                                                                                                                                   |
| P.O. Box X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Leave blank)                                                                                                                                                                                                |
| Oak Ridge, Tennessee 37831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8. (Leave blank)                                                                                                                                                                                             |
| 2. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)<br>Division of Engineering Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. PROJECT/TASK/WORK UNIT NO.                                                                                                                                                                               |
| Office of Nuclear Regulatory Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |
| U.S. Nuclear Regulatory Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11. FIN NO.                                                                                                                                                                                                  |
| Washington, D.C. 20555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B0415                                                                                                                                                                                                        |
| 3. TYPE OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OVERED (Inclusive dates)                                                                                                                                                                                     |
| Topical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y 1984                                                                                                                                                                                                       |
| 5. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. (Leave blank)                                                                                                                                                                                            |
| Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Maerker and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B A Worley at OPNL The ISL-M                                                                         |
| 6 ABSTRACT (200 words or less)<br>Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Marker and<br>adjustment procedure was used. The space dependency of<br>be presented as a cosine-exponential function. Uncerta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| 6. ABSTRACT (200 words or less)<br>Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Marker and<br>adjustment procedure was used. The space dependency of<br>be presented as a cosine-exponential function. Uncerta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| 5. ABSTRACT (200 words or less)<br>Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Maerker and<br>adjustment procedure was used. The space dependency of<br>be presented as a cosine-exponential function. Uncerta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| 6. ABSTRACT (200 words or less) Values for the damage exposure parameters fluence > 1.0 were determined for all locations of metallurgical spectors (ORR-PSF irradiation experiment. Determination is based HEDL and the fluence calculations by R. E. Marker and adjustment procedure was used. The space dependency of be presented as a cosine-exponential function. Uncertained be presented as a cosine-exponential function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-Mi<br>the damage parameter values can<br>inties are between 5 and 10%. |
| <ul> <li>ABSTRACT (200 words or less)</li> <li>Values for the damage exposure parameters fluence &gt; 1.0<br/>were determined for all locations of metallurgical spec<br/>ORR-PSF irradiation experiment. Determination is based<br/>HEDL and the fluence calculations by R. E. Marker and<br/>adjustment procedure was used. The space dependency of<br/>be presented as a cosine-exponential function. Uncertained<br/>be presented as a cosine-exponential function.</li> </ul> | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| 6. ABSTRACT (200 words or less)<br>Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Marker and<br>adjustment procedure was used. The space dependency of<br>be presented as a cosine-exponential function. Uncertain<br>17. KEY WORDS AND DOCUMENT ANALYSIS<br>17. DESCRIP<br>Dosimetry<br>Neutron Transport Calculations<br>Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-Mi<br>the damage parameter values can<br>inties are between 5 and 10%. |
| 6. ABSTRACT (200 words or less)<br>Values for the damage exposure parameters fluence > 1.0<br>were determined for all locations of metallurgical spec<br>ORR-PSF irradiation experiment. Determination is based<br>HEDL and the fluence calculations by R. E. Marker and<br>adjustment procedure was used. The space dependency of<br>be presented as a cosine-exponential function. Uncertain<br>the presented as a cosine-exponential function. Uncertaint<br>Dosimetry<br>Neutron Transport Calculations<br>Uncertainties<br>Damage Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-Mi<br>the damage parameter values can<br>inties are between 5 and 10%. |
| <ul> <li>ABSTRACT (200 words or less)</li> <li>Values for the damage exposure parameters fluence &gt; 1.0 were determined for all locations of metallurgical spector (ORR-PSF irradiation experiment. Determination is based HEDL and the fluence calculations by R. E. Marker and adjustment procedure was used. The space dependency of be presented as a cosine-exponential function. Uncertainties</li> <li>Dosimetry</li> <li>Neutron Transport Calculations</li> <li>Uncertainties</li> <li>Damage Correlation</li> <li>The IDENTIFIERS.OPEN-ENDED TERMS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| <ul> <li>ABSTRACT (200 words or less)</li> <li>Values for the damage exposure parameters fluence &gt; 1.0 were determined for all locations of metallurgical spect ORR-PSF irradiation experiment. Determination is based HEDL and the fluence calculations by R. E. Marker and adjustment procedure was used. The space dependency of be presented as a cosine-exponential function. Uncertainties presented as a cosine-exponential function. Uncertainties Damage Correlation</li> <li>17. KEY WORDS AND DOCUMENT ANALYSIS</li> <li>17. DESCRIPTION TRANSPORT Calculations</li> <li>17. DENTIFIERS.OPEN-ENDED TERMS</li> <li>18. AVAILABILITY STATEMENT</li> <li>19. SECTION</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-M2<br>the damage parameter values can<br>inties are between 5 and 10%. |
| <ul> <li>ABSTRACT (200 words or less)</li> <li>Values for the damage exposure parameters fluence &gt; 1.0<br/>were determined for all locations of metallurgical spec<br/>ORR-PSF irradiation experiment. Determination is based<br/>HEDL and the fluence calculations by R. E. Marker and<br/>adjustment procedure was used. The space dependency of<br/>be presented as a cosine-exponential function. Uncertain<br/>be presented as a cosine-exponential function. Uncertain<br/>Dosimetry</li> <li>Neutron Transport Calculations</li> <li>Uncertainties</li> <li>Damage Correlation</li> <li>IP IDENTIFIERS.OPEN-ENDED TERMS</li> <li>18 AVAILABILITY STATEMENT</li> <li>19.560<br/>Unlimited</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MeV, fluence > 0.1 MeV, and dpa<br>imens in the test assembly of the<br>on dosimetry measurements by<br>B. A. Worley at ORNL. The LSL-MA<br>the damage parameter values can<br>inties are between 5 and 10%. |

120555078877 1 IANIR5 US NRC ADM-DIV OF TIDC POLICY & PUB MGT BR-PDR NUREG W-501 WA SHINGTON DC 20555

ð

Å

1

k

\*

.

\*