

THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF ENGINEERING AUSTIN, TEXAS 78712

Department of Mechanical Engineering Department Office, 512 471–1136 Chairman, 471–1131

March 14, 1985

Standardization and Special Projects Branch Division of Licensing Nuclear Regulatory Commission Washington, D.C. 20555

ATTENTION: Cecil Thomas RE: Docket #50-602

Dear Sir:

The enclosed information is provided to supplement The University of Texas at Austin application submittal (letter dated November 9, 1984 and subsequent amendment letter dated February 27, 1985).

Sincerely,

Thank 2 Bauer

T. L. Bauer

TLB:jc

cc: G. Fonken D. Klein H. Walls

В503190364 В50314 PDR ADOCK 05000602 A PDR

SUPPLEMENTAL INFORMATION

(March 14, 1985)

- A. Control rods are fabricated of sintered compacts of B_4C into solid rods roughly 98% the theoretical density of B_4C . Borated graphite will not be used although it has been used in other facilities.
- 3. Heating, cooling and ventilation air systems are central units with air temperature controlled by steam or water. A central boiler in the building provides steam for each of the air handling units (4 units). Chilled water for cooling is provided by a central chilling unit at the research center for each of the air handling units (4 units). Conditioned air is generated by mixing the air volumes passing through heated and chilled coils in the unitr. One air handling unit with no return air supplies the reactor room. Another air handling unit with return air serves the areas directly adjacent to the reactor room. Two additional air handling units are installed to handle the office and laboratory areas of the building.

C. Control Room Annunciator (for auxiliary systems)

Pool Water System		Type of Action	Typical Set Point	
a.	Pool Lever (above top grid plate)	low	20 ft.	
b.	Pool Temperature (bulk water coolant)	high	110 ⁰ F	

	с.	Water Coolent Flow (loss of coolant pump)	low	O gal/sec
	d.	Heat Exchanger Pressure (secondary to primary leak	differential age)	4 psia
Oth	er Sys	stems		
a•	Area	Radiation Monitors	high	5 mr/hr
b.	Air I	Particulate Activity	high	5000 cpm
с.	React	tor Room Entry	status	OPEN
d•	Vent Oper	ilation System ation	status	ON

3. Scram/channels

2.

- a. As specified in Tech Spec. Section 3.2.3 (dated 9/84).
- b. Status condition of safety channels scram on failure status of 1 out of 2.
- Status condition of rod control system scram on communications failure.
- d. External status conditions scram on auxiliary input signal such as an experiment protection system.
- e. Reactor period scram for less than 3 second period in non pulse mode.