NUCLEAR REGULATORY COMMISSION Docket No. 50 -3521 353 Official Exh. No. a In the matter of PECC IDENT'FIED Staff . RECEIVED. V Applicant REJECTED Intervenor 6/19/84 Cont'g Olf'r AATE Contractor Other nore in Reporter

Low-Level Radioactive Wastes

Their Handling, Treatment, and Disposal

By

CONRAD P. STRAUB, M.C.E., Ph.D.

Chief, Radiological Health Research Activities Division of Radiological Health Public Health Service Robert A. Taft Sanitary Engineering Center Cincinnati, Ohio

Prepared under the auspices of DIVISION OF TECHNICAL INFORMATION UNITED STATES ATOMIC ENERGY COMMISSION

1964

8411280085 840619 PDR ADOCK 05000352 PDR

and the second second

ACTIVE WASTES

DR. D. A. and M. W. FIRST, Handbook sity School of Public Health and the superintendent of Documents, U.S. ington, D.C., 1952.

as a Tracer in the Sorting of Aerosols astr., 23: 13 (January 1952).

ER, Collection Efficiency 'Filter Media 5 to 0.1 Micron, Am. Ind. Hyg. Assoc.

rial Dust, 2nd ed., McGraw-Hill Book

Air and Gas Cleaning for Nuclear Energy active Wastes, Proceedings Conference, national Atomic Energy Agency, Vienna,

SILVERMAN, Dust Collectors Tested in May 1954).

ormance of Cyclone Dust Separators,), 29: 356 (1951).

Indies: Progress Report for February 1, Report NYO-1581, Harvard University 951.

Indies: Progress Report for February 1, Report NYO-1586, Harvard University 1952.

2. DENNIS, M. W. FIRST, and L. SILVERof Centrifugal Scrubbers, Chem. Eng.

FIRST, and L. SILVERMAN, Performance eport of Field Tests), USAEC Report hool Public Health, Nov. 2, 1953. I, Filler of Radioactive Aerosols by 955).

ve Air Pollution, in Radiation Hygiene to 22-45, McGraw-Hill Book Company,

- Handling Radioactive Materials, Panel port 3, for conference held Nov. 27 and ng Research Advisory Board, National C.)

FIRST, and L. SILVERMAN, How Dust 2): 196-198 (February 1952).

DENNIS, and L. SILVERMAN, Laboratory 'ume Collectors, USAEC Report NYOf Public Health, Aug. 31, 1954.

Chapter 8

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES

The waterworks profession has had the most extensive experience of any group in treating, economically, large volumes of liquid materials to remove low concentrations of contaminating or polluting materials. Waterworks operators handle large quantities of chemicals in treatment and are familiar with sludge-disposal problems. In addition, many have knowledge and experience in removing toxic and other nuisancelike substances and therefore are in an excellent position to cope with the newer problems facing them as a result of the introduction of radioactive materials into surface waters.

It is reasonable therefore to consider the experience of this industry and to evaluate the various treatment processes for the removal of small quantities of radioactive materials contained in large volumes of liquid wastes.

An evaluation of water-treatment processes is important because much of the low-level liquid waste currently produced is released directly or through sewerage systems to water environments. Since many communities use rivers and wells as sources of water supply and utilize some form of water-treatment process before the water is consumed by the public, information is needed on how effective these processes are in the removal of radioactive materials.

This chapter describes laboratory and pilot-plant invætigations on the removal of radioactive materials by conventional water-treatment processes, by nonconventional processes that could easily be incorporated into conventional facilities, and by full-scale facilities, particularly for the removal of weapons-test debris (fallout).

8-1 CONVENTIONAL PROCESSES

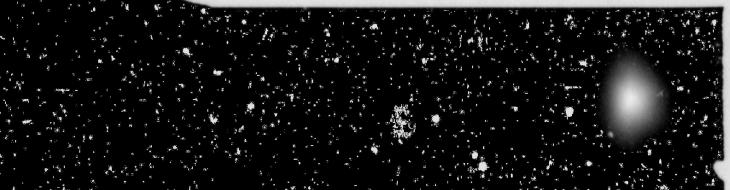
Conventional water-treatment processes of interest in terms of removal of radioactive materials include chemical coagulation and sedimentation, filtration, lime and soda-ash softening, and ion exchange.

Chemical coagulation involves the destabilization, aggregation, and binding together of colloids. These colloids form chemical flocs that adsorb, entrap, or otherwise bring together suspended matter, more particularly, finely divided suspended matter.¹ Commenly used

coagulants are alum and iron salts, which precipitate soluble constituents in the water as aluminum and iron hydroxides. Other coagulants used in the removal of radioactive materials from wastes will be referred to in subsequent sections. Sedimentation is the process by which suspended particles heavier than water are removed by gravitational settling.

The overall removal of impurities found in surface waters by passage of the water through granular materials is known as filtration. Filtration may be at slow rates or high rates. In the former the filters are cleaned manually by surface removal of entrapped suspended matter; in the latter, by backwashing at high rates of flow.

Water is softened by the addition of lime, which removes carbonate hardness; soda ash, which removes noncarbonate hardness; or by ion exchange, which involves an exchange of certain ions during passage of the water through a bed of resin, notably calcium and magnesium ions for sodium ions. When the resin bed is exhausted, it is regenerated with brine.


8–1.1 Coagulation and Settling

156

Coagulation, in association with settling, for the removal of radioactivity has been studied extensively at the laboratory and at the test-model levels. Results ²⁻⁶ for the removal of a wide variety of soluble radionuclides are summarized in Table 8.1. With the exception of most cations with valences of 3, 4, or 5, including the rareearths group, coagulation is ineffective as a method of removing soluble radioactive materials. It is considerably more effective in removing particulate-associated radioactivity, as for example, radioactivity associated with turbidity normally encountered in most surface waters. Setter and Russell ⁷ have described laboratory coagulation studies for the removal of particulate matter from cistern water (essentially roof-collected rainfall) and radioactivity associated therewith. Their results showed that 97 to 100% of the radioactivity associated with particulate matter and 4 to 81% of the radioactivity associated with soluble material were removed.

Other data on the removal of radioactive materials are available from the operating records of water-treatment plants. These results are reported in Sec. 8-3.

(a) Effect of Added Clay. Since coagulation effects the removal of radioactive material attached to, or adsorbed on, natural turbidity, the effect of clay added prior to treatment was investigated. The addition of 100 mg of clay per liter to simulate turbidity increased removal efficiency as shown in Table 8.2. This increase was due to the sorption of soluble radioactivity onto the particulate material present and removal of the particulate-associated radioactivity. In-

ACTIVE WASTES

adioactive materials from m heavier than water are removed sections. * and iron hydroxides. precipitate soluble con-Sedimentation is the wastes Other

removal of entrapped suspended rh rates. ar materials is known as filtration. ies found in surface waters by ig at high rates of flow. In the former the filters

When the resin bed is exhausted, d of resin, notably calcium and exchange of certain ions during s noncarbonate hardness; or of lime, which removes carbonate by

e removed. and 4 to 81% of the radioactivity at 97 to 100% of the radioactivity (fall) and radioactivity associated of particulate matter from cistern ell 7 have 1080 s considerably more effective in ctive of 3, d in Table 8.1. he removal of a wide variety of ly at the laboratory and at the ettling, for the removal of radionor 4, or 5, including the rareas a method of removing y as for example, radiodescribed laboratory encountered in most With the excep-

-treatment plants. dioactive materials are available These results

ate-associated radioactivity. ty onto the particulate material le 8.2. r to simulate turbidity increased reatment was in vstigated. pagulation effects the removal of adsorbed on, natural turbidity, This increase was due to The In-

TABLE 8.1-REMOVAL OF SOLUBLE RADIOACTIVITY BY CHEMICAL COAGULATION

	Chemical	Chemical	No.	Activity range,	pH	range	Rem	oval,%			
Nacilde	form	group	tests		Initial	Final	Av.	Range	Ref.	Coagulants used	Coagulant dose, mg/liter
Cs122-Bai27=	Cŀ	I A II A	27	19-17, 390	7.5-7.8	6.5-7.8	0.5	0-37	3	Als(804)4, FeCla, Fe804-7H20	17.1, 34.2, and 103
Sr#	CI- or NOr-	ILA	54	212-25, 950	7 7-7 9	7.5-8.0	3	0-15	3	Al:(SO4)1, FeCh, FeSOe7HrO	17.1, 34.2, and 103
Sr#		IIA	12				38	5-58		Variable amounts of clay added	11.1, 01.2, and 100
M. 00 18		IIA				6.8-7.0	3	2-5	8	Alum, Fer(SO4)a, and other trest- ments	19 as Fe and as A
Bates-Lates	CF	II A III A	81	42-17, 150	7. 4-7. 6	7. 2-8. 2	59	1-84	3	Als(SO4)2, FeCh, FeSO47H10	17.1, 34.2, and 103
			54	42-5, 520	7.4-7.8	6.6-7.9	44	19-59	3	Ab(SO4)s, FeCh, FeSOe7HaO	17.1, 34.2, and 103
			54	44-8,070	7.4-7.8	7.2-7.8	52	27-72	3	Ala(SO4)a, FeCh, FeSOe7HaO	17.1, 34.2, and 103
Bates-Lates	CF		•	17, 500-46, 200	7.7-7.8		64	58-71	5	CaCO ₃ and FeCh or alum	50-100
Be#	CF	III A	27	163-24, 300	7.2-7.8	6.4-8.0	89	62-98	3	Ala(SO4)1, FeCh. FeSOe7H1O	17.1, 34.2, and 103
			27	326-20, 060	7.6	7.0-7.8	92	62-99+	3	Als(804)s, FeCla, FeSOe7Hr0	17.1, 34.2, and 103
			27	202-26, 100	7.5-7.9	6.9-8.2	91	69-99+	3	Als(SO4)a, FeCh, FeSOe7HrO	17.1, 34.2, and 103
Yn	CF	III A	54*	188-4, 166	7.5-7.8	8.0-7.8	90	40-99	3	Ah(SO4)1, FeCh, FeSOe7H1O	17.1, 34.2, and 103
			81*	367-20, 860	8.1	7.8-10.2	92	56-99+	3	Ah(804), FeCh, FeSO47H10	17.1, 34.2, and 103
			81*	202-21, 450	7.8-8.0	7.6-8.4	86	48-99	3	Aly Al, FeCh, FeSOr 7H10	17.1, 34.2, and 103
			811	406-21, 500	7.8	7.5-9.1	75	1-98	5	Als(504); FeCh, FeSOe7HrO	17.1, 34.2, and 103
			811	222-21, 500	7.1-8.4	7.4.9.5	73	33-98	3	Als(SO4), FeCh, FeSOe7HrO	17.1, 34.2, and 103
Ers-Nbs	Oxylate complex	IV B V B	84	186-27, 200	7.4-7.6	6. 4-7. 9	80	2-99	3	Ah(SO4), FeCh, FeSOe7HrO	17.1, 34.2, and 103
Zrm-Nhm	Oxylate complex	IV B V B	•	29, 800-78, 000	8.4-8.7		88	76-99	5	CaCO ₂ and FeCh or alum	40-400
ha	POr ⁴	VA	27	228-17, 625	7.6	6.4-7.8	96	68-99+	3	Ab(SOd), FeCh, FeSOe7HrO	17.1, 34.2, and 103
Pau	POr	VA	12				97	63-99+	4		
Citas	Cl-, metal	VIB	54	5-758	6.7-7.3	5.3-7.8	6	0-60	3	Als(SO4)4, FeCla, FeSO4-7H1O	17.1, 34.2, and 103
Mom	MoOa	VIB	54	84-10,085	7.6	7.0-8.2	10	0-60	3	Alt(SO4)1, FeCh, FeSO4-7H10	17.1, 34.2, and 103
W 188	Tungstate	VIB	54	233-28, 290	7.5-7.9	6.6-8.4	46	1-96	3	Als(SO4), FeCh, FeSO47H10	17.1, 34.2, and 103
			81	198-22, 490	8.0-8.1	7.5-8.4	36	4-91	3	Als(804)1, FeCh, FeSO4 71110	17.1, 34.2, and 103
Reim	Metal	VIIB	54	95-15,230	7.6	7.2-8.0	6	0-29	3	Ali(SO4)1, FeCh, FeSOe7H10	17.1, 34.2, and 103
See footnote	es at end of table.										

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 157

the mirine

1. S.	Chemical	Chemical	No.	Activity range,	pH	range	Rem	ioval,%			
Nualide	form	group	lesis	(min) (ml)	Initial	Final	Av.	Range	Ref	Coagulants used	Coegulant dose, mg/liter
[131	Iodide	VIIA	27	239-25,060	7.6	7.2-7.8	20			Paralan da anna an taona an tao	
[141	Iodide	VIIA	12		1.0	1. 4-1.0	1000	0-44	3	Ali(SO4)1, FeCh, FeSO+7H2O	17.1, 34.2, and 103
1886	Iodide	VIIA	4	13,000-24,800	6.3-7.7		3.9	0-12		Ah(SOda, Fellh, FeSO:7HrO	17.1, 34.2, and 103
180	Iodide	VIIA	19	2,000\$	0. 0-1. 1		42	26-63	5	CaCO ₂ and FeCl ₂ or alum	50-200
113198	CF	VIII	27	196-24, 960		5.4-7.8	0.8	0-10	6	Variety of chemicals	
2010	CF	VIII		45, 900-49, 400		6.9-8.2	77	43-96	3	Ah(SO4)1, FeCh, FeSO4-7H10	17.1, 34.2, and 103
Prist .	PriOi	La series	27	102-12,050	7.6-8.2		16	8-23	5	CaCO ₃ and FeCh or alum	50-100
ette Priss	CF	La series	27		7.2	7.4-8.0	96	83-99+	3	Ah(SGi), FeCh, FeSOe7H10	17.1, 34.2, and 103
ei4.14. Pritt	CF	La series		244-30, 510		7.2-8.4	91	28-99+	3	Ala(SO4)1, FeCla, FeSO4-7H10	17.1, 34.2, and 103
m147	CI-			41,000-55,800	7.1-7.6		98	96-99+	5	CaCO ₂ and FeCl ₂ or alum	50-200
(D 143	SmrO1	La series	27	136-19, 040	7. 4-7. 6		87	4-99+		Ah(SO4), FeCh, FeSO+7H10	
ission-	Ba 5%	La series	54	148-20, 870	7.4-7.6	5.8-8.0	91	44-99+	3	Ali(SO4)1, FeCh, FeSO+7H10	17.1, 34.2, and 103
product			1	22, 200	8.5		89		5	FeCh+CaCO3	17.1, 34.2, and 103
mixture									100	recurrences,	170-240
mirrile	Cs 1										
	Ru 8										
	8r 17										
	TRE 449										
	Other 3										
ission	Ba 5%		1	22, 200	8.5		5.4	41.40			
reduct	Ce 5						DC:	51-59	8	PaCla+CaCOs	100-400
mixture	Cs 50										
	Ru 16										
	Sr 10										
	TRE 10										
	Other 4										

TABLE 8.1-REMOVAL OF SOLUBLE RADIOACTIVITY BY CHEMICAL COAGULATION

• Ca(OH)s used as alkaline agent. † Na₂CO₃ used as alkaline agent. † Micromicrocuries per milliliter. * Trivalent rare earths other than cerium.

Com Com Cdin Yn Bale Colar. radioiodine from the waste w Straub and coworkers " and Ec containing it, this nuclide was 8-2.3). Fission-product mixture Zra-Nba (Table 8.1) showed that alum ((b) Removal of Iodine. Bec active iodine in hospitals and the creasing the concentration of ssion-product mixture** ocal clay added. osgulant included alum, ferrous sulfate or sodium silicate added. Where added, so ine dissolver solution. athetic mixture containing fission produc Ba erwater detonation. ree-year-old fission-product mixture. TABLE 8.2-COAGULATIC (JAR-TE Nuclide ng/li

summarized in Table 8.3 20 mg of chloride, 0.050 mg o According to Eden and cow

high as 96%.

Results obtain

carbon, or silver nitrate incre

that the addition of small a

REMOVAL OF RADIOACTIVITY BY

10

1

-1

=

159 REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES

Nuclide	Clay added,* mg/liter	Coagu- lant added,† grains/gal	Final pH	Removal %
Calif-Ballin	0	1	1.1.1.1.1.1.1	0-6
	100	1		35-65
Sr.	0	1. 51	6. 7-7. 8	0-6
C4	100	0. 5-6	6. 7-10. 7	0-51
Cdus	0	1		40-60
	100	1-5		. 60-95
Bain_Lain	100	1-6	7. 5-8. 2	28-84
Se*	100	1-6	6. 5-8. 2	66-98
Yn	0	1. 51	6. 8-7. 1	83-93
	100	1-6	7. 0-10. 2	34-99
Zr**-Nb**	0	1-5		70-98
21-11J	100	1		95-99
pes	100	0. 5-1. 51	6.8-8.8	97-99
Cr41	100	1-6	7.6-8.8	73-98
Wiss	100	1-6	7. 5-8.4	5-91
Tim	100	0. 5-21	6.9-9.0	0-10
Ceim	0	1-1. 5\$	7. 2-7. 8	81-94
~	100	0. 5-2. 51	7.0-7.8	85-96
Fission-product mixtures	100	1-31	7. 2-8. 8	61-84
Fission-product mixture¶	0	1-5	4. 3-10. 2	9-71
r moton-produce mixed of	100	1-5	4. 3-10. 2	12-73
Fission-product mixture**	0	10	9. 9-10. 0	46

TABLE S.2-COAGULATION AND SETTLING RESULTS (JAR-TEST STUDIES)

*Local clay added.

tCoagulant included alum, ferrous sulfate or ferric chloride, lime, soda ash or sodium hydrozide, and sodium silicate.

INo sodium silicate added. Where added, sodium silicate equaled 40% of the primary congulant dose. flodine dissolver solution.

Synthetic mixture containing fission products in the same ratios assumed to be present 30 days after an underwater detonation.

"Three-year-old fission-product mixture.

creasing the concentration of clay increases removal efficiency (Sec. 8-2.3).

(b) Removal of Iodine. Because of the widespread use of radioactive iodine in hospitals and the need to find ways of treating wastes containing it, this nuclide was investigated in detail. Earlier studies (Table 8.1) showed that alum or iron coagulation alone removes little radioiodine from the waste when originally present as the iodide. Straub and coworkers 8 and Eden and coworkers, 8 however, observed that the addition of small amounts of copper sulfate, activated carbon, or silver nitrate increased the removal of this anion to as high as 96%. Results obtained with these auxiliary chemicals are summarized in Table 8.3

According to Eden and coworkers,5 in a typical water containing 20 mg of chloride, 0.050 mg of bromide, and 0.010 mg of iodide per

4

TABLE	8.3-REMOVAL	OF	Irat	BY	AUXILIARY	PROCESSES	

Dosage, mg/liter				Final c	haracteristics,	mg/liter*	Remo		
Turbidity	Alum	NaOH	Auxiliary chemical	рН	Alkalinity	Turbidity	Coagulation and settling	Coagulation, settling, and centrifuging	Ref
103	25.7	38. 9	5-15†	5. 8-7. 1	17-68	0-15	64-72	74-78	8
103	25.7	38.9	3. 5t	7.1	65	0	38	56	8
17. 3-274	25.7	38.9	0. 12-3. 84	5.8-7.5	19-74	1-40	42-74	48-76	
	113.5		0. 013-0. 134	6. 0-6. 9		. 10	55-90	40-10	
	247		0. 13-1. 15	6. 3			90-92		0
	100. 649		0.131	6. 3			95.5		5

*Except for pH.

*Except for pH. †Auxiliary chemical was activated carbon. †Auxiliary chemical was copper sulfate. †Auxiliary chemical was silver nitrate. ¶Either 20 mg/liter as iron or 100.64 mg/liter as Fe₃ (SO₄)₄- 9H₃O.

Sec.2

CTIVE WASTES

5 82

90-95.

6

0. 13-

247

Except for

Fes (804)r 9Hr0

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 161

liter the silver halides begin to precipitate at concentrations of 0.023, 0.060, and 0.0002 mg of dissolved silver per liter, respectively, when normal solubility relationships are maintained. If a concentration of 0.085 mg of silver per liter were added to this solution, 99% of the iodide would be precipitated at equilibrium. This precipitated silver iodide could then be removed by flocculation with alum. Thus, according to theory, if radioiodine also were present either as the iodide or in a form exchangeable with iodide, 99% of the activity could be removed in this way. As shown by the analytical data, however, the proportion removed is less than that calculated. This may be attributed to incomplete removal of precipitated silver iodide or to the formation of a suspension of colloidal material. When charged, such colloidal materials react very similarly to true ions. Also, it is probable that the various silver halides are actually precipitated as mixed crystals.

(c) Removal of Strontium. Since Sr²⁰ is one of the more hazardous beta-emitting radionuclides, the removal of this element has been of considerable interest. Data given in Table 8.1 show that coagulation is unsatisfactory for the removal of strontium. Downing, Wheatland, and Eden 6 carried out experiments to determine the effect of the amount of coagulant used and the effect of pH on the removal of this radionuclide. Their results showed that strontium removal from a solution at pH 7.0 increased from about 2 to 73% when the ironcoagulant dose was increased from 10 to 10,000 mg/liter. Furthermore, in the presence of 500 mg of iron per liter, strontium removals increased from 20 to 97% as the pH was raised from 7.0 to 11.0. They concluded that there may be a combination of two effects at work in alkaline solutions: ". . . enhanced adsorption on the hydroxide floc together with some co-precipitation of strontium with calcium carbonate." The adsorption of divalent ions on ferrous hydroxide was studied by Kurbatov and others.^{9.10}

Studies " of the effect of aeration on untreated and phosphatetreated samples showed that strontium phosphate was more soluble than carbonate at a comparable pH and that phosphate had a solubilizing effect during precipitation of the strontium carbonate. This effect is similar to that reported by Reitemeier and Ayers: ¹² the presence of as little as 3 mg of sodium metaphosphate per liter prevented the precipitation of calcium carbonate.

(d) Removal of Mixed Fission Products. The removal by coagulation of activity from a mixture of radionuclides is a function of the radionuclides present. If the mixture contains an excess of suc., radionuclides as cesium, strontium, or iodine, the removal efficiency will be low; if it contains an excess of more easily removed radionu-

692-623 O - 64 - 12

clides, such as the trivalent rare earths, phosphorus, and zirconiumniobiun, removal efficiency will be high.

The results 18 of coagulation and settling treatments on a variety of mixed waste solutions are summarized in Table 8.4. Removal efficiencies range from 46 to 89%.

TABLE 8.4-REMOVAL OF	MIXED-FISSION-PRODUCT	NUCLIDES BY
	LATION AND SETTLING	

Fission-product mixture	Removal, %
1*	61-84
3†	46
41	89
55	51-59

*Iodine dissolver solution; clay added. fThree-year-old fasion-product mixture. IIodine dissolver solution aged 30 days. \$Mixed-fasion-product waste containing Co¹²⁷-Ba¹²⁷ and Ru¹⁸⁶-Rh¹⁸⁶.

8-1.2 Sand Filtration

Except for removal by simple straining or by sorption on biological life contained in the Schmutzdecke (top layer of material on a filter), sand filters have not been effective in removing radioactive materials.14.15 Their major function is to remove the radioactivity previously incorporated in floc particles.

(a) Rapid Sand Filters. As shown in Table 8.5, removal of radioactive materials by high-rate filtration (125 million gal per acre per day) will vary with the nature of the materials studied.⁶ For example, scandium, yttrium, and zirconium-niobium, which were probably present as colloids, were readily removed; other materials,

TABLE 8.5-LABORATORY SAND-FILTRATION RESULTS

	Initial activity,	Volume		Renoval, %		
Nuclide	counts/ (min)(Lul)	passed, ml	pH of effluent	Range	Average	
Cain-Bain-	800	500	8.3	10-70	50	
Sr#	2700	750	8.3	1-13	4	
Cdus	1200	500	8.1	60-99	95	
Ba140_La140	1300	750	7.6	39-99	74	
Sc4	1500	750	8.3	94-99	96	
Yn	5700	750	7.0	84-89	87	
Zr*L Nb*	3400	500	7.8	91-96	93	
Wiss	2200	750	7.1	3-18	8	

TVE WASTES

, phosphorus, and zirconium-

tling atments on a variety ized in Table 8.4. Removal

ON-PRODUCT NUCLIDES BY SETTLING

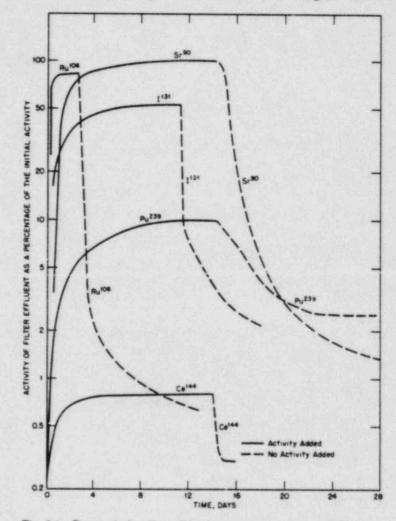
	,	10
61.	-84	
	46	
	89	
51-	-59	

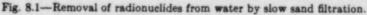
noval 07

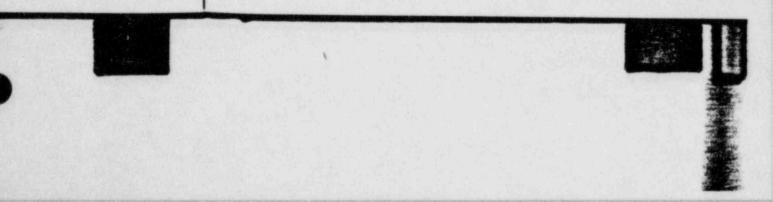
Rum Rhm

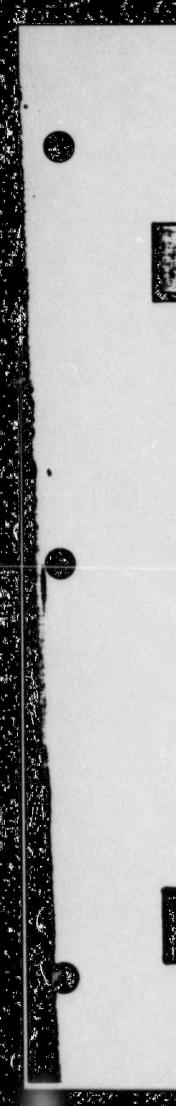
ag or by sorption on biological layer of ma^{*} ial on a filter), removing radioactive matemove the radioactivity previ-

i in Table 8.5, removal of tion (125 million gal per acre the materials studied.⁶ For conice iobium, which were ily removed; other materials,


FILTRATION RESULTS


pH of	Removal, %						
effluent	Range	Average					
8.3	10-70	50					
8.3	1-13	4					
8.1	60-99	95					
7.6	39-99	7.5					
8.3	94-99	96					
7.0	84-89	87					
7.8	91-96	93					
7.1	3-18	8					


REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 163


such as strontium, cesium, and possibly tungsten, which were present in true solution, were not affected by passage through the sand filters.

(b) Slow Sand Filters. The efficiency of slow sand filters (2 to 8 million gal per acre per day) for the removal of the soluble radionuclides I¹³¹, Sr⁹⁰, Ru¹⁰⁶, Ce¹⁴⁴, and Pu²³⁹ was discussed by Eden, Elkins, and Truesdale.¹⁵ Their results have been summarized in Fig. 8.1. Of the nuclides shown, ruthenium appears first in the filter effluent, followed by Sr⁹⁰, I¹³¹, Pu²³⁹, and Ce¹⁴⁴; cerium is the most effectively removed by the sand filter with only 8% of the influent activity found in the effluent after 14 days. The dashed lines in Fig. 8.1 are indica-

164

tive of the release rate of each nuclide previously sorbed in the filter bed when clean water was passed through the filter. It can be seen that the filter continued to release Pu²³⁰, I¹³¹, and Sr⁵⁰ for some time after addition of the radionuclide. If initial concentrations were high, then this slow release from the filter would result in potentially hazardous concentrations in the filtered water.

Subsidiary experiments ⁶ showed that over 99% of the strontium retained in the filter was associated with the Schmutzdecke and that this activity could be readily separated from the sand during the normal process of filter washing.

8-1.3 Combined Treatment: Coagulation, Settling, and Filtration

In the previous sections the decontamination of radioactive solutions by specific treatment processes has been discussed. These data provide a basis for evaluating the efficiency of a given process. The total efficiency resulting from a combination of processes is considered in this section.

Some of the early work on combined coagulation, settling, and filtration was carried out at the Oak Ridge National Laboratory, where pilot-plant facilities were designed and built,¹⁶ and at the Massachusetts Institute of Technology.³

At ORNL a 250 gal/day (1000 liter/day) water-treatment plant was built to establish basic criteria for the design of larger pilot plants or full-scale treatment units and to develop optimum operating procedures. This plant, which included facilities for mixing, coagulation, settling, and rapid sand filtration, is described in the literature; ^{2,16} a flow sheet is shown in Fig. 8.2.

Operating results in the removal of P³², I¹³¹, and a fission-product mixture ¹⁷ are summarized in Tables 8.6 and 8.7. In the case of P³², 85% of the radioactivity was removed during coagulation and settling; 79 to 88%, during filtration. This gave an overall removal of 96 to 98%. These findings may be compared with results reported by Eliassen and coworkers,³ which are reproduced in Table 8.8. Their smovals were somewhat better than those reported by ORNL.

As seen in Table 8.6, there was little removal of I¹³¹ by the processes indicated.

In another series of tests, batch coagulation, sedimentation, and sand filtration were employed to remove specific radionuclides from a fission-product mixture. The composition of the initial mixture, of the various effluents (settled and filtered), and of the sludge are given in Table 8.9. It should be noted that, even though the composition of this mixture is somewhat different from that previously reported (Table 8.7), the overall removal of activity by the various units comprising the treatment process are practically identical. This is believed to be due to chance, inasmuch as removals of individual

TIVE WASTES

preugh filter. It can be seen as, I¹³¹, and Sr⁴⁰ for some time nitial concentrations were high, ald result in potentially hazard-

at over 99% of the strontium th the Schmutzdecke and that ed from the sand during the

, Settling, and Filtration

ination of radioactive solutions in discussed. These data pror of a given process. The total n of processes is considered in

ned coagulation, settling, and ige National Laboratory, where built,¹⁶ and at the Massachu-

ay) water-treatment plant was design of larger pilot plants or elop optimum operating procilities for mixing, coagulation, lescribed in the literature; ^{2,16}

P³² and a fission-product 6 a. 7. In the case of P³², iuring coagulation and settling; ve an overall removal of 96 to ured with results reported by produced in Table 8.8. Their hose reported by ORNL. removal of 1¹³¹ by the processes

d), and of the sludge are given ition of the initial mixture, of re specific radionuclides from a agulation, lich ractically vity by the from that previously reported even though the composition 28 removals of sedimentation, identical. various units comindividua This and 18

TABLE 8.6 .- REMOVAL OF RADIONUCLIDES BY CONVENTIONAL WATER-TREATMENT PROCESSES*

	Initial			-	lkali	Sodium				
Radio-	activity,	Turbidity.	Alum,		Dose, grains/	silicate, grains/	Carbon.	819.43	Removal, %	
nuclide	(min) (ml)	mg/liter	grains/galt	Kind	gal†	gal†	mg/liter	Settling	Filtration	Overall
Pu	130-160	95-100	0. 52-0. 85	NaOH	0. 50-0. 76			85	79-88	96-98
[131	400-500	95	1.5	Lime	1.5	0.37		<0.4	<0.4	<0.4
[131	400-600	100	1.5	Lime	1.5	0. 42	4.0	16	11	25

*From C. P. Straub et al. Eng. News-Record, 147(7): 38 (Aug. 16, 1951).

†Grains/gal=17.1 mg/liter.

TABLE 8.7.-REMOVAL OF MIXED FISSION PRODUCTS BY CONVENTIONAL WATER-TREATMENT PROCESSES*, †

Radio-	Percent	Turbidity.	De	ose, grains/	gal		Removal, %	
nuclide‡	mixture	mg/liter	Alum	Lime	Silicate	Settling	Filtration	Overall
Total	100	100	0.9	0.8	0.4	46	44-50	70-73
Russe_Rhise	15.9					75	0-30	75-82
Cein_Prin	12.1					55	46-51	76-78
үн	17.9						40-41	48-50
Br00_Y00	35. 4					61	17-23	68-70
Zras_Nbas	14.5					68	68-78	90-93
[131	4.2					39	6-53	43-72

*Activity present corresponds to activity present a - month after the detonation of a nominal nuclear device.

f From C. P. Strauh et al., Eng. News-Record, 147(7): 38 (Aug. 16, 1951).

Ruthenium, rhodium, cesium, praseodymium, yttrium, and strontium are present in chloride form; rirconium and niobium present as oxalate complex in oxalic acid solution; and iodine present as iodide.

165

With the second states and the second states

......

de

	2	2	
	•	,	
	2	5	2
	с		

-

-

.

					Removal, %	Decontam- ination		
	Run No. Water		Coagulant,		Filtration (av. of six	Total for	(Pu initial)	
_	NO.	Water	mg/liter	settling	filters)	plant	(Pa final /	
	1	Cambridge	Alum, 100	74.5	98.30	99. 57	232	
	2	Cambridge	Alum, 100	81.0	99.62	99.93	1430	
	3	Cambridge	Fe2(SO,)2, 30-40	80.9	99.40	99.89	910	
	4	Ohio River (turb.=32 mg/liter)	Fe ₂ (SO ₄) ₃ , 60	93. 7	99. 63	09. 98	5000	
	5	Ohio River (turb.=32 mg/liter)	Alum, 48-60	67. 0	98.83	99. 61	256	
				A CONTRACT OF A CONTRACT		and the second second		

4

*Initial concentration of P²⁴ was 0.01 mg/liter. †From R. Eliassen et al., J. Am. Water Works Assoc., 43: 615 (1951).

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 167

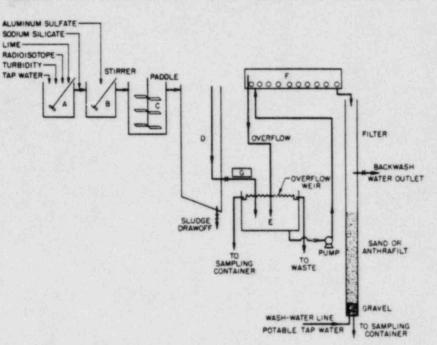


Fig. 8.2—Flow diagram of ORNL water-treatment pilot plant. A, primary mixing tank; B, secondary mixing tank; C, flocculation, or coagulation, tank; D, settling tenk; E, flow proportioning and sampling tank; F, overhead orifice feed tank for feeding 10 filter columns; and G, G-M tube connected to countrate meter and recorder. (Figure not to scale.)

nuclides in the mixtures varied considerably for the two tests. Radiochemical analyses are necessary to determine the removal of specific substances and should be performed in all instances.

8-1.4 Lime and Soda-ash Softening

IVE WASTES

256

96 9

99.

83 83

99.

93.

60

Fe₂(SO.) 3.

Ohio River (turb.=32

mg/liter) Ohio River (turb.=32

mg/liter)

87.

615 (1951

\$

faane.

"Initial concentration of P¹¹ was 0.01 mg/liter. [†]From R. Ellassen et al., J. Am. H'ater H'arks Lime and soda-ash removals reported for a variety of radionuclides are summarized in Table 8.10. These data show that reasonable amounts of chemical will provide a 90% or better removal of soluble Ba¹⁴⁰-La¹⁴⁰, Sr⁴⁰, Cd¹¹⁵, Sc⁴⁶, Y⁹¹, and Zr⁹⁵-Nb⁹⁵ but that much larger quantities of chemical (up to 48 grains/gal) were ineffective for the removal of Cs¹³⁷-Ba¹³⁷ and W¹⁸⁵. It will also be noted that lime alone was effective for the removal of Zr⁹⁵-Nb⁹⁵. Lime and soda-ash softening has also been tested for the removal of iodine, but the results have been negative.⁵

Treatment with lime and soda ash finds its greatest use in the removal of potentially hazardous strontium. Many studies have been carried out to define the mechanism involved, namely, the coprecipitation of the strontium with the calcium. When stoichiometric amounts of chemical are used, a removal efficiency of approximately 65 to 75% of the dissolved strontium can be obtained.^{818,19} As

\$ · · · *# * ·

	3			
	4	r	•	
	3	6		e
	4	,	ς	2
		c	2	
		7	٢	

		Concen	tration. %			Removal, %		
Radionuclide	Raw water	Settled effluent	Filtered effluent	Sludge	Coagula- tion + settling	Filtration	Overall	
Cs137-Ba137m	27. 2	40. 0	17.6	17. 2	21. 2	75.0		
Sr# Y#	27.6	46. 5	68.9	20. 1	9.5	75.6 18.3	80. 8	
TRE†	31. 2	7.9	7.9	53. 1	86.3	15.5	26.0	
Ru 106_Rh 100	3.9	2.4	3.5	4.0	32. 1	10. 0	92.5 78.7	
Cem-Priss	8.7	2.9	2.0	9.1	82.1	59.3	92.7	
Totals	98.6	99.7‡	99.91	103. 5	46. 3	44. 4	70.1	

TABLE 8.9-REMOVAL OF FISSION-PRODUCT ACTIVITY BY COAGULATION, SETTLING, AND FILTRATION*

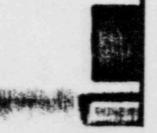
*Initial concentration of radioactive material, 22,500 counts/(min) (mi).

†Trivalent rare earths other than cerium.

iQuantitative analytical recoveries corrected to approximately 100%.

Cein-Prin Totals	8.7 98.6	2.9	3.5	9.1	82. 1 82. 1	59. 3	78. 7 92. 7	
*Initial concentration of radioac (Trivalent rare earths other that	tive material, 22,500 co		99.9\$	103. 5	46. 3	44. 4	70. 1	_0

Quantitative analytical recoveries corrected to approximately 100%.



NASTES

TABLE 8.10-APPROXIMATE MINIMUM COMBINED DOSAGE OF LIME AND SODA ASH TO GIVE STATED REMOVAL^{6 14}

	Chemical dosage (grains/gal) for stated removal											
	50%		75	75%		90%		%	99%			
Nuclide	Lime	Soda	Lime	Soda	Lime	Soda	Lime	Soda	Lime	Soda		
Ba140-La140	2	2	4	2	6	4						
Sr*	4	3	5	5	7	9	20	20				
Cdus	2	2	3	3	4	4	4	4	6			
Se**	3	3	3	3	5	5						
Yes	2	2	4	4	6	6	12	6				
Zr#-Nb#	2	0	5	0	12	0	17	0	22	0		
Cs117_Ba117m	48	48										
Wiss	48	48										

*Minimum combined dosage is defined such that, of the variable dosages studied, the number of grains per gallon of lime plus the grains per gallon of soda ash is a minimum.

170

shown in Table 8.11 increased removals of strontium are obtained with increased chemical dosages.^{8,18}

Coprecipitation may be accomplished by (1) formation of mixed crystals in which foreign ions are incorporated homogeneously in the crystal lattice; (2) occlusion of impurities as imperfections scattered at random throughout the crystal; and (3) surface adsorption of foreign ions by the precipitate after it has formed.^{20, 21}

TABLE 8.11-REMOVAL OF STRONTIUM BY LIME AND SODA-ASH SOFTENING*

	Hardness, m	g CaCO ₃ /liter	Lime	Na ₂ CO ₂	Strontium removed, % of initial content	
Run No.	Temporary	Permanent	added †	added:		
1	200	0	100	0	67. 6	
2	. 200	0	100	0	73.0	
3	200	0	100	0	70.5	
4	150	50	100	105	70.0	
5	150	50	100	105	71.6	
6	50	150	100	105	60. 0	
7	50	150	100	105	63. 5	
8	200		0	328	91. 2	
9	200		0	310	89. 5	

*From A. L. Downing et al., J. Inst. Vater Engrs., 7: 555 (1953).

tAs percentage of that equivalent to all the temporary calcium hardness

tAs percentage of that equivalent to the permanent calcium hardness

Strontium is removed by mixed-crystal formation. Its removal is directly related to the removal of calcium. Therefore, for effective removal of strontium, it is imperative that the calcium hardness be reduced to a very low value. Such a requirement suggests a considerable excess of soda ash in the water during treatment and an initial reduction of calcium hardness to a low value. A system of repeated additions and precipitations of small quantities of calcium could then be used to reduce the radioactive strontium to a very low amount. This is the so-called "repeated-precipitation" process.²²

Although only 80 to 90% of the strontium can be removed by the initial softening reaction, a secondary process, which provides for the addition and elimination of small quantities of calcium in several steps, removes an equal percentage of activity in each stage. For instance, in a 10-stage plant, each step of which has a removal efficiency of 50%, 99.9% of the initial activity is removed. In 15 such stages, 99.996% of the initial activity is removed. These removals are ideal; in practice, however, where one treats highly variable chemical solutions, it may not be possible to obtain them.

In hot-lime and soda-ash softening at temperatures above 90° C, the addition of enough soda ash to produce a 50 mg/liter excess (as CaCO₃) over that amount required to react with noncarbonate hardness and

S Printers

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 171

'E WASTES

of mantium are obtained

by (1) formation of mixed brated homogeneously in the s as imperfections scattered. 1 (3) surface adsorption of s formed.^{20,21}

BY LIME AND SODA-ASH

Na ₂ CO ₃ added‡	Strontium removed, % of initial content
0	67. 6
0	73.0
0	70. 5
105	70. 0
165	71.6
105	60. 0
105	63. 5
328	91. 2
310	89. 5

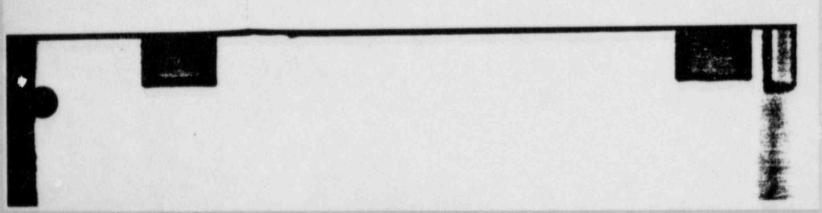
(1953). Im hardnes

hardness.

al formation. Its removal is um. Therefore, for effective that the calcium hardness be required the suggests a conter of the su

rocess, which provides for the ntities of calcium in several activity in each stage. For of which has a removal effivity is removed. In 15 such is removed. These removals e one treats highly variable le to obtain them.

temperatures above 90°C, the 50 mg/liter excess (as CaCO₃) h noncarbonate hardness and enough lime to produce a pH of 9.8 to 10.0 at equilibrium resulted in a reduction of calcium hardness to 5 mg/liter or less and a simultaneous reduction of strontium activity by 95% or more. Following this initial precipitation, 10 equal 5 mg/liter increments of calcium chloride (as CaCO₃) were added to react with the excess soda ash. These additions were spaced at 2-min intervals to allow formation of precipitates between additions. In this way an initial strontium activity of 200 counts/sec was reduced to the level of natural background.


Equal reductions in strontium activity were obtained with coldlime and soda-ash softening. The experimental procedure was similar to that used with hot-process softening. Enough lime was added to the raw water to produce a pH level of 9.8 to 10.0 at equilibrium, and 50 to 100 mg of soda ash per liter was added in excess of that required to react with the noncarbonate hardness. Following this initial softening, 10 or more increments of calcium chloride were added to react with the excess soda ash. Equilibrium could be reached in the cold process, however, only after many hours of reaction time; the addition of 1000 to 2000 mg of preformed calcite crystals per liter accelerated the reaction. Rapid stirring was necessary to increase the reaction rate further and to keep the crystals in suspension. With the high level of preformed crystals and the vigorous stirring, the additions of calcium chloride could be spaced at 5-min intervals. This treatment resulted in excellent removal of radiostrontium.

8-1.5 Ion Exchange

Ion exchange, usually involving cation or base exchange, is used also in softening municipal water supplies. It has been employed successfully for the removal of radioactivity from water, either as a single bed for the removal of cations, a single bed for the removal of anions, a mixed bed for the removal of cations and anions (essentially deionization), or as a cation bed followed by an anion bed in series. The resins have been used in columns or as slurries.

Ion exchange may be used most successfully for the removal of small amounts of ions from very dilute solutions. In the deionization of water for industrial purposes, all ions in the incoming water are replaced by hydrogen and hydroxyl ions, and the effluent is comparable to distilled water. This method is cheaper than distillation since the ion exchanger acts only on the very minor constituents—the impurities—and permits the greater bulk of material—the water—to pass thrcugh unchanged.

(a) Column Studies. One of the first applications of ion exchange to the removal of radioactive tracers from large amounts of liquid wastes was that reported by Ayres.²³ His results are discussed in Chap. 11.

172

Studies have been made in which tap-water solutions containing added tracer amounts of soluble W¹⁸⁵, Y^{v1}, Sc⁴⁶, Sr⁴⁰, Ba¹⁴⁰-La¹⁴⁰, Cs¹³⁷-Ba^{137m}, Cd¹¹⁵, and Zr⁴⁵-Nb⁹⁵ were passed through various synthetic ion-exchange materials. Results are given in Table 8.12. For com-

	Removal, %							
Nuclide	Cation exchange	Anion exchange	Mixed bed	Greensand				
W188	12-16	97. 2-99. 2	98.9	9				
Yes	86-93.1	94. 2-98. 5	97. 6-98. 7	75				
Sc**	95. 7-97. 2	98. 8-99. 0	98. 5-98. 7	96.4				
Sr#	99. 1-99. 8	5-7	99. 95-99. 97	99.8				
Ba 140-La 140	98. 3-99. 0	36-42	99, 5-99, 6	96.3				
Cs137-Ba137m	99.8	9.	99.8	00.0				
Cdus	98.5	0	99.2					
Zr44_Nb44	58-75	96. 4-99. 9	90, 9-99, 4					

TABLE 8.12-EFFICIENCY OF ION-EXCHANGE MATERIALS IN REMOVING INDIVIDUAL NUCLIDES

parison, results obtained using greensand (glauconite) as the exchange material ¹⁴ are also included in the table. Greensand was used in these studies because it has had extensive use in water-treatment practice.

The cation-exchange materials evaluated included IR-120 (H⁺ and Na⁺ cycles) and a natural greensand (Na⁺ cycle); the anion exchangers included Dowex-1(OH⁻ and Cl⁻ cycles); and the mixed beds included IR-120(H⁺) plus Dowex-1(OH⁻) and IR-120(Na⁺) plus Dowex-1 (Cl⁻). In general, the particular regeneration cycle used, i.e., H⁺ or Na⁺ regenerated cation-exchange resin or OH⁻ or Cl⁻ regenerated anion-exchange resin, did not appreciably influence the results. In water-treatment practice the effluent pH is of significance and should be near neutrality. For the various exchange materials studied, the range in effluent pH varied as follows: IR-120(H⁺), 2.8 1 3.6; IR-120(Na⁺), 3.4 to 4.3; Dowex-1(OH⁻), 10.7 to 11.2; Dowex-1(Cl⁻), 7.2 to 8.7; and greensand, 7.1 to 8.0. From the standpoint of pH, the most satisfactory water-treatment effluents were those produced with Dowex-1(Cl-) and greensand. The removal efficiencies obtained with greensand do not differ significantly from the results indicated for cation-exchange resins; however, the exchange capacity of the cation-exchange resins is much greater.

From the results given in Table 8.12, it can be noted that the strontium, cesium, cadmium, and, to a lesser extent, barium-lanthanum tracers are present in solution as cations, whereas the tungsten tracer is in the anion form. Yttrium, scandium, and zirconiumniobium are apparently in colloidal form and, as such, are removed to

Ŧ

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 173

p-water solutions containing ", S. Ba¹⁴⁰-La¹⁴⁰, Cs¹³⁷d though various synthetic ven in Table 8.12. For com-

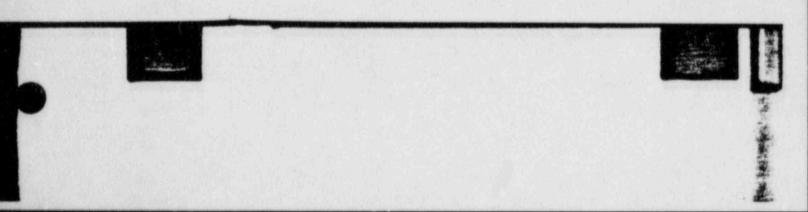
VE WASTES

CHANGE MATERIALS IN L NUCLIDES

nov	noval, %					
	Mixed bed	Greensand				
2	98.9	9				
5	97. 6-98. 7	75				
0	98. 5-98. 7	96. 4				
	99. 95-99. 97	99.8				
	99, 5–99, 6 9£, 8	96. 3				
-	99. 2					
9	90. 9-99. 4					

d (glauconite) as the exchange ble. Greensand was used in hsive use in water-treatment

ted included IR-120 (H⁺ and + cycle); the anion exchangers and the mixed beds included IR-120(Na⁺) plus Dowex-1 neration cycle used, i.e., H⁺ - or Cl- regenerated in or ence the results. In oly | I is of significance and should change materials studied, the IR-120(H⁺), 2.8 to 3.6; IR-10.7 to 11.2; Dowex-1(Cl-), From the standpoint of pH. effluents were those produced The removal efficiencies obignificantly from the results wever, the exchange capacity reater.


2, it can be noted that the lesser extent, barium-lanthaations, whereas the tungsten , scandium, and zirconiumand, as such, are removed to some extent on both cation- and anion-exchange resins. It has been shown^{6.14,24} that an appreciable proportion of the radiostrontium in the water would continue to be removed by a column that had long ceased to remove calcium. This was attributed to a difference in the affinity of a given exchange material for strontium, as compared with calcium; such differences are said to be greater in rigid, dense exchangers, such as the aluminosilicates,⁶ than in the organic exchangers.

Further studies by Downing and coworkers⁶ showed that there appeared to be a slight tendency for the activity in the effluent to increase in successive cycles; it was found, however, during several successive cycles that over 97% of the strontium activity initially present in the water could be removed. It was also noted that, in the first few cycles at least, the proportion of activity appearing in the effluent was less than the normal "leakage" of hardness.

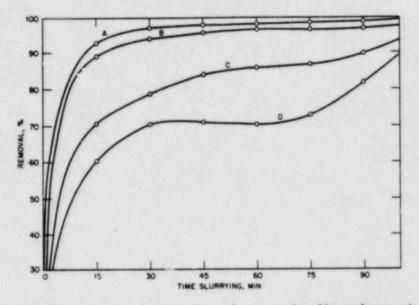
Friend ²⁵ carried out a more extended study of the efficiency of ionexchange procedures for the removal of I¹³¹, Sr⁸⁹, and mixtures of the two radionuclides. He reported a decontamination factor (influent activity/effluent activity) in excess of 10² (greater than 99% removal) for carrier-free I¹³¹ with IRA-400 resin (OH⁻) or a combination of IR-120(Na⁺ or H⁺) and IRA-400(OH⁻); a decontamination factor in excess of 10³ (greater than 99.9% removal) for carrier-free Sr⁸⁹ with IR-120(H⁺) or a combination of IR-120(H⁺ or Na⁺) and IRA-400(OH⁻); and a decontamination factor in excess of 10³ (greater than 99.9% removal) for a carrier-free mixture of Sr⁸⁹ and I¹³¹ with IR-120(H⁺ or Na⁺) and IRA-400(OH⁻).

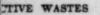
Several parameters having an influence on the removal of hardness and more particularly the removal of Sr^{39} by Amberlite IR-120(H⁺) resin were studied.²⁶ It was concluded that increased flow rates decreased resin capacity and slightly decreased the efficiency of the column for removal of Sr^{39} , that resin breakthrough capacity became greater with increasing length of column, that hardness capacity and radiostrontium removal increased with decreasing resin particle size, that increased feed-water temperature slightly increased removal of Sr^{39} and resulted in a sharper breakthrough of hardness, and that, within the pH range of 2 to 10, the Sr^{39} removal efficiency and hardness capacity increased slightly with increasing pH.

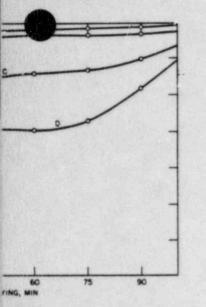
(b) Sturry Studies. Lacy and Lindsten²⁷ studied the removal of specific radionuclides from tap water by slurrying with ion-exchange resin. Typical results are shown in Figs. 8.3 and 8.4. Increased removal occurs with an increase in slurrying time and concentration of resin, as shown in Fig. 8.3. Considerable difference in rates of removal for the various radionuclides is indicated in Fig. 8.4, but a concentration of 2700 mg of MB-3 resin per liter slurried for 90 min removed over 98% of all radionuclides tested. The removal of radio-

174

LOW-LEVEL RADIOACTIVE WASTES




Fig. 8.3—Effect of increased contact time and concentration of ion-exchange resin on the removal of FMP-2. A, 2700 mg/liter; B, 1800 mg/liter; C, 900 mg/liter; and D, 450 mg/liter.


active contaminants did not increase proportionally with increasing resin dosage.27

8-1.6 Solids-contact Softening

To confirm his laboratory findings on the removal of Sr⁸⁹ by watersoftening procedures, Hoyt ¹³ carried out studies on a pilot-plant scale by employing a 1000 gal/day Spaulding type precipitator unit. In this unit the flow of water is downward through a cone, where the added chemicals are mixed, and then upward around the outside of the cone to an outlet weir circling the tank (see Fig. 8.5). As the water containing the chemicals passes under the cone and upward toward the effluent weir, the velocity decreases due to the increased cross-sectional area through which the liquid moves. As a result the upward velocity of the particulates is balanced by the pull of gravity, and the particles remain in equilibrium forming a layer of freely suspended particulates through which the liquid flowing upward must pass. This layer provides increased contact with particulates and some filtration and thus effects a greater degree of removal.

The results of the pilot-plant investigation are given in Table 8.13 along with the results of the laboratory jar-test studies. Higher removals were obtained in the pilot plant than in the laboratory tests with similar levels of chemical dosage. The removal of all suspended

id concentration of ion-exchange resin ter; B, 1800 mg/liter; C, 900 mg/liter;

proportionally with increasing

in the removal of Srss by waterudies on a pilot-plant 1 01 g type precipitator unit. paulo ward through a cone, where the upward around the outside of he tank (see Fig. 8.5). As the es under the cone and upward decreases due to the increased e liquid moves. As a result the balanced by the pull of gravity, ium forming a layer of freely ch the liquid flowing upward eased contact with particulates greater degree of removal.

tigation are given in Table 8.13 atory jar-test studies. Higher lant than in the laboratory tests

The removal of all suspended

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 175

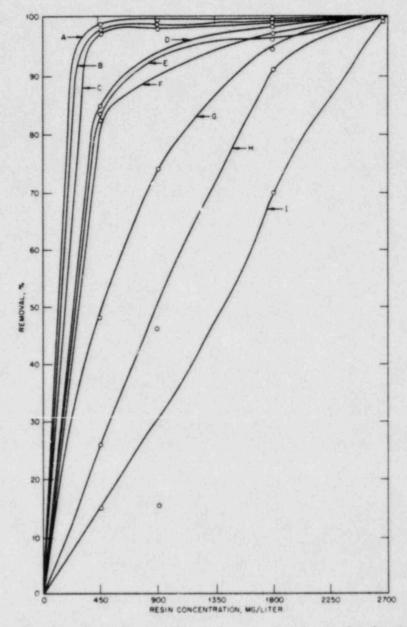
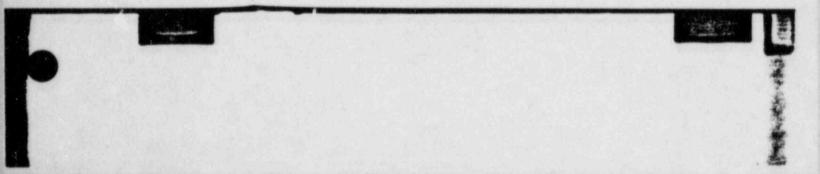



Fig. 8.4—Decontamination of radioactively contaminated water by slurrying with ion-exchange resin MB-3 (90-min contact time). A, Ta¹²²; B, Ce¹⁴⁴-Pr¹⁴⁴; C, Zr⁴²-Nb⁴⁵; D, Ba¹⁴²-La¹⁴⁰; E, I¹³¹; F, FPM-2; G, P⁴²; H, Cd¹¹³; and I, Cs¹³⁷-Ba¹³⁷.

matter from the precipitation effluent (by centrifugation or sand filtration) increased the removals of hardness and activity to 87 and 96%, respectively, when 50 mg of excess lime and soda ash per liter were added.

8-1.7 Repeated-precipitation Process

Many conventional water-treatment plants with separate mixing, coagulating, and settling basins can be modified readily to utilize the repeated-precipitation process proposed by McCauley and Eliassen.²² Suggested flow diagrams for the repeated-precipitation process (either the straight-line flow method or the upflow reaction or contact basins) are reproduced in Figs. 8.6 and 8.7.

Modifications required for the successful operation of each of these units are:

1. For the plant in part (a) of Fig. 8.6, a change in flow pattern from parallel to series operation of the upflow units should be made, and small quantities of $Ca(OH)_2$ or $CaCl_2$ should be added to the plant flow emerging from the primary upflow unit.

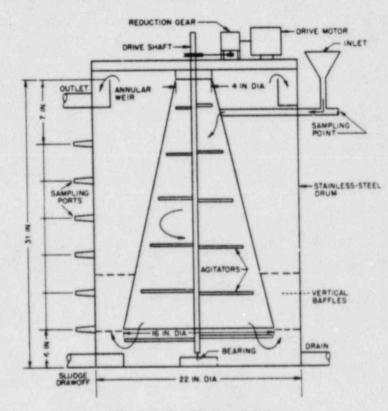
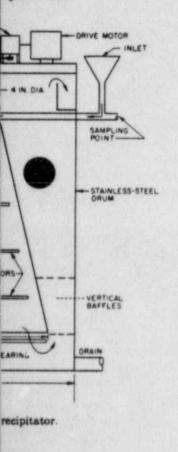


Fig. 8.5-Spaulding precipitator.

1 1 8 - 29

1. 2. 2.


TIVE WASTES

ard bud activity to 87 and ess hand soda ash per liter

t plants with separate mixing, e modified readily to utilize the d by McCauley and Eliassen.²² ed-precipitation process (either flow reaction or contact basins)

ssful operation of each of these

8.6, a change in flow pattern e upflow units should be made, CaCl₂ should be added to the upflow unit.

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 177

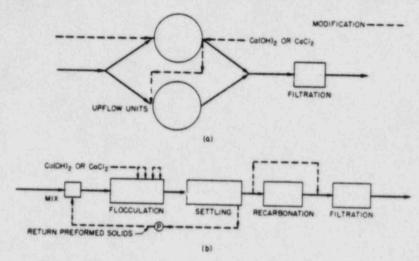
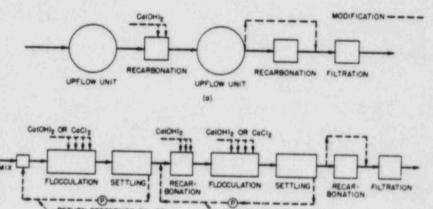



Fig. 8.6-Representative flow diagrams for lime-soda softening plants.

- RETURN PREFORMED SOLIDS

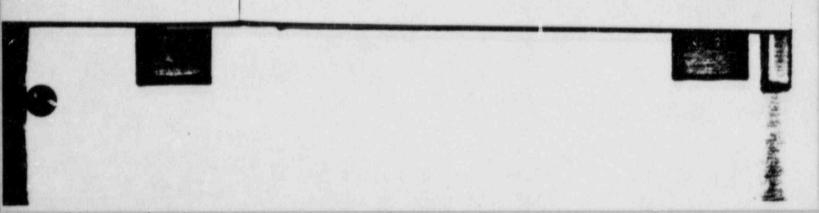

Fig. 8.7-Representative flow diagram for excess-lime softening plants.

TABLE 8.13-REMOVAL OF STRONTIUM: PILOT-PLANT AND JAR-TEST RESULTS

	Remo	ity, %	Removal of hard- ness, %		
Treatment	Jar test	Spaulding precipitator	Jar test	Spaulding precipitator	
Required doses Plus 50 mg/liter excess* Plus 100 mg/liter excess*	75. 9 80. 1	79. 5–86. 0 86. 8	52. 5 56. 2 67. 3	59. 1-68. 1 76. 0 85. 5	

*Lime and soda-ash excess.

692-623 Q - 64 - 13

2. For the plant in part (b) of Fig. 8.6, preformed solids should be recirculated from the settling tank to the mixing basin, and small quantities of $Ca(OH)_2$ or $CaCl_2$ should be added to the flocculation basin.

3. For the plant in part (a) of Fig. 8.7, preformed solids should be added to the recarbonation basin, the CO_2 feed should be adjusted to reduce pH levels to the desired values in the tank, small quantities of lime water should be added, and provision should be made for agitation in the basin to keep preformed solids from settling. Compressed air should prove satisfactory for mixing plant flow with the added lime water and for preventing the preformed solids from settling.

4. For the plant in part (b) of Fig. 8.7, preformed solids should be recirculated from the settling tanks to the heads of the flocculation basins, and small quantities of $Ca(OH)_2$ or $CaCl_2$ should be added to these basins. In addition, if the recarbonation basin is to be used for strontium removal, all modifications required for the plant illustrated in part (a) of Fig. 8.7 must be made.

Lacy ²⁸ evaluated the efficiency of a full-scale Spaulding upflow precipitator-clarifier (Erdlator Solids-contact Clarifier, Fig. 8.8). His results, which show removals for various radionuclides and mixtures of radionuclides ranging from 46 to 93%, are summarized in Table 8.14.

8-1.8 Ion-exchange Systems

Commercial size (1.8 cu ft) ion-exchange systems were evaluated by Lacy ²⁸ at ORNL; his results are summarized in Table 8.15. For the mixed wastes studied, cation-exchange resins on the Na⁺ cycle were less effective than those on the H⁺ cycle (67 to 70% as compared to 82 to 89% removal, respectively). However, the volume of liquid fed through the units was much greater in the case of the resins on the Na⁺ cycle than for the resins on the H⁺ cycle. Where a mixedbed resin was used, a removal of 98 to 99% was indicated, but the throughput was reduced to 1500 gal.

8-1.9 Small-scale Commerical Units

Two types of commercial water-purification units were evaluated with respect to their effectiveness in removing radioactive components from a solution of fission products. In all, 12 units were tested, each of which contained 36 g of a mixture of diatomaceous earth and activated carbon, 22 g of Nalcite SAR resin, and 22 g of Nalcite HCR resin; 9 of the 12 units contained, in addition, 42 g of powdered iron. The solution used in these studies had an activity of approximately 10,000 counts/(min)(ml) (10% geometry) and had the following percentage composition: strontium-yttrium, 27.6; cerium-prase-

and the second

ACTIVE WASTES

g. 8.6 preformed solids should be to the mixing basin, and small ould be added to the flocculation

ig. 8.7, preformed solids should be the CO₇ feed should be adjusted alues in the tank, small quantities provision should be made for agirmed solids from settling. Comry for mixing plant flow with the nting the preformed solids from

ig. 8.7, preformed solids should be s to the heads of the flocculation (OH)₂ or CaCl₂ should be added recarbonation basin is to be used tions required for the plant illusve made.

of a full-scale Spaulding upflow lids-contact Clarifier, Fig. 8.8). s for various radionuclides and rom 46 to 93%, are summarized

eater xchang summarized in Table 8.15. (XD) 1 the H⁺ cycle. H+ axchange systems were evaluated to 99% was indicated, but the H in ever, the volume of liquid the case of the resins on resins on the Na⁺ cycle (67 to 70% as compared Where a mixed-For

purification units were evaluated removing radioactive components In all, 12 units were tested, each ture of diatomaceous earth and R resin, and 22 g of Nalcite HCR addition, 42 g of powdered iron. add an activity of approximately metry) and had the following 1-yttrium, 27.6; cerium-prase-

TABLE 8.14—DECONTAMINATION OF RADIOACTIVE WATER WITH ERDLATOR SOLIDS-CONTACT CLARIFIER (30 GAL/MIN)***

		-	Raw water and activity				Treatm	ent			Effu	ent			
Run	Contam- inant†	pH	Alkall, mg/ster	Tur- bidity, mg/liter	Activity, counts/ (min)(ml)t	FeCla, mg/liter	CaCO ₂ , mg/liter	Ca(OCl)s, mg/liter	pli	Alkali, mg/liter	Tur- bidity, mg/liter	Residual chlorine, mg/liter	Activity, counts/ (min)(mi);	Length of run, hr	Amount removed,
	None	7.9	123	43		37.4	58.2	8.9	7.9	130					
2	None	7.2	134	47		24.9	24.1	8.5	7.5	133	1.6	1.9		10	
3	FPM-I	7.7	113	95	4900	29.1	24.1	7.75			2.0	1.8		7	
4	Pn	7.8	102	46	2465	45.7	58.2		7.6	113	1.3	1.7	800	10	83.7
5	(Jaan	8.0	123	72	1850	54.0		5.25	7.6	69	2.4	1.5	160	10	93.3
	FPM-I	7.8	121	70			24.1	5.25	7.6	79	1.2	1.7	990		46.5
2	FPM-1	7.8	115		2010	58.1	24.1	5.3	7.5	96	3.0	1.4	787		60.8
	FPM-4				3120	47.7	24.1	6.2	7.6	77	2.0	2.0	1130	8	63.8
2		7.8	98	15	3550	29.5	43.7	4.0	7.6	94	2.3	1.0	1760	21	50.4
	FPM-4	8.0	97	25	220	33.2	24.1	2.0	7.3	98	1.9	0.6	95		
10	FPM-3	7.9	100	35	1746	23.3	36.4	3.1	7.5	98	1.0	1.1	530		56.8
	FPM-3	2.9	19	48	3470	24.9	24.1	1.0	7.6	105	0.8	1.2	1190	21	69.5 65.7

*Source of water, White Oak Creek; output. 30 gal/min; Graham transmission setting, 90 rpm; Neusoi water pressure, 20 psi; congulant, FeCis, CaCOs, and HTH; congulant charge at start, 100 g of FeCh and 950 g of CaCOs.

the footnote to Table 8.4 for a description of the contaminants

[No correction has been made for counter efficiency (approximately 10%).

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 179

.......

- 41

					Influen	ıt			
Run No.	Resin	Cycle	Contam- inant†	Activity, counts/ (min)(ml)	pH	Hardness, mg CaCO ₂ / liter	Cumulative break- through, gal;	Rate, gal/ (min)(sq ft)	Removal,
1	Permutit Q	Na*	FPM-4	5690	8.0	108	6990	10	70
2	Permutit Q	H*	FPM-5	6470	7.6	106	3500	10	89
3	Amberlite IR-120	Na*	FPM-5	6630	7.8	108	6600	10	67
4	Amberlite IR-120	H*	FPM-5	7590	7.6	116	3700	10	82
5	Amberlite MB-3	(H+-OH-)	FPM-5	5580	7.8	112	1500	10	98-99

TABLE 8.15-ION-EXCHANGE REMOVAL OF RADIOACTIVITY FROM WATER CONTAINING MIXED FISSION PRODUCTS***

"Units 1.8 cu ft.

(FPM-4 by composition of its radioactivity was 72.5% cations and 27.5% anions; FPM-5 by composition of its radioactivity was 90.5% ontions and 9.5% anions. Cumulative breakthrough in the sense used is cumulative volume to degree of hardness breakthrough. In runs 1 through 3 and in run 5, breakthrough was determined when efficient hardness exceeded 2% of the influent, and in run 4, when it exceeded 5%.

ACTIVE WASTES

200 8600 3700 1500 116 Na* H* (H+-OH-) SAT REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 181

Fig. 8.8-Side view of Erdlator Solids-contact Clarifier, 30 gal/min.

odymium, 17.4; ruthenium-rhodium, 3.9; promethium, 22.1; samarium, 1.4; cesium, 27.2; and other radionuclides, 0.4. The results of the 12 runs are summarized in Table 8.16. It can be noted that the percentages of removal were quite variable even under similar test conditions. When tap water was used as a diluent, the highest removals observed were 98%. With distilled water initial removals of 99% were obtained.

8-2 NONCONVENTIONAL PROCESSES

Several methods for the removal of radioactive constituents from water which differ somewhat from the conventional processes just discussed have been studied. These nonconventional processes include phosphate coagulation, electrodialysis with permselective membranes, the addition of metallic dusts, and the addition of clay materials. Only those methods that can be utilized in conjunction with conventional water-treatment plants are described here; others are discussed in subsequent chapters (see Chaps. 10 through 12).

. Linkere

10

16 d

.

. -----

.

Same

* - - +

.

.

	Influent activity.	Rem	oval fo s of the	r vario roughp	us vol- ut, %	40 liters					
Series	counts/ (min)(ml)	20 liters	40 liters	60 liters	80 liters	through- put, %	Flow rate*	pH of influen	pH range of t effluent	Presence of visible iron floc	Remarks
B	10, 970	38	39	39	54	• 40	0.28 liter/min	7.8	8.9-10.0	None	Distilled water flushed through unit for first 20 liters at 3.78
	12, 260	95	92	77	60	94.8	20 liters at 3.78 liters/ min, 2 liters at 0.014 liter/min, 54 liters at 0.47 liter/min	7.7	7. 3–7. 7	Much	liters/min Spiked solution flushed through units for initial 5-min period at
C-1	11, 540	98	95	90	84	98.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6.8-7.6	Much	3.78 liters/min Spiked solution flushed through units for initial 5-min period at
C-2	9, 100	94	88	82		93. 0	20 liters at 3.78 liters/ min, remsinder at 0.47 liter/min	7.4	7.0-7.6	Much	3.78 liters/min Spiked solution flushed through units for initial 5-min period at
C~3	9, 100	87	76			85.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6. 5-7. 1	Much	3.78 liters/min Spiked solution flushed through units for initial

TABLE S.16-REMOVAL OF RADIOACTIVITY BY SMALL-SCALE COMMER-

C-2	9, 100	94									5-min period at
			88	82	9	3. 0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	7. 0-7. 6	Much	3.78 liters/min Spiked solution flushed through units for initial
C-3	9, 100	87	76		8	15.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6. 5-7. 1	Much	5-min period at 3.78 liters/min Spiked solution flushed through units for initial

D-1	9, 100	75	51								5-min period at 3.78 liters/min
						36.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6.0-7.2	None ,	Unit contained no powdered iron
D-2	9, 100	84	49			76.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6. 0-7. 2	None	Unit contained no powdered iron
D-3	5, 380	84	48	43		75. 0	20 liters at 5.78 liters/ min, remainder at 0.47 liter/min	7.4	6. 2-7. 1	None	Unit contained no powdered iron
E-1	10, 380	54	42			58.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	10.0	8. 2-9. 4	Little	Influent pretreated by alum coagula- tion and sand
E-2	10, 380	62	47			64.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	10. 0	7. 6-8. 6	Little	filtration Influent pretreated by alum coagula- tion and sand
E-3	10, 380	54	38			56.0	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	7.4	6. 2-7. 4	Little	filtration Influent pretreated by alum coagula- tion and sand
F	1, 790	99	99	99	43	98. 8	20 liters at 3.78 liters/ min, remainder at 0.47 liter/min	4.4	4. 9-6. 0	Dissolved iron present	filtration Radioactive material diluted with distilled water

*Manufacturer's operating instructions are in terms of gallons and of pluts per minute: 3.785 litera/min=1 gal/min; 0.473 liter/min=1 pint/min.

TIVE WASTES

APAR LOBAL MILLE

8-2.1 Phosphate Coagulation

Since laboratory findings have indicated that the usual coagulation procedures employing alum or iron salts with lime have not been too satisfactory in the removal of radioactive contaminants, other systems have been studied. Lauderdale ²⁹ investigated phosphate coagulation for the removal of radioactivity since many polyvalent cations form relatively insoluble phosphate compounds and since phosphate floc can be formed in solution at high pH. He studied the removal of individual radionuclides in distilled water by adding either potassium dihydrogen phosphate or trisodium phosphate and calcium hydroxide. Maximum removals are shown in Table 8.17.

TABLE	8.17-REMOVAL	OF	RADIONUCLIDES	BY	PHOSPHATE
		COA	GULATION*		

Nuclide	Coagulant	Coagulant dose, mg/liter	Removal %
Cein	KH,PO,	200	99. 8
	Na,PO,	120	99. 9
Sr#	KH,PO,	100	81. 3
	Na,PO,	240	97.8
Yn	KH,PO,	100	99. 9
Shim	KH,PO,	100	66.1
	Na ₂ PO ₄	120	67.4
Zns	KH,PO,	50	99.6
WIM	KH,PO,	200	10.7
Zr**	KH,PO,	100	99.5
Nbas	KH,PO,	100	99.2

*From R. A. Lauderdale, Jr., USAEC Report ORNL-982, Cak Ridge National Laboratory, Jan. 23, 1951.

Removals of over 99% of the Ce¹⁴⁴, Zn⁵⁵, Y⁹¹, Nb³⁵, and Zr³⁵ were obtained. Although the conditions of precipitation had little effect on the removal of these nuclides, marked differences occurred in the removal of Sb¹³⁴ and Sr³⁹ when the pH and coagulant dosages were varied. As a result, Sr³⁹ was selected for special study. It was found that at a pH of 11.3, with a phosphate to calcium ratio greater than 2.2 to 1 (corresponding to a 46% excess of phosphate), a high removal of Sr³⁹ was effected; above a pH of 11.3 the increase in removal was negligible (Fig. 8.9). These data indicate that, if an excess of phosphate were used at a pH of 11.3 or above, maximum hazard reduction could be obtained in the treatment of fission-product mixtures in which radiostrontium is one of the more hazardous constituents. Consequently tests incorporating these conditions were carried out with a fission-product mixture containing the following percentage composition of radionuclides: trivalent rare earths, 43.5;

ACTIVE WASTES

icate at the usual coagulation alts with lime have not been too tive contaminants, other systems vestigated phosphate coagulation e many polyvalent cations form bounds and since phosphate floc H. He studied the removal of vater by adding either potassium hosphate and calcium hydroxide. ble 8.17.

DNUCLIDES BY PHOSPHATE

loagulant dose, mg/liter	Removal %
200	99. 8
120	99. 9
100	81. 3
240	97.8
100	99. 9
100	66.1
120	67. 4
50	99.6
200	10.7
100	99. 5
100	99. 2
232, O	tional Laboratory

**, Zn⁴⁵, Y⁴¹, Nb⁴⁵, and Zr⁴⁵ were of precipitation had little effect rked differences occurred in the oH and coagulant dosages were ted for special study. It was iosphate to calcium ratio greater % excess of phosphate), a high opH of 11.3 the increase in ree data indicate that, if an excess 1.3 or above, maximum hazard reatment of fission-product mixof the more hazardous constitorating these conditions were ixture containing the following des: trivalent rare earths, 43.5;

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 185

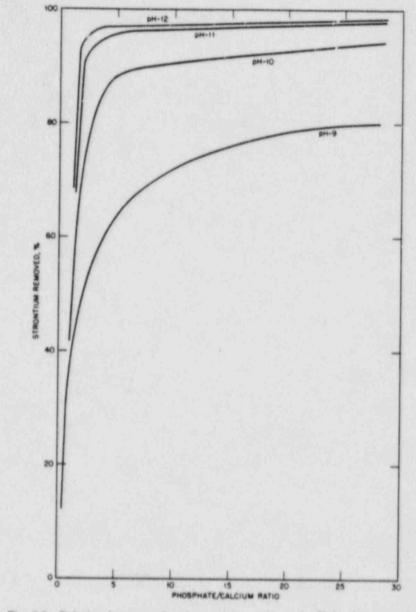


Fig. 8.9-Relation between phosphate-calcium ratio and pH in the removal of strontium.

cerium, 27.0; strontium, 17.4; barium, 5.1; ruthenium, 2.9; cesium, 1.1; and others, 3.0. This mixture was diluted with tap water, and the pH was raised to 11.5 to 12.0 with NaOH. Removals in excess

of 99% (99.2 to 99.6%) were obtained through the addition of 100 m of Na,PO, per liter and 100 mg of clay per liter or through the addition of 100 mg of Na₂PO, per liter and 100 mg of Ca(OH)₂ per liter. I should be emphasized that efficiencies of removal depend on the composition of the waste.

Other phosphate-coagulation studies have been carried out 30 using scandium, strontium, tungsten, and yttrium radionuclides. These were diluted with tap water, 100 mg of local clay per liter was added, and the initial pH was adjusted to 11.5 by the addition of NaOH. Some studies were carried out in which the lime dosage was kept at 51 mg/liter and the Na₃PO₄ dosages to 250 mg/liter. The maximum removals in percent were Sr**, 95.5; W185, 11.0; Y*1, 99.5; and Sc*6, 99.6; these essentially confirm Lauderdale's findings.28 With Set6, increasing the pH to 11.5 alone effected removal of 99.2% after settling.

In commenting on the use of phosphate coagulation in municipal water-treatment practice, Nerbitt, Kaufman, McCauley, and Eliassen 31 indicated that to treat Ohio River water with the required 84 mg of PO₇³ per liter would cost \$147 per million gal (at the average 1960 market price of tribasic sodium phosphate, \$5.25 per 100-lb bag).

8-2.2 Metallic Dusts

Lacy 32 studied the removal of specif. Pluble radioactive contaminants by slurrying various metal dust, in the solution. In these laboratory experiments the radionuclides listed in Table 8.18 were

TABLE 8.18-REMOVAL OF RADIOACTIVE CONTAMINANTS BY

Contaminant	Stock	Initial activity counts/		Re	moval, %	
	pH	(min) (ml)	Iron‡	Zinc	Copper	Aluminum
Ruise_Rhise Y*1 Zr**_Nb** Paz Ji11 Cel*1.14*_Pr1** Bal*0 Co** Cs** FPM-5** FPM-6††	8.0-8.2 7.9-8.0 7.2-8.3 7.8-8.4 6.5-8.2 7.9-8.1 7.9-8.2 8.0-8.2 8.0 2.0-7.2 7.2-8.0	1, 975-3, 950 1, 610-3, 230 1, 210-4, 470 128-12, 000 4, 288-6, 689 3, 915-4, 491 4, 644-10, 205 1, 571-4, 792 13, 085 2, 890-4, 220 2, 730-10, 375	99. 6 98. 0 99. 1 99. 8 37. 2 99. 9 94. 8 92. 2§¶ 8. 6 55. 5 85. 8	98. 4 98. 0 97. 9 98. 1 45. 7 99. 9 74. 5 39. 6 76. 6	93. 7 99. 1 42. 2 99. 5 65. 7 47. 8 49. 3 92. 1	92.8 99.8 84.2 23.2 99.8 73.8 30.25 8.2 89.4

*From W. J. Lacy, J. Am. Water Works Assoc., 44: 824 (1952).

Metal dust, 1000 mg/liter, 90-min contact time, filtered sample counted. firon samples were centrifuged before they were counted.

Metal dust, 500 mg/liter.

Sixty-minute contact.

** FPM-5, mixed fission-product waste containing mainly Cau-Bait and Ruis-Rhise. HFPM-6, iodine dissolver solution aged 20 days.

OACTIVE WASTES

hed the addition of 100 mg ay poller or through the addition 100 mg of Ca(OH)₂ per liter. It noises of removal depend on the

dies have been carried out ³⁰ using ad yttrium radionuclides. These g of local clay per liter was added, o 11.5 by the addition of NaOH. thich the lime dosage was kept at s to 250 mg/liter. The maximum 5; W¹⁸⁵, 11.0; Y⁹¹, 99.5; and Sc⁴⁶, uderdale's findings.²⁹ With Sc⁴⁶, ed remcval of 99.2% after settling. osphate coagulation in municipal Kaufman, McCauley, and Eliasver water with the required 84 mg or million gal (at the average 1960 sphate, \$5.25 per 100-lb bag).

cific soluble radioactive contamidusts in the solution. In these iclides listed in Table 8.18 were

ACTIVE CONTAMINANTS BY DUSTS* †

	Re	moval, %	
Iron	Zine	Copper	Aluminum
99. 6	98.4	93. 7	92.8
98.0	98.0		
99.1	97. 9	99.1	99.8
99.8	98.1		84. 2
37. 2	45.7	42.2	23. 2
99. 9	99. 9	99.5	99.8
94.8	74.5	65.7	73.8
92. 259		47.8	30. 25
8.6			
55. 5	39.6	49.3	8.2
85. 8	76.6	92.1	89.4

4 (1952). d sample counted.

ed.

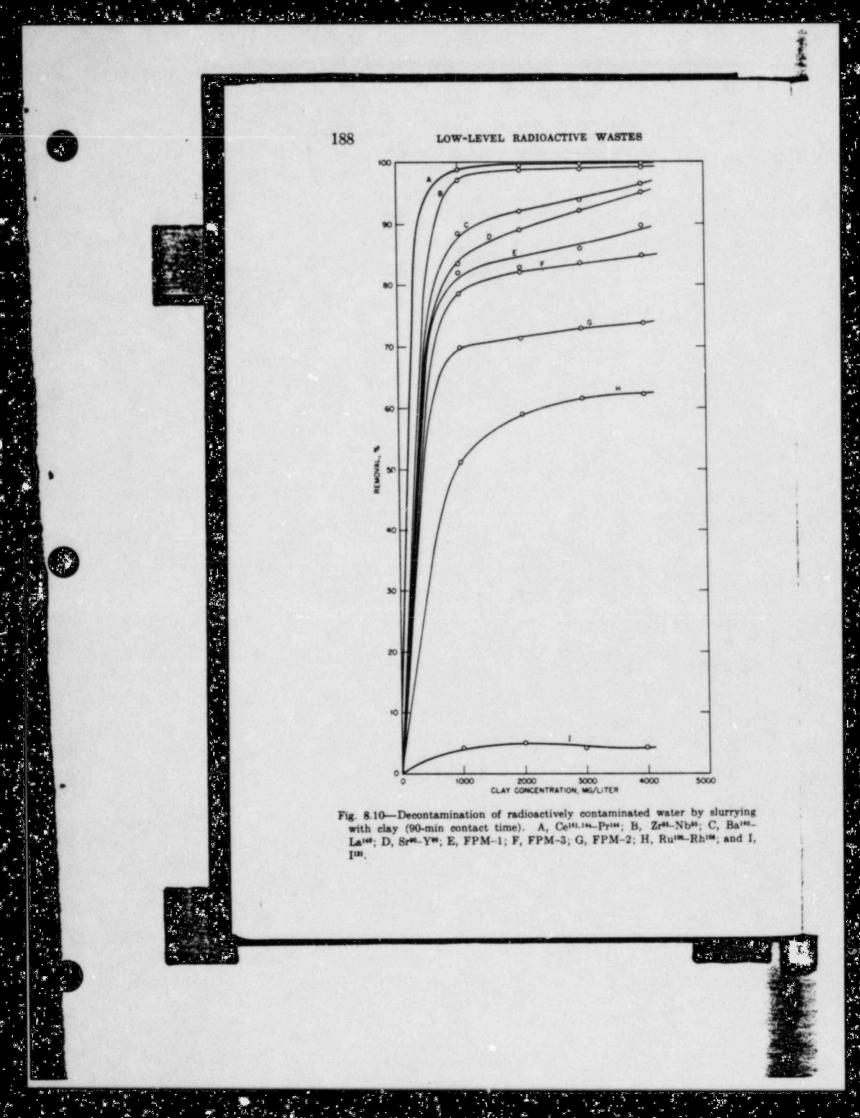
nly Csin-Bain and Rum-Rhim.

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 187

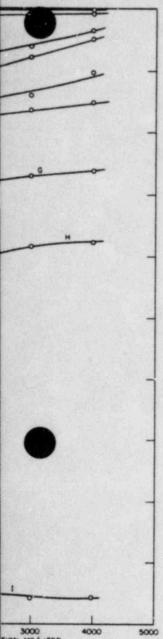
added to Oak Ridge tap water. Various amounts of powdered aluminum, copper, iron, and zinc, corresponding to 100, 500, 1000, and 2000 mg of powdered metal per liter, were placed in beakers to which 500 ml of the radioactive solutions were added. After stirring periods of 15, 30, 45, 60, 75, and 90 min, samples of the supernatant were filtered and counted. In general, it was found that removal increment with increased contact time and dust concentrations.

Removals obtained with 1000 mg of the metal dusts per liter after a 90-min contact time are given in Table 8.18. Under the conditions reported, removals with iron, with the exceptions of the fission-product mixtures, iodine, and cesium, were in excess of 90% for the radionuclides studied.

Studies by Lauderdale,³³ Eliassen,³⁴ and Mead,³⁵ utilizing metallic dusts for the removal of specific radionuclides, are described in Chap. 10.


8-2.3 Clay Treath at

The effect of small additions of clay (100 mg/liter) on the removal of radionuclides by coagulation and sedimentation is shown in Table 8.2. Additional data have been reported on the use of this method for increasing the removal of radioactivity by conventional water-treatment methods.^{8, 39-38} Some results are given in Table 8.19. Although the addition of clay materially improves the removal of radioactivity, its use creates the problem of handling large volumes of clay both initially and as a mass of contaminated material. Furthermore, if it was used in combination with chemical coagulation, still larger volumes of contaminated sludge would have to be disposed of.


TABLE 8.19-REMOVAL OF RADIONUCLIDES BY SLURRYING WITH LOCAL CLAY

	I	Removal, %	
Radionuclide	100 mg/ liter*	750 mg/ liter	5000 mg liter
Ba140_La140	41	58	85
Cdus	3	30	64
Cein-Prin	70-80	86	99+
Cs137-Ba137m	38	87	98.0
Se44	53	91.7	96. 9
Sr#P	2-12	14-22	49-52
W 185	0	4	49
Yu	22-45	56-70	93. 6
Zres_Nbes	93. 5	99.0	98.0
Paz		00.0	78-82
[131			
Co*			9-20 85-99+

*Local ORNL clay added to produce turbidity.

ACTIVE WASTES

TION, MG/LITER

ely contaminated water by slurrying 2e^{141,144}-Pr¹⁴⁴; B, Zr⁸⁴-Nb⁸⁵; C, Ba¹⁴⁰-3; G, FPM-2; H, Ru¹⁰⁶-Rh¹⁰⁶; and I, REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 189

Results of Lacy's studies ³⁸ are summarized in Fig. 8.10, and Tables 8.20 and 8.21. Variable removal efficiencies are indicated in Fig. 8.10, with the fission-product mixtures, Ru¹⁰⁸-Rh¹⁰⁶, and I¹³¹ showing the lowest removals. Although removals increased with increases in clay concentration, the maximum rates of uptake occurred in the added clay increment 0 to 1000 mg/liter. Above this concentration additional removals took place; these higher concentrations, however, were wasteful of clay, and the benefit derived from the added clay was nullified by the problems associated with handling increased amounts of contaminated clay sludges. As shown by the data in Table 8.20, an increase in pH (from 3 to 11) is associated with an increase in removal efficiency. An increase in calcium concentration from 20 to 200 mg/liter had little, if any, effect on the removal of mixed-fissionproduct activity by clay, as shown in Table 8.21.

TABLE 8.20-EFFECT OF pH ON REMOVAL OF MIXED FISSION PRODUCTS BY CLAY SLURRY*

	Rem	oval, %,	following	indicated	i slurry ti	imes	
pH	15 min	30 min	45 min	60 min	75 min	90 min	90 min
	In	itial activ	vity, 2730) counts/(min)(ml)	:	
3	49. 2	50. 9	50.1	51.6	51.4	52.9	55.3
5	64.6	66. 6	72.6	74.0	75. 2	76.2	75.9
7	64.0	66. 7	72.9	74.9	78.2	78.7	78.6
9	64. 2	67.5	73. 5	76.3	79.5	80. 4	80. 5
11	80. 3	80.1	81. 1	81. 7	82. 2	82.6	83. 4
	In	itial activ	rity, 3400	counts/(min)(ml)	:	
4	49.6	51. 3	52.3	52.9	54.9	55. 2	54.0
6	66. 4	68.5	74.3	76.1	75.9	76.0	76.2
7	65. 5	60. 0	75.7	76.7	78.7	78.8	78.5
8	70.6	74.1	79.1	79.2	79.5	80.8	81.0
10	76. F	77.1	79.4	79.1	78.8	70.2	78.9

*Radioactive contaminant FPM-3; concentration of clay, 1000 mg/liter. (See Table 8.4 for description of FPM-3.)

tAll removal figures, %, are based on filtered samples except this column, which is for centrifuged samples. No correction has been made for counter efficiency (approximately 10%).

8-2.4 Diatomaceous Earth

Diatomaceous-earth filters have been used for the removal of radioactivity. Studies with P³² described by Baumann, Zobel, and Babbitt ³⁹ indicated that diatomaceous earth alone is ineffective for the removal of radiophosphorus, particularly in the presence of increased concentrations of stable phosphorus. Removals varied greatly, the highest, as indicated in Table 8.22, being obtained with activated carbon and a proprietary diatomite.

		Removal,	%, follo	wing indi	cated slur	ry times	
pH	15 min	30 min	45 min	60 min	75 min	90 min	90 min†
itial act	ivity, 359	0 counts/	(min) (m	l),‡ Ca ad	ided as C	a(OH),	1999
7. 20	71. 9	72.8	74.9	75. 5	76.0	77 2	76.6
7. 35	72.8	73.9	78.0	78.2			79.2
7.45	72.6	75. 2	77.7	78.0		The second second second	78.5
7.70	72. 2	74.3	78.2	78.3			79.3
7.90	72.9	75. 0	78.1	78.5	78.4	78.8	79.1
Initial a	ctivity, 2	680 count	ts/(min)	(ml),‡ Ca	added as	CaCia	
7. 05	71. 3	71.9	75.0	74.1	74.7	75.2	75.3
7.15	71.0	73.1	75.3	1.11			75. 6
7.00	70.0	71.2	72.9		-		75. 4
7. 20	69. 7	72. 4	73. 5	73.7	74.4	75.0	75.0
	itial act 7. 20 7. 35 7. 45 7. 70 7. 90 Initial a 7. 05 7. 15 7. 00	pH 15 min itial activity, 359 7. 20 71. 9 7. 35 72. 8 7. 45 72. 6 7. 70 72. 2 7. 90 72. 9 Initial activity, 2 7. 05 7. 05 71. 3 7. 15 71. 0 7. 00 70. 0	pH 15 min 30 min itial activity, 3590 counts/ 7. 20 71. 9 72. 8 7. 35 72. 8 73. 9 7. 45 72. 6 75. 2 7. 70 72. 2 74. 3 7. 90 72. 9 75. 0 Initial activity, 2680 count 7. 05 71. 3 71. 9 7. 15 71. 0 73. 1 7. 00 70. 0 71. 2	pH 15 min 30 min 45 min itial activity, 3590 counts/(min) (min) 7. 20 71. 9 72. 8 74. 9 7. 35 72. 8 73. 9 78. 0 7. 45 72. 6 75. 2 77. 7 7. 70 72. 2 74. 3 78. 2 7. 90 72. 9 75. 0 78. 1 Initial activity, 2680 counts/(min) (min) 7. 05 71. 3 71. 9 75. 0 7. 15 71. 0 73. 1 75. 3 7. 00 70. 0 71. 2 72. 9	pH 15 min 30 min 45 min 60 min itial activity, 3590 counts/(min) (ml),‡ Ca activity, 3590 counts/(min) (ml),‡ Ca activity, 7. 20 71. 9 72. 8 74. 9 75. 5 7. 35 72. 8 73. 9 78. 0 78. 2 7. 45 72. 6 75. 2 77. 7 78. 0 7. 70 72. 2 74. 3 78. 2 78. 3 7. 90 72. 9 75. 0 78. 1 78. 5 Initial activity, 2680 counts/(min) (ml),‡ Ca 7. 05 71. 3 71. 9 75. 0 74. 1 7. 15 71. 0 73. 1 75. 3 73. 7 70. 0 70. 0 71. 2 72. 9 73. 2	pH 15 min 30 min 45 min 60 min 75 min itial activity, 3590 counts/(min) (ml),‡ Ca added as C 7. 20 71.9 72.8 74.9 75.5 76.0 7. 35 72.8 73.9 78.0 78.2 78.8 7. 45 72.6 75.2 77.7 78.0 78.6 7. 70 72.2 74.3 78.2 78.3 78.9 7.90 72.9 75.0 78.1 78.5 78.4 Initial activity, 2680 counts/(min) (ml),‡ Ca added as 7.05 71.3 71.9 75.0 74.1 74.7 7.15 71.0 73.1 75.3 73.7 75.3 7.00 70.0 71.2 72.9 73.2 74.7	itial activity, 3590 counts/(min) (ml),‡ Ca added as $Ca(OH)_2$ 7. 2071. 972. 874. 975. 576. 077. 27. 3572. 873. 978. 078. 278. 879. 97. 4572. 675. 277. 778. 078. 678. 97. 7072. 274. 378. 278. 378. 979. 27. 9072. 975. 078. 178. 578. 478. 8Initial activity, 2680 counts/(min) (ml),‡ Ca added as CaCia7. 0571. 371. 975. 074. 174. 775. 27. 1571. 073. 175. 373. 775. 375. 87. 0070. 071. 272. 973. 274. 775. 2

TABLE 8.21-EFFECT OF CALCIUM-ION CONCENTRATION ON RE-MOVAL OF MIXED FISSION PRODUCTS BY CLAY SLURRY*

*Radioactive contaminant FPM-3; concentration of clay, 1000 mg/liter. (See Table 8.4 for description of FPM-3.)

tAll removal figures,%, are based on filtered samples except this column, which is for centrifuged samples. INo correction has been made for counter efficiency (approximately 10%).

Studies with a standard military diatomite filter were reported by the Engineer Research and Development Laboratories.⁴⁰ This unit has a capacity of 15 gal/min. The equipment treats 500 gal of water per batch. In these studies the contaminant was a three-year-old fission-product mixture that contained approximately 40% Ce¹⁴⁴-Pr¹⁴⁴, 20% Pm¹⁴⁷, 18% Sr⁸⁰-Y⁸⁰, 14% Cs¹³⁷-Ba^{137m}, 6% Ru¹⁰⁸-Rh¹⁰⁸, and 2% other radionuclides.

The contaminated water was pretreated with powdered iron, local-clay slurry, or by ferric chloride-limestone coagulation, and was then allowed to settle. The supernatant was coagulated with ferric chloride and calcium carbonate. After settling, the supernatant liquid was passed through a diatomite filter; the effluent contained the activity levels indicated in Table 8.23. These data show that diatomite filters do not materially aid removal of radioactive materials from solutions containing mixed fission products.

8-3 REMOVAL OF NUCLEAR-TEST DEBRIS (FALLOUT) FROM WATER

The removal of fission products from a natural environment poses problems that are quite different irom those encountered in the removal of reactor-produced or reactor-separated radionuclides from laboratory solutions. The debris from a nuclear detonation contains radioactivity in soluble form as well as in association with particu-

ACTIVE WASTES

ION NCENTRATION ON RE-ODU **BY CLAY SLURRY*** llowing indicated slurry times in 60 min 75 min 90 min 90 min† (ml), t Ca added as Ca(OH)2 9 75. 5 76.0 77.2 76. 6 0 78.2 78.8 79.9 79.2 78.6 78.9 78.5 7 78.0 79.3 2 78.3 78.9 79.2 1 78.5 78.4 78.8 79.1 n) (ml), t Ca added as CaCl, 0 74.1 74.7 75.2 75.3 75. 3 75.8 75. 6 3 73.7

9 73.2 74.7 75.2 75.4 5 73.7 74.4 75.0 75.0

slay, 1000 mg/liter. (See Table 8.4 for description

cept this column, which is for centrifuged samples pproximately 10% /.

diatomite filter were reported by ment Laboratories.⁴⁰ This unit quipment treats 500 gal of water ntaminant was a three-year-old ined approximately 40% Ce¹⁴⁴-% Cs¹³⁷-Ba¹³⁷m, 6% Ru¹⁰⁶-Rh¹⁰⁶,

retreated with powdered iron, -limestone coagulation, and was stant was coagulated with ferric After settling, the supernatant e filter; the effluent contained the 3. These data show that diatoemoval of radioactive materials on products.

ST DEBRIS (FALLOUT) FROM

om a natural environment poses om those encountered in the reor-separated radionuclides from m a nuclear detonation contains l as in association with particu-

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 191

TABLE 8.22-EFFECT OF DIATOMACEOUS-EARTH FILTERS ON THE REMOVAL OF RADIOACTIVE PHOSPHORUS FROM WATER **

l'est No.	Precoat medium	Filter apparatus and notes	Weight of coat, lb/sq ft	Rate, gal/(min) (sq ft)	Removal of radio- activity, %
1	JM535	Complete precoat; filter water recir- culated 15 min before sampling	1		12. 3
2	D4200		1		17.9
3	JM535	Buchner filter apparatus	1	0. 16	93. 0
4	Crystal Flo	Buchner filter apparatus	1	0.58	88. 4
5	JM535	Buchner filter apparatus	1	0. 58	52.4
6	D4200	Buchner filter apparatus	1	0. 39	72.4
7	Everpure*	Buchner filter apparatus	1	0. 29	100
88	JM535	Buchner filter apparatus	1	1. 20	52. 2
8b	JM535	Buchner filter apparatus	1	0.39	51. 7
8c	JM535	Buchner filter apparatus	1	0. 08	85. 6
8d	JM535	Buchner filter apparatus	1	0. 29	45. 8
9	Sparkler pad; gravity flow through filter	Pad contained silver		0. 80	69. 3
0	Sparkler pad; gravity flow through filter	Pad contained finely divided silver		0. 80	74. 5
1	Sparkler pad; gravity flow through filter	Pad contained activated carbon		0. 80	100
2	Everpure*	Commercial filter	0.15	0.70	97.3
2a	Everpure*	Uncontaminated water through cake of 12		No radios	to filter
3	Everpure*	i mole of stable phosphate added to stock solution	0. 15	0. 70	64. 6
4	Everpure*	1 mole of stable phosphate added to stock solution	0. 34	0. 70	81. 7

*Contains activated carbon.

	1				
	,		e	-	5
	٩	u	1		
		£			ŝ
	l		s	-	2

	IOW-LEVEL	
MULTINUTINE	RATSTO ACTIVE	
MADIES	TT A COMP O	

TABLE 8.23-EVALUATION OF DIATOMITE FILTER SET NO. 2

	is pi	Initial condi	tions	Tn	eatment	Final conditions				
Run No.	pН	Alkalinity, mg/liter	Activity, counts/ (min)(ml)	Pretreatment*	Coagulation and filtration	pH	Alkalinity, mg/liter	Activity,† counts/ (min)(ml)	Activity removed,	
1	7.6	80	2780	335g of powdered iron	335g of FeCl ₂ , 450g of CaCO ₃	5. 6	15	1079	60	
2	7.4	82	2781	1890g of powdered clay	335g of FeCl ₂ , 900g of CaCO ₂	6. 2	32	810	71	
3	7.8	81	2722	First coagulation: 335g of FeCl ₃ and 900g of CaCO ₃	Second coagulation: 335g of FeCl, and 1350g of CaCO,	5. 7	21	1060	61	

*Pretreatment with powdered iron removed 55% of the activity; pretreatment with powdered clay removed 60% of the activity; pretreatment by congulation removed 58% of the activity. †Uncorrected for geometry and coincidence.

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 193

late matter. This latter form cannot be investigated easily in the laboratory with simulated waters; it is necessary to collect rainfall and stream samples to differentiate between the amounts of radioactivity associated with the suspended solids and that in solution. Activity present in rainfall is a potential contaminant for any medium with which the rain comes in contact. As rain falls, it comes in contact with vegetation and soil, and some of the radioactive materials are deposited, adsorbed, or exchanged. Thus the amount of radioactivity contained in rainfall that reaches a stream is reduced markedly.

Estimates have been made of decontamination due to decay and natural agents by comparing rainfall activity levels with activity levels in Ohio streams. Decontamination factors (i.e., rainfall activity/stream activity) ranged from 6 to 90 in 1956,⁴¹ and showed a value as high as 170 in 1957.⁴² These data, plotted in Fig. 8.11, showed that the higher activity rainfalls occurring immediately after nuclear tests are easily decontaminated; i.e., since shorter-lived materials are involved, loss by decay is greater, and removal by natural agents is more marked. The easily removed materials are taken out by adsorption or ion exchange on soils, by deposition on vegetation and soil surfaces, and by filtration of particulate matter, whereas the hard-to-remove materials are carried with runoff into the streams.

Where streams used as water-supply sources receive this runoff containing the radioactive materials not removed by the natural agents referred to above, it is not surprising that water-treatment plants employing conventional processes are not particularly effective in the removal of these residual activities.

Studies of fallout in surface waters by Thomas and coworkers ⁴³ showed that fallout disappeared more rapidly than can be accounted for by nuclear decay alone. Thus other factors, such as sedimentation, surface adsorption, and biological uptake, were operative in removing radioactive materials. Activity levels of samples collected at various points in the Lawrence Water Treatment Plant and distribution system on Nov. 6, 1951, are reproduced in Table 8.24. These data show overall removals of 84%.

Further studies " showed that removal efficiencies for three fullscale water-filtration plants (Cambridge and Lawrence, Mass., and Rochester, N.Y.) were lower than those reported by Straub ¹⁶ for the removal of reactor-produced fission products. Some of the results, reproduced in Table 8.25, indicate overall removal of 13 to 75% by coagulation and filtration, whereas slow sand filtration without chemical coagulation was ineffective at times.

692-623 O - 64 - 14

CTIVE WASTES

of the activity;

60%

ved

clay

powdered

with

Dretr

activity:

of the

555%

removed

powdered

*Pretreatment with

the activity

iron ren coincide

†Uncorrected for geometry and

Second coagulation: 335

BUNA

CaCO,

FeCl, and 1350s

Sample	Activity, counts/ (min) (liter)	Removal,	Decontam- ination factor*
Raw water at intake Coagulated and settled water Rapid-sand-filter effluent Distribution system [†]	400 320 120 65	20 70 84	1.2 3.3 6.2

TABLE 8.24—ACTIVITY IN SAMPLES FROM THE LAWRENCE WATER TREATMENT PLANT, NOV. 6, 1951 4

*Decontamination factor is equal to raw-water activity/effluent activity. †Average of two samples at different locations.

194

Comparable removal of radioactivity from reservoirs in the Troy-Albany area was reported by Kilcawley and coworkers.⁴⁵ Reservoir radioactivity levels of 4 to 246 $\mu\mu$ c/liter were reduced to 6 to 24 $\mu\mu$ c/ liter in Troy tap water; the overall level was reduced an average of 61% by coagulation and filtration. Over the period May 18 to July 13, 1953, the Albany reservoir activity levels ranged from 5 to 84 $\mu\mu$ c/ liter, with an average of 36 $\mu\mu$ c/liter. In the aeration, chemical coagulation, and filtration of this water, the overall reduction amounted to 28.7% (see Table 8.25).

These data compare with laboratory results reported by Setter and Russell ⁷ for removal of activity from rain, cistern, and surface waters by coagulation (Table 8.26). Calculations show that all the activity associated with suspended matter and from 0 to 58% (average 28) of the dissolved activity was removed. Removal by natural agents (surface adsorption and subsidence) left those radioactive constituents that are most difficult to remove by chemical coagulation and filtration.

Alexander, Nusbaum, and MacDonald ¹⁰ have reported on the removal of stable strontium by municipal water-treatment plants. Their data are summarized in Table 8.27 and may be compared with removals of radiostrontium reported in Tables 8.1, 8.2, 8.5, 8.9, 8.10, and 8.13.

Small-scale laboratory studies using radioactively contaminated rainfall diluted with demineralized water were described by Eliassen and Lauderdale.⁴⁶ Their reported removals for gross activity and strontium are summarized in Table 8.28.

All data reported in this section show that conventional watertreatment processes are not very effective for the hard-to-remove radioactive materials in surface waters. Natural processes remove the bulk of the easy-to-remove radioactivity, but the longer-lived more-hazardous radionuclides remain.

ACTIVE WASTES

FROM THE LAWRENCE WATER

(min) (liter)	Removal,	Decontam- ination factor*
400	20	1.2
320 120	70	1.2
65	84	6.2

y levels ranged from 5 to 84 µµc. Over the period May 18 to July level was reduced an average of ter were reduced to 6 to 24 µµc. 'ley and coworkers.45 ity from reservous in er. water, In the overall reduction the aeration, chemical the Troy Reservoir

It those radioactive constituents rain, cistern, and surface waters tions show that all the activity y results reported by Setter and by from 0 to 58% (average 28) of Removal by natural agents 6 mical coagulation and

n Tables 8.1, 8.2, 8.5, 8.9, 8.10 ucipal water-treatment plants. Just .27 and may be compared with have reported on the

28. movals for gross activity and ter were described by Eliassen ig radioactively contaminated

activity, but the longer-lived 3 ective for the hard-to-remove how that conventional water-Natural processes remove

TABLE 8.25-REMOVAL OF	GROSS	ACTIVITY	BY	WATER-TREATMENT	PLANTS 4.4	
No of tests				F	temovals, %	Ī

	No. of tests		Removals, %			
Plant	during period indicated	Date of sampling	Coagulation and settling	Filtration	Overall treatment	Overall tap water*
Cambridge, Mass. Lawrence, Mass. Rochester, N.Y. Albany, N.Y.	3 4 11 1	Apr. 8 to July 3, 1953 Nov. 6, 1951 to June 30, 1953 Mar. 16, 1951 to June 12, 1953 May 18 to July 13, 1953	20. 5-37. 2 16. 4-56. 2 23. 5§	13. 5-23. 3 0-67. 4 0-62. 3† 6. 8	33. 9-51. 8 12. 7-75. 0 0-64. 8 28. 7	23. 7-84. 0 40. 4-80. 8 0-66. 1

*Samples taken from distribution system instead of from treatment plant. tSlow-sand filter results.

经中央部分

tNumber of tests not indicated in original report. Includes seration.

196

		Dissolved Coagulat-			Removals, %		
Type of sample	Total solids, mg/liter	beta activity, µµc/liter	ing chemi- cals added, mg/liter	pH range	Total beta (range)	Dissolved beta (range)	
Rain	41-151	185-1630	13-90	5. 3-8. 2	71-84	0-35	
Rain	24-94	1300-9600	13-56	5. 2-9. 8	62-86	0-63	
Cistern	65	1180	13-67	4. 3-10. 6	54-72	4-42	
Cistern	43	1910	20-73	4. 9-10. 7	45-81	8-68	
Cistern	77-188	120-1430	20-100	4. 9-10. 2	34-95	0-81	
Surface water	200-474	50-2460	43-125	6. 6-10. 1	30-76	0-48	

TABLE 8.26-REMOVAL OF GROSS ACTIVITY FROM RAIN, CISTERN, AND SURFACE WATERS BY COAGULATION*

*From L. R. Setter and H. H. Russell, J. Am. Water Works Assoc., 50: 590 (1958).

TABLE 8.27-STRONTIUM REMOVAL BY CHEMICAL TREATMENT*

	Strontium	removal, %	No.
Type of treatment	Average	Range	of cities
Alum or ferrous sulfate	12	10-31	7
Alum or ferrous sulfate plus lime	37	10-75	11
Alum or ferrous sulfate plus lime and soda ash	54	10-85	3
Alum or ferrous sulfate plus lime and phoshate	42	10-70	5
Softening only (phosphate, ion exchanger) None (except chlorine, fluoride, carbon, or	73	69-76	2
ammonia)	10		8

*From G. V. Alexander et al., J. Am. Water Works Assoc., 46: 643 (1954).

TABLE 8.28-REMOVAL OF GROSS ACTIVITY AND STRONTIUM FROM FALLOUT BY WATER-TREATMENT PROCESSES 4

	Remov	al, %
Treatment process	Gross beta	Strontium
Coagulation; iron and alum salts	30-70	35-80
Coagulation; calcium phosphate, pH 11.0 to 11.5	85-95	65-95
Two-stage lime and soda softening	75	75
Demineralization; cacion and anion exchangers	99	95

8-3.1 Filter Backwash-water Activity

The activity levels in slow-sand-filter backwash water (Rochester, N.Y., water-treatment plant) reported by Bell and coworkers are summarized in Table 8.29. Backwash-water activity levels varied, but in all cases the activity levels were approximately five or more times greater than those in raw water. If high raw-water activities are encountered, it may be necessary to consider the safe disposal of contaminated wash waters and the release of activity from the backwash-water solids.

CTIVE WASTES

TIVET FROM RAIN, CISTERN, BY GULATION*

oagulat- g chemi- s added, ng/liter		Removals, %		
	pH range	Total beta (range)	Dissolved beta (range)	
3-90	5. 3-8. 2	71-84	0-35	
3-56	5. 2-9. 8	62-86	0-63	
3-67	4. 3-10. 6	54-72	4-42	
20-73	4. 9-10. 7	45-81	8-68	
20-100	4. 9-10. 2	34-95	0-81	
3-125	6. 6-10. 1	30-76	0-48	

Vorks Assoc., 50: 590 (1958).

. BY CHEMICAL TREATMENT*

1	Strontium r	No. of		
	Average	Range	cities	
	12	10-31	7	
	37	10-75	11	
h	54	10-85	3	
ite	42	10-70	5	
	73	69-76	2	
10				
	10		8	

soc., 46: 643 (1954).

TIVITY AND STRONTIUM FROM TMI PROCESSES *

Remova	al, %	
Gross beta	Strontium	
30-70	35-80	
85-95	65-95	
75	75	
99	95	
	Gross beta 30-70 85-95 75	

ter backwash water (Rochester, ted by Bell and coworkers are ush-water activity levels varied, vere approximately five or more er. If high raw-water activities y to consider the safe disposal he release of activity from the

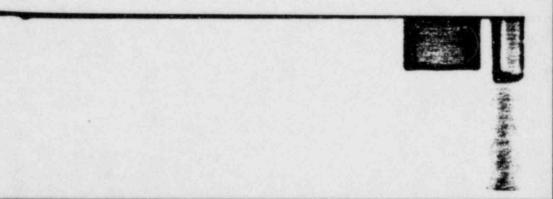
REMOVAL OF RADIOACTIVITY BY WATER-TREATMEN ? PROCESSES 197

TABLE 8.29-SLOW-SAND-FILTER BACKWASH ACTIVITY LEVELS IN ROCHESTER, N.Y."

	No. of samples*	Activity, counts/ (min)(liter)		~
Period		Raw water	Backwash water	Concen- tration factor†
Mar. 16 to Oct. 31, 1951	39:37	0.70	3. 75	5. 35
Nov. 1 to Nov. 15, 1951	12:12	12.3	205	16.6
Nov. 16, 1951 to Jan. 1, 1952	31:30	0.89	22.1	24.7
Jan. 2 to June 3, 1952	81;81	0.44	3. 20	7.28
June 4 to June 20, 1952	15:14	3.72	48.8	13.1
June 21 to July 20, 1952	7:7	1.29	13.6	10.6
July 21 to Nov. 1, 1952	29:29	0. 352	2.40	6.82
Nov. 2, 1952 to Feb. 1, 1953	26:26	0.26	2. 25	8.70
Feb. 3 to Mar. 20, 1953	14:14	0. 54	2.60	4. 82
Jan. 2 to May 12, 1953	37:37	0.398	2. 53	6. 35
May 15 to June 12, 1953	8;9	0. 53	7. 62	14. 4

"Number of tests on raw water and backwash water, respectively.

tConcentration factor is equal to backwash-water activity/raw-water activity.


8-3.9 Sludge Activity

Where chemical treatment is employed in the removal of radioactivity, activity associated with the settled or precipitated sludge is accumulated, and thus considerable care must be exercised in the disposal of this contaminated sludge. Sludge activity levels encountered in the Rochester, N.Y., water-treatment plant⁴⁴ are summarized in Table 8.30. Sludge concentration factors ranging from 25 to 114 times the raw-water activity levels are indicated.

8-4 SUMMARY

Highly variable decontamination factors are possible with the many water-treatment processes used for the removal of low-level radioactivity from liquids. Generally, higher decontamination levels may be possible for some particular radionuclides than are indicated for mixtures of radioactive materials. Most of the data reported previously have been summarized in Table 8.31. The conventional process offering most promise is ion exchange, particularly where mixed-bed cation- and anion-exchange resins are used. Of the nonconventional processes phosphate coagulation and metallic dusts show decontamination factors as high as 1000.

In general, it can be stated that water-treatment processes can provide decontamination factors as high as 10 with slightly higher results obtainable with modified methods. This means that for mixtures of radioactive materials where the total activity exceeds the MPC by a factor of 10 water-treatment processes are ineffective for reducing radioactivity. In some instances, however, if the radioac-

tivity is associated with a specific radionuclide, it may be possible to obtain decontamination factors higher than 10.

TABLE 8.30—SLUDGE ACTIVITY LEVELS AT THE ROCHESTER, N.Y., WATER TREATMENT PLANT "

	No. of samples*	Activity, counts/(min) (liter)		Concen-
Period		Raw water	Sludge	tration factor?
Mar. 16 to Oct. 31, 1951	39;37	0. 70	31.5	45.0
Nov. 1 to Nov. 15, 1951	12;11	12.3	1390	114
Nov. 16, 1951 to Jan. 1, 1952	31;24	0.89	65.0	73.0
Jan. 2 to June 3, 1952	81;58	0.44	24. 2	55. 0
June 4 to June 20, 1952	15;11	3.72	387	104
June 21 to July 20, 1952	7;6	1.29	63. 8	49.5
July 21 to Nov. 1, 1952	29:25	0.352	20.4	57.9
Nov. 2, 1952 to Feb. 1, 1953	26:23	0.26	22.0	85.0
Feb. 3 to Mar. 20, 1953	14;14	0. 54	21. 2	39. 2
Jan. 2 to May 12, 1953	37;36	0.398	10.2	25. 6
May 15 to June 12, 1953	8;8	0. 53	40.1	75. 6

*Number of tests on raw water and sludge, respectively. †Concentration factor is equal to sludge activity/raw-water activity.

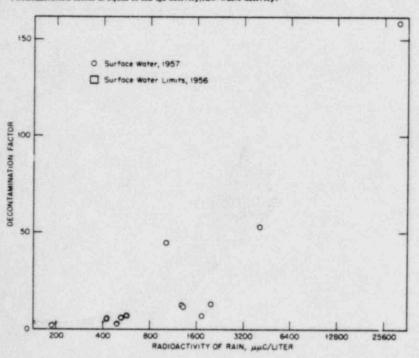


Fig. 8.11-The decontamination of rain by natural agencies.

REMOVAL OF RADIOACTIVITY BY

TABLE 8.31-SUMMARY OF RI TREATMI

C

N

Process	1
onventional	
Coagulation and settling	
Clay addition, coagulation,	
and settling	
Coagulation and settling	
Sand filtration	
Coagulation, settling, and fil- tration	
Coagulation, settling, and fil- tration	
Coagulation, settling, and fil- tration	
Lime-soda ash softening	
Ion exchange, cation	
Ion exchange, anion	
Ion exchange, mixed bed	
Solids-contact clarifier	
Ion exchange, cation	
Ion exchange, mixed bed	
Ionconventional	
Ion exchange	
Phosphate	
Metallic dusts	*

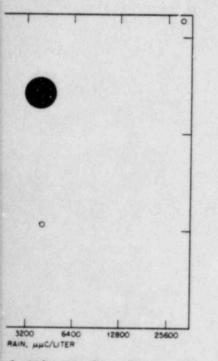
Metallic dusts Clay treatment

Diatomaceous earth

R

- 1. G. M. FAIR and J. C. GEVE John Wiley & Sons, Inc., Ne
- 2. C. P. STRAUB, Water Decontimeeting of the American So Report of the Joint Program -Waters, USAEC Report OR tory and Robert A. Taft Sa
- R. ELIASSEN, W. J. KAUFMAN on Radioisotope Rem val t Works Assoc., 43: 615 (1951)
- 4. W. J. LACY, Removing Radio Water Sewage Works, 100: 4

198



radionuclide, it may be possible higher than 10.

VELS AT THE ROCHESTER, N.Y., 4ENT PLANT "

of les*	Activity, counts/(min) (liter)		Concen
	Raw water	Sludge	tration factor†
37	0. 70	31. 5	45.0
11	12.3	1390	114
24	0.89	65.0	73.0
i8	0.44	24. 2	55.0
1	3.72	387	104
;	1. 29	63. 8	49.5
25	0. 352	20.4	57.9
:3	0. 26	22.0	85.0
4	0.54	21.2	39. 2
:6	0. 398	10.2	25. 6
:	0. 53	40.1	75. 6

ly. water activity.

of rain by natural agencies.

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 199

TABLE 8.31-SUMMARY OF REMOVAL OF ACTIVITY BY WATER-TREATMENT PROCESSES

	Decontamination factors		
Process	Individual radionuclides	Mixed fission products	Source of data
Conventional		1	a and a second
Coagulation and settling Clay addition, coagulation,	0-100+	2-9.1	Table 8.1
and settling	0-100	1. 1-6. 2	Table 8.2
Coagulation and settling		2. 6-9. 1	Table 8.4
Sand filtration	1-100		Table 8.5
Coagulation, settling, and fil- tration	1-50		
Coagulation, settling, and fil-	1-30		Table 86.
tration Coagulation, settling, and fil-	1. 8-14	3. 3–3. 7	Table 8.7
tration		1. 4-13. 3	Table 8.9
Lime-soda ash softening	2-100		Tables 8.10 and 8.11
Ion exchange, cation	1.1-500		Table 8.12
Ion exchange, anion	0-125		Table 8.12
Ion exchange, mixed bed	11-3300		Table 8.12
Solids-contact clarifier	1. 9-15	2.0-6.1	Table 8.14
Ion exchange, cation		3.0-9.1	Table 8.15
Ion exchange, mixed bed		50-100	Table 8.15
Nonconventional		00-100	14010 0.10
Ion exchange		2.3-19	Table 8.16
Phosphate	1. 2-1000	125-250	Table 8.17 and Sec. 8-2.1
Metallic dusts	1. 1-1000	1.1-8.6	Table 8.18
Clay treatment	0-100+		Table 8.19
		2. 0-6. 0	Tables 8.20 and 8.21
Diatomaceous earth	1.1-00		Table 8.22

REFERENCES

- 1. G. M. FAIR and J. C. GEYER, Water Supply and Waste-Water Disposal, John Wiley & Sons, Inc., New York, 1954.
- C. P. STRAUB, Water Decontamination, paper presented at the San Diego meeting of the American Society of Civil Engineers, Feb. 9, 1955; also in Report of the Joint Program of Studies on the Decontamination of Radioactive Waters, USAEC Report ORNL-2557, p. 15, Oak Ridge National Laboratory and Robert A. Taft Sanitary Engineering Center, Feb. 11, 1959.
- R. ELIASSEN, W. J. KAUFMAN, J. B. NESBITT, and M. I. GOLDMAN, Studies on Radioisotope Removal by Water Treatment Processes, J. Am. Water Works Assoc., 43: 615 (1951).
- W. J. LACY, Removing Radioactive Materials from Water by Coagulation, Water Sewage Works, 100: 410 (1953).

- G. E. EDEN, A. L. DOWNING, and A. B. WHEATLAND, Observations on the Removal of Radioisotopes during Purification of Domestic Water Supplies: I. Radioiodine, J. Inst. Water Engrs., 6: 511 (1952).
- A. L. DOWNING, A. B. WHEATLAND, and G. E. EDEN, Observations on the Removal of Radioisotopes during the Treatment of Domestic Water Supplies: II. Radiostrontium, J. Inst. Water Engrs., 7: 555 (1953).
- L. R. SETTEE and H. H. RUSSELL, Chemical Coagulation Studies on Removal of Radioactivity in Waters, J. Am. Water Works Assoc., 50: 590 (1958).
- C. P. STRAUB, R. J. MORTON, and O. R. PLACAE, Studies on the Removal of Radioactive Contaminants from Water, J. Am. Water Works Assoc., 43: 713 (1951).
- J. D. KURBATOV, J. L. KULP, and E. MACK, JR., Adsorption of Strontium and Barium Ions and Their Exchange on Hydrous Ferric Oxide, J. Am. Chem. Soc., 67: 1923 (1945).
- M. H. KURBATOV, G. B. WOOD, and J. D. KURBATOV, Application of the Mass Law to Adsorption of Divalent Ions on Hydrous Ferric Oxide, J. Chem. Phys., 19: 258 (1951).
- S. GOODGAL, E. F. GLOTNA, and D. E. CARBITT, Reduction of Radioactivity in Water, J. Am. Water Works Assoc., 46: 66 (1954).
- R. F. REITEMEIER and A. D. AYERS, Calcium Ion Activities in Supersaturated Solutions Stabilized by Sodium Metaphosphate as Determined by Clay Membrane Electrodes, J. Am. Chem. Soc., 69: 2759 (1947).
- C. P. STRAUB, W. J. LACT, and R. J. MORTON, Methods for the Decontamination of Low-Level Radioactive Liquid Wastes, in Proceedings of the First International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955, Vol. 9, p. 24, United Nations, New York, 1956.
- C. P. STRAUB, Limitations of Water Treatment Methods for Removing Radioactive Contaminants, Public Health Rept. (U.S.), 70: 897 (1955).
- G. E. EDEN, G. H. J. ELEINS, and G. A. TRUESDALE, Removal of Radioactive Substances from Water by Biological Treatment Processes, Atomics and Atomic Technol., 5: 133 (1954).
- C. P. STRAUB, Removal of Radioactive Waste from Water, Nucleonics, 10 (1): 40 (January 1952).
- C. P. STRAUB, R. J. MORTON and O. R. PLACAE, Oak Ridge Reports Results on Water Decontamination Study, Eng. News-Record, 147 (7): 38 (Aug. 16, 1951).
- W. A. HOTT, The Effects of the Lime-Soda Water Softening Process on the Removal of Radioactive Strontium-90-Yttrium-90, M.S. Thesis, North Carolina State College, Raleigh, N.C., 1952.
- G. V. ALEXANDER, R. E. NUSBAUM, and N. S. MACDONALD, Strontium and Calcium in Municipal Water Supplies, J. Am. Water Works Assoc., 46: 643 (1954).
- I. M. KOLTHOFF, Theory of Coprecipitation: The Formation and Properties of Crystalin Precipitates, J. Phys. Chem., 36: 860 (1932).
- R. E. KIRK and D. F. OTBMER (Eds.), Encyclopedia of Chemical Technology, Vol. 4, p. 645, Interscience Encyclopedia, Inc., New York, 1950.
- R. F. MCCAULET and R. ELIASSEN, Radioactive Strontium Removal by Lime-Soda Softening, J. Am. Water Works Assoc., 47: 494 (1955).
- J. A. AYRES, Treatment of Radioactive Waste by Ion Exchange, Ind. Eng. Chem., 43: 1526 (1951).
- H. G. SWOPE, Mixed-Bed Ion Exchange for the Removal of Radioactivity, J. Am. Water Works Assoc., 49: 1085 (1957).

REMOVAL OF RADIOACTIVITY BY

- A. G. FRIEND, Report on the Inv. Strontium (Sr³⁰) from Water by Polytechnic Institute, 1952.
- K. Z. Morgan, Health Physics Di Ending January 31, 1956, USA: Laboratory, May 3, 1956.
- 27. W. J. LACY and D. C. LINDSTEN Water by Ion Exchange Slur Oak Ridge National Laborator
- W. J. LACY, Engineer Resear Belvoir, Va., personal commun
- R. A. LAUDERDALE, JR., Treat: Precipitation, Ind. Eng. Che ORNL-932, Oak Ridge Nation
- 30. C. P. STRAUB, D. A. PECSOE, H. Oak Ridge National Laborato
- J. B. NESBITT, W. J. KAUFMAN Removal of Radioactive Stron USAEC Report NYO-4435, M 1952.
- 32. W. J. LACY, Removal of Radioa Powdered Metal, J. Am. Wat.
- R. A. LAUDERDALE, JR., Decont Engineering Conference Held Chicago, USAEC Report WA: opment, Sept. 11, 1952.
- R. ELIASSEN and N. C. BURBANE in Sanitary Engineering Con 1954, USAEC Report WASHment, August 1955.
- F. C. MEAD, JR., The Decontam Engineering Conference, Balti Report WASH-275, pp. 23 August 1955.
- 36. T. W. BROCKETT, JR., and O. Waste Solutions by Soils—Soi of the 8th Industrial Wastes (8, 1953, Purdue University F University, Lafayette, Ind., J
- 37. C. P. STRAUB and H. L. KRI Solutions—Soil Suspension trial Wastes Conference, Pu Purdue University Extension Lafayette, Ind., January 195
- 38. W. J. LACY, Decontamination Slurrying with Clay, Ind. E.
- E. R. BAUMAN, H. F. ZOBEL, at of the Effectiveness of a D Phosphorus from Water, San Illinois, Urbana, Ill., Nov. 1,
- K. Z. MORGAN, Health Physics 1952, to July 20, 1952, USA Laboratory, Oct. 6, 1952.

REMOVAL OF RADIOACTIVITY BY WATER-TREATMENT PROCESSES 201

- A. G. FRIEND, Report on the Investigation of the Removal of Iodine (I¹³¹) and Strontium (Sr⁸⁹) from Water by Ion Exchange Resins, M.S. Thesis, Virginia Polytechnic Institute, 1952.
- K. Z. Morgan, Health Physics Division Semiannual Progress Report for Period Ending January 31, 1956, USAEC Report ORNL-2049, Oak Ridge National Laboratory, May 3, 1956.
- W. J. LACT and D. C. LINDSTEN, Removal of Rudioactive Contaminants from Water by Ion Exchange Slurry, USAEC Report ORNL-CF-55-1-200, Oak Ridge National Laboratory, Jan. 25, 1955.
- W. J. LACY, Engineer Research and Development Laboratories, Fort Belvoir, Va., personal communication, 1953.
- R. A. LAUDERDALE, JR., Treatment of Radioactive Water by Phosphate Precipitation, Ind. Eng. Chem., 43: 1538 (1951); also USAEC Report ORNL-932, Oak Ridge National Laboratory, Jan. 23, 1951.
- C. P. STRAUB, D. A. PECSOK, H. L. KRIEGER, M. S. SEAL, and M. W. CARTER, Oak Ridge National Laboratory, unpublished data, 1954.
- J. B. NESBITT, W. J. KAUFMAN, R. F. MCCAULEY, and R. ELIASSEN, The Removal of Radioactive Strontium from Water by Phosphate Coagulation, USAEC Report NYO-4435, Massachusetts Institute of Technology, Feb. 15, 1952.
- W. J. LACY, Removal of Radioactive Material from Water by Slurrying with Powdered Metal, J. Am. Water Works Assoc., 44: 824 (1952).
- R. A. LAUDERDALE, JR., Decontamination of Radioactive Water, in Sanitary Engineering Conference Held at South District Filtration Plant, City of Chicago, USAEC Report WASH-129, pp. 1-4, Division of Reactor Development, Sept. 11, 1952.
- R. ELLASSEN and N. C. BURBANE, Summary Report on AEC Research Project, in Sanitary Engineering Conference, Baltimore, Maryland, April 15-16, 1964, USAEC Report WASH-275, pp. 81-88, Division of Reactor Development, August 1955.
- F. C. MEAD, JR., The Decontamination of Fission Product Wastes, in Sanitary Engineering Conference, Baltimore, Maryland, April 15-16, 1954, USAEC Report WASH-275, pp. 231-245, Division of Reactor Development, August 1955.
- 36. T. W. BROCKETT, JR., and O. R. PLACAE, Removal of Rodioisotopes from Waste Solutions by Soils—Soil Studies with Conasauga Shale, in Proceedings of the 8th Industrial Wastes Conference, Purdue University, May 4, 5, and 6, 1953, Purdue University Extension Series No. 83, pp. 393-409, Purdue University, Lafayette, Ind., January 1954.
- 37. C. P. STRAUB and H. L. KRIEGER, Removal of Radioisotopes from Waste Solutions-Soil Suspension Studies, in Proceedings of the 8th Industrial Wastes Conference, Purdue University, May 4, 5, and 6, 1953, Purdue University Extension Series No. 83, pp. 415-438, Purdue University, Lafayette, Ind., January 1954.
- W. J. LACY, Decontamination of Radioactively Contaminated Water by Slurrying with Clay, Ind. Eng. Chem., 46: 1061 (1954).
- E. R. BAUMAN, H. F. ZOBEL, and H. E. BABBITT, A Preliminary Investigation of the Effectiveness of a Diatomite Filter in the Removal of Radioactive Phosphorus from Water, Sanitary Engineering Series No. 1, University of Illinois, Urbana, Ill., Nov. 1, 1951.
- K. Z. MORGAN, Health Physics Division Progress Report for Period Jan. 20, 1952, to July 20, 1952, USAEC Report ORNL-1353, Oak Ridge National Laboratory, Oct. 6, 1952.

- 41. L. R. SETTER and C. P. STRAUB, The Distribution of Radioactivity from Rain, Trans. Am. Geophys. Union, 39: 451 (1958).
 - 42. L. R. SETTER and H. H. RUSSELL, Radioactive Contamination of the Environment in the Cincinnati Area, J. Am. Water Works Assoc., 51: 449 (1959).
 - 43. H. A. THOMAS, JR., R. S. KLEINSCHMIDT, F. L. PARKER, and C. G. BELL, JR., Fallout in Surface Waters of Massachusetts, in Sanitary Engineering Conference Held at South District Filtration Plant, City of Chicago, USAEC Report WASH-129, pp. 48-59, Division of Reactor Development, Sept. 11, 1952.
- 44. C. G. BELL, JR., H. A. THOMAS, JE., and B. L. ROSENTHAL, Passage of Nuclear Detonation Debris Through Municipal Water Treatment Plants, in Sanitary E ineering Conference, Baltimore, Maryland, April 15-16, 1954, USAEC Report WASH-275, pp. 89-111, Division of Reactor Development, August 1955.
- 45. E. J. KILCAWLEY, H. M. CLARE, H. L. EHRLICH, W. J. KELLEHER, H. E. SCHULTZE, and N. L. KRASCELLA, The Fate of Fission Products Deposited in the Reservoirs of the Troy, New York, Area Following Nuclear Detonations During the Spring Tests of 1963, USAEC Report NYO-4569, Rensselaer Polytechnic Institute, Dec. 16, 1953.
- R. ELIASSEN and R. A. LAUDERDALE, Decontamination of Radioactive Water Supplies, paper presented at the Nuclear Engineering and Science Congress, December 12-16, 1955, Cleveland, Ohio.

TREATMENT OF RAL BIOLOGI

In Chap. 4 it was stated convenient means for the disc Sewers convey the wastes to to water courses. At sewage where processing beyond prim some form of biological treats of the organic matter present. to water courses, biological s in the receiving stream, and t

The practice of sewer disc sewage-treatment plants has of the various processes for rewaste.

In treatment radioactive m and inorganic solids, and the additional processing the sludg. If long-lived high-energy radi pose additional public-health I

The sewage-treatment protation, adsorption, chemical p filtration through coarse and ponds.

9-1 PRIN

9-1.1 Sedimentation

Primary treatment consists from the liquid carrier. Th although mechanical screens in the separated solids unde compartments designed to r tanks (Imhoff), or separate wastes are released to the en sludge undergoes decompositi utilized in prime movers, bu These gases should contain li these substances are volatilize