Examination Report No. 50-397/OL-84-03 Facility: Washington Nuclear Plant No. 2 Docket No. 50-397 Examinations administered at Washington Nuclear Plant No. 2, Richland, Washington from November 6 to November 8, 1984. Chief Examiner: C Gage for: Date Signed Operator License Examiner Approved: L of Flin Chief Date Signed Operations Section (Acting) # Summary: Examinations on November 6-8, 1984 Written examinations were administered to eight SRO and one RO candidates. Operating examinations (Oral and simulator) were administered to eight SRO and one RO candidates. Four SRO candidates passed the examinations. #### REPORT DETAILS ## 1. Persons Examined Examinations were administered to nine candidates; one Reactor Operator candidate, and eight Senior Operator candidates. #### 2. Examiners Paul Gage Ira Levy Gary Sly # 3. Examination Review Meeting An exam review meeting was held immediately after the written exams were administered, on November 6, 1984. The following utility representatives were in attendance: John Wyrick Mike Kappl Bob Beardsly Andy Langdon Mark Westergren Tim Messersmith Steve Redniak Ed Wright Additionally, the following NRC representatives were present: Robert Pate Paul Gage Ira Levy Gary Sly Gary Johnston (observer) The responses to the comments provided by the utility representatives are included as enclosure (1). Additional comments were provided by letter from G. C. Sorensen to J. B Martin, dated November 13, 1984. The responses to these comments are included as enclosure (2). Where applicable the examination keys have been changed. #### 4. Exit Meeting An exit meeting was held with the facility on November 9, 1984. The attendees were: NRC: Robert Pate - Chief, Reactor Safety Branch Paul Gage - NRC Examiner Gary Johnston - NRC Examiner (Observer) Al Toth - Sr. Resident Inspector Utility: Jack Shannon - Director, Power Generation Jerry Martin - Plant Manager, WNP-2 Roger Corcoran - WNP-2 Operations Manager Clu Powers - Assistant Plant Manager, WNP-2 John Wyrick - Nuclear License Training Manager Rich Stickney - Manager Technical Training John Little - Plant Training Coordinator The candidates that were a clear pass on the Operating Examination (Oral and Simulator) were identified. A discussion of how Job Task Analysis (JTA) would be used in future examinations was held. It was explained to the facility personnel that the written examinations for this examination were not based on JTA. The current status of the plant simulator was discussed. The NRC position was that the simulator was very limited in its present state and was barely satisfactory for use in examinations. The facility staff stated that there were plans to improve the condition of the simulator. # RO/SRO EXAM REVIEW COMMENTS AND RESOLUTIONS Comments on the following questions were accepted and the master answer key suitably modified: #### RO Exam Section 1: 1.2a; 1.6; Section 2: 2.2b; 2.2d; 2.3a(2); 2.4b(3); 2.7a, 2.7d; 2.9b Section 3: 3.5a; 3.5b; 3.6c; 3.8b; 3.8c Section 4: 4.3b(4); 4.4b; 4.14 #### SRO Exam Section 5: 5.7b; 5.8; 5.10. Section 6: 6.1b (2); 6.2a; 6.3a; 6.5b; 6.6; 6.8; 6.9a. Section 7: 7.2; 7.5b. Section 8: 8.2b; 8.3; 8.8a; 8.11. Comments on the following questions were not accepted as explained below. #### kO Exam Section 1 Question 1.1 Facility Comment: Request partial credit for using period of 40 second. Response: Knowledge of "doubling time" is important part of question. Anyone can plug equation if period is given in seconds. No change to answer key. Ouestion 1.13.b Facility Comment: Assuming no change in core average neutron flux. Response: Question said "taken separately" and core average flux is part of question 1.13.c. No change to answer key. Question 1.13.c Facility Comment: Assuming no change in local flux. Usually local flux will change and could result in no change in core average flux. Response: Even if an increase in core average flux did cause an increase in local flux, the change would be small relative to that of the core. The ratio of the square of the local over the average would still decrease and, therefore, so would differential rod worth. Section 2 Question 2.2.a Facility Comment: Facility requests low level alarm be acceptable as a safety function. Also comment that level 4 may not necessarily be assumed to be coincident with loss of a RFP. Response: A low level alarm is not an auto-initiated safety function. No credit for that answer. Recirculation pump run back will only occur, if there is a low level and a coincident loss of one reactor feed pump. Question 2.4.a Facility Comment: Other acceptable answers are: - (1) SRM, IRM, APRM slide links for bypassing non coincident scrams. - (2) Manual bypass of IRM. - (3) Manual bypass of SRM. Request full credit for 3 or 4 correct answers Response: Additional answers added to key. All correct answers required for full credit. Question 2.5. a&b. Facility Comment: The question is unfair as it requires the candidate to memorize relay numbers. Response: Required key response is too detailed. Parts a and b of this question have been deleted. Question 2.5c Facility Comment: Operators are not required to memorize 480V distribution. Response: Operators should recognize which bus supplies the shutdown cooling system. If asked the operator should be able to draw a one line diagram of the 480V distribution system that serves the engineered safety features equipment. Question 2.7.b Facility Comment: Operators should not be required to memorize steps in an operating procedure. Also, first part of answer should be "yes". Response: See response to Sorensen letter Attachment 2. The key for the first part of the answer was changed to "yes". Question 2.8b Facility Comment: Time delay should not be required. Also, TSW pump selected for auto start will come on after the diesel has powered the bus on loss of offsite power. Response: Key changed to remove time delay and add additional correct answer. All three answers required for full credit. Section 3 Question 3.1b Facility Comment: Answer in key is true only for a "hardware failure". Otherwise, during its normal function, no alarms are operable. Response: Alarms are for abnormal conditions like hardware failure. It's true they will not be in the alarmed condition during the normal function of the RWM. No change to key. Ouestion 3.3a and b Facility Comment: Question unfair, MOB's are covered in requalification training not as part of hot license training. Response: Question 3.3a has been deleted. The part b is a systems question. The candidates should know why the temperatures are monitored even if they had not read the MOB's. Question 3.6.a Facility Comment: This question is not realistic. Operators do not memorize FIS switch numbers. Response: The question stated that it was the flow indicating switch for the RCIC pump. The number was provided, but was not necessary. However, since this question asks for more detail than normally asked, it has been deleted. Question 3.6b Facility Comment: Part b, should also accept "all located on flow elbows inside drywell" Response: Partial credit will be given for "all located on flow elbows inside drywell". Section 4 Question 4.1 Facility Comment: Question weighted to heavily for a single paragraph out of one operating procedure. Response: Examiner disagrees with facility comment. No change to answer key. Question 4.2 Facility Comment: This procedure is not used for operation of the RWM. The volume 7 surv. procedure is used to verify RWM operability and to operate that piece of equipment. Does not assess the operators knowledge of system operation. It checks which lights come on or off. Rote memorization of procedure not required. Response: See response to Sorensen letter. Question 4.5a Facility Comment: Only answer 1 if found in the abnormal procedures listed in the reference. #2 is not ever applicable, #3 and #4 are the same thing and they result from #1. Response: The key has been changed to delete #3. #4 is acceptable only if there is no turbine trip. Question 4.5b Facility Comment: This is okay if #1 only is accepted. On a turbine trip, you don't worry about this because a loss of F.W. heating occurs with every turbine trip. Response: With the changes to 4.5a, no change to 4.5b is necessary. Question 4.6 Facility Comment: This question requires total recall of procedure. Response: See response to Sorenson letter. Ouestion 4.12b Facility Comment: This can easily be confused with the licensed operator requirement of T.S. 6.2.2.d which requires an SRO for core alterations. Should give credit for a true answer as well. Response: A "true" answer is acceptable, if the T.S. is referenced. #### SRO EXAM Section 5. No additional facility comments. Section 6. Question 6.2.b Facility Comment: Throw out-not relevant Response: See response to Sorensen letter. Question 6.3.b Facility Comment: Too detailed, throw out. Response: Key answer too detailed. Changed to accept a description that it is a centrifugal device used to actuate the trip lever or some similar statement. Question 6.4.a Facility Comment: Add "all 7 ADS valves" to key. Response: Since there are 14 switches, answering "all 7 ADS valves" is not specific enough. Question 6.4.b Facility Comment: Use of the word "normal" is misleading - would never push ADS pushbuttons under normal conditions - may have confused some people. Response: If it appears the use of the word "normal" confused a candidate, consideration will be given in the grading. Question 6.5.c Facility Comment: Throw out-too much detail-candidate not required to know all power supplies by memory. Response: ES-402-A.2 states "Candidate should be able to reproduce from memory...electrical distribution system." Also see response to Quesiton 2.5c. Question 6.7.a Facility Comment: Also withdraw block, RWM Block (possibly-not always). Response: The answer key will be changed to add withdrawal block, but not RWM block. Question 6.7b Facility Comment: "Or bypassing
on RSCS." Also may say to bypass RWM. Response: Answer key changed to include "bypassing on RSCS". Question 7.3.a Facility Comment: Answer should be generalized to simply say strip bus, energize bus, reload bus. The present answer requires memorization of operating procedures. Response: The answer key has been changed to remove panel and breaker numbers as required for full credit. However, more description is required than proposed by the facility. See response to Sorensen letter. Question 7.4 Facility Comment: There are more than 1400 Annunciator procedures. Two points is too great of importance to place on one of them. Please consider reducing point value. Response: The correct answer is a logical response to any annunciator that has upscale and down scale alarms and is applicable to many annunicators, especially alarms for monitors that measure radiation and could indicate a possible excessive radiation level or effluent release. Memorization of 1400 annunicator procedures is not required. Also see response to Sorensen letter. Answer key revised to remove numbers from the required answer. Question 7.5.b Facility Comment: Requires total recall of operating procedures. Also the evolution is only for startup after complete drain down and is done very seldom. Response: This question requires system knowledge expected of an SRO candidate. However, since this is done very seldom, this part of question was deleted. Question 7.6 Facility Comment: Procedure is wrong - Tech. Specs. require RWM-RSCS to be operable prior to decreasing below 20%. Response: Examiner disagrees with facility comment. Surveillance is required to be performed within one hour after RWM auto-initiation when reducing thermal power (WNP-2, T.S; 4.1.4.1.c, 3/4 1-16). No change to answer key. Question 7.8 Facility Comment: Question requires total recall; doubtful anyone will get right. Please consider point values. Response: The question includes information that an SRO is expected to know, but to confirm by checking the Tech. Specs. Question has been deleted. Question 8.2.a Facility Comment: Answer "a" gives only the action statement for the LCO. Credit should also be given for explanation of why the candidate believes his answer to be as he indicated. If you wanted the action statement, it should have been asked for. Comment: Credit will be given for reasonable explanations as to why the Tech. Specs. require the candidate to take action. Question 8.9 Facility Comment: This is an unfair question! Initial training does not necessarily incorporate MOB training into it. Without the benefit of reading the MOB, the chances of candidates getting the correct answer is minimal! Additionally, part a and c are more of a system oriented question than admin., etc., and should not be part of category 8. Response: Part b has been deleted. Parts a and c require systems knowledge. The candidates should be able to answer the questions without reading the MOB. No change to parts a and c. Question 8.10 Facility Comment: Memorization of EPIP 13.1.1 is not feasible. While the majority of the symptomatic conditions which call for event classification are well known, the situational based events are much more vague. I cannot imagine any operator declaring an emergency events without reference to EOP's ro EPIP's for guidance. Response: SRO candidates are expected to have knowledge of both symptomatic-based condition and situation-based conditions which call for event classification. However, we agree that they would be expected to check the EOP's or EPIP's prior to making an emergency event declaration. # Response to Facility Comments Provided in Sorensen Letter #### RO Exam # Question 2.5 Parts a) and b) are deleted, however, the operator should recognize which bus supplies the shutdown cooling system. If asked, the operator should be able to draw a one line diagram of the electrical distribution system for all engineered safety features equipment. #### Question 2.7 The question asks about a specific valve by functional name and number. This is an important component in an important system. An operator should know the location relative to the pump (upstream or downstream). The point of the questions is whether the operator knows to close the valve to prevent a possible water hammer due to voids in the line. This is a fair question for several systems. Memorization of a specific valve number or specific steps in the normal operating procedure is not required. Most of the credit will be for knowing about preventing water hammer. #### Question 3.9 NUREG-1021, ES-202 B.3 states in part, "The candidate should have sufficient knowledge of the nuclear..., the process..., and radiological instrument (e.g., ionization, G-M, and scintillation), to answer questions concerning principles of detector operations, location and setpoints...." The question asked for types of detectors for radiological instruments (e.g., scintillation, ion chamber, fission chamber or Geiger Mueller) for specific processes. This is clearly within the scope of ES-202 B.3. #### Question 4.2 The question asks for the operator to have knowledge of how the test/select and inop/reset push buttons work. He does not have to have the procedure memorized. Since these are controls available for the operator he should have knowledge of what happens when he operates them. # Question 4.5 Step by step memorization of the procedure is not required. The information requested is only part of the steps of the procedure. The intent of the question is to determine the level of awareness of the operator to control room indications. The operator should know that there are alarms associated with energizing an important safety bus (the exact name of the alarm is not required). Also, the operator should be aware of what voltage readings are available and the availability and meaning of control board indicating lights. These things are expected to be within the knowledge of the operator. #### Question 4.12 NUREG-1021, ES-202 B.4 states that administrative procedures, including operating restrictions, limitations in the facility license and technical specifications may be included to the extent they are directly applicable to an operator. The number of operators required in the control room and on the refueling floor is directly applicable to the operator. He is expected to know the administrative requirements applicable to his job position. #### SRO Exam #### Question 6.2 As stated in response to Question 3.9, types of detectors are expected knowledge for RO and SRO candidates. Also, logic systems that control radiation releases are very important to know so the SRO can understand and diagnose abnormal system behavior. If this information is not covered in the candidate training program, there is a serious gap in the program which can not only lead to failures on the NRC examination, but much worse, the candidate may pass the NRC examination and become a licensed operator not fully trained to perform the job and thereby, become a potential part of an excessive radiological release. #### Question 7.3 All that is required for the answer is that the candidate know in general what needs to be done to accomplish the operation of tieing the 250V battery B2-1 to the DC distribution bus S2-1. A step by step response is not required for full credit. #### Question 7.4 The responses asked for do not require the procedure to be memorized. The question specifies the things the operator must do (i.e., verification and check). The candidate should have knowledge of which system and components are associated with an alarm, their general location (i.e., control room, local) and the safety significance. #### Question 7.8 This question asks for more detail than normally required. The question has been deleted. # Question 8.2 The candidate should have thorough knowledge of what is addressed in the Technical Specification and should know whether actions are required with the Division 1 250V battery discharged. The part b of the question requires the candidate to memorize the surveillance requirements for the 250 volt battery, thus beyond the scope of the examination as defined by ES-402, A.4. Part b of the question has been deleted. # Question on placing RCIC Controller in Manual (Question 8.6 b) The question refers to the limitations in SOP 2.4.6, Reactor Core Isolation System. In this context, only the additional answer "When, in the operator's judgement, continued automatic operation is undesirable (Ref: PPM 1.3.1, Att 1, Item 3)" is applicable. This additional answer will be allowed if the standing order is referenced. The additional answer has been added to the answer key. #### Simulator Exam Scenarios In order to provide each candidate with one or more malfunction to respond to during each scenario, unrelated malfunctions were selected. This, however, is not that much different from some operating events. We have had plant events that have had several unrelated malfunctions. (e.g., Trojan had a diesel driven auxiliary feedwater pump, a turbine driven auxiliary feed, an emergency diesel generator and the main steam isolation valves all malfunction in one event.) There were several events in each scenario, but in most cases the operator was allowed to deal with each event prior to the initiation of the next event. It is not rare to have 6 to 10 malfunction during the operation of a power plant. Operators must learn to be aware of which systems are operating and thereby, be able to perform there normal evolutions efficiently and safely. #### General 'Comments - 1. Need specific examples of which questions were unclear and how prior exam review could have made them more clear. Also which questions used unfamiliar terminology and what terminology should have been used. - 2. Sometimes the examiner must answer in this manner when a direct response to the candidate's question would provide an answer to the exam question. In these cases, we generally
request the candidate to provide as much information as he can and qualify the response with any assumptions that were made. This will give the candidate the best opportunity to get full credit for the response. - 3. There are no questions that request an open ended discussion. All questions can be answered with a short response. Typically the question asks for a response and then asks "why" or "explain choice" or the question will set the conditions and then state "briefly explain what happens." The questions that are vague and open ended should be specified. - 4. Except for the questions that were deleted, both examinations were within the scope of topics listed in the 10 CFR 55 and Exam standard NUREG-1021. Presently 10 CFR 55 and NUREG-1021 are the standard used to define the scope of the examinations. If the training objectives for the WNP operator training program are not consistent with these standards, the training objectives should be redefined. We have not written our examinations to fall within the WNP training program training objectives nor have we written our examination to be consistent with the Job Task Analysis (JTA) for RO/SRO personnel. The NRC has a very active program which includes industry participation to evaluate exam questions. Our goal is to be able to use JTA to evaluate the importance and applicability of examination questions to RO/SRO job performance. We hope that in the near future all of our examinations will contain questions that have been evaluated based on JTA. We do not expect this to result in any significant changes in the scope of the examination, but will result in assigning question values that are more consistent with the importance of the required knowledge to the performance of the job. MASTER # U. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION | | | | Facility | :_WNP-Z | |----------------------------|---------------------------|--|---|---| | | | | Reactor ' | Type: BWR-5 | | | | | Date Admi | inistered: 11/6/84 | | | | | Examiner | I. S. Levy | | | | | Candidate | 91 | | INSTRUCTIO | ONS TO C | ANDIDATE: | | | | Staple quare indicat least | estion stated in 70% in 6 | sheet on top
parenthesis a
each category | of the answer
fter the ques
and a final o | Write answers on one side only. sheet Points for each question stion. The passing grade requires grade of at least 80%. Examination the examination starts. | | Category
Value | | | % of
Cat. Value | Category | | 25 | | | | 1. Principles of Nuclear Power
Plant Operation, Thermodynamics
Heat Transfer and Fluid Flow | | 25 | 25 | | | 2. Plant Design Including Safety
and Emergency Systems | | 25 | -25 | | | 3. Instruments and Controls | | 25 | 25 | - | | 4. Procedures: Normal, Abnormal,
Emergency, and Radiological
Control | | 100 | | | | TOTALS | | | | Final Grade | 8 | | | All work d | ione on t | this examinati | on is my own; | I have neither given nor received | Candidate's Signature # Questions and Answers to WNP-2 RO Exam - 11/6/84 1.0 Principles of Nuclear Power Plant Operation, Thermodynamics, Heat Transfer and Fluid Flow (25.0) - 1.1 Regarding a Reactor Startup: - a. Does the magnitude of the initial level of source range counts affect the Estimated Critical Position? Why? (1.25) - b. How long will it take to reach 0.08% power, if the reactor is just critical at 0.002% power and on a steady period with a "doubling time" of 40 seconds? (Show all work.) (1.0) - 1.1 a. No (0.5). Initial count rate does not affect the amount of reactivity required to go critical, which determines ECP (0.75). [The higher the initial count rate, the higher the count rate when criticality is reached.] (1.25) Ref: WNP-2 Reactor Theory, pg. 29 and 43. b. $$P = PO e^{(t/T)}$$ $T = 40 / (ln2) = 57.71 sec^{-1}$ (0.5) $t = 57.71 (ln(P/PO)) = 212.88 sec (0.5)$ (1.0) Ref: WNP-2 Reactor Theory, pg. 61. 1.2 With regard to some aspects of Fission Product Poisons: a. Of the two fission product poisons Xe and Sm, give two (2) reasons why xenon is more troublesome. (1.5) b. What is the mechanism(s) for removal of Samarium-149 once it is produced in the core? (1.0) 1.2 a. (1) Because of its exceptionally large thermal neutron absorption cross-section (0.75); (2) its concentration varies with reactor power level and/or time (0.75); (3) Xe produced assembly for the foreign. b. Sm-149 is removed only by burnout (1.0) Ref: WNP-2 Reactor Theory, pp. 83 and 87, respectively. When control rod density in the core decreases at higher 1.3 burnups (from pulling rods) the void coefficient of reactivity becomes more or less (choose one) negative? Why? (1.5) Less (0.5). Since local steam voids cause an increase in thermal diffusion length (0.5), control rods, which absorb thermal neutrons, make the steam void reactivity coefficient more negative (0.5) [Therefore, reduced control rod density causes the void coefficient to be less negative.] (1.5) Ref: WNP-2 Reactor Theory, pp. 98-99. : . 1.4 The effective decay constant for up power transients will be higher or lower (choose one) compared to its value for down power transients. Give the reason for your answer. (1.5) 1.4 Higher (0.5). For up power transients the short lived precursors are dominant due to the addition of power (0.5), while for down power transients the long lived precursors dominate the decay constant (0.5) (1.5) Ref: WNP-2 Reactor Theory, pg. 54. 1.5 Following a scram from high power, answer the following: | a. | What are the most reactive regions of the core? | (1.0) | |----|--|--------| | b. | Why are these regions more reactive? | (1.25) | | c. | What problem does this cause for the operator during a subsequent start up. Why? | (1.25) | 1.5 a. Near the edges and at the top and extreme bottom b. Xe concentrates, during power operation, where power is highest, i.e., in the center and near the bottom of the core (0.75), where it acts as a poison, adding negative reactivity (0.50) c. Operator must be extremely cautious while pulling edge and top rods (0.5) since normally low worth rods now have excessively high incremental worths (0.75) Ref: WNP-2 Lesson Plan, Figure 4-12. (1.0) (1.0) (1.0) (1.0) (1.0) (1.25) (1.25) 1.6 Give four (4) inputs or outputs for a reactor heat balance, stating whether it is an input or output and a brief description as to why it is. (3.0) 1.6 (any 4 @ 0.75 each) (3.0) - a. Feedwater flow heat input (0.25) going into the vessel (or system) with positive enthalpy (0.5). - b. Steam flow heat output (0.25) due to steam removing energy from the core (0.5). - c. Recirc pump heat input (0.25) due to energy added to the fluid in the core (or system) by the pumps (0.5) - d. CRD flow heat input (0.25) due to fluid flowing into the core (or system) with a positive enthalpy (0.5). - e. Rx core thermal energy heat input (0.25) due to being primary source of heat input (0.5). - f. any other reasonable answer such as RWCU inputs/outputs, etc. Ref: MTC; Thermo/HT/FF (3/83), pp. 8-50. 1.7 Following initial criticality (MSIVs closed, moderator T > 212°F), a constant positive period is established. Briefly explain what happens over the next several hours to pressure, temperature and power if no rod movement occurs. (1.5) 1.7 Power initially increases but levels off due to negative reactivity insertion resulting from increasing moderator temperature (0.5). Pressure and temperature initially increase but level off when power levels off then reduces due to ambient losses (0.5). The reduced T causes the cycle to start again so that long term power, pressure and temperature will oscillate around point of adding heat (0.5). (1.5) Ref: Standard Reactor Theory. 1.8 What are two (2) reasons a centrifugal pump should be started with the discharge piping filled and the discharge valve shut? (1.0) 1.8 Water hammer and excessive starting current. Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/83), pg. 7-123. (1.0) 1.9 a. Assume the reactor is at 100% power and flow. Explain what happens to core flow, and why, for a reduction in power by driving rods in. (Recirculation pump speed remains constant.) b. At low power conditions prior to void generation, an increase in reactor power by control rod withdrawal will (increase, decrease, not change) flow through the core. Choose the correct answer and explain your choice. 1.5) 9- low pare cach up to 35.7 Express 2 floregumes. - Week one he year near ? 1.5) - 1.9 a. Core flow would increase (0.5) due to a reduction in two phase flow condition (and, therefore, in the core less resistance to flow) (0.75). (1.25) - b. Increase (0.5). Flow resistance in the channels drops due to decreased liquid viscosity with temperature (0.5); and greater density differences between warm channels and cool downcomer will increase flow due to increased thermal driving load causing greater natural circulation (0.5) (1.5) Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/83), pg. 9-51. - 1.10 There are several characteristic transients that would be limiting because of MCPR. - a. List any two (2) of these transients. (0.75) - b. Assuming for each of the transients in (a) they occurred at 100% power, EOC and full rod out conditions, give: - the most important reactivity ccoefficient involved. (0.5) - 2. What occurred in the reactor and why it occurred to affect this coefficient. (0.5) - 1.10 Any 2 of following. pts: a) 0.375 each; b) (1) 0.25 each; (2) 0.25 each (1.75) - Generator load reject w/o bypass; void coefficient, void collapse from pressure increase - Turbine trip w/o bypass; void coefficient, void collapse from pressure increase - Loss of feedwater heating, void coefficient, void collapse from subcooling -
Inadvertent start of HPCS pump; void coefficient, void collapse from subcooling - Feedwater controlling failure high; void coefficient, void collapse from subcooling Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/85), pg. 9-94 through 9-96. ## 1.11 Given: Rx pressure at time T = 675.3 psig Rx pressure at time T + 1 hr = 215.3 psig a. What is the Rx cool down rate for this hour? Show all calculations. (0.75) b. Is this rate acceptable at your plant? (0.5) 1.11 a. (Because the reactor operates at saturated conditions the temperature for time T and T + 1 hr can be found using the steam tables.) 1) Saturation temperature for 690 psia is approximately 502°F. Saturation temperature for 230 psia is approximately 394°F. (0.375) 2) Cool down rate = $(502^{\circ}F - 394^{\circ}F)/1$ hr. Cool down rate = $108^{\circ}F/1$ hr. (0.375) b. No. (The cool down rate limit is 100°F per hour.) (0.5) Ref: Steam Tables and WNP-2 Tech. Specs. # 1.12 Answer TRUE or FALSE for each of the following: a. As water flows around a bend in a pipe, the velocity of the water is uniform throughout the diameter of the pipe. (0.5) The pressure in a static fluid always <u>decreases</u> with <u>increasing</u> elevation of the measurement. (0.5) 1.12 a. False (0.5) b. True (0.5) Ref: General Fluid Dynamics Text. | 1.13 | Will an increase in the following factors (taken separately) increase, decrease, or not change differential rod worth? | | | | | | | | | | |------|--|--|--|--|--|--|--|--|--|--| | | a. thermal diffusion length | | | | | | | | | | | | b. neutron flux at the rod | | | | | | | | | | | | c. core average neutron flux | | | | | | | | | | 1.13 a. increase b. increase c. decrease (0.5) $$\alpha_D = -1 \times 10^{-5} \frac{\Delta K}{K}$$ °F $$\alpha_v = -1 \times 10^{-3} \frac{\Delta K/Z}{K}$$ voids $$c_{\rm H} = -4.5 \times 10^{-6} \frac{\Delta K/Z^*F}{K}$$ $$\Delta \rho = f \frac{L_{\rho V^2}}{D_{2g_c}}$$ $$\rho = \frac{k(eff) - 1}{K(eff)}$$ $$\frac{1}{m} = \frac{CR1}{CR2} = \frac{1 - K(eff)2}{1 - K(eff)1}$$ $$M = 1/(1-k)$$ $$N(t) = No e^{-\lambda T}$$ $$n = v/(1+d)$$ 17.58 watts = 1 BTU/min lpsi = 6.895 Pa lpsi = 2.036 - Hg (@ OC) lpsi = 27.68 - H²O (@ 4C) B = .0071 1 = 2 x 10-5 sec | Table 1 | Caturated ! | Steem. | Tamperature | Table | |---------|-------------|--------|-------------|-------| | | Abs Press | Spe | cific Value | me | | | | Entropy | | - | | |---|---|--|--|--|---|--|---|---|--|--|--| | femp
fahr
t | Sq in | Sat
Liquid | Evap | Sat.
Vapor
Vg | Sat.
Liquid | Even | Sat.
Vapor | Sal
Liquid
S ₁ | Evan | Sat
Vagor
S g | Fahr
t | | 32.6° | 0 08859
0 09600
0 10395
0 11239 | 0 016022
0 016021
0 016020
0 016019 | 3304 7
3061 9
2839 0
2634 1 | 3304 7
3061 9
2639 0
2634 2 | -00179
1996
4008
6018 | 1075 5
1074 4
1073 2
1072 1 | 1075 5
1076 4
1077 2
1078 1 | 0 0000
0 0041
0 0081
0 0122 | 2 1873
2 1762
2 1651
2 1541 | 2 1807
2 1807
2 1732
2 1663 | 32 8
34 6
38 6
36 6 | | 44.8
47.8
44.0
48.0 | 013133
013133
014197
015314
016514 | 0 016019
0 016019
0 016019
0 016020
0 016021 | 2445 8
2272 4
2112 8
1955 7
1830 0 | 2445.8
2277.4
2112.8
1965.7
1830.0 | \$ 027
10 035
12 041
14 047
16 051 | 1071 0
1069 8
1068 7
1067 6
1066.4 | 1079 0
1079 9
1080 7
1081 6
1082 5 | 0 0162
0 0202
0 0212
0 0282
0 0321 | 2 1432
2 1325
2 1217
2 1111
2 1006 | 2 1594
2 1527
2 1459
2 1393
2 1327 | 42 8
44 8
46 8 | | 58 6
57 8
54 8
56.8
56.8 | 0 17796
0 19165
0 20625
0 22153
0 23843 | 0 016023
0 016024
0 016025
0 016028
0 016031 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 18 054
20 057
22 058
24 059
26 060 | 1065.3
1064.2
1063.1
1061.9
1060.8 | 1084 2
1084 2
1085 1
1086 0
1086 9 | 0 0361
9 0400
9 0439
0 0478
0 0516 | 2 0901
2 0798
2 0695
2 0593
2 0491 | 2 1262
2 1197
2 1134
2 1970
2 1008 | 50 0
52 0
54 0
56 0
58 0 | | 62 0
62 0
64 0
64 0 | 0 25611
0 27254
0 25497
0 31626
0 33889 | 0 015033
0 015036
0 015039
0 015043
0 015046 | 1207 6
1129 2
1056 5
989 0
975 5 | 1207 6
1129 2
1056 5
989 1
926 5 | 28.060
30.059
32.058
34.056
36.054 | 1059 7
1056 5
1057 4
1056 3
1055 2 | 1087 7
1088 6
1089 5
1090 4
1091 2 | 0 0555
0 0593
0 0532
0 0670
0 0708 | 2 0.391
2 0.291
2 0192
2 0094
1 9996 | 2 0946
2 0885
2 0824
2 0764
2 0704 | 62 5
62 5
64 5
64 6 | | 78.8
77.0
74.0
76.0
76.0 | 0 36292
0 38514
0 41550
0 44420
0 47461 | 0 015050
0 015054
0 015058
0 015063
0 015067 | 8683
8143
7641
7174
6738 | 968 4
814 3
764 1
717 4
673 9 | 38 052
40 019
42 046
44 043
46 040 | 1054 0
1052 9
1051 8
1050 7
1049 5 | 1092 1
1093 0
1093 \$
1094 7
1095 6 | 0 0745
0 0783
0 0821
0 0858
0 0895 | 1 9900
1 9874
1 9706
1 9614
1.9520 | 2 0645
2 0587
2 0529
2 0472
2 0415 | 70 0
72 0
74 0
78 0
78 0 | | M. 0
67 0
64 0
M. 0 | 0 50687
0 54093
0 57702
0 61518
0 65551 | 0 015072
0 015077
0 015082
0 015087
0 016093 | 623 3
595 5
560 3
527 5
496 8 | 633.3
595.5
560.3
527.5
496.8 | 48 037
50 033
52 029
54 026
56 022 | 1048 4
1047 3
1046 1
1045 0
1043 9 | 1096 4
1097 3
1098 2
1099 6
1099 9 | 0 0932
0 0969
0 1005
0 1043
0 1079 | 1 9426
1 9334
1 9242
1 9151
1 9060 | 2 0359
2 0303
2 0248
2 0193
2 01 39 | 92 9
94 9
96 9
96 9 | | 98 0
97 0
94 5
96 0
96 0 | 0 69813
0 74313
0 79062
0 84073
0 89356 | 0016099
0016105
0016111
0016117
0016123 | 441 3
416 3
392 8
370 9 | 441 3
416 3
392 9
370 9 | 58 01 8
60 01 4
62 01 0
64 00 6
66 00 J | 1041 6
1040 5
1039 3
1038 2 | 1100 8
1101 6
1102 5
1103 3
1104 2 | 0 1115
0 1152
0 1138
0 1224
0 1260 | 1 8970
1 5851
1 8792
1 8704
1 5617 | 2 0086
2 0033
1 9940
1 9478
1 9676 | 90 1
97 1
94 1
96 1 | | 100 0
167 8
164 8
186 8 | 0 94924
1 00789
1 06965
1 1347
1 2030 | 0016130
0016137
0016144
0016151
0016158 | 350 4
331 1
313 1
296 16
280 28 | 350 4
331 1
313 1
296 18
280 30 | 67 999
69 995
71 992
73 99
75 98 | 1037 1
1035 9
1034 8
1033 6
1032 5 | 1105 I
1105 9
1106 8
1107 6
1108 5 | 0 1 295
0 1 331
0 1 366
0 1 402
0 1 437 | 1 8530
1 8444
1 6358
1 8273
1 8188 | 1 9575
1 9775
1 9775
1 9675
1 9675 | 100 | | 110 6
112 6
114 6
116 8
118 8 | 1 2750
1 3505
1 4299
1 51 33
1 6009 | 0 015165
0 016173
0 016180
0 016188
0 016196 | 255 37
251 37
238 21
225 84
214 20 | 265 39
251 38
238 22
225 85
214 21 | 77 98
79 98
81 97
83 97
85 97 | 1031 4
1030 2
1029 1
1027 9
1026 8 | 1109 3
1110 2
1111 0
1111 9
1112 7 | 0 1472
0 1507
0 1542
0 1577
0 1611 | 1.8105
1.8021
1.7938
1.7856
1.7774 | 1 9577
1 9528
1 9480
1 9433 | 110
112
114
116 | | 120.0
122.0
124.0
126.0
120.0 | 1 6927
1 7891
1 8901
1 9959
2.1068 | 0016204
0016213
0016221
0016229
0016238 | 203 25
192 94
183 23
174 08
165 45 | 793 26
192 95
183 24
174 09
165 47 | 87 97
89 96
91 96
93 96
95 96 | 1025 6
1024 5
1023 3
1022 2
1021 0 | 11136
11144
11153
11161 | 01646
01680
01715
01749
01783 | 1.7693
1.7613
1.7523
1.7453
1.7374 | 1 9386
1 9379
1 9293
1 9247
1 9202
1 9157 | 178:
178:
174:
174:
178:
178: | | 130 0
132 6
134 8
136 8
138 0 | 2 2230
2 3445
2 4717
2 6047
2 7438 | 0 016247
0 016256
0 016265
0 016274
0 016284 | 157 32
149 64
142 40
135 55
129 09 | 157 33
149 66
142 41
125 57
129 11 | 97 %
99 95
101 95
103 95
105 95 | 1019 8
1018 7
1017 5
1016 4
1015 2 | 1117 9
1118 6
1119 5
1120 3 | 0.1817
0.1851
0.1884
0.1918
0.1951 | 1.7795
1.7217
1.7140
1.7063
1.6986 | 1 9112
1 9768
1 9024
1 8980
1 8337 | 128 1
132 1
134 1
138 1
138 1 | | 140 0
147 0
146 0
146 0 | 2 8892
3 0411
3 1997
3 3653
3 5381 | 0016293
0016303
0016312
0016327
0016332 | 122 94
117 21
111 74
106 58
101 68 | 123 00
117 22
111 76
106 59
101 70 | 107 95
109 95
111 95
113 95 | 1014 0
1012 9
1011 7
1010 5
1009 3 | 1127 0
1122 8
1123 6
1124 5
1125 3 | 0 1985
0 2018
0 2051
0 2054
0 2117 | 1 6910
1 6534
1 6759
1 5684
1 6610 | 1 8895
1 8552
1 8810
1 8769
1 8777 | 148 1 | | 152 0
152 0
154 0
158 8
158 8 | 3 7154
3 9065
4 1025
4 3068
4 5197 | 0 016343
0 016353
0
016363
0 016364 | 97 05
92 66
89 50
84 54
80 82 | 97 07
92 68
68 52
84 57
80 83 | 117 %
119 %
121 %
123 % | 1008 2
1007 0
1005 8
1004 6
1003 4 | 1126 1
1126 9
1127 7
1128 6
1129 4 | 0 2150
0 2183
0 2216
0 2228
0 2281 | 1 6536
1 6463
1 6390
1 6318
1 6245 | 1 8686
1 8606
1 8566
1 8526 | 198 8
152 8
154 6
156 8 | | 160 0
162 0
164 0
166 0 | 4 7414
4 9772
5 2124
5 4423
5 7223 | 0 015395
0 015405
0 015417
0 015428
0 015440 | 77 27
73 90
70 70
67 67
64 78 | 77 25
73 92
70 72
67 68
64 80 | 127 96
129 96
131 96
133 97
135 97 | 1002 2
1001 0
999 8
998 6
997 4 | 1130 2
1131 0
1131 8
1132 6
1133 4 | 0 2313
0 2345
0 2377
0 2409
0 2441 | 1 6174
1 6103
1 6032
1 5961
1 5892 | 1 8487
1 8448
1 8409
1 8371
1 8333 | 160 0
167 0
164 0
166 0 | | 176 0
177 0
174 6
176 0 | 5 9976
6 2736
6 5656
6 6090
7 ; 240 | 0016463
0016474
0016474
0016498 | 62 04
59 43
59 95
54 59
52 35 | 62 06
59 45
56 97
54 51
52 36 | 137 97
139 98
141 98
143 99
145 99 | 996 2
995 0
993 8
992 6
991 4 | 1134 2
1135 0
1135 8
1136 6
1137 4 | 0 24/3
0 2505
0 2537
0 2568
0 2600 | 1 5822
1 5753
1 5634
1 5616
1 5548 | 1 8795
1 8258
1 9221 | 178 8
172 8
174 6
176 6 | Statement of the second | Table 1 | Sanurated | Ctesm. | Termograture | Table | Cantinuad | |---------|-----------|--------|--------------|-------|-----------| | Temp | Abs Press | Sat. | pecific V | Sat | Sat | Enthaig | Sat | Sar | Entropy | Sat | Iem | |---|---|--|--|---|---|---|--|--|--|--|---| | Fane | Sq in | Liquid | Evas | Asber | Liquid | Evap | Vapor | Liquid | Evap | 14001 | Fan | | 120 6
162 0
184 6
185 0 | 7 5110
7 850
8 203
8 368
8 967 | 0 016510
0 016527
0 016534
0 016534 | 48 17
36 23
46 38 | 50.77 | 148 00
150 01
152 01
154 02
156 03 | 990 2
989 0
987 8
986 5
985 3 | 1136 2
1139 0
1139 8 | 0 2631
0 2662
0 2694
0 2775
0 2756 | 1 5480
1 5413
1 5346
1 5279
1 5213 | 1 8111
1 8075
1 8040
1 8004
1 7969 | 180 6
182 5
194 8
196 8 | | 196 0
192 8
194 0
196 0
198 0 | 9 340
9 727
10 168
10 605
11 058 | 0 016572
0 016545
0 016598
0 016611 | 40 94
39 33
37 804
36 344 | 40 957
39 354
37 874 | 158 05
160 05
162 05
164 06
166 08 | 984 1
982 8
981 5
980 4
979 1 | 1142 1
1142 9
1143 7
1144 4
1145 2 | 0 2787
0 2818
0 2848
0 2879
0 2910 | 1 5148
1 5082
1 5017
1 4952
1 4868 | 1 7934
1 7900
1 7865
1 7831
1 7798 | 198 6
192 6
194 6
198 6 | | 200 0
204 0
208 0
212.6
216.0 | 11 526
12 512
13 568
14 696
15 901 | 0 01 56 37
0 01 56 64
0 01 66 91
0 01 67 19
0 01 67 47 | 31 135
28 862
26 782 | 31 151 | 168 09
172 11
176 14
180 17
184 20 | 977 9
975 4
977 5
970 3
967 8 | 11460
11475
11490
11505
11520 | 0 2940
0 3001
0 3061
0 3121
0 3181 | 1 4697
1 4571
1 4447
1 4323 | 1.752
1.7448
1.7637
1.7568
1.7505 | 706 6
704 6
258 0
212 8
216 0 | | 770 0
774 0
778 0
7712 0
7712 0 | 17 186
18 556
20 015
21 567
23 216 | 0.016.775
0.016.805
0.016.834
0.016.864
0.016.895 | 21 529
20 056
18 701 | 20.073 | 188 23
192 27
196 31
200 35-
204 40 | 965 2
962 6
960 0
957 4
954 8 | 1153 4
1154 9
1156 J
1157 8
1159 2 | 0 3241
2 3 3 3 0
3 3 3 5 9
0 3 4 1 7
0 3 4 7 6 | 1 4201
1 4081
1 3961
1 3842
1 3725 | 1 7342
1 7250
1 7320
1 7350
1 7301 | 278 8
278 8
278 8
238 8
236 8 | | 248.0
244.0
248.0
252.0
256.0 | 24 958
26 526
28 796
30 583
33 091 | 0.016926
0.016958
0.016990
0.017022
0.017055 | 15 243
14 264
1J 358 | 13 375 | 208 45
212 50
216 56
270 62
224 69 | 952 1
949 5
946 8
946 1
961 6 | 1160 6
1162 0
1163 4
1164 7
1166 1 | 0 3533
0 3591
0 3649
0 3706
0 3753 | 1 3509
1 3494
1 3379
1 3266
1 3154 | 1 7142
1 7085
1 7028
1 6972
1 6917 | 248.0
248.0
248.0
252.0
256.0 | | 258.6
254.6
254.6
272.6
272.6 | 15 427
37 894
40 500
43 289
46 147 | 0 01 7089
0 01 7123
0 01 7157
0 01 7193
0 01 7228 | | 11 042
10 375
9 755 | 228 75
232 83
236 91
240 99
245 08 | 938 6
935 9
933 1
930 3
927 5 | 1167 4
1168 7
1170 0
1171 3
1172 5 | 0 3819
0 3875
0 3932
0 3987
0 4963 | 1 3043
1 2933
1 2823
1 2715
1 2607 | 1 6852
1 6808
1 6755
1 6702
1 6650 | 254 0
254 0
258 6
272 0
276 6 | | 788.0
784.0
788.0
787.0
797.0 | 49 200
52 414
55 795
59 350
63 084 | 0017264
001730
001734
001738
601741 | 8 627
8 1280
7 6634
7 2301
6.8259 | 8 1451 | 249 17
253 3
257 4
261 5
265 6 | 924 6
921 7
918 8
915 9
913 0 | 1173 8
1175 0
1176 2
1177 4
1178 6 | 0.4098
0.4154
0.4158
0.4263
0.4317 | 1 2501
1 2795
1 2790
1 2186
1 2082 | 165-3
16494
16-19
16400 | 298 8
284 8
292 6
794 8 | | 700 8
704 6
708.0
512.0
216.0 | 67 005
71 119
75 433
79 953
94 668 | 0 01 745
0 01 749
0 01 753
0 01 757
0 01 761 | 6 4483
6 0955
5 7655
5 4566
5 1673 | 6 4658
6 1130
5 7830
5 4742
5 1849 | 269 7
273 5
278 0
282 1
286 3 | 901 0 | 1179 7
1180 9
1182 0
1183 1 | 0 4475
3 4479
0 4533 | 1877 LE
1.76 16
1675 16 | 6351
6303
6256
6209 | 300.6
384.6
708.6
217.5 | | 120 0
124 6
128 0
132 0
134 0 | 89 643
94 826
100 245
105 907
111 820 | 0 01 766
0 01 770
0 01 774
0 01 779
0 01 783 | 4 8961
4 641 8
4 4030
4 1 /88
3 9681 | 4 9138
4 6595
4 4208
4 1366
3 9859 | 290 4
274 6
298 7
302 9
307 1 | 894 8
891 6
888 5
585 3 | 1185 2
1186 2
1187 2
1188 2
1189 1 | 0 4540 1
0 4697 1
0 4745 1
0 4798 1 | 1477 16
1378 16
1280 16
1183 15 | 6162
6116
6071
6025
981 | 378 8
374 8
328 8
337 0 | | 140 0
144 0
152 0
156.0 | 117 992
124 430
131 142
138 138
145 424 | 0 01 787
0 01 792
0 01 797
0 01 801
0 01 806 | 3 7699
3 5834
3 4078
3 7473
3 0863 | 3 7878
3 6013
1 4256
3 2603
3 1044 | 311 3
315 5
319 7
323 9
328 1 | 878 8
875 5
872 2
868 9 | 1190 1
1191 0
1191 1
1192 7 | 0 4907 1
0 4954 1
0 5006 1
0 50°8 1 | 0990 15
0894 15
0799 15
0705 15 | 936
892
349
806
763
721 | 348 0
344 0
348 0
357 0 | | 160 0
164 0
186 0
177 8
176.8 | 153 010
160 903
169 113
177 648
186 517 | 0 01811
0 01816
0 01821
0 01825
0 01831 | 2 9292
2 8002
2 6691
2 5451
2 4279 | 2 9573
2 8184
2 6873
2 5633
2 4462 | 332 3
336 5
340 8
345 0
349 3 | 862 1
858 6
855 1
851 6 | 1194 4
1195 2
1195 9
1196
7 | 05161 1
05212 1
05263 1
05314 1 | 0517 15
0424 15
0332 15
0240 15 | 678
637
595
554 | 350 0
364 0
364 0
364 0
377 0 | | 50 0
50 0
30 0
92 0
96 0 | 195 729
205 294
215 270
225 516
236 193 | 001847
001853 | 2 31 70
2 2120
2 11.76
2 0184
1 9291 | 2 3353
2 2304
2 1311
2 0369
1 9477 | 353 6
357 9
362 2
366 5
370 8 | 844 5
840 8
837 2
633 4 | 198 0
198 7
199 1
199 9
200 4 | 05416 U
05466 0
05515 0
05567 0 | 0057 15
9946 15
9876 15
9786 15 | 192 | 376 0
386 0
384 0
388 0
392 0 | | 00 0
04 0
00 0
17 0
16 0 | 247 259
258 725
270 600
282 894
295 617 | 001870
001875
001881 | 1 8444
1 7540
1 6877
1 6152
1 5463 | 1 95 30
1 78 77
1 70 54
1 63 40
1 36 51 | 375
379 4
383 8
388
392 5 | 825 9 1
827 0 1
818 2 1
814 2 1 | 201 0
201 5
201 9
202 4
202 8 | 0 5667 05
0 5717 05
0 5716 05 | 0607 152
9518 153
1429 151 | 774
J4
195 | 400 0
400 0
404 0
404 0
417 0 | | 76 8
74 8
76 8
17 8
14 6 | 308 790
327 391
336 463
351 00
366 03 | 001906 | | 1 4997
1 4374
1 3782
32179
26806 | 376 9
401 3
405 7
410 1
414 6 | 806 2 1
802 2 1
798 0 1
793 9 1 | 203 1
203 5
203 7
204 0
204 2 | 0 5915 0 0 0 5964 0 0 6014 0 0 0 6014 0 0 0 6014 0 0 0 6014 0 6014 0 60 | 165 150
1990 150
1993 149 | 180
147
104
66 | 478 8
478 8
478 8
478 8
437 8 | | M 0 | 381 54
297 56
414 09
421 14
448 73 | 001933 1
001940 1
001947 11 | 14878
10212
05764 | 21647
16806
12152
07711
03472 | 419 0
423 5
428 0
412 5
437 0 | 785 4 1.
781 1 1.
776 7 1. | 704 4
704 6
704 7
704 8 | 06161 08
06210 08
06219 08 | 1816 49
1779 49
843 48
557 48
471 47 | 90 | 436 8
440 8
440 8
457 8 | | | 405 P- #55 | Table 1. Saturated Ste | | | | Enthaig | | Entropy | | | | |---|---|---|---|--|---|---|--|---|--|--|---| | fahr
1 | Sq in | Sat
Liquid | Evan | Vapor
5.11 | Sul
Liquid
h, | Evan | | Sat
Ligurd | | 14001
14001 | Fant | | 466 6
464 8
468 0
472 9
478 8 | 465 87
485 56
504 83
524 67
545 11 | 001961
001969
001976
001986
001992 | 0 97463
0 93586
0 89585
0 86345
0 82958 | 0 99424
0 95557
0 91862
0.88329
0 84450 | 441 5
446 1
450 7
455 2
459 9 | 763 2
754 6
754 0
749 3
746 5 | 1204 8
1204 7
1204 6
1204 5
1204 3 | 0 6405
0 6454
0 6502
0.6551
0 6599 | 08:27
08:27
08:27
08:27
07956 | 1 4704
1 4667
1 4629
1 4592
1 4555 | 468 6
464 6
468 6
477 8
477 8 | | 486 6
484 8
486 8
492 8
492 8 | 546 15
587 81
610 10
633 03
656 61 | 0 02009
0 02009
0 02017
0 02025
9 02034 | 0.79716
0.75613
0.73641
0.70794
0.68065 | 0 81717
6.78622
0 75658
0.72820
0.70100 | 464 5
469 1
473 8
473 5
483 2 | 7396
7347
7297
7746
7195 | 1204 1
1203 8
1203 5
1203 1
1202 7 | 0 6648
0 6696
0 6793
0 6842 | 0 7871
0 7785
0 7700
0 7614
0 7528 | 1 4518
1 4481
1 4407
1 4370 | 484 0
484 0
483 0
497 0
497 0 | | 300 0
204 5
508 0
517 0
516.0 | 680 86
705 78
731 40
757 72
784 76 | 0 02043
0 02053
0 02062
0 02072
0 02081 | 0 65448
0 62938
0 60530
0 58218
0 55997 | 0 67492
0 64991
0 62592
0 60289
0 58079 | 497 9
497 7
497 5
502 3
507 1 | 714 3
709 0
703 7
598 2
692 7 | 1202 2
1201 7
1201 1
1200 5
1199.8 | 0 6490
0 69 19
0 6987
0 7036
0 7685 | 0 7113
0 7357
0 7271
0 7135
0 7099 | 1 4333
1 4296
1 4258
1 4221
1 4183 | 500 0
504 0
500 0
512 0
516 0 | | 529 0
524 0
528 0
532 0
533 0 | 812 53
841 04
870 31
900 34
931 17 | 0 02091
0 02102
0 02112
0 02123
0 02134 | 0 53864
0 51814
0 49843
0 47947
0 46123 | 0 55956
0 57916
0 51955
0 50070
0 48257 | 512 0
516 9
521 8
526 8
531 7 | 681 3
675 5
663 6
663 6 | 1199 0
1196 2
1197 3
1196 4
1195 4 | 0 7133
0 7182
0 7231
0 7280
0 7329 | 0 7013
0 6926
0 5839
0 6752
0 6665 | 1 41 46
1 41 08
1 40 70
1 40 32
1 399 3 | 529 0
524 0
528 0
537 0
538 0 | | 548 8
548 8
548 8
552 8
556 8 | 962 79
995 22
1028 49
1062 59
1097 55 | 0 02146
0 02157
0 02169
0 02182
0 02194 | 0 44367
0 42577
0 41048
0 39479
0 3 756 | 0.46513
0.41834
0.41717
0.41660
0.40160 | 536 8
541 8
546 9
552 0
557 2 | 657 5
651 3
645 0
638 5
632 0 | 1194 3
1193 1
1191 9
1190 6
1190 2 | 0 7378
0 7427
0 7476
0 7525
0 7575 | 0 6577
0 6489
0 5400
0 6311
0 6222 | 1 3954
1 3915
1 3876
1 3837
1 3797 | 546 8
544 8
544 2
552 8
558 8 | | 568 0
564 0
568 0
572 0
578 0 | 1133 38
1170 10
1207 72
1246 26
1285 74 | 0.02207
0.02221
0.02235
0.02249
0.02264 | 0 36507
0 35039
0 33741
0 32429
0 31162 | 0 38714
0 37320
0 35975
0 34678
0 33426 | 967 4
967 6
977 9
978 3
983 7 | 625 3
616 5
611 5
604 5
597 2 | 1187 7
1196 1
1154 5
1182 7
1180 9 | 0 7625
0 7674
0 7725
0 7775
0 7825 | 0 6132
0 6041
0 5950
0 5859
0 5766 | 1 3757
1 3716
1 3675
1 3634
1 3592 | 560.0
564.0
572.0
576.0 | | 534 0
564 0
582 8
562 8
562 8 | 1326 17
1367 7
14100
1453 3
1667 8 | 0 02279
0 02295
0 02311
0 02329
0.02345 | 0 29937
9 29753
0.27608
0 25499
0 25425 | 0 32216
0 31048
0 29919
0 28827
0 27770 | 589
594 6
600
605 7
611 4 | 589 9
582 4
574 7
566 8
558 8 | 1179 0
1176 9
1174 8
1172 6
1170 2 | 0 7876
0 7927
0 7978
0 8030
0 8082 | 0.5673
0.5580
0.5485
0.5390
0.5293 | 1 3550
1 3507
1 3464
1 3470
1 3375 | 584 6
584 6
582 6
592 6
596 8 | | 100 0
104 0
103 0
117 0
116 0 | 1543 2
1549 7
1637 3
1686 1
1735 9 | 0.07364
0.07382
0.07402
0.07402
0.07444 | 0 24384
0 23374
0 22394
0 21442
0 20516 | 0 26747
0 25757
0 24796
0 23865
0 22960 | 6171
6229
6288
6348
6408 | 550 6
542 2
533 6
524 7
515 6 | 1167 7
1165 1
1162 4
1159 5 | 0 8134
0 8137
0 82-0
0 8294
0 8343 | 05196
05097
04997
04996 | 1320
 2254
 3238
 3190 | 600 8
504 0
606 0
617 8 | | 170 0
121 0
128 0
132 8
136 8 | 1786 9
1839 0
1892 4
1947 0
2002 8 | 0 02539
0 02539
0 02566 | 0 19515
0 18737
0 17#80
0 17044
0 16226 | 0.22091
0.21225
0.20394
0.1953
0.18792 | 646 9
653 :
659 5
665 9
672 6 | 505 3
196 6
486 7
476 4
465 / | 1153 2
1149 8
1146 1
1142 2
1133 1 | 0 8403
0 8458
0 8514
0 8571 | 04794
04583
04543
04474
04364 | 1 3141
1 3092
1 3041
1 2588
1 2934 | 676 6
674 6
678 6
677 6 | | 44 0
42 0
52 8
16 0 | 2059 9
2118 J
2178 L
2239
2
2361 7 | 0 02595
0 02525
0 02557
0 02591
0 02728 | 015427
014544
013875
013124
012387 | 018021
017259
016534
015816
015115 | 679 1
685 9
692 9
700 0
707 4 | 454 6
443 1
431 1
412 7
405 7 | 1113 7
1129 0
1124 0
411# 7 | 0 8686
0 5746
0 8806
0 8868 | 04134
04015
03893
03767 | 1 2879
1 2821
1 2761
1 2699
1 2634
1 2567 | 536 6
546 0
544 0
540 0
552 0 | | 64 0
64 0
77 0
76.6 | 2365 7
2431 1
2498 1
2566 6
2636 8 | 0.02911 | 011663
010947
010229
009514
008799 | 0 14471
0.13757
0.13087
0.12424
0.11759 | 7149
7729
7315
7402
7462 | 792 1
377 7
362 1
345 7 | 1107 0
1100 6
1093 5
1085 9
1077 6 | 0.8995
0.9064
0.9137
0.9212 | 0 3502
0 3361
0 3210
0 3054 | 1 2498
1 2425
1 2347
1 2756
1 2179 | 556 8
564 8
668 8
677 8 | | # 6
6
6 | 2708 6
2782 !
2857 4
2934 5
301 3 4 | 0 03114
0 03204
0 03313 | 0 08080
0 07349
0 06595
0 05797
0 04916 | 0 7
0 046.3
0 097.94
0 091.10
0 08371 | 758 5
768 2
778 8
790 5
804 4 | 310 1
290 2
268 2
243 1 | 1068 5
1058 4
1047 0
1033 6
1017 2 | 0 9365
0 9447
0 9535
0 9634 | 0.2770
0.2537
0.2337
0.2337 | 2086
1994
1872
1744
1591 | 676 6
684 6
684 6
672 8 | | 8 6
7 6
4 6
5 6
5 67* | 3094 3
3135 5
3177 2
3198 3
3208 2 | 0 03424
0 04108
0 04427 | 0 03857
9 03173
9 02192
0 01304
0 00000 | 2 07519
0 06997
0 06300
0 05730
0 05078 | 827 4
635 0
654 2
873 0
706 0 | 172 7
144 7
102 0
61 4
00 | 999 2
979 7
956 2
934 4
906 0 | 0 9901 0
1 0006 0
1 0169 0
1 03.79 0 | 1490 1
11:36 1
108/6 1
1052; 1 | 1290
1252
1246
0856
0612 | 700 0
707 0
707 0
784 0
705 0
785 47 | 4 A.F. 444 weren. | | | Sp | ecitic Value | me | | Enthalgy | | · | Entropy | Sat | Abs Press | |--|--|---|---|--|--|--|--|---|--|---|--| | Lb. Sq in | Fahr
f | Fidniq
A. | Evan
*'s | Sat
Vapor
VE | Sat
Liquid
h j | Evap
h ₁₆ | Sat
Vapor
ng | Sat
Liquid
S. | tva0 | 13001 | Lt Sq in | | 6 05963
6 25
9 36
1 8
3 8
10 0
14 696
13.6 | 17 018
59 123
79 586
101 74
162 74
193 21
112 00
213 03 | 0 016022
0 016032
0 016071
0 016136
0 016407
0 016592
0 016726 | 3,02 4
12,35 5
641 5
233 59
71 515
18 404
26 782
26 274 | 1302 4
1235 5
641 5
313 60
73 512
18 420
36 799
26 290 | 0 0003
27 382
47 623
59 73
130 20
161 26
160 17
181 21 | 1075 5
1060 1
1048 6
1036 1
1000 9
962 1
970 3
969 7 | 1075 5
1087 4
1096 3
1105 8
1131 1
1143 3
1150 5
1150 9 | 0 0000
0 0542
0 0925
0 1326
0 2349
0 2836
0 3121
0 3137 | 2 1872
2 0425
1 9446
1 8455
1 6094
1 5013
1 4447 | 18/7
03/0
9:81
6-1
73-9
73-64 | 0 04465
0 25
0 50
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 | | 71
21
41
41
41
41
41
41
41
41
41
41
41
41
41 | 27 96
250 14
257 25
281 02
292 71
302 93
112 04
120 28 | 0 015834
0 017009
0 017151
0 017273
0 017383
0 017482
0 017573
0 017659 | 20 070
13 7256
10 4794
8 4967
7 1562
6 1875
5 4536
4 8779 | 26 087
13 :436
10 4965
8 5140
7 1736
6 2050
5 4/11
4 8953 | 196 27
218 9
236 1
250 2
262 2
272 7
252 1
290 7 | 950 1
945 2
933 6
973 9
915 4
907 3
900 9
894 6 | 1156 3
1164 1
1169 8
1174 1
1177 6
1180 6
1181 1
1185 3 | 0 1358
0 2582
0 3921
0 1112
0 1112
0 1111
0 4534
0 4643 | 13942
1313
1314
1314
1314
1314
1305
1675
1470 | 17379
14995
15765
16586
15440
16316
16208 | 20 0
30 0
46 0
56 0
66 0
70 0
88 0
98 0 | | 100 0
118.2
720 0
120 0
120 0
140 0
158 0
104 0
138 0 | 327 82
334 79
341 27
347 33
353 04
355 43
361 55
368 42
377 08
377 53 | 0 01/740
0 01/82
0 01/89
0 01:96
0 01803
0 01809
0 01815
0 01827
0 01833 | 4 4133
4 0306
3 7097
3 4364x
3 2010
2 9952
2 8155
2 6556
2 5129
2 3847 | 4 4310
4 0484
3.7275
3 6544
3 7190
3 0139
2 83,36
2 6738
2 5312
2 4030 | 298 5
305 8
31.2 6
319 0
325 0
336 1
341 2
346 2
350 9 | 888 6
883 1
877 8
872 8
868 0
863 4
859 0
854 8
850 7
946 7 | 1187 2
1183 9
1190 4
1191 7
1193 0
1194 1
1195 1
1196 0
1196 9 | 0 4743
0 4834
0 4919
0 5976
0 5071
0 5141
0 5176
0 5334 | 1 1:34
1 1115
1 0950
1 0815
1 0631
1 0954
1 0435
1 0322
1 0215
1 0113 | 1 5027
1 3350
1 5879
1 5813
1 5737
1 5695
1 5641
1 5591
1 5543
1 5498 | 128 8
110 0
129 8
138 9
148 0
159 0
162 8
178 0
198 0 | | 210 0
210 0
220 0
220 0
230 0
250 0
250 0
250 0
270 0
290 0 | 381 80
355 91
355 98
359 88
359 70
397 39
400 97
404 44
407 80
411 07
414 25 | 0 01839
0 01844
0 01850
0 01855
0 01865
0 01865
0 01870
0 01870
0 01885 | 2 2689
2 16373
2 06779
1 97991
1 87909
1 82452
1 75548
1 69137
1 63169
1 57597 | 2 2873
2 18217
2 08629
1 99846
1 91769
1 84317
1 77618
1 71013
1 65049
1 59482 | - 355 5
359 9
364 2
368 3
372 3
176 1
379 9
213 6
387 1
390 6 | 847 8
839 1
835 4
931 8
828 4
825 0
821 6
818 3
815 1 | 1198 3
1199 6
1200 1
1200 6
1201 5
1201 9
1202 3
1202 6 | 0 5438
0 5490
0 5588
0 5634
0 5679
0 5722
0 5764
0 5864 | 1 0015
0 9923
0 9934
0 9665
3 9565
0 9433
0 9341
0 9291 | 1 5254
1 5374
1 5336
1 5299
1 5264
1 5230
1 5197
1 5166
1 5135 | 200 0
210 0
210 6
210 6
240 0
250 0
250 0
250 0
250 0
250 0 | | 254 0
254 0
490 0 | 41/ 25 | 0 01489
0 01912
0 01934 | 1 52384
1 30642
1 14162 | 1 54274
1 27554
1 16095 | 394 0
409 8
424 2 | 408 9
794 2
780 4 | 1202 9
1204 0
1204 6 | 0 5882
0 6059
0 6217 | 0 9777
0 8909
0 8630 | 1 5105 | 300 0
350 0
400 0 | | 650 0
150 0
150 0
600 0
650 0
700.0 | 456 28
467 01
476 94
486 20
494 39
50J 08 | 0 01954
0 01975
0 01974
0 02013
0 02032
0 02050 | 1 01:224
0 90787
0 82183
0 74962
0 68811
0 63505 | 1 031 79
0 92762
0 84177
0 76975
0 70843
0 65556 | 417 1
449 5
460 9
471 7
481 9 | 767 5
755 1
743 3
732 0
700 9
710 2 | 1204 8
1204 7
1204 1
1203 7
1202 8
1201 8 | 0 6360
0 6490
0 6611
0 6723
0 6878
0 6978 | 0 9378
0 81+8
0 7925
0 7738
0 7552
0 7377 | 1 4738
1 4639
1 3547
1 4461
1 4381
1 4304 | 456 0
500 0
556 0
608 0
636 0
706 6 | | 758 8
868 3
656 9
908 8
958 9
1100 8
1100 8
1158 8
1158 8 | 510 84
518 21
525 24
531 95
538 39
544 58
550 51
556 28
561 82
567 19 | 0 02009
0 02087
0 02105
0 02123
0 02141
0 02159
0 02177
0 02195
0 02214 | 0 58880
0 51809
0 51197
0 4 7968
0 45064
0 45064
0 40047
0 37863
0 35859
0 34013 | 0 50949
0 56896
0 53302
0 50091
0 47705
0 44596
0 47774
0 40058
0 36073
0 36245 | 500 9
509 8
518 4
526 7
534 7
542 6
550 1
557 5
564 8
571 9 | 699 8
689 6
679
5
669 7
660 0
550 4
640 7
531 5
627 2
813 0 | 1200 7
1199 4
1198 0
1196 4
1194 7
1192 9
1191 0
1189 1
1187 0
1184 8 | 0 7022
0 71:11
0 7197
0 7279
0 7358
0 7414
0 7507
0 7578
0 7647
0 7714 | 0 7219
0 7051
0 6899
0 6 753
0 6612
0 6216
0 6216
0 6216
0 6291 | 1 4732
1 4103
1 4096
1 4096
1 3970
1 3970
1 3851
1 3734
1 3734
1 3643 | 758 8 800 9 858 8 958 6 958 0 1058 0 1058 6 1158 8 1158 8 1758 8 | | 1 750 0
1 750 0
1 750 0
1 450 0
1 450 0
1 550 0
1 550 0
1 550 0
1 650 0
1 750 0 | 572 38
577 42
542 32
587 07
591 70
596 70
300 59
504 87
609 05
613 13 | 0 02750
0 02269
0 02307
0 02307
0 02346
C 02166
C 02167
0 02407
0 02407 | 0 32306
0 30722
0 29250
0 27871
0 26584
0 25372
0 28235
0 23159
0 22143
0 21178 | 0 34556
0 32791
0 31537
0 30178
0 28911
0 27719
0 26601
2 25545
0 24551
0 23607 | 573 8
585 6
592 3
598 8
605 J
611 7
618 0
621 2
636 5 | 563 8
594 6
585 4
576 5
567 4
558 4
549 4
540 3
531 3
522 2 | 1182 6
1180 2
1177 8
1175 3
1177 8
1170 1
1167 4
1164 5
1164 6 | 0 7780
0 7843
0 7706
0 7766
0 8025
0 8025
0 8142
0 8199
0 8254
0 8199 | 0 5850
0 5773
0 5620
0 5507
0 5288
0 5182
0 5075
0 4857 | 1 3630
1 3577
1 3525
1 2474
1 2421
1 3271
1 3274
1 3275
1 3176 | 1750 0
1700 0
1750 0
1450 0
1450 0
1552 0
1600 0
1700 0
1700 0 | | 1 790 0
1 800 0
1 850 0
1 850 0
1 950 0
1 950 0
2 7500 0
2 7500 0
2 7500 0
2 7500 0
2 7500 0 | 617 12
621 02
624 83
618 56
612 22
635 80
642 76
649 45
655 89
662 11 | 0 024/2
0 024/2
0 021/5
0 025/1
0 025/4
0 025/5
0 025/5
0 027/27
0 027/50 | 0 20253
0 14390
0 18558
0 17761
0 16999
0 16256
6 1485
0 13603
0 12406
0 11287 | 0 22713
0 21861
0 21052
0 20528
0 19540
0 18631
0 16272
0 15133
0 14076 | 642 5
628 5
654 5
660 4
666 1
677 1
641 8
695 5
707 2
719 0 | \$131
\$038
\$916
4852
4748
4467
4467
4467
4460
3848 | 1155 6
1152 J
1149 0
1145 6
1142 0
1138 J
1130 5
1122 2
1113 2
1103 7 | 0 8163
0 9417
0 9470
0 8573
0 9573
0 7575
0 7477
0 7679
0 9979 | 0 1/65
0 1/65
0 1/64
0 1/64
0 1/64
0 1/64
0 1/64
0 1/64
0 1/64
0 1/64 | 11.78
10.4
10.90
1941
1751
1740
1756
1756
1756 | 1750 0
1600 0
1850 0
1950 0
1950 0
2000 0
2100 0
2100 0
2100 0 | | 2500 Q
7500 A
2700 G
2700 G
2700 C
2700 C
2700 C
2700 C
2700 C
2700 C | 668 11
673 91
679 53
684 96
690 27
695 33
700 28
705 08
705 47 | 0 02859
0 02938
0 03029
0 03134
0 03262
0 03473
0 04472
0 05078 | 0 10209
0 09172
0 08165
0 07171
0 06158
0 05073
0 03771
0 01191 | 012768
012110
011194
010305
009420
008500
007452
005663
005078 | 731 7
734 5
757 3
770 7
785 1
801 8
82 2 0
875 5
906 0 | 3616
33/6
3123
2951
2547
2183
1693
561 | 1093 3
1087 0
1069 /
1055 8
1039 8
1070 3
1933 3
1011 6
906 0 | 0 91 39
0 92 17
0 94 64
0 94 64
0 95 88
0 97 23
0 991 1
1 0 3 5 1
1 0 6 1 2 | 0 1206
0 1977
0 1241
0 1491
0 1215
0 1891
0 1450
0 0 1462
0 0000 | 1 7 3 4 5
1 7 5 7
1 7 6 7
1 7 6 7
1 7 6 7
1 8 7 7
1 1 7 7
1 7 7
1 7 7 | 2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0 | *Critical pressure w # 2.0 Plant Design, Including Safety and Emergency Systems (25.0) # 2.1 With regard to the Diesel Generators: - a. The "Emergency Bypass-Test" selector switch is in "Emergency Bypass" position when a low reactor water level initiation signal is received. Which diesel generator trips would still be operable? - b. Which of these trips would be bypassed if the selector switch was in the "Test" position and the same initiation signal was received? (0.5) (2.0) - 2.1 a. (all 4, 0.5 each) 1. Engine overspeed (2.0) - 2. Generator differential relay - 3. Fail to start (incomplete response) - 4. Emergency stop pushbutton - b. None (0.5) Ref: WNP-2 System and Procedures; DG, pg. 33-35. 2.2 What safety action(s) are auto-initiated at each of the following indications: | a. | Level 4 (31.5")? | (0.5 | |----|------------------|------| | b. | Level 2 (-50")? | (0.5 | | c. | 1135 psig? | (0.5 | | d. | 1076 psig? | (0.5 | 2.2 a. Runback recirc. flow if only 1 reactor feed pump. (0.5) b. Initiate RCIC and HPCS; trip recirc. pump; initiate NSSS iso. groups 1, 2, 3, 4 and 7 (Equipment, in leased groups), (0.5) account of all summer in the samps assume; if not, since orinjected c. ATWS trip of recirc. pumps. (0.5) d. 2) MSL S/R valves open (relief mode). Ref: WNP-2 System and Procedures; NBI, pg. 55 and 57; Main Steam, pg. 32. (7) Initiate RCIC and HPCS; trip recirc. pump; initiate (0.5) (0.5) (0.5) 2.3 With respect to the Automatic Depressurization System (ADS): | a. | <u>List (including setpoints)</u> the automatic activation sequence for ADS. | (1.5) | |----|---|-------| | b. | Which initiation signal(s) can be cleared by pressing a Seal-In Reset pushbutton(s)? | (1.0) | | c. | Which of the signal(s) in (b) can be cleared only if the initiating condition no longer exists? | (0.5) | 2.3 a. 1. Hi drywell pressure (>1.65 psig) 2. Lo water level (level 3: __50") +/3 " 3. Lo water level (level 1: -129") (0.3)(0.3)(0.3)4. 105 second timer timed out (0.3)5. ≥ 1 low pressure ECCS pump (125 psig for RHR/LPCI; 145 psig for LPCS). (0.3)b. 0.5 pts each (1.0) 1. ADS A(B) reactor pressure vessel low level logic Hi drywell pressure A(B) c. Hi dryweil pressure (0.5)Ref: WNP-2 System and Procedures; AOS, pg. 8-10; 12; and 12, respectively; + NB 1855. ### 2.4 With regard to the Reactor Protection System: | a. | Whic | h trip(s) can only be bypassed manually? | (1.25 | |----|------|--|---------| | b. | With | regard to the backup scram valves: | | | | 1. | Are they solenoid or air operated? | (0.5 | | | 2. | To cause a scram, do they: (a) energize or (b) deenergize (if solenoid) (c) pressurize or (d) vent (if air operated) (choose only I answer) | (0.5) | | | 3. | What is their function? | . (0.5) | 2.4 a (0.417 each) 0.21 1. APRM Hi-Hi 2. APRM inop. 3. Scram discharge volume Hi level trip b. 1. solenoid 2. energize (a) 3. Spleed air from scram valves (vent header to atmosphere) (0.5) Ref: WNP-2 System and Procedures; RPS, pg 15, 15, 16; and 30-31, respectively. ### 2.5 With regard to the AC Electrical Distribution System: sources for SM-4? a. Which lockout relay will be tripped upon a Transformer Differential Current (87TM)? (0.5) b. List three (3) actions which will occur when the lockout relay in (a) is tripped? (1.5) c. The loss of which 480V MC bus will deactivate both loops of shutdown cooling? (0.5) d. What happens upon the loss of the normal and startup (0.75) Notregid for credit: 2.5 a. Unit lockout (86XU)) (0.5)b. any 3, 0.5 pts each (1.5). Trins and locks-out all "N" breakers • Trips 4F circuit breaken EGenerator Exciter Field Breaker E Trips main turbine (20 AST) De-energizes 86XIU Starts oscillograph · Starts computer c. MC-8-B-A () (0.5)d. automatic transfer of SM-4/to the Division 3 EDG (0.75)Ref: WNP-2 System and Procedures; AC Distr.; pg. 15 and 16 for a, b, d; AOP 4.7.1.9, Loss of Power to SM-8, pg 3 of 4 for c. close all 5 heatern Trups and beks - out 500 to heaters Delete 2 \$b. " " main generator Remarks gen ground protection Locks met systete full heale Blocks " " breaker Try ann uncesta ### 2.6 Concerning the Standby Liquid Control System (SLC): a. Give three (3) of the four automatic actions which occur when the SLC System Control Switch is placed in the "Sys A" position? (1.0) b. What is the purpose behind the SLC storage tank heater? (1.0) c. There is a SLC pump trip on low flow (TRUE or FALSE)? (0.5) 2.6 (any 3, 0.33 each) a. 1. Both SLC squib-valves fire. 2. RWCU-V-4 isolates. 3. Both SLC storage tank outlet valves open. 4. SLC-P-1A starts (if at least one suction valve is open). b. Maintains solution temperature high enough to prevent precipitation of the sodium pentaborate. (1.0) c. False (0.5) Ref: WNP-2 System and Procedures, SLC; pg. 9, 13, 10, respectively. #### 2.7 Answer the following questions concerning the Low Pressure Core Spray System (LPCS): of the LPCS-V-5 injection valve? | a. | What is the rated flow of the main LPCS pump? | (0.75) | |----|--|--------| | b. | In shutting down LPCS to standby readiness, is the injection shut off valve (LPCS-V-5) closed before | | | | stopping the LPCS pump (Yes or No)? Why? | (1.25) | | c. | The check valve located inside the drywell is motor-operated (Yes or No)? | (0.5) | | d. | What are the interlocks associated with the auto opening | | not regid for credit even though "rated in hy defentions for centifyed primpage whe for this. a. 6350 gpm (at 128 psid reactor to suppression chamber.) 2.7 (0.75) b. No (0.5); to ensure no voids are left in the discharge line which wouldcause water hammer upon subsequent pump restart (0.75) (1.25) c. No (0.5) (No undervoltage on SM-7 and reactor pressure <470 psig. (0.75) Ref: WNP-2 System and Procedures, LPCS; pg. 8, 11-12, 5, and 7, respectively. prostor should
broke relative to pump Heed to know how to prevent uster homes. weed not know procedure step of valve numbers. (0.75) | 2.8 | With | regard | to | the | Plant | Service | Water | System | (TSW) | | |-----|------|--------|----|-----|-------|---------|-------|--------|-------|--| |-----|------|--------|----|-----|-------|---------|-------|--------|-------|--| | a. | what is the purpose of the Chlorine System? | (1.0) | |----|--|--------| | b. | What causes starting of the TBCCW pumps and opening of discharge valves? | (1.5) | | c. | Since TSW provides cooling only to non-essential equipment, why must the plant be shutdown when neither TSW pump can be started? | (0.75) | | | pump out be started: | (0.75) | 2.8 a. To inject chlorine to retard the growth of algae within TSW systems. "Forward growth of organics" also accepted (1.0) all 3 regimed (6.5 arch) b. A Pumps start on low pressure (<80 psig) on alternate pump or undervoltage on SM 85 (75) for 15 sec (0.75); discharge valve opens when pump starts if control switch in auto (0.75); Task pump selected must be true to the first description of the secondary and primary plant. (1.5) c. Because components cooled by TSW are essential for continued operation of the secondary and primary plant. (0.75) Ref: WNP-2 System and Procedures, TSW; pg. 3, 4, 7, respectively. - 2.9 Concerning the <u>CRD Hydraulic System</u>, give the appropriate values for the following: - a. Insert drive water pressure at 400 psig reactor pressure. (0.5) - b. Cooling water pressure at 400 psig reactor pressure. (0.5) 2.9 A. Rx + 260 = 660 psig (0.5) 2. Rx + 20 = 420 psig (0.5) Ref: WNP-2 System and Procecures; CRDH; pg. 2. 2.10 Concerning the Condensate Storage and Transfer System (CSTS): a. What is the minimum level that must be maintained in CST tanks at all times? (0.5) b. Why is this minimum level required? (1.0) 2.10 a. 135,000 gal 16'8"} (0.5) b. To provide suction for RCIC and HPCS systems to ensure immediate availability of sufficient condensate for ECCS and shutdown (1.0) Ref: WNP-2 System and Procedures, CSTS; pg. 1 and 13. ### 3.0 Instruments and Controls (25.0) ### 3.1 With regard to the Rod Worth Minimizer System (RWM): | a. | Under what two (2) conditions will the Select Error alarm light be lit? | (1.0) | |----|---|-------| | b. | Above LPAP, what alarms remain operative? | (1.5) | c. TRUE or FALSE: A rod block is applied upon the second insertion error. (0.5) 3.1 a. Whenever a selected control rod is not in the currently latched group (0.5) or one currently positioned so as to cause a withdraw or insert error (0.5) (1.0) b. Inop/Reset; Withdraw block; Insert block (1.5) c. False (0.5) Ref: WNP-2, System Description, RWM, pp. 18, 20, 18, respectively. 24 3.2 For the events listed, match the action(s) that will occur in the Recirculation System. Assume that the pumps are running in high speed. (An action may be used more than once) (2.5) Events: 1. Suction or discharge valves <90% open 2. Vessel hi presssure (ATWS) 3. Feedflow <30% with FCV <18% open 4. Reactor vessel low level (Level 3) 5. RPT Actions: a. Fast Speed Trip b. Slow Speed Trip c. LFMG start. 3.2 (0.5) each 1. A, B 2. A, B 3. A, C 4. A, C 5. A, C Ref: WNP-2, RRC, pg. 39. (2.5) 3.3 According to Monthly Operational Bulletins: Lette How did the failure, on two shifts, to check chart movement on wetwell level recorder SMS-LR/RR-4 contribute to loss of wetwell level? (1.0) b. Why is it important to ensure that <u>local</u> temperature indicators at the <u>nitrogen</u> supply shed and in the reactor building are monitored? (1.0) 3.3 delete The recorder had been, in fact, inadvertently de-energized so that annunciator alarm switches activated by the recorder pen were also 0.0.S. -(1.0) b. No control room monitors exist. If nitrogen temperature gets too low, nitrogen flow onto a 30 in. dia. containment purge header and onto wetwell and drywell purge liner inside containment could cause failure through nitrogen embrittlement. (1.0) Ref: WNP-2 Monthly OP Bull: April-May, pg. 1; Feb-Mar, pg. 6, respectively. ### 3.4 In reference to the Source Range Monitors (SRM): a. What two (2) types of radiation are separated by the pulse height discriminator (PHD)? Which one causes an output signal from the PHD? (1.0) b. Indicate (by Yes or No) whether the following trip circuits in the SRM electrical circuitry will generate a signal for use in the RMCS rod block circuitry: (3.0) 1. Downscale 2. Retract Permit 3. Upscale High 4. Upscale High High (shorting links installed) 5. Incp. 6. Reactor period. 3.4 a. Neutron and gamma radiation (0.5); neutrons cause output (0.5) (1.0) b. (0.5) each (3.0) 1. Yes 2. Yes 3. Yes 4. No 5. Yes 6. No Ref: WNP-2, System Description, IRM, pg. 14 and 28, respectively. | 3.5 | With | regard | to | the | Reactor | Manual | Control | System | (RMCS) | : | |-----|------|--------|----|-----|---------|--------|---------|--------|--------|---| | | | | | | | | | | | | | a. | The accumulation light starts <u>flashing</u> : 1. What is the cause(s) of this? 2. What causes the light changing to "steady on"? | (1.5) | |----|--|---------| | b. | In mode 5 under what conditions, and in what manner will Sele | ct /1 5 | c. Can an overtravel alarm be received if the control rod is connected to its drive unit (Yes or No)? (0.5) (1.5) 3.5 a. 1. High-level (5 cc) or low No pressure (970 psig) (0.75) 2. Operator acknowledges alarm with "Accumulation Trouble Acknowledge" pushbutton (0.75) b. Any rod is not fully inserted (0.75); SELECT BLOCK amber light (0.75) c. No. Ref: WNP-2, System Description, RMCS, pp. 7, 11, and 18, respectively. ## 3.6 With regard to the RCIC system: | delete | a. | RCIC pump flow indicator RCIC-FIS-2 has two contacts. What is the purpose of each contact? | 12.0) | |--------|----|--|--------| | | b. | For monitoring steam flow to the RCIC turbine: | | | | | How many differential pressure switches (DPS) are
used to monitor steamflow? | (0.5) | | | | 2. Where are they located? | (0.75) | | | c. | Should the RCIC-V-8 and RCIC-V-63 keylocked control switches be left in OPEN or CLOSED position when resetting any isolation signal? | (0.5) | | | | | | | 3.6 | | 1. | on high flow to send a signal to close the minimum flow bypass valve (RCIC-V-19) (1.0) and | | |--------|-----|------|--|--------| | deleto | L | 2. | on low flow with high discharge pressure (RCIC-PS-20) to open RCIC-V-19 (1.0) | -(2.0) | | | b. | 1. | 4 | (0.5) | | | | 2. | 2 - downstream of inboard steam isolation valve (RCIC-V-63) (0.375); 2 - downstream of the branch line to the RHR (0.375) (questated for the deposition of the line (a.25) field breated on flowellows made hyper ") | (0.75) | | | c. | Open | Closed | (0.5) | | | Ref | WNP. | -2, System Description, RCIC, pp. 27, 27; and SOP 2.4.6, 2 of 29, respectively. | | - 3.7 Concerning vessel instrumentation, state whether the following are TRUE or FALSE: - a. The Fuel Zone Range level indicators are calibrated cold. (0.5) - b. Level 1 (-128") will initiate NSSSS isolation groups: 1, 2, 3, 4, and 7. (0.5) - c. The reference leg design of the Level Indicators have been designed to compensate for extreme temperature transients. (0.5) - d. Jet pumps 5, 10, 15, and 20 were individually flow calibrated prior to installation. (0.5) - e. Pressure measured at the core inlet plenum is also used as input to the CRDH system. (0.5) - 3.7 (0.5) each (2.5) - a. False - b. False - c. False - d. True - e. False Ref: WNP-2, System Description, NBI, pp. 57, 56, 5, 7, and 33, respectively. - 3.8 With regard to the Power Range Neutron Monitoring System (PRMS): - a. What four (4) subsystems make up the PRMS? (0.75) - b. Which three (3) trips are input to RPS from the PRMS? (0.75) - c. For what two (2) conditions and for which components do the white indicators next to the heat flux meters below the full core display become lit? (0.75) 3.8 a. RBM, Flow Unit System, APRM, LPRM b. APRM upscale thermal, APRM upscale neutron, inop. (0.75) c. Failed (0.25) bypassed conditions from LPRMs associated with rod selected (0.25). and agan hyperal (arr) Ref: WNP-2, System Description: LPRM, pg. 1; APRM, pg. 36; LPRM, pg. 4; respectively. ar APRM .66 Wp +42 mean late upward 11 70 mean late upward 15.71 mean lotte upward module under late are separated. Are module under late are separated. 3.9 Which type of detector (scintillation, ion chamber, fission chamber or Geiger Mueller) is used in the following process radiation measurements? | a. | Main steam line | . (0.5) | |-----|-------------------------------|---------| | b. | Off-gas post-treatment | (0.5) | | C . | Reactor building main exhaust | (0.5) | | | Redecor buriding main exhaust | (0.5) | 3.9 a. Ion chamber (0.5) b. Geiger-Mueller (0.5) c. Gieger-Mueller (0.5) Ref: WNP-2 Syst. Descript., PRM, pg. 4, 3, 4, respectively. Section points removed 3.3 a -1.0 3.6 a -2.0 -3.0 = 22.0 mentolel - 4.0 Procedures Normal, Abnormal, Emergency and Radiological Control (25.0) - 4.1 With regard to General Operating Procedure 3.1.2, Reactor Plant Cold Startup: - a. What $\frac{action(s)}{pump}$ should the operator take to prevent RWCU (1.0) - b. Why should you avoid heat-up rates that demand a high reject temperature . (1.0) -
c. How will RPV water level stability be indicated? (1.0) 4.1 a. By adjusting reject valves RWCU-V-31 and V-33 as required. (1.0) b. This will cause high RWCU F/D inlet temperatures and RWCU F/D isolation at 140°F. (1.0) c. By a small output signal on the RFW-FCU-10 controller. (1.0) Ref: WNP-2 PPM 3.1.2., pg. 8 of 18. 4.2 With regard to performing <u>Rod or Minimizer</u> (RWM) <u>initiation</u> in accordance with the System Operation Procedures for RWM (2.1.4): a. How does the operator verify the RWM is not in "rod test"? (1.0) b. What happens when the INOP/RESET pushbutton is depressed before the "System Initialize" pushbutton is depressed? (1.0) c. What happens when the INOP/RESET pushbutton is depressed after the system is initialized? (1.0) 4.2 a. By depressing the TEST/SELECT button, observing illumination, depressing again and observing the light goes out. (1.0) b. Any previous alarm ("Comp/Progam") is reset, the Comp light and the RWM/Program lights are illuminated. (1.0) c. The RWM and program lights extinguish. (1.0) Ref: WNP-2 SOP 2.1.4, pg. 2-3 of 3. - 4.3 Relative to the Emergency Operating Procedure for RPV Pressure Control (RPV/P)(5.1.2): - a. List any three (3) of the five entry conditions. (1.5) - b. What are the four (4) systems to be used to augment the main turbine bypass valves for controlling pressure below 1075 psig? Give any limiting condition on the use of these systems. (3.0) - 4.3 a. any 3; 0.5 points each (1.5) - 1) RPV water level below +13.0 in. 2) RPV pressure >1037 psig 3) Drywell pressure >1.68 p 3) Drywell pressure >1.68 psig4) A condition requiring MSIV isolation - 5) A condition requiring reactor scram and power is above 5% or cannot be determined. - b. (3.0) - 1) SRV's (0.6), if suppression pool water level >17 ft (0.3) 2) RCIC (0.6) - RWCU (recirculation through heat excharger and blowdown modes) (0.6); if no boron has been injected into RPV (0.3) 4) Main steam line drains (MS-V-16, -19, -21) (0.6) Ref: WNP-2 EOP 5.1.2, pp. 1 and 6-7 of 8. Indreg'd frauent - 4.4 a. The plant is in the process of starting up (Condition 2) with all systems and components normal except that the "A" IRM has previously failed high and was subsequently bypassad. The "E" IRM now loses power and is declared inoperative. May the plant continue in this condition for an extended period of time without being in violation of Tech. Specs? Also give the appropriate action statement. (1.5) - b. Could you place the mode switch in run (Condition 1) to bypass the action statement in part "A"? (0.5) 4.4 a. Yes (0.5); place the RPS A channel in the tripped position within one hour (1.0). (1.5) b. NO (0.5). (0.5) Ref: WNP-2 T/S, pp. 3/4 3-1; 3/4 0-1, respectively. 180055 Assuming a loss of feedwater heaters while operating at 100% power, according to Abnormal Operating Procedure 4.2.7.2: a. Give three (3) of the four events that could have caused this? (2.25) b. What change would you expect to see in the Main Generator MW (increase, decrease)? (0.5) c. What is the first immediate operator action you should (0.75) (Any 3 0 0.75 each) (1.125) (1.125) (1.125) Correct auswers are land 2 or land 4 (1.125) 4.5 (2.25)1. Heater isolation on high water level. 2. Turbine trip. 3 (System malfunction resulting in the) isolation of or more feedwater heaters. 4. (System malfunction resulting in the) closure of extraction steam line valves for one or more feedwater heaters. (ok only of # 2 not given) Increase (0.5)c. Reduce reactor power via recirculation flow control Ref: WNP-2 AOP 4.2.7.2, pg. 1 of 2. (0.75) 37 4.6 With regard to the operating procedure for 250V DC Distribution System (SOP 2.7.7), give any three (3) of the four indications that the operator will have if the tie to distribution bus S2-1 has been completed. (2.25) 4.6 (Any 3 @ 0.75 each) Syack wording not required (2.25) - "250 VDC LOSS, BATT B2-1 FAIL" alarm on board "C" in Control Room clears. - "250V VDC BATT B2-1 GND" alarm on board "C" remains cleared. - 3. Bus S2-1 voltage reads 220 to 250V on board "C". - 4. Bus S2-1 ground lamps on board "C" are on. Ref: WNP-2 LSOP 2.7.7, pg. 2 of 5. Presdure hemoresta not rold Expt nome of claim Delete Gueston. Youly worded. 4.7 Reactor coolant leakage into the primary containment from unidentified sources shall not exceed (1) gpm and the total coolant leakage shall not exceed (2) gpm. (1.0) 4.7 1. 5 gpm (0.5) 2. 25 gpm (0.5) Ref: WNP-2 Tech Specs., pg. 3/4 4-9. 4.8 The Reactor Operator reports that "GEN BUS DUCT TEMP HIGH" and "GEN BUS DUCT CLR FLOW LOW" have activated and that bus duct temperatures are increasing. The failure of which component(s) is the most probable cause? (1.0) 196 4.8 The TSW solenoid supply valve Ref: WNP-2 AOP 4.5.6.1, pg. 2 of 2. (1.0) 4.9 According to AOP 4.8.3.2 "Loss of all RCCW," if no RCCW pumps can be started during power operation, a rapid increase will occur in (Fill in). (0.5) 4.9 Drywell pressure (0.5) Ref: WNP-2 AOP 4.8.3.2, pg. 3 of 3. 4.10 According to the Abnormal Operation Procedures for Fires (4.12.4.1), one indication, other than fire alarm, will be fire header pressure fluctuation (TRUE or FALSE)? (0.5) 4.10 True (0.5) Ref: WNP-2 AOP 4.12.4.1, pg. 1 of 2. 4.11 According to the Limitations stated in the Operating Procedures for the Reactor Core Isolation System (SOP 2.4.6), what must you do if manual isolation is required at any time that system initiation is not sealed in? (0.75) 4.11 Close the isolation valves using their respective control switches. (0.75) Ref: WNP-2 SOP 2.4.6, pg. 2 of 28. #### 4.12 With regard to Administrative Procedures: - a. There must be two (2) licensed operators in the Control Room at all times (TRUE or FALSE)? (0.5) - b. During new fuel handling operations, a licensed operator must be on the refueling floor (TRUE or FALSE)? (0.5) - 4.12 a. False (0.5) - b. False or TRUE if answer refused Tach Space. (0.5) Ref: WNP-2 Admin. Proc: 1.3.2, pg. 3 and 6.2.3, pg. 2, respectively. 7.5. para 6.2.1.d for True I disagree that "b' can be true. A SHO or BRO restricted to Refueling 25 regumed Not 2 Ro "e" is true if stated were and one sho. 4.13 According to Standing Order/Night Orders (Admin. Proced. 1.3.1), under what conditions can the reactor operator shut the reactor down without being instructed by the Shift Manager or required by the Emergency Procedures? (1.0) 4.13 When safety of reactor is in jeopardy or when operating parameters exceed any RPS setpoint and autoshutdown does not occur. (1.0) Ref: WNP-2 Admin. Proc. 1.3.1, pg. 2. 4.14 With regard to the <u>Health Physics Program</u>, what are the whole body exposure limits for the following: (1.0) - a. Administrative exposure limits (day, quarter, year) - b. Lifesaving actions 1250 munity almosphate A APM 111.3 M30725 4.14 1. 300 mrem/day (0.17); 1000 mrem/quarter (0.17); 5000 mrem/year (0.16) 2. 75 rem (0.5) (0.5)(1.0) Ref: WNP-2 Health Physics Program, 3.1.5, pg. 4 of 5. Master ### U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION | | | | Facility: | WNP-2 | |---------------------|---------------------|----------------------|--------------------|--| | | | | Reactor Type: | BWR5 | | | | | Date Administe | ered: 11/6/84 | | | | | | I. S. Levy | | | | | Candidate: | | | INSTRUCTIO | NS TO CA | NDIDATE: | | | | Staple quare indica | estion s
ated in | parenthesis af | ter the question | et. Points for each question. The passing grade requires of at least 80%. Examination examination starts. | | Category
Value | % of
Total | Candidate's
Score | % of
Cat. Value | Category | | | 25 | | | Theory of Nuclear Power Plant
Operation, Fluids and
Thermodynamics | | 25 | 25 | | 6. | Plant System Design, Control and Instrumentation | | 23.5 | 24.87 | | 7. | Procedures - Normal, Abnormal,
Emergency, and Radiological
Control | | 15 | 2122 | | 8. | Administrative Procedures,
Conditions, and Limitations | | 44.5 | | | | TOTALS | | | | Final Grade | | | | All work | done on | this examinati | ion is my own; I | have neither given nor received | | | | | 7 | andidate's Signature | ### Questions and Answers to WNP-2 SRO Exam - 11/6/84 - 5.0 Theory of Nuclear Power Plant Operations, Fluids and Thermodynamics (25.0) - 5.1 Give three (3) reasons why fuel densification is a problem. (2.25) 5.1 (any 3; 0.75 each) (2.25) - Local power spikes resulting from axial fuel column gaps. - Increased linear heat generation rate due to pellet axial shrinkage. - 3. Cladding collapse at the location of axial fuel column gaps. - Increased stored energy due to decreased pellet-cladding thermal conductance resulting from increased radial gap size. Ref: Morris Training Center: Thermo/HT/Fluid Flow (3/83), pg. 9-107 where 4 annuar engine, 0.5625 pseul. Where 5 Duswors ere given, 22 = .45 each. | 5.2 | Your latest computer following values for | | | and MAPRAT sh | g: T.s "safts tent on | |-----|---|----------------------|----------|-----------------|-----------------------| | | Region | 1 | 2 | 3 | | | | MFLPD | 0.95 | 1.0 | 1.05 | A Said Time | | | MAPPRAT | 0.92 | 1.08 | 1.00 | want in your anich | | | a. Which, if any, o | | | | (1.0) | | | b. Why are each of protect against? |) | | | (1.5) | | | c. Compared to BOL,
larger or smalle | would the
r? Why? | e values | for MAPRAT at I | EOL be (1.5) | | 5.2 | a. | MFLPD Region 3
MAPRAT Region 2 | (0.5)
(0.5) | |-----|-----|--|----------------| | | b. | MFLPD - Maintains <1% cladding strain, fuel failure. | (0.75) | | | | MAPRAT - Maintains <2200°F following LOCA, decay heat removal | (0.75) | | | с. | Larger (0.5); MAPLHGR limit decreases (0.5) since local peaking factor gets smaller as, with exposure, heat transfer is reduced (0.5). | (1.5) | | |
Ref | | | In reference to the reactor water cleanup regenerative heat exchanger, assume the following conditions and, then, perform the calculations. #### Conditions: T inlet from reactor (tube side) = 550°F T outlet from H_X (tube side) = 250°F T inlet shell side = 120°F Tubeside flow rate from reactor = 1300 gal/min Shellside flow rate to reactor = 1300 gal/min ### Calculate (and show all work): - The amount of heat transfer (Btu/hr) on the tube side. (1.0) - The temperature of the water going back to the reactor. (1.0) - The maximum temperature of water going back to the reactor if the flow back to the reactor were decreased 4. Of must me to cate mu dend seef due to lead. A so that important to home why decrease occur; only that at due occur. from 1,300 gpm to 800 gpm due to a leak in the tube side of the H. # 5.3 a. Q = M x Cp x AT = 1300 gal/min x 60 min/hr x 8.33 lbm/gal x 1 Btu/1bm°F x (550-250) c. 550°F as follows: $$T_{max} = Q/M + 120$$ but cannot be greater than 550°F (max. T from reactor to inlet) Ref: Morris, T. C.; Thermo/HT/Fluid Flow (3/83), pgs. 8-40,41. 5.4 While at 75% power, the master feedwater controller fails low. Will the NPSH of the recirculation pumps increase, decrease, or remain unchanged? Briefly, explain why. (1.25) 5.4 Decrease (0.5); reduced subcooling (0.75) (1.25) Ref: Morris, T. C.; Thermo/HT/Fluid flow (3/83), pg. 7-96. # 5.5 With regard to excess reactivity: | a. | reactor is greater than that for the hot, clean, zero power condition (TRUE or FALSE). | (0.5) | |----|--|-------| | b. | The excess reactivity for the | | 5.5 a. True (0.5) b. False (0.5) c. False (0.5); fuel depletion and fission products increase (0.75) Ref: WNP-2, Reactor Theory Rev. pg. 39. - 5.6 The WNP-2 reactor is taken to criticality from a cold condition and then placed on an 80 second positive period. - a. From control room <u>nuclear</u> instrumentation, how can the operator tell <u>when</u> the heating range has been reached? (Rod position and recirculation are held constant). (0.75) - b. In which of the following intervals was the heating range entered? Explain the reason for your answer. (Show all work.) (1.5) - Interval 1 reactor power increased by a factor of 6 in 143.3 seconds. - Interval 2 reactor power increased by a factor of 3 in 99.0 seconds - Interval 3 reactor power increased by a factor of 5 in 128.8 seconds. (Note: the intervals may not be in sequence.) 5.6 a. Operator can notice that period has become longer, and that power change on IRMs is leveling off(*375) b. (From P = Poet/T + T = t / In P/Po) Interval 2 (0.5); the period has lengthened from 80 seconds. The other intervals have 80 second periods (1.0). Ref: General control room indications; WNP-2, Reactor Theory, pg. 58. ### 5.7 With regard to Reactivity Coefficients: a. Which reactivity coefficient is the most dominant under the following conditions: (2.0)1) During rod drop accident at 15% power 2) Pulling rods at 1% power 3) MSIV closure at 100% power 4) Feedwater controller fails high at 100% power? b. For "feedwater controller fails high at 100% power," a.4) above: 1) Give the reason for your answer to a.4) above. (1.0)2) What will happen to power (increase, decrease, stay the same)? (0.5)3) What is the approximate value at BOL of the coefficient you gave as your answer to a.4) above? (0.5)5.7 a. (0.5 for each) (2.0)1) Doppler coefficient Moderator coefficient 3) Void coefficient 4) Void coefficient (0.33) b. 1) Increase in core subcooling which reduces void fraction whose coefficient has greatest effect on reactivity. 31 (1.0)2) Increase (0.5)gue credit for conent. 3) $-1 \times 10^{-3} \Delta K/K/1\%$ void change (0.5) Ref: Standard Reactor Theory. Near the end-of-cycle (EOC), will differential control rod worths near the bottom of the core be lower or higher than 5.8 those near the top of the core? Why? (1.75) Higher (0.5). As fuel burns, control rods must be withdrawn causing flux to peak lower in the core (0.75); and rod worth is proportional to flux2 (0.5). Ref: WNP-2, Reactor Theory, pg. 81. (1.75) - 5.9 With regard to the effects of equilibrium Xenon and Samarium (the reactor has been operated at a constant power for many days): - a. If reactor power is then <u>doubled</u>, will the new equilibrium <u>Samarium</u> concentration be exactly <u>twice</u> as great (YES or NO)? <u>Explain</u>. - b. If the reactor is shut down, initially by a 1% ΔΚ/Κ, will the initial effect of Xenon be to increase or decrease the shutdown margin? (0.5) (1.5) 5.9 a. No (0.5); the equilibrium value of samarium does not depend on flux, and, therefore, it does not depend on power level (1.0). Ref: WNP-2 Reactor Theory, pg. 87. b. Increase. (0.5) Ref: Standard Reactor Theory #### 5.10 With regard to Delayed Neutrons: - a. In causing fissions, what is the major difference between delayed neutrons and prompt neutrons? (0.75)b. Explain how and why the value of the delayed neutron fraction, Beta, changes from the beginning of core life to the end of core life. (0.75) - c. Explain the effect on reactor control of the change in Beta with core life. (0.75) 5.10 a. Delayed neutrons have a lower probability of causing fast fission (the "importance" factor is less than 1). (0.75) Ref: Standard Reactor Theory. 0.0056 gar WUP-2 Nevers b. Beta will decrease from about 0.007 at BOL to 0.0054 (0.375) at EOL due to buildup of Pu-239 and depletion of U-235(0.31) (0.75) Ref: Standard Reactor Theory. c. As beta decreases with core age, reactor period decreases and, therefore, for the same reactivity addition rate, a shorter period and less easy control is obtained at EOL. (0.75) Ref: Standard Keactor Theory $$\alpha_v = -1 \times 10^{-3} \frac{\Delta K/2}{K}$$ voids $$T\frac{1}{2} = \ln(2)/\lambda$$ $$\rho = \frac{k(eff) - 1}{K(eff)}$$ Table 1: Saturated Steam: Temperature Table | | - | | | Table 1 | Satura | led Steam | : Tem | perature 1 | able | | | | |--|-------|------------------|------------|------------------|------------------|------------------|---------------|------------|------------------|---------|---------|--------------| | Color Colo | | | Saf | pecific Va | | Sat | Enthalp | | Sat | Entrep | | feren | | | | p | | | | | | V.spor | fieind | | * agest | | | | 34 € | 0.001110 | 0.014051 | 30019 | 3061 9 | 1 976 | 1074.4 | 1076 4 | 7 3/91 | (a) | 2.61 | | | 1 | 18 8 | 011249 | 0 016019 | | | | | | 0.00.41 | 2 1451 | | 16.0 | | 1 | 47 6 | 013133 | 1016019 | 27124 | 72724 | 10 035 | 1060 4 | (0/93 | 0.0702 | 2 1 125 | 21527 | | | 1 | 16.6 | 0 15314 | 9/01/4/970 | 17:57 | 1765 7 | 14 047 | 10676 | 1081 6 | 0.37.85 | 21111 | 2149 | 46.6 | | 14 0 200-15 0 016-05 148-0
148-0 1 | | | | 1704 8 | | | 1055 3 | 1087 4 | 0.0151 | 7 0901 | 2 1262 | 56.6 | | | 16 8 | 0.20%25 | 0/016/7/8 | 1383 6 | 1383 6 | 27 058
24 059 | 10619 | 1086.0 | 0 0139 | 2 0595 | 21070 | 54 8 | | | 44 | 0.25611 | 0 0 16033 | 1207 6 | 1207 6 | 29.050 | 1053.7 | | | | | | | All | 64 8 | 0.29497 | 0.016/119 | 1056 5 | 1056 5 | 31058 | 10474 | 17895 | 0.0512 | 2 0291 | 2 0935 | 67 B | | | | | 0 016046 | 926.5 | 926 5 | 36 054 | 1055 2 | 1041 5 | 0.008 | 1 9396 | | | | | 72 B | 0.41550 | 0 015-054 | 764 1 | #14 3
764 1 | 4, 1749 | 1057 9 | TIME TO | 0 11/83 | 9804 | 2 1441 | 17.0 | | ## 0 54071 0116077 596 5 595 5 0011 107 1 | 78.0 | 0 4/461 | | | | | 1050 7 | 10937 | 0:3954 | 1 9614 | 2.5472 | 76.6 | | ### 0 055518 | 87 B | 0 54091 | 0.014017 | 595 5 | 595 5 | 50.013 | [34] | 11997.7 | 0 10 14.0 | 19114 | 29191 | | | 10 | | 0.61518 | 0.0150A7 | 2275 | 4275 | 541124 | 1545 0 | [reng | 0 1743 | 19151 | 2 2131 | 16.0 | | Mail | 17 6 | 0 /4 11 3 | 0 014105 | 441 3 | 4413 | 60.714 | 1041.5 | 11016 | | 1 8970 | 7 0084 | 90.0 | | 1886 | #1 | 0 84072 | 0016117 | 397 8 | 192 9 | 64 006 | 10143 | 1:033 | 0 1224 | 18/92 | 19978 | 54 4
56 8 | | 100/49 0016114 3111 111 111 | | | | | | | | | | , | | | | 100/49 0016114 3111 111 111 | | | | | | | | | | | | | | 100/09 | | | 0/14130 | | | 67 999 | (617) | 1125.1 | 01/25 | 1 45 10 | 1 18/5 | | | 1 | 184 8 | 1 06/145 | 0.016114 | 1111 | 113.1 | 71 1/32 | :014.8 | 1106.8 | 01211 | 8358 | 1 9775 | 194 0 | | 17.00 | 100.0 | 1 7010 | 0.016158 | 780 78 | 780 30 | 75 98 | 10325 | 11085 | 0 (417 | 8188 | 1 9626 | | | 1986 1987 1988 | 117 8 | 1 1505 | 0.016171 | 251 17
218 21 | 251 38
218 22 | 81 37 | 10/02 | 11102 | 01507 | 1.8071 | 1 9528 | 117 8 | | 177 | 178.8 | I NAME | 0.016134 | 714 2G | 71421 | 85.97 | 1076 # | 11177 | 015/7 | 1.7816 | 19413 | 116 6 | | 178 | 127 8 | 1 /891 | 0.014513 | 197.94 | 197 95 | 87.76 | 10/4 5 | 11144 | DRALD | 17613 | 19771 | 122 6 | | 1318 | | | 0 016779 | 1/4 08 | 17409 | 93 % | 1027 2 | 11161 | 01749 | 1 7453 | 1 9202 | 175 6 | | 198 | 132 8 | 2 3445 | 0.016256 | 149 64 | 149 66 | 99 95 | 10187 | | | 1 7295 | 19112 | | | 146 2897 | 136 8 | 2 6047 | 0.016274 | 135 55 | 135 57 | 103 95 | 1016 4 | 11203 | 01918 | 7063 | 1 9024 | 134 8 | | 144 8 3 1997 0016312 11174 11176 11199 13117 11226 07051 16759 1810 1448 1468 3 35538 0016322 10558 10559 11395 10105 11226 07084 15688 18769 1448 10170 11595 100073 11225 07084 15688 18769 1448 1877 1446 1888 3 3184 0016332 10168 10170 11595 100073 1125 3 071117 15610 18777 1446 1888 3 37184 0016333 9705 9707 11795 10002 1125 1 071117 15610 18777 1446 1888 3 37184 0016313 97065 9707 11795 10002 1126 1 07110 15610 18777 1446 1888 1888 1889 1885 1888 1895 10070 1126 9 07183 18463 18846 1828 1846 1828 1846 1828 1846 1828 1846 1828 1846 1828 1846 1828 1846 1828 1846 1848 1871 1848 1848 1846 1846 | 142 6 | 3 0411 | | 122 98 | 173 00 | 107 95 | 10140 | 11220 | 0 1985 | 1 6910 | 1 8895 | 148.0 | | 138 | 146 6 | 3 3653 | 0.016322 | 106 58 | 106 59 | 111 95 | 1010 5 | 11236 | 0.7051 | 16759 | 18810 | 144 | | 154 | 150.0 | 3 7184 | | 97.05 | 9707 | 117.95 | 1008 2 | 1126 1 | 0.2150 | 1 6516 | 1 8686 | | | 164 8 4 /414 0616195 /7.77 77.79 127.76 1001 4 1127 4 0.2781 16245 1846 1848 1848 1848 1848 1848 1848 1848 | 156 6 | 4 1025
4 1068 | 0116374 | 84 56 | 84 57 | 171 95 | 1005 # | 1126 9 | 0 7183 | 16463 | 18646 | 152 8 | | 1878 49727 07154056 73 67 73 6 | | | | | 80 83 | 125 96 | 10014 | 1129.4 | 0.2781 | 1 6245 | 1 8576 | 158.8 | | 188 57223 0016440 8478 64 80 135 97 998 1132 6 02409 15961 18321 1848 1788 59876 0016451 6204 62 006 137 97 998 2 1134 7 02441 15892 18333 1888 1788 6 6738 0016463 5943 5945 13898 01134 7 02473 15822 18333 1888 1788 6 6738 0016463 5943 5945 13898 01590 01250 02505 15752 18258 1788 1788 6 68700 0016464 56 95 56 97 14138 973 8 1135 8 02537 15848 18271 1748 1788 6 68700 0016476 5459 5461 14139 973 8 1135 8 02537 15848 18271 1748 | 164 8 | 5 2124 | 0.016417 | 1190 | 1917 | 131 76 | 977 6 | 1131 6 | 0:145 | 16103 | 1 8448 | 182 5 | | 1728 67736 9016863 39.43 38.45 13.98 99.0 11350 92.907 15752 18258 1728 1848 53556 0216874 56.95 36.97 141.98 99.0 1135 9.2537 15884 1827 1748 1838 68500 99.0 1838 98.97 141.98
99.0 1356 92.57 15884 1827 1748 | 168.8 | 5 /223 | 0.016440 | 64 78 | | 133 97 | | | 0.7409 | 1 5961 | 1 8371 | 166 8 | | 178 6 8690 0715486 3459 3461 14359 9074 1356 07564 1677 1748 | 177 8 | 6 2 / 36 | 0.016463 | 5943 | 59.45 | 13998 | 495 0 | 11350 | 0.2505 | 1 5753 | 1 8758 | 177 8 | | | 176 8 | 6 8690 | 0.016486 | 54 59 | 54.61 | 143 99 | 22 6
221 4 | 1136 6 | 0.7568
0.2600 | 15616 | 18184 | 116 6 | *The viging shown are meta-stages | Temp | Abs Press | Sat | ecitic Val | ume
Sul | Sat | (athaip | Y 5.11 | ¢.al | Entrag | | | |---|--|---|---|--|--|--|---|--|--|--|--| | False
1 | Sig ter | l iguid | fv.ip. | V-Apor | Liquid | 14.10 | Vapor | Laquet | frap
Sig | Sat
Vapor | 1.0 | | 187 8
187 8
184 8
186 8 | 7 5110
7 856
8 201
8 568
8 947 | 0 016510
0 016512
0 016514
0 01654
0 016559 | 50.71
48.177
46.12
44.383
47.521 | 50 22
18 187
46 249
44 400
42 638 | 148 00
150 01
157 01
154 02
156 01 | 9810
9810
9878
985 5
985 1 | 11 18 7
11 19 0
11 19 8
11 40 5
11 41 3 | 0.7531
0.7657
0.7674
0.7756 | 1 5490
1 5411
1 5114
1 5779
1 5713 | 1 #1111
1 a075
1 6010
1 8-901
1 7969 | 180 0 | | 196-2
197-8
194-8
196-8
198-8 | 9 340
9 747
10 168
10 605
11 058 | 0 016572
0 015585
0 015598
0 016611
0 016624 | 40 94 1
39 3 17
37 808
36 348
34 954 | 40 957
39 154
37 874
36 364
34 970 | 158 01
160 05
167 05
164 04
166 08 | 984 1
981 6
981 6
980 4
979 1 | 1142
1142 9
1141 /
1144 4
1145 2 | 0 2787
0 2818
0 :845
0 2879
0 2910 | 1 5148
1 5092
1 5017
1 4952
1 4888 | 17914
17900
17865
17831
17728 | 190 0
197 0
151 0
196 0 | | 200 0
204 0
208 0
212 0
215.8 | 11 3/6
17 512
11 564
14 696
15 901 | 0 016437
0 016431
0 016431
0 016719 | 33 622
21 135
28 HA2
26 782
24 878 | 31639
31151
78878
26799
24894 | 1/2 11
1/5 14
180 17
184 20 | 977 8
970 1
970 1
967 8 | 1145 0
1147 5
1147 0
1150 5 | 0 2040
0 1001
0 1061
0 3171
0 3181 | 48.24
 16/1/
 45/1
 4447
 4373 | 1 7784
1 7618
1 7617
1 7588
1 7505 | 200 0
200 0
200 0
21 7 0
215 0 | | 778 8
774 8
778 8
737 8 | 17 184
18 556
20 015
21 567
23 216 | 0 0167/5
0 015505
0 015814
0 015864
0 015895 | 21 111
21 529
20 056
18 701
17 454 | 21 148
21 545
20 073
18 718
17 471 | 188 77
197 27
194 31
200 35
204 40 | 964 8
954 8 | 1151 4
1154 2
1156 3
1157 8
1159 2 | 0 1741
2 1393
3 1159
0 1417
0 1476 | 1 4701
1 4001
1 3941
1 3842
1 3725 | 1 7447
1 7380
1 7170
1 7140
1 7701 | 270 0
221 0
220 0
232 0
236 0 | | 748 0
746 0
746 0
752 0
754 0 | 24 968
26 826
28 796
30 883
33 091 | 0 016926
0 016958
0 016990
0 017022
0 017055 | 15 104
15 241
14 254
13 358
12 520 | 16 321
15 260
14 281
13 375
12 538 | 208 45
212 50
216 56
220 62
224 69 | 95/1
919 5
956 8
944 1
941 4 | 1160 6
1167 0
1161 4
1164 7 | 0 1513
0 1541
0 1647
0 1761 | 1 1499
1 3494
1 3379
1 3754 | 17142
17095
17528
16972
16917 | 240 0
248 0
748 0
752 0
756 0 | | 64 6
64 6
77 8
76 8 | 35 427
37 994
40 500
41 749
46 147 | 0 01/0A9
0 01/12 J
0 01/15 /
0 01/15 J
9 01/12 J | 11 745
11 025
10 358
4 718
9 162 | 11 767
11 (M2
10 175
2 755
1 180 | 778 76
237 83
236 31
240 59
240 59 | 918 6 | 11674
11687
11700
1171 J | 0 1414
0 14/6
0 1917
0 1947 | 1 2041 1 2911 1 2921 1 2715 | 1 686.7
1 686.4
1 675.5
1 676.7 | 260 0
764 0
268 0
277 0
276 0 | | 56 6
56 5
98 0
97 6
36.8 | 49 200
52 414
55 295
59 350
63 004 | 0 01/764
0 01/30
0 01/14
0 01/38
0 01/41 | # 427
1780
7 (a. 14
7 7 301
6 #259 | 8 644
8 1453
7 6807
7 7475
6 8433 | 249 17
75 1 1
75 7 4
261 5
265 6 | 9717.
9717.
918.8
915.9
913.0 | 1171 #
1175 0
1176 2
1177 4
1178 6 | 0 11/14
0 41/-1
1/4 108
0 4/5 1
0 4317 | 1 2"-01
1 2 m5
1 2 m6
1 2 1 86
1 2 0 8 2 | 1 6/70
1 6/18
1 6/19
1 6/40
1 6/40 | 780 0
780 0
780 0
797 0
796 0 | | 100 0
104 0
105 0
117 0
114 0 | 67 005
71 119
75 433
79 953
84 688 | 0 01/45
0 01/49
0 01/53
0 01/57
0 01/61 | 6 4483
6 0955
5 7655
5 4'66
5 1873 | 6 4658
6 11 10
5 78 10
5 4 7 6 2
5 1 8 6 9 | 260 7
271 8
278 0
287 1
286 3 | 910 0
20/0
204 0
201 0
89/7 | 1179 7
1180 9
1187 0
1183 1 | 0 41/2
0 44/5
3 44/3
0 4533
0 4586 | 1 19/9
1 18/7
1 1//6
1 16/6 | 1 4 15 1
1 4 10 1
1 4 7 0 9
1 6 16 2 | 101 0
101 0
108 0
117 0 | | 176 8
174 8
126 8
132 6
136 8 | 89 64 1
94 876
100 745
105 907
111 820 | 0 01/66
0 01//0
0 01//4
0 01//9
9 01/83 | 4 8961
4 6418
4 4030
4 1 /88
3 9681 | 4 91 38
4 6595
4 4/08
4 1966
3 9859 | 790 4
294 6
298 7
307 9
307 1 | 874 8
811 6,
888 5
885 3
882 | 1185 7
1186 7
1187 2
1188 2
1189 1 | 0 4640
0 4647
0 4745
0 4798
0 4850 | 11477
11178
11780
11183
11086 | 1.5115
1.071
1.60.5
1.594
1.5936 | 170 0
170 0
170 0
170 0
117 0
116 0 | | 146 6
146 8
152 8
158 8 | 117 992
124 610
131 143
138 138
145 624 | 0 01 787
0 01 792
0 01 797
0 01 801
0 01 806 | 3 /699
3 5834
3 40/8
3 2423
3 0863 | 3 7878
3 6013
3 4258
3 2603
3 1044 | 311 3
315 5
319 7
323 9
324 1 | 878 8
875 5
877 2
868 9
865 5 | 1190 1
1191 0
1191 1
1192 7
1193 6 | 0 4907
0 4954
0 5006
0 5058
0 5110 | 10770
10894
10799
10705
10611 | 1 5892
1 5819
1 5806
1 5763
1 5721 | 348 0
348 0
357 8
356 8 | | 64 0
64 0
17 0
17 8 | 153 010
160 903
169 113
177 648
186 517 | 0 01 61 1
0 01 81 6
0 01 82 1
0 01 82 6
9 01 83 1 | 2 9392
2 8002
2 6691
2 5451
2 4279 | 2 9573
2 8184
2 5873
2 5633
2 4462 | 132 3
336 5
340 8
345 0
349 3 | 862 1
858 6
855 1
851 6
848 1 | 1194 4
1195 2
1195 9
1196 7
1197 4 | 05/61
05/12
05/63
05/14
05/65 | 1 0517
1 0474
1 0232
1 0240
1 0148 | 1 5678
1 5637
1 5575
1 5554
1 5513 | 160 0
164 0
166 0
177 0
376 0 | | 186 0
184 9
180 9
152 0
156 8 | 195 729
205 294
215 220
225 516
236 193 | 0 01836
0 01842
0 01847
0 01853
0 01858 | 2 31 70
2 21 20
2 11 26
2 01 84
1 92 91 | 2 3353
2 2304
2 1311
2 0369
1 9077 | 353 6
357 9
362 2
366 5
370 8 | 844 5
840 8
817 7
833 4
879 7 | 1178 0
1198 /
1199 3
1179 9
1200 4 | 0 5415
0 5466
0 5516
0 5547
0 3617 | 1 0057
0 9966
0 9876
0 9786
0 9696 | 1 5473
1 5412
1 5172
1 5152
1 5113 | 186 8
154 8
188 8
197 8
196 9 | | 100 0
104 0
104 0
117 0 | 267 759
258 725
270 6600
287 854
295 617 | 0 01864
0 01870
0 01875
0 01881
0 01887 | 1 5444
1 7540
1 6877
1 6152
1 5462 | 1 96-30
1 78-27
1 706-6
1 6 3-40
1 5-6-5 i | 375 1
379 4
383 8
398 1
392 5 | 8/5 9
8/2 0
41 8 2
81 4 7
81 0 2 | 1201 0
1201 5
1201 9
1202 4
1202 8 | 0 166/
0 5/1/
0 5/16
0 1816
0 1866 | 0 9607 0 9518 0 9429 0 9 151 0 9 2 5 3 | 1 5274
1 5214
1 5195
1 5157 | 400 0
401 0
406 0
417 0
415 0 | | 170 6
120 0
120 0
120 0
120 0 | 308 /80
327 /91
336 453
351 00
366 03 | 0 01894
0 01900
0 01906
0 01913
0 01919 | 1 4808
1 4184
1 3591
1 30266
1 24887 | 1 4997
1 4374
1 3782
1 32179
1 26806 | 396.9
401.3
405.7
410.1
414.6 | 806 Z
802 7
738 0
793 9
789 7 | 1703 1
1703 5
1703 7
1704 0
1704 2 | 0 5915 -
0 5964
0 6914
0 6063
0 6112 | 0 21A5
0 2077
0 8990
0 8903
0 8816 | 1 1004
1 1004
1 1466
1 4928 | 478 8
474 8
478 8
478 8
432 8 | | 140 0
144 0
152 0
152 0 | 381 54
397 56
414 09
431 14
448 73 | 0 01976
0 01933
0 01940
0 01947
0 01954 | 1 19/61
1 148/4
1 10212
1 05/64
1 01518 | 1 21687
1 16806
1 12152
1 07711
1 03472 | 4190
4235
4780
4125
4370 | 785 4
781 1
776 7
777 1
767 8 | 1204 4
1204 6
1704 7
1704 8
1204 8 | 0 6161
0 6210
0 6259
0 6 108 | 0 8/29
0 8613
0 8557
0 8471 | #890
 #85
 1815
 4778 | 440 0
444 0
448 0
457 0 | | femp | Atts Prints | 5.0 | Specific Vi | aturated
Summe | ς, | - 6 | gis, Atn | , | | | fate | | | |--|---|---|---
---|--|---|--|---|--|--|---|---|---| | fate
1 | | (opin | d frap | V.igini | 1 - p | nt | frage
Note | Victoria
N p | | Logar | | | i i e | | 464 6
464 6
468 6
477 8
476 6 | 475.87
485.56
504.81
574.67
545.11 | 001%
001%
001%
001% | 0 0 7/467
0 0 7/7.88
0 0 8/1885
4 0 86345 | 0.95474
0.7577
0.71847
0.88379
0.84950 | 43) 4
44. (
4'.) (
4',) (| | 7617
/\46
/\491
'445 | 1704 8
1764 7
1,154 6
1704 5
1204 3 | 0 | 64174
6174
6174
6179 | 1. 4. 59
1. 4.11
1. 1.1
0. 1.1
0. 1.1
0. 1.2
0. 1.2
0. 1.2
0. 1.2 | | 464 0
464 0
464 0
477 0
475 0 | | 454 0
454 0
454 0
497 0
496 0 | 5A/ #1
610 10
611 01
656 61 | 0 0.70 P
0 0.70 P
0 0.70 P
0 0.20 P | 0 /6413 | 0 81717
0 78677
0 79678
0 77870
0 70100 | 4: 4 5
4: 1 7
4/18
478 5
483 2 | | 7174
714 7
774 6
7195 | 1,04 (
12018
12015
1203 (
1202 7 | 0 | 64 14
6-15
6-15
6-417 | 0 '871
0 ':45
0 ':50
0 //:14
0 /528 | 1 15 14
1 15 -:
1 1222
1 1407
1 4173 | 400 0
404 0
404 0
407 0
407 0 | | 300 0
304 0
306 0
317 0
316 0 | 6,80 86
705 78
731 40
757 77
784 76 | 0 0.704
0 0.705
0 0.705
0 0.707
0 0.708 | 0 60530
0 60530
0 58718 | 0.57492
0.64991
0.67592
0.60789
0.8079 | 487 9
497 7
497 5
507 1
507 1 | | 7143
7090
7017
4487 | 1207 2
1201 7
1701 1
1700 5
1127 8 | 0 | 6810
6919
6187
1016
7085 | 07441
97357
97371
97345
97349 | 4111
 4111
 4116
 4711
 41,41 | 500 0
104 0
500 0
517 0
516 0 | | 570 0
574 0
578 0
532 0
536 0 | #17 53
#41 04
#70 31
900 34
931 17 | 0 0 2102
0 02102
0 02123
0 02123 | 051814 | 05546
05716
051955
050070
048257 | 517.0
516.2
521.8
524.8
531.7 | | 470
411
6755
695 | 1154.7
1154.7
1195.4
1195.4 | 200 | 71 13
71 82
77 31
77 80
7329 | 0 7011
0 - 14
0 - 152
0 - 152
0 - 153 | (4) 1A
(4) 78
(4) 73
(4) 73
(4) 73
(1) 20 91 | 520 0
520 0
520 0
527 0
538 0 | | 548 8
548 8
548 8
552 8
536 6 | 967 79
994 27
1078 49
1062 59
1097 55 | 0 02145
0 02157
0 02154
0 02158
0 02194 | 042677 | 0 44814
0 41217
0 41560
0 40160 | 514 8
514 9
54: 0
557 2 | 6 6 | 575
513
450
185 | 11943
11911
11919
11906
11892 | 0 | 7778
7277
7474
7575
7575 | 059//
07:43
06:70
05:10
04:22 | 1 1054
115-1
115-1
115-1
115-1
115-1 | 540 0
544 0
518 0
552 0
556 0 | | 560 6
564 8
568 0
577 0
576 4 | 1133 38
1170 10
1207 72
1246 26
1285 74 | 0 02207
0 0221
0 02215
0 02249
0 02264 | 0 36507
0 35099
0 33741
0 32429
0 31162 | 0 38/14
0 1/320
0 359/5
0 346/8
0 33425 | 567.4
567.4
577.7
578.3
583.7 | 6 | 75 3
18 5
11 5
04 5
37 2 | 11877
1185 1
1181 5
1182 7 | 0 | 74.75
74.74
77.75
77.75 | 0 %: 12
0 %: 12
0 %: 50
0 %: 50
0 %: 56 | 1374 | 160 0
564 0
568 0
577 8
576 8 | | 584 0
584 0
588 0
582 0
586.8 | 1376 17
1367 7
1410 0
1453 3
1497 8 | 0 02279
0 02795
0 02111
0 07128
0 02345 | 0 29937
0 28753
0 27668
0 26499
0 25425 | 0 37216
0 31048
0 27719
0 28827
0 27770 | 589
5916
500
505 /
611 4 | 5 | A7 9
A7 4
74 7
56 8
58 8 | 1179 0
1176 9
1174 8
1177 6
1170 2 | 0 | 78/6
19/1
19/1
19/1
10/10
10/82 | 0 5473
0 5480
0 5380
0 5390
0 5793 | 1 3507
1 3464
1 3470
1 3375 | 580 8
584 8
588 8
597 8
598 8 | | 608 8
604 8
608 8
617 8
616 6 | 154 1 2
1589 7
1617 3
1686 1
1735 9 | 0 02402 02
0 02402 02
0 02402 02 | 74484 0 26
13174 0 25
12134 0 24
1142 0 23
10516 0 22 | 757
796
865 | 677 W
678 R
614 R | 5576
5477
5116
5747
5156 | 1167
1165
1167
1150 | 1 | 0 #134
0 #187
0 8740
0 8734
0 8348 | 051 | 97 1 12
97 1 21
96 1 11 | 19 | 607 0
604 0
608 0
617 0
616 0 | | 678 6
674 6
674 6
678 6
678 6
678 6 | 1786 9
1813 0
1813 4
1947 0
2007 8 | 002514 01
002514 01
002539 01 | 96.15 0.72
A/1/ 0.71
/XAB 0.71
/D44 0.17
67.76 0.18 | 276
194
583 | 646 9
6511
653 5
565 9 | 516 T
616 A
ENG 7
876 B | 1149
1149
1146
1147
1138 | 1 7 | 0 #103
0 #118
0 #118
0 #571
0 #678 | 0 414 | 49 100
41 100
44 179 | 07 | 679 0
671 0
678 8
617 8
628 8 | | 48 8
46 8
48 8
57 8
54 8 | 20%9 9
211 # 3
217# 1
2239 2
2301 7 | 0 02675 0 1
0 02657 0 1
0 02691 0 1 | 5477 018
4644 017
1876 016
3124 015
2387 015 | 269
534
816 | 585 y
602 9
700 0 | 444 6
443 1
431 1
418 7
405 7 | 1113
1129
1124
1118
1113 | 7 | 0 85.45
0 8745
0 8868
0 8931 | 0 41
0 40
0 374
0 36 | 14 1 74
15 1 27
15 1 26
17 1 26 | 21
61
79 | 640 E
644 E
657 E
658 E | | 66 6
64 6
72 6
72 6 | 2365 7
2431 1
2466 6
2636 8 | 0 0 2 8 5 8 0 1
0 0 2 8 5 8 0 1
0 0 2 9 1 1 0 0 | 1643 014
0947 013
0229 013
9514 012
8/99 011 | 757
087
126 | 722 9
711 5
740 2 | 347 1
377 7
347 1
345 7
378 5 | 1107 (
1100 (
109)
1085 (
1077 (| | 0 8995
0 9054
0 9137
0 9212
0 9287 | 0 350
0 334
0 121
0 305
0 289 | 02 1 74
11 1 74
10 1 21
14 1 27 | 98 | 668 6
664 6
666 8
672 8 | | ## 0
0
0
0 | 2708 6
2782 1
2857 4
2934 5
3013 4 | 003114 00
003204 00
003313 00 | 8080 0 11
7349 0 10
6595 0 09
5797 0 09
4916 0 08 | 16 }
79 9 | 768 2
778 8
790 5 | 1101 | 1068 1
1058 4
1047 (
1033 8
1017 2 | | 0 9365
0 9447
0 9535
0 9634
0 9749 | 0 272
0 253
0 233
0 211
0 184 | 0 1 201
17 1 13
17 1 18
0 1 17 | 86
14
77 | 680 0
684 0
688 0
697 0
696 0 | | 50 6
97 6
54 6
95 6
85 47* | 3094 3
3135 5
3177 7
3178 3
3204 2 | 001874 00:
004108 00:
004427 00: | 3857 0 079
3173 0 064
7197 0 06
1304 0 054 | 519
997
100
730 | 877 4
815 0 | 72 7
44 7
07 0
61 4 | 995 2
979 2
956 2
914 4
906 0 | | 0 9901
1 0006
1 0169
1 0179
1 0612 | 0 149
0 124
0 087
0 057
0 000 | 0 1139
6 1179
6 1104 | 90
12
16 | 700 0
707 0
704 0
705 0 | *Critical temperature Table 2: Saturated Steam: Pressure Table | Abs Press | lemp | Sat Spe | ecific Value | ne | areled Sit | Fatnalpy | | | Entropy | | | |--|--|--|--|---|---|---|--
---|--|---|--| | Lb/Sq In. | fahr | Liquid | fung
Vig | Sat
Vapor
Va | Liquid
hi | Evap
N ₁₄ | Vapor
h g | Liquid | Evap | Vapor
Vapor | And Pres | | 6 54663
6 75
6 36
1 6
5 6
16 8
14 654
15 8 | 37.018
59.371
79.586
101.74
162.74
173.71
217.00
213.03 | 0 014027
0 014027
0 014071
0 014407
0 014407
0 014507
0 016507 | 1402 4
1215 5
641 5
131 50
73 515
18 404
26 782
26 274 | 3 (02 4
12 (5 5
641 5
311 (4)
73 5 (2)
38 420
28 799
28 290 | 0 nnn 3
27 i A2
47 · 1
47 · 1
1 i n 20
1 A1 · 6
1 Mt 1 / 1 | 1075 5
1060 1
1013 6
10 6 1
1030 9
987 1
970 3 | 10/5 5
1087 4
10 6 1
11 10 8
11 11 1
11 10 5
11 10 9 | 0 mmm
0 mmm | 2 1877
2 04 11
1 1837
1 1837
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 71877
20.45
10.41
1.41
1.41
1.41
1.74
1.76
1.76
1.76
1.76
1.76 | 3 200
3 27
0 70
1 0
10 0
10 0
10 0
10 0
10 0
10 0 | | 70 0
70 0
40 0
50 0
60 0
70 0
80 0 | 277 96
250 34
267 25
281 07
292 71
302 93
317 04
320 28 | 0 01 58 14
0 01 70 M
0 01 715 1
0 01 7274
0 01 7383
0 01 7482
0 01 7573
0 01 7659 | 20 070
13 7766
10 4794
8 4967
7 1567
6 1875
5 4536
4 8779 | 29 087
13 /436
10 4965
8 5140
7 1716
6 2050
5 4/11
4 8953 | 196 27
218 9
218 1
250 2
262 7
277 7
782 1
290 7 | 94 2
94 2
9116
9114
9154
917 8
910 9 | 11/6 1
11/6 8
11/6 8
11/7 6
11/7 6
11/7 6
11/7 6
11/7 1
11/7 6 | 0 3358
0 3682
0 3571
0 3512
0 4273
0 4411
0 4534
0 4643 | 1 3047
1 3313
1 2844
1 2474
1 2167
1 1205
1 1675
1 1470 | 1 / 1 / 0
1 / 2 | 29 6
30 0
40 0
50 0
60 0
70 0
80 0 | | 186 8
118 7
128 8
138 8
146 8
156 6
166 8
170 8 | 327 82
334 79
341 27
347 33
351 04
358 43
361 55
368 42
377 53 | 0 017740
0 01782
0 01783
0 01803
0 01803
0 01815
0 01821
0 01827
0 01833 | 4 4(13)
4 0106
3 7097
3 4164
3 7010
7 9958
7 8155
2 6556
2 5129
2 3847 | 4 6110
4 0124
3 7275
3 4544
3 2170
3 0139
2 8336
2 5738
2 5312
2 4030 | 7:85
31:58
31:50
1:50
1:50
1:50
1:50
1:50
1:50
1:50 | 883 6
881:
477 8
877 8
877 8
863 4
852 0
853 7
846 7 | 118/2
11589
11594
11917
11917
11941
11951
11960
11949 | 0 37:11
0 14:13
0 19:13
0 17:13
0 17:11
0 17:14
0 5:74
0 5:74 | 1 1.744
1 1115
1 7.65
1 78:5
1 78:5
1 78:1
1 75:54
1 74:5
1 77:5
1 77:5
1 71:1 | 1 (4777
1 (4747)
1 (4777)
1 (4777)
1 (4777)
1 (4777)
1 (4777)
1 (4777)
1 (4777)
1 (4777) | 100 8
110 0
179 9
130 8
146 8
156 8
176 0 | | 200 0
210 0
210 0
230 0
240 0
250 0
260 0
270 0
270 0 | JR1 80
IR2 91
IR9 88
J91 70
J97 J9
J00 97
404 44
407 80
411 07
414 25 | 0 01819
0 01859
0 01855
0 01860
0 01875
0 01876
0 01875
0 01880
0 01885 | 2 2689
2 16173
2 16173
2 16779
1 37991
1 89909
1 87452
1 75548
1 69137
1 63169
1 57597 | 7 1871
7 18717
7 18717
7 18767
1 9 1846
1 1769
1 184317
1 77418
1 71013
1 65049
1 59482 | 152 7
152 7
164 7
164 7
167 1
177 9
181 6
187 1
190 6 | #17 4
#15 4
#16 4
#28 4
#28 4
#28 5
#16 5
#18 3
#15 1 | 1108 1
1179
0
1177 6
1270 1
1207 6
1201 1
1201 5
1201 6 | 0 5118
0 5540
0 5540
0 5614
0 5677
0 5664
0 5605 | 1 1911 A
0 1973]
9 16 14
0 174 A
0 174 A
0 174 A
0 174 A
0 174 A | 1 5154
1 5174
1 5174
1 5175
1 5164
1 5176
1 5176
1 5176
1 5176
1 5176 | 200 4
210 0
210 0
240 0
250 0
260 0
270 0 | | 200 0
350 0
000.0 | 417 35
431 73
444 60 | 001889
001912
001934 | 1 57384
1 30642
1 14162 | 1 54274
1 32554
1 16095 | 394 0
409 8
424 2 | 808 9
794 2
780 4 | 1202 9
1204 0
1204 6 | 0 5882-
0 6059
0 6217 | 0 9773
0 8909
0 8630 | 15105 | 300 0
350 0
400 0 | | 450 8
500 0
550 0
600 0
650 0 | 456 28
467 01
476 94
486 20
494 89
503 08 | 0 01254
0 01975
0 0176
0 07013
0 02050 | 0 %71%
0 %71%
0 74%
0 64% | 0 97/67
0 841/7
0 76975
0 70843 | 41/3
44°5
4/4°5
4/1 /
481 9
491 6 | 767 5
755 1
711 3
717 0
77 0 9
71 0 7 | 1704 #
1704 /
1704 J
1701 /
1707 8
1701 4 | 0.51cm
0.520
0.521
0.521
0.641
0.647 | 0 A148
0 7946
0 7248
0 7557 | 1 17 4
1 26 4
1 27 17
1 4261
1 4 541
1 4 104 | 150
500
512
502
630
700 | | 758 0
900 0
856 0
950 0
950 0
1500 0
1556 0
1700 0
1756 0 | 510 84
518 71
575 74
511 75
518 10
544 58
550 51
556 28
561 82
567 19 | 0 07049
0 07103
0 07171
0 07171
0 07177
0 07177
0 07214
0 07214 | 0 54M2*
0 5110/
0 47/ma
0 65/ma
0 174 6
0 4/9047
0 37861
0 35/659 | 0 568/6
0 5 1 102
0 50901
0 47705
0 44746
0 47774
0 41958
0 18073 | 500 9
517 8
518 4
526 7
518 7
543 6
557 5
564 8
571 9 | 670 8
670 5
6617
660 1
600 1
610 3
611 3
611 3 | 1200 7
1177 8
1178 0
1176 4
1176 4
1171 0
1189 1
1187 0
1184 8 | 0 /072
0 /111
0 /157
0 /157
0 /157
0 /157
0 /157
0 /157 | 0.7210 | 1 1 17
1 4 15 1
1 10 4
1 10 1
1 10 1
1 10 1
1 17 1
1 17 1
1 16 1 | 758
433
453
100
400
1860
17,3
1100
1758
1760 | | 1256 8
1308 6
1356 6
1406 5
1456 6
1556 8
1656 8
1656 0
1706 6 | 572 38
577 42
582 32
587 07
591 70
596 20
600 59
604 87
609 05
613 13 | 0 07750
0 07769
0 07788
0 02307
0 02337
0 02366
0 02367
0 02407
0 02408 | 0 30772
0 29250
0 27871
0 26546
0 25372
0 24235
0 23159
0 22143 | 0 32991
0 31537
0 30178
0 78911 | 5788
5856
5973
5988
6053
5417
6187
6304
6365 | 5018
5346
5456
5474
5474
5484
5401
5411
5277 | 11826
11802
11778
11778
11771
11778
11701
11674
11645
11586 | 0 7780
0 7843
0 7906
0 7956
0 8075
0 8142
0 8199
0 8754
0 8109 | 0 5850
0 5733
0 5670
0 5507
0 5787
0 5787
0 5076
0 4971 | 1 1519
1 1527
1 15 15
1 1573
1 1573
1 1573
1 1574
1 1775
1 1775 | 1250
1300
1350
1450
1450
1500
1500
1500
1500
1500
15 | | 1758 0
1890 0
1858 0
1990 0
1958 8
2006 0
2198 8
2208 0
2308 8 | 617 12
621 02
624 81
628 56
632 22
635 80
642 76
649 45
655 89
662 11 | 0 02450
0 02472
0 02473
0 02517
0 02541
0 02565
0 02727
0 02727 | 0 20253
0 17190
0 18558
0 17761
0 16796
0 16786
0 14885
0 13803
0 1787 | 0 22713
0 21861
0 21052
0 20278
0 19540
0 18831
0 17511
0 16272
0 15133
0 14076 | 647 5
618 5
654 5
666 3
677 1
68 7
707 7
719 0 | 413 1
403 8
485 2
475 8
486 2
1.16 7
4.16 7
4.16 7
4.16 8 | 1155 6
1157 3
1149 0
1145 b
1147 0
1118 3
1110 5
1111 2
1111 2 | 0 \$163
0 \$417
0 \$470
0 \$572
0 \$572
0 \$675
0 \$777
0 \$4 8 | 0 4755
0 4657
0 4359
0 4359
0 4756
0 1051
0 1810 | 13178
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079
13079 | 1756 8
1800 0
1852 0
1950 0
1950 0
2100 0
2100 0
2100 0
2100 0 | | 7586 6
2686 0
2768 0
2768 0
2966 0
2966 0
3108 0
3108 0
3206 0
3206 0 | 668 11
673 91
879 53
684 96
690 72
695 33
700 28
705 08
705 47 | 0 02859
0 02938
0 03029
0 03134
0 03262
0 03478
0 03681
0 04172
0 05078 | 0 10709
0 09177
0 08165
0 07171
0 06158
0 05073
0 03771
0 01131 | 0 13068
0 12110
0 11194
0 10305
0 09420
0 08500
0 07452
0 05663
0 05078 | 711 7
744 5
74.7 3
77.7 7
785 1
801 8
874 0
875 5
906 0 | Mil 6
1176
3121
2851
2547
2184
1693
561 | 1001)
1082 0
1094 7
1055 8
1039 8
1070 3
293 3
293 3
906 0 | 0 71 19
0 7127
0 7176
0 9358
0 9738
0 9714
1 7151
1 0612 | 0 1/06
0 27/7
0 2/41
0 2/491
0 2015
0 1891
0 1/450
0 0/47
0 0000 | 1 7115
1 7715
1 7458
1 7873
1 1519
1 1373
1 108.22
1 06.12 | 2400 0
2500 0
2500 0
2500 0
2500 0
3000 0
3100 0
3100 0
3200 0 | *Critical pressure # 6.0 Plant System Design, Control and Instrumentation (25.0) | 6.1 | With regard to the <u>Vessel Instrumentation</u> : | | |-----|--|---| | | a. For what specific condition(s) is the Fuel Zone Range level indicators calibrated? | a (1.0) | | | b. For the Narrow Range Level Indicators, MS-LIS-24A,B,C & | D: (2.0) | | | Where are they located in the plant? To what systems/components do they send signals? At what levels are these signals initiated? What system/component action is initiated? | | | | c. How is the signal for <u>jet pump flow</u> generated in an <u>individual</u> (non-calibrated) jet pump? | (1.0) | | | 1 212° Fat Opegon 7 (05%) | | | 6.1 | a. (Saturated steam conditions) at 0 psig in the vessel and drywellawith no jet pump flow (055) | (1.0) | | | b. 1) Located in Reactor Building, 522' level. | (0.5) | | | RCIC/RCIC turbine; at level 8; shut steam supply, RPS; level 3; scram and NSSSS Group 5 and 6 isolation C. Pressure, at pressure tap on pump throat, ais compared to a common jet pump discharge pressure sensed at the core inlet plenum area by the SLCS injection line to develop a AP signal assure as | (0.75) Ons. (0.75) Oth but require Att water TIP without (1.0) | | | Ref: WNP-2, Systems and
Procedures: NBI, pgs. 5, 14 and 9, respectively. | | | ·w | here extra way as men your , doubt water appropriate was (1.2. KPS+PC | 10714 - Some veleglans. | #### 6.2 With regard to Process Radiation Monitoring: isolation or trips? a. The main stream line radiation monitoring system will initiate condenser isolation (via AR-V-1) when appropriate channels and their trips are activated. What are these channels and trips? (1.0) b. What type of detector (G-M, etc.) is used in the following radiation monitors: (1.5) 1) Rx Building stack extended range 2) Off-gas post treatment 3) Circulating water effluent? c. Which of the monitors, in b. above, will initiate system (1.0) ### 6.3 With regard to the Emergency Diesel Generators: - a. What are all the start signals for DG #2? (1.5) - Describe the <u>overspeed trip</u> mechanism (including its location, its major components, and how it initiates an engine trip). - c. What is the purpose of the soak back pump? (0.75) 6.3 a. 1) Bus SM-3 dead (0.3) or TR-S undervoltage (0.3) 3) SM-8 undervoltage (0.3) 4) (K988) Econtainment high pressure or reactor low water level (2.1) Level 1 (0.3) b. Located in the camshaft counterweight housing (0.5).; it consists of a flyweight held by a tension spring. When engine exceeds set limit, spring tension is overcome by centrifugal force acting on the flyweight, permitting an outward movement of the flyweight which actuates the trip lever (0.3) This causes latching the injector rocker arm in the depressed position, preventing fuel injection into the engine (0.5). (2.0) C. To provide oil to the turbocharger for prelubrication. (0.75) Ref: WNP-2, Systems and Procedures: DG, pg. 62; Fig. 14; and Fig 8c and pg. 22, respectively. dued James Intonie. Total danse used to tril lever - 6.4 With respect to the Automatic Depressurization System (ADS): - a. What ADS controls are located on control room backpanels P628 and 631, and which components do they control? (1.0) - b. Under what normal condition(s) will pushing the four ADS main initiation pushbuttons not result in ADS initiation? What is the reason for this? (1.5) - 6.4 a. (14) AUTO/OPEN control switches; SRVs "A" and "B" regular (1.0) - b. If a low pressure ECCS pump is not operating (0.75); so that core will not be uncovered (0.75) (1.5) Ref: WNP-2 System and Procedures, ADS, pg. 13 and 8, respectively. (b) cose of company. "Moine! company. If so make origination. That we inclid. | 6.5 | With regard to the AC Electrical Distribution System: | | |-----|--|--------| | | a. Which lockout relay will be tripped upon a Transformer Differential Current (87TM)? | (0.5) | | | b. List three (3) actions which will occur when the lockout relay in (a) is tripped? | (1.5) | | | c. The loss of which 480V MC bus will deactivate both loops of shutdown cooling? (9 - **Simulation min to provide the state of s | (0.5) | | | d. What happens upon the loss of the normal and startup A sources for SM-4? | (0.75) | | | | | | | | | | | daring again. | | | 6.5 | a. Unit lockout (86XU) | (0.5) | | | b. [any 3, 0.5 pts each] | (1.5) | | | Trips and locks-out all "N" breakers Trips (AF circuit breaker) (Generator Exciter Field Breaker) Trips main turbine (20 AST) De-energizes 86XIU Starts oscillograph Starts computer C. MC-8-B-A (we destint when all and free the computer) d. Automatic transfer of SM-4 to the Division 3 EDG Referry 15M-4 by 0w3 ppc 15m to winter 200 on | | | | C. MC-8-B-A (was deatersty RMR. U.9). | (0.5) | | | d. Automatic transfer of SM-4 to the Division 3 EDG | (0.75) | | | Ref: WNP-2 System and Procedures; AC Distr.; pg. 15 and 16 for a, b, d; AOP 4.7.1.9, Loss of Power to SM-8, pg. 3 of 4 for c. | | | | close all 5' bules to be bearing the same of the backer of the backer of the backer of the same | | | - (| Abel W. hish hip amount | | 6.6 For the Reactor Core Isolation Cooling System, what position should the RCIC-V-8 and RCIC-V-63 keylocked control switches be placed in prior to resetting any isolation signal? Why? (1.5) veset 6.6 CLOSED or STOP (0.5); otherwise (i.e. in OPEN), when isolation signal is received the valves would immediately open (0.5) which could cause extensive damage to system piping and components (0.5). (1.5) Ref: WNP-2, SOP 2.4.6, pg. 2 of 28. - 6.7 If a selected control rod is in the selected 4 rod group and too many reed switch closures occur: - a. What indication(s) would the operator observe? (1.0) - b. How could the control rod be moved through this position? (0.75) (9 - RSCS MRLUM AND group (A- annu for both of moth hay tracelle.) (forthe 1 pay # 2 on at.) - Stop he late wie unpertopture the terminden (4 rol group 6.7 a. RPIS Data Fault, Insert Block would light. withher black. (1.0) b. By using Substitute Data on RSCS(0.375) on hypaning on 1850 (0.175) (0.75) Ref: WNP-2 Systems and Procedures, RMCS, pp. 15, 16. if additional way answers to by # of answers to get value per answer. 6.8 What design provisions are made to assure air flow through Standby Gas Treatment System filters. What is the basis for this? (1.75) 6.8 Each SGT train has two full-capacity fans powered from separate emergency buses (0.75); to prevent filters from igniting on loss of air flow due to the decay heat generated by entrained radioactive materials (1.0100) 2) heaters on what (1.75) Ref: WNP-2 Systems and Procedures, SGT pg. 24,3, filts blokase (0.01) (0.320) (0.320) (0.320) (0.320) (0.320) (0.320) (1: 25 . 15 W 3] 18 ## 6.9 With regard to the Average Power Range Monitor System (APRM): | a. | What three (3) things could happen if the back panel APRM Mode Switch was placed into the standby position during | | |----|---|-------| | | normal operation? | (1.0) | | b. | What is the AC power source for APRM Channel F? | (0.5) | | c. | Why is the Thermal Power Monitor necessary? | (1.0) | 6.9 a. APRM operates normally if bypassed (0.33); gives an INOP trip (to warn operator if channel has not been bypassed) (0.33). Will give 1/2 scram(if channel not bypassed) (0.33). b. (Bus B supplied by) RPS MG set B. (1.0) c. To avoid unnecessary scrams during power increase transients (due to flux leading thermal power). (1.0) Ref: WNP-2 Systems and Procedures, APRM, pp. 26, 28 and 32-33, respectively. egel your hunde 1.0 by 4 = . 25 7.0 Procedures - Normal, Abnormal, Emergency, and Radiological Control (25.0) # 7.1 According to procedures for Emergency RPV Depressurization (Contingency) (5.3.2): a. What is the primary system used to cause depressurization? (0.5) b. If the system in (a) is partially or totally unavailable, what is the next system to be used? (0.75) c. Under what conditions would systems other than those in a) and b) above be used and what are these systems? (2.5) 7.1 a. ADS (0.5) b. Other SRV's until 7 are open (.25) (0.75) c. If <3 SRV's are open (0.5); main condenser, main steam line drains, RCIC, head vents (2.0) (2.5)</pre> Ref: WNP-2 EOP 5.3.2, pp. 1, 1, and 2 of 8, respectively. 7.2 What changes to the reactor power, MCPR, and MAPLHGR operating limits are required before one (1) recirculation loop operation is permitted? (2.25) 7.2 (0.75 each) NONE. (2.25) Reactor power: reduce it to <50% rated thermal power MCPR: increase it by 0.01 MAPLHGR: reduce limit to 0.84 times the two loop op. limit. Ref: WNP-2 AOP 4.2.1.10, pg. 2 of 3, and T.S. 3.4.1.1, pg. 3/4 4-1. # 7.3 With regard to the operating procedure for 250V DC Distribution System (SOP 2.7.7): - a. What should the operator do and where would he do it, to tie the 250V DC battery B2-1 to the 250V DC distribution bus S2-1? (2.0) - b. When bus S2-1 is energized: - 1) What indication(s) does the operator have that no ground is present? (0.75) - 2) What indication(s) does the operator have when a ground develops? (0.75) >2) Close heater 52-1/30 (0.34) on 0 p-32-1 and weeky (0.33) Acostin Con Apricability of Acost of Rispuse
Sterry ster with Ragio. 7.4 According to WNP-2 Annunciator Procedures, if the "OFF GAS VAULT RAD MONITOR DNSCL" annunciator alarmed, the operator should make a "verification" and a "check". Describe the verification and check to be made and at what location in the plant. (2.0) 7.4 Verify: downscale condition of OG-RIS-11 (0.5); at P606 (0.5) (1.0) Check: radiation level of QG-RI-11 (0.5); locally (0.5) (1.0) Ref: WNP-2 Annunciator Procedures, 4.602.A5-4.2. Ster by step et Memorized Response Not megid. - 7.5 According to the Operating Instructions for the Control Rod Drive System (SOP 2.1.1): - During system startup, what should be the position (open or closed) for the following Hydraulic Control Unit (HCU) valves: (2.0) - 1) CRD-V-111 (Cartridge Valve Nitrogen Inlet) - 2) CRD-V-107 (Accumulator Water Drain) - 3) CRD-V-102 (Withdraw Water Isolation) - 4) Withdraw Line "Dragon" valve. b. Buring system startup, in what position should the operator place the charging water header vent valve (CRD-V-65) that is located between the charging water header isolation valve (CRD-V-34) and the HCU charging water inlet isolation valves (CRD-V-113/HCU)? Why? (1.6) - (2.0)p) after supeter fully we (and any sec or and changed) - Open - 2) Closed - 3) Open - 4) Closed Open (0.5); to provide leak off (0.5) so that HCU accumulators will not pressurize due to valve leakage (0.5) Ref: WNP-2 SOP 2.1.1, pp. 4 and 6 of 41, respectively. - According to the procedures for Normal Shutdown To Cold Shutdown (G.O.P. 3.2.1), at what percent power (approximate) 7.6 should the following actions be performed? (2.0) - Transfer the 6900 volt switchgear from the normal auxiliary transformer to the startup transformer. - Remove one feedwater pump, one condensate booster pump and one condensate pump from service. - Verify operability of RWM and RSCS. - Transfer recirculation pump to 15 Hz. - e. Unload and shut down main turbine. - 7.6 (0.4 ea.) (2.0) - <20% >15% b. <40% >35% 420% >15% (Nobstree" Below LPSP "lete ellume las after 35% reducing power to 20 ? of capit? - d. <5% e. Ref: WNP-2 GOP 3.2.1, pp. 4, 3, 4, 3 and 11, respectively. | 7.7 | According to | the | procedure | AOP | 4.7.4.1 | for | Loss | of | |-----|----------------|-----|-----------|-----|---------|-----|------|----| | | Inverter-1(IN- | | | | | | | | a. What are two (2) of the three annunciator alarms the operator should see? (1.0) b. What two (2) automatic actions will occur? (1.0) c. If voltage is not normal on US-PP, list the actions that should be taken and in their preferred sequence. (1.5) 7.7 a. Annunciator alarm (any 2, 0.5 ea.): (1.0) 1) "250 VDC Inverter ALT Source Loss" 2) "250 VDC Inverter ON ALt Source" Loss" 3) "250 VDC Inverter TROUBLE Alt source Loss" b. (0.5 ea.) (1.0) 1) Static switch transfers to ALT AC input (MC-7F) 2) DEH system will auto transfer to alternate AC. (Martin wing amules give, durade 1.0 by dofamines to c. (0.4 ea. action; 0.1 ea. sequence) (1.5) 1) Attempt to restore IN-1 to service, or (the same 2) Switch IN-1 to "Maintenance" position, or 3) Shift US-PP to bypass source via "KIRK KEY INTERLOCK" (MC-7A). Ref: WNP-2 AOP 4.7.4.1, pp. 1, 1-2, and 2, respectively. - 7.8 With regard to Accident Monitoring Instrumentation, according to Tech. Specs.: - a. Under what operational conditions (use number only) are the following instruments to be operable? (2.0) - Post-accident Sampling Primary Coolant radiation monitor - 2) Standby Service Water Flow - 3) Neutron Flux IRM - 4) Safety/Relief Valve Position Indicators. - b. For the instruments in (a) above, what are the required minimum number of operable channels? (1.0) 7.8 a. 1) 1, 2, 3 (0.68) 2) 1, 2 (0.44) 3) 1, 2 (0.44) 4) 1, 2 (0.44) (2.0) b. (0.25 ea.) (1.0) 1) 1 2) 1/160p 3) 1 4) 1/valve Ref: WNP-2, Tech. specs., pp. 3/4 3-71 and 72, 71 and 72, respectively. Dolelezione. #### 7.9 According to the WNP-2 Health Physics Program: - a. For Emergency Exposure Guides, two (2) emergency situations are given with their exposure guideline values. What are these situations and values? (1.0) - b. An RWP is required when work is to be performed in an area that is posted for airborne radioactivity 5% of MPC (TRUE or FALSE). (0.5) - 7.9 a. [situation (0.35), value (0.15) ea.] (1.0) - 1. Life saving 75 rems whole body(.05) 2. Protection of public health or property 25 rems (.10) whole body (.05) - b. False (0.5) Ref: WNP-2, Health Physics Program; 3.1.5 pg.3 and 3.1.8 and pg.2, respectively. - 8.0 Administrative Procedures, Conditions, and Limitations (25.0) - 8.1 a. What are the $\frac{\text{two}}{\text{unidentified}}$ (2) LCOs with regard to leakages from (1.25) - b. What is the basis behind the unidentified leakage rates? (0.75) - 8.1 a. 1. 5 gpm total (0.5) 2. 2 gpm increase within any 4-hr period. (0.75) - b. The crack associated with such leakage would not grow rapidly (would be less than the critical size for rapid propagation). (0.75) Ref: WNP-2 Tech. Spec., pg. 3/4 4-9 and B 3/4 4-2, respectively. 8.2 During plant shutdown, the maintenance supervisor informs you that on routine checking he und the Division 1 250 volt battery B2-1 discharged, the reason unknown: Do Tech. Specs. required action (YES or NO)? Explain. (1.5)What three battery "parameters" are checked at least once every seven days to verify they meet Category A surveillance requirements? PKS) Tes, (0.5); with less than Div. 1 and/or Div. 2 above required battery or chargers operable, suspend core alterations, handling of irradiated fuel in sec. containment and operations with potential of draining vessel (1.0) (1.5)b. (0.5) each: Electrolyte level Float voltage Specific gravity Ref: WNP-2 T/S, pg. 3/4 8-15 and 8-14 respective (a) - Correct answer for condition 4 or superstand NO: (0.35) (assuming but 2 operable) poly neg Devi or Bev 2 (1.0) Yes (0.35) (assuming but 2 inspection), the susperd one alterates (-5) (-5) (-5) (-5); restar important to operable alternation) (-6) (1.0) The forester and condition 3 (0.5); restar important to operable alternation and the condition 3 (0.5); restar in position to operable alternation and the condition 3 (0.5); restar in position and the condition of the condition and the condition of - Which of the following occurrences require 1 hour reports 8.3 to the NRC: (2.0) - a. reactor water level -50 inches - b. reactor water level < -129 inches - c. site boundary dose > 50 MR/hr whole body - d. stuck open main steam relief valve () introqued frewdil 8.3 All of the 4 occurrences (since each requires a declaration of an emergency event and this is a category of reportable events). Ref: CAF. (2.0) #### 8.4 With regard to the Fire Brigade: | a. | What is the minimum number of personnel required? | (0.5) | |----|--|--------| | b. | Who are specifically excluded from the Fire Brigade? | (0.75) | | с. | Where and when is the Fire Brigade to be maintained? | (0.75) | b. The Shift Supervisor the STA and the 3 members of the minimum shift crew necessary for safe shutdown of the unit and any personnel required for other essential functions during a fire emergency. (0.75) c. Onsite (0.375) at all times (0.375). Ref: WNP-2 Tech. Spec., pg. 6-1. 8.5 According to Tech. Specs., in order for the Fire Suppression Water System to be considered operable, three (3) conditions must be met. State these conditions. (3.0) pumping from the circulating water basin, or one dieseldriven pump pumping from the secondary water supply tank, with their discharge aligned to the fire suppression header. (1.0) b. Two separate fire water supplies, the recirculating water pump house inlet basin and the secondary water supply tank. (1.0) c. An OPERABLE flow path capable of taking suction from the circulating water pump house inlet basin and the secondary water supply tank and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each sprinkler or hose standpipe and the last valve ahead of the deluge yalve on each deluge or spray system required to (1.0) a. At least two of the three OPERABLE fire suppression pumps Ref: WNP-2 T.S. pg. 3/4 7-18. be OPERABLE (O.S) 8.5 - 8.6 According to the Limitations stated in the Operating Procedures for the <u>Reactor Core Isolation System (RCIC) (SOP 2.4.6)</u>: - a. What must you do to manually isolate RCIC when system initiation is not sealed in? (0.75) - b. Under what condition(s) can the auto flow controller (RCIC-FIC-600) be removed from automatic? (0.75) to get value fair. 8.6 a. Close the isolation where the secret with secre 8.6 a. Close the isolation valves using their respective control switches (375) (0.75) b. Only with permission of the Shift Supervisor. (0.75) Ref: WNP-2 SOP 2.4.6, pg. 2 and 3 of 28, respectively is amore says "in operator's judgement" if andedate refer to standing Orders Must Ref. Standing order to use creatur judgement. | 8.7 | Wit | th regard to certain shift personnel and their functions: | is to state | |-----|-----|--|-------------------------------| | | a. | There must be two (2) licensed reactor operators in the Control Room at all times (TRUE or FALSE)? | 100 tions e. C. assur (0.5) & | | | b. | During new fuel handling operations, a licensed reactor operator must be on the refueling floor (TRUE or FALSE)? | (0,5) | | | c. | During what modes of operation shall the Shift Technical Advisor be on shift? | (0.5) | | | d. | If, while at power, the <u>Shift Manager</u> is incapacitated, what <u>action(s)</u> should be taken? | (0.75) | 8.7 a. False b. False c. Modes 1, 2 and 3. d. The CRS4 or licensed SRO (other than STA) shall assume his duties and immediately advise the Operating Manager. Ref: WNP-2 Admin. Proc: 1.3.2, pp. 3 (for a and c) and 2 for (d); 6.2.3, pg. 2 for (b).
8.8 According to Standing Order/Night Orders (Admin. Proced. 1.3.1): a. A break occurs in a RCIC line. Would the following control room instruments provide valid indications (Yes or No)? If "NO", how could you verify the necessary information? deleto 1) MS-LI 610 2) RHR-FI-603B 3) SLC-LI-601 b. Following each refueling outage, independent verification of the operable status is required for what <u>types</u> of equipment? (1.0) delete a. 1) No (0.2); Use alternate instrument MS-LR-615 (0.3) 2) No (0.2); locally (0.3) 3) No (0.2); locally (0.3) (145) b. Safety related (0.5) and fire protection equipment (0.5) (1.0) Ref: WNP-2 Admin. Proc. 1.3.1, pp. 7 and 3, respectively. 8.9 According to Monthly Operational Bulletins: colled to attention of all sies . a. What would occur if RHR valves V-8, 9, 6 and RHR-27A were opened? (1.0) telelo. How did the failure, on two shifts, to check chart movement on wetwell level recorder CMS-LR/RR-4 contribute to loss of wetwell level? c. Why is it important to ensure that <u>local</u> temperature indicators at the <u>nitrogen</u> supply shed and in the reactor building are monitored? (1.0) 8.9 a. The reactor vessel would be drained to the suppression pool. (1.0) delete b. The recorder had been, in fact, inadvertently de-energized so that annunciator alarm switches activated by the recorder pen were also 0.0.S. (120) c. No control room monitors exist. If nitrogen temperature gets too low, nitrogen flow onto a 30 in. dia. containment purge header and onto wetwell and drywell purge liner inside containment could cause failure through nitrogen embrittlement. (0.5) (1.0) Ref: WNP-2 Monthly OP Bull: January 1984, pg. 4; April-May, pg. 1; Feb-Mar, pg. 6, respectively. 8.10 With regard to the Emergency Plan Implementation Procedures, which of the four emergency classes would you place the following: (2.0) 1) An ATWS 2) HCTL exceeded - Volcanic ash fallout severe enough to warrant plant shutdown - 4) Transport of a contaminated individual offsite 8.10 (0.5 ea.) (2.0 1) Alert 2) Site Area Emergency 3) Alert 4) Unusual Event Ref: WNP-2 EPIP: 13.1.1, pp. 8, 20, 7 of 21, respectively. Forely Review Copy Reviewed by: Steply J Rejud #### U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION | | | | Facility: | | WNP-2 | |---|---------------------|---|--|-------------------------------|--| | | | | Reactor T | ype: | BWR-5 | | | | | Date Admi | nistered:_ | 11/6/84 | | | | | Examiner: | | I. S. Levy | | | | | Candidate | | | | INSTRUCTI | ONS TO C | ANDIDATE: | | | | | Staple quare indic
at least
papers wi | ated in
70% in e | sheet on top of
parenthesis a
each category | of the answer
fter the ques
and a final g
) hours after | sheet. Pation. The rade of at | ers on one side only. oints for each question passing grade requires least 80%. Examination nation starts. | | | | Score | | | Category | | 25 | 25 | | | Operati | of Nuclear Power Plant
ion, Fluids and
dynamics | | 25 | 25 | | | 6. Plant S
and Ins | System Design, Control strumentation | | 25 | 25 | | _ | | ures - Normal, Abnormal,
ncy, and Radiological | | 25 | 25 | | | | strative Procedures,
lons, and Limitations | | 100 | | | | TOTALS | | | | | Final Grade | - 8 | | | | All work of aid. | done on | this examinati | on is my own; | I have nei | ther given nor received | | | | | | Candidate' | s Signature | Reviewd by: Stephylograd STEPHEN J MEJNIAN 11-6-9 ## Questions and Answers to WNP-2 SRO Exam - 11/6/84 5.0 Theory of Nuclear Power Plant Operations, Fluids and Thermodynamics (25.0) 5.1 Give three (3) reasons why fuel densification is a problem. (2.25) 5.1 (any 3; 0.75 each) (2.25) - 1. Local power spikes resulting from axial fuel column gaps. - Increased linear heat generation rate due to pellet axial shrinkage. - 3. Cladding collapse at the location of axial fuel column gaps. - Increased stored energy due to decreased pellet-cladding thermal conductance resulting from increased radial gap size. Ref: Morris Training Center: Thermo/HT/Fluid Flow (3/83), pg. 9-107 5.2 Your latest computer printout of MFLPD and MAPRAT shows the following values for Regions 1 to 3. > Region 1 2 3 MFLPD 0.95 1.0 1.05 MAP/RAT 0.92 1.08 1.00 - a. Which, if any, of these values are beyond their safety (1.0) - b. Why are each of the above limits imposed? (What do they protect against?) (1.5) - c. Compared to BOL, would the values for MAPRAT at EOL be larger or smaller? Why? (1.5) - 5.2 a. MFLPD Region 3 (0.5) MAPRAT Region 2 (0.5) - b. MFLPD Maintains <1% cladding strain, fuel failure. (0.75) - MAPRAT Maintains <2200°F following LOCA, decay heat removal (0.75) - c. Larger (0.5); MAPLHGR limit decreases (0.5) since local peaking factor gets smaller as, with exposure, heat transfer is reduced (0.5). (1.5) Ref: WNP-2 Systems and Procedures, PC, Pg. 16; and MTC Thermo/HT/FF (3/83), pg. 9-66 through 9-76. 5.3 In reference to the reactor water cleanup regenerative heat exchanger, assume the following conditions and, then, perform the calculations. #### Conditions: T inlet from reactor (tube side) = $550^{\circ}F$ T outlet from H_X (tube side) = $250^{\circ}F$ T inlet shell side = $120^{\circ}F$ Tubeside flow rate from reactor = $1300^{\circ}G$ gal/min Shellside flow rate to reactor = $1300^{\circ}G$ gal/min ### Calculate (and show all work): c. The maximum temperature of water going back to the reactor if the flow back to the reactor were decreased from 1,300 gpm to 800 gpm due to a leak in the tube side of the $$H_{\rm X}$$. (1.0) = 1300 gal/min x 60 min/hr x 8.33 lbm/gal $$= 1.949 \times 10^8 \text{ Btu/hr.}$$ (1.0) c. 550°F as follows: $$T_{max} = Q/M + 120$$ $$= \frac{1.949 \times 10^8 \text{ Btu/hr}}{800 \text{ gal/hr}} \times \frac{1}{60} \frac{\text{hr}}{\text{min}} \times \frac{1}{8.33} \frac{\text{gal}}{\text{lbm}} \times \frac{1}{1 \text{ Btu}} \frac{\text{GF}}{\text{lbm}}$$ but cannot be greater than 550°F (max. T from reactor to inlet) Ref: Morris, T. C.; Thermo/HT/Fluid Flow (3/83), pgs. 8-40,41. While at 75% power, the master feedwater controller fails low. Will the NPSH of the recirculation pumps increase, decrease, or remain unchanged? Briefly, explain why. (1.25) 5.4 Decrease (0.5); reduced subcooling (0.75) (1.25) Ref: Morris, T. C.; Thermo/HT/Fluid flow (3/83), pg. 7-96. | £43 | 5.5 | With regard to excess reactivity: | | |-------------|-----|--|-------| | Reversed by | | a. The excess reactivity for a <u>cold</u> , <u>clean</u> , <u>critical</u> reactor is greater than that for the <u>hot</u> , <u>clean</u> , <u>zero</u> <u>power</u> condition (TRUE or FALSE). | (0.5 | | | | b. The excess reactivity for the hot, clean, zero power condition is smaller than that for the hot, full power, equilibrium Xe and Sm condition (TRUE or FALSE). | (0.5 | | | | c. The excess reactivity at EOL is greater than that at BOL (TRUE or FALSE). Why? | (1.25 | | 5.5 | a. | True | (0.5) | |-----|------|--|--------| | | b. 1 | False | (0.5) | | | c. | False (0.5); fuel depletion and fission products increase (0.75) | (1.25) | | | Ref: | WNP-2, Reactor Theory Rev. pg. 39. | | | | | 1 | À | |----|------|-----|---| | | | 1 | > | | 0 | el's | N | 1 | | ·× | 13 | | | | | Year | . 0 | • | - 5.6 The WNP-2 reactor is taken to criticality from a cold condition and then placed on an 80 second positive period. - a. From control room <u>nuclear</u> instrumentation, <u>how</u> can the operator tell <u>when</u> the heating range has been reached? (Rod position and recirculation are held constant). (0.75) b. In which of the following intervals was the heating range entered? <u>Explain</u> the reason for your answer. (Show all work.) (1.5) - Interval 1 reactor power increased by a factor of 6 in 143.3 seconds. - Interval 2 reactor power increased by a factor of 3 in 99.0 seconds - Interval 3 reactor power increased by a factor of 5 in 128.8 seconds. (Note: the intervals may not be in sequence.) - 5.6 a. Operator can notice that <u>period</u> has become longer and that power change on <u>IRMs</u> is leveling off.. (0.75) - b. (From P = $Poe^{t/T}$ + T = $\frac{t}{\ln P/Po}$) Interval 2 (0.5); the period has lengthened from 80 seconds. The other intervals have 80 second periods (1.0). (1.5) Ref: General control room indications; WNP-2, Reactor Theory, pg. 58. | Revenue Light | a. | Whi | ch reactivity coefficient is the <u>most</u> dominant under following conditions: | |---------------|----|----------------------|--| | γ, | | 1)
2)
3)
4) | During rod drop accident at 15% power Pulling rods at 1% power MSIV closure at 100% power Feedwater controller fails high at 100% power? | | | b. | For | "feedwater controller fails high at 100% power," a. | | | | 1) | Give the reason for your answer to a.4) above. | | | | 2) | What will happen to power (increase, decrease, stay the same)? | | | | 3) | What is the approximate value at BOL of the coefficient you gave as your answer to a.4) above? | power? power," a.4) above: above. (1.0)rease, (0.5)the coefabove? (0.5)a. (0.5 for each) (2.0)1) Doppler coefficient 2) Moderator coefficient 3) Void coefficient 4) Void coefficient b. 1) Increase in core subcooling which reduces void fraction whose coefficient has greatest effect on reactivity. (1.0)2) Increase (0.5)3) -1 x 10-3 AK/K/1% void change of the candidate gives the wrong coeff. in
a.4) but gives correct value credit should be given (Error (0.5)Ref: Standard Reactor Theory. carried forward) i.e. a. 4) Moderator arelf 6.2) -1×10-4 4/4 (2.0) 7 week of 5.8 Near the <u>end-of-cycle (EOC)</u>, will <u>differential</u> control rod worths near the bottom of the core be <u>lower</u> or <u>higher</u> than those near the top of the core? Why? (1.75) (1.75) Higher (0.5). As fuel burns, control rods must be withdrawn causing flux to peak lower in the core (0.75); and rod worth is proportional to flux² (0.5). (Allow command) should be withdrawn Ref: WNP-2, Reactor Theory, pg. 81. 8 | | 1 | 20 | |---|------|----| | | موره | 1 | | 8 | Ery. | 1 | | | Man | | | | 1, | | Samarium (the reactor has been operated at a constant power for many days): a. If reactor power is then <u>doubled</u>, will the new equilibrium <u>Samarium</u> concentration be exactly <u>twice</u> as great (YES or NO)? Explain. (1.5) b. If the reactor is shut down, initially by a 1% ΔK/K, will the <u>initial</u> effect of <u>Xenon</u> be to <u>increase</u> or <u>decrease</u> the shutdown margin? (0.5) 5.9 a. No (0.5); the equilibrium value of samarium does not depend on flux, and, therefore, it does not depend on power level (1.0). Ref: WNP-2 Reactor Theory, pg. 87. b. Increase. (0.5) Ref: Standard Reactor Theory ## 5.10 With regard to Delayed Neutrons: a. In causing fissions, what is the major difference between delayed neutrons and prompt neutrons? (0.75) b. Explain how and why the value of the delayed neutron fraction, Beta, changes from the beginning of core life to the end of core life. (0.75) c. Explain the effect on reactor control of the change in Beta with core life. (0.75) 5.10 a. Delayed neutrons have a lower probability of causing fast fission (the "importance" factor is less than 1). (0.75) Ref: Standard Reactor Theory. b. Beta will decrease from about 0.007 at BOL to 0.0054 at EOL due to buildup of Pu-239 and depletion of U-235. (0.75) Ref: Standard Reactor Theory. c. As beta decreases with core age, reactor period decreases and, therefore, for the same reactivity addition rate, a shorter period and less easy control is obtained at EOL. (0.75) Ref: Standard Reactor Theory $$a_v = -1 \times 10^{-3} \frac{\Delta K/\Xi}{K}$$ voids $$p = \frac{k(eff) - 1}{K(eff)}$$ $$M = 1/(1-k)$$ $$n = v/(1 + d)$$ $$\tau = (\beta-p)/\lambda_0$$ Table 1. Saturated Steam: Temperature Table | Temp | Alex Press | Sat | pecific Val | | Sat | tataaip | The second secon | - | Entrep | | | |---|---|---|--|--|---|---|--|---|--|---|---| | Fahr
1 | , Sq. to | Lequet | Evap | V-ipor
Va | Liquid
h, | Evap | V.sgreet | Suit
Limpted
by | Even | Value . | fire | | 37 0°
34 0
36 0
38 0 | 0 10395 | 0.016019 | 3164 7
3061 9
7839 0
2634 1 | 3304 7
3061 9
2839 0
2634 2 | -00177
1996
4 004
5 018 | 10/4 4
10/1 2
10/2 1 | 1075 5
1076 6
1077 7
1078 1 | 0 0155
0 0041
0 0041 | 2 1/62
2 1/62
2 1/61
2 1/64 | 2 16A1 | 34 0
34 0
38 0
38 0 | | 42 8
47 8
44 0
46 0
48 8 | 0 1314
0 14192
0 15314
0 15515 | 0.016019 | 2445 8
2272 4
2112 4
1365 7
1830 0 | 2445 8
7272 4
2112 8
1965 7
1830 0 | 10 035
12 041
14 047
16 051 | 10/10
1060 8
106.8 /
106.6 4 | 1077 0
1079 3
1.040 7
1081 6
1082 5 | 0 0142
0 0707
0 0712
0 0321 | 2 1432
2 1725
2 1217
2 1111
2 1006 | 2 1534
2 1527
2 1453
2 1453
2 1127 | 48 8
47 8
44 8
44 8 | | 58 0
57 0
54 0
56 0
56 0 | 3 17794
0 17165
0 20475
0 27183
0 73843 | 0 016074
0 016076
0 016078
0 016031 | 1704 8
1589 2
1487 4
1383 6
1292 2 | 1704 8
1549 2
1482 4
1383 6
1292 2 | 18 054
20 057
27 058
24 059
25 060 | 1045 3
1764 2
1763 1
1061 9
1060 8 | 1087 4
1084 7
1065 1
1086 0
1086 9 | 0 0 1 1 9 0 0 4 7 8 0 0 5 1 6 | 2 0901
2 0794
2 0495
2 0593
2 0491 | 2 1267
2 11117
2 11 14
2 1079
2 1078 | 58 8
57 8
54 8
55 8 | | 67 8
64 8
64 8
64 8 | 0 25611
0 27494
0 29417
0 31674
0 33889 | 0 016033
0 016016
0 016019
0 016043
0 016046 | 1207 6
1179 7
1056 5
989 0
926 5 | 1207 6
11.79 2
1056 5
789 1
926 5 | 24 050
30 054
31 056
36 054 | 1959 7
1054 5
1054 3
1055 2 | 1087 7
1088 6
1789 5
1090 4
1091 2 | 0 05-5
0 07-93
0 05-17
0 75-70
0 07-08 | 2 0.341
2 0.791
2 01 72
2 00 94
1 9996 | 2 07/16
2 07/14
2 07/14
2 07/04 | 60 0
67 0
64 0
66 0 | | 70 0
72 0
74 0
76 0
78 0 | 0 36797
0 38844
0 41550
0 44420
0 47461 | 0 015050
0 015054
0 015061
0 015067 | 868]
814 7
764 1
717 4
673 8 | 868 4
814 3
764 1
717 4
673 9 | 18 75.7
41 (419
41 (41)
44 (41)
46 (40) | 1054 0
1057 9
1051 8
1050 7
1049 5 | 1007 1
1001 0
100 - 8
1001 7
1005 6 | 0.0745
0.1783
0.0875
0.0875 | 1 9900
1 9801
1 9708
1 9614
1 3520 | 2 0545
2 0547
2 05:3
2 04:2
2 04:5 | 70 0
77 0
74 0
76 0
78 0 | | 80 8
87 0
84 0
86 0 | 0 50-41
0 51091
0 57702
0 61518
0 65551 | 0.015077
0.015077
0.015082
0.015087
0.016093 | 533 3
595 5
560 1
277 5
496 8 | 631 3
525 3
560 3
527 5
496 8 | 48 017
10 013
57 019
54 075
56 072 | 10484
10471
17161
17450
10439 | 1004 4
1004 3
1004 3 | 0 00 17
0 7 14
0 10 15
0 10 15
0 10 17 | 1 94 %
1 91 13
1 97 47
1 91 51
1 9060 | 20151
20191
20131
20131
20139 | 87 0
87 0
84 0
86 0 | | 90 0
97 0
94 0
96 0
18 0 | 0 A7813
0 74113
0 71062
0 84072
0 89356 | 0015105
0015111
0016117
0016123 | 468 (
411]
416]
397 8
370 9 | 46.8 1
441 3
416 3
392 9
370 9 | 58 01 8
62 01 4
62 01 0
64 00 5
64 00 3 | 1047 /
1041 5
1040 5
10 49 3
1018 7 | 1107 8
1101 6
1102 5
1103 3
1104 2 | 01115
01152
01138
01274
01760 | 18970
18941
18732
18704
18617 | 7 90%
7 0011
1 9978
1 9876 | 90 8
97 8
94 6
96 8
98 8 | | 100 8
107 0
104 0
106 0 | 0 14178
1 00/89
1 06/65
1 1347
1 7036 | 0-91513Q
0-015117
0-01514
0-015158 | 150 4
111 1
111 1
79n 16
780 28 | 3'47 4
311 1
113 1
276 18
280 30 | 67 000
60 000
71 007
73 99
75 98 | 1017 1 | 110% 1
110% 1
110% 8
1107 6
1108 5 | 01/95
01/11
01/46
01/02 | (85 10
1 8344
1 8358
1 877) | 1 34/5
1 97/5
1 97/5
1 97/5 | 100 0
187 0
194 0
196 0 | | 110 8
112 8
114 8
116 8 | 1 2750
1 7505
1 4279
1 51 13
1 44825 | 0016165
0016171
0016180
0016188 | 765 37
751 17
738 21
775 84
714 70 | 265 19
751 18
238 22
275 85
214 21 | 77 98
29 58
81 97
81 97
85 97 | 1011 4
1010 2
1079 1
1077 9 | 1109 1 | 01417
01477
01507
01542
01577
01611 | 1 8188
1 8105
1 8021
1 7218
1 7876
1 7774 | 1 9676
1 9577
1 2528
1 2480
1 2411
1 9 186 | 1100 | | 176 6
127 8
124 8
126 8 | 1 6927
1 7891
1 8901
1 9959
2 1068 | 0.016,204
0.016,213
0.016,221
0.016,279
0.016,238 | 203 25
192 94
183
23
174 08
165 45 | 703 76
197 75
183 74
174 09
165 47 | 87 97
87 76
91 76
93 76
93 76 | 1025 6
1074 5
1027 3
1027 2
1021 0 | 11116
11144
11153
1161 | 0 1646
0 1640
0 1715
0 1749
0 1783 | 1 7643
1 7513
1 7513
1 7453
1 7374 | 1 9119
1 9293
1 9247
1 9202
1 9157 | 128 6
122 6
124 8
128 8
128 8 | | 138 0
132 0
134 0
136 0
138 0 | 2 7230
2 3445
2 4717
2 6647
2 7438 | 0016247
0016256
0016265
0016274
0016284 | 157 32
149 64
142 40
135 55
129 09 | 157 33
149 66
142 41
135 57
129 11 | 97 96
99 95
101 95
103 95
105 95 | 1019 8
1018 7
1017 5
1016 4
1015 2 | 1117 8
1118 6
1119 5
1120 3 | 0 81 7
0 85 1
0 884
0 918
0 195 1 | 1 7795
1 7217
1 7140
1 7063
1 6986 | 19117
19068
19074
18980
18937 | 138 9
132 8
134 8
136 8 | | 140 6
147 8
144 8
146 8 | 2 8892
3 04 11
3 1997
3 3653
3 5381 | 0 016293
0 016303
0 016322
0 016322 | 122 98
117 71
111 74
106 58
101 68 | 123 00
117 22
111 76
106 59
101 70 | 107 95
109 99
111 95
113 95
115 99 | 1014 0
1017 9
1011 7
1010 5
1009 3 | 1122 0
1122 8
1123 6
1124 5
1125 3 | 0 1985
0 2018
0 2051
0 2084
0 2117 | 1 6910
1 6534
1 6759
1 6684
1 6610 | 1 8895
1 8852
1 8810
1 8769
1 8727 | 148 8
147 8
146 8
146 8 | | 156 8
152 8
154 8
156 8 | 3 71 84
3 9065
4 1025
6 3068
6 51 97 | 0016343
0016353
0016363
0016374
0016386 | 97 05
92 66
88 50
84 56
80 82 | 97 07
92 68
88 52
84 57
80 83 | 117 95
119 95
121 95
123 95
125 96 | 1008 2
1007 0
1005 8
1004 6
1001 4 | 1126 1
1126 9
1127 7
1128 6
1129 4 | 0 2150
0 2161
0 216
0 2748
0 2781 | 16536
16463
16390
16318
16245 | 1 8686
1 8646
1 8666
1 8566 | 156 8
152 8
154 8
156 8 | | # :
:
: | 4 7414
4 9/77
5 7174
5 4673
5 7223 | 0.016.195
0.016.417
0.016.428
0.016.440 | 77 27
73 90
70 70
67 67
64 78 | 77 29
73 97
70 77
67 68
64 80 | 17/76
17776
13176
13176
13397 | 100.° 7
1001 0
999 8
998 6
997 4 | 11 10 7
11 11 0
11 11 8
11 32 6
11 33 4 | 0 7 11 1
0 7 14 4
0 2 3 7 7
0 2 40 9
0 2 46 1 | 16174
16103
16017
15961
15892 | 8487
 8448
 8409
 8371 | 160 S
167 S
164 S | | 178 0
172 0
174 0
176 0 | 5 9976
6 2736
6 5656
6 8690
7 1 840 | 0016451
0016463
0016474
0016486
0016498 | 62 04
59 43
56 95
54 59
52 35 | 62 06
59 45
56 97
54 61
52 36 | 137 97
139 98
141 98
143 99
145 99 | 996 2
999 0
993 8
992 6
991 4 | 11 34 7
11 35 0
11 35 8
11 36 6
11 37 4 | 0 74/3
0 7505
0 7517
0 7568
0 2600 | 1 5A27
1 5753
1 5684
1 5616
1 5548 | 1 83333
1 8795
1 8758
1 8771
1 8184
1 8147 | 171 | "The states shown are meta-stated | Table 1. Saturated | Steam: | Temperature | Table-Co | ntinued | |--------------------|--------|-------------|----------|---------| | Specific Valume | | Enth.iig | | | | Temp | Abs Press | Su | ecific Val | ume Steam | | (mh.np | , | | Entrap | | | |---|---|--|---|--|--|---|---|---|--|--|---| | f _{Altr} | Sea in | Sat
Liquid
V, | funp
vie | Vapor | Loquet | Leag | V.ipni | t square | free | \$ at
\$ 15 m | 1.00 | | 180 0
187 8
184 0
186 8
188 0 | 7 5110
7 850
8 701
8 568
8 947 | 0016510
0016527
0016514
0016547
0016559 | 50.71
48.177
46.112
44.383
47.621 | 50 27
18 187
46 749
44 400
42 638 | 148 30
150 01
157 01
154 02
156 01 | 979) 7
989 0
989 0
985 5
985 1 | 11/8 ?
11/9 0
11/9 4
11/0 5
11/4] | 0.2631
0.263
0.263
0.263
0.273
0.273 | 154#0
15411
15314
15719
15213 | 1 #1111
 h075
 6-317
 4-91 | | | 198 6
197 6
194 8
196 8 | 9 340
9 747
10 168
10 605
11 958 | 0 016572
0 015585
0 01558
0 01661
0 016624 | 40 941
39 317
37 808
36 348
34 954 | 40 95 /
39 154
37 874
36 364
38 970 | 158 01
160 05
167 05
164 06
166 08 | 984
987 8
981 6
980 4
979 | 1142
1142 9
1141 /
1144 4
1145 2 | 0 2787
0 2818
0 2819
0 2879
0 2910 | 15148
15092
15017
14957
14888 | 1 7914
1 7919
1 7865
1 7831
1 7738 | 190 S
197 s
191 0
196 0
196 0 | | 796 6
796 6
798 6
217 8
214.8 | 11 526
12 512
11 568
14 676
15 901 | 0 015417
0 01554
0 0155719
0 015747 | 33 627
31 135
28 862
25 787
24 878 | 13 6 39
31 151
78 8 78
26 799
24 894 | 168 09
177 11
176 14
180 17
184 70 | 9// 9
9// 8
9/0 1
96/ 8 | 1145.0
1137.5
1149.0
1150.5
1152.0 | 0 7040
0 1001
0 1041
0 3171
0 3181 | 1 48.74
1 15/9/
1 45/1
1 4447
1 4323 | 1 7544
1 7518
1 74-7
1 7568
1 7505 | 200 0
204 0
208 0
212 9
214 0 | | 278 6
278 6
278 6
232 6
236 8 | 17 184
18 556
20 015
21 567
23 216 | 00157/5
0015805
0015814
0015864
0016895 | 21 111
21 529
20 056
18 701
17 454 | 23 148
21 545
20 073
18 718
17 471 | 188 77
197 27
196 31
200 35
204 40 | 964 8 | 1151 4
1154 5
1156 3
1157 8
1159 2 | 0 3741
2 1390
3 1152
0 1417
0 1474 | 8701
 2081
 3061
 3842
 3725 | 1 7447
1 7340
1 7170
1 7140
1 7140
1 7201 | 770 0
221 0
278 0
237 6
236 0 | | 744 8
744 8
248 0
252 8
256.0 | 24 968
26 826
28 /46
30 883
33 091 | 0 016926
0 016958
0 016990
0 017027
0 017055 | 15 104
15 743
14 754
13 358
12 520 | 16 321
15 250
14 281
13 375
12 538 | 208 45
212 50
216 56
220 62
224 69 | 99/
919 9
916 8
941 4 | 1160 6
1167 0
1161 4
1164 7 | 0 1513
0 3541
0 1643
0 1765
0 1761 | 13400
13251
131/0
13/54
13/54 | 17147
17095
17578
16977 | 248 8
214 8
748 8
757 8
256 8 | | 254 6
254 6
258 6
277 6
276 6 | 35 477
37 874
40 500
41 747
46 147 | 0 01/0A9
0 01/15/
0 01/15/
0 01/15/
0 01/15/ | 11 745
11 025
10 358
4 718
9 162 | 11 752
11 042
10 175
2 755
1 180 | 778 76
737 83
731-71
740 74
765 QB | 918 6 911 9 911 1 9 111 1 9 111 1 9 111 1 | 1167 A
1168 /
11/00
11/1 7 | 0 1819
0 18/6
0 1917
0 1947 | 1 1041
1 7911
1 7873
1 7715
1 7607 | 1 6 M A
1 6 M A
1 6 M A
1 6 M A | 764 6
764 6
268 8
277 8
276 9 | | 798 6
784 6
788 0
797 0
796 8 | 49 700
57 41 4
55 795
59 350
63 084 | 001/36
001/30
001/34
001/38
001/41 | 8 427
8 1780
7 501 14
7 7 301
6 8259 | 8 644
8 1453
7 6407
7 7475
6 8433 | 243 17
251 1
251 5
265 6 | 9111/
911/
9159
9130 | 11714
11750
1176.7
11774
11786 | 0 417.1
0 417.1
0 476.1
0 476.1
0 431.7 | 1 7'61
1 7 115
1 2 116
1 2 186
1 2 0 8 2 | 1 6400
1 6400 | 790 8
783 6
783 6
797 8
796 8 | | 396 0
386 6
386 6
312 8
315 8 | 67 005
71 119
75 413
79 953
84 688 | 0 01 745
0 01 749
0 01 753
0 01 757
0 01 761 | 6 4483
6 0755
5 7655
5 4566
5 1673 | 6 4658
6 11 10
5 78 10
5 4742
5 1849 | 269 7
271 8
278 9
287 1
286 3 | 910 0
907 0
904 0
901 0
897 9 | 1179 7
1180 9
1187 0
1187 1 | 0 41/2
0 44/5
2 44/9
0 4533
0 4586 | 1 14/4
1 18/7
1 16/6
1 15/6 | 6151
 4301
 4309
 4167 | 229 6
301 0
208 0
312 6
316 6 | | 124 0
124 0
126 0
132 0
132 0 | 89 543
54 826
100 745
105 907
111 820 | 0 01 746
0 01 770
0 01 774
0 01 779
0 01 783 | 4 8961
4 6418
4 #030
4 1/88
3 9681 | 4 91 38
4 6595
4 4208
4 1966
3 9859 | 790 4
204 6
298 7
302 9
302 1 | 8'11 6
8'11 6
888 5
885 3
882 1 | 1185 Z
1186 Z
1187 Z
1188 Z
1189 1 | 0.4640
0.4647
0.4745
0.4798
0.4850 | 11477
11178
11790
11133
11986 | 14114
1+0/1
1+0/5
15941
15916 | 170 0
174 0
174 0
174 0
117 0 | | 346 6
346 6
346 6
352 6
354 6 | [17 997
174 430
131 142
138 138
145 424 | 0 01 787
0 01 792
0 01 797
0 01 801
0 01 806 | 3 /699
3 5834
3 40/8
3 2423
3 0863 | 3 7878
3 601 3
3 4258
3 2503
3 1064 | 311 3
315 5
315 7
323 7
328 1 | 878 8
875 5
877 7
868 9
863 5 | 1190 1
1191 0
1191 1
1192 7
1193 6 | 0 4907
0 4954
0 5006
0 5058
0 5110 | 10700
17894
13797
10:05 | 15857
15819
15204
15763
15721 | 140 0
144 0
146 0
157 0
256 0 | | 368 6
364 6
368 6
377 6
377 8 | 153 010
160 903
169 113
177 648
186 517 | 0 01411
0 01816
0 01821
0 01826
0 01831 | 2 9392
2 8002
2 6691
2 5451
2 4279 | 2 9573
2 8184
2 6873
2 5633
2 4462 | 337 3
336 5
340 8
345 0
349 3 | 862 1
858
6
855 1
851 6
848 1 | 1194 4
1195 2
1195 9
1196 7
1197 4 | 0 5161
0 5217
0 5763
0 5314
0 5365 | 1 0517
1 0424
1 0232
1 0240
1 0148 | 15678
15637
15575
15554
15513 | 260 8
364 8
366 0
377 8
376 6 | | 386 6
384 8
388 8
252 8
398 8 | 195 779
205 294
215 220
225 516
236 193 | 0 01836
0 01842
0 01847
0 01851
0 01858 | 2 31 70
2 21 20
2 11 76
2 01 84
1 9291 | 2 3353
2 2306
2 1 311
2 0369
1 9477 | 3536
3579
3677
3665
3708 | 814 5
810 8
81/7
833 4
879 / | 1176 0
1196 7
1199 3
1179 9
1200 4 | 0 5414
0 5466
0 5516
0 5567
0 5617 | 1 0057
0 9966
0 9876
0 9786
0 9696 | 1 5473
1 5412
1 5132
1 5357
1 5313 | 254 8
254 8
288 8
292 8
292 8 | | 404 0
404 0
408 0
417 0
418 6 | 247 254
258 725
270 600
287 894
295 617 | 0 01864
0 01870
0 01875
0 01881
0 01887 | 8444
 7640
 6877
 6152
 5463 | 1 76-30
1 78-77
1 706-4
1 6 3-40
1 56-51 | 375 1
379 4
383 8
348 1
392 5 | 875 9
877 0
818 7
814 7
819 2 | 1201 0
1201 5
1201 9
1202 4
1202 8 | 0 106/
0 5/1/
0 5/46
0 1416
0 1866 | 07518 | 1 52/4
1 5/14
1 5/19
1 5/15/
1 5/18 | +00 0
+01 0
+02 0
+17 0
+16 0 | | 428 8
424 8
478 8
432 8
432 8 | 308 /80
327 391
336 463
351 00
366 03 | 0 01900
0 01906
0 01913
0 01913 | 1 4808
1 4184
1 3591
1 30766
1 74887 | 1 4997
1 4374
1 3782
1 32179
1 26806 | 376 9
401 3
405 7
410 1
414 6 | 80A 2
AO: 7
/18 0
/93 1
789 / | 1203 5
1203 5
1203 7
1204 0
1204 2 | 0 1915
0 1964
0 6063
0 6112 | 0 7145
0 90//
0 8790
0 8903
0 8816 | 1 1040
1 1017
1 1004
1 2466
1 4928 | 478 8
478 8
478 8
472 8
412 8 | | 640 0
644 0
640 0
452 0
458 0 | 381 54
397 54
414 09
431 14
646 73 | 0 01926
0 01933
0 01940
0 01947
0 01954 | 1 19761
1 14874
1 10717
1 05764
1 01518 | 1 21687
1 16816
1 17152
1 07711
1 03472 | 4190
4:35
4/80
4125
44/0 | 784 (I
781 (
776 /
777 (
767 8 | 1,704 4
1,704 6
1,704 7
1,704 8
1,204 8 | 0 6161
0 6710
0 6759
0 6178
0 6356 | 0 8729
0 8643
0 8557
0 8471
0 8185 | 1 1890
1 485
1 1815
1 47/8
1 47/8 | 444 5
444 5
448 6
457 8
458 8 | | Table 1 | Saturated | Steam | Ta | T- | hin 6 | | |---------|-----------|-------|----|----|-------|--| | - | Ans Press | - · · | able 1. S | aturated | Steam: T | | | e-Con | tinued | | | | |---|---|---|--|--|---|---|--|--|---|---|--|---| | femp | I ft per | Sit | | S at | Ş., | it Enth, | all a | | × ,1 | \$ percent | * " | h.a. | | Lahi | Sq in | * i | d Fv.10 | W-same | | un for | p. V.que | | 1900 | | | 8.49 | | 468 6
464 8
463 6
477 8
475 8 | 4/6 A/
485 '-6
405 A/
5/4 6/
545 11 | 0 0136
0 0136
0 0136 | 0 5/461
0 0 1 1 AR
0 8 345 | 0.954.74
0.7186.7
0.883.79
0.84950 | 63;
641.
67.5;
459; | 7637
7-86
7-7-10
7-10
7-10 | 1:04 5 | 9 | 6.17-1
6.07-1 | 1 4 54
1 4 1 1
1 1 1
1 4 1 1 1
1 4 1 1 1
1 4 1 1 1 1 | 1 4 15
1 24 1
1 24 1
1 45 2
1 45 2
1 45 5 | 464 6
464 8
477 0 | | 498 0
404 8
488 0
492 0
496 0 | 474 4
44/ 2
610 10
611 01
656 61 | 0 0.70 ×
0 0.70 ×
0 0.70 ×
0 0.70 ×
0 0.70 × | 0 /6413 | 0.8(7)7
() /86/2
0.75/3
0.77820
0.70100 | 41 4 1
4/11
4/11
4/81
4/81 | 214 7
174 7
174 6 | 1701 a
1701 5 | 0 | 6 15 1
6:15 1 | 0 1471 | 1 15 14 | 401 | | 500 0
504 0
506 0
517 0
516 0 | 6,80,86
705,78
731,40
757,72
784,76 | 0.77643
0.07153
0.07167
0.07177
0.07181 | 0 67738
0 60530
0 58718 | 0.47492
0.64791
0.67592
0.60, 29
0.4074 | 487 9
497 7
497 9
507 1 | 7040
7017
6387 | 12017 | 0 | 6419 1
6787 1
7716 (| 7/481
97/57
97/57
97/45
97/45 | (411)
(429)
(429)
(421)
(431) | 500 0
504 0
508 0
517 0
516 0 | | 524 8
524 8
528 6
532 8
336 8 | 417 53
841 04
870 31
900 34
931 17 | 0 0 7 102
0 0 2 102
0 0 2 1 1 2
0 0 2 1 2 3
0 0 2 1 3 4 | 0 47843
0 47843 | 0 5145 A
0 51755
0 51755
0 50070
0 48757 | 51: 0
51: 0
521 8
524 8
511 7 | 6/55 | 11547 | 20 | /147 /
//31 (| 1 701 1
1 - · · 4
1 - · · 4 | 1 41 16
1 41 19
1 41 19
1 40 17
1 40 17 | 520 0
521 0
520 0
527 0
527 0 | | 548 8
548 8
548 6
557 0
556 8 | 962 79
995 27
1078 49
1062 59
1097 55 | 0 02157
0 02157
0 02169
0 02194 | 0 44167
0 42677
0 61048
0 39479
0 37966 | 0 44834
0 44834
0 41217
0 41564
0 40160 | 116 9
116 9
117 9
117 9 | 651 3
645 0
618 5 | (158)
(151)
(151)
(151 9
(159 2 | 0 | 1474 0
1474 0 | 164/7
161/3
161/3
161/1
162/2 | 1 1754
1 1757
1 1757 | 546 6
544 0
518 0
552 0
558 0 | | 168 0
164 0
168 0
172 0
176 0 | 1133 38
1170 10
1207 72
1246 26
1285 74 | 0 0770/
0 0771
0 07715
0 07749
0 07764 | 0 36507
0 15099
0 33741
0 32479
0 31162 | 0 38/14
0 3/320
0 359/5
0 346/8
0 33475 | 567.4
567.5
577.2
578.1
583.7 | 6185 | 1187 7
1184 1
1184 5
1187 7
1180 9 | 0 7 | 1725 O | 15, 12
15,50
15,859
15,756 | 13615 | 160 0
164 0
168 0
177 0
176 0 | | 580 8
584 8
588 8
582 0
586 8 | 1376 17
1367 7
1410 0
1453 3
1497 8 | 0.02279
0.02795
0.02111
0.02328
0.02345 | 0 29937
0 28753
0 27608
0 26499
0 25425 | 0 37216
0 31048
0 27919
0 28827
0 27770 | 589 (
501 6
600 1
605 7
611 4 | 587 9
587 6
574 7
566 8
558 8 | 1179 0
1174 9
1174 8
1177 6
1170 2 | 0 7 | 978 O | 5473
5480
5380
5380
5293 | 344g
 3507
 3454
 3470
 3375 | 500 0
584 0
584 0
597 0
598 0 | | 600 0
504 0
603 0
617 0
516 6 | 15412
(5897
16173
16861
17359 | 002402 02
002402 02
002422 02 | 4:84 076
3174 075
2154 074
1447 073
0516 077 | 757
796
865 | 6171
6279
6788
6188
6408 | 547 / 11
5116 11
5747 11 | 67 7
65 1
67 4
50 5 | 0 #134
0 #187
0 8710
0 8714
0 #148 | 05124 | 110 | 19 | 507 0
601 0
628 0
617 0
616 0 | | 578 8
574 6
629 8
532 8
638 6 | 1746 9
1811 0
1917 6
1947 9
2007 8 | 00'489 01
007518 01
007519 01 | 76.15 0.776
8/17 9/1.
/880 0.70
/044 0.195
6776 0.186 | 775
104
58J | 517 1
517 7
557 7 | 4 W. S. 11: | 47 #
16 1
47 7
3# 1 | 0 #103
0 #1 #
0 #114
0 #114
0 #678 | 0 17.49 | 1 101
1 799
1 799 | 11 | 670 0
674 0
678 0
617 0
618 0 | | 640 0
640 0
637 0
636 0 | 2759 9
2118 3
2178 1
2239 2
2301 7 | 007657 01 | 5427 0186
4644 0177
3876 0165
3124 0157
2387 0151 | 769 | 685 9
697 9
700 0 | 411 1 111
418 7 111 | 13 /
13 0
74 0
18 / | 0 8746
0 8746
0 8868
0 8868 | 0 41
14
0 4015
0 1493
0 3767
0 3637 | 1.774 | 19 | 640 0
640 0
640 0
652 0
652 0 | | 668 8
664 8
646 0
677 0
678.0 | 2365 7
2431 1
2198 1
2546 6
2636 8 | 0 0 2 8 1 0 1 0 0 0 0 2 9 1 1 0 0 0 | 16A3 0144
0947 0137
0279 0130
9514 0124
1/99 0117 | 157
187
124 | 7149
7229
7115
7407
7492 | 3577 110
3571 109
3457 108 | 07 0
00 6
1: 5
15 9 | 0 8995
0 9054
0 9137
0 9212
0 9287 | 0 1502
0 1351
0 1210
0 1054
0 2892 | 1 249 | 6 | 664 0
664 0
664 0
677 0
676 6 | | 600 0
604 0
602 0
602 0 | 27086
27821
28574
29345
30134 | 003114 00:
003204 000
003313 000 | 1349 0104
1349 0104
1395 0097
13797 0091
1916 0083 | 163
199
10 | 768 2
778 8
790 5 | 2687 104
(4) [10] | 58 5
58 4
67 0
13 6
7 7 2 | 0 9365
0 9447
0 9535
0 9434
0 9749 | 0 2720
0 2537
0 2337
9 2110
0 1841 | 1 208 | 6 4 2 | 100 1
100 1
100 1
100 1
100 1 | | 700 8
162 8
164 9
175 S
185 AJ* | 3094 1
1115 5
1177 7
1174 1
3208 2 | 001874 003
004108 003
004427 003 | 1857 0 075
1173 0 064
1137 0 061
1304 0 057
1000 0 050 | 97 /
90
30 | 877 4
815 0 | 1727 99
144 97
107 95
61 93 | 5 2 | 0 9901
1 0006
1 0169
1 0129
1 0612 | 0 1490
0 1245
0 0876
0 0577
0 0000 | 1139 | 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 700 0
707 0
784 0
703 47* | *Critical temperature Table 2: Saturated Steam: Pressure Table | Ans Press
LD/Sq in | lemp
fahr
I | Sat
Liquid | (vap | | Sat
Liquid
h j | formatpy
Evap | Sal
Vapor | S at
Liquid
S a | Evap | S at
Vacor | Ans Press | |---|--|---|---|--|--|---|--|--|--
--|--| | 0 50063
0 75
0 30
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 | 17.018
50.371
70.586
101.74
102.24
173.71
217.00
213.03 | 0.014027
0.014017
0.01417
0.01417
0.015407
0.0167
0.0167 | 1 (07 4
1 11 5
641 5
131 70
73 515
18 404
76 782
26 7/4 | 1:07 4
17:5 5
64:5
111:4
13-12
18:4:0
24:799
16:290 | 0 000)
27 (82
47 - 11
10 70
161 / 6
180 17 | 1075 5
1060 1
1018 6
1076 1
1000 9
987 1
989 7 | (0.55
(m)/4
(0.6.1
(10.54
(1.1)
(1.1)
(1.1)
(1.1)
(1.1)
(1.1) | 0 mmn
0 m 12
0 m 12
0 m 13
0 | 71877
71877
71874
1-4174
1-4074
1-4074
1-4447
1-4447 | 2147
2047
2047
1013
1013
1014
2014
2014
2014
2014
2014
2014
2014 | 0 20055
2:1
0 10
10
10 0
10 0
14 556 | | 26 6
38 0
48 6
56 6
76 6
76 0
76 0 | 227.76
250.34
26.7.25
281.02
27.77
302.93
31.2.04
320.28 | 0.015814
0.017029
0.017151
0.017274
0.017383
0.017482
0.017573
0.01759 | 20 070
13 7.46
10 4794
\$ 494,7
7 1562
6 1875
5 4536
4 8779 | 20 087
11 /436
10 4965
8 5140
7 1716
6 2050
5 4711
4 8953 | 196 77
718 9
718 1
750 2
767 7
787 1
290 7 | 945 7
9116
9116
9114
9114
900 9 | 11.4 1
11.4 1
11.7 8
11.4 1
11.7 6
11.80 6 | 0 1/54
0 16/2
0 17/1
0 41/2
14/2/3
0 41/1
0 45/14 | 1 3067
1 3313
1 .814
1 2474
1 2167
1 1705
1 1675
1 1470 | 1 5705
16 705
16 705
16 705
16 100
16 100
16 100
16 100 | 70 8
70 8
40 0
50 8
60 0
70 0
80 0 | | 106 6
110 2
120 8
130 9
140 8
150 8
170 8
170 8 | 327 82
334 79
341 27
347 33
351 04
358 43
361 55
368 42
373 08
377 53 | 0 01871
0 01871
0 01877 | 4 4113
4 0106
3 7097
3 4164
1 7010
7 9948
7 8155
2 6556
2 5179
7 3847 | 4 4110
4 0184
3 7275
3 4544
3 2170
3 0139
2 6336
2 6738
2 5312
2 4030 | 27/8 5
30/5 8
31/2 6
31/9 0
3.50
33/6
13/6
13/6
13/6
13/6
13/6
13/6
13/6 | 887 4
887 1
877 8
877 8
847 8
849 0
849 0
850 7
846 7 | 1187 2
1188 9
1190 4
1191 7
1191 0
1195 1
1196 0
1196 9
1197 6 | 0 4711
0 1017
0 1017
0 1141
0 1141
0 1744 | 11.44
1115
1767
1785
1761
1754
1015
1017 | (5077
1 5150
1 5877
1 5877
1 5675
1 6675
1 6671
1 5571
1 5571
1 5178 | 100 8
100 0
170 8
130 9
130 9
150 8
150 0
175 0 | | 794 8
216 8
279 8
238 6
246 8
256 8
268 8
278 8
268 8
278 8 | JR1 80
185 91
189 88
J91 70
J97 79
400 97
404 44
407 80
411 07
414 25 | 0 01845 2
0 01855 2
0 01855 2
0 01860 1
0 01865 1
0 01870 1
0 01875 1 | 7579
77991
84909
87452
75548
69137
63169 | 7 '9/1
/ 18717
2 '98-2'9
 7-18-6
 7-18-6
 18417
 17-18
 7-1019
 15-00-9
 15-00-9 | 164 4
157 7
168 7
168 7
176 1
176 1
177 7
181 6
187 1
189 6 | #11: 4
#15: 4
#11: 8
#2: 8
#2: 6
#1: 5
#1: 5
#1: 5
#1: 5
#1: 5 | 1176 1
1176 1
1776 1
1797 5
1797 5
1791 1
1791 5
1791 5
1791 5
1791 5
1791 5 | 0 114
0 114 | 11415
0 1011
9 1614
9 165
9 165
0 165
0 165
0 161
0 161 | 5174
5174
5174
5174
5175
5177
5177
5177 | 700 0
210 0
210 0
210 0
210 0
210 0
210 0
210 0 | | 100 6
150 0
400 0 | 41/35
431/33
444 60 | 0 01879 1
0 01912 1
0 01934 1 | 52388
30642
14162 | 54274
132554
16095 | 394 0
409 8
424 2 | 808 9
794 2
780 4 | 1207 9
1204 0
1204 6 | 0 5882
0 5059
0 6217 | 0 9223
0 8909
0 8630 | 1 5105
1 4768
1 4847 | 300 0
350 0
400 0 | | 458 8
588 9
558 9
608 9
858 8
708 8 | 456.78
46.701
476.94
486.70
494.89
503.08 | 001975
001975
001776
007011
007012
007012 | 1 012:4
0 00/87
0 82:81
0 74%6/
0 63505 | 0 97/67
0 841//
0 769/5
0 70843 | 417 3
449 5
460 9
471 7
481 9
491 6 | 767 5
751 3
711 3
712 0
710 7 | 1702 #
1704 7
1704 3
1701 7
1707 8
1701 4 | 0 4 150
0 12 12
0 14 1
0 14 1
0 14 1
0 14 1
0 14 1 | 0.81/8
0.8128
0.7916
0.7/18
0.7557
9.7377 | 17.4
12.1
12.1
12.8
12.8
13.04 | 116 2
519 0
512 9
607 0
650 7 | | 758 8
898 9
858 9
980 8
990 8
100 8
100 8
1108 6
1158 8
1208 9 | 510 84
518 71
575 74
511 75
518 19
518 19
556 78
561 82
567 19 | 0.07049
0.07047
0.07107
0.07173
0.07177
0.07177
0.07174
0.07273 | 0 58880
0 53807
0 5117/
0 4798
0 44964/
0 1/4 6
0 44904/
0 1/861
0 35459
0 34013 | 0 56.4%
0 5 1 102
0 5 000 1 | 500 9
500 8
514 4
526 7
515 7
542 6
550 1
556 8
571 9 | 679 6
679 5
667 7
667 7
667 7
670 7
671 7
671 7
671 7 | 1/00 /
100 8
100 0
100 4
100 4
100 4
100 1
100 1 | 0 /0/2
0 /11/
0 /10/
0 | 07710 | 1 2" 12
1 41 47
1 51 4
1 51 7
1 7 7
1 7 7
1 7 7
1 14 4
1 14 4 | 758 8
#33 8
#33 8
#30 8
#56 9
#56 9
#56 8
#56 8 | | 1250 0
1350 0
1450 0
1450 0
1550 0
1550 0
1650 0
1450 0 | 577 38
577 42
582 32
587 07
596 20
600 59
604 87
609 05
613 13 | 0 07750
0 07769
0 07769
0 07769
0 07769
0 07766
0 07766
0 07766
0 07766
0 07407
0 07407 | 0 32306
0 30772
0 79250
0 7/871
0 26542
0 25372
0 24234
0 23159
0 22141
0 21178 | 0 34546
0 37991
0 31537
0 31178
0 28911
0 27719
0 24545
0 24551
0 23607 | 5788
585
597
5988
605 3
514 7
624 2
636 5 | 6018
5746
5746
5765
6574
5584
5594
5111
5277 | 11 #2 6
11 #0 7 8
11 7 7 8
11 7 7 8
11 7 0 7 4
11 64 64
11 54 86 | 0 7790
0 1943
0 7906
0 796
0 8076
0 8185
0 8127
0 8150
0 8109 | 05850
7573
0567
0577
0578
0578
0567
0497
04867 | 17439 | 1750 0
1750 0
1750 0
1750 0
1750 0
1750 0
1750 0
1750 0
1750 0 | | 1758 8
1858 8
1858 8
1958 8
1958 8
2008 8
2108 8
2108 8
2108 8 | 61712
62102
62456
63272
63580
64276
64945
65589 | 0 02450
0 02472
0 02472
0 02517
0 02517
0 02565
0 02565
0 02777
0 02777 | 0 20263
0 17199
0 18558
0 1761
0 16766
0 1686
0 1787 | 0 22713
0 71561
0 71052
0 70278
0
109,40
0 18831
0 1/5/11
0 16277
0 16476 | 647 5
618 5
644 5
666 3
477 1
581 8
605 7
707 7
719 0 | 1111
5018
6026
6852
6156
7
116.7
116.7
116.7
184.8 | 1155 6
1157 1
1149 0
1145 0
1147 0
1118 1
1110 5 | 0 \$167
0 8470
0 8472
0 8572
0 8574
0 8674
0 8677
0 8677
0 7011 | 0 1745
0 4667
0 4561
0 4159
0 4158
0 6754
0 1848
0 1840
0 1840 | 1 11 2 4
1 20 2 9
1 10 10
1 24 1
1 2 4 1
1 2 4 1
1 2 4 1
1 3 4 0
1 4 6 | 1750 0
1860 0
1950 0
1950 0
1950 0
1960 0
1760 0
1760 0 | | 7546 6
2400 6
2758 8
2466 6
7560 6
2000 6
2100 6
2700 8
2206 2* | 668 11
673 71
679 53
689 96
690 72
695 33
700 78
705 08
705 47 | 0 02849
0 02918
0 03029
0 01114
0 01262
0 01428
0 03417
0 05028 | 0 19299
0 03177
0 08165
0 07171
0 06158
0 05073
0 03771
0 01191
9 00000 | 0 1 1068
0 12110
0 11174
0 10305
0 09470
0 08500
0 07452
0 05663
0 05078 | 711 /
/44 5
/5/ 3
/7/ 0 /
/85 1
/80 1
/80 8
/5 5
906 0 | 9:16
1:76
31:1
28:1
25:1
218:4
169 3
161
00 | 10% 1 1
108 2 0
105 5 8
103 9 8
10.70 3
993 3
911 6 | 0 71 19
0 71 19
0 71 6
0 94 6
0 97 8
0 97 8
1 73 5
1 73 5
1 73 5
1 73 5 | 0 1240
0 2491
0 2491
0 2491
0 1440
0 1460
0 1460
0 1460 | 1 7115
1 758
1 973
1 519
1 173
1 0832
1 0612 | 7400 0
7500 0
7400 0
7430 0
7500 0
1017 0
1100 0
1700 0
1700 0 | *Critical pressure LANGDON - COMMENTS # 6.0 Plant System Design, Control and Instrumentation (25.0) | 6.1 | Wit | h regard to the <u>Vessel Instrumentation</u> : | | |-----|-----|---|--------| | | /a. | For what specific condition(s) is the Fuel Zone Range level indicators calibrated? | (1.0) | | | b. | For the Narrow Range Level Indicators, MS-LIS-24A,B,C & D: | (2.0) | | | | Where are they located in the plant? To what systems/components do they send signals? At what levels are these signals initiated? What system/component action is initiated? | | | | √c. | How is the signal for jet pump flow generated in an individual (non-calibrated) jet pump? | (1.0) | | 6.1 | vá. | Saturated steam conditions at 0 psig in the vessel and drywell with <u>no</u> jet pump flow. | (1.0) | | | ъ. | 1) Located in Reactor Building, 522' level. | (0.5) | | | | 2), 3), and 4): | | | | | RCIC/RCIC turbine; at level 8; shut steam supply | (0.75) | | | | RPS; level 3; scram and NSSSS Group 5 and 6 isolations | | | | ·c. | Pressure, at pressure tap on pump throat, is compared to a common jet pump discharge pressure sensed at the core inlet plenum area by the SLCS injection line to develop a ΔP signal. | (1.0) | | | Ref | WNP-2, Systems and Procedures: NBI, pgs. 5, 14 and 9, respectively. | (1.0) | ### With regard to Process Radiation Monitoring: va. The main stream line radiation monitoring system will initiate condenser isolation (via AR-V-1) when appropriate channels and their trips are activated. What are these channels and trips? (1.0) What type of detector (G-M, etc.) is used in the following radiation monitors: (1.5) Rx Building stack extended range Off-gas post treatment 3) Circulating water effluent? vc. Which of the monitors, in b. above, will initiate system isolation or trips? (1.0) 6.2 va. Channel A or C; HI HI or Inop. (1.0) 1) Beta scintillation GM (0.5) (0.5) 3) Gamma scintillation (0.5) c. (0.5 each): 2,3 (1.0) Ref: WNP-2, Systems and Procedures: PRM, pg. 7; 5, 3, 3; and 3, respectively. ## 6.3 With regard to the Emergency Diesel Generators: too deliber b. Describe the overspeed trip mechanism (including its location, its major components, and how it initiates an engine trip). (2.0) C. What is the purpose of the soak back pump? 6.3 a. (1) Bus SM-3 dead (0.3) or TR-S undervoltage (0.3) 2) TR-B undervoltage (0.3) 3) SM-8 undervoltage (0.3) 4) K98B (containment high pressure or reactor low water level - Level 1) (0.3) b. Located in the camshaft counterweight housing (0.5).; it consists of a flyweight held by a tension spring. When engine exceeds set limit, spring tension is overcome by centrifugal force acting on the flyweight, permitting an outward movement of the flyweight which actuates the trip lever. This causes latching the injector rocker arm in the depressed position, preventing fuel injection into the engine (1.5). (2.0) vc. To provide oil to the turbocharger for prelubrication. (0.75) Ref: WNP-2, Systems and Procedures: DG, pg. 62; Fig. 14; and Fig 8c and pg. 22, respectively. ## 6.4 With respect to the Automatic Depressurization System (ADS): | va. | What | ADS | controls | are located on control room backpanels | | |-----|------|-----|----------|--|-------| | | P628 | and | 631, and | which components do they control? | (1.0) | this word is misteading - would never push ADS pushbottons under normal conditions - may have confused some people. (1.5) 6.4 va. (14) AUTO/OPEN control switches; SRVs "A" and "B" solenoids. = DAII 7 PDS valves (1.0) b. If a low pressure ECCS pump is not operating (0.75); so that core will not be uncovered (0.75) (1.5) Ref: WNP-2 System and Procedures, ADS, pg. 13 and 8, respectively. ## 6.5 With regard to the AC Electrical Distribution System: | ·a. | Which lockout relay will be tripped upon a Transformer Differential Current (87TM)? | (0.5) | |-------------------|--|--------| | | List three (3) actions which will occur when the lockout relay in (a) is tripped? | (1.5) | | | The loss of which $\frac{480 \text{V}}{\text{of}} \frac{\text{MC}}{\text{bus}}$ will deactivate both loops of $\frac{\text{shutdown}}{\text{cooling}}$? | (0.5) | | detail-candidata. | What happens upon the loss of the normal and startup sources for SM-4? | (0.75) | | detail-candidate | | | 6.5 -a. Unit lockout (86XU) b. [any 3, 0.5 pts each] Trips and locks-out all "N" breakers Trips 4F circuit breaker (Generator Exciter Field Breaker) Trips main turbine (20 AST) De-energizes 86XIU Starts oscillograph Starts computer C. MC-8-B-A C. MC-8-B-A MNP-2 System and Procedures; AC Distr.; pg. 15 and 16 for a, b, d; AOP 4.7.1.9, Loss of Power to SM-8, pg. 3 of 4 for c. (0.5) Thee they will also occur, same irt. 6.6 For the Reactor Core Isolation Cooling System, what position should the RCIC-V-8 and RCIC-V-63 keylocked control switches be placed in prior to resetting any isolation signal? Why? 14. (1.5) reset 6.6 CLOSED or STOP (0.5); otherwise (i.e. in OPEN), when isolation signal is received the valves would immediately open (0.5) which could cause extensive damage to system piping and components (0.5). (1.5) Ref: WNP-2, SOP 2.4.6, pg. 2 of 28. 6.7 If a selected control rod is in the selected 4 rod group and too many reed switch closures occur: √a. What indication(s) would the operator observe? (1.0) b. How could the control rod be moved through this position? (0.75) A also withdraw Block, Rwnt Block (possibly - and also withdraw Block, Rwnt Block (possibly - and also withdraw Block, Rwnt Block (possibly - and and procedure). implies 71 6.8 What design provisions are made to assure air flow through Standby Gas Treatment System filters. What is the basis for this? (1.75) 6.8 Each SGT train has two full-capacity fans powered from separate emergency buses (0.75); to prevent filters from igniting on loss of air flow due to the decay heat generated by entrained radioactive materials (1.0) (1.75) Ref: WNP-2 Systems and Procedures, SGT pg. 24. Would also likely get answer of cleaters on milet to been moisture from causing filter blockung, and demister. See stp pg 3 ## 6.9 With regard to the Average Power Range Monitor System (APRM): What three (3) things could happen if the back panel APRM Mode Switch was placed into the standby position during normal operation? (1.0) What is the AC power source for APRM Channel F? (0.5) Why is the Thermal Power Monitor necessary? (1.0) 6.9 a. APRM operates normally if bypassed (0.33); gives an INOP triptto warn operator if channel has not been bypassed (0.34). Will give 1/2 scram if channel not bypassed (0.33). or Diop Inhibit Switch degrees (1.0) b. (Bus B supplied by) RPS MG set B. (0.5) c. To avoid unnecessary scrams during power increase transients (due to flux leading thermal power). (1.0) Ref: WNP-2 Systems and Procedures, APRM, pp. 26, 28 and 32-33, respectively. (2.5) # 7.0 Procedures - Normal, Abnormal, Emergency, and Radiological Control (25.0) #### According to procedures for Emergency RPV Depressurization 7.1 (Contingency) (5.3.2): a. What is the primary system used to cause depressurization? (0.5)b. If the system in (a) is partially or totally unavailable, what is the next system to be used? (0.75)c. Under what conditions would systems other than those in a) and b) above be used and what are these systems? | 7.1 | a. | ADS | (0.5) | |-----|-----|--|--------| | | b. | Other SRV's until 7 are open | (0.75) | | | c. | If <3 SRV's are open (0.5); main condenser, main steam line drains, RCIC, head vents (2.0) | (2.5) | | | Ref | : WNP-2 EOP 5.3.2, pp. 1, 1, and 2 of 8, respectively. | | 7.2 What changes to the reactor power, MCPR, and MAPLHGR operating limits are required before one (1) recirculation loop operation is permitted? (2.25) 7.2 (0.75 each) (2.25) Reactor power:
reduce it to <50% rated thermal power MCPR: increase it by 0.01 MAPLHGR: reduce limit to 0.84 times the two loop op. limit. Ref: WNP-2 AOP 4.2.1.10, pg. 2 of 3, and T.S. 3.4.1.1, pg. 3/4 4-1. ANSWER SHOULD BE NONE. ALL ACTIONS ARE REQUIRED AFFER THE PLANT IS IN SINGLE LOOP - 7.3 With regard to the operating procedure for 250V DC Distribution System (SOP 2.7.7): - a. What should the operator do and where would he do it, to tie the 250V DC battery B2-1 to the 250V DC distribution bus S2-1? (2.0) - b. When bus S2-1 is energized: - 1) What indication(s) does the operator have that no (0.75) - 2) What indication(s) does the operator have when a ground develops? (0.75) - 7.3 a. 1) Verify open, on DP-S2-1, (0.34) (a) breaker S2-1/4B (0.33) (b) breaker S2-1/4C (0.33) (c) breaker S2-1/4D. (0.33) - 2) Close, on DP-S2-1, (0.34) breaker S2-1/3C and verify (0.33). (2.0) - b. 1) Two ground lamps on board "C" are lit. (0.75) - The lamp connected to the grounded polarity goes out and the appropriate bus ground annunciator comes on. (0.75) Ref: WNP-2 SOP 2.7.7, pg. 2 of 5. ANSWER SHOULD BE GENERALIZED TO SIMPLY SAY 1. STRIP BUS, ENERGIZE BUS, RELOAD BUS. THE PRESENT ANSWER REGUIRES MEMORIZATION OF OPERATING PROGREDURES, According to WNP-2 Annunciator Procedures, if the "OFF GAS VAULT RAD MONITOR DNSCL" annunciator alarmed, the operator should make a "verification" and a "check". Describe the verification and check to be made and at what location in the plant. (2.0) 7.4 Verify: downscale condition of OG-RIS-11 (0.5); at P606 (0.5) (1.0) Check: radiation level of OG-RI-11 (0.5); locally (0.5) (1.0) Ref: WNP-2 Annunciator Procedures, 4. 02.A5-4.2. THERE ARE MORE THAN 1400 ANNUNCIATOR PROCEOURES. Z POINTS IS TOO GREAT OF IMPORTANCE TO PLACE ON ONE OF THEM. PLEASE CONSIDER REDUCING POINT VALUE - 7.5 According to the Operating Instructions for the Control Rod <u>Drive System (SOP 2.1.1)</u>: - a. During system startup, what should be the position (open or closed) for the following Hydraulic Control Unit (HCU) valves: (2.0) - 1) CRD-V-111 (Cartridge Valve Nitrogen Inlet) - CRD-V-107 (Accumulator Water Drain) CRD-V-102 (Withdraw Water Isolation) - 4) Withdraw Line "Dragon" valve. - b. During system startup, in what position should the operator place the charging water header vent valve (CRD-V-65) that is located between the charging water header isolation valve (CRD-V-34) and the HCU charging water inlet isolation valves (CRD-V-113/HCU)? Why? (1.5) PROCEDURES TOTAL RECALL OF OPERATING PROCEDURES. ALSO THIS EVOLUTION IS ONLY FOR STARTUP AFTER COMPLETE DRAIN DOWN, AND DONE VERY SELDOM 7.5 a. (0.5 ea.) (2.0) - 1) Open - 2) Closed - 3) Open - 4) Closed - Dpen (0.5); to provide leak off (0.5) so that HCU accumulators will not pressurize due to valve leakage (0.5) (1.5) Ref: WNP-2 SOP 2.1.1, pp. 4 and 6 of 41, respectively. According to the procedures for Normal Shutdown To Cold Shutdown (G.O.P. 3.2.1), at what percent power (approximate) 7.6 should the following actions be performed? (2.0) - a. Transfer the 6900 volt switchgear from the normal auxiliary transformer to the startup transformer. - Remove one feedwater pump, one condensate booster pump and one condensate pump from service. - c. Verify operability of RWM and RSCS. - d. Transfer recirculation pump to 15 Hz. - e. Unload and shut down main turbine. > PROCEDURE IS WRONG-TECH SPECS REQUIRES RWM-RSCS TO BE OPERABLE PRIOR TO BEDING DECREASING BEZOW 20% 7.6 (0.4 ea.) (2.0)<20% >15% <40% >35% <20% >15%- 35% <5% Ref: WNP-2 GOP 3.2.1, pp. 4, 3, 4, 3 and 11, respectively. #### According to the procedure AOP 4.7.4.1 for Loss of 7.7 Inverter-1(IN-1): a. What are two (2) of the three annunciator alarms the operator should see? (1.0)b. What two (2) automatic actions will occur? (1.0)c. If voltage is not normal on US-PP, list the actions that should be taken and in their preferred sequence. (1.5) a. Annunciator alarm (any 2, 0.5 ea.): (1.0) 1) "250 VDC Inverter ALT Source Loss" 2) "250 VDC Inverter ON Alt Source Loss" 3) "250 VDC Inverter TROUBLE Alt source Loss" b. (0.5 ea.) (1.0) Static switch transfers to ALT AC input (MC-7F) 2) DEH system will auto transfer to alternate AC. c. (0.4 ea. action; 0.1 ea. sequence) (1.5) 1) Attempt to restore IN-1 to service, or Switch IN-1 to "Maintenance" position, or Shift US-PP to bypass source via "KIRK KEY INTERLOCK" (MC-7A). Ref: WNP-2 AOP 4.7.4.1, pp. 1, 1-2, and 2, respectively. - With regard to Accident Monitoring Instrumentation, according to Tech. Specs .: - Under what operational conditions (use number only) are the following instruments to be operable? (2.0) - 1) Post-accident Sampling Primary Coolant radiation monitor - 2) Standby Service Water Flow - 3) Neutron Flux IRM - 4) Safety/Relief Valve Position Indicators. - b. For the instruments in (a) above, what are the required minimum number of operable channels? (1.0) - a. 1) 1, 2, 3 (0.68) 2) 1, 2 (0.44) - 3) 1, 2 (0.44) 4) 1, 2 (0.44) (2.0) b. (0.25 ea.) (1.0) - 2) 1/loop - 3) 1 - 4) 1/valve Ref: WNP-2, Tech. specs., pp. 3/4 3-71 and 72, 71 and 72, respectively. QUESTION REQUIRES TOTAL RECALL DOUBTFUL ANYONE WILL GET RIGHT PLEASE RECONSIDER POINT VALUE. # 7.9 According to the WNP-2 Health Physics Program: - a. For <u>Emergency Exposure Guides</u>, <u>two</u> (2) emergency situations are given with their exposure guideline values. What are these situations and values? (1.0) - b. An RWP is required when work is to be performed in an area that is posted for airborne radioactivity 5% of MPC (TRUE or FALSE). (0.5) - 7.9 a. [situation (0.35), value (0.15) ea.] (1.0) - Life saving 75 rems whole body Protection of public health or property 25 rems whole body. - b. False (0.5) Ref: WNP-2, Health Physics Program; 3.1.5 pg.3 and 3.1.8 and pg.2, respectively. # 8.0 Administrative Procedures, Conditions, and Limitations (25.0) | 8.1 | a. | What are the two (2) LCOs with regard to leakages from unidentified sources? | (1.25) | |-----|----|--|--------| | | b. | What is the basis behind the unidentified leakage rates? | (0.75) | 8.1 a. 1. 5 gpm total 2. 2 gpm increase within any 4-hr period. (0.5) b. The crack associated with such leakage would not grow rapidly (would be less than the critical size for rapid propagation). (0.75) Ref: WNP-2 Tech. Spec., pg. 3/4 4-9 and B 3/4 4-2, respectively. - 8.2 During plant <u>shutdown</u>, the maintenance supervisor informs you that on routine checking he found the Division 1 250 volt battery B2-1 discharged, the reason unknown: - a. Do Tech. Specs. required action (YES or NO)? Explain. (1.5) - b. What three battery "parameters" are checked at least once every seven days to verify they meet Category A surveillance requirements? Ince requirements? (1.5) Specific specific specific for "Constent of surveillances which they do not actively printicipate in. This question should be deleted or much flexibility allowed for in the candidates! Answer. - 8.2 a. Yes, (0.5); with less than Div. 1 and/or Div. 2 above required battery or chargers operable, suspend core alterations, handling of irradiated fuel in sec. containment and operations with potential of draining vessel (1.0). (1.5) - b. (0.5) each: - Electrolyte level - Float voltage - Specific gravity (1.5) Ref: WNP-2 T/S, pg. 3/4 8-11 and 8-14 respectively. ANSWER a" gives only the Action STATEMENT for the LCO. CREDIT should also be given for an explanation of why the candidate believes his answer to be as he indicated. If you wanted the action STATEMENT, it should have been asked for, 8.3 Which of the following occurrences require 1 hour reports to the NRC: (2.0) - a. reactor water level -50 inches - b. reactor water level < -129 inches - c. site boundary dose > 50 MR/hr whole body - d. stuck open main steam relief valve NOT REOD 1- PIR- 8.3 All of the 4 occurrences (since each requires a declaration of an emergency event and this is a category of reportable events). Ref: CAF. (2.0) declaration of AN emergency may or may not occur depending upon the amount of time that each tem exists (ie, if a SRU can be shut outckly, why declare a UE immediately?). ## 8.4 With regard to the Fire Brigade: | a. | What is the minimum number of personnel required? | (0.5) | |----|--|--------| | b. | Who are specifically excluded from the Fire Brigade? | (0.75) | | c. | Where and when is the Fire Brigade to be maintained? | (0.75) | b. The Shift Supervisor, the STA and the 3 members of the minimum shift crew necessary for safe shutdown of the unit and any personnel required for other essential functions during a fire emergency. (0.75) c. Onsite (0.375) at all times (0.375). (0.75) Ref: WNP-2 Tech. Spec., pg. 6-1. 8.5 According to Tech. Specs., in order for the Fire Suppression Water System to be considered operable, three (3) conditions must be met. State these conditions. (3.0) 8.5 a. At least two of the three OPERABLE fire suppression pumps pumping from the circulating water basin, or one dieseldriven pump pumping from the secondary water supply tank, with their discharge aligned to the fire suppression header. (1.0) b. Two separate fire water supplies, the recirculating water pump house inlet basin and the secondary water supply tank. (1.0) c. An OPERABLE flow path capable of taking suction from the circulating water pump house inlet basin and the secondary water supply tank and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each sprinkler or hose standpipe and the last valve ahead of the deluge valve on each deluge or spray system required to be OPERABLE. (1.0) Ref: WNP-2 T.S. pg. 3/4 7-18. - 8.6 According to the Limitations stated in the Operating Procedures for the Reactor Core Isolation System (RCIC) (SOP 2.4.6): - a. What must you do to manually isolate RCIC when
system initiation is not sealed in? (0.75) b. Under what condition(s) can the auto flow controller (RCIC-FIC-600) be removed from automatic? (0.75) 8.6 a. Close the isolation valves using their respective control switches. (0.75) b. Only with permission of the Shift Supervisor. (0.75) Ref: WNP-2 SOP 2.4.6, pg. 2 and 3 of 28, respectively 0.3757 will be all shoulth I With regard to certain shift personnel and their functions: 8.7 | a. | There must be two (2) licensed reactor operators in the Control Room at all times (TRUE or FALSE)? | (0.5) | |----|--|-------| | b. | During new fuel handling operations, a licensed reactor operator must be on the refueling floor (TRUE or FALSE)? | (0.5) | | c. | During what modes of operation shall the Shift Technical Advisor be on shift? | (0.5) | | d. | If, while at power, the Shift Manager is incapacitated. | | what action(s) should be taken? (0.75) 8.7 a. False (0.5)b. False (0.5)c. Modes 1, 2 and 3. (0.5)d. The CRS or licensed SRO (other than STA) shall assume his duties and immediately advise the Operating Manager. (0.75)Ref: WNP-2 Admin. Prcc: 1.3.2, pp. 3 (for a and c) and 2 for (d); 6.2.3, pg. 2 for (b). - According to Standing Order/Night Orders (Admin. Proced. 1.3.1): 8.8 - a. A break occurs in a RCIC line. Would the following control room instruments provide valid indications (Yes or No)? If "NO", how could you verify the necessary information? (1.5) - 1) MS-LI 610 - RHR-FI-603B - 3) SLC-LI-601 - b. Following each refueling outage, independent verification of the operable status is required for what types of equipment? (1.0) of undustried instruments as referenced in 1111/31. The whole purpose of putting the appendix in The PILL UNS TO ALLOW IT TO be Referenced if Required! Instrument's are labeled to inter Line status. depends on the nature of the accident. - 8.8 a. 1) No (0.2); Use alternate instrument MS-LR-615 (0.3) 2) No (0.2); locally (0.3) 3) No (0.2); locally (0.3) (1.5) b. Safety related (0.5) and fire protection equipment (0.5)(1.0) Ref: WNP-2 Admin. Proc. 1.3.1, pp. 7 and 3, respectively. 8.9 According to Monthly Operational Bulletins: | a. | What would occur if RHR valves V-8, 9, 68 and RHR-27A were opened? | (1.0) | |----|--|-------| | h | How did the follows on the obligation in the second | | - b. How did the failure, on two shifts, to check chart movement on wetwell level recorder CMS-LR/RR-4 contribute to loss of wetwell level? (1.0) - c. Why is it important to ensure that <u>local</u> temperature indicators at the <u>nitrogen</u> supply shed and in the reactor building are monitored? (1.0) - 8.9 a. The reactor vessel would be drained to the suppression pool. (1.0) - b. The recorder had been, in fact, inadvertently de-energized so that annunciator alarm switches activated by the recorder pen were also 0.0.S. (1.0) - c. No control room monitors exist. If nitrogen temperature gets too low, nitrogen flow onto a 30 in. dia. containment purge header and onto wetwell and drywell purge liner inside containment could cause failure through nitrogen embrittlement. (1.0) Ref: WNP-2 Monthly OP Bull: January 1984, pg. 4; April-May, pg. 1; Feb-Mar, pg. 6, respectively. This is AN unfair Question! Initial TRAINING does not necessarily incorporate more training into it. Without the benefit of Reading the more the chances of candidates getting the correct answer is minimal! Additionally, part a 4 c are more of a system oriented Question Than Admin, etc., and should not be part of Catagory 8. 8.10 With regard to the Emergency Plan Implementation Procedures, which of the four emergency classes would you place the following: (2.0) 1) An ATWS 2) HCTL exceeded Volcanic ash fallout severe enough to warrant plant shutdown 4) Transport of a contaminated individual offsite 8.10 (0.5 ea.) (2.0) 1) Alert 2) Site Area Emergency 3) Alert 4) Unusual Event Ref: WNP-2 EPIP: 13.1.1, pp. 6, 20, 7 of 21, respectively. MEMORITATION OF EPIP 13.1.1 is NOT feasible. While The majority of the symptomatic conditions which call for event classification are well known, the situational lased events are much more unque. I cannot imagine any exercise operator declaring an emergency event without reference to EBP's or EPIP's for guidance. 8.11 With regard to Control Of Plant Operating Keys: - a. What is the limitation(s) with regard to issuing of bypass and interlock keys not required for normal (0.75) operation? - b. Besides the bypass and interlock keys, there are two (2) other kinds of keys: (1.0) - What are they? Where are they each stored? Who is responsible for them? - 8.11 a. Issued to requesting party only with permission of Shift . Manager/CRS. (0.75) - b. (0.17 each for key type, location, responsible person.) (1.0) - Control room panel keys key cabinet in CR -Shift Manager/CRS. - Miscellaneous keys key cabinet in Radwaste CR Shift Support Manager Superuisor Ref: WNP-2, admin. Proc. 1.3.23, pp. 1 and 2 of 21, respectively. Foodty Review Copy Reviewed by Reviewed by Edwin L. Wright EDWight | Facility: WNP-2 | |----------------------------| | Reactor Type: BWR-5 | | Date Administered: 11/6/84 | | Examiner: I. S. Levy | | Candidate: | ### INSTRUCTIONS TO CANDIDATE: Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheet. Points for each question are indicated in parenthesis after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. | Category
Value | % of
Total | Candidate's
Score | % of
Cat. Value | _ | Category | |-------------------|---------------|----------------------|--------------------|----|---| | 25 | | | | 1. | Principles of Nuclear Power
Plant Operation, Thermodynamics,
Heat Transfer and Fluid Flow | | 25 | | | | 2. | Plant Design Including Safety
and Emergency Systems | | 25 | 25 | | | 3. | Instruments and Controls | | 25 | 25 | | | 4. | Procedures: Normal, Abnormal,
Emergency, and Radiological
Control | | 100 | | | | | TOTALS | | | | Final Grade | | | | All work done on this examination is my own; I have neither given nor received aid. Candidate's Signature Questions and Answers to WNP-2 RO Exam - 11/6/84 EZW-th ### 1.0 Principles of Nuclear Power Plant Operation, Thermodynamics, Heat Transfer and Fluid Flow (25.0) 1.1 a of reactivity required to go critical, which determines ECP (0.75). [The higher the initial count rate, the higher the count rate when criticality is reached.] (1.25) Ref: WNP-2 Reactor Theory, pg. 29 and 43. b. $$P = Po e^{(t/T)}$$ $T = 40 / (ln2) = 57.71 sec^{-1}$ $t = 57.71 (ln(P/Po)) = 212.88 sec$ (1.0) Ref: WNP-2 Reactor Theory, pg. 61. · Consider giving partial credit on b. if condidate used period of 40 sec since the question asks for the most part the condidate of emastrate the ability to manipulate the equation Paraely. 1.2 With regard to some aspects of Fission Product Poisons: a. Of the two fission product poisons Xe and Sm, give two (2) reasons why xenon is more troublesome. (1.5) b. What is the mechanism(s) for removal of Samarium-149 once it is produced in the core? (1.0) a. (1) Because of its exceptionally large thermal neutron absorption cross-section (0.75); (2) its concentration varies with reactor power level and/or time (0.75) (2) he produced as result of rel. large frontion of fissions (1.5)b. Sm-149 is removed only by burnout (1.0) Ref: WNP-2 Reactor Theory, pp. 83 and 87, respectively. 1.3 When control rod density in the core decreases at higher burnups (from pulling rods) the void coefficient of reactivity becomes more or less (choose one) negative? Why? (1.5) 1.3 Less (0.5). Since local steam voids cause an increase in thermal diffusion length (0.5), control rods, which absorb thermal neutrons, make the steam void reactivity coefficient more negative (0.5) [Therefore, reduced control rod density causes the void coefficient to be less negative.] (1.5) Ref: WNP-2 Reactor Theory, pp. 98-99. Resident 1.4 The effective decay constant for up power transients will be higher or lower (choose one) compared to its value for down power transients. Give the reason for your answer. (1.5) 1.4 Higher (0.5). For up power transients the short lived precursors are dominant due to the addition of power (0.5), while for down power transients the long lived precursors dominate the decay constant (0.5) (1.5) Ref: WNP-2 Reactor Theory, pg. 54. 1.5 Following a scram from high power, answer the following: | who | a. | What are the most reactive regions of the core? Why are these regions more reactive? | (1.0) | |------|----|---|--------| | My a | b. | Why are these regions more reactive? | (1.25) | | | c. | What problem does this cause for the operator during a subsequent start up. Why? | (1.25) | 1.5 a. Near the edges and at the top and extreme bottom (1.0) b. Xe concentrates, during power operation, where power is highest, i.e., in the center and near the bottom of the core (0.75), where it acts as a poison, adding negative reactivity (0.50) (1.25) c. Operator must be extremely cautious while pulling edge and top rods (0.5) since normally low worth rods now have excessively high incremental worths (0.75) (1.25) Ref: WNP-2 Lesson Plan, Figure 4-12. 1.6 Give four (4) inputs or outputs for a reactor heat balance, stating whether it is an input or output and a brief description as to why it is. (3.0) 1.6 (any 4 @ 0.75 each) (3.0) - a. Feedwater flow heat input (0.25) going into the vessel (or system) with positive enthalpy (0.5). - b. Steam
flow heat output (0.25) due to steam removing energy from the core (0.5). - c. Recirc pump heat input (0.25) due to energy added to the fluid in the core (or system) by the pumps (0.5) - d. CRD flow <u>heat input</u> (0.25) due to fluid flowing into the core (or system) with a positive enthalpy (0.5). - e. Rx core thermal energy heat input (0.25) due to being primary source of heat input (0.5). - f. any other reasonable answer such as RWCU inputs/outputs, etc. Ref: MTC; Thermo/HT/FF (3/83), pp. 8-50. ambiant losses 1.7 Following initial criticality (MSIVs closed, moderator T > 212°F), a constant positive period is established. Briefly explain what happens over the next several hours to pressure, temperature and power if no rod movement occurs. (1.5) 1.7 Power initially increases but levels off due to negative reactivity insertion resulting from increasing moderator temperature (0.5). Pressure and temperature initially increase but level off when power levels off then reduces due to ambient losses (0.5). The reduced T causes the cycle to start again so that long term power, pressure and temperature will oscillate around point of adding heat (0.5). (1.5) Ref: Standard Reactor Theory. 1.8 What are two (2) reasons a centrifugal pump should be started with the discharge piping filled and the discharge valve shut? (1.0) 1.8 Water hammer and excessive starting current. (1.0) Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/83), pg. 7-123. - 1.9 a. Assume the reactor is at 100% power and flow. Explain what happens to core flow, and why, for a reduction in power by driving rods in. (Recirculation pump speed remains constant.) (1.25) - b. At low power conditions prior to void generation, an increase in reactor power by control rod withdrawal will (increase, decrease, not change) flow through the core. Choose the correct answer and explain your choice. (1.5) - 1.9 a. Core flow would increase (0.5) due to a reduction in two phase flow condition (and, therefore, in the core less resistance to flow) (0.75). (1.25) - b. Increase (0.5). Flow resistance in the channels drops due to decreased liquid viscosity with temperature (0.5); and greater density differences between warm channels and cool downcomer will increase flow due to increased thermal driving load causing greater natural circulation (0.5) (1.5) Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/83), pg. 9-51. - 1.10 There are several characteristic transients that would be limiting because of MCPR. - a. List any two (2) of these transients. (0.75) - b. Assuming for each of the transients in (a) they occurred at 100% power, EOC and full rod out conditions, give: - the most important reactivity ccoefficient involved. (0.5) - 2. What occurred in the reactor and why it occurred to affect this coefficient. (0.5) - 1.10 Any 2 of following. pts: a) 0.375 each; b) (1) 0.25 each; (2) 0.25 each (1.75) - Generator load reject w/o bypass; void coefficient, void collapse from pressure increase - Turbine trip w/o bypass; void coefficient, void collapse from pressure increase - Loss of feedwater heating, void coefficient, void collapse from subcooling - Inadvertent start of HPCS pump; void coefficient, void collapse from subcooling - Feedwater controlling failure high; void coefficient, void collapse from subcooling Ref: Morris T.C.; Thermo/HT/Fluid Flow (3/85), pg. 9-94 through 9-96. ### 1.11 Given: Rx pressure at time T = 675.3 psig Rx pressure at time T + 1 hr = 215.3 psig - a. What is the Rx cool down rate for this hour? Show all calculations. (0.75) - b. Is this rate acceptable at your plant? (0.5) - 1.11 a. (Because the reactor operates at saturated conditions the temperature for time T and T + 1 hr can be found using the steam tables.) - 1) Saturation temperature for 690 psia is approximately 502°F. Saturation temperature for 230 psia is approximately 394°F. (0.375) - 2) Cool down rate = $(502^{\circ}F 394^{\circ}F)/1$ hr. Cool down rate = $108^{\circ}F/1$ hr. (0.375) - b. No. (The cool down rate limit is 100°F per hour.) (0.5) Ref: Steam Tables and WNP-2 Tech. Specs. # 1.12 Answer TRUE or FALSE for each of the following: - a. As water flows around a bend in a pipe, the velocity of the water is uniform throughout the diameter of the pipe. (0.5) - b. The pressure in a static fluid always <u>decreases</u> with <u>increasing</u> elevation of the measurement. (0.5) 1.12 a. False (0.5) b. True (0.5) Ref: General Fluid Dynamics Text. 1.13 Will an increase in the following factors (taken separately) increase, decrease, or not change differential rod worth? (1.5) a. thermal diffusion lengthb. neutron flux at the rod c. core average neutron flux 1.13 a. increase b. increase - a soming no change in core aways on (0.5) c. decrease - assuring no change in local flux. Usually an increase in (0.5) core average flux would canco some change in local Ref: WNP-2 Reactor Theory, pg. 80. flux - it may be that this particulated in temperated so that there is so change in DKW; No change should be acceptable. $$\alpha_D = -1 \times 10^{-5} \frac{\Delta K}{K}$$ °F $$\alpha_v = -1 \times 10^{-3} \frac{\Delta K/Z}{K}$$ voids $$\alpha_{M} = -4.5 \times 10^{-4} \frac{\Delta K / Z^*F}{K}$$ $$I(t) = Io e^{-\lambda t}$$ $$T\frac{1}{2} = \ln(2)/\lambda$$ $$\Delta \rho = f \frac{L_{\rho V}^2}{D_{2g_c}}$$ $$\rho = \frac{k(eff) - 1}{K(eff)}$$ $$M = 1/(1-k)$$ $$N(t) = No e^{-\lambda T}$$ $$n = v/(1 + d)$$ $$P = I + v/(3.7 \times 10^{10})$$ $$\tau = \overline{2}/\rho + (\beta-\rho)/\lambda\rho$$ $$S = xS_g + (1-x) S_f$$ 17.58 watts = I BTU/min lpsi = 6.895 Pa lpsi = 2.036 = Hg (@ OC) lpsi = 27.68 = H²O (@ 4C) - | | Abs desire | | able 1. | | o steam | Enthaigy | rature Ta | | Entropy | | | |---|---|--|--|---|---|--|--|--|--|--|--| | femp
fahr
t | Abs Press.
Lo per
Sq in | Sat
Liquid | Evap | Sat.
Vapor
Vg | Sat.
Liquid | Evap | Sat.
Vapor | Sat
Liquid
Si | Evan
Sig | Sat
Vapor
S g | Temp
Fahr | | 12 6"
14 8
36 8
38 8 | 0 08859
0 09600
0 10J95
0 11249 | 0 016022
0 016021
0 016020
0 016019 | 3304 7
3061 9
2839 0
2634 1 | 1304 7
3061 9
2839 0
2634 2 | -00179
1996
4008
6018 | 1075 5
1074 4
1073 2
1072 1 | 1075 5
1076 4
1077 2
1078 1 | 0 0000
0 0041
0 0081
0 0122 | 2 1873
2 1762
2 1651
2 1541 | 2 1873
2 1807
2 1732
2 1663 | 22 d
24 d
26 d
28 d | | 44.8
47.0
64.6
26.0 | 61:163
013143
014192
015314
016514 | 0 016019
0 016019
0 016019
0 016020
0 016021 | 2445 8
2272 4
2112 8
1965 7
1830 0 | 2445.8
27.72.4
1112.8
1965.7
1830.0 | 3 027
10 035
12 041
14 047
16 051 | 1071 0
1069 8
1068 7
1067 6
1066 4 | 1079 0
1079 9
1050 7
1051 6
1082 5 | 0 0162
0 0202
0 0247
0 0282
0 0321 | 2 1325
2 1325
2 1217
2 1111
2 1006 | 2 1594
2 1527
2 1459
2 1393
2 1327 | 42 6
42 6
44 6
44 6 | | 58.8
52.8
54.8
56.0
58.8 | 0 177%
0 19155
0 20625
0 22151
0 23843 | 0 016023
0 016024
0 016026
0 016028
0 016031 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 18 054
20 057
27 058
24 059
26 060 | 1065.3
1064.2
1063.1
1061.9
1060.8 | 1084 2
1085 1
1086 0
1086 9 | 0 0361
0 0400
0 0439
0 0478
0 0516 | 2 0901
2 0798
2
0695
2 0593
2 0491 | 2 1257
2 11 1
2 10 1
2 10 10 | 10 t
52 t
54 t
36 t
38 t | | 60 0
62 0
64 0
56 0
64.0 | 0 25611
0 27294
0 29497
0 31626
0 33889 | 0 016033
0 016036
0 016039
0 016043
0 015046 | 1207 6
1129 2
1056 5
989 0
928 5 | 1207 6
1129 2
1056 5
989 1
926 5 | 28 060
30 059
32 058
34 056
36 054 | 1059 7
1054 5
1057 4
1056 3
1055 2 | 1087 7
1083 6
1089 5
1090 4
1091 2 | 0 0555
0 0593
0 0532
0 0670
0 0708 | 2 0391
2 0291
2 0192
2 0094
1 9996 | 2 094-,
2 0885
2 082-
2 076-3
2 0704 | 62 (
62 (
64 (
66 (
68 (| | 78.8
72.0
14.0
78.0
78.0 | 0 36292
0 38514
0 41550
0 44420
0 47461 | 0 018050
0 015054
0 015058
0 015063
0 016067 | 868 3
814 3
764 1
717 4
672 8 | 968 4
814 3
764 1
717 4
673 9 | 38 052
40 019
42 046
44 043
46 040 | 1054 0
1052 9
1051 8
1050 7
1049 5 | 1092 L
1093 0
1093 8
1094 7
1095 6 | 0 0745
0 0783
0 0821
0 0858
0 0895 | 1 9900
1 9804
1 9708
1 9614
1 9520 | 2 0645
2 0587
2 0529
2 0472
2 0415 | 70 1
72 1
76 1
76 1 | | 86.8
67.6
64.0
36.0
88.0 | 0 50683
3 54093
0 57702
0 61518
0 65551 | 0 016077
0 016077
0 015082
0 016087
0 016093 | 623 3
595 5
560 3
527 5
496 8 | 633 3
595 5
560 3
527 5
496 8 | 48 037
50 033
52 029
54 026
56 022 | 1048 4
1047 3
1046 1
1045 0
1043 9 | 1096 4
1097 3
1098 2
1099 0
1099 9 | 0 0932
0 0969
0 1005
0 1043
0 1079 | 1 9426
1 9334
1 9242
1 9151
1 9060 | 2 0259
2 0303
2 0248
2 0193
2 01 79 | 17
84
88
88 | | 12 0
12 0
14 0
16 0
18 0 | 0 69813
0 74313
0 79062
0 84072
0 89356 | 0 016099
0 016105
0 016111
0 016117
0 016123 | 468
441 3
416]
392 8
370 9 | 468 1
441 3
416 3
392 9
370.9 | 58 01 8
60 01 4
52 01 0
64 006
64 003 | 1041 6
1040 5
1039 3
1038 2 | 1100 8
1101 6
1102 5
1103 3
1104 2 | 01115
01152
01138
01224
0.1260 | 1 8970
1 5881
1 8792
1 8704
1 3617 | 2 0086
2 0033
2 9940
1 9428
1 9876 | 90
97
94
96
96 | | 196 0 | 0 94924
1 00789
1 06965
1 1347
1 2030 | 0 016130
0 016137
0 016144
0 016151
0 016158 | 350 4
331 1
313 1
296 16
280 28 | 350 4
331 1
313 1
296 18
280 30 | 67 999
69 995
71 992
73 99
75 98 | 1037 1
1035 9
1034 8
1033 6
1032 5 | 1105 I
1105 9
1106 8
1107 6
1108 5 | 0 1295
0 1331
0 1366
0 1402
0 1437 | 8444 | 1 9575
1 9775
1 9775
1 9775
1 9475
1 9475 | 1 00
1 02
1 04
1 04
1 08 | | 110 0
112 0
114 0
118 0
118 0 | 1 2750
1 3505
1 4299
1 5133
1 6009 | 0 015165
0 016173
0 016180
0 016188
0 016196 | 265 37
251 37
238 21
225 84
214 20 | 265 19
251 18
238 22
225 85
214 21 | 77 98
79 98
91 97
83 97
85 97 | 1031 4
1030 2
1029 1
1027 9
1026 8 | 1109 3
1110 2
1111 0
1111 9
1112 7 | 0 1472
0 1507
0 1542
0 1577
0 1611 | 1 8105 | 1 9577
1 9528
1 9480
1 9433
1 9386 | 118
217
114 | | 178.8
177.0
174.6
175.8
178.8 | 1 6927
1 /891
1 8901
1 9959
2 1068 | 0 016204
0 016213
0 016221
0 016229
0 016238 | 203 25
192 94
183 23
174 08
165 45 | 203 26
192 95
183 24
174 09
165 47 | 87 97
59 96
91 96
93 96
95 96 | 1025 6
1024 5
1023 3
1022 2
1021 0 | 11136
11144
11153
11161
11170 | 0 646
0 680
0 749
0 783 | 1.7693
1.7613
1.7523
1.7453
1.7374 | 1 9339
1 9291
1 9247
1 1202
1 9157 | 178
177
174
178
178 | | 138 8
137 8
134 8
138 8
138 8 | 2 7230
2 3445
2 4717
2 6047
2 7438 | 0 016247
0 016256
0 016265
0 016274
0 016284 | 157 32
149 64
142 40
135 55
129 09 | 157 33
149 66
147 41
135 57
129 11 | 97 %
99 95
101 95
103 95
105 95 | 1019 8
1018 7
1017 5
1016 4
1015 2 | 1117 8
1118 6
1119 5
1120 3
1121.1 | 0 1817
0 1851
0 1884
0 1918
0 1951 | 1,7795
1,7217
1,7140
1,7063
1,6986 | 1 9112
1 9268
1 9024
1 8980
1 8337 | 120
122
124
128
128 | | 140 0 | 2 8892
3 0411
3 1997
3 3653
3 5381 | 0 016293
0 016303
0 016312
0 016322
0 016332 | 172 98
117 21
111 74
106 58
101 68 | 123 00
117 22
111 76
106 59
101 70 | 107 95
109 95
111 95
113 95
115 95 | 1014 0
1012 9
1011 7
1010 5
1009 3 | 1127 0
1127 8
1127 6
1124 5
1125 3 | 0 1985
0 2018
0 2051
0 2054
0 2117 | 1 6910
1 6534
1 6759
1 5684
1 6610 | 1 8895
1 8552
1 8810
1 8769
1 8777 | 148
147
144
145 | | 198 8
152 8
154 8
156 8
158 8 | 3 71 54
- 3 9065
4 1025
4 3068
4 5197 | 0016343
0016353
0016363
0016364 | 97 05
92 66
88 50
84 56
86 82 | 9/07
92 68
88 52
84 37
80 83 | 117 95
119 95
121 95
123 95
125 96 | 1008 2
1007 0
1005 8
1004 6
1003 4 | 1126 9
1127 7
1128 6
1129 4 | 0 2150
0 2183
0 2216
0 2218
0 2218 | 1 6536
1 6463
1 6390
1 6318
1 6245 | 1 6586
1 3546
1 8506
1 8566
1 8526 | 150
152
154
156
156 | | 160 0
167 8
164 0
166 0 | 4 /414
4 9722
5 2124
5 4423
5 /223 | 0 016395
0 016406
0 016417
0 016428
0 016440 | 77 27
73 90
70 70
67 67
64 78 | 77 29
73 92
70 72
67 68
64 80 | 127 96
129 96
131 96
133 97
135 97 | 1002 2
1001 0
999 8
998 6
997 4 | 1130 Z
1131 0
1131 8
1132 6
1133 4 | | 1 6174
1 6103
1 6032
1 5961
1 3892 | 1 8487
1 8448
1 8409
1 8371
1 8333 | 160 to 162 to 164 16 | | 78 6
172 8
174 6
178 8 | 5 9976
6 2736
6 5656
6 6090
7 , 240 | 0016451
0016474
0016474
0016498 | 62 04
59 43
59 95
54 59
52 35 | 62 06
59 45
56 97
54 51
52 36 | 137 97
139 98
141 98
143 99
145 99 | 996 2
995 0
943 8
992 6
991 4 | 1134 2
1135 0
1135 8
1136 6
1137 4 | 0 2473
0 2505
0 2537
0 2568
0 2600 | 1 5822
1 5753
1 5684
1 5616
1 5548 | 1 8258
1 8258
1 8221 | 178 s
172 s
174 s
174 s | | Table 1 | Sanirated | Steam. | Tamparatura | Table_C | | |---------|-----------|--------|-------------|---------|--| | t | Abs Press | | ecific Vo | lume | *** | Enthalo | | | Entroo | | Temp | |---|---|--|--|--|---|---|--|---|--|--|--| | fans
fans | Sq in | Sat.
Liquid | Evap | Sat
Vapor
Va | Liquid | Evap | Vapor
n g | Liquid | t Evap | VACOI | Fanr | | 100 0
102 0
104 0
106 0 | 75110
7850
8.203
8.568
8.947 | 0016510
0016522
0016534
0016547
0016559 | 50 21
48 172
36 232
44 383
42 621 | 50 22
48 1 99
46 2 49
44 400
42 638 | 148 00
150 01
152 01
154 02
156 03 | 990 2
989 0
987 5
986 5
985 3 | 1138 2
1139 0
1139 8
1140 5
1141 3 | 0 2631
0 2652
0 2694
0 2725
0 2756 | 1 5480
1 5413
1 5346
1 5279
1 5213 | 1 8111
1 8075
1 8040
1 8004
1 7969 | 188 8
182 8
184 8
186 8
186 8 | | 198 8
197 8
198 8
198 8 | 9 340
9 727
10 168
10 505
11 058 | 0 016577
0 016585
0 016598
0 015611
0 016628 | 40 941
39 337
37 808
36 348
34 954 | 40 997
79 354
37 824
36 364
34 970 | 158 04
160 05
162 05
164 06
166 08 | 984
987 3
981 6
980 4
979 | 1142 1
1142 9
1143 7
1144 4
1145 2 | 0 2 /87
0 2 18
0 2 18
0 2 10
0 2 10 | 1 5148
1 5082
1 5017
1 4952
1 4868 | 1 7934
1 7900
1 7865
1 7831
1 7778 | 196 0
197 0
194 0
198 6
198 6 | | 200 0
264 0
206 0
212 0
216 0 | 11 526
12 512
13 568
14 696
15 901 | 0 015637
0 015634
0 016691
0 016719
0 016747 | 33.627
31 135
28 862
26 782
24 878 | 13 6 79
31 151
28 8 78
26 799
24 894 | 168 09
172 11
176 14
180 17
184 20 | 977 9
975 4
977 8
970 3
967 8 | 1146 0
1147 5
1149 0
1150 5
1152 0 | 0 2940
0 1001
0 1061
0 3121
0 3181 | 1 4697
1 4571
1 4447
1 4323 | 17752
17498
17632
17568
17505 | 200 0
204 0
208 0
217 0
218 0 | | 270 0
224 0
228 0
221 0
231 0 | 17 188
18 556
20 015
21 567
23 216 | 0.016775
0.016805
0.016834
0.016864
0.016895 | 23 131
21 529
20 056
18 701
17 454 | 23 148
21 545
20 073
18 718
17 471 | 188 23
192 27
196 31
200 35-
204 40 | 965 2
962 6
960 0
957 4
954 8 | 1151 4
1154 9
1156 J
1157 8
1159 2 | 0 3241
2 3300
3 3159
0 3476 | 1 4701
1 4081
1 3961
1 3847
1 3775 | 1 7342
1 7380
1 7320
1 7350
1 7350 | 278 0
274 0
276 0
276 0
272 0
276 0 | | 248.6
248.6
248.6
252.6
256.8 | 24 958
26 526
28 796
30 583
33 091 |
0.016928
0.016958
0.016990
0.017022
0.017025 | 16 304
15 243
14 264
13 358
12 520 | 16 321
15 260
14 281
13 375
12 538 | 208 45
212 50
216 56
220 62
224 69 | 952
949 5
946 8
944
941 4 | 1160 6
1162 0
1163 4
1164 7
1166 1 | 0 3533
0 1591
0 3649
0 3706
0 3753 | 1 3509
1 3494
1 3379
1 3266
1 3154 | 17142
17085
17028
16972
16917 | 248 8
244 0
248 6
252 0
252 0 | | 268 6
264 6
268 8
272 6
272 6 | 35 427
37 894
40 500
43 249
46 147 | 0 017089
0 017123
0 017157
0 017153
0 017228 | 11 745
11 025
10 358
9 738
9 162 | 11 762
11 042
10 375
9 755
9 180 | 228 75
232 83
236 91
240 99
245 08 | 938 6
935 9
933 1
930 3
927 5 | 1167 4
1168 7
1170 0
1171 3
1172 5 | 0 3819
0 3876
0 3932
0 3987
0 4943 | 1 3043
1 2933
1 2823
1 2715
1 2607 | 1 5852
1 6808
1 6755
1 6702
1 6650 | 264 0
264 0
268 0
277 0
278 0 | | 798 6
784 8
788 6
792 6
792 6 | 49 200
52 414
55 795
59 350
63 086 | 0 017764
0 01730
0 01734
0 01738
0 01741 | 8 627
8 1290
7 6634
7 2301
%.8259 | \$ 644
8.1453
7.6807
7.2475
6.8433 | 249 17
253 3
257 4
261 5
265 6 | 924 6
921 7
918 8
915 9
913 0 | 1173 8
1175 0
1176 2
1177 4
1178 6 | 0 4098
0 4154
0 408
0 4263
0 4317 | 1 2501
1 2395
1 2290
1 2186
1 2082 | 1 6599
1 65-3
1 6434
1 6-49
1 6400 | 290 0
284 0
288 0
292 0
295 0 | | 200 8
194 8
198 9
112 8
118 8 | 67 005
71 119
75 433
79 953
84 688 | 001753 | 6 4483
6 0955
5 7655
5 4566
5 1673 | 6 4658
6 1 30
5 7810
5 4/42
5 1849 | 269 7
273 5
278 Q
282 L
296 3 | 907 0
904 0
901 0 | 1179 7
1150 9
1182 0
1183 1 | 04533 | 1 1877
1 1.75
1 1674 | 6351
6303
6356
6209 | 100 8
304 0
108 0
317 9 | | 178 8
174 8
178 6
132 8
136 8 | 89 64 3
94 826
100 245
105 907
111 820 | 0 01/70
0 01/74
0 01/79 | 4 8961
4 6418
4 4030
4 1/88
1 9681 | 4 9138
4 6595
4 4208
4 1346
3 9859 | 290 4
274 6
298 7
302 9
307 1 | 894 8
891 6
888 5
385 J | 1185 2
1186 2
1187 2
1188 2 | 0 4540
0 469?
0 4745
0 4798 | 11277
11378
11280
11183 | 6162
6116
6071
6075
5981 | 276 6
274 6
274 6
128 6
137 0 | | 44 6
44 6
152 8
152 8 | 117 992
124 430
131 142
138 138
145 424 | 001797 | 7699
35834
14078
17473
10863 | 3 7878
3 601 3
3 4256
3 2503
3 1044 | 311 3
315 5
319 7
323 9
328 1 | 878 8
875 5
872 2
868 9 | 190 I
191 0
191 I
192 7 | 0 4902
0 4954
0 5006
0 5058 | 1 0990 1
1 0894 1
1 0799 1 | 5936
5892
5549
5606
5763
5721 | 348 0
348 0
348 0
348 0
352 0 | | 50 0
54 0
72 0
72.0 | 153 010
160 903
169 113
177 648
186 517 | 0 01816 2
0 01821 2
0 01826 2 | 9292
8002
6691
5451
4279 | 2 7573
2 8184
2 6873
2 5633
2 4462 | 332 3
336 5
340 8
345 0
349 3 | 858 6
855 1 1
851 6 1 | 194 4
195 2
195 9
196 7
197 4 | 05161
05212
05263
05314 | 0517 1
3424 1
0332 1
0240 1 | 5678
5637
5595
5554 | 256 6
260 6
264 6
288 6
377 0 | | N 0
64 0
10 0
17 1
18 0 | 195 729
205 294
215 270
225 516
236 193 | 001847 2
001847 2
001853 2 | 3170
2120
11.6
0184
9291 | 2 3353
2 2304
2 1311
2 0369
1 9477 | 353 6
357 9
362 2
366 5
370 8 | 844 5 1
840 8 1
837 2 1
633 4 1 | 198 0
198 7
199 1
199 9
200 4 | 0 5416 1
0 5456 0
0 545 0
0 5567 0 | 0057 1
9966 1
9876 1
9786 1 | 5513
5473
5412
5392
5352 | 376 0
184 0
184 0
189 0
187 0 | | 171 | 247 759
258 725
270 600
282 894
295 617 | 0018/5 1 | 8448
7540
6877
6152
5463 | 1 96 30
1 78 27
1 7064
1 63 40
1 56 51 | 375 1
379 4
383 8
388 1
392 5 | 825 9 1
827 0 1
818 2 1
814 2 1 | 201 0
201 5
201 9
202 4
202 8 | 05667 0
05/1/ 0
05/46 0
05816 0 | 9507
9518
44,9
9141 | 5313
5274
5134
5195
5157
5118 | 499 0
499 0
494 8
494 0
417 0 | | | 308 780
322 391
336 463
351 00
366 03 | 0 01900 1
0 01906 1 | 184
1184
3191
0266
14867 | 1 4997
1 4374
1 3782
321 '9
26406 | 376 9
401 3
405 7
410 1
414 6 | 806 2 1
802 2 1
798 0 1
793 9 1 | 703 1
703 5
703 7
704 0
704 2 | 0 5915 0
0 5764 0
0 6014 0
0 6016 0 | 4165 1
40.11 1
5990 1
9903 1 | 9080
9047
9064
1966 | 416 8
470 8
471 0
476 8
437 0 | | 2 | 381 54
397 56
414 09
411 14
448 73 | 001940 11
001940 11 | 4874
0212
5764 | 216A7
16806
12152
07711
03477 | | 781 L L L L L L L L L L L L L L L L L L L | 704 4
704 6
704 7
704 8
704 8 | 0 6161 0
0 6210 0
0 6259 0
0 5308 0 | 8729
8643
8557 | 1990
1853
1815 | 436 8
440 0
444 0
418 0
457 0 | --- Table 1 Saturated Steam: Temperature Table-Continued | | 405 2-455 | | ecitic Vol | ume | | Enthaig | w | | Entrag | | | |---|--|---|--|---|---|---|--|---|--|--|---| | Fahr
1 | Sq in | Fidniq | Evap | Vagor
*e | Liquid | Evan | Vacor
N, | L-quit | 1 Ev40 | Yagar | f - mg | | 450 0
464 0
156 0
472 0
476 0 | 466 87
485 56
504 43
574 67
545 11 | 0019'6 | 0 97463
0 93588
0 89885
0 86345
0 82958 | 0 99424
0 95557
0 91862
0 88329
0 84950 | 441 5
446 1
450 7
455 2
459 9 | 753 2
758 6
754 0
749 3
744 5 | 1204 8
1204 /
1204 6
1204 5
1204 3 | 0 6405
0 6454
0 6502
0.6551
0 6599 | 08.11
08.27
08042
07956 | 1 4704
1 4667
1 4529
1 4592
1 4595 | 468 8
464 5
462 6
477 5
476 8 | | 186 6
181 6
186 6
197 8 | 566 15
587 81
610 10
613 03
656 61 | 0 02009
0 02017
0 02026 | 0.79716
0.76613
0.73641
0.70794
0.68065 | 0.81717
0.7%672
0.75658
0.72820
0.70100 | 469 1
473 8
475 5
483 2 | 739 6
734 7
729 7
724 6
719 5 | 1203 8
1203 5
1203 1
1202 7 | 0 6648
0 6696
0 6745
0 6793 | 0 7571
0 7785
0 7700
0 7614
0 7528 | 1 4518
1 4481
1 4407
1 4370 | 494 8
464 8
463 8
492 8
492 8 | | 100 0
164 0
168 8
117 0 | 680 86
705 78
731 40
757 72
764 76 | 0 02053
0 02062
0 02072 | 0 65448
0 62938
0 60530
0 58218
0 55997 | 0 67492
0 64991
0 62592
0 60289
0 58079 | 487 9
492 7
497 5
502 3
507 1 | 714 3
709 0
703 7
598 2
692 7 | 1202 2
1201 7
1201 1
1200 5
1199.8 | 0 6890
0 69 19
0 6987
0 7036
0 7085 | 0 7227
0 7357
0 7271
0 7155
0 7299 | 1 4733
1 4296
1 4258
1 4221
1 4183 | 508 8
504 8
588 0
51 2 8
51 8 | | 128 8
124 8
128 8
132 8
133 8 | 812 53
841 04
870 31
900 34
931 17 | 9 02102
9 02112
9 02123 | 0 53864
0 51814
0 49843
0 47947
0 46123 | 0 55956
0 57916
0 51955
0 50070
0 48257 | 5120
5169
5218
5268
5317 | 641 1
675 5
669 6
663 6 | 1199 0
1198 2
1197 3
1196 4
1195 4 | 9 7133
9 7182
9 7231
9 7280
9 7329 | 0 7013
0 6925
0 6839
0 6752
0 6665 | 1 4145
1 4108
1 4070
1 4032
1 3993 | 528 8
524 8
528 8
537 8
538 8 | | 146 8
144 6
144 6
157 8
156 6 | 962 79
995 22
1028 49
1062 59
1097 55 | 0 02157 | 0 44367
0 42577
0 41048
0 19479
0 3 7956 | 0 46513
0 34834
0 41217
0 41660
0 40160 | 536 8
541 8
546 9
552 0
557 2 | 657 5
651 3
645 0
638 5
632 0 | 1194 3
1193 1
1191 9
1190 6
1189 2 | 0 7378
0 7427
0 7476
0 7525
0 7575 | 0 6577
0 6489
0 5400
0 6311
0 6222 | 1 3954
1 3915
1 3876
1 3837
1 3797 | 544 0
544 0
548 2
552 8
556 8 | | 568 8
568 9
578 8 | 11 23 79
1170 10
1207 72
1246 26
1285 74 | 0 02221
0 02235
0 02249 | 0 36507
0 35039
0 33741
0 32429
0 31162 | 0 38714
0 37320
0 35975
0 34678
0 33426 | 562 4
567 6
577 9
578 3
583 7 | 625 3
618 5
611 5
604 5
597 2 | 1187 7
1196 1
1184 5
1182 7
1180 9 | 0 7625
0 7674
0 7725
0 7775
0 7825 | 0 6132
0 6041
0 5950
0 5859
0 5766 | 1 3757
1 3716
1 3675
1 3634
1 3592 | 564 0
564 0
564 0
572 0
578 8 | | 184 C
184 C
182 B
192 B | 1376 17
1257 7
1410 0
1453 3
1497 8 | 0 02211 | 0 29937
0 29753
0 27608
0 25499
0 25425 | 0 32216
0 31048
0 29919
0 28827
0 27770 | 589 1
594 6
600 1
605 7
611 4 | 589 9
582 4
574 7
566 8
558 8 | 1179 0
1176 9
1174 8
1172 6
1170 2 | 0.7875
0.7927
0.7978
0.8030
0.8082 | 0.5673
0.5580
0.5585
0.5390
0.5293 | 1 3550
1 2507
1 3464
1 3470
1 3375 | 580 0
564 0
568 5
597 8
556 8 | | | | | | | | | | | | | | | 00 0
04 0
08 0
17
0
16 6 | 1543 2
1589 7
1637 3
1686 1
1735 9 | 0 02382 0
0 02402 0
0 02422 0 | 24384
223374
22394
221642
120516 | 0 26747
0 25757
0 24796
0 23965
0 22960 | 6171
6229
628 F
634 8
640 8 | 550 6
542 2
533 6
524 7
515 6 | 1167 7
1165 1
1162 4
1159 5
1156 4 | 0 8134
0 8137
0 82-0
0 82-4
0 8348 | 05196
05097
04997
04996
04794 | 1330
13254
13235
13130 | 500 0
504 0
608 0
617 0 | | 78 0
24 0
78 0
12 8
14 8 | 1786 9
1239 0
1892 4
1947 0
2002 8 | 0 02489 0
0 07514 0
0 02539 0 | 19515
18737
17880
17044
16226 | 0 22081
0 21225
0 20394
0 19553
0 18792 | 646 9
653 1
659 5
665 9
672 4 | 505]
196 6
486 7
476 4
465 7 | 1153 2
1149 8
1146 1
1142 2
1138 1 | 0 8403
4 5458
0 8514
0 8571
0 8628 | 0 4689
0 4583
0 4474
0 4364
0 4251 | 1 3141
1 3092
1 3041
1 2988
1 2934
1 2879 | 676 8
674 8
678 8
678 8 | | 40 | 2059 9
2118 3
2178 1
2279 2
2301 7 | 0 0 2 5 2 5 0
0 0 2 5 5 7 0
0 0 2 5 9 1 0 | | 0 18021
0 17259
0 16534
0 15816
0 15115 | 679 1
685 9
692 9
700 0
707 4 | 454 6
443
431
4(8.7
405 7 | 1133 7
1129 0
1124 0
1118 7 | 0 8686
0 8746
0 8806
0 8668
0 8931 | 0 4134
0 4015
0 3893
0 3767 | 1 2821
1 2761
1 2699
1 2634
1 2567 | 636 6
646 8
646 8
657 8 | | 4 0
4 0
7 1
5 0 | 2365 7
2431 1
2498 1
2566 6
2636 8 | 0 02911 0
0 02958 0
0 02911 0 | 10947
10229
09514 | G 14431
0 13757
0 13087
0 12424
0 11769 | 714 9
772 9
731 5
740 2
749 2 | 392 1
377 7
362 1
245 7
328 5 | 1107 0
1100 6
1093 5
1085 9
1077 6 | 0 8995
0 9064
0 9137
0 9212
0 9287 | 0 3502
0 3361
0 3210
0 3054 | 1 2498
1 2425
1 2347
1 2756
1 2179 | 656 8
564 0
564 0
668 0
677 8 | | | 2708 6
2782 1
2957 a
2931 5
3013 4 | 003114 0
003204 0
003313 0 | 07349
06595
05797 | 0 11117
0 10463
0 09799
7 09110
0 08371 | 758 5
768 2
778 8
790 5
804 4 | 310 !
290 Z
268 Z
243 I | 1068 5
1058 4
1047 0
1033 6
1017 2 | 0 9365
0 9447
0 9535
0 9634 | 0 2720
0 2537
0 2337
0 2110 | 2086
1984
1872
1744 | 676 6
686 6
684 6
642 0
697 0 | | 8 8
7 9
4 0
5 8
5 4 1 * | 3094 3
3135 5
3177 2
3198 3
3208 2 | 0 0 4 1 0 8 0 0
0 0 4 1 0 8 0 0 | 031/3 (| 0 07519
0 06997
0 06100
0 05730 | 822 4
835 0
854 7
873 0 | 172 7
144 7
102 0
61 4
0 0 | 995 2
979 7
956 2
934 4
906 0 | 0 9901
1 005
1 0169
1 0329 | 0 1490 1
0 1216 1
0 0876 1
0 0527 1 | 1390
1252
1266
0856
0612 | 706 8
707 9
704 9
705 6 | *Critical temperature WEST TO 70. | | | - Sau | Tab | 74 | | Enthalgy | | | Entropy | *** | Abs Pract | |--|--|---|--|--|--|--|--|---|--|--|--| | LD. Sq in | Fahr
I | Sat
Liquid | Evan | Sat
Vapor
*£ | Saf
Liquid
hy | Evap | A E | Sat
Liquid
S. | tva0 | Sat
V300r
S 2 | Lt Sq in | | 0 CS065
0 75
0 30
1 0
5 0
10 0
14 696
13.6 | 17 018
56 123
79 596
101 14
163 24
193 21
212 00
213 03 | 0 016027
0 016027
0 016027
0 016136
0 016407
0 016592
0 016726 | 3302 4
1235 5
641 5
333 59
73 515
38 404
26 782
26 274 | 1302 4
1275 5
641 5
133 60
71 532
18 420
26 799
26 290 | 0.0003
27.182
47.623
59.73
130.20
161.76
180.7 | 1075 5
1060 1
1048 6
1036 1
1000 9
982 1
970 3
969 7 | 1075 5
1087 4
1096 3
1105 8
1131 1
1143 3
1150 5
1150 9 | 0 3000
0 0542
0 0925
0 1925
0 2329
0 2836
0 3121
0 3127 | 18/2
20425
19416
18455
16094
15043
14447
14415 | 18/2
01/0
9:81
05/2
9:81
05/3
9:81 | 0 04061
0 75
0 50
1 0
10 0
14 656
15 0 | | 78 8
30 0
40 0
50 0
70 0
70 0
70 0
70 0
70 0 | 27 %
250 34
257 25
281 02
292 71
102 93
112 04
120 28 | 0 015834
0 01 009
0 01 7151
0 01 7274
0 01 783
0 01 783
0 01 785
0 01 785 | 20 070
13 7256
10 4794
8 2967
7 1562
6 1875
5 4536
4 8779 | 20 087
13 7436
10 4965
8 5140
7 1736
5 2050
5 4711
4 8953 | 196 27
218 9
236 1
250 2
262 2
272 7
252 1
290 7 | 950 1
945 2
933 6
923 9
915 4
907 8
900 9
894 6 | 1156 3
1164 1
1169 8
1174 1
1177 6
1180 6
1153 1
1185 3 | 0 1358
0 1567
0 3921
0 4112
0 4273
0 4414
0 4534 | 1395
1313
1324
1327
1305
1575
1470 | 17379
14995
15145
15346
15346
16208
16113 | 29 8
12 8
48 4
18 0
68 5
12 0
48 5
19 5 | | 188 8
118 3
128 8
138 8
146 8
158 8
164 8
178 8 | J27 82
334 79
341 27
J47 33
353 04
358 43
363 35
368 42
377 08
377 53 | 0 017740
0 01782
0 01789
0 01799
0 01893
0 01809
0 01815
0 01827
0 01827 | 4 41 33
4 0306
3 7097
3 4364r
3 2010
2 9953
2 8155
2 6556
2 5129
2 3847 | 4 4310
4 0484
1 7275
3 4544
J 2190
3 0139
2 5336
2 6738
2 5312
2 4030 | 298 5
305 8
312 6
319 0
325 0
336 6
336 7
341 2
346 2
350 9 | 888 6
853 1
877 8
872 5
868 0
863 4
859 0
854 8
850 7
846 7 | 1187 2
1188 9
1190 4
1191 7
1193 0
1194 1
1195 1
1196 9
1197 6 | 0 4743
0 4834
0 4919
0 4919
0 5071
0 5141
0 5159
0 5334 |
11134
11115
10950
10815
10631
10554
10435
13322
13215
13113 | 1 5950
1 5879
1 5813
1 5752
1 5695
1 5591
1 5591
1 5543
1 5498 | 128 6
110 0
120 8
130 8
130 8
150 8
150 8
160 0
160 0 | | 298 8
278 8
278 8
278 8
278 8
278 8
278 8
278 8
278 8 | 381 80
355 91
359 88
393 70
397 39
400 97
404 44
407 80
411 80
411 80
411 80 | 0 01339
0 01344
0 01850
0 01855
0 01865
0 01865
0 01875
0 01875
0 01885 | 2 16373
2 16373
2 16373
2 16779
1 37999
1 87352
1 75548
1 69137
1 63169
1 57597 | 2 7873
2 18217
2 05629
1 99846
1 91769
1 84317
1 77418
1 71013
1 65049
1 59482 | - 355 5
359 9
364 2
368 3
372 3
376 3
379 9
387 1
390 6 | 847 8
839 1
835 4
931 8
828 4
825 0
821 6
818 3
815 1
812 0 | 1198 3
1199 6
1200 1
1200 6
1201 1
1201 5
1201 9
1202 3
1202 6 | 0 54.78
0 54.90
7 55.88
0 56.79
0 57.72
0 5.764
0 58.44 | 1 0015
0 9923
0 9934
0 9748
0 9665
0 9539
0 9433
0 9391 | 5413
5214
5336
1529
1529
1529
1529
1529
15197 | 200 0
210 0
210 0
210 0
240 0
250 0
250 0
250 0
250 0
250 0 | | 706 8
258 8
400 8 | 41735
43173
444 60 | 0 01889
0 01912
0 01934 | 1 52384
1 30642
1 14162 | 1 54274
1 32554
1 16095 | 394 0
409 8
424 2 | 603 9
794 2
780 4 | 1202 9
1204 0
1704 6 | 0 5882
0 9059
0 6217 | 0 9222
0 4909
0 8630 | 1 2344 | 200 6
250 8
460 8 | | 456 0
508 6
156 6
608 8
656 8
708 6 | 456 28
467 01
476 94
486 20
494 89
503 08 | 0 01954
0 01975
0 01976
0 02013
0 02032
0 02050 | 1 01224
0 90787
0 82183
0 74962
0 68811
0 63505 | 1 031 79
0 97762
0 841 77
0 76975
0 70843
0 65556 | 437 3
449 5
460 9
471 7
481 9
491 6 | 767 5
755 1
743 3
732 0
730 9
710 2 | 1204 8
1204 7
1204 1
1203 7
1202 8
1201 8 | 0 6360
0 6490
0 6611
0 6773
2 6879
0 6978 | 0 9378
0 8128
3 7915
0 775
0 7552
0 7377 | 1 4738
1 4639
1 347
1 4461
1 4181
1 1 104 | 450 0
500 0
550 0
600 2
550 0
700 0 | | 758 6 868 8 858 9 964 0 958 6 1000 8 1158 8 1158 8 1200 8 | 510 84
518 21
525 24
531 95
538 39
540 51
550 51
556 28
561 82
567 19 | 0 02069
0 0208/
0 02105
0 02123
0 02141
0 02159
0 02117
0 02195
0 02214 | 0 54880
0 54809
0 51197
0 47968
0 45064
0 42067
0 17853
0 15859
0 14013 | 0 60949
0 56496
0 53302
0 50071
0 47705
0 44596
0 42724
0 40058
0 38073
0 36245 | 500 9
509 8
518 4
526 7
534 7
547 5
550 1
557 5
564 8
571 9 | 599 8
689 6
679 5
669 7
660 0
550 4
640 7
131 5
622 2
613 0 | 1200 7
1199 4
1198 0
1196 4
1194 7
1192 9
1191 0
1189 1
1187 0
1184 8 | 0.7022
0.71:1
0.7197
0.7279
0.7258
0.7474
0.7507
0.7578
0.7578
0.7714 | 0 7210
0 7541
0 5899
0 5 53
0 6612
0 5341
0 5091
0 5969 | 14032
141+3
140%
1407
13070
13070
13070
13073
13738
13643 | 718 8
800 0
850 0
950 0
950 0
1000 0
1000 0
1150 0
1150 0 | | 1756 9
1200 0
1200 0
1356 0
1406 0
1456 0
1506 0
1506 0
1600 0
1600 0 | 572 38
577 42
582 12
587 07
591 70
596 70
600 59
504 87
609 05
613 13 | 0 02750
0 02759
0 02788
0 02307
0 0237
0 02346
0 02367
0 02387
0 02387 | 0 32106
0 10/22
0 29250
0 27871
0 25584
0 25172
0 24235
0 23159
0 22143
0 21178 | 0 32556
0 32791
0 31537
0 30178
0 73711
0 77719
0 75601
0 25545
0 24551
0 23607 | 579 8
585 6
592 3
598 8
605 J
611 7
618 0
621 2
630 1
636 5 | 601 8
594 6
585 4
576 5
587 4
558 4
549 4
540 3
522 2 | 1182 5
1180 2
11/7 8
11/7 8
11/7 8
11/7 1
1167 4
1164 5
1154 5 | 0 77 90
0 7343
0 7966
0 7966
0 8025
0 8125
0 8127
0 8129
0 8254
0 8199 | 0 5850
0 5733
0 5507
0 5507
0 5182
0 5182
0 5075
0 4867 | 1 2530
1 3577
1 3575
1 3474
1 473
1 3171
1 3171
1 3175
1 3176 | 1750 8
1100 0
1250 0
1450 0
1450 0
1557 0
1600 0
1760 0 | | 1750 8
1800 5
1850 0
1900 0
1950 8
2000 0
2100 6
2700 8
2300 0
3400 0 | 61712
62102
62483
6.856
632:72
633:30
649.45
653.89
662.11 | 0 02450
0 02472
0 02517
0 02517
0 02541
0 02565
0 02565
0 02770 | 9 20263
9 19 90
9 18558
9 1761
9 16999
9 1856
9 1485
9 1603
9 12406
9 11287 | 0 22713
0 21861
0 21052
2 202:8
0 19540
0 19540
0 18631
0 17501
0 16:772
0 15133
0 14076 | 642 5
654 5
606 3
672 1
663 8
595 2
719 0 | 513 1
503 8
494 6
485 2
475 8
466 2
446 7
426 7
426 0
384 8 | (155 6
157)
149 0
145 6
142 0
1138)
120 5
113 7 | 0 #163
0 #470
0 #470
0 #574
0 #574
0 #679
0 #979 | 0 1/65
0 1559
0 4/54
0 4/54
0 1/54
0 1/54
0 1/54
0 1/40 | 11.74
10.44
170.40
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941
17941 | 1750 0
1850 0
1850 0
1950 0
2000 0
2000 0
2100 0
2100 0
2100 0 | | 2500 0
2500 0
2700 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0
2500 0 | 668 11
6/191
6/193
684 96
690 72
695 13
705 08
705 4/ | 0 0 2 5 9 9 6 0 3 9 3 6 0 0 3 0 2 9 9 0 3 1 3 4 0 0 3 2 6 2 0 0 3 1 3 5 2 0 2 5 8 1 0 0 4 3 7 2 0 0 5 0 7 8 | 0 10209
0 09172
0 08165
0 07171
0 06158
0 05073
0 03771
0 0.191 | 012768
012710
011194
010305
009420
008500
07452
005663
005078 | 731 7
734 5
757 3
770 7
785 1
801 8
824 0
875 5
906 0 | 3616
33/6
31/6
31/6
254/
2184
1693
561 | 1043 3
108: 0
1069 /
1055 8
1070 3
1070 3
993 3
911 8
906 0 | 0 9139
0 9217
0 9266
0 9348
0 9728
0 9914
1 0351
1 0612 | 0 1.706
C 1977
0 1.441
0 2.441
0 1.891
0 1.460
0 C 1.42
0 3000 | 1 7 3 4 5
1 7 6 7
1 7 6 7
1 7 6 7
1 7 7 7
1 7 8 1 7 | 7:00 0
2:00 0
7:00 0
7:00 0
7:00 0
7:00 0
7:00 0
7:00 0
7:00 0 | *Critical pressure ~ - P. Beardsley ## 2.0 Plant Design, Including Safety and Emergency Systems (25.0) ## 2.1 With regard to the Diesel Generators: - a. The "Emergency Bypass-Test" selector switch is in "Emergency Bypass" position when a low reactor water level initiation signal is received. Which diesel generator trips would still be operable? (2.0) - b. Which
of these trips would be <u>bypassed</u> if the selector switch was in the "Test" position and the same initiation signal was received? (0.5) 2.1 a. (all 4, 0.5 each) 1. Engine overspeed 2. Generator differential relay 3. Fail to start (incomplete response) 4. Emergency stop pushbutton b. None (0.5) Ref: WNP-2 System and Procedures; DG, pg. 33-35. To comment 2.2 What safety action(s) are auto-initiated at each of the following indications: | a. | Level 4 (31.5")? | (0.5) | |----|------------------|-------| | b. | Level 2 (-50")? | (0.5) | | с. | 1135 psig? | (0.5) | | d. | 1076 psig? | (0.5) | 2.2 a. Runback recirc. flow if only 1 reactor feed pump. Solicus clarm has safety implication a should be accepted b. Initiate RCIC and HPCS; trip recirc. pump; initiate NSSS iso. groups 1, 2, 3, 4 and 7. (0.5) c. ATWS trip of recirc. pumps. (0.5) d. 2 MSL S/R valves open (relief mode). (0.5) Ref: WNP-2 System and Procedures; NBI, pg. 55 and 57; Main Steam, pg. 32. a. level 4 may not necessarily be assumed to be en incident with a loss of a RFP. Level 2 initiative, Not isolation- around are not commonly used at this soile comment history, is: swew, many's ste should be acceptable. C-no comment of MSRV's open as relief value # 2.3 With respect to the <u>Automatic Depressurization System</u> (ADS): | | a. List (including setpoints) the automatic activation sequence for ADS. | (1.5) | |-----------|--|-------| | confusing | b. Which initiation signal(s) can be cleared by pressing
a Seal-In Reset pushbutton(s)? | (1.0) | | | c. Which of the signal(s) in (b) can be cleared only if the initiating condition no longer exists? | (0.5) | | | | | | Sip scram table | | |-----|-----|-------|--|----------------------------------|--| | 2.3 | a. | 3. | Hi drywell pressure (>1.65 psig) Lo water level (level 3: -50") Lo water level (level 1: -129") 105 second timer timed out >1 low pressure ECCS pump (125 psig for RHR/LPCI; 145 psig for LPCS). | (0.3)
(0.3)
(0.3)
(0.3) | | | | b. | 1. | pts each ADS A(B) reactor pressure vessel low level logic Hi drywell pressure A(B) | (1.0) | | | | c. | Hi d | drywell pressure | (0.5) | | | | Ref | : WNF | P-2 System and Procedures; AOS, pg. 8-10; 12; and 12 | , | | ## 2.4 With regard to the Reactor Protection System: | a. | Which trip(s) can only be bypassed manually? | (1.25) | |----|---|--------| | b. | With regard to the backup scram valves: | | | | 1. Are they <u>solenoid</u> or <u>air operated</u> ? | (0.5) | | | 2. To cause a scram, do they: (a) energize or (b) deenergize (if solenoid) (c) pressurize or (d) vent (if air operated) (choose only <u>I</u> answer) | (0.5) | | | 3. What is their function? | (0.5) | 2.4 a (0.417 each) (1.25) 1. APRM Hi-Hi 2. APRM inop. 3. Scram discharge volume Hi level trip b. 1. solenoid 2. energize (a) 3. bleed air from scram valves (vent header to atmosphere) (0.5) Ref: WNP-2 System and Procedures; RPS, pg 15, 15, 16; and 30-31, respectively. a- this question seems to be confusing, other acceptable answers should include the slide links for hypassing non coincident scrams (SRM, ERM, APRM) manual hypass of IRM, SRM. The question should have given a limit (ie 3,4) on answers expected. b.3 initiate a scram in case of scram pilot value failure | 2.5 | With r | egard to the AC E | Electrical Distri | bution System: | | | |------------------------------------|---------------------------------|--|--|------------------------------------|------------------------|---------------------| | | a. Wh | ich <u>lockout</u> relay
fferential Curren | will be tripped
nt (87TM)? | upon a Transfo | rmer | (0.5) | | | b. Li | st three (3) acti
lay in (a) is tri | ons which will o | ccur when the 1 | ockout | (1.5) | | | c. The | e loss of which 4 | 80V MC bus will cooling? | deactivate both | | (0.5) | | | d. Who | at happens upon turces for SM-4? | he loss of the n | ormal and start | | (0.75) | | | | | | | | | | | | | | | | | | 2.5 | a. Uni | t lockout (86XU) | | | | (0.5) | | | b. any | 3, 0.5 pts each | | | | (1.5) | | | | Trips and locks Trips 4F circuit Trips main turb De-energizes 86 Starts oscillog Starts computer | oine (20 AST)
SXIU
graph | eakers
rator Exciter Fi | ield Breaker | | | | c. MC- | 8-B-A | | | | (0.5) | | | d. aut | omatic transfer o | of SM-4 to the Di | vision 3 EDG | | (0.75) | | | 10 | P-2 System and Pr
r a, b, d; AOP 4.
. 3 of 4 for c. | rocedures; AC Dis
7.1.9, Loss of F | str.; pg. 15 and
Power to SM-8, | 1 16 | | | f - Same | e of control of all all are are | to all of the A
lansmer this of
any operation | meetin, also
howhich shoul | 86×4 also try
d be accepta | pe 86×14 for | | | d. This is to anse | theoul | y section of 2 | .5 that the | operator she | ould be e | spected | | 2.5 b answer
3 locks
5 locks | e list she out excit | outdinclude ! to field breaker in generator & | Closes all 5 bie
4 locks out 500
6 Removes gen | akers 2 tryp & lo | eient
on 7 blocks N | Chrs. She trip ann. | ## 2.6 Concerning the Standby Liquid Control System (SLC): | a. | when the SLC System Control Switch is placed in the | | | |----|---|------|--| | | "Sys A" position? | (1.0 | | | b. | What is the purpose behind the SLC storage tank heater? | (1.0 | | | c. | There is a SLC pump trip on low flow (TRUE or FALSE)? | (0.5 | | 2.6 (any 3, 0.33 each) a. 1. Both SLC squib-valves fire. 2. RWCU-V-4 isolates. 3. Both SLC storage tank outlet valves open. 4. SLC-P-1A starts (if at least one suction valve is open). b. Maintains solution temperature high enough to prevent precipitation of the sodium pentaborate. (1.0) c. False (0.5) Ref: WNP-2 System and Procedures, SLC; pg. 9, 13, 10, respectively. no comment Answer the following questions concerning the Low Pressure 2.7 Core Spray System (LPCS): | a. | What is the rated flow of the main LPCS pump? | (0.75) | |----|---|--------| | b. | In shutting down LPCS to standby readiness, is the injection shut off valve (LPCS-V-5) closed before stopping the LPCS pump (Yes or No)? Why? | (1.25) | | c. | The check valve located inside the drywell is motor-operated (Yes or No)? | (0.5) | | d. | What are the interlocks associated with the auto-opening of the LPCS-V-5 injection valve? | (0.75) | (0.75) this rest was metasked for | 2.7 | a. | 6350 gpm at 128 psid reactor to suppression chamber. | (0.75) | |-----|----|---|--------| | | b. | | (1.25) | | | | No | (0.5) | | | d. | No undervoltage on SM-7 and reactor pressure <470 psig. | (0.75) | Ref: WNP-2 System and Procedures, LPCS; pg. 8, 11-12, 5, and 7, respectively. b. operators are not required to memorine steps in operating procedures procedures, also, per PPM 2.4.3 (LPCS operating procedure) Page 9 of 15, ren 2 step E 2 and E 4 call for closing discharge nature LPCS-V-5 and then stopping the pump. d. The only opening condition taught as an interlock is that the presume in the reactor must be less than 470 paig. Power supply to a motor is not considered to be an interlock. 2.8 With regard to the Plant Service Water System (TSW): pump can be started? a. What is the purpose of the Chlorine System? b. What causes starting of the TBCCW pumps and opening of discharge valves? c. Since TSW provides cooling only to non-essential equipment, why must the plant be shutdown when neither TSW (0.75) 2.8 a. To inject chlorine to retard the growth of algae within TSW systems. (1.0) b. Pumps start on low pressure (<80 psig) on alternate pump or undervoltage on SM 85 (75) for 15 sec (0.75); discharge valve opens when pump starts if control switch in auto (0.75). (1.5) c. Because components cooled by TSW are essential for continued operation of the secondary and primary plant. (0.75) Ref: WNP-2 System and Procedures, TSW; pg. 3, 4 7, respectively. a. to retard growth of organics should also be acceptable b. time delay should not be required as a specific in the ensuer. also, TSW pump selected for auto start will come on after the diesel has powered its bus on loss of offsite power. - 2.9 Concerning the <u>CRD Hydraulic System</u>, give the appropriate values for the following: - a. Insert drive water pressure at 400 psig reactor pressure. (0.5) - b. Cooling water pressure at 400 psig reactor pressure. (0.5) - 2.9 1. Rx + 260 = 660 psig (0.5) - 2. Rx + 20 = 420 psig (0.5) Ref: WNP-2 System and Procecure's; CRDH; pg. 2. 2- this is taught as Rx + 20 to 30 ## 2.10 Concerning the Condensate Storage and Transfer System (CSTS): - a. What is the minimum level that must be maintained in CST tanks at all times? (0.5) - b. Why is this minimum level required? (1.0) 2.10 a. 135,000 gal (6'8") b. To provide suction for RCIC and HPCS systems to ensure immediate availability of sufficient condensate for ECCS and shutdown (1.0) Ref: WNP-2 System and Procedures; CSTS; pg. 1 and 13. no comment TABLE 1 REACTOR SCRAMS December 1983 | | | | Scram | / ' | po | |------------------|-------------------------|--------------|-------------------------|-------------------|---------------| | Scram | First Alarm | Second Alarm | Setpoint | Bypass | Scram Logic | | Manual | | | | - / | 1/2 twice | | Shutdown Mode | | | | . / | 1/1 once | | SRM Hi-HI | 1 x 10
⁵ cps | | 2 x 10 ⁵ cps | *Shorting links | 1/4 once | | | | | | tmstalled | | | IRM Inop | | | - / | In Run Mode | 1/4 twice | | IRM Hi-Hi | 108/125 | | 120/125 | In Run Mode | 1/4 twice | | APRM Hi-Hi | 12% | | 15% | In Run Mode | 1/3 twice | | APRM Hi-Hi | .66W _R + 42 | | .66Wp + 51% | | 1/3 twice | | APRM Hi-Hi | | | 118% | Not in "RUN" | 1/3 twice | | APRM Inop | | | | - | 1/3 twice | | Scram Discharge | A-525'2-3/8" | 527'1-1/2" | 529'6" / | In S/D or refuel, | | | Volume | B-524'5-13/16" | | (| and keylock | | | | | | | switch bypassed | | | Reactor Water | | | 13" | | | | Level | | | | | | | Reactor High | 102 1 psig | | 1037 psig | | 1/2 twice | | Pressure | | | | | | | Drywell High | 0.1 psig (low) | 1.5 psig | 1.68 psig | | 1/2 twice | | Pressure | | | 1 1 | | ., | | MSL High Radia- | 1.5 x Normal | | 3 x Normal | | 1/2 twice | | tion/Inop | | | | | ., | | MSIV Closure | | | 6% Closed | Not in Run | Any 3/4 MSLs | | | | | | | isolated | | Turbine Throttle | | | 5% Closed | 30% Turbine First | | | Valve Closure | | | 71.717.77 | Stage Pressure | 7113 374 1113 | | Turbine Governor | | | 1250# supply | 30% Turbine First | 1/2 twice | | Valve Fast | | | oil pressure | Stage Pressure | I/E CWICE | | Closure | | | orr pressure | Judge Fressure | | | | | | | | | ^{*}NOTE: With Shorting Links <u>removed</u>, <u>any</u> one SRM, IRM, or APRM scram signal from <u>any</u> channel will result in a full scram (non-coincidence logic). Irwategen ### 3.0 Instruments and Controls (25.0) ## 3.1 With regard to the Rod Worth Minimizer System (RWM): | a. | Under what two (2) conditions will the Select Error alarm light be lit? | (1.0) | |----|---|-------| | b. | Above LPAP, what alarms remain operative? | (1.5) | | c. | TRUE or FALSE: A rod block is applied upon the second insertion error. | (0.5) | 3.1 a. Whenever a selected control rod is not in the currently latched group (0.5) or one currently positioned so as to cause a withdraw or insert error (0.5) b. Inop/Reset; Withdraw block; Insert block c. False (0.5) Ref: WNP-2, System Description, RWM, pp. 18, 20, 18, respectively. b. your answer is true only for a hardware failure (Ref pp 20 above) this question amount do not otherwise - during its normal function- no alarme are operable, which should be acceptable answer since hardware failure was not adhessed. 3.2 For the events listed, match the action(s) that will occur in the Recirculation System. Assume that the pumps are running in high speed. (An action may be used more than once) (2.5) #### Events: - Suction or discharge valves <90% open Vessel hi presssure (ATWS) Feedflow <30% with FCV <18% open - 4. Reactor vessel low level (Level 3) - 5. RPT #### Actions: - a. Fast Speed Trip - b. Slow Speed Trip - c. LFMG start. 3.2 (0.5) each 1. A, B 2. A, B 3. A, C 4. A, C 5. A, C (2.5) Ref: WNP-2, RRC, pg. 39. ## 3.3 According to Monthly Operational Bulletins: - a. How did the failure, on two shifts, to check chart movement on wetwell level recorder CMS-LR/RR-4 contribute to loss of wetwell level? (1.0) - b. Why is it important to ensure that <u>local</u> temperature indicators at the <u>nitrogen</u> supply shed and in the reactor building are monitored? (1.0) - 3.3 a. The recorder had been, in fact, inadvertently de-energized so that annunciator alarm switches activated by the recorder pen were also 0.0.S. (1.0) - b. No control room monitors exist. If nitrogen temperature gets too low, nitrogen flow onto a 30 in. dia. containment purge header and onto wetwell and drywell purge liner inside containment could cause failure through nitrogen embrittlement. (1.0) Ref: WNP-2 Monthly OP Bull: April-May, pg. 1; Feb-Mar, pg. 6, respectively. ast Unfair question: MOBS are covered as part of the License Reguel Training NOT as part of Hot cicuse Training and thurse the operator may not have real this. 26 See response for questin # 8.9 8.89 ## 3.4 In reference to the Source Range Monitors (SRM): a. What two (2) types of radiation are separated by the pulse height discriminator (PHD)? Which one causes an output signal from the PHD? (1.0) b. Indicate (by Yes or No) whether the following trip circuits in the SRM electrical circuitry will generate a signal for use in the RMCS rod block circuitry: (3.0) 1. Downscale 2. Retract Permit 3. Upscale High 4. Upscale High High (shorting links installed) 5. Inop. 6. Reactor period. 3.4 a. Neutron and gamma radiation (0.5); neutrons cause output (0.5) b. (0.5) each 1. Yes 2. Yes 3. Yes 4. No 5. Yes 6. No Ref: WNP-2, System Description, IRM, pg. 14 and 28, respectively. or - 3.5 With regard to the Reactor Manual Control System (RMCS): - The accumulation light starts <u>flashing</u>: What is the <u>cause(s)</u> of this? What causes the light changing to "steady on"? - b. In mode 5 under what conditions, and in what manner will Select block be indicated? (1.5) - c. Can an <u>overtravel alarm</u> be received if the control rod is connected to its drive unit (<u>Yes</u> or <u>No</u>)? (0.5) 3.5 a. 1. High-level (5 cc) or low N₂ pressure (970 psig) (0.75) 2. Operator acknowledges alarm with "Accumulation Trouble Acknowledge" pushbutton (0.75) b. Any rod is not fully inserted (0.75); SELECT BLOCK amber light (0.75) c. No. (0.5) Ref: WNP-2, System Description, RMCS, pp. 7, 11, and 18, respectively. a. setpoints were not asked for in question b. also accept " If the operator withdraws one control rod. | 3.6 | With | regard | to | the | RCIC | system: | |-----|------|--------|----|-----|------|---------| 2. | a. | RCIC pump flow indicator RCIC-FIS-2 has two contacts. | | |----|---|-------| | | What is the purpose of each contact? | (2.0) | b. For monitoring steam flow to the RCIC turbine: How many differential pressure switches (DPS) are used to monitor steamflow? (0.5) 2. Where are they located? (0.75) c. Should the RCIC-V-8 and RCIC-V-63 keylocked control switches be left in OPEN or CLOSED position when resetting any isolution signal? (0.5) (0.75) c. Open _ wrny! (0.5) Ref: WNP-2, System Description, RCIC, pp. 27, 27; and SOP 2.4.6, pg. 2 of 29, respectively. a. Heis question is not realistic — operators do not memorial FIS switch numbers!! and nor the member of contents and each one's specific function — but the function as viewed from his indicators. b. 2 Should also accept, to all located on flow elbours insede drywell C. they Should be in "Close" position (RG PPM 2.4.6 Reval - 3.7 Concerning vessel instrumentation, state whether the following are TRUE or FALSE: - a. The Fuel Zone Range level indicators are calibrated cold. (0.5) - b. Level 1 (-128") will initiate NSSSS isolation groups: 1, 2, 3, 4, and 7. (0.5) - c. The reference leg design of the Level Indicators have been designed to compensate for extreme temperature transients. (0.5) - d. Jet pumps 5, 10, 15, and 20 were individually flow calibrated prior to installation. (0.5) - e. Pressure measured at the core inlet plenum is also used as input to the CRDH system. (0.5) - 3.7 (0.5) each (2.5) - a. False - b. False - c. False - d. True - e. False Ref: WNP-2, System Description, NBI, pp. 57, 56, 5, 7, and 33, respectively. - 3.8 With regard to the Power Range Neutron Monitoring System (PRMS): - a. What four (4) subsystems make up the PRMS? (0.75) - b. Which three (3) trips are input to RPS from the PRMS? (0.75) - c. For what two (2) conditions and for which components do the white indicators next to the heat flux meters below the full core display become lit? (0.75) - 3.8 a. RBM, Flow Unit System, APRM, LPRM (0.75) - b. APRM upscale thermal, APRM upscale neutron, inop. (0.75) - c. Failed (0.25) bypassed conditions from LPRMs associated with rod selected (0.25). (0.75) Ref: WNP-2, System Description: LPRM, pg. 1; APRM, pg. 36; LPRM, pg. 4; respectively. - b. also accept 15%. APRM u/s trip is with Morle Sw. in Startup - C. Manual Bypess or Reviphent rod selected or APRM Ref signal 230%. For the RBM system (Ref 5+P RBM P\$ 33 1/6/II Tab 7) 3.9 Which type of detector (scintillation, ion chamber, fission chamber or Geiger Mueller) is used in the following process radiation measurements? | a. | Main steam line | 10.51 | |----
--|-------| | b. | Off-gas post-treatment | (0.5) | | | Reactor building main exhaust | (0.5) | | | The state of s | (0.5) | 3.9 a. Ion chamber (0.5) b. Geiger-Mueller (0.5) c. Gieger-Mueller (0.5) Ref: WNP-2 Syst. Descript., PRM, pg. 4, 3, 4, respectively. OK TC. Messersmith # 4.0 Procedures - Normal, Abnormal, Emergency and Radiological Control (25.0) | 1 | | | |-----|--|-------| | 4.1 | With regard to General Operating Procedure 3.1.2, Reactor Plant Cold Startup: | | | * | a. What action(s) should the operator take to prevent RWCU pump trip on low flow. | (1.0) | | / / | b. Why should you avoid heat-up rates that demand a high reject temperature . | (1.0) | | 1 | c. How will RPV water level stability be indicated? | (1.0) | | | Weighted tookeavily for a single paragraph one operating procedure. | out o | | | | | | 1 | | | | 4.1 | a. By adjusting reject valves RWCU-V-31 and V-33 as required. | (1.0) | | 4 | b. This will cause high RWCU F/D inlet temperatures and RWCU F/D isolation at 140°F. | (1.0) | | | c. By a small output signal on the RFW-FCU-10 controller. | (1.0) | | | Ref: WNP-2 PPM 3.1.2., pg. 8 of 18. | | 4.2 With regard to performing <u>Rod or Minimizer</u> (<u>RWM</u>) <u>initiation</u> in accordance with the System Operation Procedures for <u>RWM</u> (2.1.4): a. How does the operator verify the RWM is not in "rod test"? (1.0) b. What happens when the INOP/RESET pushbutton is depressed before the "System Initialize" pushbutton is depressed? (1.0) c. What happens when the INOP/RESET pushbutton is depressed after the system is initialized? (1.0) 4.2 a. By depressing the TEST/SELECT button, observing illumination, depressing again and observing the light goes out. (1.0) b. Any previous alarm ("Comp/Progam") is reset, the Comp light and the RWM/Program lights are illuminated. (1.0) c. The RWM and program lights extinguish. (1.0) Ref: WNP-2 SOP 2.1.4, pg. 2-3 of 3. Comments: 1. This procedure is not used for operation of the RWM. The volume 7 surv. procedure is used to verify RWM operability and to operate that piece of equipment. 2. Does not assess the operators knowledge of system operation. It check's which lights come on or off. ? 3. Wrote memorization of procedures not reg'd per Examiners standard 202, B-4. - 4.3 Relative to the Emergency Operating Procedure for RPV Pressure Control (RPV/P)(5.1.2): - a. List any three (3) of the five entry conditions. (1.5) - b. What are the four (4) systems to be used to augment the main turbine bypass valves for controlling pressure below 1075 psig? Give any limiting condition on the use of these systems. (3.0) a. any 3; 0.5 points each (1.5) 1) RPV water level below +13.0 in. 2) RPV pressure >1037 psig Drywell pressure >1.68 psig 4) A condition requiring MSIV isolation 5) A condition requiring reactor scram and power is above 5% or cannot be determined. b. (3.0) 1) SRV's (0.6), if suppression pool water level >17 ft (0.3) RCIC (0.6) 2) 3) RWCU (recirculation through heat exchanger and blowdown modes) (0.6); if no boron has been injected into RPV (0.3) 4) Main steam line drains ((MS-V-16, -19, -21) (0.6) Ref: WNP-2 EOP 5.1.2, pp. 1 and 6-7 of 8. Valve #'s Should hot be regid for full credit. - 4.4 a. The plant is in the process of starting up (Condition 2) with all systems and components normal except that the "A" IRM has previously failed high and was subsequently bypassad. The "E" IRM now loses power and is declared inoperative. May the plant continue in this condition for an extended period of time without being in violation of Tech. Specs? Also give the appropriate action statement. (1.5) - b. Could you place the mode switch in run (Condition 1) to bypass the action statement in part "A"? (0.5) 4.4 a. Yes (0.5); place the RPS A channel in the tripped position within one hour (1.0). (1.5) No (0.5). Ref: WNP-2 1/S, pp. 3/4 3-1; 3/4 0-1, respectively. per Tech. Spec. on IRM operability the provision of Tech. Spec 3.0.4 is not applicable for this action statement! - Assuming a loss of feedwater heaters while operating at 100% 4.5 power, according to Abnormal Operating Procedure 4.2.7.2: - Give three (3) of the four events that could have caused (2.25) - What change would you expect to see in the Main Generator MW (increase, decrease)? (0.5) - c. What is the first immediate operator action you should take? (0.75) 4.5 a. (Any 3 @ 0.75 each) (2.25) 1. Heater isolation on high water level. 2. Turbine trip. - (System malfunction resulting in the) isolation of or more feedwater heaters. - (System malfunction resulting in the) closure of extraction stram line valves for one or more feedwater - Increase (on a tueb. terp, you don't worry about this (0.5) Reduce reactor power via recirculation flow control every (0.75) Ref: WNP-2 AOP 4.2.7.2, pg. 1 of 2. turbine teip. only answer # 1 is found in the abnormal Procedure listed as reference. # 2 is not even applicable, # 3 x 4 are the same thing and they result from #1, 4.6 With regard to the operating procedure for 250V DC Distribution System (SOP 2.7.7), give any three (3) of the four indications that the operator will have if the tie to distribution bus S2-1 has been completed. (2.25) 4.6 (Any 3 @ 0.75 each) (2.25) - "250 VDC LOSS, BATT B2-1 FAIL" alarm on board "C" in Control Room clears. - "250V VDC BATT B2-1 GND" alarm on board "C" remains cleared. - 3. Bus S2-1 voltage reads 220 to 250V on board "C". - 4. Bus S2-1 ground lamps on board "C" are on. Ref: WNP-2 LSOP 2.7.7, pg. 2 of 5. this question requires total recall of procedure. This is not reg'd per Examiner's Standard 202.8-4 (pg 20 f6) 4.7 Reactor coolant leakage into the primary containment from unidentified sources shall not exceed (1) gpm and the total coolant leakage shall not exceed (2) gpm. (1.0) 4.7 1. 5 gpm (0.5) 2. 25 gpm (0.5) Ref: WNP-2 Tech Specs., pg. 3/4 4-9. 4.8 The Reactor Operator reports that "GEN BUS DUCT TEMP HIGH" and "GEN BUS DUCT CLR FLOW LOW" have activated and that bus duct temperatures are increasing. The <u>failure</u> of <u>which</u> component(s) is the most probable cause? (1.0) 4.8 The TSW solenoid supply valve Ref: WNP-2 AOP 4.5.6.1, pg. 2 of 2. (1.0) 4.9 According to AOP 4.8.3.2 "Loss of all RCCW," if no RCCW pumps can be started during power operation, a rapid increase will occur in (Fill in). (0.5) 4.9 Drywell pressure (0.5) Ref: WNP-2 AOP 4.8.3.2, pg. 3 of 3. 4.10 According to the Abnormal Operation Procedures for Fires (4.12.4.1), one indication, other than fire alarm, will be fire header pressure fluctuation (TRUE or FALSE)? (0.5) 4.10 True (0.5) Ref: WNP-2 AOP 4.12.4.1, pg. 1 of 2. 4.11 According to the Limitations stated in the Operating Procedures for the Reactor Core Isolation System (SOP 2.4.6), what must you do if manual isolation is required at any time that system initiation is not sealed in? (0.75) 4.11 Close the isolation valves using their respective control switches. (0.75) Ref: WNP-2 SOP 2.4.6, pg. 2 of 28. ## 4.12 With regard to Administrative Procedures: - a. There must be two (2) licensed operators in the Control Room at all times (TRUE or FALSE)? (0.5) - b. During new fuel handling operations, a licensed operator must be on the refueling floor (TRUE or FALSE)? (0.5) 4.12 a. False (0.5) b. False (0.5) Ref: WNP-2 Admin. Proc: 1.3.2, pg. 3 and 6.2.3, pg. 2, respectively. This could easily be confused with the licensed operator requirement of T.S. G.Z.Z.d. which require an sko for care alts. Should give credit for a true answer as well. 4.13 According to Standing Order/Night Orders (Admin. Proced. 1.3.1), under what conditions can the reactor operator shut the reactor down without being instructed by the Shift Manager or required by the Emergency Procedures? (1.0) 4.13 When safety of reactor is in jeopardy or when operating parameters exceed any RPS setpoint and autoshutdown does not occur. (1.0) Ref: WNP-2 Admin. Proc.
1.3.1, pg. 2. 4.14 With regard to the <u>Health Physics Program</u>, what are the whole body exposure limits for the following: (1.0) - a. Administrative exposure limits (day, quarter, year) - b. Lifesaving actions . 1: . 4.14 1. 300 mrem/day (0.17); 1000 mrem/quarter (0.17); 5000 mrem/year (0.16) 2. 75 rem (0.5) (1.0) Ref: WNP-2 Health Physics Program, 3.1.5, pg. 4 of 5. quarterly limit is 1250 mm/gtR see PPM 1.11.3, pg 3.f25