831	384					LIC	ENSE	E EVE	NT REP	PORT	LER)	U.S. NU AI EI	CLEAR REGULAT	0 81 50-0104
CILITY											0	OCKET NUMBER	(2)	PAGE (S
		Las	alle	County	Sta	ation U	nit l		_			0 5 0 0	0 317 3	1 OF OIL
TLE (4)				1. k 24		1.1.1								
	Sp	urio	us Re	actor V	Jati	er Clea	nup D	iffe	rentia	FION	v Isolati	On During	HOT SHL	tdown
ONTH	DAY	YEAR	YEAR	SEQUEN	TIAL	REVISION	MONTH	DAY	YEAR		FACILITY NAN	IES	DOCKET NUMBE	R(S)
				NUMB	E.M.	NUMBER					N/A		0 15 10 10	10111
		0	0.15		n	- 010	01.2	215	8 15			25.6.1		
0 2	00	0 5	05	01	K	1010	02	212	02				0 151010	10111
OPER	DE	1.	THIS RE	PORT IS BUBA	AITTE	D PURSUANT	TO THE R	EQUIREM	ENTS OF 10	CFR S: (C	heck one or more o	if the following) (1)	73.71(b)	
		13	20.	402(b)		-	80.36/c	(c)		×	60.73(a)(2)(v)		73.71(c)	
LEVEL	0	010	20	406(a)(1)(H)			80.36 ic)(2)		H	60.73(a)(2)(vii)		OTHER /S	pecify in Abstract
	<u>_</u> _	<u> </u>	20	406(=)(1)(00)			50.73(a	(2)(1)			50.73(a)(2)(viii)(A	U	below and 366.A.)	in Text, NRC For.
			20	406(a)(1)(iv)			50.736	1(2)(#)			60.73(a)(2)(viii)(8	1)		
			20	406 (a1(1) (v)			\$0.73(a	1)(2)(iii)			60.73(e)(2)(x)			
					_		ICENSEE	CONTAC	T FOR THIS	LER (12)			TELEPHONE NUE	IBER
AME												AREA CODE		
	John	Β.	Reis,	Jr., 1	Ext	ension	463					81115	315171-	16171611
				COMP	LETE	ONE LINE FOR	EACH C	OMPONEN	T FAILURE	DESCRIBE	D IN THIS REPOR	T (13)		
CAUSE	SYSTEM	сомр	ONENT	MANUFA	c.	REPORTABLE TO NPRDS			CAUSE	SYSTEM	COMPONENT	MANUFAC TURER	REPORTABLE TO NIRDS	
В	JIM	Z1 9	1919	21919	Ø	N								
			11		1		SYPECT	ED (14)				+ + + + + + + + + + + + + + + + + + + +	MONT	H DAY YEAR
				sorr	LEMI	INTAL HEFUN						EXPECT SUBMISSI	ON	
YES	lit yes, o	ompiete l	XPECTED	SUBMISSION	DATE	0		X NO				DATE II	6) 	
Or UI TI tI f a c	n Feb nit 1 here he tr he ma low p nd de alibr	Rea were ip. ain coertu ensit	y 8, ctor no f The conder irbati y dif	1985 a Water Flowpat Reacto iser, ac ions co fferenc reated	t 1 Cle h ccou mbi es a 1	630 hou anup Sy hanges eing in nted fo ned wit between arge di	rs, v stem cr ec hot r the h RWC action ffere	with (RWC quipm shut e iso CU in ual h entia	the Un U) iso ent ro down, lation let an ot shu l flow	it in lated tatio with . Ca d out tdown base	the hot on high ns in pro the RWCU libration let water operation d primari	shutdown differen ogress at System b n deviati tempera ons and i ily on vo	mode, th tial flow the time lowing do ons and p ture, pro nstrumen lumetric	he of own to possible essure, t changes.
	85 PD S	031 R	40500 4D0CI	0 8502 K 0500	25	73								

US NUCLEAR REGULATORY COMMISSION ----LICENSEE EVENT REPORT (LER) TEXT CONTINUATION APPROVED CHIR NO 3150-0104 EXPIRES 8/31/85 DOCKET NUMBER (2) FACILITY MAME (1) -----SEQUENTIAL NUMBER -NUMBER 0 6 0 0 0 0 3 7 3 815 0 ú 0 12 012 OF 0 H LaSalle County Station Unit 1 TEXT IN more apace is required, use additional MRC Form SHLA's/ (17)

I. EVENT DESCRIPTION

On 2/8/85 at 1630 hours, the Unit 1 Reactor Water Cleanup System (CE, nWCU) isolated on high differential flow (JM). At the time of the occurrence, the unit was in Hot Shutdown (mode No. 3), with vessel water temperature at approximately 480 degrees F. The RWCU System was blowing down to the main condenser in order to maintain proper vessel level.

Prior to the isolation, no abnormal conditions associated with the RWCU System flow were noted. Upon actuation, the isolation value 1G33-F004 closed as required (off of differential flow switch 1E31-N605A). Following isolation, the RWCU System was inspected for leakage, with none being found. Upon confirmation of satisfactory system status, the high differential flow isolation signal was reset. At 1720 hours the same day the Unit 1 RWCU System satisfactorily restarted with the B filter demineralizer being placed on line. No further system abnormalities were noted.

II. CAUSE

Due to difficulties associated with the computer point history file for the date of 2/8/85 (the time of the isolation), none of the parameters associated with the Unit 1 RWCU System (at or before the trip) were available for analysis.

However during unit startup and/or shutdown conditions, the majority (if not all) of the RWCU outlet water is blown down to the main condenser in order to control vessel level. Under this RWCU mode of operation, the return flow is much cooler (approximately 300 to 400 degrees F cooler) than the inlet flow, since the blowdown water does not return through the Regenerative Heat Exchangers. This results in a differential flow based on volumetric changes (only) of approximately 40 to 50 GPM.

Due to the system conditions present during the aforementioned shutdown (or any other reactor startup and/or shutdown), differential flow isolations can be expected without any actual leakage being present.

III. PROBABLE CONSEQUENCES OF THE OCCURENCE

The isolation occurred in accordance with system design. Safe plant conditions were maintained at all times. With the Reactor Water Cleanup System isolated, plant operations may continue (in either the Run, Startup/Hot Standby or Hot Shutdown Modes) as long as chemistry specifications are not exceeded.

Prior to resetting the isolations and restarting a pump, the RWCU System was checked for leaks, with none being found.

As previously noted, 50 minutes after the high differential flow isolation signal was received, the Unit 1 RWCU System was back in operation.

LICENSEE	EVENT	REPORT	(LER)	TEXT	CONTINUATION
LULIGUEL		THE OTHER			

US NUCLEAR REGULATORY COMMISSION

-	A	0	۷	Ē	D	0		0	31	

Control work to: Unit of the second sec					LICE	NSI	EE E	VEN	TR	EPOP		ER) 1	EXT	co	NTIN	UATIC	JN				EXPI	RES 8/3	1 /85	3160-	40104
											DOCK	ET MUS	-)		T	1	-	UNABE	R 16:				PAGE	(3)
 Adaile County Station Unit 1 A be 10 to 13 to 15 to 10 to 10 to 0 to 0 to 0 to 0 to 0 to																YEAR	T	51	NUM	R	1	NUMBER		T	Γ
 CORRECTIVICE ACTIONS An investigation of the Reactor Water Cleanup Areas revealed no actual leaks were present. An investigation of the Reactor Water Cleanup Areas revealed no actual leaks were present. Investigation shows that one or more of the following actions could/should be pursued. (AIR 1-85-67028) Recalibrate the flow elements to reflect actual mass flow rates at normal operating conditions or to reflect STP volumetric flow rates at normal operating conditions. Change the alarm trip point to allow for indicated differential flow due to volumetric flow changes during the Unit Startup/Shutdown and in determining the actual flow rates. (System pressure variance has little effect upon water density.) Replace the present single alarm point flow switches IE31-N605A and IE31-N605B with due al alarm point switches i me strikt for startup conditions, and the other switch for normal operating conditions. The applicable set point can be selected via contacts in series witch for startup conditions, and the other switch for normal operating conditions. The applicable set point can be selected via contacts in series witch for startup conditions, and the other switch for normal operating conditions. The applicable set point can be selected via contacts in series witch for startup conditions, wit the contacts' starus controlled by the positions of the following valves: The condenser blowdown valve, 1633-F034 And/or the feedwater inlet valve, 1633-F034 General Electric, the System Vendor, and one of the RWCU Cognizant CECO figuneers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AlR-01-64-6710c Alk 01-84-67106 is currently outstanding to review the present calibrations at setociated with the flow instrumentation. 		110	Count			00	linit	. 1				6 1 0	1 - 11	113	17 R	815	1_	_	11	2 .		010	01	3 01	0
<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	Lasa	arre	count	LY 5	Lat I	C Form	JALA'S	(17)			101	. 10		12	"P	1º12	1	1	1.	- 1	_	-1-	1-1	21-1	1-1
 CORRECTIVEE ACTIONS An investigation of the Reactor Water Cleanup Areas revealed no actual leaks were present. Investigation shows that one or more of the following actions could/should be pursued. (AIR 1-85-67028) Investigation shows that one or more of the following actions could/should be pursued. (AIR 1-85-67028) Recalibrate the flow elements to reflect actual mass flow rates at normal operating conditions or to reflect STP volumetric flow rates at normal operating conditions. Change the alarm trip point to allow for indicated differential flow due to volumetric flow changes during the Unit Startup/Shutdown and normal operating modes. Revise the flow monitoring system to allow for temperature inputs in determining the actual flow rates. (System pressure variance has little effect upon water density.) Replace the present single alarm point flow switches IE31-M605A and IE31-M605B with dual alarm point switches: one alarm switch for startup conditions, and the other switch for normal operating conditions. The applicable set point can be selected via contacts in series with the switches, with the contacts' status controlled by the positions of the following valves: In condenser blowdown valve, I633-F034 And/or the feedwater inlet valve, 1633-F034 And/or the feedwater inlet valve, 1633-F034 General Electric, the System Vendor, and one of the RWU Cognizant Efforgingenes are presently investingating the design basis for the isolations stopiont; and the accuracy of the flow loss. Refer to AIR-01-84-671305 AIR 01-84-67106 is currently outstanding to review the present calibrations 																									
<list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	1 V .	COR	RECT	VCE	ACT	TION	IS																		
<list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item>		1. lea	An iks w	inve ere	stig	gat i sent	on (of t	the	Read	tor	Wat	er (lea	nup A	reas	re	eve	ale	d n	0	actua	a 1		
<list-item><list-item> Investigation shows that one or more of the following actions could/should be pursued. (Air 1-85-67028) Recalibrate the flow elements to reflect actual mass flow rates at normal operating conditions or to reflect STP volumetric flow rates at normal operating conditions. Change the alarm trip point to allow for indicated differential flow due to volumetric flow changes during the Unit Startup/Shutdown and normal operating modes. Revise the flow monitoring system to allow for temperature inputs in determining the actual flow rates. (System pressure variance has list leffect upon water density.) Replace the present single alarm point flow switches IE31-N605A and IE31-N605B with dual alarm point switches: one alarm switch for startup conditions, and the other switch for normal operating conditions. The system to point contacts in series with the solution on the following valves: In the condenser blowdown valve, 1633-F034 And/or the feedwater inlet valve, 1633-F035 And/or the feedwater inlet valve, 1633-F045 Seneral Electric, the System Vendor, and one of the RWCU Cognizant CECC Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. </list-item></list-item>		2.	The	Sys	tem	was	pro	ompt	tly	rest	tarte	ed w	ith	no	diffi	cult	ies	5.							
 Accolibrate the flow elements to reflect actual mass flow rates at normal operating conditions or to reflect STP volumetric flow rates at normal operating conditions. Change the alarm trip point to allow for indicated differential flow due to volumetric flow changes during the Unit Startup/Shutdown and considered on the set of the start of the startup/Shutdown and intermining the actual flow rates. (System pressure variance has little effect upon water density.) Replace the present single alarm point flow switches 1€31-N605A and 1€31-N605B with dual alarm point switches: one alarm switch for startup volutions, and the other switch for normal operating conditions. The applicable set point can be selected via contacts in series with the solitons witches, with the contacts' status controlled by the positions of the following valves: Mador the waste surge tank inlet valve, 1633-F035. And/or the feedwater inlet valve, 1633-F036. General Electric, the System Vendor, and one of the RWCU Cognizant CECO fingineers are presently investingating the design basis for the isolation setpoint; and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 		3.	Inve be p	esti purs	gat i ued .	ion (show	ws t 1-8	that 85-6	one 7028	e or B)	mor	e of	the	e fol	lowi	ng	ad	tio	ns	col	uld/	shou	ld	
 Change the alarm trip point to allow for indicated differential flow due to volumetric flow changes during the Unit Startup/Shutdown and normal operating modes. Revise the flow monitoring system to allow for temperature inputs in determining the actual flow rates. (System pressure variance has little effect upon water density.) Replace the present single alarm point flow switches IE31-N605A and IE31-N605B with dual alarm point switches: one alarm switch for startup conditions, and the other switch for normal operating conditons. The applicable set point can be selected via contacts in series with the switches, with the contacts' status controlled by the positions of the following valves: The condenser blowdown valve, 1633-F034 And/or the feedwater inlet valve, 1633-F045 And/or the feedwater inlet valve, 1633-F045 General Electric, the System Vendor, and one of the RWCU Cognizant CECo Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 			a.	Rec nor at	alit mal norr	orat ope nal	e ti rat oper	he f ing rati	flow con ing	diti cond	ement ions ditic	or or	o re to r	fle	ct ac ect S	tual	ma olu	ass	f f l tri	ow c f	ra lov	tes a w rat	at tes		
 c. Revise the flow monitoring system to allow for temperature inputs in determining the actual flow rates. (System pressure variance has little effect upon water density.) d. Replace the present single alarm point flow switches 1E31-N605A and 1E31-N605B with dual alarm point switches: one alarm switch for startup conditions, and the other switch for normal operating conditons. The applicable set point can be selected via contacts in series with the switches, with the contacts' status controlled by the positions of the following valves: The condenser blowdown valve, 1633-F034 And/or the waste surge tank inlet valve, 1633-F035 And/or the feedwater inlet valve, 1633-F040 4. General Electric, the System Vendor, and one of the RWCU Cognizant CEC0 Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. 5. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 			b.	Ch du no	ange e to rma	e th o vo l op	ne a Dium Derai	larn etri ting	m tr ic f g mo	ip p low odes	char	t to nges	all dur	ow ing	for i the	ndic Unit	ate	ed tar	dif tup	fer /Sh	ent	tial down	flo and	w.	
 d. Replace the present single alarm point flow switches 1E31-N605A and 1E31-N605B with dual alarm point switches: one alarm switch for startup conditions, and the other switch for normal operating conditons. The applicable set point can be selected via contacts in series with the switches, with the contacts' status controlled by the positions of the following valves: The condenser blowdown valve, 1G33-F034 And/or the waste surge tank inlet valve, 1G33-F035 And/or the feedwater inlet valve, 1G33-F040 4. General Electric, the System Vendor, and one of the RWCU Cognizant CEC0 Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. 5. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 			с.	Re in li	vise det ttle	e th term e ef	ne f ninin fec	low ng t t up	mon the pon	acti wate	ring ual f er de	sys flow ensi	tem rat ty.)	to es.	allov (S)	v for stem	te pr	emp	era sur	tur e v	e ar	input iance	ts e ha	s	
 The condenser blowdown valve, 1633-F034 And/or the waste surge tank inlet valve, 1633-F035 And/or the feedwater inlet valve, 1633-F040 General Electric, the System Vendor, and one of the RWCU Cognizant CECo Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 			d.	Re 1E co ap sw th	plac 31-1 ndii plic itch	tion cabl	he i b w is, ie so win	pres ith and et p th t g vi	sent dua the poin the alve	sir al al oth nt ca cont es:	ngle larm her s an be tacts	ala poi swit s se s' s	rm p nt s ch f lect tatu	oin wit or ed is c	t flo ches: norma via c ontro	ow sw one al op conta olled	ito al era cts by	che lar ati s i y t	ng ns: ng ns:	E31 wit con eri pos	-Ni di es it	605A for tons with ions	and sta . Th h th of	irtuj e e	þ
 ii. And/or the waste surge tank inlet valve, 1G33-F035 iii. And/or the feedwater inlet valve, 1G33-F040 4. General Electric, the System Vendor, and one of the RWCU Cognizant CECo Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. 5. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 				i.		The	co	nder	nser	- b10	owdow	wn v	alve	, 1	G33-F	034									
 And/or the feedwater inlet valve, 1633-F046 General Electric, the System Vendor, and one of the RWCU Cognizant CECo Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 				11		And	l/or	the	e wa	aste	sur	ge t	ank	inl	et va	alve,	10	633	8-F0	35					
 General Electric, the System Vendor, and one of the RWCU Cognizant CECo Engineers are presently investingating the design basis for the isolation setpoint, and the accuracy of the flow loops. Refer to AIR-01-84-67137. AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 				11	۱.	And	i/or	the	e fe	eedwa	ater	inl	et v	alv	e, 10	33-F	040	0							
 AIR 01-84-67106 is currently outstanding to review the present calibrations associated with the flow instrumentation. 		4.	Gen Eng set	eral inee poin	E 10	ectr are and	ic, pre the	the sent	e Sy tly cura	inve inve acy o	n Ver estin of th	ndor ngat he f	, ar ing low	the	desi desi	f the ign b Refe	R) asi	WCL is to	for AIR	gni th -01	e -8	nt Cl isola 4-67	ECo atio 137.	'n	
		5.	AIR	01- ocia	84-1 ted	6710 wit	06 i th t	s ci he	urre flow	ently v ins	y ou strur	tsta ment	ndir atic	ng t	o rev	view	the	er	ores	ent	c	alib	rati	ons	

NRC Form 364A		U.S NUCLEAR REGULATORY COMMISSIO
(9-63)	LICENSEE EVENT REPORT (LER) TEXT CONTINUATION	APPROVED OMB NO 3150-0104 EXPIRES 8/31/85

FACILITY NAME (1)	DOCKET NUMBER (2)		LER NUMBER (6)	PAGE (3)		
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER		
LaSalle County Station Unit 1	0 15 0 0 0 317 3	815	0 1 2	-010	014 OF 014	
TEXT If more apace is required, use additional NRC Form 366A's/ (17)						

V. PREVIOUS OCCURRENCES

.

Previous events of this type have occurred on Unit 1 and Unit 2 as described in the following LER's:

373/84-030	374/84-029	374/84-073
373/84-033	374/84-041	374/84-079
373/84-040	374/84-044	374/84-089
373/84-055	374/84-054	374/84-093
373/84-082	374/84-057	
373/85-003	374/84-064	

VI. NAME AND TELEPHONE NUMBER OF PREPARER

John B. Reis, 815/357-6761, Extension 463.

٠,

Commonwealth Edison LaSalle County Nuclear Station Rural Route #1, Box 220 Marseilles, Illinois 61341 Telephone 815/357-6761

February 25, 1985

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555

Dear Sir:

Reportable Occurrence Report #85-012-00, Docket #050-373 is being submitted to your office in accordance with 10CFR 50.73.

R. D. Buskys

Jong. J. Diederich Superintendent LaSalle County Station

GJD/MLD/cw

Enclosure

xc: NRC, Regional Director INPO-Records Center File/NRC

TELL