
SEMIANNUAL EFFLUENT REPORT

JULY 1 - DECEMBER 31, 1984

PG

TABLE OF CONTENTS

....

	PAGE
INTRODUCTION	2
PART ONE - GASEOUS AND LIQUID EFFLUENTS	3
Supplemental Information	4
Table 1 - Gaseous Effluents - Summation of All Releases	9
Table 2 - Gaseous Effluents - Ground-Level Releases	10
Table 3 - Gaseous Effluents - Lower Limits of Detection	12
Table 4 - Liquid Effluents - Summation of All Releases	14
Table 5 - Liquid Effluents - Nuclides Released	16
Table 6 - Liquid Effluents - Lower Limits of Detection	18
PART TWO - SOLID RADWASTE SHIPMENTS	20
PART THREE - RADIATION DOSE DUE TO GASEOUS AND LIQUID EFFLUENTS	23
Table 7 - Radiation Dose Due to the Release of Radioactive Liquid Effluents	25
Table 8 - Radiation Dose due to the Release of Radioactive Gaseous Effluents	26
Table 9 - Percent of Technical Specification Limits for Radioactive Liquid Effluents	30
Table 10 - Percent of Technical Specification Limits for Radioactive Gaseous Effluents	31
PART FOUR - METEOROLOGICAL DATA	32

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

INTRODUCTION

This Semiannual Radioactive Effluent Release Report summarizes the gaseous and liquid effluent releases made from Diablo Canyon Power Plant's Unit 1 for the third and fourth quarters of 1984. This report also includes a summary of solid radwaste shipments, the annual summary of the Meteorological data for the site during 1984, and an assessment of radiation dose due to the release of liquid and gaseous effluents during 1984. This report contains the information required by Technical Specifications 6.9.1.8 and 6.9.1.9 and is generally presented in the format of Regulatory Guide 1.21, Appendix B.

The Unit 1 reactor was critical for short periods in July and August and then shut down until the power ascension testing program started in November. Unit 1 had progressed to the 50% power plateau by the end of December.

There were no shipments of solid radioactive waste made during this report period. There were no changes made to the Process Control Program during this report period. PART ONE GASEOUS AND LIQUID EFFLUENTS

SUPPLEMENTAL INFORMATION

I Regulatory Limits

- A. Gaseous Effluents
 - 1. Noble Gas Dose Rate Limit

The dose rate in unrestricted areas due to radioactive noble gases released in gaseous effluents is limited to less than or equal to 500 millirem per year to the total body and less than or equal to 3000 millirem per year to the skin. (Tech. Spec. 3.11.2.1.a.)

2. Particulate and Iodine Dose Rate Limit

The dose rate in unrestricted areas due to radioiodines and radioactive materials in particulate form, and radionuclides (other than noble gases) with half lives greater than 8 days in gaseous effluents is limited to less than or equal to 1500 millirem per year to any organ. (Tech. Spec. 3.11.2.1.b.)

3. Noble Gas Dose Limit

The air dose due to noble gases released in gaseous effluents, from each reactor unit, from the site, is limited to the following.

	CALENDAR QUARTER	CALENDAR YEAR
Gamma radiation	5 millirad	10 millirad
Beta radiation	10 millirad	20 millirad
(Tech. Spec. 3.11.	2.2)	

4. Particulate and Iodine Dose Limit

The dose tc an individual from radioiodines and radioactive materials in particulate form and radionuclides (other than noble gases) with half lives greater than 8 days in gaseous effluents released, from each reactor unit, from the site, is limited to less than or equal to 7.5 millirem to any organ in any calendar quarter and less than or equal to 15 millirem to any organ during a calendar year. (Tech. Spec. 3.11.2.3)

B. Liquid Effluents

1. Concentration

The concentration of radioactive material released from the site is limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration is limited to 2×10^{-4} microcuries/ml total activity. (Tech. Spec. 3.11.1.1)

2. Dose

The dose or dose commitment to an individual from radioactive materials in liquid effluents released, from each reactor unit, from the site, is limited to the following:

	CALENDAR QUARTER	CALENDAR YEAR
Total Body	1.5 millirem	3 millirem
Any Organ	5 millirem	10 millirem

(Tech. Spec. 3.11.1.2)

- II Maximum Permissible Concentrations
 - A. Gaseous Effluents

Maximum permissible concentrations are not used in the methodology for determining allowable release rates for gaseous effluents at Diablo Canyon Power Plant.

B. Liquid Effluents

The concentrations listed in 10 CFR 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases are used for determining the allowable release rate at the point of discharge from the site for liquid effluents. For dissolved or entrained noble gases, the allowable release rate concentration at the point of discharge is limited to 2×10^{-4} microcuries per milliliter total activity for liquid effluents.

- III Measurements and Approximations of Total Radioactivity
 - A. Gaseous Effluents
 - 1. Fission and Activation Gases

The gaseous radioactivity released from the plant vent is measured by a pair of off line monitors each using

Geiger-Mueller detector readings from these monitors. These monitor readings are correlated to isotopic concentration based on isotopic analysis of a grab sample using a germanium detector. A grab sample is obtained and analyzed at least weekly. The isotopic mixture is assumed to remain constant between grab sample analyses. Containment purges, gas decay tank releases and air ejector discharge are all routed through the plant vent for release. The gaseous radioactivity released from the steam generator blowdown tank vent is measured by analyzing grab samples with a germanium detector. The isotopic concentrations are assumed to remain constant between grab samples.

When the plant vent measurements are below the lower limit of detection, the individual batch release data is used to characterize the radioactivity discharged from the gas decay tanks and containment.

Other potential pathways for releasing gaseous radioactivity are periodically monitored by collecting grab samples and analyzing these samples with a germanium detector system.

2. Iodines

Radioiodines released from the plant vent are monitored by continuous sample collection on silver zeolite cartridges. The cartridges are changed at least weekly and analyzed with a germanium detector. The radioiodine releases are averaged over the period of cartridge sample collection.

Other potential pathways for releasing radioiodines are periodically monitored by collecting samples using charcoal cartridges and analyzing these cartridges with a germanium detector.

3. Particulates

Radioactive materials in particulate form released from the plant vent are monitored by continuous sample collection on particulate filters. The filters are changed at least weekly and analyzed with a germanium detector. The particulate radioactivity is averaged over the period of particulate filter sample collection. Each filter is analyzed for alpha emitters using an internal proportional counter. All of the plant vent particulate filters collected during a quarter are used for the composite analysis for strontium 89 and 90 which is counted on an internal proportional counter after chemical separation. Other potential pathways for releasing radioactive particulates are periodically monitored by collecting samples using particulate filters and analyzing these filters with a germanium detector.

B. Liquid Effluents

1. Batch Releases

Each tank of liquid radwaste is analyzed for principal gamma emitters using a germanium detector prior to release. The pre-release analysis includes dissolved and entrained gases. Volume proportional monthly and quarterly composites are prepared from aliquots of each tank released. The monthly composite is analyzed for tritium using a liquid scintillation spectrometer, gross alpha radioactivity using an internal proportional counter and phosphorous-32 using an internal proportional counter following chemical separation. The quarterly composite is analyzed for iron-55 using thin sodium iodide detector and for strontium-89 and 90 using an internal proportional detector following chemical separations.

2. Continuous releases

For the continuous liquid releases of steam generator blowdown tank and turbine building sump oily water separator, daily grab samples are collected and volume proportioned for weekly, monthly and quarterly composites. The oily water separator weekly composite is analyzed for gross gamma and principal gamma emitters using a germanium detector. The steam generator blowdown tank weekly composite is analyzed for principal gamma emitters and iodine 131. The steam generator blowdown tank monthly composite is analyzed for tritium using a liquid scintillation spectrometer, for gross alpha using an internal proportional counter and for phosphorous-32 using an internal proportional counter following chemical separation. The steam generator blowdown tank quarterly composite is analyzed for iron-55 using a thin sodium iodide detector and for strontium-89 and 90 using an internal proportional counter following chemical separations. The results for each of the composites is averaged over the period of the composite. In addition, one grab sample of the steam generator blowdown tank is analyzed monthly for dissolved and entrained gases using a germanium detector. The results of this analysis are assumed to remain constant over the period of one month.

IV Batch Releases

В

٧

A. Liquid

1.	Number of batch releases	200
2.	Total time period for batch releases	875.2 hours
3.	Maximum time period for a batch release	12 hours
4.	Average time period for a batch release	4.4 hours
5.	Minimum time period for a batch release	0.38 hours
6.	Average saltwater flow during batch releases	7.60 E5 GPM
Gase	ous	
1.	Number of batch releases	34
2.	Total time period for batch releases	135.8 hours
3.	Maximum time period for a batch release	24.0 hours
4.	Average time period for a batch release	3.99 hours
5.	Minimum time period for a batch release	0.017 hours
 	Delesses	

Abnormal Releases

There were no abnormal releases during this reporting period.

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 1

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

Unit	3rd	4th	Est. Total
	Quarter	Quarter	Error,%

A. Fission & activation gases

1. Total release	Ci	LLD	5.86 E-2 5	.0 E1
2. Average release rate for period	µCi/sec	LLD	7.37 E-3	
3. Percent of technical specification limit	%	0.0	5.05 E-5	

B. Iodines

1. Total iodine-131	Ci	LLD	LLD	2.3 E1
2. Average release rate for period	µCi/sec	LLD	LLD	
3. Percent of technical specification limit	%	0.0	0.0	

C. Particulates

 Particulates with half-lives > 8 days 	Ci	LLD	1.20 E-5 2.3 E
2. Average release rate for period	µCi/sec	LLD	1.51 E-6
3. Percent of technical specification limit	%	0.0	8.97 E-4
4. Gross alpha radioactivity	Ci	LLD	LLD

D. Tritium

1. Total release	Ci	7.35 E-5	1.30 E-2	1.2 E1
2. Average release rate for period	µCi/sec	9.24 E-6	1.64 E-3	
3. Percent of technical specification limit	%	1.65 E-8	2.93 E-6	

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 2

GASEOUS EFFLUENTS - GROUND-LEVEL RELEASES

		3RD QUAR	TER	4TH QU	ARTER
Nuclides Released	Unit	CONTINUOUS MODE	BATCH MODE	CONTINUOUS	BATCH
1. Fission gases					
krypton-85	Ci	LLD	LLD	IID	LLD
krypton-85m	Ci	LLD	LLD	IID	LID
krypton-87	Ci	IID	IID	LLD	LTD
krypton-88	Ci	LLD	LLD	LLD	LTD
xenon-133	Ci	LID	LLD	LID	ЦД
xenon-133m	Ci	LLD	LID	IID	LLD
xenc. 135	Ci	LLD	IID	LLD	ITD
xenon-135m	Ci	LLD	LLD	LLD	LLD
xenon-138	Ci	LLD	ITD	IID	ITD
argon-41	Ci	LLD	IJD	LLD	5.86 E-2
TOTAL FOR PERIOD	Ci	0	0	0	5.86 E-2
2. Iodines					
iodine-131	Ci	LTD		LLD	
iodine-133	Ci	LLD		LLD	
iodine-135	Ci	LLD		LID	
TOTAL FOR PERIOD	Ci	0		0	

TABLE 2 (CONTINUED)

GASEOUS EFFLUENTS - GROUND-LEVEL RELEASES

			US MODE						
Nuclides Released	Unit	3rd Quarter	4th Quarter						
3. Particulates									
cerium-141	Ci	LLD	LLD						
cerium-144	Ci	LLD	LLD						
cesium-134	Ci	LLD	LLD						
cesium-137	Ci	LLD	LLD						
cobalt-58	Ci	LLD	LLD						
cobalt-60	Ci	LLD	LLD						
iron-59	Ci	LLD	LLD						
manganese-54	Ci	LLD	LLD						
molybdenum-991	Ci	LLD	LLD						
strontium-89	Ci	LLD	7.86 E-6						
strontium-901	Ci	LLD	4.13 E-6						
zinc-65	Ci	LLD	LLD						
TOTAL FOR PERIOD	Ci	0	1.20 E-5						

NOTES:

¹ Includes Daughters

TABLE 3

GASEOUS EFFLUENTS - LOWER LIMITS OF DETECTION

Nuclide	Unit	Continuous Mode	Batch	Mode
1. Fission gases			Containment Purge	Gas Decay Tank
krypton-85	µCi/ml	2.29E-6	2.37E-6	3.37E-6
krypton-85m	µCi/ml	5.81E-9	8.08E-9	7.64E-6
krypton-87	µCi/ml	1.26E-8	3.20E-7	1.21E-5
krypton-88	µCi/ml	1.68E-8	4.59E-8	2.00E-5
xenon-133	µCi/ml	1.60E-8	2.21E-8	1.44E-5
xenon-133m	µCi/ml	2.83E-8	4.54E-8	4.92E-5
xenon-135	µCi/ml	4.09E-9	5.66E-9	3.28E-6
xenon-135m	µCi/ml	4.45E-8	7.99E-7	1.76E-5
xenon-138	µCi/ml	1.08E-7	2.79E-6	3.61E-5
argon-41	µCi/ml	1.62E-8	3.18E-8	1.54E-5

2. Tritium

hydrogen-3	µCi/ml	3.52E-10	4.12E-10
	and the second		

3. Iodines

iodine-131	µCi/ml	5.06E-13
iodine-133	µCi/ml	6.74E-13
iodine-135	uCi/ml	5.37E-12

TABLE 3 (CONTINUED)

GASEOUS EFFLUENTS - LOWER LIMITS OF DETECTION

Nuclide		Unit	Continuous Mode
4. Particu	lates		
cerium-	141	µCi/ml	4.43 E-13
cerium-	144	µCi/ml	4.32 E-13
cesium-	134	µCi/m]	5.60 E-13
cesium-	137	uCi/ml	4.66 E-13
cobalt-	58	uCi/ml	4.29 E-13
cobalt-	60	µCi/ml	7.56 E-13
iron-59		µCi/ml	9.46 E-13
mangane	se-54	µCi/ml	4.27 E-13
molybde	num-991	µCi/ml	3.39 E-12
stronti	um-89	µCi/ml	2.98 E-15
stronti	um-901	µCi/ml	1.57 E-15
zinc-65		uCi/ml	1.24 E-12

gross alpha	uCi/ml	7.23E-15
-------------	--------	----------

Notes:

¹Includes daughters

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 4

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

	Unit	3rd Quarter	4th Quarter	Est Total Error, %
--	------	----------------	----------------	-----------------------

A. Fission and activation products

 Total release (not including tritium, gases, alpha) 	Ci	3.51 E-3	7.61 E-3	2.1 E1
 Average diluted concentration during period 	µCi/ml	9.49 E-11	6.68-11	
3. Percent of applicable limit	%	1.25 E-4	5.06 E-4	

B. Tritium

1. Total release	Ci	1.59 E-1	8.43 E-1	7.0 E0
 Average diluted concentration during period 	µCi/ml	4.29 E-9	7.40 E-9	
3. Percent of applicable limit	%	1.43 E-4	2.47 E-4	

C. Dissolved and entrained gases

1. Total release	Ci	LLD	4.78 E-6	2.1 E1
 Average diluted concentration during period 	µCi/ml	LLD	4.19 E-14	
3. Percent of applicable limit	%	0	2.10 E-8	

D. Gross alpha radioactivity

1. Total release	Ci	LLD	LLD	6.0 E1
------------------	----	-----	-----	--------

TABLE 4 (CONTINUED)

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

Unit	3rd Quarter	4th Quarter	Est Total Error, %

E. Volume of waste released (prior to dilution)	liters	3.04 E6	3.90 E6	5.0 EO
F. Volume of circulating saltwater used during release	liters	3.70 E10	1.14 E11	6.6 E0

TABLE 5

LIQUID EFFLUENTS

Nuclides Released	Unit	3RD QUA CONTINUOUS MODE	RTER BATCH MODE	4TH QUAN CONTINUOUS MODE	RTER BATCH MODE
antimony-124	Ci	LLD	2.33 E-5	LLD	LLD
cerium-141	Ci	LLD	LLD	LLD	LLD
cerium-144	Ci	LLD	LLD	LLD	LLD
cesium-134	Ci	LLD	LLD	LLD	LLD
cesium-137	Ci	LLD	LLD	LLD	1.01 E-7
chromium-51	Ci	LLD	1.47 E-4	LLD	2.53 E-4
cobalt-58	Ci	LLD	2.65 E-3	LLD	8.80 E-4
cobalt-60	Ci	LLD	4.76 E-4	LLD	2.69 E-4
iron-55	Ci	LLD	LLD	LLD	LLD
iron-59	Ci	LLD	2.43 E-5	LLD	1.26 E-5
manganese-54	Ci	LLD	1.32 E-4	LLD	9.24 E-5
molybdenum-99 ¹	Ci	LLD	LLD	LLD	9.27 E-4
phosphorous-32	Ci	LLD	LLD	LLD	4.34 E-3
sodium-24	Ci	LLD	LLD	LLD	3.42 E-4
strontium-89	Ci	LLD	LLD	LLD	LLD
strontium-90 ¹	Ci	LLD	LLD	LLD	LLD
tungsten-187	Ci	LLD	LLD	LLD	3.25 E-4
zirconium-95 ¹	Ci	LLD	5.43 E-5	LLD	4.12 E-5
zinc-65	Ci	LLD	LLD	LLD	6.17 E-6
TOTAL FOR PERIOD	Ci	0	3.51 E-3	0	7.49 E-3

NOTES:

¹Includes daughters

DCO414 VI

TABLE 5 (CONTINUED)

LIQUID EFFLUENTS

		3RD QUA	RTER	4TH QUARTER		
Nuclides Released	Unit	CONTINUOUS MODE	BATCH MODE	CONTINUOUS MODE	BATCH MODE	
iodine-131 (LLD	LLD	LLD	3.15 E-5	
iodine-133	Ci	LLD	LLD	LLD	8.64 E-5	

xenon-133	Ci	LLD	LLD	LLD	LLD
xenon-135	Ci	LLD	LLD	LLD	4.78 E-6

TABLE 6

LIQUID EFFLUENTS - LOWER LIMITS OF DETECTION

Nuclide	Unit	Continuous Mode	Batch Mode
antimony-124	uCi/ml	N/A ²	3.80 E-8
cerium-141	µCi/ml	2.31 E-8	3.46 E-8
cerium-144	uCi/ml	9.84 E-8	1.45 E-7
cesium-134	µCi/ml	1.82 E-8	2.82 E-8
cesium-137	µCi/ml	1.26 E-8	2.46 E-8
chromium-51	µCi/ml	9.71 E-8	1.88 E-7
cobalt-58	µCi/ml	1.80 E-8	2.81 E-8
cobalt-60	µCi/ml	7.14 E-8	3.31 E-8
iron-55	µCi/ml	6.00 E-7	2.60 E-7
iron-59	µCi/ml	3.34 E-8	4.69 E-8
manganese-54	µCi/ml	1.50 E-8	2.64 E-8
molybdenum-991	µCi/ml	1.11 E-7	1.70 E-7
phosphorous-32	µCi/ml	1.84 E-7	4.16 E-7
sodium-24	µCi/ml	3.15 E-8	4.56 E-8
strontium-89	µCi/ml	2.82 E-8	7.13 E-9
strontium-90 ¹	uCi/ml	8.69 E-9	1.63 E-8
tungsten-187	µCi/ml	6.14 E-8	1.94 E-7
zirconium-951	µCi/ml	2.77 E-8	3.86 E-8
zinc-65	µCi/ml	3.60 E-8	5.20 E-8
gross alpha	µCi/ml	8.03 E-8	7.36 E-8

NUTES:

¹Includes Daughters

²This is a nuclide not routinely checked for LLD

TABLE 6 (CONTINUED)

LIQUID EFFLUENTS - LOWER LIMITS OF DETECTION

Nuclide	Unit	Continuous Mode	Batch Mode
iodine-131	µCi/ml	1.17 E-8	2.76 E-8
iodine-133	µCi/ml	1.94 E-8	6.44 E-8
xenon-133	µCi/ml	6 28 E-8	5.55 E-8
xenon-135	µCi/ml	1.45 E-8	1.63 E-8

PART TWO SOLID RADWASTE SHIPMENTS

DIABLO CANYON NUCLEAR POWER PLANT SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984 SOLID WASTE AND IRRADIATED FUEL SHIPMENT

A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel)

1.	Type of Waste	Unit	6-Month Period	Est. Total Error, %
	a. Spent Resins	m ³ Ci	0.00E+0 0.00E+0	N/A
	 Dry Compressible Waste, Contaminated Equip. Etc. 	m ³ Ci	0.00E+0 0.00E+0	N/A
	c. Irradiated Components, Control Rods, Etc.	m ³ Ci	0.00E+0 0.00E+0	N/A
	d. Absorbed liquids, Sand, Building Rubble, Biological Waste	m ³ Ci	0.00E+0 0.00E+0	N/A

2. Estimate of Major Nuclide Composition (by type of waste)

**	the second second second		
	NOT APPLICABLE	2	0.00+0
	I HOT THTELOTIOLE	10	0.00.0

1.1.1.1	and arranged bring harmony same	1	and the second sec
I NC	T APPLICABLE	9/	0.00+
1 110	I AFFLICADLL	10	0.001

			0.005.0
NOT APPLICA	BLE	1 %	0.00E+0

d. NOT APPLICABLE % 0.00E+0

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

SOLID WASTE AND IRRADIATED FUEL SHIPMENT

- A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel) (Continued)
 - 3. Solid Waste Disposition

	Number of Shipments	Mode of Transportation	Destination
	NONE	N/A	N/A
Β.	Irradiated Fuel Shipments	(Disposition)	
	Number of Shipments	Mode of Transportation	Destination
	NONE	N/A	N/A

PART THREE RADIATION DOSE DUE TO GASEOUS AND LIQUID EFFLUENTS

RADIATION DOSES

I. Radiation doses due to radioactive liquid effluents

The radiation dose contributions due to releases of radioactive liquid effluents to the total body and each individual organ for the maximum exposed adult have been calculated in accordance with the methodology in the Offsite Dose Calculation Procedure. These dose contributions are listed in Table 7.

II. Radiation doses due to radioactive gaseous effluents

The radiation dose contributions due to radioactive gaseous effluents at the site boundary for the land sectors have been calculated in accordance with the calculated methodology in the Offsite Dose Calculation Procedure. The meteorology concurrent with the time of discharge were used in these calculations. In addition to the site boundary doses, the dose to an individual at the nearest residence within the low population zone for each of the land sectors and a five mile infant milk dose in each of the land sectors is included. These dose contributions are listed in Table 8 for the third and fourth quarters and the annual total. There were no measurable releases of radioactivity in gaseous effluents during the second quarter.

- III. Radiation dose to individuals within the site boundary due to the release of liquid and gaseous effluents.
 - a. Liquid effluents

The radiation dose to individuals within the site boundary due to the release of radioactive liquid effluents is negligible. This is because the discharge piping for liquid radwaste is mostly buried in concrete walls, is located in remote or inaccessible areas or is underground. In addition, the quantity of radioactivity released was very low during 1984.

b. Gaseous Effluents

The maximum radiation dose to individuals within the site boundary due to the release of radioactive gaseous effluents is evaluated to be 2E-3mrem during 1984. This dose is to an individual at the plant overlook located 250 meters from the Unit 1 plant vent in the northeast sector. It was assumed that an individual was present at the overlook at the time the containment discharges occurred with winds in this direction.

IV. 40 CFR 190 Considerations

The releases of radioactivity in liquid and gaseous effluents during 1984 resulted in doses that are small percentages of the technical specification limits as shown in Tables 9 and 10. This coupled with the fact that there are no other uranium fuel cycle sources within eight kilometers of the Diablo Canyon Nuclear Power Plant shows conformance with 40 CFR 190.

TABLE 7

RADIATION DOSE DUE TO THE RELEASE OF RADIOACTIVE LIQUID EFFLUENTS

		DUSE		
ORGAN	2nd Quarter ¹	3rd Quarter	4th Quarter	Annual Total
Total Body	1.41 E-6	1.38 E-5	2.58 E-3	2.60 E-3
Bone	0	3.66 E-6	6.68 E-2	6.68 E-2
Liver	1.02 E-6	1.50 E-5	4.16 E-3	4.18 E-3
Thyroid	1.42 E-14	8.45 E-8	4.69 E-6	4.77 E-6
Kidney	1.38 E-7	6.02 E-7	2.58 E-6	3.32 E-6
Lung	1.42 E-14	2.50 E-6	8.37 E-7	3.34 E-6
G. I. LLI	1.32 E-5	1.26 E-4	7.52 E-3	7.66 E-3
	the second se	and the second sec	And the second s	

NOTES:

¹ Date of Unit 1 initial criticality was April 29, 1984

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 8

RADIATION DOSE DUE TO THE RELEASE OF RADIOACTIVE GASEOUS EFFLUENTS

THIRD QUARTER 1984

Sector ¹ (Land only)	NW	NNW	N	NNE	NE	ENE	E	ESE	SE
Site Boundary (distance) meters	800	800	800	800	970	1175	1660	1750	1800
Noble Gas Gamma air dose mrad Beta air close mrad	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0
I,P,T ² AduTt ³ mrem	0	0	0	0	0	0	0	1.40 E-7	0

Residence - direction, distance-mil	es 326°,3.7	333°,1.5	008 ° ,4.4	018 °, 3.3	037°,5.1	062°,4.4	096 ; 4.5	2 mi4	N/A
Noble Gas Gamma air dose mrad Beta air dose mrad	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	N/A
I,P,T ² Child ⁵ mrem	0	0	0	0	0	0	0	2.07E-7 ⁵	

Five Mile Dairy									
I,P,T Infant mrem	N/A	0	0	0	0	0	0	4.00 E-8	N/A

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 8 (Continued)

RADIATION DOSE DUE TO THE RELEASE OF RADIOACTIVE GASEOUS EFFLUENTS

FOURTH QUARTER 1984

Sector ¹ (Land on	1y)		NW	NN	4	Ν		NNE		N	E	ENE		E		ESI	E	SE
Site Boundary (dis	tance) m	neters	800	800)	800)	800)	97	0	1175	;	1660)	175	D	1800
Noble Gas			1 40 5 4	5 05		0		0		1 00	F 2	0				1 10		-
Gamma air dose Beta air close	mrad mrad		1.48 E-4 5.20 E-5			0		0		1.02 3.58		0		0		1.13 3.96		0
I,P,T ²	maa																	1. S. P. S.
Adult ³	mrem		9.86 E-5	2.60	£-5	1.25	E-5	1.29	E-5	6.13	E-5	9.84	E-0	8.20	E-0	2.39	£-5	5.08 8
Residence - dire	ction, d	distance-miles	326,3.7	333;	1.5	008°,4	1.4	018;3	3.3	037 °,	5.1	062;4	1.4	096;4	4.5	2 1	mi	N/A
Noble Gas																		
Gamma air dose	mrad		6.04 E-6			0		0		2.69		0		0		2.22		
Beta air dose I,P,T ²	mrad		2.12 E-6	1.23	E-0	0		0		9.49	E-0	0		0		7.82	E-/	
AduTt ³	mrem		4.20 E-6	5.89	E-6	8.13	E-7	1.12	E-6	1.88	E-6	1.21	E-6	1.25	E-6	2.98	E-45	5
Five Mile Dairy															-			
														-				
I,P,T ² Infant	mrem		N/A	2.07	E-6	7.59	E-7	6.75	E-7	5.09	E-6	9.41	E-7	1.20	E-6	5.58	E-6	N/A

SEMIANNUAL RADIOACTIVE EFFLUENT PCLEASE REPORT 1984

TABLE 8 (Continued)

RADIATION DOSE DUE TO THE RELEASE OF RADIOACTIVE GASEOUS EFFLUENTS

1984 ANNUAL SUMMARY

Sector ¹ (Land on	ily)	NW	NNW	N	NNE	NE	ENE	E	ESE	SE
Site Boundary (distance) meters		800	800	800	800	970	1175	1660	1750	1800
Noble Gas										
Gamma air dose Beta air close	mrad mrad		5.25 E-5 1.85 E-5		0	1.02 E-3 3.58 E-4	0	0	1.13 E-5 3.96 E-6	0
I,P,T ²	mrau	5.20 E-5	1.05 E-5	U	0	3.30 E-4	U	U	3.90 E-0	0
AduTt ³	mrem	9.86 E-5	2.60 E-5	1.25 E-5	1.29 E-5	6.13 E-5	9.84 E-6	8.20 E-6	2.39 E-5	5.08 E-5
Residence - dire	ction, distance-miles	326,3.7	333°,1.5	008°,4.4	018°,3.3	037°,5.1	062°,4.4	096°,4.5	2 mi	N/A
Noble Gas										
Gamma air dose	mrad		2.06 E-5		0	2.69 E-5	0	0	2.22 E-6	
Beta air dose	mrad	2.12 E-6	7.23 E-6	0	0	9.49 E-6	0	0	7.82 E-7	
I,P,T ² Adult ³	mrem	4.20 E-6	5.89 E-6	8.13 E-7	1.12 E-6	1.88 E-6	1.21 E-6	1.25 E-6	2.98 E-45	5
Five Mile Dairy										
I,P,T ²				7 50 5 7						
Infant	mrem	N/A	2.0/ E-6	7.59 E-7	6./5 E-/	5.09 E-6	9.41 E-/	1.20 E-6	5.62 E-6	N/A

TABLE 8 (CONTINUED)

NOTES:

- 1. The ocean sectors SSE, S, SSW, SW, WSW, W, and WNW, are not included.
- Radioiodines, Radioactive Material in Particulate Form and Radionuclides Other Than Noble Gases With Half-lives Greater Than Eight Days.
- The inhalation, ground plane and animal-meat pathways are included in this dose calculation. The adult age group had the highest doses of the four age groups.
- This location is a vegetable farm located throughout the ESE sector starting at 2 miles.
- 5. The inhalation, ground plane, animal-meat and vegetable pathways are included for this location. An occupancy factor of 0.5 was used for the inhalation and ground plane pathways. The child age group had the highest calculated dose for this location.

TABLE 9

PERCENT OF TECHNICAL SPECIFICATION LIMITS FOR RADIOACTIVE LIQUID EFFLUENTS

	PERCENT									
ORGAN	2nd Quarter ¹	3rd Quarter	4th Quarter	Annual Total						
Total Body	9.40 E-5	9.20 E-4	1.72 E-1	8.67 E-2						
Bone	0	7.32 E-5	1.34 E-0	6.68 E-1						
Liver	2.04 E-5	3.00 E-4	8.32 E-2	4.18 E-5						
Thyroid	2.84 E-13	1.69 E-6	9.38 E-5	4.77 E-5						
Kidney	2.76 E-6	1.20 E-5	5.16 E-5	3.32 E-5						
Lung	2.84 E-13	5.00 E-5	1.67 E-5	3.34 E-5						
G. I. LLI	2.64 E-4	2.52 E-3	1.50 E-1	7.66 E-2						
the second s										

NOTES:

¹ Date of Unit 1 initial criticality was April 29, 1984

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 1984

TABLE 10

PERCENT OF TECHNICAL SPECIFICATION LIMITS FOR RADIOACTIVE GASEOUS EFFLUENTS

	3rd	Quart	er	4t	h Qua	rter	Annu	al To	tal
	Sector			Sector					
Site Boundary									
Noble Gas gamma air dose beta air dose		0		NE NE		E-4 E-5	NE NE		
<u>I,P,T</u> adult	ESE	1.87	E-8	NW	1.32	E-5	NW	6.57	E-6
Residence									
Noble Gas gamma air dose beta air dose		0		NE NE	5.38 9.49	E-6 E-7	NE NE		
<u>I,P,T</u> child	ESE	2.76	E-8	ESE	3.97	E-5	ESE	1.99	E-5
Five Mile Dairy infant	ESE	5.33	E-9	ESE	7.44	E-7	ESE	3.75	E-7

PART 4 METEOROLOGICAL DATA

METEOROLOGICAL DATA

9

The hour-by-hour listing of wind speed, wind direction, atmospheric stability and precipitation is being submitted on magnetic tape in accordance with Technical Specification 6.9.1.9.

PACIFIC GAS AND ELECTRIC COMPANY

IP C + 77 BEALE STREET · SAN FRANCISCO, CALIFORNIA 94106 · (415) 781-4211 · TWX 910-372-6587

JAMES D. SHIFFER VICE PRESIDENT NUCLEAR POWER GENERATION

March 1, 1985

PGandE Letter No.: DCL-85-090

Mr. John B. Martin, Regional Administrator U. S. Nuclear Regulatory Commission, Region V 1450 Maria Lane, Suite 210 Walnut Creek, CA 94596-5368

Re: Docket No. 50-275, OL-DPR-80 Diablo Canyon Unit 1 Semiannual Effluent Release Peport

Dear Mr. Martin:

Enclosed is a copy of the Diablo Canyon Unit 1 Semiannual Radioactive Effluent Release Report for the second half of 1984 (Enclosure 1). The report describes the quantities of radioactive gaseous and liquid effluents released from the plant over the period of July 1, 1984 to December 31, 1984 and the solid radioactive waste shipments during the same period. Also enclosed is a magnetic tape of the annual summary of hourly site meteorological data (Enclosure 2).

The report is required by Section 6.9.1.8 of the Diablo Canyon Technical Specifications, and by 10 CFR 50.36a(a)(2).

Kindly acknowledge receipt of this material on the enclosed copy of this letter and return it in the enclosed addressed envelope.

for J. D. Shiffer

Enclosures

cc w/o enc. 2: California Department of Health Services Radiological Health Section R. W. Carr, Director San Luis Obispo Air Pollution Control District Director, Office of Inspection and Enforcement Attn: Document Control Desk Central Cost Regional Water Quality Control Board Service List ENCLOSURE 1

0166S/0027K