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2, CODE ARCHITECTURE

The description of the TRAC code architecture given here is divided into two areas of dis-
cussion: code structure and data structure Because the data structure for the one-dimensional
components differs from that of the three-dimensional VESSEL component, these structures
are Cetailed separately in the discussion that follows

2.1. Code Structure

In an effort to strive for a code structure that minir _es the preU'ems of maintaining and
extending the code, TRAC was developed in a modular fashion. This modularity manifests
itself in two important ways. First, because TRAC analyzes reactor sysioms that consist of
specific component types, the code is written to utilize subroutines that handle sp2 "< com-
ponent types. For example, data and calculations pertaining to a PIPE component are handied
separately from VESSEL data and VESSEL calculations. The different TRAC components are
described in greater detail in the TRAC.PF1/MCN2 User's Guide, which is the second vol-
ume in the MOD2 documentation. Second, tne TRAC program is written to be functionally
modular; that is, each TRAC subprogram performs a specific function. Some of the iow-level
subprograms are used by all components, thereby strengthen g this modularity Appendix A is
a complete list of TRAC subroutines and function routines and their descriptions. Appendix B
lists for each subroutine all routines from which it is called and all routines that it calls

Funct. .nal modularity within TRAC is taken a step further by division into cverl-ys. Fig-
ure 1 displays a caliung-tree representation of the TRAC overlays. Table 1 gives a brief descrip-
tion of each overlay's function. The use of an overlay structure onginally was mandated .y
computer-size limitations, but this 1s no longer the case. The overlay structure is maintained
using UPDATE/HISTORIAN *DEFINEs for the convenience of users with smaller memory
machines and as a starting point for future efforts in the area of parallelization. Overlays are
loaded at Los Alamos by declaring the entry routine for each overlay, then satisfying all subse-
quent subroutine references from a global binary library of TRAC routines. Whereas the CRAY
versiun of TRAC does not need to be overlaid, we recommend that the user keep the input
and initialization overlays to minimize memory charges.

The overall sequence of calculations is directed by the main program TRAC. Overlay
INPUT always is invoked at the start of each TRAC execution to read control ard component
input data. The cormponent data are initial.zed by the overlay INIT. The steady-state calculation
(f requested) is performed by subroutine STEADY. During the steady-state calculation, the
reactor power is initially zero and is set on after the fluid flow rates have been established.
This 1s to prevent high rod temperatures early in the steady-state calculation when the flow
rates generally are small. The transient calculation is performed by subroutine TRANS. Overlays
EDIT, GRAF, and DMPIT are called during the steady-state calculation by subroutine STEADY
and during the transient calculation by subroutine TRANS calling subroutine PSTEPQ to
generate output as required. Overlay CLEAN is called to close all output files at the end of
the problem or when a fatal error occurs

2.2. Data Structure

TRAC divides the data for each component into four blocks the fixed-length table, the
variable-length table, the pointer table, and the array data. The first three of these blocks are

L%
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Qverlay
CLEAN

DUMP
EDIT
CRAF
ICMP
IGRF
INIT
INFUT
TRAC

OUTER
Oou71D

QuUT3D
POST
PREP
PRP1D

PRP3D

RDIN1
RDIN3
RDRES

TRIPS
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TABLE 1
TRAC OVERLAYS

C ot
loses all output files

Performs restart dumps

Adds an edit at the current time to the file TRCOUT

Adds a graphics edit at the current time to the file TRCGRF
Initializes component data

Initializes graphics table

Controls initialization of component data and graphics tables
Controls reading input and restart files and analyzes piping loops

Controls overall flow of calculation. (Also contains many service rou-
tines used throughout the code )

Controls one complete outer iteration for all components

Performs one outer iteration on the basic finite-difference flow equa-
tions for all one-dimensional components

Performs one outer iteration for all VESSEL components
Performs postpass for all components.

Performs prepass for all components

Performs the prepass calculations for one-dimensional components

Performs prepass calculation for all three-dimensional VESSEL com-
ponents

Inputs and stores one-dimensional component data
Inputs and stores VESSEL component data
Reads and stores data from a restart dump file

Evaluates signal variables, control blocks, and trips



stored in memory as copies of the COMMON blocks, FLTAB, VLTAB, and PTAB, respectively
The structure of the COMMON area FLTAB is the same for all components. The variables in
the VLTAB and PTAB COMMON areas differ from one component to another. Appendix C
describes the fixed-length, variable-length, and pointer tables for each component

The array data are stored in memory within the dynamic storage array or A array. For
a one-dimensional component, the location of an individual variable array is determined by
the value of its pointer in the pointer table For a VESSEL component, however, the pointer
methodology is not used Instead, EQUIVALENCE statements are used to locate VESSEL
array data in the A array Dynamic storage of data arrays permits effective use of space for
many different problems. Aspects of memory management are discussed further in Sec 4

In addition to the data that refer to a particular component, TRAC uses many variables to
describe the overall solution state of the calculation. These variables are grouped according 1.
their use into several other COMMON areas. Appendix D documents these COMMON blr.cks
and hists their variables and corresponding definitions

2.2.1. One-Dimensional Data Structure

The pointer tables for all one-dimensional components have a similar structure consisting
of four main groups of pointers and one special group. The first main group of pointers is con-
tained within the comdeck DUALPT and locates dual-time hydrodynamic and thermadynamic
information. The second main group of pointers locates remaining single-time hydrodynamic
and thermodynamic information and is contained in the comdeck HYDROPT. Any integer data
are located using the third main group of pointers from the comdeck INTPT. A fourth man
group of pointers is used to locate data for wall heat transfer in those components that support
the wall heat-transfer calculation, and these pointers are contained in the comdeck HEATPT.
Array data that is specific to a particular component type, if any exists, is located using the
last special group of pointers in the pointer table. This pointer table information is summarized
in Appendix C for each component type

2.2.1.1. Adding a One-Dimensional Database Variable

In order to add a new variable to all one-dimensional components, standard guidelines are
followed. These guidelines are given below A sample update, provided as Appendix E, adds a
new variable to each of the four main groups discussed above using these guidelines.

1. Create new pointer names for the new variables and add them to the pointer tables
of the appropriate comdecks

a. If the new variable requires both old-t:me and new-time storage, then two new
pointers must be added to the DUALPT comdeck. W the pointers become the
first two pointers of the DUALPT comdeck due to alphabetic considerations,
the EQUIVALENCE statement in DUALPT must be changed to reflect this

b. ¥ the new variable with a single-time value is associated with the hydrodynamic
calculation, its new pointer is added to the HYDROPT comdeck

c. I the new variable is an integer variable with a single-time value, its new pointer
is added to the INTPT comdeck.
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d I the new vanable with a single-time value 1s associated with the wall heat-
transfer calculation, its new pointer is added to the HEATPT comdeck

2. Imtialize the naw pointers

2. If new pointers were added to DUALPT, these new pointers are initialized in
subtoutine SIDPTR in the DUALPT pointer section

if the new variable s one for which old-time and new-time values are the same
at the start of the QUTER code block (that is, the new-time value is reset to
tne old-time value in the event of a back-up due to one-dimensional component
water packing for instance;, then the new old-time pointer should be initialized
after the LALP pointer but before the LVV pointer. Similarly, the new new-
time pointer should be initialized after the LALPN pointer but before the LVVN
pointer ir. the same relative position as the new old-time pointer

if the new variable is one for which old-time and new-time values are not the
same at the start of the OUTER code block (that s, the new-time value s
not reset to the old-time value in the event of a back-up due to one-dimensicnal
component water packing for instance ), then the new old-time pointer should be
initialized after the LBIT pointer but before the LVVTOQ pointer. Similarly, the
new new-time pointer should be initialized after the LBITN pointer but before
the LVVT pointer in the same relative position as the new old-time pointer

Adjust the value of the pointer initialized array directly after each new pointer
you add to correctly reflect the lengths of its storage requirement. Increment
the value of LENPTR in the DUALPT pointer section of SIDPTR only by the
number of pointers added to the DUALPT comndeck

b. If a new pointer was added to HYDROPT , it is initialized in subroutine STDPTR
The new pointer should be added just before the LNXT pointer in the HYDROPT
section of SIDPTR. Adjust the value of the LNXT pointer to reflect the length

of the array storage of the newly added pointer. Increment the vaiue of the
variable LENPTR by one in the HYDROPT pointer section of SIDPTR only

c. W a new pointer was added to INTPT, it is initialized in subroutine S1IDPTR
The new pointer should be added just before the LNXT pointer in the INTPT
section of SIDPTR. Adjust the value of the LNXT pointer to reflect the length
of tne array storage of the newly added pointer. Increment the value of the
variable LENPTR by one in the INTPT pointer section of SIDPTR only

d. If a new pointer was added to HEATPT, it is initialized in subroutine SIDPTR
The new pointer should be added just before the LNXT pointer in the HEATPT
section of SIDPTR. Adjust the value of the LNXT pointer to reflect the length

of the array storage of the newly added pointer. Increment the value of the
variable LENPTR by one in the HEATPT pointer section of SIDPTR only

3. i the new vanables are to be graphed, set up the graphics catalogs by adding calls
to GRFPUT in subroutine IGCOMP for each variable to be graphed At this time, it
15 not possible to graph an integer array vanable

PROGRAMMER'S GUIDE 5
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4 If the new variables are to be written to the dump file, include a call to BFOUT in
subroutine DCOMP for each variable to be dumped. If the new variable being dumped
is a celi-edge quantity with a length of NCELLS+1, then increment LVEDGE by one
If the new variable being dumped is a cell-center quantity with a length of NCELLS,
then increment LVCNTR by one. I the new variable has dimensions other than
NCELLS or NCELLS+1, increase LCOMP by the length of the new array variable.

5. To read in the new variables from the dump file for restarting, add calls to BFIN in
subroutine RECOMP in the same order as the BFOUT calls were added to DCOMP.
(Note that RECOMP must be changed if DCOMP 1s changed )

6 Add the new variables to the argument list of the subroutines in which they will be
calculated. Also include DIMENSION statements Perform the necessary calculations
to determine the new variables within the subroutines

7. Add the new variables to the argument list of all calling statements to the subroutines
in which the new variables are calculated

8 A special note about adding pointers to HEATPT. The one-dimension-
al STGEN (steam-generator) component does not use the heat-transfer calcula-
tion pointers contained in HEATPT . Instead, the steam generator initializes its own
special “generalized” heat-transfer calculation pointers. Therefore, when adding a
pointer t¢ YEATPT, the corresponding generaiized pointer must be added to the
one-dimensional steam-generator routines. This is done as follows

a. Create the new generalized heat-transfer calculation pointer name for the new
generalized heat-transfer calculation variable being added to the steam-generator
routines and add this new pointer name to the steam-generator pointer table

STGENPT.

b. Initialize the new generalized pointer in subroutines RSTGEN and RESTGN in
the generalized heat-transfer calculation pointer section. increment LENPTR by
one

¢ If the new generalized heat-transfer calculation variable is to be graphed, set up
the graphics catalog by adding a call to GRFPUT in subroutine IGSTGN

d i the new generaiized heat-transfer calculation variable is to be writ“en to the
dump file, include a call to BFOUT in subrcutine DSTGEN. In addition, increase
LEXTRA in subroutine ISTGEN by the length of the new variable array being
dumped. Also add a call to BFIN in subroutine RESTGN in the same order as
the call to BFOUT was added te DSTGEN.

2.2.2. Three-Dimensional Data Structure

The data structure used for the VESSEL hydrodynamic data in MOD2 s cell-wise, in
contrast 1o the mesh-wise data structure used for the MOD1 VESSEL implementation. In
addition, mosi of the coding is defined directly in terms of three-dimensional arrays. This
new data structure was chosen primarily to simplify code development and to improve code
readability lts implementation was designed to reduce the number of locations in the source
code where changes have to be made when variables are inserted or deleted Despite the quite
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different appearance of the MOD2 VESSEL coding persons familiar with MOD1 should find
that the computational flow has not been changed unnecessanly

2.2.2.1. Mesh-Wise vs Cell- Wise Data Storage

There are two ways to store data detined on a computational mesh: mesh-wise and cell-
wise. In mesh-wise storage, all of the values for a giver kind of mesh data or a given array
(e.g.. all of the pressures), are stored contiguously in computer memory. In cell-wise storage,
all of the values for the different kinds of data zssociated with a single mesh cell (e g., pres-
sure, temperature, volume, etc ), are stored contiguously in computer memory Reference to
consecutive el*ments of a given array using cell-wise storage will, of course, necessitate use of
a stnde equal to the number of different kinds of data stored for a cell

TRAC MODI1 uses a variant of mesh-wise storage for the VESSEL three-dimensional
hydrodynamic data: all of the values for a given array for a given axial level are stored contigu-
ously. This is why this data is sometimes called “level” data. The variant method was chosen
to simplify the coding used to provide for having only 2 portion of the VESSEL data in the
active computer memory at a given time. However, as computer memories have become larger
and cheaper, it is now pc -sible to have all of the VESSEL data in active memory at one time

Rather than using mesh-wise storage as in MOD1, TRAC MOD2 uses cell-wise storage
for the VESSEL three-dimensional data. This methodology was chosen since it has certain
advantages over mesh-wise storage. These advantages include simpler code development and
code maintenance through the avoidance of large numbers of pointers and long suuroutine
argument Jsts. However, cell-wise implementations have drawbacks as well. A discussion of
the tradeoffs and the motivation for the change from MOD1 is given in Sec. 4.

2.2.2.2. Ceil-Wise Implementation for MOD2 Thr.e-Dimensional Data

MOD2 uses the equivalence method described in Sec. 4 for implementing the cell-wise
data storage In addition, all of the mesh arrays are three-dimensional. For example,

real alp(ni,nj,1), rov(ni,nj, 1)
egquivalence (a(1%9), alp(l,1,1)), (a(200),rov(l,1,1))

Note that when multidimensional arrays appear in an EQUIVALENCE statement, standard
FORTRAN requires that the array dimensions of the multi-dimensional arrays not be variable
In the MOD2 implementation of the three-dimensional data, the first two dimensions of the
VESSEL mesh arrays, 1 e, Nl and NJ, are defined in PARAMETER statements. This results
in an input limit on the number of radial rings and azimutha! sectors. (There is no limit on
the number of axial levels arising from this consideration.) As discussed in Sec. 4, hard-coded
array dirnensions have both code development and code debugging advantages over variable
array dimensions; however, they also have disadvantages, including the possibility of having to
change the source code in order to adapt to problem input with a larger dimension requirement

Although the MOD2 implementation of the VESSEL data may seem very similar to static-
memory allocation, the implementation is, in fact, flexible and dynamic in that it allows for an
arbitrary number of axial levels in each three-dimensional VESSEL as well as for an arbitrary
number of three-dimensional VESSEL components However, some space may be wasted with
a multi-VESSEL input model since the radial and azimuthal array dimensions must be the same
for all of three-dimensional VESSEL components in a problem

PROGRAMMER'S GUIDE 7



Comdecks 1 21




NYBCP The number of phantem or boundary cells next to
azimuthal #- or y-direction cell NYTMX.

Combinations of these PARAMETERS are then used to determine the array dimensions, i1.e

NICN = NXRMX + NXBCM + NXBCP The total number of radial or
x=-direction cells,

NI = NICN*NV The first dimension of the three-
dimensional arrays.

NJ = NYTMX + NYBCM + NYBCP The total number of azimuthal or y~-
direction cells and the second ai-
mension of the three~dimensional ar-
rays.

The TRAC user should not change any of these PARAMETERs, except for NV when array
variables are added and deleted, and NXRMX and NYTMX if the maximum arrays sizes are
either inadequate or too wastefu! of computer memory Further discussion of the use of phantom
or boundary cells may be found in Sec 2225

The second section of the EQUIV comu Y, shown above, contains the EQUIVALENCE
statements implementing the cell-wise storage  ell-wise storage necessanly imposes an order
on the variables in a cell, and certain database management coding not related to dynamic
memory management relies on this order. Consequently, the TRAC user should neither change
the order of the variables nor insert or delete variables into comdeck EQUIV without a thorough
understanding of the structure of the database as described in Sec. 2.2.2.3. With respect to
the memory management, the only important factor is that each of the different array variables
be equivalenced to a different location of the A array (container array) in order to create ce’-
wise data storage. Obviously, these locations should be consecutive in order to avoid wasting
computer memory,

2.2.2.2.2. Loop Limits

All of the loop limit variable names have the same naming convention with the first letter,
ie, l. J, and K, indicating. respectively, the first (radial or x-direction), second (azimuthal or
y-direction), and third (axial ¢ z-direction) array dimensions. The letter C in a name denotes
a limit suitable fo. (ooping over cells and the letter F denotes a limit suitable for looping over
cell faces. The convention for cell-face variables in the MOD2 VESSEL is the same as for
MOD1: the cell-face data at the “outer,” “forward" or “upper’ face of a cell has the same
index as the data at the cell center. (Note that, as indicated below, cell faces at the VESSEL
boundaries are only included in the cell-face loops when their velocities need to be calculated
as a result of using the generalized boundary-condition option )

The numeral 0 in a name denotes a lower limit and the letter X denotes an upper limit
The suffix M denotes a lower fimit that includes the phantom cell adjacent to the first physical
cell and the suffix MM denotes a lower limit that includes all the low-numbered phantom cells
The suffix P denotes an upper limit that includes the phantom cell adjacent to the last physical
cell, and the suffix ALL denotes an upper limit that includes all the high-numbered phantom
cells

PROGRAMMER'C GUIDE 9
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The variable names for the the radial or x-direction are:

ICOMM

ICOM

1Co

IFO

ICX

IFX

ICXP

IALL

Lower limit for loop over all radial or x-direction cells in
the computational mesh.

Lower limit for loop over radial or x-direction cells in the
physical mesh and the adjacent low-numbered phantom or
boundary radial or x-direction cell.

Lower limit for loop over all radial or x-direction cells in
the physical mesh.

Lower limit for loop over all radial or x-direction cell | ices
at which velocities are calculated.

Upper limit for loop over all rad.al or x-direction cells in
the physical mesh

Upper limit for loop over all radial or x-direction cell faces
at which velocities are calculated

Upper limit for loop over radial or x-direction cells in the
physical mesh including the high-numberec  hantom or
boundary radial or x-direction celi

Upper limit for loop over all radial or x-direction cells in
the computational mesh

The vanable names for the azimuthal or y-direction luop limits can be obtained by replacing
the leading | with a J and those for the axial loops by replacing the leading | with a K.

Before describing the definition of the loop limits, we want to emphasize that there is no
reason why the code developer should have to change any of the coding of the loop limits in
either comdeck PARSE T2 or in subroutine RVSSL. In fact, this is one of the main advantages of
the MOD2 VESSEL data implementation: all of the maintenance of the memory management
functionality can be accomplished by changing only three variables in corndeck PARSET1: NV,
NXRMX, and NYTMX. The coding of the 'aop | mits is described here merely for completeness.

Certain of the loop limits can, of course, be hard-coded with PARAMETER statements.
These are defined as follows in PARSET2:

JCOP
JCOMP
JCOMMP
KCOP
KCOMP
KCOMMP

]

#

4

i

NYBCM + 1

JCOP

5
o R

JCOP - NYBCM
NZBCM + 1

KCOP

=

KCOP - NZBCM

The suffix P ic these names stands for “parameter.” These variables are copied to the cor-
responding COMMON variables JCO, JCOM, JCOMM KCO, KCOM, and KZ2MM using the
standard naming convention in subroutine RVSSL

10
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2.2.2.2.3. Temporary Mesh-Wise Storage for One Variable in One Level

In order to maintain compatibility with the MOD 1 input and output procedures, MOD2
has the capability ot temporary mesh-wise storage for a single axial level for a single array
variable. A temporary mesh-w'se array sufficient to hold one level of data for one array is
allocated with tue pointer LTEMPS in subroutine RVSSL. This temporary array is then used
for storing the specified data in mesh-wise form. Subroutine LEVELR s a generic procedure for
transferring data from this temporary array to the appropriate locations of a permanent cell-
wise array and subroutine LEVELI is a generic procedure for transferring data from a permanent
cell-wise array to this temporary array.

As an example of the use of subroutine LEVELR, all of the mesh data input in subroutine
RVSSL is read into the temporary array on a level-by-level and array-by-array basis After each
“read.” as processed by the LOAD routine, the data is transferred from the temporary array
to the indicated permanent cell-wise array via the 2LEVEL routine which calls the LEVELR
procedure. The LEVELR procedure is also used directly from routine REVSSL to transfer data
when reading the restart dump file

The LEVEL! procedure for zonverting from the cell-wise storage to temporary mesh-wise
storage is used by three output procedures. DLEVEL to write a restart dump for one level and
one array, GLEVEL to write a graphics dump for one level and one array, and WL EVEL to
write to the TRCOUT file for one level snd one array. The GLEVEL routine makes use of the
position concept discussed in Sec. 2.2 2 4

Routines LEVELR, LEVELI, RLEVEL, DLEVEL, GLEVEL, and WLEVEL are all generic
routines and should not need to be modified unless the TRAC user wishes 1o make a major
change in implementation

2.2.2.3. Classification of Variables

There are two basic categories of variables in the VESSEL hydrodynamic database: single-
time and dual-time variables. Both categories have subcategones leading to seven classes of
variables:

1. Single-time variables:

1.1  Single-time, cell-centered, single-time (but not old-old-time) variables that are
either cell-centered, defined at the higher numbered cell faces, or defined at the
lower rumbered radial or axial ceil faces

1.2 COld-old-time variables which store values at the start of the previous time step
in order to create an ad hoc “triple-time” capability.

1.5  Single-time cell-face variables defined at the backwards or lower numbered az-
imuthal cell face
2. Dual-time variable pairs.

21 Old-time vanables for which the new-time values are calculated prior to the
OUTER hydrodynamic stage

2.2 Old-time variables for which the new-time values are not calculated prior to the
OUTER hydrodynamic stage.
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2.3 New-time variables for which the values are calculated prior to the QUTER
hydrodynamic stage

24  New-time variables for which the values are not calculated prior to the QUTER
hydrodynamic stage but may have been incorrectly calculated during QOUTER
prior to a back-up.

The class of a variable is determined according to how the variable needs to be updated
as the calculation progresses. There is currently no provision for variables belonging (o more
than one class.

Single-time variables in Class 1.1 do not need to be automatically updated. This does not
necessarily mean that their values don't change with time Single-time variables in Class 12
(currently only the void fraction) are updated in subroutines TIMUPD and BAKUP in a manner
analogous to that for dual-time variables as described below. Single-time variables in Class 1 3
require special fogic, implemented in subroutine SETBDT, to ensure that values defined for
azimuthal phantom cells have the proper identification with tiie values for the actual cells

Dual-time variables are automatically updated, i.e the old-time variables take on the
values of the new-time ones at the start of a time-step calculation. This coding is in subroutine
TIMUPD for the VESSEL (Note that, in fact, this is the only mechanism for defining old-time
values.) In addition, the provision for separate classes of dual-time variables allows for the code
to back up (repeat a calculation with a different time step or other parameter) starting either
at the beginning of a time step or at the beginning of the OUTER hydrodynamic stage Both
backup procedures are in subroutine BAKUP. The differences in the two types of back-ups are
discussed more thoroughly in Sec 3 4

Although an in-depth discussion of the implementation of the gereric procedures applied
to the different classes of variables is outside the scope of this section, two aspects of the
implementation affect the addition of variables: the current implementati~n uses the relative
position of a variable in the database to determine its classification, and the relative positions
of the variables are known to the code through six parameters which rely on the database
having a certain structure. In other words, the code developer must insert a new variable in a
position appropriate to its class and must ensure the maintenance of the assumed structure

The relative position in memory of a cell variable is referred to here either as its position
or as 1ts position in the database. This position is thus identical to the index into the container
array occurring in the EQUIVALENCE statement (It 1s obviously convenient from the stand-
point of readability for the EQUIVALENCE statements in the source to be ordered by position;
however, this is not necessary In any case, the use of the word position here refers to the
relative position in memory when the code is executed. not the position in the source code )

Implementation procedures used for the VESSEL three-dimensional database rely on a
particular structure, This leads to a number of restrictions which must be observed when the
code is modified by inserting variables. The major restrictions are related to the classification
of the variables and are discussed in the nex' section Special restrictions on the elements
of array variables are given in Sec 2.2.2.32 and s2me miscellaneous restrictions are given in

Sec. 22233
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2.2.2.3.1. Relation of Position and Classification and Comdeck PARSET1

The current implementation of the generic procedures described above relies on the fact
that the various classes of the VESSEL database are in the following order according to the
position of the variables in the class.

1) 1.1 and 1.2 (may be intermixed)

2) 21

3) 22

4) 2.3 (in one-to-one correspondence with 2.1)
5) 2.4 (in one-to-one correspondence with 2.2)

$) 13
Since the implementation makes implicit use of these restrictions, it .. essential that array var-
ables which are added to the code conform to these restrictions. Current releases of MOD?2 also
alow for Class 1.1 variables immediately before the Class 1 3 variabies. We 4o not recommend
this procedure as it complicates code maintenance

These particular restrictions were chosen to simplify the implementation of the generic
procedures, to allow these procedures tc be efficient on vector processors, and to reduce the
number of PARAMETER constants needed to describe the database. The PARAMETER
constants characterizing the structure of the database are

LALO* Position of the "old-old” time variable ALPO (correspond-
ing to the variable £.LP)

LALM® Position of the old-time variable ALP (corresponding to
the variable ALPO)

LOLD Position of first old-time category 2.1 variable

LOLD1 Position of fi.st old-time categary 2 2 vaniable

LNEW Position of first new-time category 2.3 vanable

NV Position of last vanable (equal to number of variables)

Depending on the class of the variable, one or more of these six PARAMETER constants
will have to be updated when a variable is added (Refer to Sec. 2.2.2.6 for further details )

2.2.2.3.2. Special Restrictions on Ordering Elements of Array Variables

For a subset of the cell-face array variables, the coding relies on the three components of
the cell-face arrays being contiguous in memory and being ordered with the #- or y-direction
element first, the axial element second, and the radial- or x direction element third. For
example,

*These variables are used to implement an ad hoc “triple-time” capability for the void fraction
Introduction of additional old-old-time variables should use this coding as a model
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equivalence (a( 28), fayt(l,1,1)), {(a( 29), faz(l,1,1)),
& (a( 30), faxr(l,1,1))

These restrictions also apply to the cell-face variables in comdeck EQUIVF, which are
referenced in routine J3D, and to the cell-face signal variables referenced in routine SVSET3.
Consequently, insertion of new variables must not change the relative order of the components
for these cell-face array variables. We recommend, for readability as well as for prevention of
future coding errors, that all cell-face array variables be stored so that the components are
contiguous and ordered as above

2.2.2.3.3. Miscellaneous Restrictions on the Positions of VESSEL Array Variables

Coding in the signal-variable evaluating subroutine SVSET3 relies on variable HLA being
the first array vaniable.

We are not aware of any other restrictions othe, than those listed here explicitly However,
we recommend that f new variables are added that they not be put as the first varniable of
their class. Code developers familiar with MOD2 have assumed that they can depend on those
variables which are currently first in their class to rerm="n in that relative position

2.2.2.4. Referencing Three-Dimensiona! Ar - . for VESSEL Coding

All of the VESSEL hydrodynamic routines are coded in MOD2 with direct usage of three-
dimensional arrays for the mesh data. This improves readability, 1.e., ALP(l.J K) rather than
ALP(IT4+(IR=1)xNTSX) (for the K" axial level) as in MOD1. In addition to improving read-
abuity and simplifying debugging, this implementation considerably reduces the possibility of
coding errors. Naturally, with typical TRAC noding, this use of three-dimensional arrays does
not provide long vector lengths for inner do-loops. MOD2 has been coded with the loop over
axial levels as the inner loop since that dimension is generally the largest. Achievement of long
vector lengths by looping over the entire mesh would require a change to indirect addressing
in order t¢  “code the mesh connectivity in a vectorizable manner.

Reference to neighboring cells in the VESSEL mesh is straightforward using three-dimen-
sional arrays From the standpoint of the cell at (i ' K), the adjacent cell in the inner radial or
x-direction is (1-NV_ J K} and in the outer radial or x-direction is (14+-NV J K) The necessity for
the stride, NV, arises from the cell-wise data storage described in Sec. 2222 The adjacent
cell in the lower azimuthal or y-direction is (1,J—1 K) and in the higher azimuthal or y-direction
is (1,J41,K). Finally, the next lower cell (level) in the axial direction is (1,J. K1) and the next
higher cell (level) above is (1) K+1).

It also is convenient to have an abstract method for referencing individual variables. Such
reference is currently used in generating the graphics catalog and in implementing the signal-
variable evaluation logic. For one-dimensional data, which still use a mesh-wise data structure,
pointers are used for this purpose For the three-dimersional data, we have chosen to use the
position in the database. We emphasize that a position is not a pointer and has to be referenced
in a different manner. in particular, if "LPOS" s the position of a particular variable, then the
value of that variable in the cell (1.JK) will be A(l4LPOS~1,J K) given that the value of |
incorporates the offsets in the container or A array as described in Sec. 22222

The positions uf the VESSEL array variables are defined dynamically in subroutine PTRS,
and the identifiers are stored in the "VESSEL level-data pointers” (note mislabeling) section
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boundaries. However, this coding for the radial or x and azimuthal or y boundaries has not
yet been tested. In the currently released version of MOD2, there is no input mechanism to
activate this coding. There is an input option, IVSSBF, which only activates the generalized
boundary conditions at the lower and upper axial faces. There is currently no coding to allow
for the generalized boundary conditions to be time dependent. However, implementing such a
feature should not require major changes to the current code,

in addition to providing for the new generalized boundary conditions, the use of phantom
cells allows for improved implementation of .he standard hydrodynamic algorithms. Without
the use of phantom cells, special program logic is required to calculate expressions including
gradients and fluxes for cells at the edge of the physical mesh Such logic wouid increase the
probability of coding errors and inhibit vectorizacion on hardware suct as the CRAY computers.

For typical coarse-mesh VESSELs, a large percenti _ « of the cells are at the edges of the
mesh. For example, a three-dimensional VESSEL component with four radial rings and four
azimuthal sectors on each level actually has only 4 of the 16 cells on a level which have neither
a radial nor an azimuthal boundary. Since even straightiorward vectorization generally reduces
computation time by more than a factor of 5, it is obviously desirable to design implementations
which are vectorizable for all cells

As stated previously, if phantom cells are not used, special logic would be necessary to
carry out calculations for cells at the edge of the physical mesh. On the other hand, when
phantom cells are used. additional procedures are required to define the values associated with
the phantom cells. The amount of code that must be maintained 1s similar in either case,
however, the phantom-cell methodology is more easily modulinized.

The major disadvantage in using phantom cells is the potential for significantly increased
computer-memory requirements for coarse-mesh VESSELS. For our previous example, a VES-
SEL with 4 radial rings, 4 azimuthal sectors, and 10 axial levels has only 4 ~ 4 x 10 or 160
physical mesh cells. However, it will have (4 + 3) ~ (4 + 3) x (10 + 3) or 637 computa-
tional mesh cells when including the boundary cells. Naturally, the percentage of boundary
cells is smaller for more finely noded problems. The current VESSEL array data contains about
300 different variables; thus, this example would require roughly 200,000 words of compute:
memory for the array data. However, for most modern computer hardware, this is not a large
amount of memory and the cost-benefit ratio of this memory increase when compared with the
more efficient coding 1s extremely favorable.

Since the lowest-numbered rows of phantom cells in each direction are only used 1n conjuc-
tion with the generalized boundary-condition option associated with a fixed pressure boundary
condition, it should be possible to reduce the memory requirements by changing the PARAM-
ETER constants defining the number of lower-numbered phantom cells from 2 to 1. However,
doing this has not been tested

2.2.2.6. Adding or Deleting a Three-Dimensional Database Array Variable

There are three steps to adding a varniable to the VESSEL “wdrodynamic (cell-wise)
database; these steps are sum:~ rized below Note that these stepi «re incomplete for the
case of old-old-time array variabl
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1.  Determine an appropriate position in the database for the new array vanable or dual-
time array variable pair according to the classification of the array vanable and the
structure of the database

2. Insert the necessary EQUIVALENCE and DIMENSION statements for the new array
vanable(s) into comdeck UQUIV and update any EQUIVALENCE statements for
preexisting vanables which have their A-array positions changed by the insertion
(Although this can lead to a large amount of retyping, the retyping can be easily
automated.)

3. Ensure that the six PARAMETER constants, ie. LALO, LALM, LOLD, LOLDI1,
LNEW, and NV, which characterize the structure of the vessel database, are correct.

Once the new VESSEL array variabie has been successfully added to the VESSEL hydrodynamic
database, one then needs to modify the necessary subroutines to calculate, dump/restart, graph,
or output the new variable The following four guidelines give step-by-step instructions on how
this 1s accomplished

4 Perform the nece  ary calculations to determine the value of the new array varable
within the ap -opriate subroutine

5. If the new array variable 1s to be wutten to the dump file for restart purposes,
include a call to DLEVEL in routine DVSSL. In addition, increment the variable LV
by one in subroutine DVSSL To read in the new array vanable from the dump file
when restarting, ad¢ calls to BFIN and LEVELR in subroutine REVSSL in the same
position that the call was added to subroutine D\ 3501 (Note that REVSSL must be
changed if DVSSL is changed )

6. U the new array variable is to be graphed, initialize & new graphics identifier in sub-
routine PTRS. In addition, include the new graphics identifier in comdeck VSSLPT.
Include a call to GRFPUT in subroutine IGVSESL for the new graphics identifier. I
special provision has to be made to output the new vanable, then subroutines IGRAF
and GRAF may need to be changed

7. i the new array variable is to be written to the output file TRCOUT as printed
output, add a call to WLEVEL in subroutine WVSSL for the new array variable to be
printed

3. TRAC CALCULATIONAL SEQUENCE

The full TRAC calculational sequence involves ceveral stages: input processing, initializa-
tion, prepass, outer-iteration, and postpass caiculations, time-step advancement or back-up,
and output processing. Each of these stages is discussed in greater detail from a programmer’s
point of view in the sections that follow. First, a summary of the overall calculational sequences
for transient and steady-state calculations is given

3.1. General Summary

Depanding on the values of the input parameters STDYST and TRANSI (Main Data Card
4), TRAC may perform a steady-state calculation, a transient calculatior, or both. The general
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control sequences of each type of calculation are outhinea below, and specific dewails of the
calculational sequence are discussed in more detaill in the subsections that follow

The transient calculation i1s directed by subroutine TRANS The system state is advanced
through time by a sequence of prepass, outer-iteration, and postpass calculations that TRANS
requests by invoking subroutines PREP, HOUT, and POST, respectively In th se calculations,
one or more sweeps are made through all the components in the tystem To provide the
output requested by the user, TRANS invokes the EDIT, DUMP, and GRAF _serlays by calling
subroutine PSTEPQ. Subroutine TRANS is structured as shown in Fig. 2. The major control
vaniables within the time-step loop are: NSTEP, the current time-step number, TIMET, the
time since the transient began, DELT, the size of the current time step; and OITNC, the
current outer-iteration number. The time-step loop begins with the selection of the time-step
size, DELT, by subroutine TIMSTP. A ... pass is performed for each component by overlay
PREP to evaluate the stabilizer motion equation and phenomenological coefficients. At this
point, if the current time-step number is zero, TRANS calls the EDIT overlay to pnnt the
system state and the GRAF overlay to generate a graphics edit at the beginning of the transient
Subroutine TRANS then calls subroutine HOUT, which performs one or moie outer iterations to
solve the bas ¢ hydrodynamic equations. Each outer iteration s performed by overlay OUTER
and corresponds to one iteration of a Newton-r.iethod solution procedure for the fully coupled
difference equations of the flow network The outer-iteration loop ends when the outer-iteration
convergence criterion (EPSO on Main-Data Card 5) is met. This criterion is applied to the
maximum fractional change in the pressures throughout the systern during the last iteration

The outer-iteration loop alternatively may terminate when the number of outer iterations
reaches a user-specified imit (OITMAX on Main-Data Card 6). In this case, TRAC restores
the state of all components to that at the beginning of the time step, reduces the time-step
size (with the constraint that DELT be greater than or equal to DTMIN), and continues the
calculation with the new time-step size. This represents a back-up situation and 1s discussed
in greater detail in Sec. 35

When the outer iteration converges, TRANS calls the POS i overlay to perform a postpass
evaluation of the stabilizer mass and energy equations and the heat-transfer calculation. Then
the time-step number is incremented and TIMET is increased by DELT. The calculation is
complete when TIMET reaches the last TEND time specified on the time-step data

The transient calculation i1s controlled by a sequence of time domains specified by the
user on the time-step data. During each of these time domains, the minimum and maximum
time-step sizes and the edit, dump, and graphics intervals are fixed When the EDIT, DUMP,
and GRAF overlays are invoked, they calculate the time when the next output of the associated
type is to occur by incrementing the current time by the time interval. When TRANS later
finds that TIMET has reached or exceeded the indicated time, the corresponding output overlay
is invoked again. Whenever TIMET equals or »- - 4s the TEND ending time for a time-step
data domain, the next time-step data domain i n. The output indicators are set to the
current time plus the new values of the appropr .©  ,utervals.

Subroutine STEADY directs steady-state calculations using the structure detailed in Fig. 3
The calculation sequence of this subroutine is similar to that of the transient driver subroutine
TRANS. The same sequence of evaluations used for transient calculations also 1s used for the
steady-state calculation. The main difference is the additicn of a steady-state convergence
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tesy in STEADY, lugic to turn on the steady-state power level and the optional evaluation
of constrained steady-state controllers. To provide output requested by the user, STEADY
invokes the EDIT, DUMP, and GRAF overlays by calling subroutine PSTEP(

Subroutine STEADY is called by the main program whethes of not a steady-state calcu-
lation has been requested I no steady-state calculation is required, STEADY simpiy returns
to the . un program

T - time-step control in STEADY is identical to that implement d in TRANS This
includes the select.on of the time-step size. the output timing, and the back-up of a time
steg if the outer-iteration limit is exceeded In STEADY the input vanable SITMAX, from
Main-Data Card 6, is used as a delimiter in place of O!TMAX. The masimum fractional rates
of change of seven parameters are calculated by subroutines TF1053 and FF3D. These rates
and their locations in the system are transmitted to STEADY through the array variables FMAX
and LOK in COMMON block SSCON Tests for steady-state convergence are performed every
5 time steps and before every large edit. The maximum fractional rates of change and their
locations are written ta the TRCMSG and TRCOUT files as well as the TTY 1/0O channel
The minimum value of the flow veiocity, MINVEL, and its maximam fractional rate of change,
FMXLVZ, in the hydro channels coupled to powered heat structures determine when the steady-
state power should be set on. Once MINVEL exceeds 0.5 m/s and FMXIVZ falls below 0.5,
the steady-state power is set to its input value, RPOWRI (specified on Card Number 19),
for each powerea heat structure. The generalized steady-state calculation is completed when
all fractional rates of change are below the user-specified convergence critetion, EPSS (on
Main-Data Card 5), or when STIME reaches the end of the last time domain specified in the
steady-state calculation time “tep data

Both steady-state and transient calculations may be performed in one computer run. The
end of the generalized steady-state time-step cards 1s signified by a single card containing
a ~1.0 in columns 4-14  The transient time-step input cards should follow immediately If
the generalized steady-state calculation converges befcie reaching the end of the last time
domain, the remaining steady-state time-step data are read in but not used so that the transient
calculation proceeds correctly

3.2, Input Processing

The processing of all TRAC input data (except tor t ime-step data) is performed by the
overlay INPUT and its sub-overlays RDINI, RDIN3, and \.OKES. These data are of two types
input data retrieved from the input file TR _IN and restart data from the dump-restart file
TRCRST . In addition to obtaining these input data, these overlays also orga~ize the component
data in memory, assign the array pointer variables for each component, analyze the problem
loop structure. and allocate the initial A-array spa. tor part of the global data. The remainder
of the space necessary within the A array for the globu varables is allocated by subroutine
INIT in overlay INIT. 2+ the end of each of the overiays, INPUT and INIT, these fixed data
segments are moved te ¢ end of the dynamic-memory area

As the controllin, -ubroutine within the INPUT overlay, subroutine INPUT reads the
namelist, ma’  ata, ana UCFL-model input from the TRACIN file Using main-data parameter
information, tne initial A-¢rray global var.able space is allocated. The interactive control-panel-
vector input is read and procecsed by a call to subroutine RCPVEC if the TRAC executable
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was updated with the interactive label on. The signal-variable, control-block, and tnp control-
parameter data are read and processed by calling subroutine RCNTL. Subroutine RDCOMP
reads and processes the one-dimensional component data and subroutine RDCOM3 performs a
similar function for the VESSEL component data from the TRACIN file. Any control-parameter
and component data not provided by the TRACIN file are retrieved from the TRCRST restart.
data file by subroutine RDREST. Finally, subroutine INPUT utilizes subroutine SRTLP to
establish loops and pointers for the network solver, submutine ASIGN to define the component
pointer array, and subroutine SETCPV 1o initialize the control-panel-vector pointers

Subroutine RDCOMP invokes component input-proceseing subroutines to read and process
each component type. These routines have names which typically begin with the letter R. For
example, the PIPE component input-processing subroutine is called RPIPE. In addition to
reading component data from the TRACIN file, these component input-processing routines
must also initialize the fixed-length, variable-length, and pointer tables and define the JUN
array Each component input-processing subroutine may utilize a call to subroutine RCOMP,
which processes the input data common to most one-dimensional components

Pointer variables common to most one-dimensional components are initialized with a
call to subroutine SIDPTR, and any additional pointers special to a component type are
inttialized within that component's input-processing subroutine. An example of specialized
pairter variables are the many steam-generator generalized heat-transfer pointers initialized
i subroutine RSTGEN. When adding a new vanable to a one-dimensional component, it is
necessary to initialize the new pointer in SIDPTR or in a specific component input-processing
routine in addition to performing several other steps. The step-by-step procedure involved 1s
discussed in Sec 2211, and a sample update 1s included as Appendix E

The JUN array defined by each component input-processing rout.ne 1s a doubly subscripted
array, JUN(4.2NJUN) The four values of the first index aie defined in Table 2. The sec.
ond index indicates the order in which the component junction was encountered during input
piocessing

TASLE 2
FIRST INDEX OF THE COMPONENT-JUNCTION ARRAY, JUN

Index Description
1 Junction number

Component number

LE S

Component type

&

Junction direction flag

0 = positive low s into the component at this
junction,

1 positive flow is out of the component at this
junction
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Subtoutire RDCOM3 invokes the VESSEL component input-processing routine RVSLL In
addition to reading VESSEL input parameters from the TRACIN file, this routine also initializes
the fixed-length, vanable-length, and pointer tables, reads VESSEL level data, and performs
input testing.

Subroutine RDREST opens the restart-data file TRCRST and obtains data from the dump
edit corresponding to the requested time-step number (as specified by varable DSTEP on
Main Data Card 3 of file TRACIN) f the requested time-step number is negative. RDREST
uses the last dump edit available The dump data initialize the signal-variable, control- block,
trp, and component data that were not provided by the TRACIN hle  Component data are
read in from the TRCRST file by calls to component restart-processing subroutines.  These
subroutines, whose names typically begin with the letters RE, function in much the same way
as the component input-processing subtoutines which begin with the letter R For example,
the PIPE compaonent restart-processing subroutine is called REPIPE The restart data common
to most one-dimensional components is processed from the dump using a call to subroutine
RECOMP. Details on the structure of ‘he dump-restart file are given in Sec 36

Subroutine SRTLP sorts through the one-dimensional components of the system and
groups them by loops that are isolated from one another by VESSEL components or TEE
internal junctions. The IORDER array i1s rearranged to reflect this grouping and to provide a
convenient order v ithin each group for the network solution procedure. The [Melement of the
atray IORDER 15 the number of the component that is processed after the (I - 1) component
but before the (I + 1) component

Subroutine ASIGN defines the component pointer array, COMF 1 R, according to the order
of the IORDER array The ™Melement of array COMPTR is the starting lacation in the A array
of the fixed-length table data for component IORDER(!)

if the input file TRACIN is in free format (rather than in TRAC format), TRAC creates
the additional file TRCINP The TRACIN data are written into file TRCINP in a TRAC format
form that can be read by the TRAC input routines. File TRCINP is used as the input file rather
than fiie TRACIN

T e user has the option of creating an echo file of the input data contained in file TRACIN
by defining NAMELIST variable INLAB = 3 When this option 1s selected, file INLAB is created
during input processing and contains all the input data from file TRACIN along with variable-
name comments contained between asterisks  This provides a useful means of labeling an
otherwise difficult-to-interpret TRACIN file It also allows the user to verfy the input data
being supplied to TRAC

3.3, Initialization

During the initialization stage performed within overlay INIT, subroutine iICOMP performs
the initialization of arrays and variables for each component that are requited by TRAC but
are not read in directly from files TRACIN and TRCRST. Also during this overlay, subroutine
IGRAF controls the initialization of the graphics catalog

The oveiall component-initialization subroutine, ICOMP, first defines the junction se
quence array JSEQ and velocity sign indicator array VS| and then initializes the data for
heat-structure, one-dimensional, and three-dimensional components The array ISEQ contains
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each component is summarized in Appendix F_In order to graph a new vanable, the appropriate
graphics catalog edit need only be added to subroutine IGCOMP if the variable 1s common to
most one-dimensional components, to subroutine IGVSSL if the variable is a VESSEL variable,
or 1o a specific graphics initi-ization routine f the variable 1s particular to a component type

3.4 Prepass, Outer-1teration, and Postpass Calculations

One complete time-step calculation consists of a prepass outer-iteration, and postpass
stage. Each stage of the time-step calculation is detailed below

341, Prepass Calculation

The prepass calculation uses the modeled-system solution state at the completion of the
previous time step to evaluate numerous quantities to be used during the outer-iteration cal-
culation. The prepass begins by evaluacing signal variables and control block, and determining
the set status of all trips. Each component begins the prepass by moving the values cal-
rulated during the last time step into the storage area for old-time values Next, wall and
interfacial friction coefficients are calculated, and an initial forward elimination on the stabi-
lizer motion equations is performed For components that require heat-transfer calculations,
the prepass also evaluates material properties and heat-transfer coeflicients (HTCs) A second
pass through all one-dimensional components is required to do the hackward substitution on
the stabilizer equations of motion The prepass for heat-structure components can be more
complex. Besides calculating material properties and HTCs for both average and additional
rods, the prepass evaluates quench-front positions and fine-mesh properties if the reflood model
has been activated

The prepass calcilation is controlled by overlay PREP, whose entry-point subroutine is of
the same name. Subroutine TRIPS controls the evaluation of signal-variable, control-block,
and trip data. This is in contrast to subroutine TRIP that interrogates the trip set status
in preparation for specific consequences of trips. Then subroutine PREP performs the first
pass of the PREP stage for all one-dimensional components by calling PREF1D with IBKS
set to 1. All heat-structure components are processed by calling HTSTR1. If the SETS3D
method has been selected for all VESSEL components (NAMELIST option NOSETS = 0
or 2 and NSTAB:=1), overlay PREP3D is called at this time tc evaluate the predictor and
stabilizer motion equations. The second pass through the PREP stage performs the backward
substitution for the one-dimensional stabilizer tilde velocities by again calling PREP1D, this time
with IBKS set to 2. If the SETS3D method is not selected (NAMELIST option NOSETS = 1
or NSTAB = 0), the prepass is completed with a call to PREP3D to define all tilde velocities
by their beginning-of-time-step velocities for the three-dimensional VESSEL components.

Subroutine TRIPS calls subroutines SVSET, CBSET, and TRPSET. Subroutine SVSET
uses current values of system-state variables to define the signal vaniables. Subroutine CON-
BLK, which is called by subroutine CBSET, evaluates control-block function operators. Sub-
routine TRPSET uses the current signal-variz“le and control-block values to determine the set
status of trips.

The one-dimensional prepass driver PREP1D calls one-dimensional compaonent prepass
routires to perform both steps of the prepass for each one-dimensional component type The
compeent driver routines have names which ty-.cally end with the numeral 1 (see Table 3)
For example, the PIPE component prepass si:broutine is called PIPE1. On the first pass through
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TABLE 3
COMPONENT-DRIVER SUBROUTINES

Component

Type Prepass  Outer Postpass
ACCUM ACCUM1 ACCUM2  ACCUM3
BREAK BREAK1 BREAK2 BREAK3
FILL FiLLl FILL2 FILL3
PIPE PIPEL PIPE2 PIPE3
PLENUM PLENI PLEN2 PLEN3
PRIZER PRIZR1  PRIZR2 PRIZR3
PUMP PUMP1  PUMP2 PUMP3
ROD or SLAR HTSTR1 HTSTR3
STGEN STGEN1 STGEN?2 STGEN3
TEE TEE1 TEE2 TEE3
TURB TURBI TURB2 TURB3
VALVE VLVE1 VLVE2 VLVE3
VESSEL VSSL VSSL2 VSSL3

the PREP stage, during which the stabilizer motion equations are set up, the one-dimensional
component subroutines utilize the common low-levei routines SAVBD, PREPER, and SETBD
to avoid redundant coding. On the second pass, during which the stabilizer motion equations
are solved, the common low-level routine BKMOM s used. The flag index IBKS (1 or 2)
indicates the pass being performed

Subroutine SAVBD retrieves BD-array buundary data from adjacent components, stores
it in the appropriate array locations, and moves data for the last completed time step into
the old-time arrays Subroutine PREPER evai-ates wall friction by calling FWALL, evalu-
ates material pioperties by calling MPROP, evaluates HTCs by calling HTPIPE, and evaluates
interfacial-shear coefficients and begins the solution of the stabilizer equations of motion by
cilling FEMOM. For a specific component, any or all of these steps may occur under the
control of the PREPER argument list  Subroutine SETBD uses the information in the com-
ponent data arrays to reset the BD-orray boundary data at both ends of the component.
Subroutine BKMOM solves the stabilizer equations of motion for the stabilizer velocities for
one-dimensional components

Subroutine HTSTRI1 calls subroutine FLTOM to transfer hydrodynamic data into the nec-
essary heat-structure arrays; subroutine CORE1 to evaluate HTCs, fine-mesh properties, and
quench-front positions; and subroutine FLTOM again to transfer the resulting heat-transfer in-
formation back into the hydrodynamic database From subroutine CORE1, subroutine RFDBK
is called te evaluate reactivity feedback, and subroutine RKIN is called to evaluate the point-
reactor kinetics model.

Each VESSEL component is processed by subroutine VSSL1. A time update is performed
by calling subroutine TIMUPD. Donor-cell weighting factors are initiaized, vent valve calcula-
tions are performed, and momentum source terms are defined Next, subroutine CIF3 is called
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determine both mixture properties and wall temperatures. Overlzy POST performs this post-
pass. The same overlay also implements the time-step back-up procedure which is explained
in detail in the next section

As the controlling subroutine for this overlay, subroutine POST first processes all one-
dimensional components by calling the appropriate one dimensional component postpass sub-
toutin. (see Table 3). Subroutine POST3D is called to handle all three dimensional VESSEL
components, and subroutine HTSTR3 s called to handle all heat-structure components

The one-dimensional component postpass routines have names that end with the nu
metal 3. For example, the PIPE component postpass subroutine is called PIPE3  The one-
dimensional component postpass subroutines use the low-level routines SAVBD, POSTER, and
SETBD to retrieve BD-array boundary conditions, to evaluate the stabilizer equations, wall
temperatures, mixture properties, and transport properties; and to reset the BD boundary
array, respectively

The VESSEL postpass routine, VSSL3, is called by POST3D. Within subroutine VS5L3,
stabilizer quantities are evaluated by subroutine BKSTB3 or defined by subroutine MIX3D,
depending on the status of the VESSEL SETS3D-method flag NSTAB. Subroutines FF3D,
FPROP, and J30 are used 10 complete the hydrodynamic calculation evaluate transport prop-
erties, and update BD-array boundary data. respectively

Subroutine HTSTR3 controls the postpass for the heat-structure components by calling
subroutine CORE3  From within subroutine CORE3, subroutine FROD is called to evaluate
temperature profiles and gap heat-transfer coef'icients using subroutines RODHT and GAPHT,
respectively

3.5. Time-Step Advancement or Back-up

Upon the successful completion of one time-step calculation (performed by the prepass,
outer-iteration, and postpass stages), the modeled-system state is updated to reflect the new-
time conditions. This 1s accomplished at the start of the next PREP stage, and is handled on
a component by component basis within the “17 subroutines, i.e, PIPE1. During this step,
all dual-time variables are updated by copying the values of the new-time variables into the
old-time vanables. The prepass, outer-iteration, and postpass steps that follow then attempt
to assign new values to the new-time vanables, allowing the process to be repeated as time is
advanced.

Calculation of a new time-step size takes place just prior to the PREP stage and s con-
trolled by subroutine TIMSTP. Two types of algorithms, inhibitive and promotional, are imple-
mented in subroutine NEWDLT to evaluate the next time-step size. The inhibitive algorithms
limit the new time-step size to ensure stability and to reduce finite-difference error. The pro-
motional algorithm increases the time-step size to improve computational efficiency. A new
maximum time-step size 15 calculated based on each of the following cuditions. the one-
and three-dimensional Courant limits, the VESSEL and total mass error limits; the iteration
count; the maximum allowable fractional change in void fraction, temperature, and pressure,
the diffusion number for heat transfer; and the maximum allowable fractional change in reactor
power and valve area The actual new time-step size selected is the minimum imposed by the
above conditions and the maximum time-step size specified by the user in the time-step data
Each of the conditional maximum time-step sizes are calculated in subroutine NEWDLT with
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the exception of those based on reactor power level and on valve adjustment  The reactor
power maximum time-step size is evaluated by subroutine RKIN, and the volve adjustment
maximum time-step size is evaluated by subroutine VIVEX with subroutine HOUT defining
those maximum time-step sizes.

In the event that a time-step is not successfully completed, TRAC will back up and try
to reevaluate the new-time modeled-system state Back ups may occur when either the outer
iteration does not converge (necessitating a reduction in the current time-step size) or when
a flag indicating an extraordinary condition is activated, thereby requiring the outer iteration
to be reevaluated It is important to understand that there are two types of back-up, one
corresponding to each of these scenarios. When the outer iteration fails to converge during
the OUTER overlay, the current time step size is reduced and the calculation backs up to the
start of the PREP stage This is necessary because any vanable calculated during the prepass
and dependent on the time-step size was computed for the original time-step size and not
the newly-reduced time-step size In addition, all new-time variables are reset to reflect their
beginning-of-time-step values. This enables TRAC to begin again from the PREP stage in a
manner no different than for any other time-step calculation except for having reduced the
time-step size during the back-up If repeated back-ups are performed for the same time steps,
the time-step size is halved for each of the first three back-ups, quartered for the fourth and
fifth back-up, and tenth thereafter

The second type of back-up is inititated by a flag being set signalling an extraordinary
cotdition such as a water pack. This indicates that the outer iteration needs to be repeated 1o
account for the extraordinary condition TRAC resets any new-time variables, that have been
potentially evaluated incorrectly by the current attempt through subroutine OUTER, with their
old-time values and repeats the outer iteration anew. For this type of back-up, the time-step
size does not change, making it unnecessary to repeat the PREP-stage calculation

The difference between the two types of back-ups is that for a back-up to the start of the
PREP stage, the time-step size is adjusted, all new-time variables are reset to their beginning.
of-time-step values, and variables evaluated during the PREP stage are reevaluated using the
newly adjusted time-step size. For a back-un to the start of the outer iteration, no change
occurs in the time-step size and only new-time variables calculated during the outer iteration
are rese. to reflect their beginning-of time-step values

3.6. Output Processing

The TRAC program normally produces five output files: TRCOUT, TRCMSG, TRC.
GRF, TRCDMP, and TRCINP. TRAC may also produce a labeled input-data file INLAB when
NAMELIST option INLAB = 3 is defined.  The first of these files s in printer format and
contains a user-oriented analysic of the calculation. During the input process, an input data
description is placed in this file At selected times duning the calculation, overlay EDIT 15
invoked to add to this file a description of the current modeled-system state. The TRCMSG
file is in printer format and contains diagnostic messages concerning the progress of the calcu-
lation. The TROGRF file is a binary file designed to allow anaslysis by graphics postprocessing
pragrams like EXCON and TRAP, while the TRCDMP file is a binary file designed for problem
restarts by TRAC. The TRCGRF file is created and the header, catalog. and geometric data
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series of time-edit blocks. A time-edit block s written at each dump time during a problem
The number of time-edit blocks written on the file is determined by the dump-cdit frequency
specified on the time-step data. The last block is followed by a "EOF" to signify the end-of file

The structure of each time-edit block in the dump file is illustrated in Fig 10 Data
from each component 1s included in the component dump section shown at the bottom of
the figure. Figure 11 shows a more detailed structure of the component dump section The
variable LCOMP is calculated in subroutine DCOMP for each one-dimensional component and
is the total number of all variable values written to the dump file for each component This is
the sum of the number of the variable values dumped by subroutine DCOMP and its calling
routine. The number of any additional variable values special to a particular component and
dumped by the component dump routine i1s reflected by the vanable LEXTRA It 1s important
to remember to increment either the vanable LCOMP or LEXTRA accordingly «! =~ adding
new variables to the dump file

4. MEMORY MANAGEMENT

In order to understand the data storage in TRAC it is necessary to consider the memory-
management requirements for a large code  First, any code that uses a large amount of memory
must allocate that memory flexibly and dynamically duning execution  Static dimensioning,
i.e, dimensioning at compile time to accommodate the largest possible problem, s at best
wasteful of memory and at worst infeasible  The alternative strateqy of pre-processing the
input 1o determine array sizes prior to compilation would be extren...« cumbersome for a zode
as complex as TRAC Static-memory allocation schemes of all types als» have the disadvantage
that there is no possibility of increasing or decreasing memory requirements during a calculation
when the evaluation path changes or when temporary arrays are no longer required

Second, since standard FORTRAN does not support dynamic-memory allocation, it is
necessary to accomplish dynamic-memory allocation by using variable offsets into a single
container array. Obwviously, any implementation based on this concept will have some degree
of awkwardness. On some operating systems, the size of the container array can be changed
dynamically. On others, it must be fixed in advance Although the latter implementation is not,
technically speaking, dynamic, it is flexible, and fixing the size of the container array makes a
trivial difference in the coding The bulk of the memory-management implementation in TRAC
anises in the computation and management of the offset or pointer variables

As an example of using a container array for dynamic-memory management, consider the
container array, A(*), where the actual dimensioned size of the A array 1s sufficient for the
problem at hand. Now assume that we wish to store two arrays, X(20) and Y(20), somewhere
in this ccntainer array. There are a number of ways of doing this. One option s to define offset
pointers as in this example

IFREE = 14

NCELLS = 20

LX = JFREE

LY = LX *+ NCELLS
IFREE = LY 4 NCELLS

These pointer variables are defined in a manner that establishes mesh-wise stciage In this
example, the atroys X and Y occupy locations A(14) through A(33) and A(34) through A(53).
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respectively With the use of these pointer variables, X(N) can be referenced as A(LX+N-1)
and Y(N) as A(LY+N-1) The referencing can be made more readable by passing A(LX)
and A(LY) as actual arguments to a subroutine that uses X and Y as the names for the
corresponding local arrays

Two nf the drawbacks of the pointer methodology are the large emount of coding needed
to define the pointer variables and the need to use subroutine arguments for readibility. A
thitd drawback arises when using pointer variables in the context of multi-dimensioned array
variables: the dimensions must be treated as variable. This complicates the coding and makes
dynamic debugging more difficult. Another option for storing into a container array is 1o
use EQUIVALENCE statements. This has the advantage that the variables cai. appear in
COMMON . Using our previous example, we could achieve the same data storage and data
structure by writing:

PARAMETER (LX = 14, LY = 34)
EQUIVALENCE (A(LX), X(1)), (A(LY), Y(1))

However, equivalencing which creates mesh-wise storage. as in this example, cannot be
used for dynamic-memory allocation because knowledge of the array sizes as well as their
actual memory locations 1s built into the EQUIVALENCE statement. The answer to using
equivalencing for dynamic-memory allocation is to equivalence the arrays according to the
cell-wise storage scheme, (e

EQUIVALENCE (A(1), Xt(1)), (A(2); Y(1))

The reason that establishment of a ceil-wise storage scheme using EQUIVALENCE state-
ments i uieful for dynamic memory allocation is that the EQUIVALENCE statements can be
treated as determining the relative order of the variables, rather than their actual locations in
memory. The location in memory, or offset into the container array, is then defined dynamically
in terms of loop limits. Using loop limits NB = 14 and NE = 52 with a stride of NV = 2in
veferencing arrays X and Y in ihe last example would establish a mesh-wise storage occupying
the same memory locations in the A array as in the two previous examples but with X and Y
elements interspersed

One of the drawbacks to a cell-wise scheme is the necessity for including the stride in
the coding. Another drawback that can arise on certain hardware is inefficiency in referencing
vectors with non-unit stride. Finally, this methodology can be cumbersome when combined
with the use of temporary arrays which have mesh-wise storage. Nonetheless, our experience
with this methodology has been positive in terms of eliminating coding errors resulting from
maintenance of pointers and long subroutine argument lists

5. TRAC FOR VARIOUS MACHINE CONFIGURATIONS

TRAC-PF1/MOD?2 for various computer systems is supported by use of UPDATE /HISTO-
RIAN conditional directives (*DEFINEs) in the code's program library. The desired configura-
tion is selected with *DEFINEs when the compiler-ready source deck is created Appendix G
provides a summary of all the possible UPDATE /HISTORIAN *DEFINEs used by TRAC Our
recommendations for specific systems are given below
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54. COC Cyber 205

The recommended UPDATE /HISTORIAN *DEFINEs to use when implementing TRAC
on a COC Cyber 205 computer are the following:

ASIZE,
CYB205,
EIGHTB,
HEX,
NOLCM,
VDM,
VECTOR

5.5. CDC 7600

An initial effori was made to support the Control Data Corporation’'s COC 7600 data
structure in MOD2. Most of this work involved aata transfers between the 760's SCM and
LCM. It soon became apparent, however, that the 7600's small memory severely restricts
effective MOD2 usage. Also, the three-dimensional VESSEL data structure is very limited
on a CDC 7600 Therefore, Los Alamos has stopped support for this particular machine
configuration
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Name
ACCM1Y,
ACCMBD
ACCUMI
ACCUM2
ACCUM3
ALLBLK
ASIGN

ASTPLN

ATERM

AUXPLN

BACIT
BAKUP

BALANC
BALBAK
BANSOL
BDPLEN
BEENAL
BFALOC
BFCLOS
BFIN
BFOUT
BGLSDC
BGLSSL
BITS

APPENDIX A

APPENDIX A
TRAC SUBPROGRAMS

Fuaction

Evaluates ACCUM (accumulator) water level

Sets boundary array for the ACCUM (accumulator) component
Controls ACCUM (accumulator) prepass

Controls ACCUM (accumulator) outer iteration

Controls ACCUM (accumulator) postpass

Tests for all blanks in specified substring of string

Assigns the component pointers according to the internal order (IORDER)
array

Calculates mass and energy fluxes at the PLENUM junctions during post.
pass

Sends message to the nuclear plant analyzer (NPA) if TRAC terminates
prematurely

Calculates maas and energy fluxes at the PLENUM junctions during the
outer iteration

Initiates backward substitution after direct vessel matrix inversicn

Overwrites end-of -time-step variables with start-of -time-step values for
one vessel level

Support subroutine for SGEEV

Support subroutine for SGEEV

Solves linear matrix equation

Fills the PLENUM boundary array

Assigns axis labels to grapics vanables for plotting.
Allocates files and buffers for buffe ed 1/O
Empties buffers and closes file

Initiates binary input subroutine

Initiates binary output subroutine

Factors the banded matrix A into A = LU

Solves the general banded linear system of equations A * A = B

Manages bit address flags

A-1l



Name Function

BKMOM Initiates backward substitution for stabilizing mo.\entum equations .

BKSMOM Performs vackward substitution for stabilizing momentum equations

BKSPLN Initiates backward substitution for stabilizing mass and eneigy equations
for the plenum component

BKSSTB Initiates backward substitution for stabilizing mass and energy equatiors

BKSTB3 Initiates backward substitution for stabilizing mass and energy equations
for the VESSEL component

BLKDAT Initializes common variables in a biock data statement

BREAK] Controls BREAK prepass

BREAK2 Controls BREAK outer iteration

BREAK3 Controls BREAK postpass

BREAKX Evaluates BREAK pressure, temperature, and void fraction

BSPDOC Factors a symmetric positive definite banded system of linear equations

BSPDSL Solves a symmetric positive definite banded system of linear equations

CREDIT Edits the first 10 control-block parameter values along with their vanable-
name labels and a control-block schematic diagram

COTHEX Calculates the diametral thermal expansion of Zircaloy as a function of “
temperature,

CELLA3Z Calculates cell-averaged quantities that are required for the interphasic
heat-transfe’ calculation for the VESSEL component

CELLAY Calculates cell-averaged quantities that are required for the interphasic 1
hea' transfer calculation fur one-dimensional comr.onents

CHBD Che: « boundary data.

CHBSAV Transic s selected BD-array data into the A array required for the accu-
mulator phase-separation mode!

CHBSET Stores data in the BD array temporarily to check for consistency in the
junction data.

CHEN Uses Chen correlation to evaluate the forced convection nucleate builing
heat-transfer coefiicient

CHF Evaluates the CHF based on a local-conditions formulation

CHF1 Applies Biast CHF correlation

CHKBD Checks for the consistency in the boundary-array gata during initializa-
tion .

A-2 APPENDIX A
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Name

CHKSR
CHOKE
CIF3
CIHTST
CIvsSL

CLEAN
CLEAR
CLRINT
COMPI

CCNBLK

CONCF

CONSTB
CONVRT
COPYA
CORE1
CORE3
CPLL

CPVEC3
CFVPRT
CPVV1

CCVMGT
CTAINI
CTAIN2
CTAIN3
CWVSSL
CYLHT

APPENDIX A

Function

Checks VESSEL component source locations

Establishes the choked phasic velocities and the derivatives.
Calculates interfacial shear for VESSEL component

Sets up arrays for heat-structure component

Transfers vessel data from LCM to SCM so that the remaining data can
be initialized

Closes TRAC output files,
Sets an array to a constant value.
Support subroutine for IBM.

Performs various A-array loading tasks common to most one-dirensional
components,

Compuies all 61 types of control-block outpu*s that do not require table
storage (that is, except for "DLAY" and "FN71")

Returns maximum solubility (kg solute/kg water) for species ISPEC at
pressure P and water temperature TL

Drives subroutine STBMF

Takes absolute arcas and converts them into fractional areas
Copies value of variable SRCVAL into variable SNKVAL.
Evaluates rod heat-transfer coefficients and tracks quench fronts
Evaluates rod temperature distributions.

Calculates specific heat of liquid water as a function of enthalpy and
pressure

Evaluates the control-panel vector parameters
Prints the control-panel status, which s called from PSETQ

Calculates specific heat of water vapor as a function of temperature and
pressure.

Logical magnitude function.

Controls containment prepass

Controls containment outer iteration

Controls containment postpass

Transfers VESSEL data from LCM to SCM 30 that they can be printed

Calculates temperature fields in a cylinder



Name

DATER
DATEU
DBRK
DCHNID
DCODF
DCOMP
DDACUM
DDBRAK
DDFILL
DDGCMP

DDGVAR
DDHSTR
DDPIPE
DDPLEN
DDPRZR
DDPUMP
DDSTGN
DDTEE
PDDTURB
DDVLVE
DECAYS

DELAY

DELTAR
DFILL
DGBFA

A-4

Function

Date routine

Date routine.

Generates BREAK data dump

Defines id for each variable in a frame of graphics data
Calculates a numeric code based on data types

Dumps one-dimensionai component data.

Gets the address of variables for the ACCUM component.
Gets the address of variables for the BREAK component.
Gets the address of variables for the FILL component.

Gets the address of variables that are common to more than one compo-
nent

Gets the address of variables which are not component-related.
Gets the address of variables for the HTSTR component.

Gets the address of variables for the PIPE component

Gets the address of variables for the PLENUM component.
Gets the address of variables for the PRIZR component

Gets the address of variables for the PUMP component

Gets the address of varniables for the STGEN component

Gets the address of variables for the TEE component

Gets the address of variables for the TURE componer?

Gets th: address of variables for the VALVE component

Iniiializes the decay-heat constants to be consiscent with the ANS51
1979 sta..dard

Provides a time-delay function for the input variable (XIN) The output
(XOUT) is played back with the value that the input had TAU seconds
previously Linear interpolation is used for playback when (TIMET minus
TAU) falls between two stored time values. The user specifies the number
of table storage pairs (NINT) to be saved. Both the time and the value
of the input are stored in the table array as pairs of points.

Calculates transient fuel-cladding gap spacing (only if NFCI = 1),
Generates FILL data dump

Faclors a double precision band matnix by elimination

APPENDIX A



Name

DGBS1

DHTSTR

DLEVEL
DMPIT
DPIPE
DPLEN
DPUMP
DROD1

DSTGEN
DTEE
DTURB
DVLVE
DVPSCL

DVSSL
ECOMP

EDIT
ELGR

ENABIN
ENDDMP
ENDGRF
EOVLY
ERRGET
ERROR
ERRTRP
ESTGEN
ETEE

APPENDIX A

Function
Solves double precision band system A * X = B or TRANS(A) * X = B
using factors computed by suticutine DGBFA

Determines the size of the data dump and writes the restart input data
for a heat-structure component to the dum; ile

Generates VESSEL level data dump
Main module for generating a dump
Generates PIPE data dump.
Generates PLENUM data dump
Generates PUMP data dump

Writes the restart input data arrays for a subset of the heat-structure
component data to the TRCDMP file

Generates STGEN (steam-generator) data dump
Generates TEE data dump

Generates TURB (turbine) data dump
Generates VALVE data dump

Initializes scale factors on derivative of velocities with respect to pressure
for one VESSEL level

Generates VESSEL data dump

Writes hyurodynamic and heat-transfer information for one-dimensional
components to output file

Entry routine for edit module

Converts cell elevations to the slope between cells and converts K-factors
to additive friction-loss coefficients

Enables and processes (CTRL-E)l interrupts

Empties dump buffers and closes dump file

Empties graphics buffers and closes graphics file

Closes overlay bookxeeping

Sets error trap indicators

Processes different kinds of error conditions

Processes trapped errors

Evaluates STGEN (steam-generator) parameters on exphicit pass

Evaluates TEE parameters on explicit pass



Function




GAPHT
GETBIT
GETCRV
GETJTL
GLEVeL

GRAF
GRFGET
GRFPUT
GVSSL1
GVSSL2

HEV

HLFILM

HLFLMR

HOUT
HQR
HQR2
HTCOR
HTIF

HTPIPE

HTSTR1
HTSTR3
HTSTRV

HTVSSL
HUNTS

APPENDIX A

Function

Calculates fuel-cladding gap heat-transfer coefficient
Returns value of bit N of word B
Gets appropriate pump curves from database

Performs dummy return for UNICOS.

Transfers data for axial level IZ from inverted form to stacked form and
calls subroutine PACKIT.

Edits graphics data during transient.

Returns entries in graphics catalog block

Places entries in graphics catalog block

Calculates integrated vessel parameters for graphics purposes

Calculates average value for vessel graphics (integrated values calculat~d
in subroutine GVSSL1)

Calculates the heat of evaporation of liquid corresponding to a given
temperature for low pressures

Calculates wall to liquid heat-transfer coefficient in transition and fi'm
boiling.

Calcuiates wall to liquid heat-transfer coefficient in reflood transition and
film boiling

Controls the outer-iteration logic for a complete time step
Support subroutine for SGEEV

Support subroutine for SGEEV

Computes heat-transfer coefficients.

Calculates the interphasic heat-transfer for the zero-dimensional and one-
dimensiona! components

Averages velocities and generates heat-transfer coefficients for one-
dimensional components

Controls heat-structure prepass
Controls heat-structure postpass

Initializes to zero some VESSEL-component hydro-cell arrays used to
store heat-structure information

Averages velocities and generates heat-transfer coefficients for the vessel

Searches character string for specified search string
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Name

HVFILM

HVNB
HVWEBB
IACCUM
IBRK
ICHL
ICMP
ICMPR
ICOMP
IDEL

IDIFF
IFILL
IFSET

IGACUM
IGBRAK
IGCOMP

IGFILL
IGHSTR
IGPIPE
IGPLEN
IGPRZR
IGPUMP
IGRAF
IGRF
IGSTGN
IGSVCB
IGTEE
IGTURB

A-8

Function

Calculates the vapor heat-transfer coefficient that (s the maximum of the
Bromley, natural-convection, and the Dougall-Rohsenow coefficients.
Calculates vapor heat-transfer coefficient for nucleate boiling
Calculates vapor heat-transfer coefficient for dispersed vapor flow.
Initializes the ACCUM (accumulator) data arrays that are not input.
Initializes the BREAK data arrays that are not input.

Returns character at given position in string (left-justified, blank-filled).
Main module to control the initialization of component data.

Logically compares a real vanable with an integer variable.

Controls the routines that initialize component data

Searches specified substring of string for any one character ir a set of
specified characters

Difference function
Initializes the FILL data arrays that are not input from cars

Initializes three-dimensional interfacial shear at start of each VESSEL
prepass.

Supplies ACCUM (accumulator) data for graphics
Supplies BREAK data for graphics

Supplies graphic output information for most one-dimensional compo-
nents to the graphics COMMON block

Supplies FILL data for graphics.

Supplies heat-structure data for graphics

Supplies PIPE data for graphics.

Supplies PLENUM data for graphics

Supplies PRIZER (pressurizer) data for graphics
Supplies PUMP data for graphics

initializes graphics variables and writes a header to the grap .cs file.
Controls the creation of the graphics dictionary.
Supplies STGEN (steam-generator) data for graphics.
Obtains the signal-variable values

Supplies TEE data for graphics

Supplies TURB (turbine) stage data for graphics

APPENDIX A
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Name

D

J3D
JFIND
JUNSOL

JVALUE

LABELH
LCHPIP

LCHVSS
LCMOVE
LCMTRN
LDCHAR
LENTAB
LEVEL

LEVELI
LEVELR
LININT
LINT4D

LOAD
LOCF
LOCPMP

LOCTEE

LOCTRB

LOCVLY

MACCUM

A-10

Function

Fills boundary array at component junctions. .

Fills boundary array at vessel source junctions
Locates junctions in junction sequence array

Determines junction parameters for connecting and sequenciig compo-
nents.

Converts one character of a string to a binary number. 0-9 returned as
binary mode; blank, as binary 0; all others, as less than 0.

Edits the H20 properties comments.

Defines the pointer to the hydro array data for a one-dimensional com-
ponent

Defines the pointer to the hydro array data for a VESSEL component

Copies data from one pait of LCM to another

Transfers data to LCM

Copies contents of R1 into R2

Computes lengths of various pointer tables

Uses a curve fit Lo obtain the water level in a cylindrical pipe as a function .
of the void fraction.

Transfers data for axial level I1Z from inverted form to stacked form

Transfers data for axial leve! |Z from stacked form to inverted form

Performs linear interpolation on arrays

Linearly interpolates a function table with zero to four independent var:-
ables.

Reads in specially formatted input data
Locates the vanable address

Calculates the required relative vanable location in a common block for

the PUMP

Calculates tne required relative variable location in a common block for
the TEE.

Calculates the required relative variable location in a8 common block for

the TURB

Calculates the required relative variable location in a common block for

the VALVE
Controls modification of an ACCUM (accumulator) component .
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Name

MANAGE

MAPIN
MATSOL

MaN

MBREAK
MCTAIN
MDINIT
MFILL
MFROD

MFUEL
MGAP
MHTR
MIX3D

MIXPRP
MOVLEV
MPIPE
MPLEN
MPRIZR
MPRCP

MPUMP
MSTGEN
MSTRCT
MTEE
MTURB
MVALVE
MVSSL

APPENDIX A

Function

Performs a!! level and rod-data management operations for the VESSEL
and heat-structure components.

Converts data types (for the NPA only)

Solves the vessel-matrix equation A * X = C using the capacitance
method.

Calculates values for electrically heated nuclear fuel-rod insulator proper-
ties.

Controls modification of a BREAK component
Controls modification to a CTAIN component.
Creates the master dictionary table

Controls modification to a FILL component

Orders fuel-rod property selection and evaluates an average temperature
for property evaluation

Calculates uranium-dioxide and uranium-plutonium dioxide properties
Calculates values for the thermal conductivity of the gap-gas mixture
Calculates values for electrically heated fuel-rod heater coil properties

Initializes stabiiizer quantities at start of problem and equivalences stabi-
lizer quantities to basic values when two-step method is not being used

Calculates mixture properties from those of separate phases.
Coptes N elements from array A into array B

Controls modification to a PIPE component

Controls modification to a PLENUM component.

Controls modification of a PRIZER (pressurizer) component

Orders structure property selection and evaluates an average temperature
for property evaluation

Controls modification of a PUMP component

Controls modification of a STGEN (steam-generator) component
Calculates properties for certain types of steel

Controls modification of a TEE component

Cantrols modification of a TURB (turbine) component

Controls modification of a VALVE component

Controls modification of a VESSEL component
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e

Name

POST3D
POSTER
PRCINT
PRCNPA

PREFWD
PREINP

PREP
PREP1D
PREP3D
PREPER
PRIZR1
PRIZR2
PRIZR3
PRZR1X
PSTEPQ

PTRSA
PTRSPL
PUMP1
PUMP2
PUMP3
PUMPD
PUMPI
PUMPSR
PUMPX
QADIJUST
QTIME
RIMACH
RACCUM

APPENDIX A

Function

Controls postpass calculation for the VESSEL
Performs postpass calculation for one-dimensicnal components
Processes interrupts

Processes NPA commands that affect TRAC execution during an NPA
simulation

Prepares for evaluation of the three-dimensional wall shear coefficients

Converts free-furmat TRACIN deck to format used by TRAC input sub-
routine.

Controls prepass calculation for one time step.

Controls the piepass calculation for one-dimensional components.
Controls prepass calculation for three-dimensional cor ponents
Performs prepass calculation for one-dimensional components
Controls PRIZER (pressurizer) prepass

Controls PRIZER (pressurizer) outer iteration

Controls PRIZER (pressurizer) postpass

Evaluates pressurizer mass change during steady-state calculation

Controls printing, dumping, and graphing of data at the completion of a
time step.

Initializes general vessel pointers for use by signal variables and graphics
Initializes general plenum pointers for use by signal variables and graphics.
Controls PUMP prepass

Contrals PUMP outer iteration.

Controls PUMP postpass

Calculates head and torque from PUMP curves

Supplies built-in PUMP characteristics

Evaluates PUMP momentum and energy source

Calculates PUMP head and torque

Dummy routine for UNICOS

Mimics CTSS subroutine QTIME for UNICOS

Support subr~utine for SGEEV

Reads ACCUM (accumulator) data input file and creates pointer table
for these data
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Name

RBREAK

RCNTL
RCOMP

RCPVEC
RDCOM3
RDCOMP
RDCRDS
RDCRVS
RDDIM
RDLCM
RDREST
RDZMOM
wEACCM

READI
READR
REBRK

RECNTL
RECOMP

RECPV

REFILL

REHTST

nEPIPE

REPLEN

A-14

Function

Reads BREAK data from input file and creates a pointer table for these
data.

Reads in signal-variable, trip, and controller input data.

Reads data common tc most one-dimensional components from input
files and writes these data to output file.

Prucesses the control-panel vector input cards.

Controls reading of three-dimensional VESSEL data trom input file.
Controls reading of component data from inpu file

Reads time-s*ep cards until DTMIN < 0 is encountered.

Reads PUMP curves from input file

Reads number of points on PUMP curves from input file

Moves data from LCM to SCM

Controls reading of component data from a restart dump file
Defines momentum cell reciprocal lengths and weighting factors

Reads ACCUM (accumulator) data from a restart dump and creates a
pointer table for these data

Reads integer data in 114 format
Reads real data in E14 6 format

Reads BREAK data from a restart dump and creates a pointer table for
these data

Reads the signal-variable, trip, and controller data from the restart file

Reads data from a restart dump common to most one-dimensional com-
ponents,

Adds the restart file control panel vector data that was not specified on
input and prints it out.

Reads FILL data from a restart dump and creates a pointer table for
these data.

Reads heat-structure scalar input data from a restart dump and creates
a pointer table for these data

Reads PIPE data from a restart dump and creates a pointer table for
these data

Reads PLENUM data from a restart dump and creates a pointer table
for these data
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Name

RRDLCM
RROD1
RROD2
RSPERR
RSTGEN

RTEE
RTURB

RVLVE

RVSLCM
RVSSL

S1DPTR
SATDER

SATPRS

SATTMP

SAVBD
SAXPY
SCLMOM

SCLYBL
SCMLCM

SCOPY
SCOPYM
SDOT
SEDIT
SEPDI
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Function

Reads rod data from LCM.

Reads basic ROD input parameters.

Reads and checks array data for powered heat structures,
Support subroutine for IBM

Reads STGEN (steam-generator) data from input file and creates pointer
tables for these data.

Reads TEE data from input file and creates a pointer table for these data.

Reads TURB (turbine) stage data from input file and creates a pointer
table for these data.

Reads VALVE data from input file and creates a pointer table for these
data

Reads VESSEL data from LCM

Reads VESSEL data from input file and creates a pointer table for these
data.

Sets pointers for one-dimensional components.

Calculates the derivative of saturation temperature of vapor with respect
to pressure.

Calculates saturation pressure of vapor corresponding to a given temper-
ature.

Calculates saturation temperature of vapor corresponding to a given pres-
sure

Moves boundary information into component arrays.
Performs single precision computationof Y = A * X 4 Y

Sets up geometri: scale factors for velocities to improve momentum con-
servation

Scales input table according to scale factor passed by input routine.

Checks for overflow. Transfers fixed-length, variable-length, and pointer
tables to LCM. Adjusts pointers

Support subroutine for SGEEV.

Support subroutine for SGEEV.

Computes single precision inner product of single precision vectors
Wirites short edit to TRCOUT file.

Computes separator side-arm void fraction and mixture velocity
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Name

SGEMM
SGESL

SGESLM
SGESLV
SHIFT
SHIFTB

SHIFTR

SHRINK

SIGMA
SMOVE
SMOVEN
SOUND
SPLIT
SRCHCL

SRCHMDT
SRCHTB
SRCHVT

SRTLP
SSCAL
SSEPOR
SSL4a4
SSLSS
SSWTCH
STBME
STBME3
STBMPL
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Function

Performs matrix multiplication.

Solves the real system A * X = B or TRANS(A) * X = B using the
factors computed by or SGEFA.

Solves a system of linear equations with many right hand sides
Solves the real system A * X = D or TRANS(A) * X = B.
Support subroutine for IBM

Translates the table's abscissa-coordinate values so that the function
value F in the table corresponds to an abscissa-coordinate valu >f 00

Shifts an argument to the right by a specified number of bits and fills
remaining space with zerus

Removes rows of conduction nodes within the heat-structure ro s or slabs
during reflood

Returnis surface tension of water as a function of pressure

Moves a character from one string to another

Moves a specified number of characters from one string to another
Performs homogeneous equilibrium sound speed calculation

Reads appropriate data from PUMP curves.

Searches the component list for component number ICOMP. It returns
the component LCM pointer in IBASE. if the component is not found, 1t
sets |[ERR to 1 and returns —1 in IBASE

Searches master dictionary tabel for a specified entry
Searches variable name table for a specified entry.

Searches a set of master dictionary variable name table entries for a
specified vanable name.

Sorts components into loops and reorders them for the network solution
Performs single precision vector scale X = A * X,

Performs detailed calculation of a steam-water separator

Hardwired version of subroutine SGESL for 4 x 4 matrices

Hardwired version of subroutine SGESL for 5 « 5 matrices

Mimics CTSS subroutine SSWTCH for UNICOS.

Sets up the stabilizing mass and energy equations

Sets up stabilizer mass and energy equations for VESSEL compenent

Sets up the stabilizing mass and energy equations for the PLENUM
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STDIR
STEADY
STGABD

STGEN1
STGENZ
STGEN3
STGN1X

STGN3X
STGNTX
STGPTH
STINIT

STPCLS
STPMSG
STPRD
STPWRT
STRLER

SVSET
SVSET1

SVSET3

SVSETH
SWITCH

TEE1
TEEIX
TEE2
TEE3
TF1D

APPENDIX A

Function

Sets up direct inversion of the VESSEL matrix
Generates a s*eady-state solution

Finds the void fractions in a4jacent cells within a steam generator to use
in heat-transfer averaging

Controls STGEN (steam-generator) prepass
Controls STGEN (steam-generator) outer iteration
Controls STGEN (steam-generator) postpass.

Evaluates heat-transfer coefficients for STGEN (steam-generator) sec-
ondary side.

Performs STGEN (steam-generator) heat-transfer calculation.
Computes needed quantities on prepass for STGEN (steam generator)
Initializes TRAC communication to the NPA controller

Creates the problem specific Data Dictionary File used by the NPA Pro-
tocol Handler

Closes disk file used for NPA controller communication
Checks for message from the NPA controller

Reads message from the NPA controller.

Writes message to the NPA controller

Provides error message for NPA controller communication failure (re-
served for future use).

Evaluates location-independent (0 = ISUN < 17) signal variables

Evaluates signal variables with locations defined in the one-dimensional
components

Evaluates signal vaniables with locations defined in ths: three-dimensional

VESSEL.
Evaluates signal variables defined in heat structures

Moves one level of VESSEL data starting at 1ADD1 to IADD2 and vice
versa. (Not currently maintained.)

Controls TEE prepass

Calculates source for TEE side-leg hydrodynamics
Controls TEE outer iteration

Controls TEE postpass

Drives one-dimensional hydrodynamics routines
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TF1D,

TF1DS1

TF1DS3

TF3DS

TF3DS1

TF2DS3

THPLBK

TFPLN

THCL

THCV

THERM?2
THERMO
TIMCHK

TIME
TIMER
TIMING
TIMSTP
TIMUPD

TMPPTR
TMSFB
TRAC
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Function

Solves the hydrodyramic eauations for the one-dimensional two-fiuid pipe
me del.

Suts up initia' velocity approximations and their pressure derivatives for
the one-dimensional two-fluid pipe model

Pericrme Lhe backward-substitution for the one-dimensional two-fluid
pip e model

Sets up bosic mass and energy equations for three-dimensional VESSEL
omponent.

Estimates new-time velocities from motion equation and calculates vari-
ation of velocities with respect to pressure for three-dimensional VESSEL
covnponent.

Performs back-substitution for three-dimensional VESSEL component.

Performs the backward-substitution for the basic difference equations for
the PLENUM (similar to TF1DS3 for the other one-dimensional compo-
nents)

Solves the basic hydrodynamic equations for the PLENUM (similar to
TF1DS for the other one-dimensional components)

Returns thermal conductivity of water as a function of pressure and en-
thalpy

Returns thermal conductivity of steam as a function of pressure and en-
thalpy

Computes THERMO flag for use with MELPROG.
Calculates thermodynamic properties of water

Checks elapsed time to see whether certain functions should be per-
formed.

Mimics CTSS subroutine TIME for UNICOS
Timekeeping routine

Mimics CTSS subroutine TIMING for UNICOS.
Sets up time-step and time-edit interval times.

Updates start-of-time-step values with end-of-time-step values for one
VESSEL level.

Sets up temporary pointers for subroutines PREIFD and PREFWD
Calculates the minimum stable film-boiling temperature (T i)

Supplies MAIN program
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TRANS
TRANSF

TRBPOW
TRBPRE

TRBPST

TRIP
TRIPS

TRISLY
TRPSET
TURB1

TURB2
TURB3
UNPKIT
vALUE
VDPCSS

VELBC
VFWALL3
VISCL
VISCV
VLEVEL
VLVE]
VIVE2
VLVES3
VLVEX
VMCELL
VOLFA

APPENDIX A

Function

Controls overall calculation for each time step.

Transfers data from the STGEN (steam-generatur) internal network ma-
trix to the loop network matrix.

Calculates the efficiency and power output of a turbine stage

Calculates the data pertaining to the entire turbine-generator set (com-
mon/sum all stages) during the prep stage

Calculates the data pertaining to tiie entire turbine-generator set (com-
mon /sum " stages) during ta. post stage

Returns status of a trip

Evaluates the coni ol parameters for the beginning of the time-step sys-
tem state

Solves linear systen; of the form A * X = B where A 1s tridiagonal
Sets up trip status flags

rerforms the prep stage calculation for the turbine stage componeni time-
step initialization.

Controls turbine stage outer iteration
Controls turbine stage postpass

Unpacks data packed by subroutine PACKIT
Converts an ASCII string to its binary valie

Defines necessary signal variables, control blocks, and controtlers for con-
strained steady-state calculation

Sets velocities at internal FILL boundaries {or a vessel

Evaluates three-dimensional wall shear coefl:cients

Evaluates viscosity of water as a function of pressure and enthalpy
Evaluates viscosity of steam as a function of pressure and enthalpy
indicates the beginning of a certain level in a VESSEL

Controls VALVE prepass

Controls VALVE outer iteration.

Controls VALVE postpass

Evaluates the value of the flow-area change action for a VALVE
Converts a VESSEL cell number to a VESSEL-matrix cell number

(Calculates cell volume flow areas



Name

VoLV
VRED

VSLGEO
VSLLEV
VSLROD
VSSLl
VSSL?
VSSL3
VSSROD
VSSSSR
WACCUM
WARRAY
WBREAK
WCOMP
WDRAG
WEFILL
WHTSTR
WIARR
WLABI

WLABR

WLEVEL
WPIPE
WFLEN
WPRIZK
WPUMP
WRCOMF
WRITEE

Function

Calculates ~ell-averaged phase velocities for one-dimensional components

Defines VESSEL velocities in the upstream radial direction for the inner
ring. (Nct currently used )

Wirites the geometry cards ‘o0 itz viS5eL on tne ic tart nput file.
Whrites the level data cards for the VVESST! on the restart input file.
Writcs the rod-data cards for the VESSEL to the restart input file.
Performs prepass calculations for VESSEL dnamics.

Performs inner iterations for VESSEL dvr s mics.

Performs postpass calculations for VESSEL dynamics.

Transfers data between hydro and hiat-structure databases.
Performs steady-state change ratio calculations for vessel.

Wirites selected ACCUM (accumulator) data to output file TRCOUT
Writes a real array to ¢’ ~ut file TRCOUT.

Whrites selected BREAK data to output file TRCOUT

Controls the writing of selected component data to output file TRCOUT.
Calculates coefficient of friction for liquid and vapor at the wall
Writes selected FILL dita to output file TRCOUT.

Writes selected heat-structure data to output file TRCOUT

Writes an integer array to output file TRCOUT

Edits labeled integer-valued input data that is to be read by the LOAD
subroutine.

Edits labeled real-alued input data that is to be read by the LOAD
subroutine

Writes real VESSEL level array to output file TRCOUT.

Writes selected PIPE data to output file TRCOUT

Writes selected PLENUM gquantities to the output file TRCOUT
Wirites selected PRIZER (pressurizer) data to output file TRCOUT.
Writes selected P. MP data to output file TRCOUT

Writes data common to one-dimensional components to output files,

This subroutine does not combine numbers as does subroutine R. It
merely puts an E at the end of the data for a vanable to make it com-
patible with the LOAD subroutine of the TRAC code
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Name

WRITEI

WRITER

WRLCM
WSTGEN
WTEE
WTURB

WVLVE
WVSSL
XOR

ZCORE

ZEROV
ZPWHCI

APPENDIX A

Function
Takes integers and puts them into format compatible with the LOAD
subroutine of TRAC

Takes real numbers and puts them inio format compatible with the LOAD
subroutine of TRAC

Transfers a given number of words from SCM to LCM
Writes selected STGEN (steam gencrator) data to output file TRCOUT
Writes selected TEE data to output file TRCOUT

Wirites selected quantities to the printer for a TURB (turbine) stage com-
ponent

Writes selected VALVE data to output file TRCOUT,
Worites selected VESSEL data to output file TRCOUT
Support subroutine for IBM

Calculates axial locations for CHF and transition boiling within the core
and computes associated void fractions

Zeroes velocities at zero flow areas

Evaluates axial power shape based on user input






TRAC SUBROUTINE CALLING SEQUENCE

TRAC
CALLS

APPENDIX B

PRODCTN , ERROR ,GETUFL , LENTAB , BLKDAT SAMPLE ,SAMPON  GETJTL .
SETLCM , LOADTIM LABELP ,INPUT | INIT ,DMPIT ,STEADY TRANS ,QTIME |,
CLEAN | SAMPTRM , EXIT.

ACCM1X
CALLED BY

ACCUM1.
ACCMBD
CALLS
J1D.
CALLED BY

ACCUMY , ACCUM2 L ACCUMS | IACCUM.

ACCUM1
CALLS

CALLED BY

PREP1D
ACCUM2
CALLS
INNER , ACCMBD
CALLED BY
ouT1D

SAVBD ,J1D ,PREPER ,ACCM1X  ACCMBD BKMOM

ACCUM3
CALLS
POSTER , SAVBD
CALLED BY
POST
ALLBLK
CALLS
INDEL
CALLED BY
PREINP,
ASIGN
CALLED BY

INFUT.
ASTPLN
CALLED BY

PLEN3
AUXPLN
CALLS
GETBIT.
CALLED BY
PLEN2.
BACIT
CALLED BY
vV8SL2
BAKUP

CALLED BY
VS8SL2 ,VSSL3
BANSOL

CALLED BY

RODHT
BOPLEN

APPENDIX B

, EVALDF ,CONSTB , ACCMBD



LLED 8Y

INPUT ,PLEN1 , PLEN2

CALLS
LOCHAR
LED BY
DMPIT | IGRAF , RDRE®

EDBY
ENDDMFP | ENDGRF

LLS
ERROR , RDLCM
LED BY
RDREST  REACCM
REPRZR . REPUMP

PLEN3




. CALLED BY

POSTER.
BKSTB3

CALLS
SFASS ,85L85 ,CONCF.
CALLED BY

VSSL3.
BLKDAT
CALLED BY
TRAC.

BREAK1
CALLS
BREAKX ,J1D SHFTB ,GETBI.
CALLED BY

PREP1D.
BREAK2
CALLS
J1D.
CALLED BY

ouT1D.
BREAK3
CALLS
THERMO , FPROP ,J1D
CALLED BY

POST.
BREAKX
CALLS
TRIP ,SHIFTB ,EVLTAB ,LININT ,ERROR THERMO ,FPROP , MIXPRP |
‘ SATTMP.
CALLED BY
BREAK1,
BSPDDC
a8SPDSL
CBEDIT
CALLED BY
RCNTL , RECNTL
CBSET

CALLS

ERROR ,CONBLK , DELAY ,LININT  LINT4D
CALLED BY

TRIPS.

CALLS
ERROR.

CALLED BY
CHKBD.
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CH3SAV
CALLED BY
IACCUM | INPUT ISTGEN ,ITEE ,ITUPB MLVE
CHBSEY

CAL'S
OFFBIT , SETBIT.
CALLED BY
o WCCUM ,INPUT ,ISTGEN ,TEE ,MURB ,IVLVE

CALLS
SATPRS.
CALLED BY
HTCOR , HTVSSL.

CALLS
CHF1 ,ERROR , SATPRS.
CALLED BY
HTCOR , HTVSSL
CHF1

CALLED BY
CHF ,HTCOR ,HTVSSL.
CHKBD

CALLS
CHBD ,ICMPR ,GETBIT.
CALLED BY
IACCUM | INPUT ,ISTGEN ,ITEE ,ITURB IVLVE
CHKSR
CALLS
ERROR.
CALLED BY

RVSSL.
CHOKE
CALLS
SOUND , THERMO ,ERRPOR ,(SGEFA ,SGEDI SGESL ,SGEEV ,SATPRS
CALLED BY
TF1DS1.

ROLCM ,RRDLCM ,IRODL ,IROD ,WRLCM
CALLED BY
ICOMP.
CivSSsL

CALLS
RVSLCM ,IVSSL ,ERROR ,LDCHAR ,WRLCM PTRSA L JFIND

CALLED BY
ICOMP,
CLEAN

CALLS
IOVLY ,ENDGRF ,ENDDMP ,COMPACT , EOVLY

CALLED BY
TRAC ,LERROR ,LERRTRP ,KSTEADY

CLEAR
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CALLED BY

CORE1 ,HOUT ,ICOMP ,INPUT ,LCMTRN LOAD OUTID ,OUT3D ,OUTER ,

PLEN1 ,PLEN2 ,PLEN3 ,PNTROD ,PNTVSS ,POf  POST3D ,PREP1D ,

PREP3D , PREPER ,RACCUM RBREAK ,RCNTL L, HCOMP ,RDDIM ,REROD1

JREVSSL ,RFILL ,RHTSTR ,RPIPE ,RPLEN LRPRRZR ,RPUMP A RROD2 ,

RSTGEN ,RTEE ,RTURB ,RVLVE  (RVSSL ,S1DPTR ,SCMLCM SEDIT , SRTLP

,STGEN1 ,STGEN2 , STGEN3 WVSSL.
COMPY

CALLED BY
INPUT ,ISTGEN ,ITEE ,ITURB ,IVLVE.
CONBLK

CALLS
ERROR.
CALLED BY
CBSET.
CONCF

CALLED BY
BKSPLN ,BKSSTB , BKSTB3 , FF3D
CONSTB

CALLS
STBME ,J1D ,ICMPR
CALLED BY
ACCUM3  PIPE3 ,PRIZR3 ,PUMP3 ,STGEN3 TEE3 , URB3 L VLVE3
COPYA
CALI ED BY

MIX3D,
CORE1
CALLS

ZCORE ,HTVSSL HTCOR ,EVFXXX ,ZPWHCI ,RFDBK |, RKIN
CALLED BY
HTSTR1.

TRIP ,MANAGE ,CLEAR ,ERROR ,MFROD FNMESH A SHRINK A EXPAND

MANAGE ,ERROR FROD ,EVALDF
CALLED BY
HTSTR3.
CPLL

CALLED BY
FPROP.
CPVV1
CALLED BY
FPROP ,HTCOR ,HTVSSL ,|#"WEBB
CTAINI

CTAIN3
CALLS
ERROR.
CALLED BY

AFPPENDIX B
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POST
CWVES!
CALLS
RVSLCM L, WVSSL
CALLED BY
WCOMP
CYLHT
CALLED BY
POSTER , STGN3X
DATEU
CALLS
DATE
CNL F'CI BIY
INPUT
DBRK
CALLS
BFOUNT
CALLED BY
DMPIT
DCODF
CALLED BY
QAD
D: OMP
CALLS
ROLCM BFOWU
CALLED BY
DMPIT . DPIFE

RRODZ

LININT . ERROR
CALLED BY

CBSET

ELTAR

CALLS

CDTHEX ,FTHEX
CALLED BY

C}Aﬁ‘"!"l‘

CALLS
RDLCM

CALLED BY
DMPIT
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CALLS
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CALLED BY
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DV}
A $
4 v A
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CALLS .
RVSLCM , BFOUT  MANAGE ,DLEVEL

CALLED BY
DMPIT,
ECOMP
WARRAY  GETBIT.
CALLED BY
WACCUM WBREAA ,WFILL ,WPIPE  WPRIZR WPUMP A WETGEN WTCIE |
WTURB  WVLVE
EDIT
CALLS
IOVLY [ SEDIT ,WCOMP  EOVLY,
CALLED BY
P ERAROR  ERRTRP HOUT  PETEPQ ,STEADY TIMCHK A TRANS
G
CALLS
ERROR  WARRAY.
" \LLED BY
ICCUM ,INPUT ISTGEN ,ITEE ,ITURB IVLVE
ENDDMP
CALLS
BFCLOS ,ERROR , COMPACT
CALLED BY
CLEAN
ENDGRF
CALLS
BFCLOS ,ERROR , COMPACT
CALLED BY
CLEAN.
EOVLY
CALLS
ERROR
CAL.ED BY
CLEANW ,DMPIT EDIT  ERROR ,GRAF INIT  INPUT OUTID ,OUT3D
%l{;isﬂ POST ,PREP ,PREP1D ,PREP3D ,RDCOM3 RDCOMP  RDREST ,
IPS.
ERRGET
CALLS
QXIT.
ERROR
CALLS
DMPIT (EDIT QTIME ,QADJUST  EOVLY CLEAN
CALLED BY

TRAC ,BFIN ,BFOUT ,BITS ,BREAKX CBSET ,CHBD  CHF  CHKSR
CHOKE CIVSSL ,CONBLK ,COREY ,CORE3 .CTAINY CTAINZ ,CTAIN3 DELAY
,DMPIT _ELGR .ENDDMP  ENDGRF ,EOVLY ,EVALDF  EVFXXX EVLTAB
FBRCSS ,FILLX ,GETBIT ,GETCRV GRAF L GRFPUT MHOUT A HTSTR3 |
HVWEBE ICOMP IGRAF | INIT | INPUT |ISTGEN ITEE ,IVLVE  JFIND ,LOAD
LOCPMP LOCTEE ,LOCTRB ,LOCVLV ,MANAGE  MATSOL MFROD ,MSTRCT
/NAMLST  NXTCMP , OFFTKE .OUTID ,OUT3D ,OUTER ,POST ,POST3ID
LPOSTER . PREFWD , PREINP , PREP1D , PREP3ID PTRSDL ,PUMPD | PUMPSRH |
RACCUM , RBREAK RCNTL ,RCOMP ,RDCOMP RDCRDS ,RDDIM RDREST |
REACCM ,READI ,READR ,REBRK RECNTL  REFILL  REMTST A REPIPE |
REPLEN REPRZR ,REPUMP  RETEE  RETURB  REVLVE REVSSL A RFDBK |
RFILL . RMTSTR . RKIN RODHT RPIPE  RPLEN RPRIZR RPUMP RRODM
RROD2 .RSTGEN ,RTEE ,RTURB ,RVLVE ,RVSSL . SCLMOM  SETLCM |
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SOUND SRTLP ,STEADY  STGN3X ,SVSET L SVSET1 SVSET3  SVSETH
TEEY , THERMO  TIMCHK TIMSTP ,TRANS ,TRIP  TRPSET ,VLVEX V&SL1 |

vEsL2
ERATRAP

CALLS
QXIT ,POST ,DMPIT EDIT ,CLEAN EXIT, ‘
ESTGEN

CALLED BY
ISTGEN ,STGEN1  STGENS

CALLED BY
ITEE ,TEE! ,TEES

ETEE

CALLED BY
ACCUM3 ,CORE3 ,PIPES ,PRIZRS PUMPI STGEM3 ,TEE3  TURB3 ,VLVE3
, VS8L3
EVFXXX
CALLS
ERROR  TRIP  LININT EVLTAB

CALLED BY
COREY ,PIPEY ,PIPE3 ,PUMP3  RKIN TEE1X  TEE3 ,TURB*  VLVE3

ERROR | LININT,
CALLED BY
BREAKX  EVFXXX ,FILLX ,PUMPSA A TRBPRE VLVEX
EXPAND

CALLED BY

CORE1.
FAXPOS
CALLED BY
RVLVE , VLVEX.
FBRCSE

CALLS
ERROR.
CALLED BY

INPUT.
FEMOM
CALLS
LEVEL ,GETBIT,
CALLED BY
PREPER
FEMCLR

CALLS
SATTMP,

CALLED B
VSHLY.
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CALLED BY
VESLY.
FF3D

CALLS
GVESL1 , SETBIT , CONCF.
CALLED BY
VSSLI.
FILLY

CALLS
FILLX 1D | GETBIT
CALLED BY
PREP1D.
FiLL2

CALLS
JiD.
JUTID
FILLa

CALLS
Ji1D
CALLED BY
POST.
FILLX

CALLS
TRIP  BHIFTB ,EVLTAB ,LININT (ERROR THERMO  FPROP  MIXPRP
CALLED BY

FILLY.
FLTOM
CALLS
LOCHAR , VESROD |, PIPROD
CALLED BY
HTSTR1.
FLUX

CALLS
GETBIT , ICMPR
CALLED BY
PREPER
FLUXES

CALLED BY

V8SL2.
FNMESH
CALLED BY

COREY.
FPROP
CALLS
CPLL ,CPW1 ,VISCL ,VISCV ,THCL THCV ,SIGMA
CALLED BY

BREAK3 ,BREAKX ,FiLLX ,IBRK | IFILL INPUT ,IVESL ,LPLEN3 ,POSTER ,

VSSLS.
FROD

CALLS
MWRX | GAPHT , RODHT.
CALLED BY
CORE3.
FTHEX

CALLED BY
DELTAR
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FWALL
CALLS
FWKF.
CALLED BY
PREPER.

CALLED BY
FWALL | IWALLS.

LS
DELTAR , MGAP,
CALLED BY

FROD.
GETRIT

CALLS
ERRORA.

CALLED BY
AUXPLN  BREAKY ,CHXKBD  CIF3  ECOMP FEMOM  FiLLY  FLUX  GRAF |
MTIF PLEN3 ,POSTER ,PREPER  STBME  TEE3 TF1DS  TF1DS1 [ TF1DS3 |
TF3DS ,TF3D81 TFPLBK , TFPLN

FWKF

ERROR  SPLIT
CALLED BY
PUMPD

LEVELI , PACKIT
CALLED BY
GRAF | IGRAF

CALLS
IOVLY ,ROLCM ,GRFGET ,BFOUT QTIME RVELCM  RRDLCM  RHVGET
SETLCM , PACKIT ERROR ,MANAGE , GLEVEL ,EOVLY ,LOCTRB GETBIT
CALLED BY
PSTEPQ , STEADY , TRANS
GRFGET

CALLED BY
GRAF | IGRAF.
GRFPUT

CALLS
SETLCM | ERROR,

CALLED BY
IGACUM | IGBRAK  IGCOMP | IGFILL ,IGHSTR IGPIPE  IGPLEN | IGPRZR | IGPUMP
o JIGRAF IGSTGN | IGSVCB |, IGTEE | IGTURB ,IGVLVE IGVESL
GVSSL1Y

CALLED BY

FF3D.
GVSSL?
CALLS
SATTMP.
CALLED BY
VSSL3

CALLED BY
SATDER , SATTMP  SETEOS THERMO

GRAF

HEV

HLFILM
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CALLED BY

HTCOR.
HLFLMR
CALLED BY
HTVSSL

CALLS
CLEAR ,OUTER ,EDIT ,POST ,ERROR QTIME.
CALLED BY
STEADY , TRANS
HTCOR

CALLS
CHEN ,CHF1 CHF | {VNB , TMS"B HVFILM ,HLFILM ,VIECY
THCV.

CALLED BY
COREY  MHTPIPE L STGNIX.

CALLS

OFFBIT ,SETBIT . SATPRS ,GETBIT
CALLED BY

PLEN2 ,TFID ,VSSL2

CALLS
HTSTRV  ROLCM , RROULCM  MANAGE  FLTOM CORel1 |, WRLCM
CALLED BY

PREP.
HTSTR3
CALLS
RDLCM , RRDLCM , MANAGE  ERROR ,CORE3 WRLCM
CALLED BY

POST
HTSTRV
CALLS
RDLCM | RVSLCM  MANAGE , SETVA
CALLED BY
HTSTRY.

CHEN ,CHF1 ,CHF  HVNB  HLFLMR HVWEBB A VISCV ,CPW1  THCV

CALLED BY

CORE1.
HVWEBB
CALLS
ERROR ,CPW1 [ THCV ,VISCV
CALLED BY
HTVSSL
HUNTS

CALLS
IDEL
CALLED BY
PREINP
HVFILM
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HVNB

WWCCUM

ICMPR

ICOMP

IDEL

IDIFF

IFILL

IFSET

IGACUM

IGBRAK

CALLED BY
HTCOR,

CALLED BY
HTCOR | HTVSSL

CALLS
JUNSOL , VOLFA | IPROP ,CHBSAV  ACCMBD CHBSET ,WRLCM | CHKBD |
ELGR |, JFIND.

CALLED BY
ICOMP.

CALLE

THERMO  FPROP  MIXPRP WHLCM  JiD  JFIND
CALLED BY

ICOMP.

CALLED BY
INPUT.

CALLED BY
CHKBD ,CONSTB ,FLUX | INNER  PREPER SAVBD K SETBD

CALLS
ERROR ,RDLCM W'(CM  CLEAR  CIMTST SETLCM ,IPIPE | ITEE ,IPUMP |
IFILL IBRK |, IPRIZF;  ISTGEN ,IACCUM ,ITURB IVLVE ,IPLEN  SETNET .
CIVESL , LOCTRG LOCVLV.

CALLED BY
INIT,

CALLED BY
HUNTS  INPUT , PREINP.

CALLED BY
JVALUE

CALLS

THERMO FPROP  MIXPRP ,WRLCM J1D JFIND.
CALLED BY

ICOMP.

CALLS
SETVA

CALLED BY
V8SL1.

CALLS

IGCOMP |, GRFPUT
CALLED BY

IGRAF,

CALLS
GRFPUT.

CALLED BY
IGRAF.

IGCOMP
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GRFFUT.
CALLED BY

IGACUM | IGPIPE | IGPRZR ,IGPUMP IGSTGN IGTEE [ IGTURB | IGVLVE

GFIL.
CALLS
GRFPUT.
CALLED BY
IGRAF .

IGHSTR
CALLS
GRFPUT.
CALLED BY
KGRAF,

CALLS
IGCOMP , GRFPUT.
CALLED BY

IGRAF .
IGPLEN
CALLS
GRFPUT.
CALLED BY

IGRAF
IGPRZR
CALLS
IGCOMP , GRFPUT
CALLED BY

IGRAF
KGPUMP
CALLS
IGCOMP , GRFPUT.
CALLED BY
IGRAF

CALLS

KiPIPE

IGHAF

BFALOC ,ERROR ,SETLCM ,GRFPUT ,IGSVCB RDLCM | IGPIPE  IGTEE |
IGPUMP | IGFILL. IGBRAK | IGPRZR ,IGSTGN ,IGVSSL | IGACUM IGTURB | IGPLEN
,IGHSTR | IGVLVE ,BFOUT GRFGET ,RVSLCM  RVVGET A PACKIT MANAGE

GLEVEL ,LOCTRB.
CALLED BY

INIT.
IGSTGN
CALLS
GRFPUT | IGCOMP.
CALLED BY

IGRAF.
IGSVCB
CALLS
GRFPUT.
CALLED BY
IGRAF

CALLS
GRFPUT , IGCOM®
CALLED BY

IGRAF
IGTURE

IGTEE

B-14
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. CALLS
IGCOMP , GRTPUT.
CALLED BY

IGRAF
IGVLVE

IGCOMP  GRFPUT.
CALLED BY
IGRAF .

IGVSSL
CALLS
GRFPUT.
CALLED BY

ILEVEL
CALLS
WIARR | LEVELR,
CALLED B8Y
RVSSL.

CALLED BY
ALLBLK , PREINP

CALLS

IOVLY ,ICOMP | IGRAF L ERROR L EOQVLY
CALLED BY

TRAC.

CALLS
SETVA

CALLED BY
IVESL.

CALLS
ON1123 . TFID 01D ,iCMPR
CALLED BY
ACCUMZ | PIPE2 ,PRRZR2 ,PUMP2  STGEN2 TEE2 ,TURB2 ,VLVEZ2

KGRAF.

INPUT

CALLS
FEXIST ,ERROR ,CLEAR ,IOVLY ,DATEU TIME ,PREINP  READI L SETLCM ,
SETEOS NAMLST A ASSIGN ,READR LOAD ,ISORT WLABI A, WARRAY ,
RCNTL ,NXTCMP , RDCOMP RDCOM3 ,RDREST , ORDER ,FBRCSS ,SRTLP
VMCELL , ASIGN ,EOVLY ,JUNSOL ,VOLFA COMPI [ IPROP L CHBSAV ,
SETBD ,CHBSET WRLCM ,CHKBD ,ELGR ,THERMO  FPROP MIXPRP
BDPLEN ,MANAGE | LININT , ZPWHCI LCHVSS ,LDCHAR  LCHPIP A TRSLBL |
IDEL JCHL ,JFIND.

CALLED BY
TRAC.

CALLED BY
CLEAN ,DMPIT  EDIT ,GRAF ,INIT INPUT  ,OUTID ,OUT3D ,OUTER ,POST
JPREP ,PREP1D , PREP3D ,RDCOM3 , RDCOMP RODREST , TRIPS

IOVLY

IPIPE
CALLED BY

ICOMP.
IPLEN
CALLED OY
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IPRIZA

IPROP

PUMP

IRODL

ISORT

ISTGEN

ITEE

IVLVE

IVSSL

IWALLY

JiD

B-16

ICOMP.

CALLED BY
ICOMP.

CALLED BY
ICCUM ,INPUT ISTGEN ITEE ,ITURB M.VE

CALLED BY
ICOMF .

CALLED BY
CIHTSET.

CALLED BY
CIHTST

CALLED BY
INPUT.

CALLS
JUNSOL ,VOLFA ,COMP!  IPROP  CHBSAV J1D |, {/iBSET ,SETBD ,ERROR
, ESTGEN WRLCM ,CHKBD ELGR | JFIND

CALLED BY
ICOMP,

CALLS
COMP| | IPROP ,JUNSOL ,VOLFA  CHBSAV SETBD ,CHBSET  ETEE
WRLCM CHKBD ELGR [ ERROR ,JFIND

CALLED BY
ICOMP.

CALLS
TRBPOW , JUNSOL ,VOLFA ,COMPI  IPROP CHBSAV  SETBD L CHBSET
WRLCM  CHKBD ELGR | JFIND

CALLED BY
ICOMP.

CALLS
JUNSOL ,VOLFA COMP'  IPROP ,CHBSAV SETBD ,CHBSET ,ERROR |,
WRLCM ,CHKBD ELGR JFIND

CALLED BY
ICOMP.

CALLS
SETVA  MANAGE  WLEVEL , THERMO , FPROP INITBC , RDZMOM | IWALLS |
MIX3D , SCLMOM .DVPSCL , SETBDT ,J3D

CALLED BY
CIVSSL.

CALLS

SETVA  FW\F
CALLED BY

IVESL.

CALLED BY
ACCMBD ,ACCUM i  BREAK1 ,BREAK2 A BREAK3 CONSTB  FILLY . FILL2 |
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. FILLS ,IBRK IFILL ,INNER ,ISTGEN ,SETBD ,STGEN' STGEN2 A STGENS ,
#0 STGNTX | TEE1X

CALLS
MANAGE ,OF1123  SETBIT,
CALLED BY
IVESL ,POSTID ,VESLY ,VSSL2 ,LVSSL)

CALLS
ERROR
CALLED BY
CIVESL ,IACCUM IBRK [ IFILL  INPUY ISTGEN  ITEE ,ITURE | IVLVE
JUNGOL

CALLS
LODCHAR.
CALLED BY
WCCUM INPUT [ISTGEN ,IMEE ,ITURB MLVE

JFIND

PREINP | VALUE
LABELP
CALLED BY
TRAC,
LCHPIP
CALLED BY
INPUT.
LCHVES

CALLED BY

BFALOC ,CIVSSL ,FLTOM ,INPUT L JUNSOL LRACCUM ,RBREAK A, REACCM |

REBRK  REFILL REPIPE ,REPLEN ,REPRZR  REPUMP  RESTGN RETEE ,

RETURB , REVLVE , REVSSL ,RFILL RPIPE A RPLEN ,RPRIZR ,RPUMP |
(i RETGEN RTEE ,RTURB L RVLVE ,LRVSSL ,SRTLP.

CALLED BY
TRAC.

CALLED BY
FEMOM , OFFTKE.
LEVEL!

CALLED BY
DLEVEL ,GLEVEL ,WLEVEL , WVSSL
LEVELR

CALLED BY
ILEVEL ,REVSSL A RLEVEL ,RVSSL

LEVEL

LININT
CALLED BY
BREAKX ,CBSET ,CDTHEX ,DELAY L EVFXXX EVLTAB  FILLX [ INPUT  MZIRC
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,PUMPD PUMPX  RFILL ,RPIPE  RPUMP  RRODZ RTEE  RTURB  ,RVLVE .

VESLY.
LINT4D
CALLED BY
CBSET |, RFDBK

CALLS
CLEAR ,DCODF | ERROR

CALLED BY
INPUT  RBREAX ,RCNTL  RCOMP RDCRVS RFILL  RHTSTR  RPIPE  RPLEN
JRPUMP RROD2  RSTGEN ,RTEE  RTURB  RVLVE RVSSL

LOAD

LOCPMP

ERROR.
CALLED BY
SVSETH.

CALLED BY

CALLED BY

CALLED BY
CORE1 ,CORE3 ,DROD1 ,DVSSL ,GRAF MTSTR1 ,HTSTR3 A HTSTRV , IGRAF
JINPUT IVSSL ,J3D ,POST3D ,RFDBK ,SVSET3 SVSETH ,VESL1 ,VSSLZ |
VESL3  WHTSTR WVSSL

BGLSDC ,ERROR ,BGLSSL , SGEFAV  SGESLV.
CALLED BY
OUT3D ,POST3D ,PREP3D ,VSSL2

CALLED BY
MFROD.

MBN

ERROR  MFUEL ,MZIRC MBN  MHTR MSTHCT.
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CALLED BY
MFROD

IVESL. ,VSSL3

CALLED BY
BRE WX  FILLX IBRK | IFiLL
MODIFY

MPROP
CALLS
MSTRCT.
CALLED BY
PREPER  STGN1X
METRCT

CALLS
ERROR
CALLED BY
MFROD MPROP,
MWRX

CALLED BY

FROD
MZIRC
CALLS
LININT.
CALLED BY
MFROD
NAMLST

CALLS
ERROR
CALLED BY

INPUT
NEWDLT
CALLS
SEDIT

CALLED BY
TIMSTP,
STDIR

CALLED BY
vVSSsL2

LEVEL ,ERROR
CALLED BY

TEE3
ORDER
CALLED BY

INPUT
ouT1D
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CALLS .

IOVLY ,RDLCM ,SETLCM CLEAR ,PIPE2 PUMP2  TEEZ  VLVEZ ,BREAKZ .
Fg.g/L.YPﬁlZR? (CTAIN2 ,EYTGENZ , ACCUMZ , TURBZ PLENZ .ERROR L WRLCM
CALLEDBY
OUTER.
OUTID

CALLS
%Yv'w ,RDLCM ,ERROR , RVSLCM VSSLZ . WRLCM ,MATSOL .
CALLEDBY

OUTER.
OUTER
CALLS
IOVLY ,CLEAR ,OUTID ,SGEFAV ,SGESLV ERROR ,OUT3D ,EOVLY
CALLED BY

HOUT.
PACKIT
CALLED BY
GLEVEL ,GRAF | IGRAF.

CALLS
SAVBD ,PREPER ,PIPE1X ,SETBD , EVFXXX BKMOM
CALLED BY
PREP1D.
PIPE1X

CALLED BY
PIPE! .
PIPE2

CALLS
INNER
CALLED BY
ouT1D

CALLS
POSTER ,SETBD ,SAVBD ,EVFXXX A EVALDF CONSTE
CALLED BY

PIPE1

PIPE3

CLEAR ,BDPLEN
C/LLED BY
PREP1D.
PLEN2

CALLS
CLEAR ,THERMO  HTIF  AUXPLN ,TFPLN BOPLEN K TFFLBK
CALLED BY
ouTiD,
PLEN3

LALLS
ASTPLN  STBMPL ,BKSPLN  SETBIT ,CLEAR THERMO A FPROP A BDPLEN , ‘
GETBIT
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. CALLED BY

POST.
PNTROD
CALLS
CLEAR.
CALLED BY
REHTET , AHTSTR,
PNTVSS

CALLS
CLEAR,
CALLED BY
REVSSL , RVSSL.
POST

IOVIY ,TRBPST ,CLEAR  ,RDLCM , SETLCM PIPE3 ,PUMP3  TEE3 |, VLVES
BREAK3 FILL3 ,PRIZR3 ,CTAIN3 , STGEN3 ,ACCUM3 TURB3 , PLEN3 . ERROR
. WRLCM SGEFAV SGESLV POSTAD HTSTR:! EOVLY.

CALLED BY
ERRTRP ,HOUT |, STEADY , TRANS.

CLEAR  RDLCM  RVSLCM ,VSSL3 ,ERROR WRLCM  MATSOL ,MANAGE ,
Ja0.
CALLED BY

POST.
POSTER

CALLS
OF1123 ., THERMO ,BKSSTB ,ERROR ,CYLHT SETBIT ,FPROP [ GETBIT.
CALLED BY
ACCUM3 ,PIPE3 ,PRIZR3 ,PUMP3  STGEN3 TEE3 ,TURB3 ,VLVE3
PREFWD
CALLS
SETLCM ,ERROR ,TMPPTR , VFWALL3

CALLED BY

VESLY,
PREINP
CALLS
ERROR ,VALUE  ,HUNTS  IDEL ,ALLBLK INDEL ,JVALUE
CALLED BY
INFUT,

IOVLY ,TRIPS ,PREP1D  HTSTR1 , PREPAD EOVLY.
3 CALLED BY
; STEADY , TRANS
{ PREP1D

CALLS
IOVLY ,TRBPRE ,CLEAR ,RDILCM ,SETLCM PIPET ,PUMPY1 TEE1 VLVEY |
BREAK1 FILLY ,PRIZRY ,CTAINT  STGENtY L ACCUM1 ,TURB1 ,PLEN: |,
ERROR ,WRLCM ,SGEFAV SGESLV ,EOVLY.

CALLED BY

PREP.

EOVLY

IOVLY ,CLEAR ,ROLCM ,RVSLCM  VSSL1 ERROR ,WRLCM  MATSOL |
® .
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PREP.

PREPER
CALLS
CLEAR  SETBIT ,VOLV FWALL WPROP MTPIPE  FLUX
, GETBIT ICMPR.
CALLED BY
- ACCUMY ,PIPEYT ,PRIZRY , PUMPY  BTGENY TEE1 | TURBE
1

CALLS
SAVBD ,PREPER ,PRZR1X ,SETBD , BKMOM
C/iLLED BY

PREP1D.
PRIZR2
CALLS
INNER.

CALLED bY
OQuUT1D

POSTER , SETBD ,SAVBD L EVALDF ,CONSTE
CALLED BY

EDIT ,SEDIT ,GRAF  DMPIT
CALLED BY
STEADY , TRANS
PTRSA

CALLED BY
CIVSSL.
PTRSPL

CALLS
SETLCM |, ERROR
CALLED BY
REPLEN , RPLEN
PUMPY

CALLS
SAVED ,PREPER ,(SETBD , BKMOM.
CALLED BY
PREP1D.
PUMP2

CALLS
INNER.
CALLED BY

ouT1D
PUMP3
CALLS
POSTER ,SETBD ,SAVBD , EVFXXX ,EVALDF CONSTB
CALLED BY

POST.
PUMPD
CALLS
GETCRV ,ERROR | LININT
CALLED BY
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PUMP
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a CALLS
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CALLED BY
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CALLS
CLEAR  READI  WIARR  ERROR
CALLED 8Y

RPUMP.
RDLCM
CALLED BY
BFIN ,CHTST ,DBRK , DCOMP  DFILL DHTETR ,DMPIT  DPLEN , GRAF
HTSTR1 WTSTR3  HTSTRY , ICOMP | IGRAF , OUT1D OUT3D , PIPROD , POST
, POST3D  PREP1D PREP3D , RRDLCM , RVSLCM ,BVSET  SVBETH TRBPRE ,
AOREAT TRBPST ,VLVEX ,WCOMP  ,WHTSTR.

IOVLY ,SETLCM ,FEXIST ,ERROR ,BFALOC BFIN ,RECNTL ,EOVLY ,REPIPE
REPUMP RETEE ,REVLVE ,REBRK ,REFiL ,REPRZR RESTGN , REACCM |
RETURE , REPLEN , REMTST LREVSSL.

CALLED BY

INPUT.
RDZMOM
CALLS
SETVA.

CALLED BY
IVESL

CALLED BY
INPUT  RACCUM , RBREAK  RCNTL ,RDDIM RFILL ,RHTSTR RPIPE A RPLEN
SADR ,RPRIZR RPUMP  RROD1  RSTGEN ,RTEE ,RTURB RVLVE ,KRVESL
REA

CALLS
ERROR.

CALLED BY
INPUT  RBREAK ,RCNTL  RFILL ,RHTSTR RPIPE A RPRIZR K RPUMP A RROD1
,RSTGEN RTEE ,RTURB  RVLVE ,LRVSSL ,TIMSTP.

BFIN ,LDCHAR  S1DPTR ,SETLCM  ERROR WARRAY A WRLCM
CALLED BY
RDREST.

ERROR ,CBEDIT.
CALLED BY

RDREST.
RECOMP
CALLS
BFIN.

CALLED BY
REACCM , REPIPE , REPRZR ,REPUMP  RESTGN RETEE ,RETURB K REVLVE
REFILL

CALLS
BFIN ,LL '4AR ,S1DPTR  ,SETLCM  ERROR WARRAY ,WRLCM
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BFIN PNTROD ERRCA | LOMTRN , RERODY

BFIN ,LDCHAR ,S1DPTR ,ERROR  SCMLCM RECOMP A WRCOMP K WARRAY
CALLED BY
RDREST.
REPLEN

CALLS

BFIN |, PTRSPL ,ERROR ,SCMLCM A WARRAY LDCHAR
CALLED BY

RDREST.

BFIN ,LDCHAR ,S1DPIR  FRADR L SCMLCM RECOMP A WRCOMP
CALLED BY
RDREST

BFIN [ WIARR ,WARRAY  CLEAR
CALLED BY
REMTST.

BFIN ,LDCHAR ,S1DPTR ,SUMLCM  RECOMP WIARR A WARRAY A WRCOMP

BFIN ,LDCHAR ,S1DPTR  ERROR ,SCMLCM RECOMP WRCOMP K WARRAY
CALLED BY

RDREST.
RETURB
CALLS
BFIN ,LDCHAR ,S81DPTR ,ERROR ,SCMLCM RECOMP A WIARR A, WARRAY
WRCOMP , WRLCM
CALLED BY
RDREST
REVLVE

CALLS
BFIN ,LDCHAR ,S1DPTR  ERROR ,SCMLCM RECOMP WRCOMP WARRAY
CALLED BY
RDREST.
REVSSL

CALLS

BFIN ERROR  PNTVSS ,LCMTRN  WARRAY WIARR LDCHAR WRLCM |
CLEAR | LEVELR.
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CALLED BY .

RDREST.

MANAGE  ERROR | LINT4D.
CALLED BY
CORE .
RFILL

ERROR ,CLEAR  ,READ| ,READR  LDCHAR S1DPTR A SETLCM  LOAD
WARRAY | SCLTBL LININT , WRLCM

CALLED BY
RDCOMP.

CALLED BY
THERMO.

ERROR ,CLEAR  ,READI ,READR ,RROD1 PNTROD ,LCMTRN  LOAD
WIARR  WARRAY WLABR LK RROD2 ,WRLCM

CALLED BY
RDCOMP

CALLS
EVFXXX , TRIP ,ERRUR

CALLED BY
CORE1.
RLEVEL

WARRAY | LEVELR
CALLED BY
RVSSL.

CALLS
TRISLV , BANSOL , ERROR.
CALLED BY
FROD
RPIPE

CALLS
ERROR ,CLEAR ,(READ! ,READR ,LDCHAR S1DPTR ,SCMLCM L RCOMP

LOAD  WARRAY SCLTBL ,LININT , WRLCM
CALLED BY
RDCOMP.

ERROR ,CLEAR K READ! ,PTRSPL ,SCMLCM LOAD K WLABI K WARRAY
LDCHAR.

CALLED BY
RDCOMP.

ERROR ,CLEAR ,READI ,READR  LDCHAR S1DPTR A SCMLCM A RCOMP
CALLED BY

ROCOMP.
RPUMP .
CALLS
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ERROR ,CLEAR ,READI ,READR , LDCHAR RDDIM  S1DFTR ,SCMLCM |
GALLEC?:.,C“VS (RCOMP  LOAD  WARRAY , SCLTBL , LININT , THERMO.
Y

RDCOWMP.
KADLOM
CALLS
RHVGET , RDLCM,
CALLED BY
CIHTST ,DHTSTR ,GRAF  HTSTR1 HTSTR3 SVSETH  WHTSTR
RHVGET

CALLED BY
GRAF |, RRDLCM.
RROD1

CALLS
READ! ,READR , ERROR
CALLED BY
RHTSTR
RROD2

CALLS
LOAD ,WARRAY  CLEAR _WLABR  ERROR SCLTBL ,LININT  DECAYS
CALLED BY

RHTSTA.
RSTGEN
CALLS
ERROR ,CLEAR K READI ,READR ,LDCHAR S1DPTR ,SCMLCM K RCOMP |
WRLCM LOAD WLABI A WIARR WARRAY
CALLED BY
RDCOMP.

CALLS
ERROR ,CLEAR ,READI ,READR  LDCHAR S1DPTR ,SCMLCM  RCOMP |
LOAD ,WARRAY ,SCLTBL ,LININT A WRLCM

CALLELC BY
RDCOMP.

RTEE

ERROR ,CLEAR ,READI ,READR ,LDCHAR S1DPTR ,SCMLCM . LOAD
WIARR ,WARRAY SCLTBL ,LININT WRLCM , RCOMP.

CALLED BY
RDCOMP

CALLS
ERROR ,CLEAR K READI ,READR , FAXPOS LDCHAR A, S1DPFTR ,SCMLCM |
RCOMP ,LOAD WARRAY ,LININT A SCLTBL , THERMO
CALLED BY
RDCOMP,
RVELCM

CALLS
RVVGET , RDLCM.
CALLED BY
CIvSSL ,CWVSSL  DVSSL ,GRAF  HTSTRV IGRAF ,OUT3D ,POST3D ,
PREP3D , SVSET3
RVVGET

CALLED BY
IGRAF | RVSLCM

CALLS

RVLVE

RVESL
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ERROR ,CLEAR ,READI READR  ,PNTVSS LCMTRN  LOAD ,WARRAY .
WIARR ,LDCHAR CHKSR A WRLCM ,RLEVEL ,ILEVEL ,LEVELR VDPCSS
CA LD BY
RDCOM3
S1DPTR

CALLS

CLEAR.

CALLED BY
RACCUM , RBREAK , REACCM ,REBRK  REFILL REPIPE  REPRZR A REPUMP
RESTGN ,RETEE ,RETURB , REVLVE  RFILL  RPIPE  RPRIZR RPUMP
RSTGEN ,RTEE ,RTURB ,RWVLVE.

SATDER
CALLS
HEV.
CALLED BY
TFIDS ,TF3DS , TFPLN , THERMO.
SATPRS
CALLED BY
CHEN ,CHF ,CHOKE  HTIF ,SATTMP SOUND TF1DS L TF1DS3 K TF3DS |
TF3D83 TFPLBK ,TFPIN , THERMO
SATTMP
CALLS
HEV | SATPRS.
CALLED BY

BREAKX , FEMOMX , FEMOMY  FEMOMZ A GVSESL2 RBREAK ,SOUND | TF1DS3 .
TF3DS1 , TF3DS3 TFPLBK , THERMO , TRBPOW

ACCUM1Y  ACCUM3 , PIPEY |, PIPE3 , PRIZRY PRIZR3 ,PUMP1  PUMP3 |
STGEN1  STGEN3 T.* ,TEE3 ,TURBY ,TURB3 ,VLVE' VLVE3

SCLMOM
CALLS
ERROR.
CALLED BY
IVESL.,
SCLTBL
CALLS
WARRAY
CALLED BY
RBREAK ,RFILL ,RPIPE ,RPUMP  RROD2 RTEE ,RTURB ,RVLVE
SCMLCM
CALLS
SETLCM , WRLCM | CLEAR
CAL'ED BY
“ACCUN | TEACCM | REPIPE ,REPLEN , REPRZR REPUMP RESTGN ,RETEE .
- TTURi: ,REVLVE ,RPIPE ,RPLEN ,RPRIZR ,RPUMP AL RSTGEN ,RTEE
: ‘URB | RVLVE
SED'
e
CLEAR ,QTIME.
CALLED BY

EDIT ,NEWDLT , PSTEPQ
SEPD
CALLED BY .
TEE?

B-28 APPENDIX B



LED BY

NPUT
PUMPY
Yi \-i 1

SGEFA
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SEPDX

SSEPOR
CALLED BY

TEE
SETBD
CALLS
JD |, ICMPR
CALLED BY
WNPUT ISTGEN . ITEE ,ITURB MVE PIPEYT  PIPE3 . PRIZRY , PRIZRS |
PUMPY PUMP3  STGENY  STGEN3 , TEEY ,TEE3 ,TURBY' ,TURB3 ,VLVE! ,

VLVES.
SETBOT
CALLED BY
IVESL ,VSSL1 ,VSSL2
SETEOS

CALLS
HEV.
CALLED BY

INPUT.
SETIC
SETLCM
CALLS
MEMADJ  ERROR.
CALLED BY
TRAC ,GRAF  GRFPUT ICOMP  IGRAF INPFUT LOMTRN OUT1D L POST |
PREFWD PREP1D  PTASPL ,RBREAK  RCNTL ,RUREST REBRK A REFILL |
RFILL , SCMLCM
SETNET

CALLEO BY
ICOMP.
SETVA
CALLED BY
OVPSCL  HTSTRV ,IFSET [ INITBC ,IVSSL IWALLS  RDZMOM , VSSL1

CALLED BY
TF1DS ,TFPLN.
SFAS55

CALLED BY
BKSPLN ,BKSSTB  BKSTB3 ,TF1DS  TF3DS TFPLN
SGBFA

CALLS
SSCAL |, SAXPY.
s§GBSL

CALLS
SAXPY.

CALLED BY
CHOKE.

CALLED BY
CHOKE
SHIFTB
CALLED BY
BREAKY  BREAKX ,FiLLX  PUMPSR A VLVEX
SHRINK

CALLED BY

SFAL4

SGEFA

SGESL
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. PRELA1D

TRANSF ,CLEAR  STGNTX ,INNER ,J1D  SGEFAV , SGESLV
CALLED BY
ouT1D

POSTER , SETBD , TRANSF  SAVBD L ESTGEN STGN3X ,J1D  EVALDF |
CLEAR ,CONSTB SGEFAV A SGESLV
CALLED BY

POST.
STGN1X
CALLS
MPROP  STGABD HTCC .
CALLED BY

STGEN1,
STGN3X
CALLS
ERROR , CYLMHT
CALLED BY

STGEN3
STGNTX
CALLS
J1D.
CALLED BY

STGENY  STGEN2
SVSET
CALLS

RDLCM | SVvSET1 SVSET3  SVSETH ,ERROR LOCTEE
CALLED BY
TRIPS

ERROR ,LOCPMP  LOCVLV
CALLED BY

SVSET.
SVSET3
CALLS
RVSLCM  ERROR , MANAGE
CALLED BY
SVSET.

RDLCM , RRDLCM  ERROR , MANAGE
CALLED BY
SVSET.
SWITCH

CALLS
MOVLEV

SAVBD ,TEE1X ,PREPER ,SEPDX ERROK SE1BD ,BKMOM  ETEE
CALLED BY

PREF1D
. TEE1X
CALLE
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JD | EVAXXX
CALLED BY
TEEY ,TEE2
TEE2

CALLS

TEE1X ,SEPUI ,INNER
CALLED BY

ouUT1D.

CALLS
m‘ ,BETBD ,BAVBD ,EVFXXX ,OFFTKE EVALDF ETEE  UONSTE ,
CALLED BY
POST.

CALLS
THERMO CELLAV HTIF  TF1DS1 ,TF1DS TF1DS3
CALLED BY

INNER.
TF10S
CALLS
SETBIT ,OFFBIT ,SFA44  SFAS5  SSL44a SBSLEC  GETBIT ,SATPRS  SATOER
CALLEL% FBYD
1D.

TEE3

TF1D

SETBIT ,CHOKE , GETBIT
CALLED BY

TF1D
TF1D83
CALLS
SETBIT ,OFFBIT , THERMO , GETBIT , SATPRS SATTMP
CALLEI% FBYD
1D.

CALLS
THERMO , SFASS L 8SLES L GETBIT ,SATPRS SATDER
CALLED BY

vesLa.
TF3D81
CALLS
VELBC ,ZEROV ,GETBIT , SATTMP,
CALLED BY
v8sL2

TF3DS

THERMO , SATPRS | SATTMP
CALLEL BY
vésLa

SCTRIT , THERMO , GETBIT . SATPRS | SATTMF
CALLED BY
PLEN2
TFPLN
CALLS
SETBIT ,OFFBIT ,SFA44  SSL44 SFASS SSLSS  GETBIT A SATPRS A SATDER
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CALLED BY
PLENZ

CALLED BY
FPROP.

CALLED BY
FPROP  HMTCOR , HTVSSL ,HVWEL 3
THERMO

CALLS

™CL

™HCV

ERROR , RHOLIQ , SATTMP  SATDER ,SATPRS HEV.

CALLED BY

BREAK3  BREAXX  CHOKE ,FILLX ,IBRK FILL  INPUT ,IVESL  PLENZ
PLEN3 POSTER ,RPUMP  RVLVE ,SOUND ,TF1D TF1DS3  TF3DS ,TFIDS3

, TFPLBK , VESL2 VESL3.
TWMCHK

CALLS
SSWTCH ,SYCALL ,ERROR ,QTIME L EDIT
DMPIT,
CALLED BY
STEADY , TRANS

ERROR  READR  TRIP A NEWDLT
CALLED BY
STEADY , TRANS
TMUPD

CALLED BY

VESLY
TMPPTR
CALLED BY
PREFWD
TMEFB

CALLED BY
HTCOR
TRANE

~
CALLS

DMPIT,
CALLED BY

TRAC.
TRANSF
CALLED BY
STGEN! ,GTGENZ , STGEN3
TREBPOW

CALLS
SATTMP
CALLED BY
ITURB , TURB1Y.
TRBPRE

CALLS
ROLCM ,TRIP  EVLTAB
CALLED BY

PREP1D
TRBPST
CALLS
RDLCM

TMCHK  TIMSTP PREP  ERROR  EDIT GRAF
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JHOUT | POST ,PSTEPQ ,
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CALLED BY

POST
TRIP

CALLS
ERROR

CALLED BY '
BREAKX ,COREY1 ,EVFXOX  FILLX . PUMPSR RKIN
. WPUMP

Y .SVSET ,CBSET , TRPSET




. C*11ED BY

FPROP  HTCOR L HTVSSL ,HVWEBB
VLVED

CALLS
VLVEX ,SAVED L PREPER A, SETBD ,BKMOM.
CALLED BY
PREP1D.
VLVE2

CALLS
INNER.
CALLED BY
ouT1D.
VLVES

CALLS

POSTER ,SETBD ,SAVBD ,EVFXXX ,EVALDF ,CONSTB
CALLED BY

POST.

TRIP [ FAXPOS  ,SHI*TR EVLTAB ,RDLCM ERROR
CALLED BY
VLVE1.
VMCELL
CALLED BY
INPUT.
VOLFA

CALLED BY

IWCCUM | INPUT ,ISTGEN ,ITEE ,ITURB ,IVLVE
VoLV

Cr. VORY

2REPER.
VRE’
BY
SSL1.
VSSI

MANAGE , TIMUPD ,DVPSCL ,VRED | IFGET SETVA LININT ,(ERROR |,
SETBDT ,CIF3 PREFWD , FEMOMX , FEMOMY , FEMOMZ , J3D.

CALLED BY
PREP3D

MANAGE , BAKUP , THERMO A TF3DS1 ,CELLA3 HTIF L SETBDT , FLUXES ,
TF3DS ,STDIR [ERROR ,MATSOL ,BACIT ,TF3DS3 , VSSSSR J3D.
CALLED BY
QUT3D.
VSSL3

CALLs
MANACE , BAKUP ,THERM/ L, “PROP LK STBME3 BKSTB3 ,MIX3D  FF3D
EVALDF ,GVSSL2 J3D

CALLED BY

POSTS.
VSSROD
CALLED BY

FLTOM.
. VSSSSR
CALLED BY
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VsSsL2
WACCUM
CALLS
ECOMP.
CALLED BY

WCOMP,
WARRAY
CALLS
WLABR.
CALLED BY
ECOMP  ELGR ,INPUT  PUMPX , RBREAK RCOMP ,RDCRVS K REBRK ,
REFILL ,FEPIPE REPLEN , REPUMP A REROD1 , RESTGN ,RETEE RETURS ,
REVLVL ,REVSSL RFILL ,RHTSTR RLEVEL ,RPIPE , RPLEN L RPUMP |
RROD2 ,RSTGEN ,RTEE ,RTURB ,RVLVE ,RVSSL SCLTBL ,WLEVEL ,
WRCOMP |, WVSSL.
WBREAK
CALLS
ECOMP.
CALLED BY

WCOMP
WCOMP
CALLS
ROLCM  WRLCM  WPIPE WTEE ,WPUMP WFILL A WPRIZR WSTGEN ,
& Eg\;NSSL  WACCUM WTURB ,WVLVE ,WBREAK ,WPLEN A,WHTSTR
ALL Y

EDIT,
WDRAG
CALLED BY
VFWALL3
WFILL

CALLS
ECOMP.
CALLED BY
WCOMP,
WHTSTR

CALLS
RDLCM | RRDLCM A WRLCM | MA'AGE
CALLED BY
WCOMP
WIARR

CALLS
WLABI
CALLED BY
HEVEL ,RCOMP ,RDDIM ,REROD1 , RESTGN LRETURB ,REVSSL ,RHTSTR ,
KRSTGEN ,RTURB RVSSL , WRCOMP.
WLABI
CALLED BY
INPUT ,RPLEN L RSTGEN , WIARR
WLABR

CALLED BY
RCNTL ,RHTSTR ,RROD2 , WARRAY.
WLEVEL

CALLS
LEVELI , WARRAY
CALLED BY
IVSSL ,WVSSL
WPIPE
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® .
ECOMP.

CALLED BY
WCOMP.
WPLEN

CALLED BY
WCOMP.
WPRIZR

CALLS
ECOMP.
CALLED BY
WCOMP.
WPUMP

CALLS
TRIP , ECOMP.
CALLED BY

WCOMP.
WRCOMP
CALLS
WARRAY , WIARR.
CALLED BY
D REACCM , REPIPE , REPRZR , REPUMP ,RESTGN RETEE ,RETURB , REVLVE
LCM

CALLED BY
BFOUT ,CIHTST ,CIVSSL ,HTSTR1 ,HTSTR3 JACCUM [ IBRK ICOMP  IFILL
INPUT ISTGEN ,ITEE ,ITURB ,IVLVE ,LCMTRN OUT1D ,OUT3D ,POST |,
POST3D , PREP1D ,PREP3D , RBREAK ,RDCOMP , REBRK L REFILL RETURB ,
REVSSL RFILL ,RHTSTR ,RPIPE RSTGEN ,RTEE ,RTURB L, RVSSL |,
SCMLCM WCOMP  WHTSTR.
WSTGEN

CALLS
ECOMP
CALLED BY
WCOMP.
WTEE

CALLS
ECOMP.
CALLED BY
WCOMP,
WTURB

CALLS
ECOMP.
CALLED BY
WUOMP,

MANAGE ,WLEVEL ,LEVELI ,CLEAR AL WARRAY
CALLED BY
CWVSSL

ZCORE
CALLED BY
CORE1
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zenov @

CALLED BY
TF3DS1.
ZPWHCI
CALLED BY
CORE1 , INPUT.
LIBRARY SUBROUTINES
PRODCTN
CALLED BY
TRAC.
GETUFL
CALLED BY
TRAC.
SAMPLE
CALLED BY
TRAC.
SAMPON
CALLED BY
TRAC.
GETJTL
CALLED BY
TRAC
LOADTIM
CALLED BY
TRAC
oTIME .
CALLED BY
TRAC ,DMPIT ,ERROR ,GRAF  HOUT SEDIT ,TIMCHK
SAMPTRM
CALLED BY
TRAC.
EXIT
CALLED BY
TRAC ,ERRTRP ,SRTIP  STEADY
SGED!
SALLED BY
CHOKE
SGEEV
CALLED BY
CHOKE.
COMPACT
CALLED BY
CLEAN , ENDDMP , ENDGRF.
DATE
CALLED BY
DATEU
FSCAL
CALLED BY
DGBFA,
DAXPY
CALLED BY
DGEFA |, DGBSL
Qxrt
CALLED B '
ERRGET , ERRTRP
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QADJUST

CALLED BY
ERROR
FEXIST
CALLED BY
INPUT , RDREST.
TME
CALLED BY
INPUT.
ASSIGN
CALLED BY
INPUT,
TRSLBL
CALLED BY
INFUT.
BGLSDC
CALLED BY
MATSOL.
BGLSSL
CALLED BY
MATSOL
SGEFAV
CALLED BY
MATSOL ,OUTER ,POST ,PREP1D ,STGEN1 STGEN2 , STGEN3
SGESLV
CALLED 8Y
MATSOL ,OUTER ,POST ,PREP1ID ,STGEN! STGEN2 , STGEN3
MEMADJ
CALLED BY
SETLCM.
SSCAL
CALLED BY
SGBFA
SAXPY
CALLED BY
SCBFA ,SGBSL.
MOVLEV
CALLED BY
SWITCH
SSWTCH
CALLED BY
TIMCHK
SYCALL
CALLED BY
TIMCHK
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APPENDIX C
COMPONENT DATA TABLES
C.1. POINTER TABLES

The pointer tabies for one-dimensional components (described below) use four general
sets of pointers: DUALPT, HYDROPT, INTPT, and HEATFT

C.1.1. DUALPT

These pointers refer to variables whose values are stored for both old- and new-time values

Name Array Dimension Description

LALP ALP NCELLS Old vapor fraction.

LALPD ALPD 0 Vanable not cuirently implemented

LALPDN ALPDN 0 Variable not currently implemented

LALPN ALPN NCELLS New vapor fraction

LALV ALV NCELLS Old value of flashing interfacial HTC times
interfacial area

LALVE ALVE NCELLS Old value of liquid-side intedfacial HTC
times interfacial area

LALVEN ALVEN NCELLS New value of liquid-side interfacial HTC
times interfacial area

LALVN ALVN NCELLS New value of flashing interfacial HTC times
interfacial area

LARA ARA NCELLS Old stabilizer value for ap,

LARAN ARAN NCELLS New stabilizer value for ap,

LAREL AREL NCELLS Old stabilizer value for (1—a)pse;

LARELN ARELN NCELLS New stabilizer value for {1-a)pse;.

LAREV AREV NCELLS Old stabilizer value for ap, e,

LAREVN AREVN NCELLS New stabilizer value for ap, e,

LARL APL NCELLS Old stabilizer value for (1-a)p;

LARLN ARLN NCELLS New stabilizer value for (1 - a)p,

LARV ARV NCELLS Old stabilizer value for ap,

LARVN ARVN NCELLS New sus! dizet value for ap,

LBIT BIT NCELLS+1 Bit flags from previous time step

LBITN BITN NCELLS+1 Bit flags for current time step
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LCHTI
LCHTIA
LCHTAN
LCHTIN

LCIF
LCIFN
LCONC

LCONCN

LD(3)
LDN(3)
LEA
LEAN
LEL
LELN
LEV
LEVN
LGAM
LGAMN
LHIG
LHIGO
LHIL
LHILO
LHIV
LHIVO
LP
LPA

CHTI

CHTIA

CHTAN

CHTIN

CIF
CIFN
CONC

CONC

DN
EA
EAN
EL
ELN
EV
EVN
GAM
GAMN
HIG
HIGO
HIL
HILO
HIV
HIVO

PA

NCELLS

NCELLS

NCELLS

NCELLS

NCELLS+1
NCELLS+1

NCELLS*
ISOLUT

NCELLS*
ISOLUT

NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS

Old value of vapor-side interfacial HTC
times interfacial area.

Old value of air interfacial HTC times inter-
facial area

New value of air interfacial HTC times in-
terfacial area.

New value of vapor-side interfacial HTC
times interfacial area.

Old interfacial drag coefficients
New interfacial drag coefficients

Olc solute mass to coolant mass ratio
ISOLUT =0 or 1.

New solute mass to coolant mass ratio,

ISOLUT = 0 or 1.

Varniable not currently implemented
Variable not currently implemented

Old air internal energy

New air internal energy.

Old liqu 1 internal energy

New liquid internal energy

Old vapor internal energy.

New vapor internal energy

Old vapor generation rate per unit volume
New vapor generation rate per unit volume.
New HTC hetween inside wail and air
Old HTC between inside wall and air
New HTC between inside wall and liquid
Old HTC between inside wall and liquid
New HTC between inside wall and vapor
Old HTC between inside wall and vapor
Old pressure

Old air partial pressure
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LPAN
LPN
LQPPC
LQPPCO
LROA
LROAN
LROL
LROLN
LROV
LROVN

L5

LSN

LTD
LTDN
LTL
LTLN
LTV
LTVN
LTW

LTWN

VL
LVLN
LVLT
LVLTO
LVM
INVMN
Lvv
LVVN

PAN
PN
QPPL
QPPCO
ROA
ROAN
ROL
ROLN
ROV
RCVN

SN

T0
TDN
TL
TLN
TV
TVN
T™W

TWN

VL
VLN
VLT
VLTO
VM
VMN
LAY
VVN

APPENDIX C

NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS

NCELLS*
ISOLUT

NCELLS*
1ISOLUT

0
0
NCELLS
NCELLS
NCELLS
NCELLS

NCELLS®
NODES

NCELLS*
NODES

NCELLS+1
NCELLS+1
NCELLS+1
NCELLS+1
NCELLS41
NCELLS+1
NCELLS+1
NCELLS+1

New air partial pressure
New pressure

New critical heat flux (CHF)
Old CHF

Old air density.

New air density.

Old liquid density

New liquid density.

Old vapor density

New vapor density

Old solute mass plated on structure
surface, ISOLUT = 0 or 1

New solute mass plated on structure
surface. ISOLUT = 0 or 1

Vanable not currently implemented
Variable not currently implemented
Ol liquid temperature
New liquid temperature
Old vapor temperature
New vapor temperature

Old wall temperatures
New wall temperatures

Old liquid velocity
New liquid v:locity

New stabilizer liquid velocity (V,"*1).

Old stabilizer liquid velocity (V,")
Cid mixture velocity

New mixture velocity

Uld vapor velocity

New vapor velocity



L1
LVWVWT0

wWT
VWTO

C.1.2. HYDROPT

These pointers refer to variables associated with the hydrodynamic calculations.

Name
LALPMN

LALPMX

LALPO

LAM
LARC

LCFZ
LCL
LCPL
LCPV
LCV
LDALVA
LDFLDP

LOFVDP

LDRIV

LDX
LELEV

LFA
LFAVOL
LFINAN
LFRIC

C-4

Array
ALPMN

ALPMX

ALPO

AM
ARC

CFZ

Cl

CPL
CPV
Cv
DALVA
DFLDP

DFVDP

DR

DX
ELEV

FA
FAVOL
FINAN
FRIC

NCELLS+1
NCELLS+1

Dimension
NCELLS

NCELLS
NCELLS

NCELLS

NCELLS®
ISOLUT

0

NCELLS
NCELLS
NCELLS
NCELLS
NCELLS
NCELLS+1

NCELLS+1

19*(NCELLS+1)

NCELLS
NCELLS*IELV

NCELLS+1
NCELLS
NCELLS
(NCELLS+1"

Rt o i T

New stabilizer vapor velocity (\'-;.n)

Old stabilizer vapor velacity (\”9")

Description

Minimum value of void fraction among a cell
and all its neighbors

Maximum value of void fraction among a
ce!l and all its neighbors

Void fraction at the start of the previous
step ((l"‘ ])

Air mass

Density of solute in cell, ¢(1 ~ a)pe

ISOLUT =0or 1

Variable not currently implemented
Liquid conductivity

Liquid specific heat at constant pressure
Vapor specific heat at constant pressure
Vapor conductivity

Variable not currently impleme: .ted

Derivative of liquid velocity with respect to
pressure

Derivative of vapor velocity with respeci to
pressure

Storage array for thermodynamic derivatives
and enthalpies

Cell length in flow direction

Cell-centered elevations. it is used only if
IELV is set to 1 in the NAMELIST input.

Cell-edge flow area.
Cell flow area used n choked-flow mode!
Inverted annular regime factor

Additive friction factors
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LESMLT

LGRAV
LGRVOL
LH(1)
LH(2)
LH(3)

LHD

LHDHT
LHFG
LHGAM

LHLA
LHLATW
LHVA
LHVATW

LQP3F
LQPPP

LRARL
LRARV
LREGNM
LRHS
LRMEM
LRMVM
LROM

FSMLT

GRAV
GRAVOL
WFHF
SI*DX
DHLDZ

HD
HDHT

HFG
HGAM

HLA

HLATW

HVA

HVATW

QP3F
QPPP

RARL
RARV
REGNM
RHS
RMEM
RMVM
ROM

APPENDIX C

*NFRC1
NCELLS

NCELLS+1
NCELLS

NCELLS+1
NCELLS+1
NCELLS+1

(NCELLS+1)
*(NDIA1-1)

(NCELLS+1)
NCELLS
NCELLS

NCELLS
NCELLS
NCELLS
NCELLS

NCELLS

NODES*
NCELLS

0

0
NCELLS+1
NCELLS

0
NCELLS+1
NCELLS

Interphasic area multiptier during condensa-
tion

Gravitation terms (cosine theta)
Cell-averaged GRAV.

Weighting factor for stratified-flow regime
Stratified interfacial area

Gravitational head force caused by void
gradient

Hydraulic diameters

Heat-transfer hydraulic diameters
Latent heat of vaporization

Contribution to phase change from subcooled
boiling

Sum of all products of liquid HTC with heat-
transfer area

Similar to HLA except that the product in-
cludes wall temperature

Sum of all products of vapor HTC with heat-
transfer area

Similar to HVA except that the product in-
cludes wall temperature.

QPPP factor applied to the wall heat source

Wall heat source

Variable not currently implemented
Variable not currently implemented
Flow-regime number.

Implicit vs explicit weighting factor, g/
Varnable not currently implemented
Mixture density times mixture velocity

Mixture density



LRVMF NCELLS+1 Vapor mass flow

LSIG NCELLS Surface tension

LTRID TRID 6*(NCELLS+1) Storage for stabilizer linear system

LTSAT TSAT NCELLS Saturation temperature.

LTSSN TSSN NCELLS Saturation temperature for stean: pressure.

LVISL VISL NCELLS Liquid viscosity,

LVISV VISV NCELLS Vapor viscosity.

LVLALP VLALP NCELLS Liquid mass flux that enters the cell from
the cell edges located above the cell

LVLvC VLVC NCELLS Liquid velocity at a neighboring cell edge
where the donor-celled liquid fraction is
maximum

LVLVOL VLVOL NCELLS Choked-flow model ce!l liquid velocity

LVLX VLX 0 Variable not currently implemented

LVOL VOL NCELLS Cell volumes

LVR VR NCELLS+1 Relative velocity ‘

LVRV VRV NCELLS Cell-averaged relative velocity

LVVVOL VVVOL NCELLS Choked-flow model cell vapor velocity.

LVVX VVX 0 Variable not currently implemented

LWA WA NCELLS Wall areas.

VAT WAT NCELLS Total heat-transfer area.

LWEL WEFL NCELLS+1 Wall friction factor for liquid.

LWFV WFV NCELLS+1 Waii friction factor for vapor

C.1.3 INTPT

These poisters refer to variables with integer values

Name Array Dimension Description

LIDR IDR NCELLS Heat-transfer regime

LLCCFL LCCFL NCELLS+1 CCFL flag

LMATID MATID NODES-1 Structural material identifications

LNFF NFF NCELLS+1 Friction-correlation cptions ‘
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C.1.4. HEATPT
These pointers refer to variables associated with the wall heat-transfer calculations for
embedded heat structures

Name Array Dimension Description
LCPW CPW (NODES-I) Specific beat of wall
*NCELLS
LCW CwW (NODES-1) Wall conductivity
*NCELLS
LDR DR NODES-1 Radial mesh size
LEMIS EMIS NCELLS Wall emissivity
LHOL HOL NCELLS HTC between outside wall and liquid
LHOV HOV NCELLS HTC between outside wall and vapor
LRN RN NODES Radu at nodes
LRN2 RN2 NODES 1 Radi at node centers
LROW ROW (NODES-1) Wall density
*NCELLS
LTCHF TCHF NCELLS CHF temperature
LTOL TOL NCELLS Liquid temperature outside wall
LTOV TOV NCELLS Vapor temperature outside wall

C.2. ACCUMULATOR COMPONENT
C.2.1. ACCUMVLT-ACCUM Variable-Length Table
REAL VARIABLES:.

Parameter Description

AA1l11l Dummy variable that provides a known start to the COMMON block
BSMASS Time-integrated mass flow from component

FL(2) Liquid mass-flow corrections for mass-conservation checks

FLOW Volume flow rate at discharge

FV(2) Vapor mass-flow corrections for mass-conservation checks

QINT Initial water volume in accumulator

QOUT Volume of hiquid that has been discharged from the accumulator

z Water height above discharge

Z11111 Dummy variable that provides a known end to the COMMON block
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INTEGER VARIABLES:

Parameter
141111
ICJ
ICONC
ISTOP
iuvl
Iuv2
JS2
JUN2
NCELLS
TYPE?2
211111

Description

Dummy variable that provides a know 1 start tec the COMMON block
Iteration index of adjacent component.

indicator for presence of solute in the coolant.

Indicatar that accumulator has emptied.

Indicator for velocity update at JUN1 (equal to zero).

indicator for veiocity updatz at JUNZ.

Junction sequen: e number at cell NCELLS of the accumulator.
Junction number cf the junction at cell NCELLS

Number of fluid cells

Type of adjacent component at JUN2,

Dummy variable that provides a known end to the COMMON block

C.2.2. ACCUMPT-ACCUM Pointer Table

Name Array
DUALPT -
HYDROPT —
INTPT -
LBD1 BD1
LQPPL QFPL

Dimension Description

— General pointer table.

— General pointer table.

— Genera! pointer table.
LENBD Dummy BD1 array.

NCELLT Heat flux from wall to liquid.

C.2.3. ACCDATA-ACCUM Data Table
This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT,
both defined in Appendix D, ACCUMVLT, defined in Sec. C.2.1, and ACCUMPT, defined in

Sec. C.2.2.

C.3. BREAK COMPONENT
C.3.1. BREAKVLT-BREAK Variable-Length Table

REAL VARIABLES:
Parameter

AAlI1]

ALPOFF

BSA

C-8

Description
Dummy variable that provides a known start to the COMMON block
Coolant void fraction when the trip is OFF after it was ON

Total air from break
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BSMASS Time-integrated mass flow from break

BXA Air mass flow from break

BXMASS Cutrent mass flow from break

CONOFF Ratio of solute mass to coolant mass when the trip 1s OFF after it was
ON.

PAOFF Air partial pressure when the trip is OFF after it was ON

POFF Coolant pressure when the trip is OFF after it was ON

RBIAX Maximum rate of change of pressure at the breax

TIN Fluid temperature at the break.

TLOFF Liquid temperature when the trip 1s OFF after it was ON

TVOFF Vapor temperature when the trip is OFF after it was ON

Z11111 Dummy variable that provides a known end to the COMMON block

INTEGER VARIABLES

Parameter Description

1A111! Dummy vanable that provides a known start to the COMMON block

IBF Last interpolated interval in the rate-factor table

IBP Last interpolated interval in the break composition parameter tables

IBSV Break-table abscissa-coordinate variable 1D number

IBTR Trp 1D number that controls evaluation of the break tables

IBTY Break-table input option

iCJ Iteration index of adjacent component.

INEXTI Variable no longer used

IOFF Fluid-state option when the trip s OFF after it was ON

IONOFF Number of time steps the trip is ON

ISAT Break-table use option

JS1 Junction sequence number

JUN1 Junction number where break 1s located

NBRF Number of pairs in the rate-factor table

NBSV Rate-factor table's abscissa-coordinate variable |ID number

NBTE Number of pairs for each break table

TYPEL Variable no longer used
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Array Dimension Det cription

Data |

i

FILL COMFPONENT

1 i

FILL Vanabie llngl)l fable

Paramete: Description




TLOFF
TVOFF
TWTOLD

VLOFF
VVOFF
211111

Liquid temperature when the trip 1s OFF after it was ON.
Vapor temperature when the trip is OFF after it was ON

The fraction ot a previous fill fluid dynamic-state parameter that 1s av-
eraged with the fill table’'s defined parameter and that defines the fill
parameter value for this time step (0.0 < TWTOLD < 10)

Liquid velocity when the trip is OFF after it was ON.
Vapor velocity when the trip is OFF after it was ON
Dummy variable that provides a known end to the COMMON block.

INTEGER VARIABLES

Parameter
IA1111

iICJ

IFASV

IFCNSV

IFF
IFMLSV

IFMVSV

IFP
IFPASV

IFPSV

IFSV

IFTLSV

IFTR
IFTVSV

IFTY

APPENDIX C

Description
Dummy variable that provides a known start to the COMMON block
Iteration index of adjacent component.

ID number of the signal variable of control block defining the void fraction
for the IFTY = 10 option

ID number of the signal variable or control block defining the ratio of
solute mass to liquid-coolant mass for the IFTY == 10 option

Last interpolated interval in the rate-fa. or table

iD number of the signal vanable or control block defining liquid mass
flow for the IFTY = 10 option.

ID number of the signal variable or control block defining vapor mass
flow for the IF T = 10 option

Last interpclated interval in the fill table

ID number of the signal variable or control block defining the partial air
pressure for the IFTY = 10 option

ID number of the signal variable or control block defining the pressure
for the IFTY == 10 option

The signal-variabie 1D number, which defines the fill table's independent
varable

ID number of the signal vanable or control block defining the liquid
temperature for the IFTY = 10 option.

Fill trip number

ID number of the signai variable or control block defining the vapor
temperature for the IFTY = 10 option

Fill type



INEXTI Variable no longer used.

I0FF Fill fluid-state option when the trip is OFF after it was ON

IONOFF The number of time steps the trip has been ON.

J51 Junction sequer.ce number at JUN1

JUNI1 Junctic . number where fill is located.

NFRF Numbe _i rate-factor table pairs whose rate factor is applied to the fill
table's independent variable.

NFSV Rate-factor table's abscissa-coordinate variable 1D number.

NFTB Number of pairs in the fill table

TYPEL Variable no longer used.

ZI1111 Dummy variable that provides a known end to the COMMON block

C.4.2. FILLPT-FILL Pointer Table (For FILLS, NCELLS = 1)

Name Array Dimension Description

DUALPT — - General pointer table

HYDROPT - - General pointer table

'ALPTB ALPTRB INFTB|*2 Void fraction table.

LCONTB CONTB INFTB|*2 Ratio of solute mass to coolant mass

LPATB PATB INFTB|*2 Air partial pressure table

LPTB PTB INFTB|*2 Pressure table

LRFTB RFTB INFRF(*2 Fill rate-factor table

LTLTB TLTB INFTB|*2 Liquid tempera.ure table

LTVTB TVTB INFTB|*2 Vapor temperature table

LVMTB VMTB INFTB|*2 Liquid velocity table.

LVVTB VVTB INFTB|*2 Vapor velocity table.

C.4.3 FILLDATA-FILL Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT
both defined in Appendix D; FILLVLT, defined in Sec. C.4.1; and FILLPT, defined in Sec. C.4.2
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C.5. HEAT-STRUCTURE COMPONENT
C.5.1. RODVLT-Heat-Structure Variable-Length Table

REAL VARIABLES:

Parametear
AA1111
AMH?2
BCRO

BCR1

BEFF
BPPO

BPP1

DRFB
DRI
DRIO

DTNHT(2)
DTPK

DTXHT(2)
DZNHT
ENEFF
EXTSOU

FUCRAC
HDRI

HDRO

HGAPO

APPENDIX C

Description
Dummy variable that provides a known start to the COMMON block
Hydrogen mass generated from metal-water reaction

Zero-order coefficient of the first-order polynomial that defines the effec-
tive core-averaged concentration of control-rod pin boron.

First-order coefficient of the first-order polynomial that defines the effec-
tive core-averaged ~oncentration of control-rod pin boron

Total delayed neutron fraction

Zero-order coefficient of the first-order polynomial that defines the effec-
tive core-averaged concentration of burnable-poison pin boron

First-order coefficient of the first-order polynomial that defines the gfec-
tive core-averaged concentration of burnable-poison pin boron

Reactivity-feedback change in K over last time step
Estimated change in reactivity over the previous time step

Old value of DRI equals the old value of the power or reactivity-estimate
correction.

Delta temperature minimums used in refiood calculation

Kaganove-method integratizn time step for solving the point-kinetics
equations

Delta temperature macimums used in reflood calculation
Delta Z,,
Total decay heat fraction

Thermal power (W) produced by external source neutrons in the reactor
core

Fraction of uncracked fuel,

Thermal diameter (m) for the inside surface of the heat-structure rod or
slab element. Used only when NAMELIST variable ITHD = 1

Thermal diameter (m) for the outside surface of the heat-structure rod
or slab element Used only when NAMELIST variable ITHD = 1

Rod gap-conductance coefficient (MATRD = 3)



HLI

HLO

HvVI

HVO

PDRAT
PLDR

POWEXP

QRDTOT
REAC
REACN
REACT
RMCK
RMCKN

RPOWPF
RPOWR
RPOWRI
RPOWRN
RPOWRO
RPOWTO
RPWOFF

C-14

Constant liquid heat-transfer coefficient (W. m~?. K=') at the inner
surface. Used when inner surface boundary condition flag is set such
that IDBCI = 1, indicating constant HTCs and external temperatures.

Constant liquid heat-transfer coefficient (W- m~?. K~') at the outer
surface. Usea when outer surface boundary condition flag is set such
that IDBCO = 1, indicating constant HTCs and external temperatures

Constant vapor heat-transfer coefficient (W. m~?. K~') at the inner
surface. Used when inner surface boundary condition flag is set such
that IDBCI = 1, widicating constant HTCs and external temperatures.

Constant vapor heat-tiansfer coefficient (W. m~?. K=1) at the outer
surface. Used when outer surface boundary condition flag 1s set such
that IDBCO = 1, indicating constant HTCs and external temperatures.

Rod pitch-te-diameter ratio

Pellet dish radius
0.0 = no pellet dish calculation;
1.0 = pellet dish calculation

Exponent value to which the power distribution is raised to define tre
weighting function for averaging the reactivity-feedback paraniciers over
the core volume.

Total rod heat flux

Reactivity feedback at the beginning of the previous time step
Reactivity-feedback estimate at the end of the present time step

Total reactivity at the beginning of the present time step.

Reactor multiplication constant at the beginning of the present time step

Reactor multiplication constant estimate at the end of the present time
step.

Frompt fission power

Beginning-of-time-step reactor power.

initial reactor power

End-of-time-step reactor power.

End of-time-step reactor power of the previous time step
Beginning-of-time-step reactor power of the previous time step

Programmed reactivity or reactor power when the controlling trip s OFF
after it was ON
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RPWSCL

RRPWMX
RZPWMX
SDT
STIMET

TLI

TLO

TNEUT
TPOWI
TPOWO
TRAMAX
TRHMAX
TVI

T™VO

WATLEV
WIDTH
ZPWIN

ZPWOFF

ZLPBOT
ZLPTOP
ZUPBOT

APPENDIX C

Reactivity-power ble's scale factor for programmed reactivity or reactor
power

Maximum rate of change of programmed reactivity or reactor power
Maximum rate of change of the axial power shape.
Time interval (s) since the last reactivity change printout.

Problem time (s) at which the last reactivity change was summed to
variable storage for later printout

Constant liquid temperature (K) at the inner surface. Used when inner
surface boundary condition flag is set such that IDBCI = 1, indicating
constant HTCs and external temperatures

Constant liguid temperature (K) at the outer surface. Used when outer
surface boundary condition flag is set such that [DBCO = 1, indicating
constant HTCs and external temperatures

Neutron generation time

Total power across the inner surface of the heat-structu-e cornpa. .nt.
Total power across the outer surface oi the heat-structure component
Average-rod peak-cladding tempeiature.

Maximum supplemental rod temperature.

Constant vapor temperaturc (K) at the inner surface. Used when inner
surface boundary condition flag is set such that IDBCI = 1, indicating
constant HTCs and external temperatures.

Constant vapor temperature (K) at the outer surface. Used when outer
surface boundary condition flag is set such that IDBCO = 1, indicating
constant HTCs and external temperatures

Not used
Width (m) of slab surface (used to compute surface area).

Pxial power-shape table's abscissa-coordinate variable value correspond-
ing to the initial axial power shape.

Axial power-shape table's abscissa-coordinate variable value that corre-
sponds to the axial power shape that is used when the controlling trip 1s
OFF after it was ON

Axial location (m) of the bottom of the lower hot patch
Axial location (m) of the top of the lower hot patch

Axial location (m) of the bottom of the upper hot patch
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ZUPTOP
Z11i11
INTEGER VARIABLES:

Description

Parameter
1A1111
IAXCND

IBU(4)
IDBCI

IDBCO

IEXT

IONOFF

IPATCH

IRC(4)
IRCJFM(4)

IRCJTB(4,4)

IRF

Axial location (m) of the top of the upper hot patch.
Dummy variable that provides a known end to the COMMON block

Dummy variable that provides a known start to the COMMON block.

Axial conducticn indicator.

0 = no axial heat-transfer conduction calculated,;

1 = axial heat-transfer conduction calculated in the heat-structure rod
or slab element.

Boron-uiit flag for the Jth reactivity coefficient.

Boundary condition option for the inner surface of the heat-structure rod
or slab element.

0 = adiabatic boundary condition;

= constant HTCs and external temperatures;

= coupled to specified cells in one or more hydro components

L I

Boundary condition option for the outer surface of the heat-structure rod
or slab element

0 = adiabatic boundary condition;

1 = constant HTCs and external temperatures;

2 = couvpled to specified cells in one or more hydro components,

Specifies if this heat structure input was generated by the post processor
EXTRACT

0 = no;

1= yes

Number of time steps the reactivity power table's controlling trip has
been ON

Hot patch modelling indicator.
0 = no modelling,
1 = modelling of hot patches.

Number of values that defines the argument number reactivity-coefficient
table

Form number of reactivity coefficient for the argument number reactivity-
feedback parameter

Number of first argument reactivity-feedback parameter value entries for
the second argument reactivity-coefficient table

Last interpolated interval number in rate-factor table for the reactivity-
power table
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IRFTPR

IRP
IRPWSV
IRPWTR
IRPWTY
ISNOTB

1=

1ZP
1ZPWSV
IZPWTR
LENRD
LFVNR
LFUNP1
LFVR
LFVR1
LIQLEV

LNDRD

LNFVR
LNFVRI1
LNPTRR
LOCROD
NCRX
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Trip ID number that controls evaluation with the reflood axial fine mesh
in the fuel rod

Last interpolated interval number in the reactivity-power table
Reactivity-power table's abscissa-coordinate variable 1D number.
Trip 1D number that controls evaluation of the reactivity-power table
Reactor-kinetics nption indicator

A flag variable that is defined if the solute is boron for the reactivity-
feedback calculation.

0 = solute is boron,

1 = solute is not boron.

Last interpolated interval number in the rate-factor table for the axial
power-shape table.

Last interpolated interval number in the axial power-shape table

Axial power-shape table's abscissa-coordinate variable D number.

Trip ID number that controls evaluation of the axial power-shape table.
Length of rod data.

Relative position of new fundamental variables of rod data

Relative position of new heat-transfer data.

Relative position of old fundamental variables of rod data

Re'ative posttion of old heat-transfer data

Specification of hiquid level.

0 = no liquid level zalculated on rod or sla* surface;

1 = liquid level tracked on rod or slab surface (this smooths the heat-
transfer solution).

Offset for double-sided heat structures. If the heat structure is connected
to hydro components on one side, then LNDRD = 0. If the heat struc-
ture 1s connected to a hydro component on both the inside and outside
surfaces, then LNDRD = the offset for the inside surface heat-transfer
parameters

Length of fundamental variables of rod data
Length of heat-transfer data

Number of pointers of rod data

Pointer for beginning of rod data

Number of copies of structire that affect fluid dynamics






. NRODS Number of computational rods including “hot” rods. See also NCRX

NRPWRF Number of rate-factor table pairs whose rate factor is applied to the
power or reactivity table's independent variable

NRPWSYV Reactivity-power rate-factor table's abscissa-coordinate vanable 1D num-
ber.

NRPWTB Number of entry pairs in the reactivity-power table

NRTS Number of time steps over which programmed reactivity and rea<tivity-
faedback changes are surnmed for printout.

NSET Absolute value of the reflood fine axial mesh trip set-status number during
the previous time step

NZMAX Maximumn number of rows of heat-transfer nodes used in reflood calcu-
lation

NZPWRF Number of entry pairs in the axial power-shape rate-factor table

NZPWSV Axial power-shape rate-factor table's abscissa-coordinate vanable 1D
number

NZPWTB Number of axial power shapes in the axial power-shape table

. NZPWI Axial powet shape integration option for the heat-transfer calculation
—~1 = histogram with step changes at the axial locations,
0 = histogram with step change. ~ay between the axial locations;
1 = trapezoidal integration

NZPWZ Number of axial locations defining the axial-power shape

NZZNHC The number of hydro-cell axial-direction channels that this powered heat
structure 1s coupled te

Zi111 Dummy variable that provides a known end to the COMMON block

C.5.2. RODPT-Heat-Structure Pointer Table
GENERAL ROD-DATA POINTERS.

Name Array Dimension Description
LBETA BETA NDGX Delayed neutron group fraction
LCDG CDG NDGX Old delayea weutron group concentrations.
LCDG.. CDGN NDGX New delayed neutron group “oncentrations
} LCDH CDH NDHX Old concentration of decay-heat groups
; LCDHN CDHN NDHX New concentration of decay-heat group
‘ . LCLEN CLEN NCRX Old total cladding length

]
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LCLENN
LCPOWR
LEDH
LFPUO2

LFTD
LGMIX
LGMLES
LGRAVR

LHCELI

LHCELO

LHCOMI

LHCOMO

LHIGH
LHS

LIDROD
LLAMDA
LLAMDH
LLCHCI

LLCHCO

LMATRD
LNFAX
LNRDX
LNTSXX

CLENN
CPOWR
EDH
FPUO2

FTD
GMIX
GMLES
GRAVR

NHCELI

NHCELO

NHCOMI

NHCOMO

HS

IDROD
LAMDA
LAMDH
LCHCI

LCHCO

MATRD
NFAX
NRDX
NTSXX

NCRX
NCRX
NDHX
NCRX

NCRX
NCRX*7
NCRX
NCRZ

NCRZ 42

NCRZ+2

NCRZ 42

NCRZ 42

NCRX*
(NFBPWT /4)

NRCDS
NDGX
NDHX
2*(NCRZ+2)

2¢(NCRZ+2)

NINT
NCRZ
NCRX

MAX(1, NRIDR)

New total cladding length

Relative power per rod
Energy yield fraction of decay-heat groups

Fraction of plutonium axide in mixed-oxide
fuel fraction.

Fuel density (fraction of theoretical)
Mole fraction of gap-gas constituents.
Moles of gap gas.

Cosine of the angle between a vector paint-
ing upward and a vector from the lower-to-
higher numbered axial cells.

Cell number coupled to the heat-structure
nodes at the inner surface

Cell number coupled to the heat-structure
nodes at the outer surface.

Comporient number of the hydro cells cou-
pled to the heat-structure inner surface.

Comtionent number of the hydro cells cou-
pled to the heat-structure outer surface.

Not used

Pointer variable for the horizontal plane
shape weight function used

Cell identifier for rods.
Decay constant of delayed groups
Decay constant of decay-heat groups

The hydro-cell parameters for heat-transfer
coupling to the heat-structure inner surface.

The hydro-cell parameters for heat-transfer
coupling to the heat-structure outer surface.

Rod material identification

Rod fine-mesh noding factor.

Number of rods in bundle

Number of mesh cells in the plane transverse

to the axial direction
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LPGAPT
LPLVOL
LPOWLI

LPOWLO

LPOWVI

LPOWVO

LPSLEN
LRADRD
LRCAL

LRCBM

LRCN

LRCTC

LRCTF

LRDPWR
LRDZ
LRPKF
LRPWRF

LRPWTB
LRS

PGAPT
PLVOL
POWLI

POWLO

POWVI

POWVO

PSLEN
RADRD
RCAL

RCBM

RCN

RCTC

RCTF

RDPWR
RDZ
RPKF
RPWRF

RPWTEB
RS

APPENDIX C

NCRX
NCRX
NCRZ

NCRZ
NCRZ
NCRZ

NCRX
NODES

SIRCITB(i,3) +
mIRCITB(i,3)

CIRCITB(1.4) +
n,IRCITB(1.4)

Qor 4

SIRCITB(i.2) +
mIRCITB(i,2)

TIRCITB(i.1) 4
rIRCITB(i.1)

NODES
NCRZ+1
NRODS
INRPWRF|*2

INRPWTB|[*2
NODES

Gap total gas pressure
Rod plenum volume

Total power across the heat-structure inner
surface to the liquid

Total power across the heat-structure outer
surface to the liquid

Total power across the heat-structure inner
surface to the gas (vapor).

Total power across the heat-structure ocuter
surface to the gas (vapor)

Pellet siack length
Rod node radius (cold).

Coolant void-fraction reactivity-coefficient
table. The symbol n, indicates the product
of the following vanable taken over the :
suvscrpt.

Boron reactivity-coefficient table
The symbol =, indicates the product of the
following vaniable taken over the 1 subscript

Reactivity-coefficient values at the begin-
ning of the previous time step.

Coolant temperature reactivity-coefficient
table. The symbol =, indicates the product
of the following variable taken over the :
subscript.

Fuel temperature reactivity-coefficient table.
The symbol =, indicates the product of the
following variable taken over the 1 subscript.

Rod relative radial power density
Axial node positions
Rod power peaking factor

Rate-factor table for the power or reactivity
table

Power or reactivity table

Pointer variable for the fuel-rod radial shape
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MOD(NFBPWT 2) weight function used to average reactivity
feedback parameters over the core volume,
MOD(N,2) = N - (N/2)*2

LSRP SRP Dor 1’ Summed programmed and feedback reactiv-
ity changes

LTC TC 10 Thermocouple-model input paramaters

LXN XN Dor 4 New reactivity-feedback paramete, values

X0 X0 0ord Old reactivity-feedback parameter values.

LZPW IPW NCRZ 41 Last interpolated axial power shape.

LZPWFB ZPWFB NCRZ 41 Subroutine ZPWHCI evaluated axial-power

shape at NCRZ 41 nodes basad on the input
axial-power shaped defined at NZM'WZ node

locations
LZPWRF ZPWRF INZPWRF|*2 Axial power-shape rate-factor table.
LZPWTB IPWTB INZPWTB|* Relative power density axial power-shape
NZPWZ+1 table
LZPWZT IPWIT NZPWZ Axial locations where the axial-power shape
ralative power densities wre defined
LZS 5 NCRZP1*(MOD Pointer variable for the axial-direction
(NFBPWT 4)/2)  shape, MOD(N,2) = N - (N/2)*2
LZZRD Dummy pointer that provides a known end

to the common block
C.53 RODPTI-Heat-Structure Pointer Table
ROD DATA POINTERS:

Nai e Array Dimension Description
LALPR ALPR NCRZ 42 Coolant vapor fraction
LALVR ALVR NCRZ 42 Liquid HTC times interfacial area
LBITR BITR 0 Variable not cu- ently implemented
LBITRN BITRN 0 Variable not currently implemented
LBURN BURN NCRZ +1 Fuel burnup
LCHTIR CHTIR NCRZ 42 Vapor HTC times interfacial area
LCLR CLR NCRZ 42 Liquid conductivity
LCND CND NODEZ* Rod conductivity

(NCRZ +1)
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LCNDR CNDR
LCONCR CONCR
LCPDR CPDR
LCPLR CPLR
LCPND CPND
LCPVR CPVR
LCVR CVR
LDRLDT DRLDT
LORVD ( DRVDT
LORZ “RZ
LORZN DRZN
LEAR EAR
LELR ELR
LEMIS EMIS
LEVR EVR
LFINAR FINAR
LHDR HOR
LHFGR HFGR
LHGAMR  HGAMR
LHGAP HGAP
LHLAR HLAR
LHLATR HLATR
APPENDIX C

NINT*
(NCRZ41)

NCRZ 42

NINT*
(NCRZ41)

NCRZ 42

NODES*
(NCRZ 41)

NCRZ 42
NCRZ 42
NCRZ 42

NCRZ 42

NCRZ 41
NCRZ 41
NCRZ 42

NCRZ 42

NODES*
(NCRZ+1)

NCRZ 42
NCRZ 42
NCRZ 42
NCRZ 42
NCRZ

NCRZ+1
NCRZ

NCRZ

Rod conductivity to right of
interface

Mass concentration of dissolved solute in
the coolant (kg solute/kg water)

Rod specific heat to right
of interface

Liquid specific heat
Rod specific heat

Vapor specific heat.
Vapor conductivity

Derivative of liquid density with respect to
liquid temperature

Dervative of vapor density with respect to
vapor temperature

Old zirconium dioxide reaction depth
New zirconium dioxide reaction depth

Specific internal energy of the noncondens-
able gas component

Liquid internal energy

Rod emissivity

Vapor internal energy

Not used

Rod-bundle hydraulic diameter
Latent heat of vaponization of fluid
Contribution to subcooled boiling
Gap conductance

Sum of all products of the liquid HTC and
the heat-transfer area

Sum of all products of the aquid HTC, the
heat-transfer area, and t = wall tempera-
ture
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LHLSR

LHRFG
HRFGO
LHRFL
LHRFLO
LHRFV
LHRFVO
LHRLG
LHRLGO
LHRLL
LHRLLO
LHRLV
LHRLVO
LHVAR

LHVATR

+HVSR

LIDHT
LIDRGR
LIKTF
LNOHT

LPAR

LPGAP
LPINT
[ PLDV
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HLSR

HRFG
HRFGO
HRFL
HRFLO
HRFV
HRFVO
HRLG
HRLGO
HRL.
HRLLO
HRLV
«“LVO
HVAR

HVATR

HVLR

IDHT
IDRGR
IHTF
NOHT

PAK

PGAP
PINT
PLOV

NCRZ 42

NCRZ +1
NCRZ 41
N<MAX
NZMAX
NZMAX
NZMAX
NZMAX
NZMAX
NCRZ 41
NCRZ 41
NCRZ +1
wCRZ 41
NCRZ

NCRZ

NCRZ+2

NZIMAX
NCRZ 42
NZMAX

NCRZ 42

NCRZ +1
NCRZ +1
NCRrZ

Specific enthalpy of the liquid phase at satu-
ration (corresponding 1o saturation temper-
ature at partial pressure cf steam)

New subcooled boiling HTC

Old subcooled boiling HTC

New fine-mesh liquid HTC

Old fine-mesh liquid HTC

New fine-mesh vapor HTC

Old fine-mesh vapor HTC

New fine-mesh subcooled boiling HTC.
Old fine-mesh subcooled boiling HTC
New liquid HTC for lower half-node
Old liquid HTC for lower half-node
New vapor HTC for lower half-node
Old vapot HTC for lower half-node

Sum of all products of the vapor HTC and
the heat-transfer area

Sum of all products of the apor HTC, the
heat-transfer area, and the wall tempera-
ture

Specific enthalpy of the steam (not gas) at
saturation (at partial pressure of steam and
saturation temperature)

Rod node identifier.
Flow-regime flag.
Fine-mesh heat-transfer regime flag

Number of rows of heat transfer nodes for
each rod

Partial pressure of the noncondensable gas
component.

Gap local gas pressure
Pellet-cladding contact pressure

Pellet dish volume
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LPR
LQCHFF
LQCHFO
LQCHFR
LQCHRO
LQWRX
LRADR

LRADRN

LRDHLO
LRDHLR
LRDHVO
LRDHVR
LRFT
LRFTN
LRLQLYV
LRND

LRNDR

LROAR

LROLR
LROMR
LROVR
LRPOWF
LSIGR
LSR
LSTNU
LTCHFF
LTCHFR

PR
QCHFF
QCHFO
QCHIR
QCHRO
QWRX
RADR

RADRN

RDHLO
RDHLR
RDHVO
RDHVR
RFT
RFTN

RND

RNDR

ROAR

ROLK
ROMR
ROVR
RPOWF
SIGR
SR
STNU
TCHFF
TCHFR
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NCRZ 42
NCRZ 41
NCRZ 41
NZIMAX
NZMAX
NCRZ 41

NODES*
(NCRZ+41)

NODES*
(NCRZ41)

NCRZ
NCRZ
NCRZ
NCRZ
NODES*NZMAX
NODES*NZMAX

NODES*
(NCRZ+1)

NINT*
(NCRZ+41)-1

NCRZ 42

NCRZ 42
NCRZ 42
NCRZ 42
NODES
NCRZ 42
NCRZ 42
NZMAX
NZMAX
NCRZ

Coolant pressure

New CHF

Old CHF.

New fine-mesh CHF

Old fine-mesh CHF

Metal-water reaction heat source

Old radial node positions

New radial node positions

Variable not currently implemented
Ligud HTC

Variable not currently implemented
Vipor HTC

Old fine mesh rod temperatures
New fine-mesh rod temperatures
Not used

Rod density

Rod density to right of material interface

Density of the noncondensal s ¢ ¢ compo-

nent

Liquid density
Mixture density
Vapor density

Rod power density.

Surface tension

Amount of platad-out solute (kg - m~?)

Stanton number

Fine-mesh wall temperature at CHF point

Wall temperature ot CHF



LTLD
LTLR
LTSATR
LTSSNR

LTVR
LVISLR
LVISVR
LVLCR
LVLZR
IVMZR
LVOLR
LVVCR
LVVZR
IWATR
LZHT

C.5.4. RODDAT -Heat-Structure Data Table

TLD
TLR
TSATR
TSSNR

TVR
VISLR
VISVR
VLCR
VILZR
VMZR
VOLR
VVCE
VVZR
WATR
IHT

NZMAX
NCRZ 42
NCRZ 42
NCRZ+2

NCRZ+42
NCRZ42
NCRZ 42
NCRZ +2
NCRZ 42
NCRZ 42
NCRZ 42
NCRZ 42
NCRZ 42
NCRZ

NZMAX

Liquid temperature at bubble departure
Liquid temperature
Saturation temperature

Saturation temperature cotresponding to
partial pressure of steam

Vapor temperature.

Liquid viscosity.

Vapor viscosity

Not used

Axial iquid velocity

Axial mixture velocity

Fluid volume in hydrodynamic mesh cells
Vapor cross-flow velocity

Axial vapor velocity.

Total rod heat-transfer area

Axial location of heat-transfer node

This data table includes the following COMMON blocks: RODVLT, defined in Sec. C 5.1,
RODPT, defined in Sec. € 5.2, and RODPTI, defined in Sec. C53

C6. PIPE COMPONENT
C.6.1. PIPEVLT-PIPE Variable Length Table
REAL VARIABLES:

Parameter
AA1111
BSMASS
CPOW
ENINP
EPSW
FL(2)
FV(2)
HOUTL

C-26

Description

Dummy variable that provides a known start to the COMMON block

Time-integrated mass flow from pipe

Special pipe power input.

Total (time-integrated) energy directly input to the pipe

Wall surface roughness

Liquid mass-flow corrections for mass-conservation checks

Vapor mass-flow corrections for mass-conservation checks

HTC between outer boundary of pipe wall and hquid
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HOUTV
PLENT
POWIN
POWOFF
QINT
QOuUT
QP3IN
QP30OFF
RADIN
RPOWMX
RQP3IMX
TH
TOUTL
TOuTV
VFLOW
4

211111

HTC between outer boundary of pipe wall and vapor

Tota! length of the pipe

Initial power deposited in the liquid

Power deposited in the liquid when the trip 18 OFF after it was ON
Initial water volume in pipe

Volume of liquid that has been discharged from pipe used as accumulator
Initial QPPP factor

QPPP factor when its trip is OFF after it was ON

Inner radius of pipe wall,
Maximum rate of chang” * ~awer deposited in the coolant
Maximum rate of chan, ; « v 5 Tty v

Thickness of pipe wall

Liguid temperature outside pipe

Vapor temperature outside pipe

Volume flow rate at discharge from pipe used as accumulaior
Water height above discharge

Dummy variable that provides a known end to the COMMON block

INTEGER VARIABLES

Parameter
IA1111
IACC

ICHF

icn

ICJ2
ICONC
IONOFF

IPF

(POW

APPENDIX C

Description

Dummy variable that provides a known start to the COMMON block
Pipe accumulator option switch

CHF calculation option

Not used

Not used

Indicator for presence of solute in the coolant input

Number of time steps the power deposited in the coolant trip has been

ON

Last interpolated interval in the power deposited in the coolant’s rate-
factor table

Indicator for presence of powver deposited in the coolant



IPOWSY Power deposited in the coolant table's abscissa-coordinate varable 1D
number

IPOWTR Trip 1D number that controls evaluation of the power deposited in the
coolant table

PP Last interpolated interval in the power deposited in the coolant table

IQF Last interpolated interval in the QPPP factor table's rate-factor table

QP Last interpolated interval in the QPPP factor table

IQP3SV QPPP factor table's abscissa-coordinate variable 1D number

IQP3TR Trip 1D number that controls evaluation of the QPPP factor table

1SOLLB Indicator for velocity update at JUN1

ISOLRB Indicator for velocity update at JUN2

J51 Junction sequence number at cell 1 of the pipe

JS2 Junction sequence number at cell NCELLS of the pipe

JUN1 Junction number of the junction at cell 1

JUN2 Junction number of the junction at cell NCELLS

NCELLS Number of fluid cells

NONOFF Number of time steps the QPPP factor table's controlling trip has been
ON

NPOWRF Number of pairs in the power deposited in the coolant table's rate-factor
table

NPOWSYV Power deposited in the coolant rate-factor table's abscissa-coordinate
variable |D number

NPOWTB Length of pipe power table

NQP3RF Number of pairs in the QPPP factor table's rate-factor table

NQP3SV QPPP factor rate-factor table's abscissa-coordinate variable 1D number

NQP3ITB Number of pairs in the QPPP factor table

TYPEL Type of adjacent compnnent at JUN1

TYPE2 Type of adjacent component at JUN2

211111 Dummy variable that provides a known end to the COMMON block.

C.6.2. PIPEPT-PIPE Pointer Table

Name Array Dimension Description

DUALPT - - General pointer table
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HYDROPT - General pointer table

INTPT — - General pointer table

HEATPT - - General pointer table

LPOWRF POWRF INPOWRF |*2 Rate-factor tables for the power deposited
in the coolant tables

LPOWTB POWTB INPOWTB|*2 Power deposited in the coolant table.

LQP3RF QP3IRF INQP3RF[*2 Rate-factor table for the QPPP factor
tables

LQP3TR QP3TB INQP3TB|*2 QPPP factor tables

C.6.3. PIPEDATA-PIPE Data Table
This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT,
both defined in Appendix D, PIPEVLT, defined in Sec. C.6.1; and PIPEPT, defined in Sec. C.6.2.

C.7. PLENUM COMPONENT

The plenum data are all contained in the PLENDATA COMMON block that consists of the
following COMMON blocks: DIMNSION, IOUNITS, JUNCTION, FIXEDLT, and BLANKCOM,
all defined in Appendix D; DUALPT, defined in Sec. C.1.1, HYDROPT, defined in Sec C.12,

VLTAB, defined in Sec. C.7.1; and PTAB, defined in Sec. C 72
C.7.1. VLTAB-PLENUM Variable-Length Table

REAL VARIABLES:

Parameter Description

AAlLag Dummy variable that provides a known start to the COMMON block

Bl Temporary storage for liquid mass-conservation checks

BSMASS Time-integrated mass flow from plenum

BV Temporary storage for vapor mass-conservation checks

EPSW Wall surface roughness

FAS] Summed flow area of all junctions on side 1 of the plenum cell

FAS2 Summed flow area of all junctions on side 2 of the plenum cell

FLXA Total air mass flow into the plenum during a time step

FLXAL Total liquid volumetric flow into the plenim during a time step.

FLXAV Toia! vapor (gas phase) volumetric flow into the plenum during a time
step

FLXC Total solute mass flow into the plenum during a time step

FLXEL Total liquid internal energy flow into the plenum during a time step

APPENDIX C
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FLXFV
FLXL
FLXV
RXCL

RXCV

XL
XV
2111

Total vapor internal energy flow into the plenum during a time step
Total liquid mass flow into the plenum during a time step
Total vapor mass flow into the plenum during a time step

Temporary storage for the right-hand side of the liquid stabilizer mass
and energy equations.

Temporary storage for the right-hand side of the vapor stabilizer mass
and energy equations

Gross total liquid volumetric flow from the plenum during a time step.
Gross total vapor volumetric flow from the plenum during a time step

Dummy variable that provides a known end to the COMMON block

INTEGER VARIABLES:

Parameter
IA1111

K

ICONC
IPOW
JUNS1

JUNS2

NCELLS
NPLIN
211111

Description

Dummy variable that provides a known start to the COMMON block
Address location that designates the location of the array data vanables
indicator for the presence of solute in the coolant or input

Indicator for the presence of power deposited in the coolant.

Number of junctions on side 1 of the plenum cell that convect momentum
across the cell

Number of junctions on side 2 of the plenum cell that convect momentum
across the cell.

Number of fluid cells (equals one for a PLENUM).
Number of plenum junctions

Dummy variable that provides a known end to the COMMON block

C.7.2. PTAB-PLENUM Pointer Table

Name
LALW

LAVW

LDBND

C-30

Ariay
ALW

AV

DBND

Dimension Description

NPLIN Temporary storage for the right-hand side of
the liquid stabilizer mass and energy equa-
tions

NPLIN Temporary storage for the right-hand side ¢!
the vapor stabilizer mass and energy equa-
tions

5*NPLIN Donar-cell quantities ap,, (1 = a)pe, ap,,

apge,, and (1 ~ a)peey
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LONFL

LONFV

L10J
LJUNJ
LISN
LPAK

LSGN
L22227

DONFL

DONFV

10J
JUNJ
ISN
PAK

SGN

NPLIN

NPLIN

NPLIN
NPLIN
NPLIN
NPLIN

NPLIN

Donor-cell flag for liquid
0 0 = indicates flow into the plenum,
1.0 = indicates flow from the plenum

Donor-cell flag for vapor
0 0 = indicates flow into the plenum;
1.0 = indicates flow from the plenum

Network junction numbers
Plenum junction numbers
Plenum junction sequence numbers.

BIT array for the plenum junciions, how-
ever, it is used only for storing the water
packing and stretching bits

Junction flow-reversal indicators

Dummy variable that provides a known end
to the COMMON block

C.7.3. Equivalences Defined for BLANKCOM

Mnemaonic
ALP(1)
ALPMN(1)

ALPMX(1)

ALPN(1)
ALPO(1)
ALV(1)

ALVE(1)
ALVEN(1)
ALVN(1)

AM(1)
ARA(1)

Variable
A(01)
A(78)

A(79)

A(27)
A(57)
A(02)

A(03)
A(29)
A(28)

A(58)
A(04)

APPENDIX C

Description
Old void fraction

Minimum value of void fraction among the plenum and all
its neighbors

Maximum value of void fraction among the .enum and all
its neighbors

New void fraction
Void fraction fram previous time step (" ')

Old value of liquid-to-interface HTC times the interfacial
area due to flashing

Old value of liquid-to-interface HTC times the interfacial
area due to evaporation.

New value of liquid-to-interface HTC tirnes the interfacial
area due to evaporation.

New value of liquid-to-interface HTC times the interfacial
area due to flashing

Air mass

0ld stabilizer value for ap,



ARAN(1)
ARC(1)
AREL(1)
ARELN(1)
AREV(1)
AREVN(1)
ARL(1)
ARLN(1)
ARV(1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>