NUREG/CR-5673 LA-12031-M Vol. 3

TRAC-PF1/MOD2 Code Manual

Programmer's Guide

Prepared by L. A. Galfee, S. B. Woodruff, R. G. Steinke, J. W. Spore

Los Alamos National Laboratory

Prepared for U.S. Nuclear Regulatory Com. sion

> 9208060249 920731 PDR NUREG CR-5673 R PDR

NUREG/CR-5673, Vol. 3

•

TRAC -PF1/MOD2 CODE MANUAL: PROGRAMMER'S GUIDE

JULY 1992

NUREG/CR-5673 LA-12031-M Vol. 3 R4

TRAC-PF1/MOD2 Code Manual

Programmer's Guide

Manuscript Completed: May 1992 Date Published: July 1992

Prepared by L. A. Guffee*, S. B. Woodruff, R. G. Steinke, J. W. Spore

Los Alamos National Laboratory Los Alamos, NM 87545

Prepared for Division of Systems Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN A7016

^{*}Science Applications International Corporation 2109 Air Park Road, SE Albuquerque, NM 87106

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555
- The Superintendeni of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications. It is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, inspection and investigation notices, licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grant publications, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. 7920 Norfolk Avenue, Bethesda, Maryland, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or. If they are American National Standards, from the American National Standards Institute. 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

AUTHORS AND ACKNOWLEDGMENTS

Many people contributed to the TRAC-PF1/MOD2 code development and to this report. Because it was a team effort, there was considerable overlap in responsibilities and contributions. The participants are listed according to their primary activity. Those with the prime responsibility for each area are listed first.

PRINCIPAL INVESTIGATORS	Jay W. Spore, Ju-Chuan Lin, Susan B. Woodruff, Ralph A. Nelson, and Robert G. Steinke
FLUID DYNAMICS:	Jay W. Spore, Ju-Chuan Lin, Susan B. Woodruff, Robert G. Steinke, and Laura A. Guffee
HEAT TRANSFER:	Ralph A. Nelson, Kemal Pasamehmetoglu, Cetin Unal, and Norman M. Schnurr
NEUTRONICS:	Robert G. Steinke and Jay W. Spore
CODE DEVELOPMENT AND PROGRAMMING:	Susan B. Woodruff, Jay W. Spore, Ju-Chuan Lin, Robert G. Steinke, Laura A. Guffee, and Victor Martinez
CONTROL PROCEDURE:	Robert G. Steinke
GRAPHICS:	Victor Martinez and Kelly M. Tapia
REPORT COMPILATION	Laura A. Guffee, Robert G. Steinke, and Jay W. Spore
EDITING:	Karyn R. Ames
REPORT TYPING:	Cindy G. Martinez, Vera B. Metzger, Laura A. Guf- fee, and Gloria E. Mirabal

AUTHORS AND ACKNOWLEDGMENTS

In addition to those listed on the previous page, we acknowledge all others who contributed to earlier versions of TRAC. In particular, the two-step numerics and network solver developed by John Mahaffy are a major part of the MOD2 code. Dennis R. Liles contributed heavily to the thermal-hydraulics modeling and to the overall direction of MOD1 code development. Frank L. Addessio developed the steam-generator component, and Manjit S. Sahota developed the critical flow model. Thad D. Knight provided direction for improvements to TRAC based on assessment-calculation feedback and coordinated the development of the MOD1 Correlation and Models document. Richard J. Pryor, Sandia National Laboratories, and James Sicilian, Flow Science, Inc., provided major contributions to the code architecture. We also acknowledge useful discussions and technical exchanges with Louis M. Shotkin and Novak Zuber, U.S. Nuclear Regulatory Commission; Terrence F. Bott, Francis H. Harlow, David A. Mandell, and Burton Wendroff, Los Alamos National Laboratory; John E. Meyer and Peter Griffith, Massachusetts Institute of Technology; S. George Bankoff, Northwestern University; Garrett Birkhoff, Harvard University; and Ronald P. Harper, Flow Science, Inc.

CONTENTS

AL	THORS AN	ID ACKNOWLEDGMENTS iii
AB	STRACT	
1.	INTRODU	CTION
2.	CODE ARG	CHITECTURE
	2.1. Cod	e Structure
	2.2. Dat	a Structure2
	2.2.1. One	-Dimensional Data Structure 4
	2.2.1.1.	Adding a One-Dimensional Database Variable
	2.2.2. Thr	ee-Dimensional Data Structure
	2.2.2.1.	Mesh-Wise vs Cell-Wise Data Storage
	2.2.2.2.	Cell-Wise Implementation for MOD2 Three-Dimensional Data
	2.	2.2.2.1. Comdecks EQUIV and PARSET1
	2.	2.2.2.2 Loop Limits
	2.	2.2.2.3. Temporary Mesh-Wise Storage for One Variable in One Level
	2.2.2.3.	Classification of Variables
	2.2.2.3.	1. Relation of Position and Classification and Comdeck PARSET115
	2.	2.2.3.2. Special Restrictions on Ordering Elements of Array Variables
	2.	2.2.3.3. Miscellaneous Restrictions on the Positions of
		VESSEL Array Variables
	2.2.2.4.	Referencing Three-Dimensional Arrays for VESSEL Coding
	2.2.2.5.	Boundary or Phantom Cells
	2.2.2.6	Adding or Deleting a Three-Dimensional Database Array Variable
3.	TRAC CAL	CULATIONAL SEQUENCE
	3.1. Gen	eral Summary
	3.2. Inp.	ut Processing
	3.3. Initi	alization
	3.4. Pre	pass, Outer-Iteration, and Postpass Calculations
	3.4.1 Pre	pass Calculation
	3.4.2. Out	er-Iteration Calculation
	3.4.3. Pos	tpass Calculations

CONTENTS

Y

3.5.	Tim	e-Step Advancement or Back-up	
3.6.	Outp	ut Processing	
4. MEM	ORY	MANAGEMENT	
5. TRAC	FOR	VARIOUS MACHINE CONFIGURATIONS	
5.1.	CRA	Y/CTSS	
5.2.	IBM	and IBM-Compatible	
5.3.	CRA	Y/UNICOS	
5.4.	CDC	Cyber 205	
5.5.	CDO		
APPEND	A XIC	TRAC SUBPROGRAMS	A-1
APPEND	IX B	TRAC SUBROUTINE CALLING SEQUENCE	B-1
APPEND	DIX C	COMPONENT DATA TABLES	
APPEND	DIX D	DESCRIPTION OF COMMON-BLOCK VARIABLES	D-1
APPEND	DIX E	EXAMPLE UPDATE	E-1
APPEND	DIX F	GRAPHICS VARIABLES	
APPEND	DIX G	TRAC ERROR MESSAGES	G-1
APPEND	н хіс	UPDATE/HISTORIAN DEFINABLE NAMES IN TRAC	H-1

CONTENTS

TRAC-PF1/MOD2 VOLUME III. PROGRAMMER'S GUIDE

by

L. A. Guffee, S. B. Woodruff, R. G. Steinke, and J. W. Spore

ABSTRACT

The Transient Reactor Analysis Code (TRAC) was developed to provide advanced best-estimate predictions of postulated accidents in lightwater reactors. The TRAC-PF1/MOD2 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-r' pendent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent initial conditions. The stability-enhancing two-step numerical algorithm is used in both the one- and three-dimensional hydrodynamics and permits violation of the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

In addition to the components contained in previous TRAC versions, TRAC-PF1/MOD2 includes a heat-structure component that allows the user to accurately model complicated geometries. An improved reflood model based on mechanistic and defensible models has been added. The new code also contains improved constituative models and additions and refinements for several components.

This manual is the third volume of a four-volume set of documentation on TRAC-PF1/MOD2. This guide was developed to assist the TRAC programmer and contains a formation on the TRAC code and data structure, the TRAC calculational sequence, memory management, and various machine config. tions supported by TRAC.

1. INTRODUCTION

This guide has been developed to assist the Transient Reactor Analysis Code (TRAC) programmer. Much of the information presented here is included as appendices. These appendices are self-contained and are meant to be used as references. Topics of discussion addressed in this manual include the TRAC code structure and data structures, the TRAC calculational sequence, memory management, and various machine configurations supported by TRAC.

1

2. CODE ARCHITECTURE

The description of the TRAC code architecture given here is divided into two areas of discussion: code structure and data structure. Because the data structure for the one-dimensional components differs from that of the three-dimensional VESSEL component, these structures are detailed separately in the discussion that follows.

2.1. Code Structure

In an effort to strive for a code structure that minimises the problems of maintaining and extending the code, TRAC was developed in a modular fashion. This modularity manifests itself in two important ways. First, because TRAC analyzes reactor systems that consist of specific component types, the code is written to utilize subroutines that handle specific component types. For example, data and calculations pertaining to a PIPE component are handled separately from VESSEL data and VESSEL calculations. The different TRAC components are described in greater detail in the TRAC-PF1/MOD2 User's Guide, which is the second volume in the MOD2 documentation. Second, the TRAC program is written to be functionally modular; that is, each TRAC subprogram performs a specific function. Some of the low-level subprograms are used by all components, thereby strengthen is this modularity. Appendix A is a complete list of TRAC subroutines and function routines and their descriptions. Appendix B lists for each subroutine all routines from which it is called and all routines that it calls.

Functional modularity within TRAC is taken a step further by division into overlays. Figure 1 displays a caling-tree representation of the TRAC overlays. Table 1 gives a brief description of each overlay's function. The use of an overlay structure originally was mandated by computer-size limitations, but this is no longer the case. The overlay structure is maintained using UPDATE/HISTORIAN *DEFINEs for the convenience of users with smaller memory machines and as a starting point for future efforts in the area of parallelization. Overlays are loaded at Los Alamos by declaring the entry routine for each overlay, then satisfying all subsequent subroutine references from a global binary library of TRAC routines. Whereas the CRAY version of TRAC does not need to be overlaid, we recommend that the user keep the input and initialization overlays to minimize memory charges.

The overall sequence of calculations is directed by the main program TRAC. Overlay INPUT always is invoked at the start of each TRAC execution to read control and component input data. The component data are initialized by the overlay INIT. The steady-state calculation (if requested) is performed by subroutine STEADY. During the steady-state calculation, the reactor power is initially zero and is set on after the fluid flow rates have been established. This is to prevent high rod temperatures early in the steady-state calculation when the flow rates generally are small. The transient calculation is performed by subroutine STEADY and during the transient calculation by subroutine TRANS. Overlays EDIT, GRAF, and DMPIT are called during the steady-state calculation by subroutine STEADY and during the transient calculation by subroutine TRANS calling subroutine PSTEPQ to generate output as required. Overlay CLEAN is called to close all output files at the end of the problem or when a fatal error occurs.

2.2. Data Structure

TRAC divides the data for each component into four blocks: the fixed-length table, the variable-length table, the pointer table, and the array data. The first three of these blocks are

TABLE 1

TRAC OVERLAYS

Overlay	Description
CLEAN	Closes all output files.
DUMP	Performs restart dumps.
EDIT	Adds an edit at the current time to the file TRCOUT.
GRAF	Adds a graphics edit at the current time to the file TRCGRF.
ICMP	Initializes component data.
IGRF	Initializes graphics table.
INIT	Controls initialization of component data and graphics tables.
INPUT	Controls reading input and restart files and analyzes piping loops.
TRAC	Controls overall flow of calculation. (Also contains many service rou- tines used throughout the code.)
OUTER	Controls one complete outer iteration for all components.
OUT1D	Performs one outer iteration on the basic finite-difference flow equa- tions for all one-dimensional components.
OUT3D	Performs one outer iteration for all VESSEL components.
POST	Performs postpass for all components.
PREP	Performs prepass for all components.
PRP1D	Performs the prepass calculations for one-dimensional components.
PRP3D	Performs prepass calculation for all three-dimensional VESSEL com- ponents.
RDIN1	Inputs and stores one-dimensional component data.
RDIN3	Inputs and stores VESSEL component data.
RDRES	Reads and stores data from a restart dump file.
TRIPS	Evaluates signal variables, control blocks, and trips.
PROGRAMMER'S	GUIDE 3

PROGRAMMER'S GUIDE

stored in memory as copies of the COMMON blocks, FLTAB, VLTAB, and PTAB, respectively. The structure of the COMMON area FLTAB is the same for all components. The variables in the VLTAB and PTAB COMMON areas differ from one component to another. Appendix C describes the fixed-length, variable-length, and pointer tables for each component.

The array data are stored in memory within the dynamic storage array or A array. For a one-dimensional component, the location of an individual variable array is determined by the value of its pointer in the pointer table. For a VESSEL component, however, the pointer methodology is not used. Instead, EQUIVALENCE statements are used to locate VESSEL array data in the A array. Dynamic storage of data arrays permits effective use of space for many different problems. Aspects of memory management are discussed further in Sec. 4.

In addition to the data that refer to a particular component, TRAC uses many variables to describe the overall solution state of the calculation. These variables are grouped according to their use into several other COMMON areas. Appendix D documents these COMMON blocks and lists their variables and corresponding definitions.

2.2.1. One-Dimensional Data Structure

The pointer tables for all one-dimensional components have a similar structure consisting of four main groups of pointers and one special group. The first main group of pointers is contained within the comdeck DUALPT and locates dual-time hydrodynamic and thermodynamic information. The second main group of pointers locates remaining single-time hydrodynamic and thermodynamic information and is contained in the comdeck HYDROPT. Any integer data are located using the third main group of pointers from the comdeck INTPT. A fourth main group of pointers is used to locate data for wall heat transfer in those components that support the wall heat-transfer calculation, and these pointers are contained in the comdeck HEATPT. Array data that is specific to a particular component type, if any exists, is located using the last special group of pointers in the pointer table. This pointer table information is summarized in Appendix C for each component type.

2.2.1.1. Adding a One-Dimensional Database Variable

In order to add a new variable to all one-dimensional components, standard guidelines are followed. These guidelines are given below. A sample update, provided as Appendix E, adds a new variable to each of the four main groups discussed above using these guidelines.

- Create new pointer names for the new variables and add them to the pointer tables of the appropriate comdecks.
 - a. If the new variable requires both old-time and new-time storage, then two new pointers must be added to the DUALPT comdeck. If the pointers become the first two pointers of the DUALPT comdeck due to alphabetic considerations, the EQUIVALENCE statement in DUALPT must be changed to reflect this.
 - b. If the new variable with a single-time value is associated with the hydrodynamic calculation, its new pointer is added to the HYDROPT comdeck.
 - c. If the new variable is an integer variable with a single-time value, its new pointer is added to the INTPT comdeck.

4

- d. If the new variable with a single-time value is associated with the wall heattransfer calculation, its new pointer is added to the HEATPT comdeck.
- 2. Initialize the new pointers.
 - a. If new pointers were added to DUALPT, these new pointers are initialized in subroutine S1DPTR in the DUALPT pointer section.

If the new variable is one for which old-time and new-time values are the same at the start of the OUTER code block (that is, the new-time value is reset to the old-time value in the event of a back-up due to one-dimensional component water packing for instance), then the new old-time pointer should be initialized after the LALP pointer but before the LVV pointer. Similarly, the new newtime pointer should be initialized after the LALPN pointer but before the LVVN pointer in the same relative position as the new old-time pointer.

If the new variable is one for which old-time and new-time values are not the same at the start of the OUTER code block (that is, the new-time value is not reset to the old-time value in the event of a back-up due to one-dimensional component water packing for instance), then the new old-time pointer should be initialized after the LBIT pointer but before the LVVTO pointer. Similarly, the new new-time pointer should be initialized after the LBITN pointer but before the LVVT pointer in the same relative position as the new old-time pointer.

Adjust the value of the pointer initialized array directly after each new pointer you add to correctly reflect the lengths of its storage requirement. Increment the value of LENPTR *in the* DUALPT *pointer section of* S1DPTR *only* by the number of pointers added to the DUALPT comdeck.

- b. If a new pointer was added to HYDROPT, it is initialized in subroutine S1DPTR. The new pointer should be added just before the LNXT pointer in the HYDROPT section of S1DPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the variable LENPTR by one in the HYDROPT pointer section of S1DPTR only.
- c. If a new pointer was added to INTPT, it is initialized in subroutine S1DPTR. The new pointer should be added just before the LNXT pointer in the INTPT section of S1DPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the variable LENPTR by one in the INTPT pointer section of S1DPTR only.
- d. If a new pointer was added to HEATPT, it is initialized in subroutine S1DPTR. The new pointer should be added just before the LNXT pointer in the HEATPT section of S1DPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the variable LENPTR by one in the HEATPT pointer section of S1DPTR only.
- If the new variables are to be graphed, set up the graphics catalogs by adding calls to GRFPUT in subroutine IGCOMP for each variable to be graphed. At this time, it is not possible to graph an integer array variable.

PROGRAMMER'S GUIDE

- 4. If the new variables are to be written to the dump file, include a call to BFOUT in subroutine DCOMP for each variable to be dumped. If the new variable being dumped is a cell-edge quantity with a length of NCELLS+1, then increment LVEDGE by one. If the new variable being dumped is a cell-center quantity with a length of NCELLS, then increment LVCNTR by one. If the new variable has dimensions other than NCELLS or NCELLS+1, increase LCOMP by the length of the new array variable.
- To read in the new variables from the dump file for restarting, add calls to BFIN in subroutine RECOMP in the same order as the BFOUT calls were added to DCOMP. (Note that RECOMP must be changed if DCOMP is changed.)
- Add the new variables to the argument list of the subroutines in which they will be calculated. Also include DIMENSION statements. Perform the necessary calculations to determine the new variables within the subroutines.
- Add the new variables to the argument list of all calling statements to the subroutines in which the new variables are calculated.
- 8. A special note about adding pointers to HEATPT. The one-dimensional STGEN (steam-generator) component does not use the heat-transfer calculation pointers contained in HEATPT. Instead, the steam generator initializes its own special "generalized" heat-transfer calculation pointers. Therefore, when adding a pointer to 'HEATPT, the corresponding generalized pointer must be added to the one-dimensional steam-generator routines. This is done as follows.
 - a. Create the new generalized heat-transfer calculation pointer name for the new generalized heat-transfer calculation variable being added to the steam-generator routines and add this new pointer name to the steam-generator pointer table STGENPT.
 - b. Initialize the new generalized pointer in subroutines RSTGEN and RESTGN in the generalized heat-transfer calculation pointer section. Increment LENPTR by one.
 - c. If the new generalized heat-transfer calculation variable is to be graphed, set up the graphics catalog by adding a call to GRFPUT in subroutine IGSTGN.
 - d. If the new generalized heat-transfer calculation variable is to be written to the dump file, include a call to BFOUT in subroutine DSTGEN. In addition, increase LEXTRA in subroutine ISTGEN by the length of the new variable array being dumped. Also add a call to BFIN in subroutine RESTGN in the same order as the call to BFOUT was added to DSTGEN.

2.2.2. Three-Dimensional Data Structure

The data structure used for the VESSEL hydrodynamic data in MOD2 is cell-wise, in contrast to the mesh-wise data structure used for the MOD1 VESSEL implementation. In addition, most of the coding is defined directly in terms of three-dimensional arrays. This new data structure was chosen primarily to simplify code development and to improve code readability. Its implementation was designed to reduce the number of locations in the source code where changes have to be made when variables are inserted or deleted. Despite the quite

0

different appearance of the MOD2 VESSEL coding, persons familiar with MOD1 should find that the computational flow has not been changed unnecessarily.

2.2.2.1. Mesh-Wise vs Cell-Wise Data Storage

There are two ways to store data defined on a computational mesh: mesh-wise and cellwise. In mesh-wise storage, all of the values for a given kind of mesh data or a given array (e.g., all of the pressures), are stored contiguously in computer memory. In cell-wise storage, all of the values for the different kinds of data associated with a single mesh cell (e.g., pressure, temperature, volume, etc.), are stored contiguously in computer memory. Reference to consecutive elements of a given array using cell-wise storage will, of course, necessitate use of a stride equal to the number of different kinds of data stored for a cell.

TRAC MOD1 uses a variant of mesh-wise storage for the VESSEL three-dimensional hydrodynamic data: all of the values for a given array for a given axial level are stored contiguously. This is why this data is sometimes called "level" data. The variant method was chosen to simplify the coding used to provide for having only a portion of the VESSEL data in the active computer memory at a given time. However, as computer memories have become larger and cheaper, it is now possible to have all of the VESSEL data in active memory at one time.

Rather than using mesh-wise storage as in MOD1, TRAC MOD2 uses cell-wise storage for the VESSEL three-dimensional data. This methodology was chosen since it has certain advantages over mesh-wise storage. These advantages include simpler code development and code maintenance through the avoidance of large numbers of pointers and long subroutine argument lists. However, cell-wise implementations have drawbacks as well. A discussion of the tradeoffs and the motivation for the change from MOD1 is given in Sec. 4.

2.2.2.2. Cell-Wise Implementation for MOD2 Three-Dimensional Data

MOD2 uses the equivalence method described in Sec. 4 for implementing the cell-wise data storage. In addition, all of the mesh arrays are three-dimensional. For example,

real alp(ni,nj,1), rov(ni,nj,1)
equivalence (a(199), alp(1,1,1)), (a(200),rov(1,1,1))

Note that when multidimensional arrays appear in an EQUIVALENCE statement, standard FORTRAN requires that the array dimensions of the multi-dimensional arrays not be variable. In the MOD2 implementation of the three-dimensional data, the first two dimensions of the VESSEL mesh arrays, i.e., NI and NJ, are defined in PARAMETER statements. This results in an input limit on the number of radial rings and azimuthal sectors. (There is no limit on the number of axial levels arising from this consideration.) As discussed in Sec. 4, hard-coded array dimensions have both code development and code debugging advantages over variable array dimensions; however, they also have disadvantages, including the possibility of having to change the source code in order to adapt to problem input with a larger dimension requirement.

Although the MOD2 implementation of the VESSEL data may seem very similar to staticmemory allocation, the implementation is, in fact, flexible and dynamic in that it allows for an arbitrary number of axial levels in each three-dimensional VESSEL as well as for an arbitrary number of three-dimensional VESSEL components. However, some space may be wasted with a multi-VESSEL input model since the radial and azimuthal array dimensions must be the same for all of three-dimensional VESSEL components in a problem.

PROGRAMMER'S GUIDE

We note that most of the implementation difficulties experienced with either cell-wise or mesh-wise storage could be avoided by use of the widely available but non-standard POINTER construct which associates arrays with variable starting addresses. However, the approach taken in TRAC has been to use standard FORTRAN in order to ensure code portability.

2.2.2.1. Comdecks EQUIV and PARSET1

All of the three-dimensional array data for the MOD2 VESSEL component are declared in comdeck EQUIV; the associated PARAMETERs are in comdecks PARSET1 and PARSET2. There are two sections to the declaration in EQUIV, the array dimensions and the equivalencing to the dynamically allocated container A array:

*cd equiv

dimer	sion						
1 }	ila (n	i, nj, 1),	hva(ni	,nj,1),	wat(ni,)	nj,1),.
2 hla	atw(n	i, nj, 1), hv	atw(ni	,nj,1), f	inan(ni,	nj,1),
3 n	lem (n	i,nj,1	1.	rom(ni	,nj,1),	qrd(ni,	nj,1),-
4 3	sig(n	i, nj, 1) *	am(ni	,nj,l), .	1.1.1.1.1	
equin	valen	ce					
1 (a	(1)	, hl	a(1,1	,1)),	(a(2),	hva(1,	1,1)),
2 (a	(3)	, wa	t(1,1	,1)),	(a(4),	hlatw(1,	1,1)),
3 (a	(5)	, hvat	w(1,1	,1)),	(a(6),	finan(1,	1,1)),
4 (a	(7)	, rme	m(1,1	,1)),	(a(8),	rom(1,	1,1)),
5 (a	(9)	, qr	d(1,1	,1)),	(a(10),	sig(1,	1,1)),:
6 (a	(11)	1 8	m(1, 1)	,1)),	(a(12),	a water -	

As stated above, the implementation of cell-wise storage with equivalencing results in dynamic memory allocation when the loop limits used in the references to the mesh data are adjusted dynamically. The coding for these loop limits is discussed in Sec. 2.2.2.2.

All of the arrays in a given cell-wise storage scheme have to have the same dimension. This is accomplished by the use of the following PARAMETERs defined in the comdeck PARSE 1.

NV	The number of different three-dimensional array variables.
NXRMX	The maximum number of radial rings or x-direction cells in the three-dimensional mesh.
NYTMX	The maximum number of azimuthal sectors or y- direction cells in the three-dimensional mesh.
NXBCM	The number of phantom or boundary cells next to radial ring or x-direction cell 1.
NXBCP	The number of phantom or boundary cells next to radial ring or x-direction cell NXRMX.
NYBCM	The number of phantom or boundary cells next to azimuthal θ - or y-direction cell 1.

The number of phantom or boundary cells next to azimuthal θ - or y-direction cell NYTMX.

Combinations of these PARAMETERs are then used to determine the array dimensions, i.e.,:

NICN = NXRMX + NXBCM + NXBCP	The total number of radial or x-direction cells.
NI = NICN*NV	The first dimension of the three- dimensional arrays.
NJ ≈ NYTMX + NYBCM + NYBCP	The total number of azimuthal or y- direction cells and the second di- mension of the three-dimensional ar- rays.

The TRAC user should not change any of these PARAMETERs, except for NV when array variables are added and deleted, and NXRMX and NYTMX if the maximum arrays sizes are either inadequate or too wasteful of computer memory. Further discussion of the use of phantom or boundary cells may be found in Sec. 2.2.2.5.

The second section of the EQUIV comd⁻⁶, shown above, contains the EQUIVALENCE statements implementing the cell-wise storage⁻⁶ ell-wise storage necessarily imposes an order on the variables in a cell, and certain database management coding not related to dynamic memory management relies on this order. Consequently, the TRAC user should neither change the order of the variables nor insert or delete variables into comdeck EQUIV without a thorough understanding of the structure of the database as described in Sec. 2.2.2.3. With respect to the memory management, the only important factor is that each of the different array variables be equivalenced to a different location of the A array (container array) in order to create ce¹¹-wise data storage. Obviously, these locations should be consecutive in order to avoid wasting computer memory.

2.2.2.2.2. Loop Limits

All of the loop limit variable names have the same naming convention with the first letter, i.e., I. J. and K. indicating, respectively, the first (radial or x-direction), second (azimuthal or y-direction), and third (axial cr z-direction) array dimensions. The letter C in a name denotes a limit suitable for 'poping over cells and the letter F denotes a limit suitable for looping over cell faces. The convention for cell-face variables in the MOD2 VESSEL is the same as for MOD1: the cell-face data at the "outer," "forward," or "upper" face of a cell has the same index as the data at the cell center. (Note that, as indicated below, cell faces at the VESSEL boundaries are only included in the cell-face loops when their velocities need to be calculated as a result of using the generalized boundary-condition option.)

The numeral 0 in a name denotes a lower limit and the letter X denotes an upper limit. The suffix M denotes a lower limit that includes the phantom cell adjacent to the first physical cell and the suffix MM denotes a lower limit that includes all the low-numbered phantom cells. The suffix P denotes an upper limit that includes the phantom cell adjacent to the last physical cell, and the suffix ALL denotes an upper limit that includes all the high-numbered phantom cells.

NYBCP

9

The variable names for the the radial or x-direction are:

ICOMM	Lower limit for loop over all radial or x-direction cells in the computational mesh.
ICOM	Lower limit for loop over radial or x-direction cells in the physical mesh and the adjacent low-numbered phantom or boundary radial or x-direction cell.
ICO	Lower limit for loop over all radial or x-direction cells in the physical mesh.
IFO	Lower limit for loop over all radial or x-direction cell luces at which velocities are calculated.
ICX	Upper limit for loop over all radial or x-direction cells in the physical mesh.
IFX	Upper limit for loop over all radial or x-direction cell faces at which velocities are calculated.
ICXP	Upper limit for loop over radial or x-direction cells in the physical mesh including the high-numbered hantom or boundary radial or x-direction cell.
IALL	Upper limit for loop over all radial or x-direction cells in the computational mesh.

The variable names for the azimuthal or y-direction loop limits can be obtained by replacing the leading I with a J and those for the axial loops by replacing the leading I with a K.

Before describing the definition of the loop limits, we want to emphasize that there is no reason why the code developer should have to change any of the coding of the loop limits in either comdeck PARSET2 or in subroutine RVSSL. In fact, this is one of the main advantages of the MOD2 VESSEL data implementation: all of the maintenance of the memory management functionality can be accomplished by changing only three variables in comdeck PARSET1: NV, NXRMX, and NYTMX. The coding of the 'oop limits is described here merely for completeness.

Certain of the loop limits can, of course, be hard-coded with PARAMETER statements. These are defined as follows in PARSET2:

JCOP = NYBC	M + 1
JCOMP = JCOP	- 1
JCOMMP - JCOP	- NYBCM
KCOP = N2BC	M + 1
KCOMP = KCOP	- 1
KCOMMP = KCOP	- NZBCM

The suffix P in these names stands for "parameter." These variables are copied to the corresponding COMMON variables JC0, JC0M, JC0MM, KC0, KC0M, and KC0MM using the standard naming convention in subroutine RVSSL.

Additional radial or x-direction, azimuthal or y-direction, and axial lower loop limits as well as all of the upper loop limits are defined dynamically for each three-dimensional VESSEL component in subroutine RVSSL. This coding is reproduced below (in a restructured form) where NXR is the input number of physical radial rings or x-direction cells, NYT is the input number of physical azimuthal sectors or y-direction cells, NZZ is the input number of physical axial levels, IGEOM is zero for cylindrical geometry and one for Cartesian geometry, IGBCXR is nonzero for generalized radial or x-direction boundary conditions, IGBCYT is nonzero for generalized azimuthal or y-direction boundary conditions, and IGBCZ is nonzero for generalized axial boundary conditions. (In the current version of MOD2, IGBCXR and IGBCYT are always zero and IGBCZ is only nonzero when the VESSEL outer boundary-condition input flag, IVSSBF, is nonzero.)

For the second index representing the azimuthal or y-direction:

```
jcx = jc0 + nyt - 1
      jexp = jex + 1
      jall = jcx + rybcp
      Calculate NYTV, the number of azimuthal or y-direction
C
      cell faces where velocities must be calculated.
C
      if (igeom .eq. 0) then
         jf0 = jc0
         if (nyt .gt. 1) then
            nytv = nyt
         else
            nyty = 0
         endif
      else
         if (igboyt .eq. 0) then
            jf0 = jc0
            nytv = nyt - 1
         else
            jf0 = jc0m
            nylv = nyt + 1
          widif
       endif
       jfx = jf0 + nytv - 1
```

For the third index representing the axial direction:

```
kcx = kc0 + nz - 1
kcxp = kcx + 1
kall = kcx + nzbcp
Calculate NZZV, the number of axial cell faces
where velocities must be calculated.
if (igbcz .eq. 0) then
kf0 = kc0
```

PROGRAMMER'S GUIDE

C

```
nzzv = nz - 1
else
    kf0 = kc0m
    nzzv = nz + 1
endif
kfx = kf0 + nzzv - 1
```

Since the first index, i.e., I, is used to determine the dynamic offset into the container A array, all of the loop limits for the first index have to be defined dynamically for each threedimensional VESSEL component. This is done in RVSSL where IFREE is the first free location in the A a ray.

For the first index representing the radial or x-direction:

icOmm = ifree
ic0 = ic0mm + nxbcm*nv
icOm = icO - nv
icx = ic0 + (nxr - 1) * nv
icxp = icx + nv
iall = icx + nxbcp*nv
<pre>Calculate NXRV, the number of radial or x-direction cell faces where velocities must be calculated. if (igeom .eq. 0) then if0 = ic0 if (igbcxr .eq. 0) then nxrv = nxr + 1 else nxrv = nxr endif</pre>
else
<pre>if (igbcxr .eq. 0) then if0 = ic0</pre>
nxrv = nxr - 1
else
ifO = icOm
nxrv = nxr + 1
endif
endif
$ifx = if0 + (nx_1v-1) * nv$

The inclusion of the variable NV in this coding for the radial or x-direction loop limits creates the cell-wise storage. Note that if there is more than one three-dimensional VESSEL component in a problem, these indices are calculated for each VESSEL component. These indices are transferred from the component storage into the VESSEL variable-length table when needed using the standard TRAC data-management protocol.

2.2.2.2.3. Temporary Mesh-Wise Storage for One Variable in One Level

In order to maintain compatibility with the MOD1 input and output procedures, MOD2 has the capability of temporary mesh-wise storage for a single axial level for a single array variable. A temporary mesh-wise array sufficient to hold one level of data for one array is allocated with the pointer LTEMPS in subroutine RVSSL. This temporary array is then used for storing the specified data in mesh-wise form. Subroutine LEVELR is a generic procedure for transferring data from this temporary array to the appropriate locations of a permanent cell-wise array and subroutine LEVELI is a generic procedure for transferring data from a permanent cell-wise array to this temporary array.

As an example of the use of subroutine LEVELR, all of the mesh data input in subroutine RVSSL is read into the temporary array on a level-by-level and array-by-array basis. After each "read," as processed by the LOAD routine, the data is transferred from the temporary array to the indicated permanent cell-wise array via the RLEVEL routine which calls the LEVELR procedure. The LEVELR procedure is also used directly from routine REVSSL to transfer data when reading the restart dump file.

The LEVELI procedure for converting from the cell-wise storage to temporary mesh-wise storage is used by three output procedures: DLEVEL to write a restart dump for one level and one array, GLEVEL to write a graphics dump for one level and one array, and WLEVEL to write to the TRCOUT file for one level and one array. The GLEVEL routine makes use of the position concept discussed in Sec. 2.2.2.4

Routines LEVELR, LEVELI, RLEVEL, DLEVEL, GLEVEL, and WLEVEL are all generic routines and should not need to be modified unless the TRAC user wishes to make a major change in implementation.

2.2.2.3. Classification of Variables

There are two basic categories of variables in the VESSEL hydrodynamic database: singletime and dual-time variables. Both categories have subcategories leading to seven classes of variables:

- 1. Single-time variables:
 - 1.1 Single-time, cell-centered, single-time (but not old-old-time) variables that are either cell-centered, defined at the higher numbered cell faces, or defined at the lower numbered radial or axial cell faces.
 - 1.2 Old-old-time variables which store values at the start of the previous time step in order to create an ad hoc "triple-time" capability.
 - 1.3 Single-time cell-face variables defined at the backwards or lower numbered azimuthal cell face.

2. Dual-time variable pairs:

- 2.1 Old-time variables for which the new-time values are calculated prior to the OUTER hydrodynamic stage.
- 2.2 Old-time variables for which the new-time values are not calculated prior to the OUTER hydrodynamic stage.

13

- 2.3 New-time variables for which the values are calculated prior to the OUTER hydrodynamic stage.
- 2.4 New-time variables for which the values are not calculated prior to the OUTER hydrodynamic stage but may have been incorrectly calculated during OUTER prior to a back-up.

The class of a variable is determined according to how the variable needs to be updated as the calculation progresses. There is currently no provision for variables belonging to more than one class.

Single-time variables in Class 1.1 do not need to be automatically updated. This does not necessarily mean that their values don't change with time. Single-time variables in Class 1.2 (currently only the void fraction) are updated in subroutines TIMUPD and BAKUP in a manner analogous to that for dual-time variables as described below. Single-time variables in Class 1.3 require special logic, implemented in subroutine SETBDT, to ensure that values defined for azimuthal phantom cells have the proper identification with the values for the actual cells.

Dual-time variables are automatically updated, i.e. the old-time variables take on the values of the new-time ones at the start of a time-step calculation. This coding is in subroutine TIMUPD for the VESSEL. (Note that, in fact, this is the only mechanism for defining old-time values.) In addition, the provision for separate classes of dual-time variables allows for the code to back up (repeat a calculation with a different time step or other parameter) starting either at the beginning of a time step or at the beginning of the OUTER hydrodynamic stage. Both backup procedures are in subroutine BAKUP. The differences in the two types of back-ups are discussed more thoroughly in Sec. 3.4.

Although an in-depth discussion of the implementation of the generic procedures applied to the different classes of variables is outside the scope of this section, two aspects of the implementation affect the addition of variables: the current implementation uses the relative position of a variable in the database to determine its classification, and the relative positions of the variables are known to the code through six parameters which rely on the database having a certain structure. In other words, the code developer must insert a new variable in a position appropriate to its class and must ensure the maintenance of the assumed structure.

The relative position in memory of a cell variable is referred to here either as its position or as its position in the database. This position is thus identical to the index into the container array occurring in the EQUIVALENCE statement. (It is obviously convenient from the standpoint of readability for the EQUIVALENCE statements in the source to be ordered by position; however, this is not necessary. In any case, the use of the word position here refers to the relative position in memory when the code is executed, not the position in the source code.)

Implementation procedures used for the VESSEL three-dimensional database rely on a particular structure. This leads to a number of restrictions which must be observed when the code is modified by inserting variables. The major restrictions are related to the classification of the variables and are discussed in the next section. Special restrictions on the elements of array variables are given in Sec. 2.2.2.3.2 and some miscellaneous restrictions are given in Sec. 2.2.2.3.3.

2.2.2.3.1. Relation of Position and Classification and Comdeck PARSET1

The current implementation of the generic procedures described above relies on the fact that the various classes of the VESSEL database are in the following order according to the position of the variables in the class:

- 1) 1.1 and 1.2 (may be intermixed)
- 2) 2.1
- 3) 2.2
- 4) 2.3 (in one-to-one correspondence with 2.1)
- 5) 2.4 (in one-to-one correspondence with 2.2)
- 6) 1.3.

Since the implementation makes implicit use of these restrictions, it is essential that array variables which are added to the code conform to these restrictions. Current releases of MOD2 also allow for Class 1.1 variables immediately before the Class 1.3 variables. We do not recommend this procedure as it complicates code maintenance.

These particular restrictions were chosen to simplify the implementation of the generic procedures, to allow these procedures to be efficient on vector processors, and to reduce the number of PARAMETER constants needed to describe the database. The PARAMETER constants characterizing the structure of the database are:

LALO*	Position of the "old-old" time variable ALPO (correspond- ing to the variable ALP).
LALM*	Position of the old-time variable ALP (corresponding to the variable ALPO).
LOLD	Position of first old-time category 2.1 variable.
LOLD1	Position of first old-time category 2.2 variable.
LNEW	Position of first new-time category 2.3 variable.
NV	Position of last variable (equal to number of variables).

Depending on the class of the variable, one or more of these six PARAMETER constants will have to be updated when a variable is added. (Refer to Sec. 2.2.2.6 for further details.)

2.2.2.3.2. Special Restrictions on Ordering Elements of Array Variables

For a subset of the cell-face array variables, the coding relies on the three components of the cell-face arrays being contiguous in memory and being ordered with the θ - or y-direction element first, the axial element second, and the radial- or x-direction element third. For example,

^{*}These variables are used to implement an ad hoc "triple-time" capability for the void fraction. Introduction of additional old-old-time variables should use this coding as a model.

equivalence (a(28), fayt(1,1,1)), (a(29), faz(1,1,1)), (a(30), faxr(1,1,1))

These restrictions also apply to the cell-face variables in comdeck EQUIVF, which are referenced in routine J3D, and to the cell-face signal variables referenced in routine SVSET3. Consequently, insertion of new variables must not change the relative order of the components for these cell-face array variables. We recommend, for readability as well as for prevention of future coding errors, that all cell-face array variables be stored so that the components are contiguous and ordered as above.

2.2.2.3.3. Miscellaneous Restrictions on the Positions of VESSEL Array Variables

Coding in the signal-variable evaluating subroutine SVSET3 relies on variable HLA being the first array variable.

We are not aware of any other restrictions other than those listed here explicitly. However, we recommend that if new variables are added that they not be put as the first variable of their class. Code developers familiar with MOD2 have assumed that they can depend on those variables which are currently first in their class to remain in that relative position.

All of the VESSEL hydrodynamic routines are coded in MOD2 with direct usage of threedimensional arrays for the mesh data. This improves readability, i.e., ALP(1,J,K) rather than $ALP(1T+(1R-1)\times NTSX)$ (for the Kthaxial level) as in MOD1. In addition to improving readability and simplifying debugging, this implementation considerably reduces the possibility of coding errors. Naturally, with typical TRAC noding, this use of three-dimensional arrays does not provide long vector lengths for inner do-loops. MOD2 has been coded with the loop over axial levels as the inner loop since that dimension is generally the largest. Achievement of long vector lengths by looping over the entire mesh would require a change to indirect addressing in order to incode the mesh connectivity in a vectorizable manner.

Reference to neighboring cells in the VESSEL mesh is straightforward using three-dimensional arrays. From the standpoint of the cell at (i !,K), the adjacent cell in the inner radial or x-direction is (I-NV,J,K) and in the outer radial or x-direction is (I+NV,J,K). The necessity for the stride, NV, arises from the cell-wise data storage described in Sec. 2.2.2.2. The adjacent cell in the lower azimuthal or y-direction is (I,J-1,K) and in the higher azimuthal or y-direction is (I,J+1,K). Finally, the next lower cell (level) in the axial direction is (I,J,K-1) and the next higher cell (level) above is (I,J,K+1).

It also is convenient to have an abstract method for referencing individual variables. Such reference is currently used in generating the graphics catalog and in implementing the signal-variable evaluation logic. For one-dimensional data, which still use a mesh-wise data structure, pointers are used for this purpose. For the three-dimensional data, we have chosen to use the position in the database. We emphasize that a position is not a pointer and has to be referenced in a different manner. In particular, if "LPOS" is the position of a particular variable, then the value of that variable in the cell (I,J,K) will be A(I+LPOS-1,J,K) given that the value of I incorporates the offsets in the container or A array as described in Sec. 2.2.2.2.

The positions of the VESSEL array variables are defined dynamically in subroutine PTRS, and the identifiers are stored in the "VESSEL level-data pointers" (note mislabeling) section

of the comdeck VSSLPT. First, before any hydrodynamic calculations are done, the values of all of the array variables for the first phantom cell are temporarily set to their position in the database using the following coding:

```
do 10 n = 1, nv
10 a(icOmm+n-1) = float(n)
```

Next, the identifiers for those variables needed in the graphics and signal-variable evaluation procedures are defined as in the following example:

At the end of PTRS, the values for the first phantom cell are reset to a nominal value.

Unless the TRAC user is adding a new variable to the graphics catalog or to the signalvariable evaluation logic, it is not necessary to define an identifier for the variable in PTRS and to add the identifier to the comdeck VSSLPT. We recommend that, in order to minimize changes to the code as well as to minimize the amount of unused code, that identifiers not be added unless they are to be used.

2.2.2.5 Boundary or Phantom Cells

etc.

The VESSEL mesh in MOD2 is constructed with two rows of boundary cells outside the mesh in each of the tree lower-numbered directions and with one row of boundary cells in each of the higher-numbered directions. The extra row in the lower-numbered directions is necessary to accommodate the face-centered data. The number of boundary cells in each direction is set by PARAMETER constants as described in Sec. 2.2.2.2.1. The use of boundary cells allows all references from cells within the physical mesh to neighboring cells out ide the physical mesh to be valid.

When using a three-dimensional VESSEL compone model a typical cylindrical reactor vessel with outer boundary walls, the data in the bottom and top axial boundary cells and the outer radial boundary cells do not affect the calculation. However, the inner radial boundary cells can be used to incorporate the effect of radial-momentum convection across the center of the vessel. (Such a model was implemented using a different mechanism in MOD1. This model, which is partially implemented in routine VRBD, is not currently activated in MOD2.) The azimuthal boundary cells are used to avoid the special logic necessary to indicate that the first physical azimuthal sector is adjacent to the last physical azimuthal sector. This is accomplished by subroutine SETBDT, which copies the data from the cells in the first and last physical sectors to the appropriate phantom cells.

The boundary-cell implementation makes it simple to include generalized boundary conditions at the bottom and top axial and outer radial boundaries of a cylindrical VESSEL and at all of the external boundaries of a three-dimensional Cartesian-geometry VESSEL. MOD2 contains the appropriate coding in all of the VESSEL hydrodynamic routines to allow for fixedpressure (BREAK) or fixed-velocity (FILL) boundary conditions independently at any of these

PROGRAMMER'S GUIDE

boundaries. However, this coding for the radial or x and azimuthal or y boundaries has not yet been tested. In the currently released version of MOD2, there is no input mechanism to activate this coding. There is an input option, IVSSBF, which only activates the generalized boundary conditions at the lower and upper axial faces. There is currently no coding to allow for the generalized boundary conditions to be time dependent. However, implementing such a feature should not require major changes to the current code.

In addition to providing for the new generalized boundary conditions, the use of phantom cells allows for improved implementation of the standard hydrodynamic algorithms. Without the use of phantom cells, special program logic is required to calculate expressions including gradients and fluxes for cells at the edge of the physical mesh. Such logic would increase the probability of coding errors and inhibit vectorization on hardware such as the CRAY computers.

For typical coarse-mesh VESSELs, a large percent: of the cells are at the edges of the mesh. For example, a three-dimensional VESSEL component with four radial rings and four azimuthal sectors on each level actually has only 4 of the 16 cells on a level which have neither a radial nor an azimuthal boundary. Since even straightforward vectorization generally reduces computation time by more than a factor of 5, it is obviously desirable to design implementations which are vectorizable for all cells.

As stated previously, if phantom cells are not used, special logic would be necessary to carry out calculations for cells at the edge of the physical mesh. On the other hand, when phantom cells are used, additional procedures are required to define the values associated with the phantom cells. The amount of code that must be maintained is similar in either case; however, the phantom-cell methodology is more easily modularized.

The major disadvantage in using phantom cells is the potential for significantly increased computer-memory requirements for coarse-mesh VESSELS. For our previous example, a VESSEL with 4 radial rings, 4 azimuthal sectors, and 10 axial levels has only $4 \times 4 \times 10$ or 160 physical mesh cells. However, it will have $(4 + 3) \times (4 + 3) \times (10 + 3)$ or 637 computational mesh cells when including the boundary cells. Naturally, the percentage of boundary cells is smaller for more finely noded problems. The current VESSEL array data contains about 300 different variables; thus, this example would require roughly 200,000 words of computer memory for the array data. However, for most modern computer hardware, this is not a large amount of memory and the cost-benefit ratio of this memory increase when compared with the more efficient coding is extremely favorable.

Since the lowest-numbered rows of phantom cells in each direction are only used in conjuction with the generalized boundary-condition option associated with a fixed pressure boundary condition, it should be possible to reduce the memory requirements by changing the PARAM-ETER constants defining the number of lower-numbered phantom cells from 2 to 1. However, doing this has not been tested.

2.2.2.6. Adding or Deleting a Three-Dimensional Database Array Variable

There are three steps to adding a variable to the VESSEL bydrodynamic (cell-wise) database; these steps are summinized below. Note that these steps are incomplete for the case of old-old-time array variables.

- Determine an appropriate position in the database for the new array variable or dualtime array variable pair according to the classification of the array variable and the structure of the database.
- Insert the necessary EQUIVALENCE and DIMENSION statements for the new array variable(s) into comdeck EQUIV and update any EQUIVALENCE statements for preexisting variables which have their A-array positions changed by the insertion (Although this can lead to a large amount of retyping, the retyping can be easily automated.)
- 3. Ensure that the six PARAMETER constants, i.e., LALO, LALM, LOLD, LOLD1, LNEW, and NV, which characterize the structure of the vessel database, are correct.

Once the new VESSEL array variable has been successfully added to the VESSEL hydrodynamic database, one then needs to modify the necessary subroutines to calculate, dump/restart, graph, or output the new variable. The following four guidelines give step-by-step instructions on how this is accomplished.

- 4. Perform the nece: any calculations to determine the value of the new array variable within the appropriate subroutine.
- 5. If the new array variable is to be written to the dump file for restart purposes, include a call to DLEVEL in routine DVSSL. In addition, increment the variable LV by one in subroutine DVSSL. To read in the new array variable from the dump file when restarting, add calls to BFIN and LEVELR in subroutine REVSSL in the same position that the call was added to subroutine DVSSL. (Note that REVSSL *must* be changed if DVSSL is changed.)
- 6. If the new array variable is to be graphed, initialize a new graphics identifier in subroutine PTRS. In addition, include the new graphics identifier in comdeck VSSLPT. Include a call to GRFPUT in subroutine IGVSSL for the new graphics identifier. If special provision has to be made to output the new variable, then subroutines IGRAF and GRAF may need to be changed.
- If the new array variable is to be written to the output file TRCOUT as printed output, add a call to WLEVEL in subroutine WVSSL for the new array variable to be printed.

3. TRAC CALCULATIONAL SEQUENCE

The full TRAC calculational sequence involves several stages: input processing; initialization; prepass, outer-iteration, and postpass calculations; time-step advancement or back-up; and output processing. Each of these stages is discussed in greater detail from a programmer's point of view in the sections that follow. First, a summary of the overall calculational sequences for transient and steady-state calculations is given.

3.1. General Summary

Depending on the values of the input parameters STDYST and TRANSI (Main Data Card 4), TRAC may perform a steady-state calculation, a transient calculation, or both. The general control sequences of each type of calculation are outlined below, and specific details of the calculational sequence are discussed in more detail in the subsections that follow.

The transient calculation is directed by subroutine TRANS. The system state is advanced through time by a sequence of prepass, outer-iteration, and postpass calculations that TRANS requests by invoking subroutines PREP, HOUT, and POST, respectively. In these calculations, one or more sweeps are made through all the components in the system. To provide the output requested by the user, TRANS invokes the EDIT, DUMP, and GRAF _verlays by calling subroutine PSTEPQ. Subroutine TRANS is structured as shown in Fig. 2. The major control variables within the time-step loop are: NSTEP, the current time-step number; TIMET, the time since the transient began; DELT, the size of the current time step; and OITNO, the current outer-iteration number. The time-step loop begins with the selection of the time-step size, DELT, by subroutine TIMSTP. A pass is performed for each component by overlay PREP to evaluate the stabilizer motion equation and phenomenological coefficients. At this point, if the current time-step number is zero, TRANS calls the EDIT overlay to print the system state and the GRAF overlay to generate a graphics edit at the beginning of the transient. Subroutine TRANS then calls subroutine HOUT, which performs one or more outer iterations to solve the basic hydrodynamic equations. Each outer iteration is performed by overlay OUTER and corresponds to one iteration of a Newton-method solution procedure for the fully coupled difference equations of the flow network. The outer-iteration loop ends when the outer-iteration convergence criterion (EPSO on Main-Data Card 5) is met. This criterion is applied to the maximum fractional change in the pressures throughout the system during the last iteration.

The outer-iteration loop alternatively may terminate when the number of outer iterations reaches a user-specified limit (OITMAX on Main-Data Card 6). In this case, TRAC restores the state of all components to that at the beginning of the time step, reduces the time-step size (with the constraint that DELT be greater than or equal to DTMIN), and continues the calculation with the new time-step size. This represents a back-up situation and is discussed in greater detail in Sec. 3.5.

When the outer iteration converges, TRANS calls the POS I overlay to perform a postpass evaluation of the stabilizer mass and energy equations and the heat-transfer calculation. Then the time-step number is incremented and TIMET is increased by DELT. The calculation is complete when TIMET reaches the last TEND time specified on the time-step data.

The transient calculation is controlled by a sequence of time domains specified by the user on the time-step data. During each of these time domains, the minimum and maximum time-step sizes and the edit, dump, and graphics intervals are fixed. When the EDIT, DUMP, and GRAF overlays are invoked, they calculate the time when the next output of the associated type is to occur by incrementing the current time by the time interval. When TRANS later finds that TIMET has reached or exceeded the indicated time, the corresponding output overlay is invoked again. Whenever TIMET equals or which is the TEND ending time for a time-step data domain, the next time-step data domain is an in. The output indicators are set to the current time plus the new values of the appropriate antervals.

Subroutine STEADY directs steady-state calculations using the structure detailed in Fig. 3. The calculation sequence of this subroutine is similar to that of the transient driver subroutine TRANS. The same sequence of evaluations used for transient calculations also is used for the steady-state calculation. The main difference is the addition of a steady-state convergence test in STEADY, logic to turn on the steady-state power level, and the optional evaluation of constrained steady-state controllers. To provide output requested by the user, STEADY invokes the EDIT, DUMP, and GRAF overlays by calling subroutine PSTEPQ.

Subroutine STEADY is called by the main program whether or not a steady-state calculation has been requested. If no steady-state calculation is required, STEADY simply returns to the prior program.

T time-step control in STEADY is identical to that implement d in TRANS. This includes the selection of the time-step size, the output timing, and the back-up of a time step if the outer-iteration limit is exceeded. In STEADY the input variable SITMAX, from Main-Data Card 6, is used as a delimiter in place of O!TMAX. The maximum fractional rates of change of seven parameters are calculated by subroutines TF1DS3 and FF3D. These rates and their locations in the system are transmitted to STEADY through the array variables FMAX and LOK in COMMON block SSCON. Tests for steady-state convergence are performed every 5 time steps and before every large edit. The maximum fractional rates of change and their locations are written to the TRCMSG and TRCOUT files as well as the TTY I/O channel. The minimum value of the flow velocity, MINVEL, and its maximum fractional rate of change, FMXLVZ, in the hydro channels coupled to powered heat structures determine when the steadystate power should be set on. Once MINVEL exceeds 0.5 m/s and FMXIVZ falls below 0.5, the steady-state power is set to its input value, RPOWRI (specified on Card Number 19), for each powered heat structure. The generalized steady-state calculation is completed when all fractional rates of change are below the user-specified convergence criterion, EPSS (on Main-Data Card 5), or when STIME reaches the end of the last time domain specified in the steady-state calculation time step data.

Both steady-state and transient calculations may be performed in one computer run. The end of the generalized steady-state time-step cards is signified by a single card containing a -1.0 in columns 4-14. The transient time-step input cards should follow immediately. If the generalized steady-state calculation converges before reaching the end of the last time domain, the remaining steady-state time-step data are read in but not used so that the transient calculation proceeds correctly.

3.2. Input Processing

The processing of all TRAC input data (except for the line-step data) is performed by the overlay INPUT and its sub-overlays RDIN1, RDIN3, and inDRES. These data are of two types: input data retrieved from the input file TR. LIN and restart data from the dump-restart file TRCRST. In addition to obtaining these input data, these overlays also organize the component data in memory, assign the array pointer variables for each component, analyze the problem loop structure, and allocate the initial A-array space for part of the global data. The remainder of the space necessary within the A array for the global variables is allocated by subroutine INIT in overlay INIT. At the end of each of the overlays, INPUT and INIT, these fixed data segments are moved to the dynamic-memory area.

As the controlling subroutine within the INPUT overlay, subroutine INPUT reads the namelist, main sta, and CCFL-model input from the TRACIN file. Using main-data parameter information, the initial A-array global variable space is allocated. The interactive control-panel-vector input is read and processed by a call to subroutine RCPVEC if the TRAC executable

PROGRAMMER'S GUIDE

was updated with the interactive label on. The signal-variable, control-block, and trip controlparameter data are read and processed by calling subroutine RCNTL. Subroutine RDCOMP reads and processes the one-dimensional component data and subroutine RDCOM3 performs a similar function for the VESSEL component data from the TRACIN file. Any control-parameter and component data not provided by the TRACIN file are retrieved from the TRCRST restartdata file by subroutine RDREST. Finally, subroutine INPUT utilizes subroutine SRTLP to establish loops and pointers for the network solver, subroutine ASIGN to define the component pointer array, and subroutine SETCPV to initialize the control-panel-vector pointers.

Subroutine RDCOMP invokes component input-processing subroutines to read and process each component type. These routines have names which typically begin with the letter R. For example, the PIPE component input-processing subroutine is called RPIPE. In addition to reading component data from the TRACIN file, these component input-processing routines must also initialize the fixed-length, variable-length, and pointer tables and define the JUN array. Each component input-processing subroutine may utilize a call to subroutine RCOMP, which processes the input data common to most one-dimensional components.

Pointer variables common to most one-dimensional components are initialized with a call to subroutine S1DPTR, and any additional pointers special to a component type are initialized within that component's input-processing subroutine. An example of specialized pointer variables are the many steam-generator generalized heat-transfer pointers initialized in subroutine RSTGEN. When adding a new variable to a one-dimensional component, it is necessary to initialize the new pointer in S1DPTR or in a specific component input-processing routine in addition to performing several other steps. The step-by-step procedure involved is discussed in Sec. 2.2.1.1, and a sample update is included as Appendix E.

The JUN array defined by each component input-processing routine is a doubly subscripted array, JUN($4,2 \times NJUN$). The four values of the first index are defined in Table 2. The second index indicates the order in which the component junction was encountered during input processing.

TABLE 2

FIRST INDEX OF THE COMPONENT-JUNCTION ARRAY, JUN

Index	Description
1	Junction number.
2	Component number.
3	Component type.
4	Junction direction flag
	0 = positive flow is into the component at this junction;
	1 = positive flow is out of the component at this

0

Subroutine RDCOM3 invokes the VESSEL component input-processing routine RVSSL. In addition to reading VESSEL input parameters from the TRACIN file, this routine also initializes the fixed-length, variable-length, and pointer tables, reads VESSEL level data, and performs input testing.

Subroutine RDREST opens the restart-data file TRCRST and obtains data from the dump edit corresponding to the requested time-step number (as specified by variable DSTEP on Main Data Card 3 of file TRACIN). If the requested time-step number is negative. RDREST uses the last dump edit available. The dump data initialize the signal-variable, control-block, trip, and component data that were not provided by the TRACIN file. Component data are read in from the TRCRST file by calls to component restart-processing subroutines. These subroutines, whose names typically begin with the letters RE, function in much the same way as the component input-processing subroutines which begin with the letter R. For example, the PIPE component restart-processing subroutine is called REPIPE. The restart data common to most one-dimensional components is processed from the dump using a call to subroutine RECOMP. Details on the structure of the dump-restart file are given in Sec. 3.6.

Subroutine SRTLP sorts through the one-dimensional components of the system and groups them by loops that are isolated from one another by VESSEL components or TEE internal junctions. The IORDER array is rearranged to reflect this grouping and to provide a convenient order within each group for the network solution procedure. The Ithelement of the array IORDER is the number of the component that is processed after the (I - 1) component but before the (I + 1) component.

Subroutine ASIGN defines the component pointer array, COMPTR, according to the order of the IORDER array. The Ithelement of array COMPTR is the starting location in the A array of the fixed-length table data for component IORDER(1).

If the input file TRACIN is in free format (rather than in TRAC format), TRAC creates the additional file TRCINP. The TRACIN data are written into file TRCINP in a TRAC-format form that can be read by the TRAC input routines. File TRCINP is used as the input file rather than file TRACIN.

The user has the option of creating an echo file of the input data contained in file TRACIN by defining NAMELIST variable INLAB = 3. When this option is selected, file INLAB is created during input processing and contains all the input data from file TRACIN along with variablename comments contained between asterisks. This provides a useful means of labeling an otherwise difficult-to-interpret TRACIN file. It also allows the user to verify the input data being supplied to TRAC.

3.3. Initialization

During the initialization stage performed within overlay INIT, subroutine ICOMP performs the initialization of arrays and variables for each component that are required by TRAC but are not read in directly from files TRACIN and TRCRST. Also during this overlay, subroutine IGRAF controls the initialization of the graphics catalog.

The overall component-initialization subroutine, ICOMP, first defines the junction sequence array JSEQ and velocity sign indicator array VSI and then initializes the data for heat-structure, one-dimensional, and three-dimensional components. The array JSEQ contains

junction numbers in the order they are processed as determined by the component order-ofevaluation array IORDER. The Ithelement of the array VSI is the junction flow-reversal indicator for junction JSEQ(I). Using a call to subroutine SETNET, the array IOU is initialized to contain network junction numbers for the junctions of all components excluding BREAKs and FILLs. Finally, VESSEL source connections are checked to ensure that all connections for a particular loop are in the same direction. This is necessary to ensure that the predictor and stabilizer velocities solved for using FEMOMX, FEMOMY, and FEMOMZ remain independent of one another.

Subroutine CIHTST controls the initialization of all heat-structure components with calls to subroutines IRODL and IROD. Subroutine IRODL initializes arrays that provide information on the location of hydrodynamic data, and subroutine IROD initializes various power-related arrays that are not input.

The one-dimensional component initialization routines have names which typically begin with the letter I. For example, the PIPE component initialization subroutine is called IPIPE. After determining the junction connection and component sequencing, these routines call subroutine VOLFA to calculate volume-averaged cell flow areas and to perform several input tests on valid flow area configurations. Next, subroutine COMPI is called to initialize several variable arrays (e.g., tilde velocities). Thermodynamic properties, transport properties, and stabilizer quantities are initialized with a call to subroutine IPROP. Next, a call to subroutine SETBD initializes the boundary-array data. Junction data consistency then is checked using a call to subroutine CHKBD. Finally, subroutine ELGR is called to compute FRICs and GRAVs from form losses and elevations if these particular input options are selected using the NAMELIST options IKFAC and IELV, respectively.

The boundary data are stored in the doubly-dimensioned array BD(65,NJUN). These data indicate the current solution state of the adjacent component and are evaluated at one of three possible space points: the edge of the mesh cell at the junction, the midpoint of that mesh cell, or the other edge of that mesh cell. The first index signifies the element description as determined by a call to J1D for one-dimensional components, to BDPLEN for plenum components, and to J3D for three-dimensional components. The second index indicates the order in which the junction numbers are processed.

Similarly, subroutine CIVSSL controls the intialization of all VESSEL components by calling subroutine IVSSL. Subroutine IVSSL performs analogous initializations for the VESSEL component as does subroutine IPIPE for the PIPE component. Obviously, due to the differer is in the one-dimensional and three-dimensional databases, it is not possible to use many of the same low-level subroutines for both component types.

After component initialization by subroutine ICOMP is complete, subroutine INIT calls subroutine IGRAF. The graphics initialization subroutine, IGRAF creates the TRCGRF file; writes the header, catalog, and geometric data to the file; and places the file information into a storage area. The catalog data determine what information is to be written to the TRCGRF file during the course of a problem and are defined by calls to component graphics initialization subroutines. These routines, whose names typically start with the letters IG, specify the data to be editted for each component. For example, the PIPE component graphics initialization subroutine is called IGPIPE. The catalog data common to most one-dimensional components are handled by subroutine IGCOMP. A complete listing of the available graphics variables for 0

each component is summarized in Appendix F. In order to graph a new variable, the appropriate graphics catalog edit need only be added to subroutine IGCOMP if the variable is common to most one-dimensional components, to subroutine IGVSSL if the variable is a VESSEL variable, or to a specific graphics initi-lization routine if the variable is particular to a component type.

3.4. Prepass, Outer-Iteration, and Postpass Calculations

One complete time-step calculation consists of a prepass outer-iteration, and postpass stage. Each stage of the time-step calculation is detailed below.

3.4.1. Prepass Calculation

The prepass calculation uses the modeled-system solution state at the completion of the previous time step to evaluate numerous quantities to be used during the outer-iteration calculation. The prepass begins by evaluating signal variables and control block, and determining the set status of all trips. Each component begins the prepass by moving the values calculated during the last time step into the storage area for old-time values. Next, wall and interfacial friction coefficients are calculated, and an initial forward elimination on the stabilizer motion equations is performed. For components that require heat-transfer calculations, the prepass also evaluates material properties and heat-transfer coefficients (HTCs). A second pass through all one-dimensional components is required to do the hackward substitution on the stabilizer equations of motion. The prepass for heat-structure components can be more complex. Besides calculating material properties and HTCs for both average and additional rods, the prepass evaluates quench-front positions and fine-mesh properties if the reflood model has been activated.

The prepass calculation is controlled by overlay PREP, whose entry-point subroutine is of the same name. Subroutine TRIPS controls the evaluation of signal-variable, control-block, and trip data. This is in contrast to subroutine TRIP that interrogates the trip set status in preparation for specific consequences of trips. Then subroutine PREP performs the first pass of the PREP stage for all one-dimensional components by calling PREP1D with IBKS set to 1. All heat-structure components are processed by calling HTSTR1. If the SETS3D method has been selected for all VESSEL components (NAMELIST option NOSETS = 0 or 2 and NSTAB=1), overlay PREP3D is called at this time to evaluate the predictor and stabilizer motion equations. The second pass through the PREP stage performs the backward-substitution for the one-dimensional stabilizer tilde velocities by again calling PREP1D, this time with IBKS set to 2. If the SETS3D method is not selected (NAMELIST option NOSETS = 1 or NSTAB = 0), the prepass is completed with a call to PREP3D to define all tilde velocities by their beginning-of-time-step velocities for the three-dimensional VESSEL components.

Subroutine TRIPS calls subroutines SVSET, CBSET, and TRPSET. Subroutine SVSET uses current values of system-state variables to define the signal variables. Subroutine CON-BLK, which is called by subroutine CBSET, evaluates control-block function operators. Subroutine TRPSET uses the current signal-variable and control-block values to determine the set status of trips.

The one-dimensional prepass driver PREPID calls one-dimensional component prepass routines to perform both steps of the prepass for each one-dimensional component type. The component driver routines have names which typically end with the numeral 1 (see Table 3). For example, the PIPE component prepass subroutine is called PIPE1. On the first pass through

PROGRAMMER'S GUIDE

TABLE 3

COMPONENT-DRIVER SUBROUTINES

Component Type	Prepass	Outer	Postpass	
ACCUM	ACCUM1	ACCUM2	ACCUM3	
BREAK	BREAK1	BREAK2	BREAK3	
FILL	FILL1	FILL2	FILL3	
PIPE	PIPE1	PIPE2	PIPE3	
PLENUM	PLEN1	PLEN2	PLEN3	
PRIZER	PRIZR1	PRIZR2	PRIZR3	
PUMP	PUMP1	PUMP2	PUMP3	
ROD or SLAB	HTSTR1		HTSTR3	
STGEN	STGEN1	STGEN2	STGEN3	
TEE	TEE1	TEE2	TEE3	
TURB	TURB1	TURB2	TURB3	
VALVE	VLVE1	VLVE2	VLVE3	
VESSEL	VSSL1	VSSL2	VSSL3	

the PREP stage, during which the stabilizer motion equations are set up, the one-dimensional component subroutines utilize the common low-level routines SAVBD, PREPER, and SETBD to avoid redundant coding. On the second pass, during which the stabilizer motion equations are solved, the common low-level routine BKMOM is used. The flag index IBKS (1 or 2) indicates the pass being performed.

Subroutine SAVBD retrieves BD-array boundary data from adjacent components, stores it in the appropriate array locations, and moves data for the last completed time step into the old-time arrays. Subroutine PREPER evaluates wall friction by calling FWALL, evaluates material properties by calling MPROP, evaluates HTCs by calling HTPIPE, and evaluates interfacial-shear coefficients and begins the solution of the stabilizer equations of motion by calling FEMOM. For a specific component, any or all of these steps may occur under the crintrol of the PREPER argument list. Subroutine SETBD uses the information in the component data arrays to reset the BD-array boundary data at both ends of the component. Subroutine BKMOM solves the stabilizer equations of motion for the stabilizer velocities for one-dimensional components.

Subroutine HTSTR1 calls subroutine FLTOM to transfer hydrodynamic data into the necessary heat-structure arrays; subroutine CORE1 to evaluate HTCs, fine-mesh properties, and quench-front positions; and subroutine FLTOM again to transfer the resulting heat-transfer information back into the hydrodynamic database. From subroutine CORE1, subroutine RFDBK is called to evaluate reactivity feedback, and subroutine RKIN is called to evaluate the pointreactor kinetics model.

Each VESSEL component is processed by subroutine VSSL1. A time update is performed by calling subroutine TIMUPD. Donor-cell weighting factors are initialized, vent valve calculations are performed, and momentum source terms are defined. Next, subroutine CIF3 is called

26

to evaluate the interfacial shear coefficients, and subroutine PREFWD is called to evaluate wall-shear coefficients. Subroutines FEMOMX, FEMOMY, and FEMOMZ are called to compute the vessel predictor and stabilizer velocities. Finally, subroutine J3D is used to update the BD-array boundary information.

3.4.2. Outer-Iteration Calculation

The hydrodynamic state of the modeled system is analyzed in TRAC by a sequence of Newton iterations that use full inversion of the linearized equations for all one-dimensional component loops and the VESSELs during each iteration. Throughout the sequence of iterations that constitute a time step (each called an outer iteration within TRAC), the properties evaluated during the prepass and the previous postpass remain fixed. These include wall (SLAB and ROD) temperatures, HTCs, wall and interfacial shear coefficients, stabilizer velocities, and quench-front positions. The remaining fluid properties can vary to obtain the hydrodynamic-model solution.

Each call to overlay OUTER completes a single outer (Newton) iteration. Subroutine HOUT, which is the entry-point joutine of this overlay, control the overall structure of an outer iteration, as presented in Fig. 4.

Both the forward-elimination and backward-substitution sweeps through the one-dimensional component loops are performed by subroutine OUT1D and the associated outer-iteration routines. The calculations that these routines perform are controlled by the common variable IBKS, which is set by subroutine OUTER. Subroutine OUT3D solves the hydrodynamic equations for all VESSEL components (IBKS = 0) or updates boundary data (IBKS = 1).

All one-dimensional components in a particular loop are handled by a single call to subroutine OUT1D. This routine loads the data blocks for a component into memory, then calls the appropriate component outer-iteration subroutine. Component outer-iteration subroutines have names that end with the numeral 2 (see Table 3). For example, the PIPE component outer-iteration subroutine is called PIPE2. Subroutine OUT3D works in a similar manner, except that all three-dimensional VESSEL components call subroutines VSSL2.

The outer-iteration subroutines for one-dimensional components utilize subroutine INNER to perform common functions. Subroutine INNER retrieves boundary information from the BD boundary array, tests other boundary information for consistency, calls subroutine TF1D to perform the appropriate hydrodynamic calculation, and resets the BD boundary array by calling subroutine J1D. Subroutine TF1D calls subroutines TF1DS1, TF1DS, and TF1DS3 to solve the basic semi-implicit finite-difference equations.

Subroutine VSSL2 solves the basic semi-implicit finite-difference equations defined by the VESSEL-matrix equation (depending on the value of IBKS) for a single VESSEL component while subroutine OUT3D does the same for a multi-VES' EL component problem. Subroutines TF3DS1 and TF3DS are called to linearize the hydrodynamic equations. Subroutine STDIR sets up the VESSEL matrix equation for direct inversion. Subroutine MATSOL is called to solve the linear system and subroutine BACIT stores the new-line pressures that are calculated.

3.4.3. Postpass Calculations

After the modeled-system hydro ynamic state has been evaluated by a sequence of outer iterations, TRAC performs a postpass to solve the stabilizer mass and energy equations and to

determine both mixture properties and wall temperatures. Overlay POST performs this postpass. The same overlay also implements the time-step back-up procedure, which is explained in detail in the next section.

As the controlling subroutine for this overlay, subroutine POST first processes all onedimensional components by calling the appropriate one-dimensional component postpass subroutin. (see Table 3). Subroutine POST3D is called to handle all three-dimensional VESSEL components, and subroutine HTSTR3 is called to handle all heat-structure components.

The one-dimensional component postpass routines have names that end with the numeral 3. For example, the PIPE component postpass subroutine is called PIPE3. The onedimensional component postpass subroutines use the low-level routines SAVBD, POSTER, and SETBD to retrieve BD-array boundary conditions; to evaluate the stabilizer equations, wall temperatures, mixture properties, and transport properties; and to reset the BD boundary array, respectively.

The VESSEL postpass routine, VSSL3, is called by POST3D. Within subroutine VSSL3, stabilizer quantities are evaluated by subroutine BKSTB3 or defined by subroutine MIX3D, depending on the status of the VESSEL SETS3D-method flag NSTAB. Subroutines FF3D, FPROP, and J3D are used to complete the hydrodynamic calculation, evaluate transport properties, and update BD-array boundary data, respectively.

Subroutine HTSTR3 controls the postpass for the heat-structure components by calling subroutine CORE3. From within subroutine CORE3, subroutine FROD is called to evaluate temperature profiles and gap heat-transfer coefficients using subroutines RODHT and GAPHT, respectively.

3.5. Time-Step Advancement or Back-up

Upon the successful completion of one time-step calculation (performed by the prepass, outer-iteration, and postpass stages), the modeled-system state is updated to reflect the new-time conditions. This is accomplished at the start of the next PREP stage, and is handled on a component by component basis within the "1" subroutines, i.e., PIPE1. During this step, all dual-time variables are updated by copying the values of the new-time variables into the old-time variables. The prepass, outer-iteration, and postpass steps that follow then attempt to assign new values to the new-time variables, allowing the process to be repeated as time is advanced.

Calculation of a new time-step size takes place just prior to the PREP stage and is controlled by subroutine TIMSTP. Two types of algorithms, inhibitive and promotional, are implemented in subroutine NEWDLT to evaluate the next time-step size. The inhibitive algorithms limit the new time-step size to ensure stability and to reduce finite-difference error. The promotional algorithm increases the time-step size to improve computational efficiency. A new maximum time-step size is calculated based on each of the following conditions: the oneand three-dimensional Courant limits; the VESSEL and total mass error limits; the iteration count; the maximum allowable fractional change in void fraction, temperature, and pressure; the diffusion number for heat transfer; and the maximum allowable fractional change in reactor power and valve area. The actual new time-step size selected is the minimum imposed by the above conditions and the maximum time-step size specified by the user in the time-step data. Each of the conditional maximum time-step sizes are calculated in subroutine NEWDLT with

the exception of those based on reactor power level and on valve adjustment. The reactor power maximum time-step size is evaluated by subroutine RKIN, and the volve adjustment maximum time-step size is evaluated by subroutine VLVEX with subroutine HOUT defining those maximum time-step sizes.

In the event that a time-step is not successfully completed, TRAC will back up and try to reevaluate the new-time modeled-system state. Back-ups may occur when either the outer iteration does not converge (necessitating a reduction in the current time-step size) or when a flag indicating an extraordinary condition is activated, thereby requiring the outer iteration to be reevaluated. It is important to understand that there are two types of back-up, one corresponding to each of these scenarios. When the outer iteration fails to converge during the OUTER overlay, the current time-step size is reduced and the calculation backs up to the start of the PREP stage. This is necessary because any variable calculated during the prepass and dependent on the time-step size was computed for the original time-step size and not the newly-reduced time-step size. In addition, all new-time variables are reset to reflect their beginning-of-time-step values. This enables TRAC to begin again from the PREP stage in a manner no different than for any other time-step calculation except for having reduced the time-step size during the back-up. If repeated back-ups are performed for the same time steps, the time-step size is halved for each of the first three back-ups, quartered for the fourth and fifth back-up, and tenth thereafter.

The second type of back-up is inititated by a flag being set signalling an extraordinary condition such as a water pack. This indicates that the outer iteration needs to be repeated to account for the extraordinary condition. TRAC resets any new-time variables, that have been potentially evaluated incorrectly by the current attempt through subroutine OUTER, with their old-time values and repeats the outer iteration anew. For this type of back-up, the time-step size does not change, making it unnecessary to repeat the PREP-stage calculation.

The difference between the two types of back-ups is that for a back-up to the start of the PREP stage, the time-step size is adjusted, all new-time variables are reset to their beginningof-time-step values, and variables evaluated during the PREP stage are reevaluated using the newly adjusted time-step size. For a back-up to the start of the outer iteration, no change occurs in the time-step size and only new-time variables calculated during the outer iteration are reset to reflect their beginning-of-time-step values.

3.6. Output Processing

The TRAC program normally produces five output files: TRCOUT, TRCMSG, TRC-GRF, TRCDMP, and TRCINP. TRAC may also produce a labeled input-data file INLAB when NAMELIST option INLAB = 3 is defined. The first of these files is in printer format and contains a user-oriented analysis of the calculation. During the input process, an input data description is placed in this file. At selected times during the calculation, overlay EDIT is invoked to add to this file a description of the current modeled-system state. The TRCMSG file is in printer format and contains diagnostic messages concerning the progress of the calculation. The TRCGRF file is a binary file designed to allow analysis by graphics postprocessing programs like EXCON and TRAP, while the TRCDMP file is a binary file designed for problem restarts by TRAC. The TRCGRF file is created and the header, catalog, and geometric data

are written into it during the initialization phase as described in Sec. 3.3. File TRCDMP is created immediately thereafter by overlay DUMP. File TRCINP is created only when the TRACIN input-data file is in free format as discussed in Sec. 3.2.

As the main controlling routine of overlay EDIT, subroutine EDIT calls subroutine WCOMP to direct the addition of a time-step short and long edit to the TRCOUT file. The first edit written to the file TRCOUT occurs during the first time step after the PREP stage, but all sub-sequent edits are written after the POST stage. Subroutine WCOMP writes general overall data first, then invokes lower level routines to describe the state of each component. The component edit routines, which typically have names that begin with the letter W, add the parameter data that are important for that component to the TRCOUT file in an appropriate format. For example, the PIPE component edit routine is called WPIPE, while the VESSEL component edit routine is called WVSSL. The one-dimensional component edit routines generally utilize a call to subroutine ECOMP to write parameter data common to most one-dimensional components and then write any additional data special to that particular component.

After initialization by subroutine IGRAF, the time-edit data are added to the TRCGRF file by overlay GRAF. This overlay contains the single subroutine GRAF. The TRCGRF file is a structured binary file written with unformatted write statements and containing information for graphics processing. Data contained on the TRCGRF file are divided into four sections: general, catalog, geometric, and time-edit. These data appear on the file in the above order. The general data section of the file contains title cards for problem identification and size information needed to describe the problem and the remainder of the file. The catalog data section contains information that is used to describe the data stored in the time-edit data section. The geometric data section contains information relating to the cell structure of components. The time-edit data section is made up of time-edit blocks of data. Individual arrays within each block are packed to save space. A block is written by each graphics edit performed during the course of a problem. The number of time-edit blocks written on the file is determined by the graphics edit frequency specified by the time-step data. The last time-edit block is followed by a word "EOF" to signify the "end-of-file." Figures 5 through 8 show the structure of the overall graphics file, as well as the general data section, a catalog entry, and the time-edit data section.

The TRCDMP file is a structured binary file written with unformatted write statements. It contains sufficient data to restart the calculation at the time of a dump edit. This file is created by a sequence of calls to overlay DUMP. As the main controlling routine of overlay DUMP, subroutine DMPIT writes the dump header data and then calls the component dump subroutines. These component dump subroutines have names which typically begin with the letter D. For example the PIPE component dump routine is called DPIPE, while the VESSEL component dump routine is called DVSSL. The one-dimensional component dump routines generally utilize a call to subroutine DCOMP to dump data common to most one-dimensional components to the TRCDMP file and then dump any additional data special to that particular component using individual calls to subroutine BFOUT. The VESSEL component dump routine DVSSL also utilizes calls to subroutine BFOUT to dump general VESSEL arrays, but uses subroutine DLEVEL to dump level arrays.

Figures 9 through 11 illustrate various aspects of the dump-file structure. Figure 9 shows the overall dump-file structure with a general data section at the beginning followed by a

series of time-edit blocks. A time-edit block is written at each dump time during a problem. The number of time-edit blocks written on the file is determined by the dump-edit frequency specified on the time-step data. The last block is followed by a "EOF" to signify the end-of-file.

4. MEMORY MANAGEMENT

In order to understand the data storage in TRAC, it is necessary to consider the memorymanagement requirements for a large code. First, any code that uses a large amount of memory must allocate that memory flexibly and dynamically during execution. Static dimensioning, i.e., dimensioning at compile time to accommodate the largest possible problem, is at best wasteful of memory and at worst infeasible. The alternative strategy of pre-processing the input to determine array sizes prior to compilation would be extremely cumbersome for a code as complex as TRAC. Static-memory allocation schemes of all types also have the disadvantage that there is no possibility of increasing or decreasing memory requirements during a calculation when the evaluation path changes or when temporary arrays are no longer required.

Second, since standard FORTRAN does not support dynamic-memory allocation, it is necessary to accomplish dynamic-memory allocation by using variable offsets into a single container array. Obviously, any implementation based on this concept will have some degree of awkwardness. On some operating systems, the size of the container array can be changed dynamically. On others, it must be fixed in advance. Although the latter implementation is not, technically speaking, dynamic, it is flexible, and fixing the size of the container array makes a trivial difference in the coding. The bulk of the memory-management implementation in TRAC arises in the computation and management of the offset or pointer variables.

As an example of using a container array for dynamic-memory management, consider the container array, A(*), where the actual dimensioned size of the A array is sufficient for the problem at hand. Now assume that we wish to store two arrays, X(20) and Y(20), somewhere in this container array. There are a number of ways of doing this. One option is to define offset pointers as in this example:

```
IFREE = 14
NCELLS = 20
LX = IFREE
LY = LX + NCELLS
IFREE = LY + NCELLS
```


These pointer variables are defined in a manner that establishes mesh-wise storage. In this example, the arrays X and Y occupy locations A(14) through A(33) and A(34) through A(53).

PROGRAMMER'S GUIDE

respectively. With the use of these pointer variables, X(N) can be referenced as A(LX+N-1) and Y(N) as A(LY+N-1). The referencing can be made more readable by passing A(LX) and A(LY) as actual arguments to a subroutine that uses X and Y as the names for the corresponding local arrays.

Two of the drawbacks of the pointer methodology are the large amount of coding needed to define the pointer variables and the need to use subroutine arguments for readibility. A third drawback arises when using pointer variables in the context of multi-dimensioned array variables: the dimensions must be treated as variable. This complicates the coding and makes dynamic debugging more difficult. Another option for storing into a container array is to use EQUIVALENCE statements. This has the advantage that the variables can appear in COMMON. Using our previous example, we could achieve the same data storage and data structure by writing:

> PARAMETER (LX = 14, LY = 34)EQUIVALENCE (A(LX), X(1)), (A(LY), Y(1))

However, equivalencing which creates mesh-wise storage, as in this example, cannot be used for dynamic-memory allocation because knowledge of the array sizes as well as their actual memory locations is built into the EQUIVALENCE statement. The answer to using equivalencing for dynamic-memory allocation is to equivalence the arrays according to the cell-wise storage scheme, i.e.,

EQUIVALENCE (A(1), X(1)), (A(2), Y(1))

The reason that establishment of a ceil-wise storage scheme using EQUIVALENCE statements is useful for dynamic memory allocation is that the EQUIVALENCE statements can be treated as determining the relative order of the variables, rather than their actual locations in memory. The location in memory, or offset into the container array, is then defined dynamically in terms of loop limits. Using loop limits NB = 14 and NE = 52 with a stride of NV = 2 in referencing arrays X and Y in the last example would establish a mesh-wise storage occupying the same memory locations in the A array as in the two previous examples but with X and Y elements interspersed.

One of the drawbacks to a cell-wise scheme is the necessity for including the stride in the coding. Another drawback that can arise on certain hardware is inefficiency in referencing vectors with non-unit stride. Finally, this methodology can be cumbersome when combined with the use of temporary arrays which have mesh-wise storage. Nonetheless, our experience with this methodology has been positive in terms of eliminating coding errors resulting from maintenance of pointers and long subroutine argument lists.

5. TRAC FOR VARIOUS MACHINE CONFIGURATIONS

TRAC-PF1/MOD2 for various computer systems is supported by use of UPDATE/HISTO-RIAN conditional directives (*DEFINEs) in the code's program library. The desired configuration is selected with *DEFINEs when the compiler-ready source deck is created. Appendix G provides a summary of all the possible UPDATE/HISTORIAN *DEFINEs used by TRAC. Our recommendations for specific systems are given below.

5.1. CRAY/CTSS

TRAC is run at Los Alamos on CRAY 1 and CRAY X-MP computers using the Cray Timesharing System (CTSS). We create compiler-ready FORTRAN source decks using the following JPDATE/HISTORIAN *DEFINEs:

> CRAY, EIGHTB, LANL, NOLCM, VDM, VECTOR.

This CRAY/CTSS implementation uses two system-subroutine calls (to subroutines GETUFL and MEMADJ) for run-time memory expansion, as the input data is read. CRAY sites that do not run CTSS can create a static-memory version (one that has a large but fixed size for the A/ALCM container array) by using the following UPDATE/HISTORIAN *DEFINEs:

CRAY, EIGHTB, ASIZE, NOLCM, VDM, VECTOR.

N.

5.2. IBM and IBM-Compatible

TRAC will not run in single precision on computers with a 32-bit word length. There is at present no double-precision implementation in the MOD2 program library. External users with 32-bit word lengths will have to use the following:

ASIZE, EIGHTB, HEX, IBM, NOLCM, VDM, VECTOR.

5.3. CRAY/UNICOS

The recommended UPDATE/HISTORIAN *DEFINEs to use when implementing TRAC on a CRAY machine under the UNICOS operating system are the following:

> ASIZE, CRAY, EIGHTB, NOLCM, UNICOS, VDM.

PROGRAMMER'S GUIDE

5.4. CDC Cyber 205

0

The recommended UPDATE/HISTORIAN *DEFINEs to use when implementing TRAC on a CDC Cyber 205 computer are the following:

ASIZE, CYB205, EIGHTB, HEX, NOLCM, VDM, VECTOR.

5.5. CDC 7600

An initial effort was made to support the Control Data Corporation's CDC 7600 data structure in MOD2. Most of this work involved data transfers between the 7600's SCM and LCM. It soon became apparent, however, that the 7600's small memory severely restricts effective MOD2 usage. Also, the three-dimensional VESSEL data structure is very limited on a CDC 7600. Therefore, Los Alamos has stopped support for this particular machine configuration.

Fig. 1. TRAC overlay structure.

.

35

.

a

Fig. 2. Transient calculation flow diagram.

PROGRAMMER'S GUIDE

Fig. 3. Steady-state calculation flow diagram.

Fig. 4. Outer calculation flow diagram.

Fig. 5. Structure of the TRCGRF graphics file.

PROGRAMMER'S GUIDE

39

-

Fig. 6. Structure of the "General Information Data" for the TRCGRF graphics file.

PROGRAMMER'S GUIDE

- NUM ... User assigned component number.
- ITYPE = Variable data type. For definitions of data types, see TRAC subroutine GRFPUT.
- NWRD = The number of values written to the graphics file for the variable.
- ILRN = The axial level or the rod number of the variable.
- KPT = The relative pointer to the starting location in the TIME-EDIT or GEOMETRY Block for the variable.
- NSKIP = Flag for the data skip frequency that is used by TRAP.
- IPOS = The value of the location of the variable relative to the start of the array containing the variable

PROGRAMMER'S GUIDE

1. . .

DATA WRITTEN TO THE GEOMETRY BLOCK: If (ITYPE.GT.10) -The data is written to the Geometry Block. If (ITYPE.GT.10, AND.ITYPE.LT.20) - The data is type real and it is packed. If (ITYPE.GT.20) - The data is not packed and it can be type real, integer, or character. If (ITYPE.EQ.31, AND.Variable Name.EQ.*ype') - The data is type character If (ITYPE.EQ.33, AND.Variable Name.EQ.*ype') - The data is type character and it dimensioned NWRD. If (ITYPE.EQ.33, AND.Variable Name.NE.'stype') - The data is type integer. If (ITYPE.EQ.33, AND.Variable Name.NE.'stype') - The data is type integer. If (ITYPE.GT.20, AND.ITYPE.LT.26) - The data is type integer and the data is dimensioned NWRD. For all other bases the data is type real and the data is dimensioned NWRD. The data is also packed and written to the graphics file as (NWRD+7)/4 packed words. NOTE: The variables ITYPE, NWRD and KPT are written to the catalog section of the graphics file. Please refer to subroutine PACKIT for packing information.

Fig. 8. Structure of the "Geometry Data" for the TRCGRF graphics file.

PROGRAMMER'S GUIDE

16		

Word Number		KPT Poi Value	nter				
1 1	TIMET	KPT-1	T	me value	at this til	me-edit c	dump.
	DELT	KPT-2	T	ime step	size.		
in the second se	DTLMAX	KPT-3	N.	Aaximum	liquid ter	nperatur	e change.
	DTVMAX	X DT_4	A Britan	Aaximum	vapor ter	mperatur	re change.
	DPRMAX			Maximum	fractiona	al pressu	re change over
6	TNSTEP	KPT=6		Fotal time calculation	steps sin n.	nce time	0.0s in the
F		-	If the v	alue of IT	YPE from	m the cat	talog is .LE. 10,
NWTX-1		KPT=1	data b	lock.	e outers		
NWTX-1	TIMET	KPT.	data b	lock.		WINGIN	
NWTX-1	TIMET	KPT	ff the cata data for th	lock. log varial ne variabl	ble NWR e is pack	D.GT.1 ti ed before	hen the e it is
NWTX-1	TIMET DELT DTLMAX	KPT.	If the cata data for th written to packed da	lock. log variat he variabl the graph ata contai	ole NWR e is pack nics file. Ins the Si	D.GT.1 ti ed before The first HIFT and	hen the e it is word of the d the
NWTX-1	TIMET DELT DTLMAX DTVMX	KPT.	If the cata data for the written to packed da SCALE vi NWRD da	lock. lock variable the variable the graph ata contain alue that values	ole NWR e is pack nics file. Ins the Si was extra s. The re	D.GT.1 tl ed before The first HIFT and acted from	hen the e it is word of the d the m all the g portion of
NWTX-1	TIMET DELT DTLMAX DTVMX DPRMAX	KPT.	If the cata data for the written to packed da SCALE vi NWRD da the NWRI has been	lock. lock. log variable the graph ata contain alue that walues D values stripped	ble NWR e is pack nics file. Ins the Si was extra s. The re (after the off) are the	D.GT.1 ti ed before The first HIFT and acted from mainding SHIFT a hen store	hen the e it is word of the d the m all the g portion of and SCALE ed 4 values
NWTX-1	TIMET DELT DTLMAX DTVMX DPRMAX TNSTEP	KPT	If the cata data for the written to packed da SCALE via NWRD da the NWRI has been per mach	lock. lock. lock variable the variable the graph ata contain alue that values D values stripped ine word.	ole NWR e is pack nics file. Ins the Si was extra s. The re (after the off) are th	D.GT.1 tl ed before The first HIFT and acted from ainding SHIFT a hen store	hen the e it is word of the d the m all the g portion of and SCALE ed 4 values
NWTX-1	TIMET DELT DTLMAX DTVMX DPRMAX TNSTEP	KPT	If the cata data for the written to packed da SCALE via NWRD da the NWRI has been per mach	lock. lock. lock variable the variable the graph ata contain alue that values D values stripped ine word.	ole NWR e is pack nics file. Ins the Si was extra s. The re (after the off) are the sc	D.GT.1 tl ed before The first HIFT and acted from ainding SHIFT a hen store	hen the e it is word of the d the m all the g portion of and SCALE ed 4 values
NWTX-1	TIMET DELT DTLMAX DTVMX DPRMAX TNSTEP	KPT.	If the cata data for the written to packed data SCALE via NWRD data the NWRI has been per mach	lock. lock. lock variable the variable the graph ata contain alue that values D values stripped ine word.	ole NWR e is pack nics file. Ins the Si was extra the re (after the off) are the sc sc 3	D.GT.1 tl ed before The first HIFT and acted from anding SHIFT a hen store	hen the e it is word of the d the m all the g portion of and SCALE ed 4 values First packed word. Second packed word

		(III)
DATE	Date of file creation.	C
TIME	Time of file creation.	
NCOMP	Number of hydro and heat-structure components.	
LENTBL	Length of "Fixed Length Table."	
LENTTL	Number of TITLE elements in the "Problem Identification" Title.	
TITLE MENTLY	*Problem Identification* Title.	
BFIO-	Pattern indicating logical "end of file."	
First Time-Edit Data:	Data written to the dump file for the first-time edit requested.	
-*BFI0*-		
Second Time-Edit Data:	Data written to the dump file for the second-time edit requested.	C
-*BFIO*-		
N th Time-Edit Data:	Data written to the dump file for the N th -time-edit requested.	
EOF	Physical "end of file" mark. Repeated till I/O buffer is filled.	

ETIME	Current problem time.
NSTEP	Time-step number of the present calculation.
DELT	Time-step size
DELPMX	Maximum time-step size for a 10% change in neutronic power.
DELXMX	Maximum time-step size for the maximum value adjustment.
OITNO	Outer-Iteration number.
NSTEPS	Time-step number accummulated over all previous calculations
CPUTOT	Total CPU (Central processing units) time.
VMAXT	Reuprocal time-step size for the Courant limit in 1D components at I (n+1).
VMAXO	Reciprocal time-step size for the Courant limit in 1D components at I (n).
VMNEW	VESSEL water mass (liquid and vapor) at 1 (n+1).
VMOLD	VESSEL water mass (liquid and vapor) at t (n).
VMCON	Net water mass convected into the VESSEL during time interval 1 (n+1) -1 (n).
DAMX	Error caused by relative change in void fraction.
DAL	Maximum increase in void fraction.
DAU	waximum decrease in void fraction.
OAL	Maximum increase in void fraction after a decrease
OAU	Maximum decrease in void fraction after an Increase.
VARERM	Maximum pressure-matrix solution error.
ISOLUT	Flag for the optional solute field.
IELV	Flag for GRAV or ELEV input
IKFAC	Flag for FRIC or K-factor input.
NOAIR	Flag for evaluating noncondensable (air) partial pressure
IGAS	Flag for the uppe of noncondensable gas.
NFRC1	Flag for in putting forward and reverse loss coefficients for 1D components
NFRC3	Flag for Exputing forward and reverse loss coefficients for VESSEL components.
NDIA1	Flag for inputing heat-transfer diameters for 1D components
ITHD	Flag for inputing heat-transfer diameters for heat-structure components.
DTEND	Temporary variable for the time-step data-set ending time TEND.
HDUMP	Temporary variable for the time-step data-set next dump time TDUMP.
HEDIT	Temporary variable for the time-step data-set next long-edit time TEDIT.
HGRAF	Temporary variable for the time-step data-set next graphics-edit time TGRAF.
HSEDIT	Temporary variable for the time-step data-set next short-edit time TSEDIT.
NDID	Flag for when trip-controlled time-step data overrides regular time-step data.
NSTAB	Flag for the SETS3D cakulation
NEWRFD	Fiag that activates the reflood model for heat-structure components coupled to VESSEL
VMAXT3	Reciprocal time-step size for the Courant limit in VESSEL components at t(n+1)
VMAXT30	Reciprocal time-step size for the Courant limit in VESSEL components at t(n).
Continued on the next page.	

Fig. 11. Structure of the "Time-Edit Data" for the TRCDMP dump file.

PROGRAMMER'S GUIDE

Fig. 11. (cont.) Structure of the "Time-Edit Data" for the TRCDMP dump file.

PROGRAMMER'S GUIDE

APPENDIX A TRAC SUBPROGRAMS

Name	Function
ACCM1X	Evaluates ACCUM (accumulator) water level.
ACCM8D	Sets boundary array for the ACCUM (accumulator) component.
ACCUM1	Controls ACCUM (accumulator) prepass.
ACCUM2	Controls ACCUM (accumulator) outer iteration.
ACCUM3	Controls ACCUM (accumulator) postpass.
ALLBLK	Tests for all blanks in specified substring of string.
ASIGN	Assigns the component pointers according to the internal order (IORDER) array.
ASTPLN	Calculates mass and energy fluxes at the PLENUM junctions during post- pass.
ATERM	Sends message to the nuclear plant analyzer (NPA) if TRAC terminates prematurely.
AUXPLN	Calculates mass and energy fluxes at the PLENUM junctions during the outer iteration.
BACIT	Initiates backward substitution after direct vessel matrix inversion.
BAKUP	Overwrites end-of-time-step variables with start-of-time-step values for one vessel level.
BALANC	Support subroutine for SGEEV.
BALBAK	Support subroutine for SGEEV.
BANSOL	Solves linear matrix equation.
BDPLEN	Fills the PLENUM boundary array.
BEENAL	Assigns axis labels to grapics variables for plotting.
BFALOC	Allocates files and buffers for buffe ed I/O.
BFCLOS	Empties buffers and closes file.
BFIN	Initiates binary input subroutine.
BFOUT	Initiates binary output subroutine.
BGLSDC	Factors the banded matrix A into $A = LU$.
BGLSSL	Solves the general banded linear system of equations A * $X = B$.
BITS	Manages bit address flags.

Name	Function
вкмом	Initiates backward substitution for stabilizing momentum equations.
BKSMOM	Performs backward substitution for stabilizing momentum equations.
BKSPLN	Initiates backward substitution for stabilizing mass and energy equations for the plenum component.
BKSSTB	Initiates backward substitution for stabilizing mass and energy equations.
BKSTB3	Initiates backward substitution for stabilizing mass and energy equations for the VESSEL component.
BLKDAT	Initializes common variables in a block data statement.
BREAK1	Controls BREAK prepass.
BREAK2	Controls BREAK outer iteration.
BREAK3	Controls BREAK postpass.
BREAKX	Evaluates BREAK pressure, temperature, and void fraction.
BSPDOC	Factors a symmetric positive definite banded system of linear equations.
BSPDSL	Solves a symmetric positive definite banded system of linear equations.
CREDIT	Edits the first 10 control-block parameter values along with their variable- name labels and a control-block schematic diagram.
CDTHEX	Calculates the diametral thermal expansion of Zircaloy as a function of temperature.
CELLA3	Calculates cell-averaged quantities that are required for the interphasic heat-transfer calculation for the VESSEL component.
CELLAV	Calculates cell-averaged quantities that are required for the interphasic heat-transfer calculation for one-dimensional components.
CHBD	Chec. s boundary data.
CHBSAV	Transfers selected BD-array data into the A array required for the accu- mulator phase-separation model.
CHBSET	Stores data in the BD array temporarily to check for consistency in the junction data.
CHEN	Uses Chen correlation to evaluate the forced convection nucleate boiling heat-transfer coefficient.
CHF	Evaluates the CHF based on a local-conditions formulation.
CHF1	Applies Biasi CHF correlation.
СНКВД	Checks for the consistency in the boundary-array data during initializa- tion.

Name	Function
CHKSR	Checks VESSEL component source locations.
CHOKE	Establishes the choked phasic velocities and the derivatives.
CIF3	Calculates interfacial shear for VESSEL component.
CIHTST	Sets up arrays for heat-structure component.
CIVSSL	Transfers vessel data from LCM to SCM so that the remaining data can be initialized.
CLEAN	Closes TRAC output files.
CLEAR	Sets an array to a constant value.
CLRINT	Support subroutine for IBM.
COMPI	Performs various A-array loading tasks common to most one-dimensional components.
CONBLK	Computes all 61 types of control-block outputs that do not require table storage (that is, except for "DLAY" and "FNG1").
CONCF	Returns maximum solubility (kg solute/kg water) for species ISPEC at pressure P and water temperature TL.
CONSTB	Drives subroutine STBME
CONVRT	Takes absolute areas and converts them into fractional areas.
СОРУА	Copies value of variable SRCVAL into variable SNKVAL.
CORE1	Evaluates rod heat-transfer coefficients and tracks quench fronts.
CORE3	Evaluates rod temperature distributions.
CPLL	Calculates specific heat of liquid water as a function of enthalpy and pressure.
CPVEC3	Evaluates the control-panel vector parameters.
CFVPRT	Prints the control-panel status, which is called from PSETQ.
CPVV1	Calculates specific heat of water vapor as a function of temperature and pressure.
CCVMGT	Logical magnitude function.
CTAIN1	Controls containment prepass.
CTAIN2	Controls containment outer iteration.
CTAIN3	Controls containment postpass.
CWVSSL	Transfers VESSEL data from LCM to SCM so that they can be printed.
CYLHT	Calculates temperature fields in a cylinder.

Name	Function
DATER	Date routine.
DATEU	Date routine.
DBRK	Generates BREAK data dump.
DCHNID	Defines id for each variable in a frame of graphics data.
DCODF	Calculates a numeric code based on data types.
DCOMP	Dumps one-dimensional component data.
DDACUM	Gets the address of variables for the ACCUM component.
DDBRAK	Gets the address of variables for the BREAK component.
DDFILL	Gets the address of variables for the FILL component.
DDGCMP	Gets the address of variables that are common to more than one compo- nent.
DDGVAR	Gets the address of variables which are not component-related.
DDHSTR	Gets the address of variables for the HTSTR component.
DDPIPE	Gets the address of variables for the PIPE component.
DDPLEN	Gets the address of variables for the PLENUM component.
DDPRZR	Gets the address of variables for the PRIZR component.
DDPUMP	Gets the address of variables for the PUMP component
DDSTGN	Gets the address of variables for the STGEN component.
DDTEE	Gets the address of variables for the TEE component.
DDTURB	Gets the address of variables for the TURB component.
DDVLVE	Gets the address of variables for the VALVE component.
DECAYS	Initializes the decay-heat constants to be consistent with the ANS5.1 1979 standard.
DELAY	Provides a time-delay function for the input variable (XIN). The output (XOUT) is played back with the value that the input had TAU seconds previously. Linear interpolation is used for playback when (TIMET minus TAU) falls between two stored time values. The user specifies the number of table storage pairs (NINT) to be saved. Both the time and the value of the input are stored in the table array as pairs of points.
DELTAR	Calculates transient fuel-cladding gap spacing (only if NFCI = 1).
DFILL	Generates FILL data dump.
DGBFA	Factors a double precision band matrix by elimination.

Name	Function
DGB51	Solves double precision band system A * $X = B$ or TRANS(A) * $X = B$ using factors computed by subicutine DGBFA.
DHTSTR	Determines the size of the data dump and writes the restart input data for a heat-structure component to the dump file.
DLEVEL	Generates VESSEL level data dump.
DMPIT	Main module for generating a dump.
DPIPE	Generates PIPE data dump.
DPLEN	Generates PLENUM data dump.
DPUMP	Generates PUMP data dump.
DROD1	Writes the restart input data arrays for a subset of the heat-structure component data to the TRCDMP file.
DSTGEN	Generates STGEN (steam-generator) data dump.
DTEE	Generates TEE data dump.
DTURB	Generates TURB (turbine) data dump.
DVLVE	Generates VALVE data dump.
DVPSCL	Initializes scale factors on derivative of velocities with respect to pressure for one VESSEL level.
DVSSL	Generates VESSEL data dump.
ECOMP	Writes hyurodynamic and heat-transfer information for one-dimensional components to output file.
EDIT	Entry routine for edit module.
ELGR	Converts cell elevations to the slope between cells and converts K-factors to additive friction-loss coefficients.
ENABIN	Enables and processes (CTRL-E)l interrupts.
ENDDMP	Empties dump buffers and closes dump file.
ENDGRF	Empties graphics buffers and closes graphics file.
EOVLY	Closes overlay bookkeeping.
ERRGET	Sets error trap indicators.
ERROR	Processes different kinds of error conditions.
ERRTRP	Processes trapped errors.
ESTGEN	Evaluates STGEN (steam-generator) parameters on explicit pass.
ETEE	Evaluates TEE parameters on explicit pass.

Name	Function
EVALDE	Evaluates the absolute difference between XOLD and XNEW.
EVFXXX	Evaluates the XXX component-action function.
EVLTAB	Interpolates the function value F from the tabular data based on the value of the table's independent variable: a signal variable (NVAR.GT.0), a con- trol block (NVAR.LT.0), or a trip-signal difference DELSV (NVAR.EQ 0).
EXPAND	Adds rows of conduction nodes within the vessel rods during reflood.
FAXPOS	Evaluates the flow-area fraction, FA, or valve-stem fractional position, XPOS, for the VALVE.
FBRCSS	Identifies break components that are coupled through a fluid-flow path to the secondary side of a steam generator.
FEMOM	Sets up stabilizing momentum equations.
FEMOMX	Performs forward elimination on radial motion equation.
FEMOMY	Performs forward elimination on azimuthal motion equation
FEMOMZ	Performs forward elimination on axial motion equation.
FEXIST	Mimics CTSS subroutine FEXIST for UNICOS.
FF3D	Makes final pass update for all variables in three-dimensional VESSEL.
FILL 1	Controls FILL prepass.
FILL2	Controls FILL outer iteration.
FILL3	Controls FILL postpass.
FILLX	Evaluates postpass FILL velocity.
FLTOM	Controls transfer of data between hydro and heat-structure databases.
FLUX	Calculates mass flow at the boundary of a one-dimensional component for use in mass inventory.
FLUXES	Defines explicit portion of mass and energy flux terms.
FNMESH	Initializes the supplemental user-specified rows of conduction nodes with- in the vessel rods at the start of reflood.
FPROP	Calculates values for fluid enthalpy, transport properties, and surface ten- sion.
FROD	Calculates temperature profiles in nuclear or electrically heated fuel rods.
FTHEX	Calculates the fuel linear thermal-expansion coefficient for uranium- dioxide and mixed-oxido fuels.
FWALL	Computes a two-phase friction factor.
FWKF	Evaluates form-loss K-factors for an abrupt contraction or expansion.
1.6	ADDENIDIX A

A-6

GAPHTCalculates fuel-cladding gap heat-transfer coefficient.GETBITReturns value of bit N of word B.GETCRVGets appropriate pump curves from database.GETJTLPerforms dummy return for UNICOS.GLEVELTransfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	Name	Function
GETBITReturns value of bit N of word B.GETCRVGets appropriate pump curves from database.GETJTLPerforms dummy return for UNICOS.GLEVELTransfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling	GAPHT	Calculates fuel-cladding gap heat-transfer coefficient.
GETCRVGets appropriate pump curves from database.GETJTLPerforms dummy return for UNICOS.GLEVELTransfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.	GETBIT	Returns value of bit N of word B.
GETJTLPerforms dummy return for UNICOS.GLEVELTransfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film holling	GETCRV	Gets appropriate pump curves from database.
GLEVELTransfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling	GETJTL	Performs dummy return for UNICOS.
GRAFEdits graphics data during transient.GRFGETReturns entries in graphics catalog block.GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	GLEVEL	Transfers data for axial level IZ from inverted form to stacked form and calls subroutine PACKIT.
GRFGETReturns entries in graphics catalog block.GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	GRAF	Edits graphics data during transient.
GRFPUTPlaces entries in graphics catalog block.GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	GRFGET	Returns entries in graphics catalog block.
GVSSL1Calculates integrated vessel parameters for graphics purposes.GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling	GRFPUT	Places entries in graphics catalog block.
GVSSL2Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).HEVCalculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.HLFILMCalculates wall to liquid heat-transfer coefficient in transition and film boiling.HLFLMRCalculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	GVSSL1	Calculates integrated vessel parameters for graphics purposes.
HEV Calculates the heat of evaporation of liquid corresponding to a given temperature for low pressures. HLFILM Calculates wall to liquid heat-transfer coefficient in transition and film boiling. HLFLMR Calculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	GVSSL2	Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).
HLFILM Calculates wall to liquid heat-transfer coefficient in transition and film boiling. HLFLMR Calculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.	HEV	Calculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.
HLFLMR Calculates wall to liquid heat-transfer coefficient in reflood transition and film boiling	HLFILM	Calculates wall to liquid heat-transfer coefficient in transition and film boiling.
in some	HLFLMR	Calculates wall to liquid heat-transfer coefficient in reflood transition and film boiling.
HOUT Controls the outer-iteration logic for a complete time step.	HOUT	Controls the outer-iteration logic for a complete time step.
HQR Support subroutine for SGEEV.	HQR	Support subroutine for SGEEV.
HQR2 Support subroutine for SGEEV.	HQR2	Support subroutine for SGEEV.
HTCOR Computes heat-transfer coefficients.	HTCOR	Computes heat-transfer coefficients.
HTIF Calculates the interphasic heat-transfer for the zero-dimensional and one- dimensional components.	HTIF	Calculates the interphasic heat-transfer for the zero-dimensional and one- dimensional components.
HTPIPE Averages velocities and generates heat-transfer coefficients for one- dimensional components.	HTPIPE	Averages velocities and generates heat-transfer coefficients for one- dimensional components.
HTSTR1 Controls heat-structure prepass.	HTSTR1	Controls heat-structure prepass.
HTSTR3 Controls heat-structure postpass.	HTSTR3	Controls heat-structure postpass.
HTSTRV Initializes to zero some VESSEL-component hydro-cell arrays used to store heat-structure information.	HTSTRV	Initializes to zero some VESSEL-component hydro-cell arrays used to store heat-structure information.
HTVSSL Averages velocities and generates heat-transfer coefficients for the vessel.	HTVSSL	Averages velocities and generates heat-transfer coefficients for the vessel.
HUNTS Searches character string for specified search string.	HUNTS	Searches character string for specified search string.

Name	Function
HVFILM	Calculates the vapor heat-transfer coefficient that is the maximum of the Bromley, natural-convection, and the Dougall-Rohsenow coefficients.
HVNB	Calculates vapor heat-transfer coefficient for nucleate boiling.
HVW'EBB	Calculates vapor heat-transfer coefficient for dispersed vapor flow.
IACCUM	Initializes the ACCUM (accumulator) data arrays that are not input.
IBRK	Initializes the BREAK data arrays that are not input.
ICHL	Returns character at given position in string (left-justified, blank-filled).
ICMP	Main module to control the initialization of component data.
ICMPR	Logically compares a real variable with an integer variable.
ICOMP	Controls the routines that initialize component data.
IDEL	Searches specified substring of string for any one character in a set of specified characters.
IDIFF	Difference function.
IFILL	Initializes the FILL data arrays that are not input from carrs.
IFSET	Initializes three-dimensional interfacial shear at start of each VESSEL prepass.
IGACUM	Supplies ACCUM (accumulator) data for graphics.
IGBRAK	Supplies BREAK data for graphics.
IGCOMP	Supplies graphic output information for most one-dimensional compo- nents to the graphics COMMON block.
IGFILL	Supplies FILL data for graphics.
IGHSTR	Supplies heat-structure data for graphics.
IGPIPE	Supplies PIPE data for graphics.
IGPLEN	Supplies PLENUM data for graphics.
IGPRZR	Supplies PRIZER (pressurizer) data for graphics.
IGPUMP	Supplies PUMP data for graphics.
IGRAF	Initializes graphics variables and writes a header to the graphics file.
IGRF	Controls the creation of the graphics dictionary.
IGSTGN	Supplies STGEN (steam-generator) data for graphics.
IGSVCB	Obtains the signal-variable values.
IGTEE	Supplies TEE data for graphics.
IGTURB	Supplies TURB (turbine) stage data for graphics.

A-8

Name	Function
IGVLVE	Supplies VALVE data for graphics.
IGVSSL	Supplies VESSEL data for graphics.
ILEVEL	Writes integer VESSEL level array to output file TRCOUT.
INDEL	Searches specified substring of string for first nonoccurrence of any one character in a set of specified characters.
INIT	Entry routine for subroutine INIT.
INITBC	Initializes VESSEL component phantom cells and sets some boundary conditions.
INNER	Performs an inner iteration for a one-dimensional component.
INPUT	Entry routine for subroutine INPUT.
IOVLY	Initializes overlay bookkeeping.
IPIPE	Initializes the PIPE data arrays that are not input.
IPLEN	Loads the PLENUM arrays that are needed, but not input, to start a problem.
IPRIZR	Initializes the PRIZER (pressurizer) data arrays that are not input.
IPROP	Calls subroutines THERMO, FPROP, and MIXPRP for most one- dimensional components.
IPUMP	Initializes the PUMP data arrays that are not input.
IROD	Initializes rod component parameters that are not user-input.
IRODL	Initializes heat-structure arrays that provide information on the location of hydro data.
ISAMAX	Finds the smallest index of an element of maximum magnitude of a vector.
ISORT	Sorts a list of integers in ascending order.
ISTGEN	Initializes the STGEN (steam-generator) data arrays that are not input.
ITEE	Initializes the TEE data arrays that are not input from cards.
ІТОНХ	Used to create data address for the output file.
ITOLA	Used to convert addresses for the data dictionary file.
ITURB	Loads the arrays that are not input but that are needed to start a problem.
IVLVE	Initializes the VALVE data arrays that are not input.
IVSSL	Initializes the VESSEL data arrays that are not input.
IWALL3	Divides input friction factor by hydraulic diameter.

APPENDIX A

A-9

Name	Function
JID	Fills boundary array at component junctions.
J3D	Fills boundary array at vessel source junctions.
JFIND	Locates junctions in junction sequence array.
JUNSOL	Determines junction parameters for connecting and sequencing compo- nents.
JVALUE	Converts one character of a string to a binary number: 0-9 returned as binary mode; blank, as binary 0; all others, as less than 0.
LABELH	Edits the H2O properties comments.
LCHPIP	Defines the pointer to the hydro array data for a one-dimensional com- ponent
LCHVSS	Defines the pointer to the hydro array data for a VESSEL component.
LCMOVE	Copies data from one part of LCM to another.
LCMTRN	Transfers data to LCM.
LDCHAR	Copies contents of R1 into R2.
LENTAB	Computes lengths of various pointer tables.
LEVEL	Uses a curve fit to obtain the water level in a cylindrical pipe as a function of the void fraction.
LEVELI	Transfers data for axial level IZ from inverted form to stacked form.
LEVELR	Transfers data for axial level IZ from stacked form to inverted form.
LININT	Performs linear interpolation on arrays.
LINT4D	Linearly interpolates a function table with zero to four independent vari- ables.
LOAD	Reads in specially formatted input data.
LOCF	Locates the variable address.
LOCPMP	Calculates the required relative variable location in a common block for the PUMP.
LOCTEE	Calculates the required relative variable location in a common block for the TEE.
LOCTRB	Calculates the required relative variable location in a common block for the TURB.
LOCVLV	Calculates the required relative variable location in a common block for the VALVE.
MACCUM	Controls modification of an ACCUM (accumulator) component.
A-10	APPENDIX A

Name	Function
MANAGE	Performs all level and rod-data management operations for the VESSEL and heat-structure components.
MAPIN	Converts data types (for the NPA only).
MATSOL	Solves the vessel-matrix equation A $* X = C$ using the capacitance method.
MBN	Calculates values for electrically heated nuclear fuel-rod insulator proper- ties.
MBREAK	Controls modification of a BREAK component.
MCTAIN	Controls modification to a CTAIN component.
MDINIT	Creates the master dictionary table.
MFILL	Controls modification to a FILL component.
MFROD	Orders fuel-rod property selection and evaluates an average temperature for property evaluation.
MFUEL	Calculates uranium-dioxide and uranium-plutonium dioxide properties.
MGAP	Calculates values for the thermal conductivity of the gap-gas mixture.
MHTR	Calculates values for electrically heated fuel-rod heater coil properties.
MIX3D	Initializes stabilizer quantities at start of problem and equivalences stabi- lizer quantities to basic values when two-step method is not being used.
MIXPRP	Calculates mixture properties from those of separate phases.
MOVLEV	Copies N elements from array A into array B.
MPIPE	Controls modification to a PIPE component.
MPLEN	Controls modification to a PLENUM component.
MPRIZR	Controls modification of a PRIZER (pressurizer) component.
MPROP	Orders structure property selection and evaluates an average temperature for property evaluation.
MPUMP	Controls modification of a PUMP component.
MSTGEN	Controls modification of a STGEN (steam-generator) component.
MSTRCT	Calculates properties for certain types of steel.
MTEE	Controls modification of a TEE component.
MTURB	Controls modification of a TURB (turbine) component.
MVALVE	Controls modification of a VALVE component.
MVSSL	Controls modification of a VESSEL component.

۵

Name	Function
MWRX	Calculates the Zircaloy steam reaction in the cladding at high tempera- tures.
MZIRC	Calculates properties for Zircaloy-4.
NAMLST	Performs input-data check on all namelist variables.
NEWDLT	Evaluates prospective new-time increment.
NPACTL	Gets NPA user interactive input.
NXTCMP	Finds the beginning of data for the next component.
OFFTKE	Calculates exit void fraction for TEE component offtake model.
ORDER	Rearranges the signal-variable, control-block, and trip ID numbers in 23- cending order based on their absolute value and searches for the do-loop index values for each control-parameter evaluation pass through the sig- nal variables, control blocks, and trips.
ORTHES	Support subroutine for SGEEV.
ORTRAN	Support subroutine for SGEEV.
OUT1D	Controls outer calculation for one-dimensional components.
OUT3D	Controls outer calculation for a VESSEL.
OUTER	Controls outer calculation for one time step.
PACKIT	Packs data from one array into another.
PIPE1	Controls PIPE prepass.
PIPE1X	Calculates liquid volume discharged (q_{out}) , collapsed liquid level (z) , and volumetric flow rate (v_{flow}) ; assumes vertical component with low- numbered cell at top.
PIPE2	Controls PIPE outer iteration.
PIPE3	Controls PIPE postpass.
PIPROD	Moves hydro data for a one-dimensional component to and from the heat-structure database.
PLEN1	Performs the prep stage calculation for the PLENUM time-step initial- ization.
PLEN2	Controls PLENUM outer iteration.
PLEN3	Controls PLENUM postpass
PNTROD	Initializes rod pointers.
PNTVSS	Initializes general vessel pointers.
POST	Controls postpass calculation for one time step.

A-12

. :

46

APPENDIX A

Name	Function
POST3D	Controls postpass calculation for the VESSEL.
POSTER	Performs postpass calculation for one-dimensional components.
PRCINT	Processes interrupts.
PRCNPA	Processes NPA commands that affect TRAC execution during an NPA simulation.
PREFWD	Prepares for evaluation of the three-dimensional wall shear coefficients.
PREINP	Converts free-format TRACIN deck to format used by TRAC input sub- routine.
PREP	Controls prepass calculation for one time step.
PREP1D	Controls the prepass calculation for one-dimensional components.
PREP3D	Controls prepass calculation for three-dimensional components.
PREPER	Performs prepass calculation for one-dimensional components
PRIZR1	Controls PRIZER (pressurizer) prepass.
PRIZR2	Controls PRIZER (pressurizer) outer iteration.
PRIZR3	Controls PRIZER (pressurizer) postpass.
PRZR1X	Evaluates pressurizer mass change during steady-state calculation.
PSTEPQ	Controls printing, dumping, and graphing of data at the completion of a time step.
PTRSA	Initializes general vessel pointers for use by signal variables and graphics.
PTRSPL	Initializes general plenum pointers for use by signal variables and graphics.
PUMP1	Controls PUMP prepass.
PUMP2	Controls PUMP outer iteration.
PUMP3	Controls PUMP postpass.
PUMPD	Calculates head and torque from PUMP curves.
PUMPI	Supplies built-in PUMP characteristics.
PUMPSR	Evaluates PUMP momentum and energy source.
PUMPX	Calculates PUMP head and torque.
QADJUST	Dummy routine for UNICOS.
QTIME	Mimics CTSS subroutine QTIME for UNICOS.
R1MACH	Support subroutine for SGEEV.
RACCUM	Reads ACCUM (accumulator) data input file and creates pointer table for these data

A-13

Name	Function
RBREAK	Reads BREAK data from input file and creates a pointer table for these data.
RCNTL	Reads in signal-variable, trip, and controller input data.
RCOMP	Reads data common to most one-dimensional components from input files and writes these data to output file.
RCPVEC	Processes the control-panel vector input cards.
RDCOM3	Controls reading of three-dimensional VESSEL data from input file.
RDCOMP	Controls reading of component data from input file.
RDCRDS	Reads time-step cards until DTMIN < 0 is encountered.
RDCRVS	Reads PUMP curves from input file.
RDDIM	Reads number of points on PUMP curves from input file.
RDLCM	Moves data from LCM to SCM.
RDREST	Controls reading of component data from a restart dump file.
RDZMOM	Defines momentum cell reciprocal lengths and weighting factors.
KEACCM	Reads ACCUM (accumulator) data from a restart dump and creates a pointer table for these data.
READI	Reads integer data in 114 format.
READR	Reads real data in E14.6 format.
REBRK	Reads BREAK data from a restart dump and creates a pointer table for these data.
RECNTL	Reads the signal-variable, trip, and controller data from the restart file.
RECOMP	Reads data from a restart dump common to most one-dimensional com- ponents.
RECPV	Adds the restart file control panel vector data that was not specified on input and prints it out.
REFILL	Reads FILL data from a restart dump and creates a pointer table for these data.
REHTST	Reads heat-structure scalar input data from a restart dump and creates a pointer table for these data.
REPIPE	Reads PIPE data from a restart dump and creates a pointer table for these data.
REPLEN	Reads PLENUM data from a restart dump and creates a pointer table for these data.

Name	Function
REPRZR	Reads PRIZER (pressurizer) data from a restart dump and creates a pointer table for these data.
REPUMP	Reads PUMP data from a restart dump and creates a pointer table for these data.
REROD1	Reads heat-structure input-data arrays from a restart dump.
RESTGN	Reads STGEN (steam-generator) data from a restart dump and creates a pointer table for these data.
RETEE	Reads TEE data from a restart dump and creates a pointer table for these data.
RETURB	Reads TURB (turbine) stage data from a restart dump and creates a pointer table for these data.
REVLVE	Reads VALVE data from a restart dump and creates a pointer table for these data.
REVSSL	Reads VESSEL data from a restart dump and creates a pointer table for these data.
RFDBK	Evaluates the reactor core reactivity feedback caused by changes in the fuel temperature, coolant temperature, and coolant void from the beginning of the previous time step.
RFILL	Reads FILL data from input file and creates a pointer table for these data.
RHOLIQ	Calculates values of liquid density and its derivatives.
RHTSTR	Reads ROD or SLAB heat-structure data from the input file and creates a pointer table for these data.
RINGO	Initializes certain variables for the vessel inner ring radial boundary.
RKIN	Integrates the neutron point-kinetics equations.
RLEVEL	Writes real VESSEL level array to output file TRCOUT.
RODHT	Calculates the fuel-rod temperature field.
RPIPE	Reads PIPE data from the input file and creates a pointer table for these data.
RPLEN	Reads PLENUM data from the input file and creates a pointer table for these data.
RPRIZR	Reads PRIZER (pressurizer) data from input file and creates a pointer table for these data.
RPUMP	Reads PUMP data from input file and creates a pointer table for these data.

.....

4

A-15

ø

Name	Function
RRDLCM	Reads rod data from LCM.
RROD1	Reads basic ROD input parameters.
RROD2	Reads and checks array data for powered heat structures.
RSPERR	Support subroutine for IBM.
RSTGEN	Reads STGEN (steam-generator) data from input file and creates pointer tables for these data.
RTEE	Reads TEE data from input file and creates a pointer table for these data.
RTURB	Reads TURB (turbine) stage data from input file and creates a pointer table for these data.
RVLVE	Reads VALVE data from input file and creates a pointer table for these data.
RVSLCM	Reads VESSEL data from LCM.
RVSSL	Reads VESSEL data from input file and creates a pointer table for these data.
SIDPTR	Sets pointers for one-dimensional components.
SATDER	Calculates the derivative of saturation temperature of vapor with respect to pressure.
SATPRS	Calculates saturation pressure of vapor corresponding to a given temper- ature.
SATTMP	Calculates saturation temperature of vapor corresponding to a given pres- sure.
SAVBD	Moves boundary information into component arrays.
SAXPY	Performs single precision computation of $Y = A * X + Y$.
SCLMOM	Sets up geometric scale factors for velocities to improve momentum con- servation.
SCLTBL	Scales input table according to scale factor passed by input routine.
SCMLCM	Checks for overflow. Transfers fixed-length, variable-length, and pointer tables to LCM. Adjusts pointers.
SCOPY	Support subroutine for SGEEV.
SCOPYM	Support subroutine for SGEEV.
SDOT	Computes single precision inner product of single precision vectors.
SEDIT	Writes short edit to TRCOUT file.
SEPDI	Computes separator side-arm void fraction and mixture velocity.

A-16

APPENDIX A

Name	Function
SEPDX	Computes mechanistic separator carryover and carryunder quantities.
SETBD	Stores component information in boundary arrays.
SETBDT	Sets values for boundary to first theta cell equal to values for last theta cell and sets values for boundary to last theta cell equal to values for first theta cell.
SETBRK	Sets special pointers for a BREAK component.
SETCMP	Determines the component type and sets the LCM pointer for control- panel vector parameter IPARAM for component ICOMP.
SETCPV	Sets up the control-panel vector pointers. All errors encountered by sub- ordinate routines are treated as warning errors. If an error would inhibit further processing, IERRFL is set to 1. At the end of this routine a fatal error is issued if IERRFL is not 0. This allows checking of all parameters in a single pass.
SETEOS	Sets the equation-of-state constants.
SETERR	Support subroutine for IBM.
SETFIL	Sets special pointers for a FILL.
SETIC	Currently not used
SETLCM	Monitors use of LCM dynamic area.
SETNET	Provides the information needed to set up the network solution matrices.
SETPMP	Sets the volume flow pointer for a PUMP.
SETPRZ	Sets special pointers for a PRIZER (pressurizer).
SETVA	Sets value of variable VAR to VAL for one level of VESSEL data.
SETVSL	Sets special pointers for a VESSEL.
SFA44	Hardwired version of subroutine SGEFA for 4 \times 4 matrices.
SFA55	Handwired version of subroutine SGEFA for 5 $ imes$ 5 matrices.
SGBFA	Factors a real band matrix for elimination.
SGBSL	Solves the real band system A * $X = B$ or TRANS(A) * $X = B$ using factors computed by subroutine SGBFA.
SGEDI	Computes the determinant of a matrix using the factors computed by SGEFA.
SGEEV	Computes the eigenvalues and eigenvectors of a general real matrix.
SGEFA	Factors a real matrix by Gaussian elimination.
SGEFAV	Factors a real matrix by Gaussian elimination.

•

A-17

Name	Function
SGEMM	Performs matrix multiplication.
SGESL	Solves the real system $A * X = B$ or $TRANS(A) * X = B$ using the factors computed by or SGEFA.
SGESLM	Solves a system of linear equations with many right hand sides.
SGESLV	Solves the real system $A * X = D$ or TRANS(A) * $X = B$.
SHIFT	Support subroutine for IBM.
SHIFTB	Translates the table's abscissa-coordinate values so that the function value F in the table corresponds to an abscissa-coordinate value of 0.0.
SHIFTR	Shifts an argument to the right by a specified number of bits and fills remaining space with zeros.
SHRINK	Removes rows of conduction nodes within the heat-structure rods or slabs during reflood.
SIGMA	Returns surface tension of water as a function of pressure.
SMOVE	Moves a character from one string to another
SMOVEN	Moves a specified number of characters from one string to another.
SOUND	Performs homogeneous equilibrium sound speed calculation.
SPLIT	Reads appropriate data from PUMP curves.
SRCHCL	Searches the component list for component number ICOMP. It returns the component LCM pointer in IBASE. If the component is not found, it sets IERR to 1 and returns -1 in IBASE.
SRCHMDT	Searches master dictionary tabel for a specified entry.
SRCHTB	Searches variable name table for a specified entry.
SRCHVT	Searches a set of master dictionary variable name table entries for a specified variable name.
SRTLP	Sorts components into loops and reorders them for the network solution.
SSCAL	Performs single precision vector scale $X = A * X$.
SSEPOR	Performs detailed calculation of a steam-water separator.
SSL44	Hardwired version of subroutine SGESL for 4 \times 4 matrices.
SSL55	Hardwired version of subroutine SGESL for 5 $ imes$ 5 matrices.
SSWTCH	Mimics CTSS subroutine SSWTCH for UNICOS.
STBME	Sets up the stabilizing mass and energy equations.
STBME3	Sets up stabilizer mass and energy equations for VESSEL component.
STBMPL	Sets up the stabilizing mass and energy equations for the PLENUM.
A-18	APPENDIX A
Name	Function
--------	--
STDIR	Sets up direct inversion of the VESSEL matrix.
STEADY	Generates a steady-state solution.
STGABD	Finds the void fractions in adjacent cells within a steam generator to use in heat-transfer averaging.
STGEN1	Controls STGEN (steam-generator) prepass.
STGEN2	Controls STGEN (steam-generator) outer iteration.
STGEN3	Controls STGEN (steam-generator) postpass.
STGN1X	Evaluates heat-transfer coefficients for STGEN (steam-generator) sec- ondary side.
STGN3X	Performs STGEN (steam-generator) heat-transfer calculation.
STGNTX	Computes needed quantities on prepass for STGEN (steam generator).
STGPTH	Initializes TRAC communication to the NPA controller.
STINIT	Creates the problem specific Data Dictionary File used by the NPA Pro- tocol Handler.
STPCLS	Closes disk file used for NPA controller communication.
STPMSG	Checks for message from the NPA controller.
STPRD	Reads message from the NPA controller.
STPWRT	Writes message to the NPA controller.
STRLER	Provides error message for NPA controller communication failure (re- served for future use).
SVSET	Evaluates location-independent ($0 = ISUN < 17$) signal variables.
SVSET1	Evaluates signal variables with locations defined in the one-dimensional components.
SVSET3	Evaluates signal variables with locations defined in the three-dimensional VESSEL.
SVSETH	Evaluates signal variables defined in heat structures.
SWITCH	Moves one level of VESSEL data starting at IADD1 to IADD2 and vice versa. (Not currently maintained.)
TEE1	Controls TEE prepass.
TEE1X	Calculates source for TEE side-leg hydrodynamics.
TEE2	Controls TEE outer iteration.
TEE3	Controls TEE postpass
TF1D	Drives one-dimensional hydrodynamics routines.

Name	Function
TF1D5	Solves the hydrodynamic equations for the one-dimensional two-fluid pipe model.
TF1DS1	Sets up initial velocity approximations and their pressure derivatives for the one-dimensional two-fluid pipe model.
TF1DS3	Performs the backward-substitution for the one-dimensional two-fluid pipe model
TF3D5	Sets up basic mass and energy equations for three-dimensional VESSEL component.
TF3DS1	Estimates new-time velocities from motion equation and calculates vari- ation of velocities with respect to pressure for three-dimensional VESSEL component.
TF3D53	Performs back-substitution for three-dimensional VESSEL component.
TFPLBK	Performs the backward-substitution for the basic difference equations for the PLENUM (similar to TF1DS3 for the other one-dimensional components).
TFPLN	Solves the basic hydrodynamic equations for the PLENUM (similar to TF1DS for the other one-dimensional components).
THCL	Returns thermal conductivity of water as a function of pressure and en- thalpy.
THCV	Returns thermal conductivity of steam as a function of pressure and en- thalpy.
THERM2	Computes THERMO flag for use with MELPROG.
THERMO	Calculates thermodynamic properties of water.
ТІМСНК	Checks elapsed time to see whether certain functions should be per- formed.
TIME	Mimics CTSS subroutine TIME for UNICOS.
TIMER	Timekeeping routine.
TIMING	Mimics CTSS subroutine TIMING for UNICOS.
TIMSTP	Sets up time-step and time-edit interval times.
TIMUPD	Updates start-of-time-step values with end-of-time-step values for one VESSEL level.
TMPPTR	Sets up temporary pointers for subroutines PREIFD and PREFWD.
TMSFB	Calculates the minimum stable film-boiling temperature (T_{min}) .
TRAC	Supplies MAIN program.

Name	Function
TRANS	Controls overall calculation for each time step.
TRANSF	Transfers data from the STGEN (steam-generator) internal network ma- trix to the loop network matrix.
TRBPOW	Calculates the efficiency and power output of a turbine stage.
TRBPRE	Calculates the data pertaining to the entire turbine-generator set (com- mon/sum all stages) during the prep stage.
TRBPST	Calculates the data pertaining to the entire turbine-generator set (com- mon/sum . ¹¹ stages) during the post stage.
TRIP	Returns status of a trip.
TRIPS	Evaluates the control parameters for the beginning of the time-step sys- tem state.
TRISLV	Solves linear system of the form $A * X = B$ where A is tridiagonal.
TRPSET	Sets up trip status flags.
TURB1	Performs the prep stage calculation for the turbine stage component time- step initialization.
TURB2	Controls turbine stage outer iteration.
TURB3	Controls turbine stage postpass
UNPKIT	Unpacks data packed by subroutine PACKIT.
VALUE	Converts an ASCII string to its binary value.
VDPCSS	Defines necessary signal variables, control blocks, and controllers for con- strained steady-state calculation.
VELBC	Sets velocities at internal FILL boundaries for a vessel.
VFWALL3	Evaluates three-dimensional wall shear coefficients.
VISCL	Evaluates viscosity of water as a function of pressure and enthalpy.
VISCV	Evaluates viscosity of steam as a function of pressure and enthalpy.
VLEVEL	Indicates the beginning of a certain level in a VESSEL
VLVE1	Controls VALVE prepass.
VLVE2	Controls VALVE outer iteration.
VLVE3	Controls VALVE postpass.
VLVEX	Evaluates the value of the flow-area change action for a VALVE.
VMCELL	Converts a VESSEL cell number to a VESSEL-matrix cell number.
VOLFA	Calculates cell volume flow areas.

APPENDIX A

A-21

Name	Function
VOLV	Calculates cell-averaged phase velocities for one-dimensional components.
VRBD	Defines VESSEL velocities in the upstream radial direction for the inner ring. (Not currently used.)
VSLGEO	Writes the geometry cards for the vESSEL on the re tart input file.
VSLLEV	Writes the level data cards for the VESSEL on the restart input file.
VSLROD	Writes the rod-data cards for the VESSEL to the restart input file.
VSSL1	Performs prepass calculations for VESSEL dynamics.
VSSL2	Performs inner iterations for VESSEL dyramics.
VSSL3	Performs postpass calculations for VESSEL dynamics.
VSSROD	Transfers data between hydro and heat-structure databases.
VSSSSR	Performs steady-state change ratio calculations for vessel.
WACCUM	Writes selected ACCUM (accumulator) data to output file TRCOUT.
WARRAY	Writes a real array to out out file TRCOUT.
WBREAK	Writes selected BREAK data to output file TRCOUT.
WCOMP	Controls the writing of selected component data to output file TRCOUT.
WDRAG	Calculates coefficient of friction for liquid and vapor at the wall.
WFILL	Writes selected FILL data to output file TRCOUT.
WHTSTR	Writes selected heat-structure data to output file TRCOUT
WIARR	Writes an integer array to output file TRCOUT.
WLABI	Edits labeled integer-valued input data that is to be read by the LOAD subroutine.
WLABR	Edits labeled real-valued input data that is to be read by the LOAD subroutine.
WLEVEL	Writes real VESSEL level array to output file TRCOUT.
WPIPE	Writes selected PIPE data to output file TRCOUT.
WPLEN	Writes selected PLENUM quantities to the output file TRCOUT.
WPRIZR	Writes selected PRIZER (pressurizer) data to output file TRCOUT.
WPUMP	Writes selected PCMP data to output file TRCOUT.
WRCOMP	Writes data common to one-dimensional components to output files.
WRITEE	This subroutine does not combine numbers as does subroutine R. It merely puts an E at the end of the data for a variable to make it compatible with the LOAD subroutine of the TRAC code.

A-22

APPENDIX A

Name	Function
WRITEI	Takes integers and puts them into format compatible with the LOAD subroutine of TRAC.
WRITER	Takes real numbers and puts them into format compatible with the LOAD subroutine of TRAC.
WRLCM	Transfers a given number of words from SCM to LCM.
WSTGEN	Writes selected STGEN (steam genorator) data to output file TRCOUT.
WTEE	Writes selected TEE data to output file TRCOUT
WTURB	Writes selected quantities to the printer for a TURB (turbine) stage component.
WVLVE	Writes selected VALVE data to output file TRCOUT.
WVSSL	Writes selected VESSEL data to output file TRCOUT.
XOR	Support subroutine for IBM.
ZCORE	Calculates axial locations for CHF and transition boiling within the core and computes associated void fractions.
ZEROV	Zeroes velocities at zero flow areas.
ZPWHCI	Evaluates axial power shape based on user input.

APPENDIX B

TRAC SUBROUTINE CALLING SEQUENCE

TRAC

CALLS PRODCTN, ERROR, GETUFL, LENTAB, BLKDAT, SAMPLE, SAMPON, GETJTL, SETLOM , LOADTIM , LABELP , INPUT , INIT , DMPIT , STEADY , TRANS , OTIME . CLEAN , SAMPTRM, EXIT. ACCM1X CALLED BY ACCUM1. ACCMBD CALLS JID. CALLED BY ACCUM1 , ACC'JM2 , ACCUM3 , LACCUM. ACCUM1 CALLS SAVBD , J1D , PREPER , ACCM1X , ACCMBD , BKMOM. CALLED BY PREP1D. ACCUM2 CALLS INNER , ACCMBD. CALLED BY OUT1D. ACCUM3 CALLS POSTER , SAVBD , EVALDF , CONSTB , ACCMBD. CALLED BY POST. ALLBLK CALLS INDEL. CALLED BY PREINP. ASIGN CALLED BY INPUT. ASTPLN CALLED BY PLEN3. AUXPLN CALLS GETBIT. CALLED BY PLEN2. BACIT CALLED BY VSSL2. BAKUP CALLED BY VSSL2 , VSSL3. BANSOL CALLED BY RODHT. BDPLEN

CALLED BY INPUT , PLEN1 , PLEN2 , PLEN3. BFALOC CALLS LDCHAR. CALLED BY DMPIT , KGRAF , RDREST. BFCLOS CALLED BY ENDDMP , ENDGRF. BEIN CALLS ERROR , RDLCM. CALLED BY RDREST , REACOM , REBRK , RECOMP , REFILL , REHTST , REPIPE , REPLEN , REPRZR , REPUMP , RERODI RESTGN , RETER , RETURB , REVLVE , REVSSL. RFOUT CALLS ERROR , WRLCM. CALLED BY DBRK , DCOMP , DFILL , DHTSTR , DLEVEL , DMPIT , DPIPE , DPLEN , DPUMP , DROD1 ,DSTGEN , DTEE , DTURB , DVLVE , DVSSL ,GRAF , IGRAF. BITS CALLS SETBIT, OFFBIT, CHGBIT, OF1123, CN1123, ERROR. SETBIT CALLED BY BITS , CHBSET , FF3D , HTIF , J3D , PLEN3 , POSTER , PREPER , RCOMP , TF1DS ,TF1DS1 , TF1DS3 , TFPLBK , TFPLN. OFFBIT CALLED BY BITS , CHBSET , HTIF , TF1DS , TF1DS3 , TFPLN. CHGBIT CALLED BY BITS. OF1123 CALLED BY BITS , J3D , POSTER. ON1123 CALLED BY BITS , INNER. **EKMOM** CALLS BKSMOM. CALLED BY ACCUM1, PIPE1, PRIZR1, PUMP1, STGEN1, TEE1, TURB1, VLVE1. BKSMOM CALLED BY BKMOM. BKSPLN CALLS SFA55 , SSL55 , CONCF. CALLED BY PLEN3. BKSSTB CALLS SFA55 , SSL55 , CONCF.

CALLED BY POSTER. BKSTB3 CALLS SFA55 , SSL55 , CONCF. CALLED BY VSSL3. BLKDAT CALLED BY TRAC. BREAK1 CALLS BREAKX , J1D , SH'FTB , GETBIT. CALLED BY PREP1D. BREAK2 CALLS J1D. CALLED BY OUT1D. BREAK3 CALLS THERMO , FPROP , J1D. CALLED BY POST. BREAKX CALLS TRIP , SHIFTB , EVLTAB , LININT , ERROR , THERMO , FPROP , MIXPRP , SATTMP. CALLED BY BREAK1. **BSPDDC** BSPDSL CBEDIT CALLED BY RCNTL , RECNTL. CBSET CALLS ERROR , CONBLK , DELAY , LININT , LINT4D. CALLED BY TRIPS. CDTHEX CALLS LININT. CALLED BY DELTAR. CELLA3 CALLED BY VSSL2. CELLAV CALLED BY TF1D. CHBD CALLS ERROR. CALLED BY CHKBD.

APPENDIX B

CHBSAV CALLED BY LACCUM , INPUT , ISTGEN , ITEE , ITUPB , MLVE, CKBSET CAL'S OFFBIT , SETBIT. CALLED BY ACCUM, INPUT, ISTGEN, ITEE, ITURB, INLVE. CHEN CALLS SATPRS. CALLED BY HTCOR , HTVSSL. CHF CALLS CHF1 , ERROR , SATPRS. CALLED BY HTCOR , HTVSSL. CHF1 CALLED BY CHF , HTCOR , HTVSSL. CHKBD CALLS CHBD , ICMPR , GETBIT. CALLED BY LACCUM , INPUT , ISTGEN , ITEE , ITURB , IVLVE. CHKSR CALLS ERROR. CALLED BY RVSSL. CHOKE CALLS SOUND , THERMO , ERPOR , SGEFA , SGEDI , SGESL , SGEEV , SATPRS. CALLED BY TF1DS1. CIF3 CALLS GETBIT. CALLED BY VSSL1. CIHTST CALLS ROLCM , RROLCM , IRODL , IROD , WRLCM. CALLED BY ICOMP. CIVSSL CALLS RVSLCM , IVSSL , ERROR , LDCHAR , WRLCM , PTRSA , JFIND. CALLED BY ICOMP. CLEAN CALLS IOVLY , ENDGRF , ENDDMP , COMPACT , EOVLY. CALLED BY TRAC , ERROR , ERRTRP , STEADY. CLEAR

CALLED BY

CORE1, HOUT, ICOMP, INPUT, LCMTRN, LOAD OUT1D, OUT3D, OUTER, PLEN1, PLEN2, PLEN3, PNTROD, PNTVSS, POS, POST3D, PREP1D, PREP3D, PREPER, RACCUM, RBREAK, RCNTL, HCOMP, RDDIM, REROD1 , REVSSL, RFILL, RHTSTR, RPIPE, RPLEN, RPRIZR, RPUMP, RROD2, RSTGEN, RTEE, RTURB, RVLVE, RVSSL, S1DPTR, SCMLCM, SEDIT, SRTLP , STGEN1, STGEN2, STGEN3, WVSSL.

COMPI

CALLED BY INPUT , ISTGEN , ITEE , ITURB , IVLVE. CONBLK CALLS ERROR. CALLED BY CBSET. CONCF CALLED BY BKSPLN , BKSSTB , BKSTB3 , FF3D. CONSTR CALLS STBME , J1D , ICMPR. CALLED BY ACCUM3 , PIPE3 , PRIZR3 , PUMP3 , STGEN3 , TEE3 , URB3 , VLVE3. COPYA CALLED BY MIX3D. CORE1 CALLS TRIP , MANAGE , CLEAR , ERROR , MFROD , FNMESH , SHRINK , EXPAND , ZCORE , HTVSSL , HTCOR , EVFXXX , ZPWHCI , RFDBK , RKIN. CALLED BY HTSTR1. CORE3 CALLS MANAGE, ERROR , FROD , EVALDF. CALLED BY HTSTR3. CPLL CALLED BY FPROP. CPVV1 CALLED BY FPROP , HTCOR , HTVSSL , IN WEBB. CTAINT CALLS ERROR. CALLED BY PREPID. CTAIN2 CALLS ERROR. CALLED BY OUT1D. CTAIN3 CALLS ERROR. CALLED BY

POST. CWVSSL. CALLS RVSLCM , WVSSL. CALLED BY WCOMP. CYLHT CALLED BY POSTER , STGN3X. DATEU CALLS DATE. CALLED BY INPUT. DBRK CALLS BFOUT , RDLCM. CALLED BY DMPIT. DCODF CALLED BY LOAD. DCOMP CALLS RDLCM , BFOUT. CALLED BY DMPIT , DPIPE , DPUMP , DSTGEN , DTEE , LTURB , DVLVE. DECAYS CALLED BY RROD2. DELAY CALLS LININT , ERROR. CALLED BY CBSET. DELTAR CALLS CDTHEX , FTHEX. CALLED BY GAPHT. DFILL CALLS RDLCM , BFOUT. CALLED BY DMPIT. DGBFA CALLS DSCAL , DAXPY. DGBSL CALLS DAXPY. DHTSTR CALLS RDLCM , RRDLCM , BFOUT , DROD1. CALLED BY DMPIT. DLEVEL

0

0

```
CALLS
             LEVELI , BFOUT.
       CALLED BY
             DVSSL.
DAPIT
       CALLS
             KOVLY BEALOC , ERROR , SFOUT , OTIME , RDLCM , DPIPE , DTEE , DPUMP ,
DVLVE , DBRK , DFILL , DCOMP , DSTGEN , DTURB , DPLEN , DVSSL , DHTSTR
              EOVLY
       CALLED BY
             TRAC , ERROR , ERRTRP , PSTEPO , TIMCHK , TRANS
CPIPE
       CALLS
             DOOME , BEOUT.
       CALLED BY
             DMPIT.
DPLEN
       CALLS
             ROLCM , BFOUT.
       CALLED BY
             DMPIT.
DPUMP
       CALLS
             DCOMP , BFOUT.
       CALLED BY
             DMPIT.
DROD1
       CALLS
             BFOUT , MANAGE.
       CALLED BY
             DHTSTR.
DSTGEN
       CALLS
              DCOMP , BFOUT.
        CALLED BY
              DMPIT.
DTEE
        CALLS
              DCOMP , BFOUT.
        CALLED BY
              DMPIT.
DTURB
        CALLS
              DCOMP , BFOUT.
        CALLED BY
              DMPIT.
 DVLVE
        CALLS
              DCOMP , BFOUT.
        CALLED BY
              DMPIT.
 DVPSCL
        CALLS
              SETVA.
        CALLED BY
             IVSSL , VSSL1.
 DVSSL
```

1 00

APPENDIX B

CALLS RVSLCM , BFOUT , MANAGE , DLEVEL. CALLED BY DMPIT. ECOMP CALLS WARRAY , GETBIT. CALLED BY WACCUM , WBREAK , WFILL , WPIPE , WPRIZR , WPUMP , WSTGEN , WTGE , WTURB , WVLVE. EDIT CALLS KOVLY , SEDIT , WOOMP , EOVLY. CALLED BY ERROR , ERRTRP , HOUT , PSTEPO , STEADY , TIMCHK , TRANS. ELGR CALLS ERROR WARRAY ' ULED BY LACCUM , INPUT , ISTGEN , ITEE , ITURB , IVLVE. ENDDMP CALLS BFCLOS, ERROR, COMPACT. CALLED BY CLEAN. ENDGRF CALLS BFCLOS, ERROR, COMPACT. CALLED BY CLEAN. EOVLY CALLS ERROR. CALLED BY CLEAN , DMPIT , EDIT , ERROR , GRAF , INIT , INPUT , OUT1D , OUT3D , OUTER , POST , PREP , PREP1D , PREP3D , RDCOM3 , RDCOMP , RDREST , TRIPS. ERRGET CALLS QXIT. ERROR CALLS DMPIT, EDIT, OTIME, QADJUST, EOVLY, CLEAN. CALLED BY TRAC , BFIN , BFOUT , BITS , BREAKX CBSET , CHBD , CHF , CHKSR TRAC BEIN BEDUT BITS BELACK OBSET CHBD CHP CHRSH CHOKE CIVSSL CONELK CORE1 CORE3 CTAIN1 CTAIN2 CTAIN3 DELAY DMPIT ELGR ENDDMP ENDGRF EOVLY EVALDE EVFXXX EVLTAB FBRCSS FILLX GETBIT GETCRV GRAF GREPUT HOUT HTSTR3 HVWEBB COMP IGRAF INT INPUT ISTGEN ITEE IVLVE JFIND LOAD LOCPMP LOCTEE LOCTRB LOCVLV MANAGE MATSOL MEROD MSTRCT NAMLST NXTCMP OFFTKE OUT1D OUT3D OUTER POST POST3D POSTER PREFWD PREINP PREP1D PREP3D PTRSPL PUMPD PUMPSR RACCUM , RBREAK , RCNTL , RCOMP , RDCOMP , RDCRDS , RDDIM , RDREST , REACCM , READI , READR , REBRK , RECNTL , REFILL , REHTST , REPIPE REPLEN , REPRZR , REPUMP , RETEE , RETURB , REVLVE , REVSSL , RFDBK RFILL , RHTSTR , RKIN , RODHT , RPIPE , RPLEN , RPRIZR , RPUMP , RROD1 . RROD2 , RSTGEN , RTEE , RTURB , RVLVE , RVSSL , SCLMOM , SETLCM ,

SOUND ,SRTLP , STEADY , STGN3X , SVSET , SVSET1 , SVSET3 , SVSETH , TEE1 , THERMO , TIMCHK , TIMSTP , TRANS , TRIP , TRPSET , VLVEX , VSSL1 , VSSL2. ERRTRP CALLS QXIT , POST , DMPIT , EDIT , CLEAN , EXIT. ESTGEN CALLED BY ISTGEN , STGEN1 , STGEN3. ETEE CALLED BY ITEE , TEE1 , TEE3. EVALDF CALLS ERROR. CALLED BY ACCUM3, CORE3, PIPE3, PRIZR3, PUMP3, STGEN3, TEE3, TURB3, VLVE3 , VSSL3. EVFXXX CALLS ERROR , TRIP , LININT , EVLTAB. CALLED BY CORE1 , PIPE1 , PIPE3 , PUMP3 , RKIN , TEE1X , TEE3 , TURB1 , VLVE3. EVLTAB CALLS ERROR , LININT. CALLED BY BREAKX , EVFXXX , FILLX , PUMPSR , TRBPRE , VLVEX. EXPAND CALLED BY CORE1. FAXPOS CALLED BY RVLVE , VLVEX. FBRCSS CALLS ERROR. CALLED BY INPUT. FEMOM CALLS LEVEL , GETBIT. CALLED BY PREPER. FEMCIN CALLS SATTMP. CALLED BY VSSL1. FEMOMY CALLS SATTMP. CALLED BY VSSL1. FEMOMZ CALLS SATTMP.

CALLED BY VESL1. FF3D CALLS GVSSL1 , SETBIT , CONCF. CALLED BY VSSL3. FILL! CALLS FILLX , J1D , GETBIT. CALLED BY PREP1D. FILL2 CALLS JID. F.ALL DBY JUT1D. F'LL3 CALLS JID. CALLED BY POST. FILLX CALLS TRIP , SHIFTB , EVLTAB , LININT , ERROR , THERMO , FPROP , MIXPRP. CALLED BY FILL1. FLTOM CALLS LOCHAP , VSSROD , PIPROD. CALLED BY HTSTR1, FLUX CALLS GETBIT , ICMPR. CALLED BY PREPER. FLUXES CALLED BY VSSL2. FNMESH CALLED BY CORE1. FPROP CALLS CPLL , CPVV1 , VISCL , VISCV , THCL , THCV , SIGMA. CALLED BY BREAKS , BREAKX , FILLX , IBRK , IFILL , INPUT , IVSSL , PLENS , POSTER , VSSL3. FROD CALLS MWRX , GAPHT , RODHT. CALLED BY CORE3. FTHEX CALLED BY DELTAR.

FWALL CALLS FWKF. CALLED BY PREPER. FWKF CALLED BY FWALL , IWALL3. GAPHT CALLS DELTAR , MGAP. CALLED BY FROD. GETBIT CALLS ERROR. CALLED BY AUXPLN , BREAK1 , CHKBD , CIF3 , ECOMP , FEMOM , FILL1 , FLUX , GRAF HTIF ,PLEN3 , POSTER , PREPER , STBME , TEE3 , TF1DS , TF1DS1 , TF1DS3 , TF3DS , TF3DS1 , TFPLBK , TFPLN. GETCRV CALLS ERROR , SPLIT. CALLED BY PUMPD GLEVEL CALLS LEVELI , PACKIT. CALLED BY GRAF , IGRAF. GRAF CALLS IOVLY , ROLCM , GREGET , BEOUT , OTIME , RVSLCM , RRDLCM , RHVGET SETLCM , PACKIT , ERROR , MANAGE , GLEVEL , EOVLY , LOCTRB , GETBIT. CALLED BY PSTEPO , STEADY , TRANS. GRFGET CALLED BY GRAF , IGRAF. GREPUT CALLS SETLCM , ERROR. CALLED BY KGACUM , KGBRAK , KGCOMP , KGFILL , KGHSTR , KGPIPE , KGPLEN , KGPRZR , KGPUMP , IGRAF , IGSTGN , IGSVCB , IGTEE , IGTURB , IGVLVE , IGVSSL GVSSL1 CALLED BY FF3D. GVSSL2 CALLS SATTMP. CALLED BY VSSL3. HEV CALLED BY SATDER , SATTMP , SETEOS THERMO. HLFILM

CALLED BY HTCOR. HLFLMR CALLED BY HTVSSL. HOUT CALLS CLEAR , OUTER , EDIT , POST , ERROR , OTIME. CALLED BY STEADY , TRANS. HTCOR CALLS CHEN , CHF1 , CHF , IVNB , TMSFB , HVFILM , HLFILM , VISCV , CPVVI , THCV. CALLED BY CORE1 , HTPIPE , STGN1X. HTTE CALLS OFFBIT, SETBIT, SATPRS, GETBIT. CALLED BY PLEN2 , TF1D , VSSL2. HTPIPE CALLS HTCOR. CALLED BY PREPER. HTSTR1 CALLS HTSTRV , RDLCM , RRDLCM , MANAGE , FLTOM , CORE1 , WRLCM. CALLED BY PREP. HTSTR3 CALLS RDLCM , RRDLCM , MANAGE , ERROR , CORE3 , WRLCM. CALLED BY POST. HTSTRV CALLS RDLCM , RVSLCM , MANAGE , SETVA. CALLED BY HTSTR1. HTVSSL CALLS CHEN , CHF1 , CHF , HVNB , HLFLMR , HVWEBB , VISCV , CPVV1 , THCV. CALLED BY CORE1. **HVWEBB** CALLS ERROR , CPVV1 , THCV , VISCV. CALLED BY HTVSSL. HUNTS CALLS IDEL CALLED BY PREINP. HVFILM

CALLED BY HTCOR. **HVNB** CALLED BY HTCOR , HTVSSL LACCUM CALLS JUNSOL , VOLFA , IPROP , CHBSAV , ACCMBD , CHBSET , WRLCM , CHKBD , ELGR , JFIND. CALLED BY KOMP. **IBRK** CALLS THERMO , FPROP , MIXPRP , WALCH , JID , JFIND. CALLED BY KOMP. ICHL. CALLED BY INPUT. **ICMPR** CALLED BY CHKBD , CONSTB , FLUX , INNER , PREPER , SAVBD , SETBD. **ICOMP** CALLS ERROR , ROLCM , WALCM , CLEAR , CIHTST , SETLOM , IPIPE , ITEE , IPUMP , IFILL , IBRK , IPRIZF, ISTGEN , IACCUM , ITURB , IVLVE , IPLEN , SETNET , CIVSSL , LOCTRS ,LOCVLV. CALLED BY INIT. IDEL CALLED BY HUNTS , INPUT , PREINP. **IDIFF** CALLED BY JVALUE. **IFILL** CALLS THERMO , FPROP , MIXPRP , WRLCM , J1D , JFIND. CALLED BY ICOMP. IFSET CALLS SETVA. CALLED BY VSSL1. **IGACUM** CALLS IGCOMP , GRFPUT. CALLED BY IGRAF. **IGBRAK** CALLS GRFPUT. CALLED BY KGRAF. IGCOMP CALLS

GRFPUT. CALLED BY KGACUM, KGPIPE, KGPRZR, KGPUMP, KGSTGN, IGTEE, IGTURB, IGVLVE. IGFIL' CALLS GRFPUT. CALLED BY KGRAF. **KGHSTR** CALLS GRFPUT. CALLED BY KIRAF. KEPIPE CALLS IGCOMP , GREPUT. CALLED BY IGRAF. **IGPLEN** CALLS GRFPUT. CALLED BY KGRAF. **IGPRZR** CALLS IGCOMP , GRFPUT. CALLED BY IGRAF. **KGPUMP** CALLS IGCOMP , GRFPUT. CALLED BY IGRAF. IGRAF CALLS BFALOC, ERROR, SETLOM, GREPUT, IGSVCB, RDLCM, IGPIPE, IGTEE, IGPUMP, IGFILL, IGBRAK, IGPEZR, IGSTGN, IGVSSL, IGACUM, IGTURB, IGPLEN, IGHSTR, IGVLVE, BFOUT, GREGET, RVSLCM, RVVGET, PACKIT, MANAGE GLEVEL , LOCTRB. CALLED BY INIT. IGSTGN CALLS GRFPUT, IGCOMP. CALLED BY KGRAF. **IGSVCB** CALLS GRFPUT. CALLED BY KGRAF. IGTEE CALLS GREPUT , IGCONIP. CALLED BY KGRAF. **IGTURE**

CALLS IGCOMP , GPFPUT. CALLED BY KGRAF. IGVLVE. CALLS IGCOMP , GRFPUT. CALLED BY KGRAF. **IGVSSL** CALLS. GREPUT. CALLED BY KIRAF. ILEVEL. CALLS WIARR , LEVELR. CALLED BY RVSSL INDEL CALLED BY ALLBLK , PREINP. INIT CALLS IOVLY , ICOMP , IGRAF , ERROR , EOVLY. CALLED BY TRAC INITEC CALLS SETVA CALLED BY IVSSL. INNER CALLS ON1123 , TF1D , J1D , iCMPR CALLED BY ACCUM2 , PIPE2 , PRIZR2 , PUMP2 , STGEN2 , TEE2 , TURB2 , VLVE2. INPUT CALLS FEXIST , ERROR , CLEAR , IOVLY , DATEU , TIME , PREINP , READI , SETLCM , SETEOS ,NAMLST , ASSIGN , READR , LOAD , ISORT ,WLABI , WARRAY , RCNTL , NXTCMP , RDCOMP ,RDCOM3 , RDREST , ORDER , FBRCSS , SRTLP , VMCFLL , ASIGN , EOVLY , JUNSOL , VOLFA ,COMPI , IPROP , CHBSAV , SETBD , CHBSET ,WRLCM , CHKBD , ELGR , THERMO , FPROP ,MIXPRP , BDPLEN , MANAGE , LININT , ZPWHCI ,LCHVSS , LDCHAR , LCHPIP , TRSLBL , IDEL ,ICHL , JFIND. CALLED BY TRAC. IOVLY CALLED BY CLEAN , DMPIT , EDIT , GRAF , INIT , INPUT , OUT1D , OUT3D , OUTER , POST PREP , PREP1D , PREP3D , RDCOM3 , RDCOMP , RDREST , TRIPS. IPIPE CALLED BY ICOMP. **IPLEN**

APPENDIX B

ICOMP. **IPRIZA** CALLED BY ICOMP. IPROP CALLED BY ACCUM, INPUT, ISTGEN, ITEE, ITURB, MLVE. **IPUMP** CALLED BY ICOMF. POD CALLED BY CIHTST. IRODI. CALLED BY CIHTST. ISORT CALLED BY INPUT. ISTGEN CALLS JUNSOL , VOLFA , COMPL , IPROP , CHBSAV , J1D , CHBSET , SETBE , ERROR ESTGEN , WRLCM , CHKBD , ELGR , JFIND. CALLED BY ICOMP. ITEE CALLS COMPL, IPROP, JUNSOL, VOLFA, CHBSAV, SETBD, CHBSET, ETEE . WRLCM , CHKBD , ELGR , ERROR , JFIND CALLED BY ICOMP. ITURB CALLS TRBPOW , JUNSOL , VOLFA , COMPI , IPROP , CHBSAV , SETBD , CHBSET , WRLCM , CHKBD , ELGR , JFIND. CALLED BY ICOMP. IVLVE CALLS JUNSOL, VOLFA, COMPI, IPROP, CHBSAV, SETBD, CHBSET, ERROR, WRLCM , CHKBD , ELGR , JFIND CALLED BY ICOMP. **IVSSL** CALLS SETVA , MANAGE , WLEVEL , THERMO , FPROP , INITBC , RDZMOM , IWALLS , MIX3D , SCLMOM , DVPSCL , SETBDT , J3D CALLED BY CIVSSL. **WALL3** CALLS SETVA , FWKF. CALLED BY IVSSL. JID CALLED BY ACCMBD , ACCUMI , BREAK1 , BREAK2 , BREAK3 , CONSTB , FILL1 , FILL2 ,

FILL3 , IBRK , IFILL , INNER , ISTGEN , SETBD , STGEN1 , STGEN2 , STGEN3 , STGNTX , TEE1X. J3D CALLS MANAGE , OF1123 , SETBIT. CALLED BY IVSSL , POST3D , VSSL1 , VSSL2 , VSSL3. JFIND. CALLS ERROR. CALLED BY CIVSSL, VACCUM, IBPK, IFILL, INPUT, ISTGEN, ITEE, ITURB, IVLVE. JUNSOL CALLS LDCHAR. CALLED BY ACCUM, INPUT, ISTGEN, ITEE, ITURB, MLVE. JVALUE CALLS **IDIFF** CALLED BY PREINP , VALUE. LABELP CALLED BY TRAC. LCHPIP CALLED BY INPUT. LCHVSS CALLED BY INPUT. LCMTRN CALLS SETLCM , WRLCM , CLEAR CALLED BY REHTST , REVSSL , RHTSTR , RVSSL. LDCHAR CALLED BY BFALOC, CIVSSL, FLTOM, INPUT, JUNSOL, RACCUM, RBREAK, REACCM, REBRK, REFILL, REPIPE, REPLEN, REPRZR, REPUMP, RESTGN, RETEE, RETURB , REVLVE , REVSSL , RFILL , RPIPE , RPLEN , RPRIZR , RPUMP , RSTGEN , RTEE , RTURB , RVLVE , RVSSL , SRTLP. LENTAB CALLED BY TRAC. LEVEL CALLED BY FEMOM , OFFTKE LEVELI CALLED BY DLEVEL , GLEVEL , WLEVEL , WVSSL LEVELR CALLED BY ILEVEL , REVSSL , RLEVEL , RVSSL. LININT CALLED BY BREAKX, CBSET, CDTHEX, DELAY, EVFXXX, EVLTAB, FILLX, INPUT, MZIRC

PUMPD ,PUMPX , RFILL , RPIPE , RPUMP , RROD2 ,RTEE , RTURB , RVLVE , VSSL1. LINT4D CALLED BY CBSET , RFDBK. LOAD CALLS CLEAR , DCODF , ERROR. CALLED BY INPUT , RBREAK , RCNTL , RCOMP , RDCRVS , RFILL , RHTSTR , RPIPE , RPLEN , RPUMP , RROD2 , RSTGEN , RTEE , RTURB , RVLVE , RVSSL. LOCPMP CALLS ERROR. CALLED BY SVSET1. LOCTEE CALLS ERROR. CALLED BY SVSET. LOCTRB CALLS ERROR. CALLED BY GRAF , ICOMP , IGRAF. LOCVLV CALLS ERROR. CALLED BY ICOMP , SVSET1. MANAGE CALLS ERROR CALLED BY CORE1 , CORE3 , DROD1 , DVSSL , GRAF ,HTSTR1 , HTSTR3 , HTSTRV , IGRAF , INPUT IVSSL , J3D , POST3D , RFDBK , SVSET3 , SVSETH , VSSL1 , VSSL2 , VSSL3 , WHTSTR , WVSSL. MATSOL CALLS BGLSDC , ERROR , BGLSSL , SGEFAV , SGESLV. CALLED BY OUT3D , POST3D , PREP3D , VSSL2. MBN CALLED BY MFROD. MFROD CALLS ERROR , MFUEL , MZIRC , MBN , MHTR , MSTHUT. CALLED BY CORE1. MFUEL CALLED BY MFROD. MGAP CALLED BY GAPHT.

MHTR CALLED BY MFROD. MIX3D CALLS COPYA. CALLED BY IVSSL , VSSL3. MIXPRP CALLED BY BREAKX , FILLX , IBRK , IFILL , INFUN. MODIFY MPROP CALLS MSTRCT. CALLED BY PREPER , STGN1X. MSTRCT CALLS ERROR. CALLED BY MFROD , MPROP. MWRX CALLED BY FROD. MZ!RC CALLS LININT. CALLED BY MFROD. NAMLST CALLS ERROR. CALLED BY INPUT NEWDLT CALLS SEDIT. CALLED BY TIMSTP. STDIR CALLED BY VSSL2. NXTCMP CALLS ERROR. CALLED BY INPUT. OFFTKE CAL'.S LEVEL , ERROR. CALLED BY TEE3. ORDER CALLED BY INPUT. OUT1D

CALLS IOVLY , RDLCM , SETLCM , CLEAR , PIPE2 , PUMP2 , TEE2 , VLVE2 , BREAK2 , FILL2 , PRIZR2 , CTAIN2 , STGEN2 , ACCUM2 , TURB2 , PLEN2 , ERROR , WRLCM EOVLY. CALLED BY OUTER. OUT3D CALLS IOVLY , CLEAR , RDLCM , EFROR , RVSLCM , VSSL2 , WRLCM , MATSOL , EOVLY. CALLED BY OUTER. OUTER CALLS IOVLY , CLEAR , OUT1D , SGEFAV , SGESLV , ERROR , OUT3D , EOVLY. CALLED BY HOUT. PACKIT CALLED BY GLEVEL , GRAF , IGRAF. PIPE1 CALLS SAVBD , PREPER , PIPE1X , SETBD , EVFXXX , BKMOM. CALLED BY PREPID. PIPE1X CALLED BY PIPE1. PIPE2 CALLS INNER. CALLED BY OUTID. PIPE3 CALLS POSTER , SETBD , SAVBD , EVFXXX , EVALDF , CONSTB CALLED BY POST. PIPROD CALLS RDLCM. CALLED BY FLTOM. PLEN1 CALLS CLEAR , BDPLEN. CALLED BY PREP1D. PLEN2 CALLS CLEAR , THERMO , HTIF , AUXPLN , TFPLN , BDPLEN , TFPLBK. CALLED BY OUTID. PLEN3 CALLS ASTPLN, STBMPL, BKSPLN, SETBIT, CLEAR, THERMO, FPROP, BDPLEN, GETBIT.

APPENDIX B

```
CALLED BY
             POST.
PNTROD
       CALLS
             CLEAR.
       CALLED BY
             REHTST , PHTSTR.
PNTVSS
       CALLS
             CLEAR.
       CALLED BY
             REVSSL , RVSSL.
POST
       CALLS
             IOVI Y , TRBPST , CLEAR , RDLCM , SETLCM , PIPE3 , PUMP3 , TEE3 , VLVE3
             BREAK3 FILLS , PRIZR3 , CTAIN3 , STGEN3 , ACCUM3 , TURB3 , PLEN3 , ERROR
             WRLCM , SGEFAV , SGESLV , POST3D , HTSTR3 , EOVLY.
       CALLED BY
             ERRTRP , HOUT , STEADY , TRANS.
POST3D
       CALLS
             CLEAR , RDLCM , RVSLCM , VSSL3 , ERROR , WRLCM , MATSOL , MANAGE ,
             J3D.
       CALLED BY
             POST.
POSTER
       CALLS
             OF1123 , THERMO , BKSSTB , ERROR , CYLHT , SETBIT , FPROP , GETBIT.
       CALLED BY
             ACCUM3 , PIPE3 , PRIZR3 , PUMP3 , STGEN3 , TEE3 , TURB3 , VLVE3.
PREFWD
       CALLS
             SETLCM , ERROR , TMPPTR , VFWALL3.
       CALLED BY
             VSSL1.
PREINP
       CALLS
             ERROR , VALUE , HUNTS , IDEL , ALLBLK , INDEL , JVALUE
       CALLED BY
             INPUT.
PREP
       CALLS
             IOVLY , TRIPS , PREP1D , HTSTR1 , PREP3D , EOVLY.
       CALLED BY
             STEADY , TRANS.
PREP1D
       CALLS
             IOVLY , TRBPRE , CLEAR , RDLCM , SETLCM , PIPE1 , PUMP1 , TEE1 VLVE1 ,
             BREAK1 FILL1 , PRIZR1 , CTAIN1 , STGEN1 , ACCUM1 , TURB1 , PLEN1 ,
ERROR , WRLCM , SGEFAV , SGESLV , EOVLY.
       CALLED BY
             PREP.
PREP3D
       CALLS
             IOVLY , CLEAR , RDLCM , RVSLCM , VSSL1 , ERROR , WRLCM , MATSOL ,
             EOVLY.
       CALLED BY
```

PREP. PREPER CALLS CLEAR , SETBIT , VOLV , FWALL , MPHOP , HTPIPE , FLUX , PUMPSR , FEMOM GETBIT , ICMPR. CALLED BY ACCUM1 , PIPE1 , PRIZR1 , PUMP1 , STGEN1 , TEE1 , TURB1 , VLVE1. PAIZR1 CALLS SAVBD , PREPER , PRZR1X , SETBD , BKMOM. CALLED BY PREP1D. PRIZR2 CALLS INNER. CALLED BY OUTID. PRIZR3 CALLS POSTER , SETBD , SAVBD , EVALDF , CONSTB. CALLED BY POST. PRZR1X CALLED BY PRIZR1. PSTEPO CALLS EDIT , SEDIT , GRAF , DMPIT. CALLED BY STEADY , TRANS. PTRSA CALLED BY CIVSSL. PTRSPL CALLS SETLOM , ERROR. CALLED BY REPLEN , RPLEN. PUMP1 CALLS SAVED , PREPER , SETBD , BKMOM. CALLED BY PREP1D. PUMP2 CALLS INNER. CALLED BY OUT1D. PUMP3 CALLS POSTER , SETBD , SAVBD , EVFXXX , EVALDF , CONSTB. CALLED BY POST. PUMPD CALLS GETCRV , ERROR , LININT. CALLED BY

PUMPX. PUMPI CALLED BY RDCRVS. PUMPSR CALLS TRIP , EVI. TAB , ERROR , PUMPX , SHIFTB. CALLED BY PREPER. PUMPX CALLS LININT , WARRAY , PUMPD. CALLED BY PUMPSR. RACCUM CALLS ERROR , CLEAR , READI , LDCHAR , S1DPTR , SCMLCM , RCOMP. CALLED BY RDCOMP. RBREAK CALLS ERROR , CLEAR , READI , READR , LOCHAR , S1DPTR , SETLCM , LOAD , WARRAY , SULTBL , WRICH , SATTMP. CALLED BY RDCOMP. RCNTL CALLS CLEAR , LOAD , READI , READR , CBEDIT , WLABR , ERROR , SETLCM. CALLED BY INPUT. RCOMP CALLS LOAD , WARRAY , ERROR , WIARR , SETBIT , CLEAR. CALLED BY RACCUM , RPIPE , RPRIZR , RPUMP , RSTGEN , RTEE , RTURB , RVLVE. **RDCOM3** CALLS IOVLY , RVSSL , EOVLY. CALLED BY INPUT. RDCOMP CALLS KOVLY , RPIPE , RPUMP , RTEE , RVLVE , RBREAK , RFILL , RPRIZR , RSTGEN , RACCUM ,RTURB , RPLEN , RHTSTR , ERROR , WRLCM , EOVLY. CALLED BY INPUT.

RDCRDS

CALLS ERROR. CALLED BY STEADY. RDCRVS CALLS LOAD , WARRAY , PUMPI. CALLED BY RPUMP, RDDIM

¢.,

0

CALLS

CLEAR , READI , WIARR , ERROR. CALLED BY RPUMP.

RDLCM CALLED BY

BFIN , CIHTST , DBRK , DCOMP , DFILL , DHTSTR , DMPIT , DPLEN , GRAF HTSTR1 HTSTR3 HTSTRV , KOMP , KGRAF , OUT1D , OUT3D , PIPROD , POST , POST3D , PREP1D , PREP3D , RRDLCM , RVSLCM , SVSET , SVSETH , TRBPRE , TRBPST , VLVEX , WCOMP , WHTSTR.

RDREST

CALLS

IOVLY , SETLCM , FEXIST , ERROR , BFALOC , BFIN , RECNTL , EOVLY , REPIPE REPUMP , RETEE , REVLVE , REBRK , REFILL , REPRZR , RESTGN , REACCM , RETURB , REPLEN , REHTST , REVSSL.

CALLED BY INPUT.

RDZMOM

CALLS SETVA.

CALLED BY IVSSL.

REACCM

CALLS

BFIN , LDCHAR , S1DPTR , ERROR , SCMLCM , RECOMP , WRCOMP. CALLED BY RDREST.

READI

CALLS ERROR.

CALLED BY

INPUT , RACCUM , RBREAK , RCNTL , RDDIM , RFILL , RHTSTR , RPIPE , RPLEN , RPRIZR , RPUMP , RROD1 , RSTGEN , RTEE , RTURB , RVLVE , RVSSL

READR

CALLS

ERROR.

CALLED BY

INPUT , RBREAK , RCNTL , RFILL , RHTSTR , RPIPE , RPRIZR , RPUMP , RROD1 , RSTGEN , RTEE , RTURB , RVLVE , RVSSL , TIMSTP.

NEBRK

CALLS BFIN , LDCHAR , S1DPTR , SETLCM , ERROR , WARRAY , WRLCM. CALLED BY

RDREST.

RECNTL

CALLS ERROR , CBEDIT.

CALLED BY

RDREST.

RECOMP

CALLS

BFIN. CALLED BY

REACOM , REPIPE , REPRZR , REPUMP , RESTGN , RETEE , RETURB , REVLVE. REFILL CALLS

BFIN , LL 'HAR , SIDPTR , SETLCM , ERROR , WARRAY , WRLCM.

CALLED BY RDREST. REHTST CALLS BFIN , PNTROD , ERROR , LOMTRN , RERODI. CALLED BY RDREST. REPIPE CALLS BFIN , LDCHAR , S1DPTR , ERROR , SCMLCM , RECOMP , WRCOMP , WARRAY. CALLED BY RDREST. REPLEN CALLS BFIN , PTRSPL , ERROR , SCMLCM , WARRAY , LDCHAR. CALLED BY RDREST. REPRZR CALLS BFIN , LDCHAR , S1DP1R , ERROR , SCMLCM , RECOMP , WRCOMP. CALLED BY RDREST. REPUMP CALLS BFIN , LOCHAR , SIDPTR , ERROR , SCMLCM , RECOMP , WARRAY , WRCOMP. CALLED BY RDREST. REROD1 CALLS BFIN , WIARR , WARRAY , CLEAR CALLED BY REHTST. RESTGN CALLS BEIN , LOCHAR , SIDPTR , SUMLOM , RECOMP , WIARR , WARRAY , WRCOMP. CALLED BY RDREST. RETEE CALLS BFIN , LDCHAR , S1DPTR , ERROR , SCMLCM , RECOMP , WRCOMP , WARRAY. CALLED BY RDREST. RETURB CALLS BFIN , LDCHAR , S1DPTR , ERROR , SCMLCM , RECOMP , WIARR , WARRAY , WRCOMP, WRLCM. CALLED BY RDREST REVLVE CALLS BFIN LDCHAR SIDPTR , ERROR , SCMLCM , RECOMP , WRCOMP , WARRAY. CALLED BY RDREST. REVSSL CALLS BFIN , ERROR , PNTVSS , LCMTRN , WARRAY , WIARR , LDCHAR , WRLCM . CLEAR , LEVELR.

CALLED BY RDREST. RFDBK CALLS MANAGE , ERROR , LINT4D. CALLED BY COREL. RFILL CALLS ERROR , CLEAR , READI , READR , LOCHAR , S1DPTR , SETLCM , LOAD , WARRAY , SCLTBL , LININT , WRLCM. CALLED BY RDCOMP. RHOLIO CALLED BY THERMO. RHTSTR CALLS ERROR , CLEAR , READI , READR , RROD1 , PNTROD , LCMTRN , LOAD , WIARR , WARRAY , WLABR , RROD2 , WRLCM. CALLED BY RDCOMP. RINGO RKIN CALLS EVFXXX, TRIP, ERROR. CALLED BY CORE1. RLEVEL CALLS WARRAY , LEVELR. CALLED BY RVSSL. RODHT CALLS TRISLV , BANSOL , ERROR. CALLED BY FROD. RPIPE CALLS ERROR , CLEAR , READI , READR , LDCHAR , S1DPTR , SCMLCM , RCOMP , LOAD , WARRAY , SCLTBL , LININT , WRLCM. CALLED BY RDCOMP. RPLEN CALLS ERROR , CLEAR , READI , PTRSPL , SCMLCM , LOAD , WLABI , WARRAY , LDCHAR. CALLED BY RDCOMP. RPRIZR CALLS ERROR , CLEAR , READI , READR , LDCHAR , S1DPTR , SCMLCM , RCOMP. CALLED BY RDCOMP. RPUMP CALLS

ERROR , CLEAR , READI , READR , LOCHAR , RODIM , SIDPTR , SCMLCM , RDCRVS , RCOMP ,LOAD , WARRAY , SCLTEL , LININT , THERMO. CALLED BY RDCOMP. RADLOM CALLS RHVGET , RDLCM. CALLED BY CIHTST , DHTSTR , GRAF , HTSTR1 , HTSTR3 , SVSETH , WHTSTR. RHVGET CALLED BY GRAF , RRDLCM. RROD1 CALLS READI, READR, ERROR. CALLED BY RHTSTR. RROD2 CALLS LOAD , WARRAY , CLEAR , WLABR , ERROR , SCLTBL , LININT , DECAYS. CALLED BY RHTSTR. RSTGEN CALLS ERROR , CLEAR , READI , READR , LOCHAR , S1DPTR , SCMLCM , RCOMP , WRLCM , LOAD , WLABI , WIARR , WARRAY. CALLED BY RDCOMP. RTEE CALLS ERROR , CLEAR , READI , READR , LDCHAR , S1DPTR , SCMLCM , RCOMP , LOAD , WARRAY ,SCITBL , LININT , WRICM. CALLED BY RDCOMP. **RTURB** CALLS ERROR , CLEAR , READI , READR , LDCHAR , S1DPTR , SCMLCM . LOAD , WIARR , WARRAY , SCLTBL , LININT , WRLCM , RCOMP. CALLED BY RDCOMP. RVLVE CALLS ERROR , CLEAR , READI , READR , FAXPOS , LDCHAR , S1DPTR , SCMLCM , RCOMP , LOAD , WARRAY , LININT , SCLTBL , THERMO. CALLED BY RDCOMP. RVSLCM CALLS RVVGET , RDLCM. CALLED BY CIVSSL, CWVSSL, DVSSL, GRAF, HTSTRV, IGRAF, OUT3D, POST3D, PREP3D , SVSET3. RVVGET CALLED BY IGRAF , RVSLCM. RVSSL CALLS

ERROR , CLEAR , READI , READR , PNTVSS , LOMTRN , LOAD , WARRAY WIARR , LDCHAR , CHKSR , WRLCM , RLEVEL , ILEVEL , LEVELR , VDPCSS CALLO BY RDCOM3. S1DPTR CALLS CLEAR. CALLED BY RACCUM , RBREAK , REACCM , REBRK , REFILL , REPIPE , REPRZR , REPUMP , RESTGN, RETEE, RETURB, REVLVE, RFILL, RPIPE, RPRIZR, RPUMP, RSTGEN, RTEE, RTURB, RVLVE. SATDER CALLS HEV. CALLED BY TF1DS , TF3DS , TFPLN , THERMO. SATPRS CALLED BY CHEN , CHF , CHOKE , HTIF , SATTMP , SOUND , TF1DS , TF1DS3 , TF3DS . TF3DS3 , TFPLBK , TFPLN , THERMO. SATTMP CALLS HEV , SATPRS. CALLED BY BREAKX , FEMOMX , FEMOMY , FEMOMZ , GVSSL2 , RBREAK , SOUND , TF1DS3 . TF3DS1 , TF3DS3 , TFPLBK , THERMO , TRBPOW. SAVBD CALLS ICMPR. CALLED BY ACCUM1, ACCUM3, PIPE1, PIPE3, PRIZR1, PRIZR3, PUMP1, PUMP3, STGEN1 , STGEN3 ,TEE3 , TEE3 , TURB1 , TURB3 , VLVE1 ,VLVE3. SCLMOM CALLS ERROR. CALLED BY IVSSL. SCLTBL CALLS WARRAY. CALLED BY RBREAK , RFILL , RPIPE , RPUMP , RROD2 , RTEE , RTURB , RVLVE. SCMLCM CALLS SETLCM , WRLCM , CLEAR. CALLED BY ACCUM . SEACOM , REPIPE , REPLEN , REPRZR , REPUMP , RESTGN , RETEE . . ITURIA, REVLVE, RPIPE, RPLEN, RPRIZR, RPUMP, RSTGEN, RTEE . URB , RVLVE. SEDI: 646 CLEAR , QTIME. CALLED BY EDIT , NEWDLT , PSTEPQ. SEPDI CALLED BY

TEE?

SEPDX CALLS SSEPOR. CALLEDRY TEE1. SETBD CALLS JID , KOMPR CALLED BY NPUT , ISTGEN , ITEE , ITURB , MLVE , PIPE1 , PIPE3 , PRIZR1 , PRIZR3 , PUMP1 , PUMP3 , STGEN1 , STGEN3 , TEE1 , TEE3 , TURB1 , TURB3 , VLVE1 , VLVE3. SETBDT CALLED BY IVSS', VSSL1 , VSSL2. SETEOS CALLS HEV. CALLED BY INPUT. SETIC SETLCM CALLS MEMADJ , ERROR. CALLED BY TRAC , GI AF , GREPUT , COMP , KORAF , INPUT , LOMTRN , OUT1D , POST , PREFWD , PREP1D , PTRSPL , RBREAK , RCNTL , RDREST , REBRK , REFILL , RFILL , SCMLCM. SETNET CALLED BY ICOMP. SETVA CALLED BY DVPSCL , HTSTRV , IFSET , INITEC , IVSSL , IWALL3 , RDZMOM , VSSL1. SFA44 CALLED BY TF1DS , TFPLN. SFA55 CALLED BY BKSPLN , BKSSTB , BKSTB3 , TF1DS , TF3DS , TFPLN. SGBFA CALLS SSCAL , SAXPY. SGBSL CALLS SAXPY. SGEFA CALLED BY CHOKE. SGESL CALLED BY CHOKE. SHIFTB CALLED BY BREAK1 , BREAKX , FILLX , PUMPSR , VLVEX. SHRINK CALLED BY

-

SEPDX CALLS SSEPOR. CALLED BY TEE SETBD CALLS JID , KOMPE CALLED BY INPUT , ISTGEN , ITEE , ITURB , MLVE , PIPE1 , PIPE3 , PRIZR1 , PRIZR3 , PUMP1 , PUMP3 , STGEN1 , STGEN3 , TEE1 , TEE3 , TURB1 , TURB3 , VLVE1 , VLVE3. SETBDT CALLED BY IVSSL , VSSL1 , VSSL2. SETEOS CALLS HEV. CALLED BY INPUT. SETIC SETLCM CALLS MEMADJ , ERROR. CALLED BY GRAF , GREPUT , KOMP , KGRAF , INPUT , LOMTRN , OUT1D , POST , TRAC PREFWD , PREPID , PTRSPL , RBREAK , RCNTL , RDREST , REBRK , REFILL , RFILL , SCMLCM. SETNET CALLED BY ICOMP. SETVA CALLED BY DVPSCL , HTSTRV , IFSET , INITBC , IVSSL , IWALL3 , RDZMOM , VSSL1. SFA44 CALLED BY TF1DS , TFPLN. SFA55 CALLED BY BKSPLN , BKSSTB , BKSTB3 , TF1DS , TF3DS , TFPLN. SGBFA CALLS SSCAL , SAXPY. SGBSL CALLS SAXPY. SGEFA CALLED BY CHOKE. SGESL CALLED BY CHOKE. SHIFTB CALLED BY BREAK1 , BREAKX , FILLX , PUMPSR , VLVEX. SHRINK CALLED BY

CORE1. SIGMA CALLED BY FPROP. SMOVE CALLED BY SMOVEN. SMOVEN CALLS SMOVE. SOUND CALLS THERMO , ERROR , SATPRS , SATTMP. CALLED BY CHOKE. SPLIT CALLED BY GETCRV. SRTLP CALLS CLEAR , LDCHAR , ERROR , EXIT. CALLED BY INPUT. SSEPOR CALLED BY SEPDX. SSL44 CALLED BY TF1DS , TFPLN. SSL55 CALLED BY BKSPLN , BKSSTB , BKSTB3 , TF1DS , TF3DS , TFPLN. STBME CALLS GETBIT. CALLED BY CONSTB. STBME3 CALLED BY VSSL3. STBMPL CALLED BY PLEN3. STEADY CALLS TIMCHK , TIMSTP , PREP , ERROR , EDIT , GRAF , HOUT , POST , PSTEPQ , RDCRDS ,CLEAN , EXIT. CALLED BY TRAC. STGABD CALLED BY STGN1X. STGEN1 CALLS CLEAR , SAVBD , STGNTX , PREPER , J1D , SGEFAV , SGESLV , TRANSF , STGN1X , SETBD , BKMOM , ESTGEN. CALLED BY

PREPID. STGEN2 CALLS TRANSF, CLEAR, STGNTX, INNER, J1D, SGEFAV, SGESLV. CALLED BY OUT1D. STGEN3 CALLS POSTER, SETBD, TRANSF, SAVBD, ESTGEN, STGN3X, J1D, EVALDF, CLEAR, CONSTB, SGEFAV, SGESLV. CALLED BY POST. STGN1X CALLS MPROP , STGABD , HTCC ... CALLED BY STGEN1. STGN3X CALLS ERROR , CYLHT. CALLED BY STGEN3. STGNTX CALLS JID. CALLED BY STGEN1 , STGEN2. SVSET CALLS RDLCM , SVSET1 , SVSET3 , SVSETH , ERROR ,LOCTEE. CALLED BY TRIPS. SVSET1 CALLS ERROR , LOCPMP , LOCVLV. CALLED BY SVSET. SVSET3 CALLS RVSLCM , ERROR , MANAGE. CALLED BY SVSET. SVSETH CALLS RDLCM , RRDLCM , ERROR , MANAGE. CALLED BY SVSET. SWITCH CALLS MOVLEV. TEE1 CALLS SAVBD , TEE1X , PREPER , SEPDX , ERROH , SETBD , BKMOM , ETEE. CALLED BY PREPID. TEE1X

CALLS

APPENDIX B

J1D , EVFXXX CALLED BY TEE1 , TEE2. TEE2 CALLS TEE1X , SEPLI , INNER. CALLED BY OUT1D. TEE3 CALLS POSTER, SETBD , SAVBD , EVFXXX , OFFTKE , EVALDF , ETEE , UONSTB , GETBIT. CALLED BY POST. TF1D CALLS THERMO , CELLAV , HTIF , TF1DS1 , TF1DS , TF1DS3. CALLED BY INNER. TF1DS CALLS SETBIT , OFFBIT , SFA44 , SFA55 , SSL44 , SSL55 , GETBIT , SATPRS , SATDER. CALLED BY TF1D. TF1DS1 CALLS SETBIT , CHOKE , GETBIT. CALLED BY TF1D TF1DS3 CALLS SETBIT, OFFBIT, THERMO, GETBIT, SATPRS, SATTMP. CALLED BY TF1D. TF3DS CALLS THERMO , SFA55 , SSL55 , GETBIT , SATPRS , SATDER. CALLED BY VSSL2. TF3DS1 CALLS VELBC , ZEROV , GETBIT , SATTMP. CALLED BY VSSL2. TF3DS3 CALLS THERMO , SATPRS , SATTMP. CALLED BY VSSL2. TFPLBK CALLS SETEIT , THERMO , GETBIT , SATPRS , SATTMP, CALLED BY PLEN2 TEPLN CALLS SETBIT , OFFBIT , SFA44 , SSL44 SFA55 , SSL55 , GETBIT , SATPRS , SATDER.

CALLED BY PLEN2. THCL CALLED BY FPROP. THCV CALLED BY FPROP , HTCOR , HTVSSL , HVWEL 3. THERMO CALLS ERROR , RHOLIO , SATTMP , SATDER , SATPRS , HEV. CALLED BY BREAK3 , BREAKX , CHOKE , FILLX , IBRK , IFILL , INPUT , IVSSL , PLEN2 , PLEN3 , POSTER , RPUMP , RVLVE , SOUND , TF1D , TF1DS3 , TF3DS , TF3DS3 , TFPLBK , VSSL2 , VSSL3. TIMCHK CALLS SSWTCH , SYCALL , ERROR , OTIME , EDIT , DMPIT. CALLED BY STEADY , TRANS. TWSTP CALLS ERROR , READR , TRIP , NEWDLT. CALLED BY STEADY , TRANS. TIMUPD CALLED BY VSSL1. TMPPTR CALLED BY PREFWD. TMSFB CALLED BY HTCOR. TRANS CALLS TIMCHK , TIMSTP , PREP , ERROR , EDIT , GRAF , HOUT , POST , PSTEPO , DMPIT. CALLED BY TRAC. TRANSF CALLED BY STGEN1 , STGEN2 , STGEN3. TRBPOW CALLS SATTMP. CALLED BY ITURB , TURB1. TRBPRE CALLS RDLCM , TRIP , EVLTAB. CALLED BY PREPID. TRBPST CALLS RDLCM.

L. Sec.

CALLED BY POST. TRIP CALLS ERROR. CALLED BY BREAKX , CORE1 , EVFXXX , FILLX , PUMPSR , RKIN , TIMSTP , TRBPRE , VLVEX WPUMP. TRIPS CALLS IOVLY , SVSET , CBSET , TRPSET , EOVLY. CALLED BY PREP. TRISLV CALLED BY RODHT. TRPSET CALLS ERROR. CALLED BY TRIPS. TURB1 CALLS SAVBD , PREPER , SETBD , TRBPOW , EVFXXX , BKMOM. CALLED BY PREP1D. TURB2 CALLS INNER. CALLED BY OUTID. TURB3 CALLS POSTER , SETBD , SAVBD , EVALDF , CONSTB. CALLED BY POST. UNPKIT VALUE CALLS JVALUE. CALLED BY PREINP. VDPCSS CALLED BY RVSSL. VEL.BC CALLED BY TF3DS1. . . 3 "LLS WDRAG. CALLED BY PREFWD. VISC' CALLED BY FPROP. 24 Y. J

CALLED BY FPROP , HTCOR , HTVSSL , HVWEBB. VLVE1 CALLS VLVEX , SAVBD , PREPER , SETBD , BKMOM. CALLED BY PREPID. VLVE2 CALLS INNER. CALLED BY OUT1D. VLVE3 CALLS POSTER, SETBD, SAVBD, EVFXXX, EVALDF, CONSTB. CALLED BY POST. VLVEX CALLS TRIP , FAXPOS , SHIETB , EVITAB , RDLCM , ERROR. CALLED BY VLVE1. VMCELL CALLED BY INPUT. VOLFA CALLED BY LACCUM , INPUT , ISTGEN , ITEE , ITURB , IVLVE. VOLV CA. FOBY PREPER. VRP' CALLE' BY SSL1. VSSI. CALS MANAGE, TIMUPD, DVPSCL, VRED, IFSET, SETVA, LININT, ERROR, SETBDT, CIF3, PREFWD, FEMOMX, FEMOMY, FEMOMZ, J3D. CALLED BY PREP3D. VSSL2 CALLS MANAGE , BAKUP , THERMO , TF3DS1 , CELLA3 , HTIF , SETBDT , FLUXES , TF3DS , STDIR , ERROR , MATSOL , BACIT , TF3DS3 , VSSSSR , J3D. CALLED BY OUT3D. VSSL3 CALLS MANAGE , BAKUP , THERM . , FPROP , STBMES , BKSTBS , MIX3D , FF3D , EVALDF , GVSSL2 ,J3D. CALLED BY POST3. VSSROD CALLED BY FLTOM. VSSSSR CALLED BY

APPENDIX B

VSSL2 WACCUM CALLS ECOMP. CALLED BY WCOMP. WARRAY CALLS WLABR. CALLED BY ECOMP , ELGR , INPUT , PUMPX , RBREAK , RCOMP , RDCRVS , REBRK REFILL , REPIPE , REPLEN , REPUMP , REROD1 , RESTGN , RETEE , RETURB , REVLVL , REVSSL , RFILL , RHTSTR , RLEVEL , RPIPE , RPLEN , RPUMP , RROD2 , RSTGEN , RTEE , RTURB , RVLVE , RVSSL , SCLTEL , WLEVEL , WRCOMP , WVSSL. WBREAK CALLS ECOMP. CALLED BY WCOMP. WCOMP CALLS RDLCM , WRLCM , WPIPE , WTEE , WPUMP , WFILL , WPRIZR , WSTGEN , CWVSSL, WACCUM, WTURB, WVLVE, WBREAK, WPLEN, WHTSTR. CALLED BY EDIT. WDRAG CALLED BY VFWALL3. WFILL CALLS ECOMP. CALLED BY WCOMP. WHTSTR CALLS RDLCM , RRDLCM , WRLCM , MA' AGE. CALLED BY WCOMP WIARR CALLS WLABI. CALLED BY ILEVEL , RCOMP , RDDIM , REROD1 , RESTGN , RETURB , REVSSL , RHTSTR . RSTGEN , RTURB , RVSSL , WRCOMP. WLABI CALLED BY INPUT , RPLEN , RSTGEN , WIARR. WLABR CALLED BY RCNTL , RHTSTR , RROD2 , WARRAY. WLEVEL CALLS LEVELI , WARRAY. CALLED BY IVSSL , WVSSL WPIPE

```
CALLS
               ECOMP.
        CALLED BY
                WCOMP.
WPLEN
        CALLED BY
                WCOMP.
WPRIZR
        CALLS
                ECOMP.
        CALLED BY
                WCOMP.
WPUMP
        CALLS
               TRIP , ECOMP.
        CALLED BY
                WCOMP.
WRCOMP
        CALLS
                WARRAY , WIARR.
        CALLED BY
                REACOM , REPIPE , REPRZR , REPUMP , RESTGN , RETEE , RETURB , REVLVE.
WRLCM
        CALLED BY
               BFOUT, CIHTST, CIVSSL, HTSTR1, HTSTR3, IACCUM, IBRK, ICOMP, IFILL,
INPUT, ISTGEN, ITEE, ITURB, IVLVE, LCMTRN, OUT1D, OUT3D, POST,
POST3D, PREP1D, PREP3D, RBREAK, RDCOMP, REBRK, REFILL, RETURB,
REVSSL, RFILL, RHTSTR, RPIPE, RSTGEN, RTEE, RTURB, RVSSL,
                SCMLCM ,WCOMP , WHTSTR.
WSTGEN
        CALLS
               ECOMP.
        CALLED BY
                WCOMP.
WTEE
        CALLS
                ECOMP.
        CALLED BY
                WCOMP.
WTURB
        CALLS
                ECOMP.
        CALLED BY
                WUOMP.
WVLVE
        CALLS
                ECOMP.
        CALLED BY
               WCOMP.
WVSSL
        CALLS
               MANAGE, WLEVEL, LEVELI, CLEAR, WARRAY.
        CALLED BY
               CWVSSL
ZCORE
        CALLED BY
               CORE1.
```

ZEROV CALLED BY TF3DS1. ZPWHCI CALLED BY CORE1 , INPUT. LIBRARY SUBROUTINES PRODCTN CALLED BY TRAC. GETUFL CALLED BY TRAC. SAMPLE CALLED BY TRAC. SAMPON CALLED BY TRAC. GETJTL CALLED BY TRAC LOADTIM CALLED BY TRAC. QTIME CALLED BY TRAC , DMPIT , ERROR , GRAF , HOUT , SEDIT , TIMCHK. SAMPTRM CALLED BY TRAC. EXIT CALLED BY TRAC , ERRTRP , SRTIP , STEADY. SGEDI CALLED BY CHOKE. SGEEV CALLED BY CHOKE. COMPACT CALLED BY CLEAN , ENDOMP , ENDGRF. DATE CALLED BY DATEU. DSCAL CALLED BY DGBFA. DAXPY CALLED BY DGBFA , DGBSL QXIT CALLED BY ERRGET , ERRTRP.

QADJUST CALLED BY ERROR. FEXIST CALLED BY INPUT , RDREST. TIME CALLED BY INPUT. ASSIGN CALLED BY INPUT. TRSLBL CALLED BY INFUT. BGLSDC CALLED BY MATSOL. BGLSSL CALLED BY MATSOL. SGEFAV CALLED BY MATSOL, OUTER , POST , PREP1D , STGEN1 , STGEN2 , STGEN3. SGESLV CALLED 9Y MATSOL, OUTER, POST, PREPID, STGEN1, STGEN2, STGEN3. MEMADJ CALLED BY SETLOM. SSCAL CALLED BY SGBFA. SAXPY

SGBFA , SGBSL.

SWITCH.

TIMCHK.

TIMCHK.

CALLED BY

CALLED BY

CALLED BY

CALLED BY

MOVLEV

SSWTCH

SYCALL

APPENDIX B

APPENDIX C

COMPONENT DATA TABLES

C.1. POINTER TABLES

The pointer tables for one-dimensional components (described below) use four general sets of pointers: DUALPT, HYDROPT, INTPT, and HEATPT.

C.1.1. DUALPT

These pointers refer to variables whose values are stored for both old- and new-time values.

Name	Array	Dimension	Description
LALP	ALP	NCELLS	Old vapor fraction.
LALPD	ALPD	0	Variable not currently implemented.
LALPDN	ALPDN	0	Variable not currently implemented.
LALPN	ALPN	NCELLS	New vapor fraction.
LALV	ALV	NCELLS	Old value of flashing interfacial HTC times interfacial area.
LALVE	ALVE	NCELLS	Old value of liquid-side interfacial HTC times interfacial area.
LALVEN	ALVEN	NCELLS	New value of liquid-side interfacial HTC times interfacial area.
LALVN	ALVN	NCELLS	New value of flashing interfacial HTC times interfacial area.
LARA	ARA	NCELLS	Old stabilizer value for $\alpha \rho_a$.
LARAN	ARAN	NCELLS	New stabilizer value for $\alpha \rho_a$.
LAREL	AREL	NCELLS	Old stabilizer value for $(1-\alpha) ho_\ell e_\ell$.
LARELN	ARELN	NCELLS	New stabilizer value for $(1-lpha) ho_\ell \mathbf{e}_\ell.$
LAREV	AREV	NCELLS	Old stabilizer value for $\alpha \rho_v \mathbf{e}_v$.
LAREVN	AREVN	NCELLS	New stabilizer value for $\alpha \rho_v \mathbf{e}_v$.
LARL	ARL	NCELLS	Old stabilizer value for $(1\!-\!lpha) ho_\ell.$
LARLN	ARLN	NCELLS	New stabilizer value for $(1 - lpha) ho_\ell$.
LARV	ARV	NCELLS	Old stabilizer value for $\alpha \rho_v$.
LARVN	ARVN	NCELLS	New sustinger value for $\alpha \rho_v$.
LBIT	BIT	NCELLS+1	Bit flags from previous time step.
LBITN	BITN	NCELLS+1	Bit flags for current time step.

LCHTI	СНТІ	NCELLS	Old value of vapor-side interfacial HTC times interfacial area.
LCHTIA	CHTIA	NCELLS	Old value of air interfacial HTC times inter- facial area.
LCHTAN	CHTAN	NCELLS	New value of air interfacial HTC times in- terfacial area.
LCHTIN	CHTIN	NCELLS	New value of vapor-side interfacial HTC times interfacial area.
LCIF	CIF	NCELLS+1	Old interfacial drag coefficients.
LCIFN	CIFN	NCELLS+1	New interfacial drag coefficients.
LCONC	CONC	NCELLS* ISOLUT	Old solute mass to coolant mass ratio. $ISOLUT = 0$ or 1.
LCONCN	CONC	NCELLS* ISOLUT	New solute mass to coolant mass ratio. ISOLUT = 0 or 1.
LD(3)	D	NCELLS	Variable not currently implemented.
LDN(3)	DN	NCELLS	Variable not currently implemented.
LEA	EA	NCELLS	Old air internal energy.
LEAN	EAN	NCELLS	New air internal energy.
LEL.	EL	NCELLS	Old liqu'd internal energy.
LELN	ELN	NCELLS	New liquid internal energy.
LEV	EV	NCELLS	Old vapor internal energy.
LEVN	EVN	NCELLS	New vapor internal energy.
LGAM	GAM	NCELLS	Old vapor generation rate per unit volume.
LGAMN	GAMN	NCELLS	New vapor generation rate per unit volume.
LHIG	HIG	NCELLS	New HTC between inside wall and air.
LHIGO	HIGO	NCELLS	Old HTC between inside wall and air.
LHIL	HIL	NCELLS	New HTC between inside wall and liquid
LHILO	HILO	NCELLS	Old HTC between inside wall and liquid.
LHIV	HIV	NCELLS	New HTC between inside wall and vapor.
LHIVO	HIVO	NCELLS	Old HTC between inside wall and vapor.
LP	Р	NCELLS	Old pressure.
LPA	PA	NCELLS	Old air partial pressure

.8			ы	
2			я.	
ъ.			33	
192			ø	
1		8	۳.	

LPAN	PAN	NCELLS	New air partial pressure.
LPN	PN	NCELLS	New pressure.
LQPPC	QPPC	NCELLS	New critical heat flux (CHF).
LQPPCO	QPPCO	NCELLS	Old CHF.
LROA	ROA	NCELLS	Old air density.
LROAN	ROAN	NCELLS	New air density.
LROL	ROL	NCELLS	Old liquid density.
LROLN	ROLN	NCELLS	New liquid density.
LROV	ROV	NCELLS	Old vapor density.
LROVN	RCVN	NCELLS	New vapor density.
L.S	S	NCELLS* ISOLUT	Old solute mass plated on structure surface. ISOLUT = 0 or 1.
LSN	SN	NCELLS* ISOLUT	New solute mass plated on structure surface. ISOLUT = 0 or 1.
LTD	TD	0	Variable not currently implemented.
LTDN	TDN	0	Variable not currently implemented.
LTL	TL	NCELLS	Old liquid temperature.
LTLN	TLN	NCELLS	New liquid temperature.
LTV	TV	NCELLS	Old vapor temperature.
LTVN	TVN	NCELLS	New vapor temperature.
LTW	TW	NCELLS* NODES	Old wall temperatures.
LTWN	TWN	NCELLS* NODES	New wall temperatures.
LVL	VL	NCELLS+1	Old liquid velocity.
LVLN	VLN	NCELLS+1	New liquid velocity.
LVLT	VLT	NCELLS+1	New stabilizer liquid velocity (\tilde{V}_e^{n+1}) .
LVLTO	VLTO	NCELLS+1	Old stabilizer liquid velocity $(ilde{V}_\ell^n)$
LVM	VM	NCELLS+1	Cld mixture velocity.
LVMN	VMN	NCELLS+1	New mixture velocity.
LVV	VV	NCELLS+1	Old vapor velocity.
LVVN	VVN	NCELLS+1	New vapor velocity.

LVVT	VVT	NCELLS+1	New stabilizer vapor velocity (\tilde{V}_g^{n+1}) .
LVVTO	VVTO	NCELLS+1	Old stabilizer vapor velocity (\tilde{V}_{q}^{n}) .

C.1.2. HYDROPT

These pointers refer to variables associated with the hydrodynamic calculations.

Name	Array	Dimension	Description
LALPMN	ALPMN	NCELLS	Minimum value of void fraction among a cell and all its neighbors.
LALPMX	ALPMX	NCELLS	Maximum value of void fraction among a cell and all its neighbors.
LALPO	ALPO	NCELLS	Void fraction at the start of the previous step (α^{n-1}) .
LAM	AM	NCELLS	Air mass.
LARC	ARC	NCELLS* ISOLUT	Density of solute in cell, $c(1 - \alpha)\rho_\ell$. ISOLUT = 0 or 1.
LCFZ	CFZ	0	Variable not currently implemented.
LCL	CL	NCELLS	Liquid conductivity.
LCPL	CPL	NCELLS	Liquid specific heat at constant pressure.
LCPV	CPV	NCELLS	Vapor specific heat at constant pressure.
LCV	CV	NCELLS	Vapor conductivity.
LDALVA	DALVA	NCELLS	Variable not currently implemented.
LDFLDP	DFLDP	NCELLS+1	Derivative of liquid velocity with respect to pressure.
LDFVDP	DFVDP	NCELLS+1	Derivative of vapor velocity with respect to pressure.
LDRIV	DR	19*(NCELLS+1)	Storage array for thermodynamic derivatives and enthalpies.
LDX	DX	NCELLS	Cell length in flow direction.
LELEV	ELEV	NCELLS*IELV	Cell-centered elevations. It is used only if IELV is set to 1 in the NAMELIST input.
LFA	FA	NCELLS+1	Cell-edge flow area.
LFAVOL	FAVOL	NCELLS	Cell flow area used in choked-flow model.
LFINAN	FINAN	NCELLS	Inverted annular regime factor.
LFRIC	FRIC	(NCELLS+1)	Additive friction factors.

		*NFRC1	
MLT	FSMLT	NCELLS	Interphasic area multiplier during condensa- tion.
RAV	GRAV	NCELLS+1	Gravitation terms (cosine theta).
RVOL	GRAVOL	NCELLS	Cell-averaged GRAV
(1)	WFHF	NCELLS+1	Weighting factor for stratified-flow regime.
2)	SI*DX	NCELLS+1	Stratified interfacial area.
(3)	DHLDZ	NCELLS+1	Gravitational head force caused by void gradient.
D	HD	(NCELLS+1) *(NDIA1-1)	Hydraulic diameters.
ТНС	HDHT	(NCELLS+1)	Heat-transfer hydraulic diameters.
=G	HFG	NCELLS	Latent heat of vaporization.
GAM	HGAM	NCELLS	Contribution to phase change from subcooled boiling.
.Α	HLA	NCELLS	Sum of all products of liquid HTC with heat- transfer area.
ATW.	HLATW	NCELLS	Similar to HLA except that the product in- cludes wall temperature.
VA	HVA	NCELLS	Sum of all products of vapor HTC with heat- transfer area.
WTAV	HVATW	NCELLS	Similar to HVA except that the product in- cludes wall temperature.
P3F	QP3F	NCELLS	QPPP factor applied to the wall heat source.
ррр	QPPP	NODES* NCELLS	Wall heat source.
ARL	RARL	0	Variable not currently implemented.
ARV	RARV	0	Variable not currently implemented
EGNM	REGNM	NCELLS+1	Flow-regime number.
15	RHS	NCELLS	Implicit vs explicit weighting factor, g/.
ЛЕМ	RMEM	0	Variable not currently implemented.
MVM	RMVM	NCELLS+1	Mixture density times mixture velocity.
M	ROM	NCELLS	Mixture density.
	ARL ARV RVOL (1) (2) (3) (2) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	AMUT FSMLT RAV GRAV RVOL GRAVOL 1) WFHF 2) SI*DX 3) DHLDZ 0 HD 10 10 10 10 10 10 10 10 10 10 10 10 10	*NFRC1MLTFSMLTNCELLSRAVGRAVNCELLS+1RAVGRAVOLNCELLS+1(1)WFHFNCELLS+1(2)SI*DXNCELLS+1(3)DHLDZNCELLS+1(3)DHLDZNCELLS+1(1)HD(NCELLS+1)(2)HD(NCELLS+1)(3)HDHT(NCELLS+1)(3)HDNCELLS(3)HLANCELLS(3)HLANCELLS(4)HLATWNCELLS(5)HVANCELLS(4)HVATWNCELLS(5)QP3FNCELLS(7)RARV0(6)REGNMNCELLS+1(7)RHSNCELLS+1(7)RMEM0(7)RMEM0(7)RMMVMNCELLS+1(7)RMMMNCELLS+1

APPENDIX C

C-5

LRVMF	RVMF	NCELLS+1	Vapor mass flow.	
LSIG	SIG	NCELLS	Surface tension.	4
LTRID	TRID	6*(NCELLS+1)	Storage for stabilizer linear system.	
LTSAT	TSAT	NCELLS	Saturation temperature.	
LTSSN	TSSN	NCELLS	Saturation temperature for steam pressure.	
LVISL	VISL	NCELLS	Liquid viscosity.	
LVISV	VISV	NCELLS	Vapor viscosity.	
LVLALP	VLALP	NCELLS	Liquid mass flux that enters the cell from the cell edges located above the cell.	
LVLVC	VLVC	NCELLS	Liquid velocity at a neighboring cell edge where the donor-celled liquid fraction is maximum.	
LVLVOL	VLVOL	NCELLS	Choked-flow model cell liquid velocity.	
LVLX	VLX	0	Variable not currently implemented.	
LVOL	VOL	NCELLS	Cell volumes	
LVR	VR	NCELLS+1	Relative velocity.	1
LVRV	VRV	NCELLS	Cell-averaged relative velocity.	CHAR I
LVVVOL	VVVOL	NCELLS	Choked-flow model cell vapor velocity.	
LVVX	VVX	0	Variable not currently implemented.	
LWA	WA	NCELLS	Wall areas.	
LV/AT	WAT	NCELLS	Total heat-transfer area.	
LW'FL	WFL	NCELLS+1	Wall friction factor for liquid.	
LWFV	WFV	NCELLS+1	Wall friction factor for vapor.	

C.1.3 INTPT

These pointers refer to variables with integer values.

Name	Array	Dimension	Description
LIDR	IDR	NCELLS	Heat-transfer regime.
LLCCFL	LCCFL	NCELLS+1	CCFL flag.
LMATID	MATID	NODES-1	Structural material identifications.
LNFF	NFF	NCELLS+1	Friction-correlation options.

C.1.4. HEATPT

These pointers refer to variables associated with the wall heat-transfer calculations for embedded heat structures.

Name	Array	Dimension	Description
LCPW	CPW	(NODES-1) *NCELLS	Specific heat of wall.
LCW	CW	(NODES-1) *NCELLS	Wall conductivity.
LDR	DR	NODES-1	Radial mesh size.
LEMIS	EMIS	NCELLS	Wall emissivity.
LHOL	HOL	NCELLS	HTC between outside wall and liquid.
LHOV	HOV	NCELLS	HTC between outside wall and vapor.
LRN	RN	NODES	Radii at nodes.
LRN2	RN2	NODES-1	Radii at node centers.
LROW	ROW	(NODES-1) *NCELLS	Wall density.
LTCHF	TCHF	NCELLS	CHF temperature
LTOL	TOL	NCELLS	Liquid temperature outside wall.
LTOV	TOV	NCELLS	Vapor temperature outside wall.

C.2. ACCUMULATOR COMPONENT

C.2.1. ACCUMVLT-ACCUM Variable-Length Table

REAL VARIABLES:

Parameter	Description		
AA1111	Dummy variable that provides a known start to the COMMON block.		
BSMASS	Time-integrated mass flow from component.		
FL(2)	Liquid mass-flow corrections for mass-conservation checks.		
FLOW	Volume flow rate at discharge.		
FV(2)	Vapor mass-flow corrections for mass-conservation checks.		
QINT	Initial water volume in accumulator.		
QOUT	Volume of liquid that has been discharged from the accumulator.		
Z	Water height above discharge.		
Z11111	Dummy variable that provides a known end to the COMMON block.		
FLOW FV(2) QINT QOUT Z Z11111	 Volume flow rate at discharge. Vapor mass-flow corrections for mass-conservation checks. Initial water volume in accumulator. Volume of liquid that has been discharged from the accumulator. Water height above discharge. Dummy variable that provides a known end to the COMMON block. 		

INTEGER VARIABLES:

Parameter		Description		
141111		Dummy variable that	provides a known start to the COMMON block.	
ICJ		Iteration index of adjacent component.		
ICONC		Indicator for presence of solute in the coolant.		
ISTOP		Indicator that accumu	lator has emptied.	
IUV1		Indicator for velocity u	update at JUN1 (equal to zero).	
IUV2		Indicator for velocity u	update at JUN2.	
JS2		Junction sequence number at cell NCELLS of the accumulator.		
JUN2		Junction number of the junction at cell NCELLS.		
NCELLS		Number of fluid cells.		
TYPE2		Type of adjacent com	ponent at JUN2.	
ZI1111		Dummy variable that	provides a known end to the COMMON block.	
C.2.2. ACC	UMPT	-ACCUM Pointer Ta	ible	
Name	Array	Dimension	Description	
DUALPT		-	General pointer table.	
HYDROPT			General pointer table.	
INTPT	-	-	General pointer table.	
LBD1	BD1	LENBD	Dummy BD1 array.	

C.2.3. ACCDATA-ACCUM Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; ACCUMVLT, defined in Sec. C.2.1; and ACCUMPT, defined in Sec. C.2.2.

NCELLT Heat flux from wall to liquid.

C.3. BREAK COMPONENT

C.3.1. BREAKVLT-BREAK Variable-Length Table

REAL VARIABLES:

LQPPL QFPL

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
ALPOFF	Coolant void fraction when the trip is OFF after it was ON.
BSA	Total air from break.

160			Ŀ.	
			i.	
			Ø	
15		Ø	r.	

BSMASS	Time-integrated mass flow from break.
BXA	Air mass flow from break.
BXMASS	Current mass flow from break.
CONOFF	Ratio of solute mass to coolant mass when the trip is OFF after it was ON.
PAOFF	Air partial pressure when the trip is OFF after it was ON.
POFF	Coolant pressure when the trip is OFF after it was ON.
RBMX	Maximum rate of change of pressure at the break.
TIN	Fluid temperature at the break.
TLOFF	Liquid temperature when the trip is OFF after it was ON.
TVOFF	Vapor temperature when the trip is OFF after it was ON.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VARI	ABLES.
Parameter	Description

IA1111	Dummy variable that provides a known start to the COMMON block.
IBF	Last interpolated interval in the rate-factor table.
IBP	Last interpolated interval in the break composition parameter tables.
IBSV	Break-table abscissa-coordinate variable ID number.
IBTR	Trip ID number that controls evaluation of the break tables.
IBTY	Break-table input option.
iCJ	Iteration index of adjacent component.
INEXTI	Variable no longer used.
IOFF	Fluid-state option when the trip is OFF after it was ON.
IONOFF	Number of time steps the trip is ON.
ISAT	Break-table use option.
JS1	Junction sequence number.
JUN1	Junction number where break is located.
NBRF	Number of pairs in the rate-factor table.
NBSV	Rate-factor table's abscissa-coordinate variable ID number.
NBTB	Number of pairs for each break table.
TYPE1	Variable no longer used.

Dummy variable that provides a known end to the COMMON block.

C.3.2. BREAKPT-BREAK Pointer Table (For BREAKS, NCELLS = 1)

Name	Array	Dimension	Description
DUALPT	-	-	General pointer table.
HYDROPT	-		General pointer table.
LALPTB	ALPTB	NBTB *2	Void fraction table.
LCONTB	CONTB	NBTB *2	Ratio of solute mass to coolant mass table.
LPATB	PTAB	NBTB *2	Air partial pressure table.
LPTB	PTB	NBTB *2	Pressure table.
LRFTB	RFTB	NBRF *2	Rate-factor table.
LTLTB	TLTB	NBTB *2	Liquid temperature table.
LTVTB	TVTB	NBTB *2	Vapor temperature table.

C.3.3. BRKDATA-BREAK Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; BREAKVLT, defined in Sec. C.3.1.; and BREAKPT, defined in Sec. C.3.2.

C.4. FILL COMPONENT

C.4.1. FILLVLT-FILL Variable-Length Table

REAL VARIABLES:

ZI1111

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
ALPOFF	Coolant void fraction when the trip is OFF after it was ON.
CONOFF	Ratio of solute mass to coolant mass when the trip is OFF after it was ON.
FLOWIN	Initial mass flow into or from adjacent component.
FLWOFF	Coolant mass flow when the trip is OFF after it was ON
FSMASS	Time-integrated mass-flow out of fill.
FXMASS	Current mass-flow rate out of fill.
PAOFF	Air partial pressure when the trip is OFF after it was ON.
POFF	Coolant pressure when the trip is OFF after it was ON.
RFMX	Maximum rate of change of fill velocity or mass flow.

TLOFF	Liquid temperature when the trip is OFF after it was ON.		
TVOFF	Vapor temperature when the trip is OFF after it was ON.		
TWTOLD	The fraction of a previous fill fluid dynamic-state parameter that is averaged with the fill table's defined parameter and that defines the fill parameter value for this time step ($0.0 \le \text{TWTOLD} < 1.0$).		
VLOFF	Liquid velocity when the trip is OFF after it was ON.		
VVOFF	Vapor velocity when the trip is OFF after it was ON.		
Z11111	Dummy variable that provides a known end to the COMMON block.		
INTEGER VARI	ABLES:		
Parameter	Description		
IA1111	Dummy variable that provides a known start to the COMMON block.		
ICJ	Iteration index of adjacent component.		
IFASV	ID number of the signal variable of control block defining the void fraction for the IFTY = 10 option.		
IFCNSV	ID number of the signal variable or control block defining the ratio of solute mass to liquid-coolant mass for the IFTY = 10 option.		
IFF	Last interpolated interval in the rate-factor table.		
IFMLSV	ID number of the signal variable or control block defining liquid mass flow for the IFTY = 10 option.		
IFMVSV	ID number of the signal variable or control block defining vapor mass flow for the IFTY = 10 option.		
IFP	Last interpolated interval in the fill table.		

IFPASV ID number of the signal variable or control block defining the partial air pressure for the IFTY = 10 option.

IFPSV ID number of the signal variable or control block defining the pressure for the IFTY = 10 option.

IFSV The signal-variable 1D number, which defines the fill table's independent variable.

IFTLSV ID number of the signal variable or control block defining the liquid temperature for the IFTY = 10 option.

IFTR Fill trip number.

IFTVSV ID number of the signal variable or control block defining the vapor temperature for the IFTY = 10 option.

IFTY Fill type.

INEXTI	Variable no longer used.
IOFF	Fill fluid-state option when the trip is OFF after it was ON.
IONOFF	The number of time steps the trip has been ON.
JS1	Junction sequence number at JUN1.
JUN1	Junctic number where fill is located.
NFRF	Number of rate-factor table pairs whose rate factor is applied to the fill table's independent variable.
NFSV	Rate-factor table's abscissa-coordinate variable ID number.
NFTB	Number of pairs in the fill table.
TYPE1	Variable no longer used.
ZI1111	Dummy variable that provides a known end to the COMMON block.

C.4.2. FILLPT-FILL Pointer Table (For FILLS, NCELLS = 1)

Name	Array	Dimension	Description
DUALPT			General pointer table.
HYDROPT		-	General pointer table.
LALPTB	ALPTB	NFTB *2	Void fraction table.
LCONTB	CONTB	NFTB *2	Ratio of solute mass to coolant mass.
LPATB	PATB	NFTB *2	Air partial pressure table.
LPTB	PTB	NFTB *2	Pressure table
LRFTB	RFTB	NFRF *2	Fill rate-factor table.
LTLTB	TLTB	NFTB *2	Liquid temperature table.
LTVTB	TVTB	NFTB *2	Vapor temperature table.
LVMTB	VMTB	NFTB *2	Liquid velocity table.
LVVTB	VVTB	NFTB *2	Vapor velocity table.

C.4.3 FILLDATA-FILL Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT. both defined in Appendix D; FILLVLT, defined in Sec. C.4.1; and FILLPT, defined in Sec. C.4.2.

C.5. HEAT-STRUCTURE COMPONENT

C.5.1. RODVLT-Heat-Structure Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
AMH2	Hydrogen mass generated from metal-water reaction.
BCR0	Zero-order coefficient of the first-order polynomial that defines the effec- tive core-averaged concentration of control-rod pin boron.
BCR1	First-order coefficient of the first-order polynomial that defines the effec- tive core-averaged concentration of control-rod pin boron.
BEFF	Total delayed neutron fraction.
BPP0	Zero-order coefficient of the first-order polynomial that defines the effec- tive core-averaged concentration of burnable-poison pin boron.
BPP1	First-order coefficient of the first-order polynomial that defines the effec- tive core-averaged concentration of burnable-poison pin boron.
DRFB	Reactivity-feedback change in K over last time step.
DRI	Estimated change in reactivity over the previous time step.
DRIO	Old value of DRI equals the old value of the power or reactivity-estimate correction.
DTNHT(2)	Delta temperature minimums used in reflood calculation.
DTPK	Kaganove-method integration time step for solving the point-kinetics equations.
DTXHT(2)	Delta temperature maximums used in reflood calculation.
DZNHT	Delta Z _{min}
ENEFF	Total decay heat fraction.
EXTSOU	Thermal power (W) produced by external source neutrons in the reactor core.
FUCRAC	Fraction of uncracked fuel.
HDRI	Thermal diameter (m) for the inside surface of the heat-structure rod or slab element. Used only when NAMELIST variable ITHD = 1.
HDRO	Thermal diameter (m) for the outside surface of the heat-structure rod or slab element. Used only when NAMELIST variable ITHD = 1 .
HGAPO	Rod gap-conductance coefficient (MATRD = 3).

HLI	Constant liquid heat-transfer coefficient (W· m^{-2} · K^{-1}) at the inner surface. Used when inner surface boundary condition flag is set such that IDBCI = 1, indicating constant HTCs and external temperatures.
HLO	Constant liquid heat-transfer coefficient (W m^{-2} , K ⁻¹) at the outer surface. Used when outer surface boundary condition flag is set such that IDBCO = 1, indicating constant HTCs and external temperatures.
H'√I	Constant vapor heat-transfer coefficient (W m ⁻² K ⁻¹) at the inner surface. Used when inner surface boundary condition flag is set such that IDBCI = 1, indicating constant HTCs and external temperatures.
HVO	Constant vapor heat-transfer coefficient (W m ⁻² K ⁻¹) at the outer surface. Used when outer surface boundary condition flag is set such that IDBCO = 1, indicating constant HTCs and external temperatures.
PDRAT	Rod pitch-to-diameter ratio.
PLDR	Pellet dish radius. 0.0 = no pellet dish calculation; 1.0 = pellet dish calculation.
POWEXP	Exponent value to which the power distribution is raised to define the weighting function for averaging the reactivity-feedback parameters over the core volume.
QRDTOT	Total rod heat flux.
REAC	Reactivity feedback at the beginning of the previous time step.
REACN	Reactivity-feedback estimate at the end of the present time step.
REACT	Total reactivity at the beginning of the present time step.
RMCK	Reactor multiplication constant at the beginning of the present time step
RMCKN	Reactor multiplication constant estimate at the end of the present time step.
RPOWPF	Prompt fission power.
RPOWR	Beginning-of-time-step reactor power.
RPOWRI	Initial reactor power.
RPOWRN	End-of-time-step reactor power.
RPOWRO	End-of-time-step reactor power of the previous time step.
RPOWTO	Beginning-of-time-step reactor power of the previous time step.
RPWOFF	Programmed reactivity or reactor power when the controlling trip is OFF after it was ON.

RPWSCL	Reactivity-power tible's scale factor for programmed reactivity or reactor power.
RRPWMX	Maximum rate of change of programmed reactivity or reactor power.
RZPWMX	Maximum rate of change of the axial power shape.
SDT	Time interval (s) since the last reactivity change printout.
STIMET	Problem time (s) at which the last reactivity change was summed to variable storage for later printout.
TLI	Constant liquid temperature (K) at the inner surface. Used when inner surface boundary condition flag is set such that $IDBCI = 1$, indicating constant HTCs and external temperatures.
TLO	Constant liquid temperature (K) at the outer surface. Used when outer surface boundary condition flag is set such that $IDBCO = 1$, indicating constant HTCs and external temperatures.
TNEUT	Neutron generation time.
TPOWI	Total power across the inner surface of the heat-structure component.
TPOWO	Total power across the outer surface of the heat-structure component.
TRAMAX	Average-rod peak-cladding temperature.
TRHMAX	Maximum supplemental rod temperature.
TVI	Constant vapor temperature (K) at the inner surface. Used when inner surface boundary condition flag is set such that $IDBCI = 1$, indicating constant HTCs and external temperatures.
TVO	Constant vapor temperature (K) at the outer surface. Used when outer surface boundary condition flag is set such that $IDBCO = 1$, indicating constant HTCs and external temperatures.
WATLEV	Not used.
WIDTH	Width (m) of slab surface (used to compute surface area).
ZPWIN	Axial power-shape table's abscissa-coordinate variable value correspond- ing to the initial axial power shape.
ZPWOFF	Axial power-shape table's abscissa-coordinate variable value that corre- sponds to the axial power shape that is used when the controlling trip is OFF after it was ON.
ZLPBOT	Axial location (m) of the bottom of the lower hot patch.
ZLPTOP	Axial location (m) of the top of the lower hot patch.
ZUPBOT	Axial location (m) of the bottom of the upper hot patch

ZUPTOP	Axial location (m) of the top of the upper hot patch.					
Z11111	Dummy variable that provides a known end to the COMMON block.					
INTEGER VARIA	ABLES:					
Parameter	Description					
IA1111	Dummy variable that provides a known start to the COMMON block.					
IAXCND	 Axial conduction indicator. 0 = no axial heat-transfer conduction calculated; 1 = axial heat-transfer conduction calculated in the heat-structure rod or slab element. 					
IBU(4)	Boron-unit flag for the Jth reactivity coefficient.					
IDBCI	 Boundary condition option for the inner surface of the heat-structure rod or slab element. 0 = adiabatic boundary condition; 1 = constant HTCs and external temperatures; 2 = coupled to specified cells in one or more hydro components. 					
IDBCO	 Boundary condition option for the outer surface of the heat-structure rod or slab element. 0 = adiabatic boundary condition; 1 = constant HTCs and external temperatures; 2 = coupled to specified cells in one or more hydro components. 					
IEXT	Specifies if this heat structure input was generated by the post processor EXTRACT. $0 = n_0;$ 1 = yes.					
IONOFF	Number of time steps the reactivity power table's controlling trip has been ON.					
IPATCH	Hot patch modelling indicator. 0 = no modelling: 1 = modelling of hot patches.					
IRC(4)	Number of values that defines the argument number reactivity-coefficient table.					
IRCJFM(4)	Form number of reactivity coefficient for the argument number reactivity-feedback parameter.					
IRCJTB(4,4)	Number of first argument reactivity-feedback parameter value entries for the second argument reactivity-coefficient table.					
IRF	Last interpolated interval number in rate-factor table for the reactivity- power table.					
C-16	APPENDIX C					

IRFTP	Trip ID number that controls evaluation with the reflood axial fine mesh in the fuel rod.			
IRP	Last interpolated interval number in the reactivity-power table.			
IRPWSV	Reactivity-power table's abscissa-coordinate variable ID number.			
IRPWTR	Trip ID number that controls evaluation of the reactivity-power table.			
IRPWTY	Reactor-kinetics option indicator.			
ISNOTB	A flag variable that is defined if the solute is boron for the reactivity- feedback calculation. 0 = solute is boron; 1 = solute is not boron.			
IZF	Last interpolated interval number in the rate-factor table for the axial power-shape table.			
IZP	Last interpolated interval number in the axial power-shape table.			
IZPWSV	Axial power-shape table's abscissa-coordinate variable ID number.			
IZPWTR	Trip ID number that controls evaluation of the axial power-shape table.			
LENRD	Length of rod data.			
LFVNR	Relative position of new fundamental variables of rod data.			
LEVNR1	Relative position of new heat-transfer data.			
LFVR	Relative position of old fundamental variables of rod data.			
LFVR1	Relative position of old heat-transfer data.			
LIQLEV	 Specification of liquid level. 0 = no liquid level calculated on rod or sla^L surface; 1 = liquid level tracked on rod or slab surface (this smooths the heat-transfer solution). 			
LNDRD	Offset for double-sided heat structures. If the heat structure is connected to hydro components on one side, then LNDRD $= 0$. If the heat structure is connected to a hydro component on both the inside and outside surfaces, then LNDRD $=$ the offset for the inside surface heat-transfer parameters.			
LNFVR	Length of fundamental variables of rod data.			
LNFVR1	Length of heat-transfer data.			
LNPTRR	Number of pointers of rod data.			
LOCROD	Pointer for beginning of rod data.			
NCRX	Number of copies of structure that affect fluid dynamics.			

NCRZ	Number of (course) axial intervals between temperature nodes.				
NDG	Input-specified number of delated-neutron groups.				
NDGX	Number of delayed-neutron groups.				
NDH	Input specified number of decay-heat groups.				
NDHX	Number of decay-heat groups.				
NFBPWT	Flag that defines the spatial distribution used to weight the averaging of the reactivity-feedback parameters over the reactor-vessel volume.				
NFCI	FCI flag. 0 = no calculation; 1 = calculation.				
NFCIL	Limit on FCI calculations per time step.				
NFUEL	Number of nodes in fuel pellet.				
NHIST	Number of value pairs in the power-history table.				
NINT	Maximum possible number of interfaces between dissimilar materials in rods.				
NMWRX	Metal-water reaction flag. 0 = no calculation; 1 = calculation.				
NONOFF	Number of time steps the trip-controlling evaluation of the axial powe shape table has been ON.				
NOPOWR	Specification of whether a power source is present in the heat-structure rod or slab element. 0 = power source present in the rod or slab; 1 = no power source present in the rod or slab.				
NRAMAX	Location of average-rod peak-cladding temperature used in reflood cal- culation.				
NRFD	Reflood flag. 0 = takes no action; 1 = turns on fine-mesh flag if it is off.				
NRHMAX	Location of supplemental rod peak-cladding temperature.				
NRIDR	 Specification of the hydro-cell location that is coupled to the inner and/or outer surfaces of the heat-structure rod or slab element. 0 = the IDROD array is input for only the additional rods or slabs; 1 = the IDROD array is input for all rods or slabs; 2 = the IDROD array is input for all rods or slabs for both surfaces of the heat structure. 				

1

-

4 . A.

NRODS	Number of computational rods including "hot" rods. See also NCRX.				
NRPWRF	Number of rate-factor table pairs whose rate factor is applied to t power or reactivity table's independent variable.				
NRPWSV	Reactivity-power rate-factor table's abscissa-coordinate variable ID num- ber.				
NRPWTB	Number of entry pairs in the reactivity-power table.				
NRTS	Number of time steps over which programmed reactivity and reactivity- feedback changes are summed for printout.				
NSET	Absolute value of the reflood fine axial mesh trip set-status number during the previous time step.				
NZMAX	Maximum number of rows of heat-transfer nodes used in reflood calcu- lation.				
NZPWRF	Number of entry pairs in the axial power-shape rate-factor table				
NZPWSV	Axial power-shape rate-factor table's abscissa-coordinate variable ID number.				
NZPWTB	Number of axial power shapes in the axial power-shape table.				
NZPWI	 Axial power shape integration option for the heat-transfer calculation. -1 = histogram with step changes at the axial locations; 0 = histogram with step change. `way between the axial locations; 1 = trapezoidal integration. 				
NZPWZ	Number of axial locations defining the axial-power shape.				
NZZNHC	The number of hydro-cell axial-direction channels that this powered heat structure is coupled to.				
ZI1111	Dummy variable that provides a known end to the COMMON block.				

C.5.2. RODPT-Heat-Structure Pointer Table

GENERAL ROD-DATA POINTERS:

Name	Array	Dimension	Description
LBETA	BETA	NDGX	Delayed neutron group fraction.
LCDG	CDG	NDGX	Old delayed neutron group concentrations.
LCDGia	CDGN	NDGX	New delayed neutron group concentrations.
LCDH	CDH	NDHX	Old concentration of decay-heat groups.
LCDHN	CDHN	NDHX	New concentration of decay-heat group.
LCLEN	CLEN	NCRX	Old total cladding length.

LCLENN	CLENN	NCRX	New total cladding length.
LCPOWR	CPOWR	NCRX	Relative power per rod.
LEDH	EDH	NDHX	Energy yield fraction of decay-heat groups.
LFPUO2	FPUO2	NCRX	Fraction of plutonium oxide in mixed-oxide fuel fraction.
LFTD	FTD	NCRX	Fuel density (fraction of theoretical).
LGMIX	GMIX	NCRX*7	Mole fraction of gap-gas constituents.
LGMLES	GMLES	NCRX	Moles of gap gas.
LGRAVR	GRAVR	NCRZ	Cosine of the angle between a vector point- ing upward and a vector from the lower-to- higher numbered axial cells.
LHCELI	NHCELI	NCRZ+2	Cell number coupled to the heat-structure nodes at the inner surface.
LHCELO	NHCELO	NCRZ+2	Cell number coupled to the heat-structure nodes at the outer surface.
LHCOMI	NHCOMI	NCRZ+2	Component number of the hydro cells coupled to the heat-structure inner surface.
LHCOMO	NHCOMO	NCRZ+2	Component number of the hydro cells coupled to the heat-structure outer surface.
LHIGH			Not used.
LHS	HS	NCRX* (NFBPWT/4)	Pointer variable for the horizontal plane shape weight function used.
LIDROD	IDROD	NRODS	Cell identifier for rods.
LLAMDA	LAMDA	NDGX	Decay constant of delayed groups.
LLAMDH	LAMDH	NDHX	Decay constant of decay-heat groups.
LLCHCI	LCHCI	2*(NCRZ+2)	The hydro-cell parameters for heat-transfer coupling to the heat-structure inner surface.
LLCHCO	LCHCO	2*(NCRZ+2)	The hydro-cell parameters for heat-transfer coupling to the heat-structure outer surface.
LMATRD	MATRD	NINT	Rod material identification.
LNFAX	NFAX	NCRZ	Rod fine-mesh noding factor.
LNRDX	NRDX	NCRX	Number of rods in bundle.
LNTSXX	NTSXX	MAX(1, NRIDR)	Number of mesh cells in the plane transverse

100	12304	
120		
1535		
1010		
	Dist.	

LPGAPT	PGAPT	NCRX	Gap total gas pressure.
LPLVOL	PLVOL	NCRX	Rod plenum volume.
LPOWLI	POWLI	NCRZ	Total power across the heat-structure inner surface to the liquid.
LPOWLO	POWLO	NCRZ	Total power across the heat-structure outer surface to the liquid.
LPOWVI	POWVI	NCRZ	Total power across the heat-structure inner surface to the gas (vapor).
LPOWVO	POWVO	NCRZ	Total power across the heat-structure outer surface to the gas (vapor)
LPSLEN	PSLEN	NCRX	Pellet stack length.
LRADRD	RADRD	NODES	Rod node radius (cold).
LRCAL	RCAL	Σ IRCJTB(i,3) + π_i IRCJTB(i,3)	Coolant void-fraction reactivity-coefficient. table. The symbol π_i indicates the product of the following variable taken over the <i>i</i> subscript.
LRCBM	RCBM	Σ IRCJTB(i,4) + π_i IRCJTB(i,4)	Boron reactivity-coefficient table. The symbol π_i indicates the product of the following variable taken over the <i>i</i> subscript.
LRCN	RCN	0 or 4	Reactivity-coefficient values at the begin- ning of the previous time step.
LRCTC	RCTC	Σ IRCJTB(i,2) + π_i IRCJTB(i,2)	Coolarit temperature reactivity-coefficient table. The symbol π_i indicates the product of the following variable taken over the <i>i</i> subscript.
LRCTF	RCTF	$\frac{\sum \text{IRCJTB}(i,1)}{\pi_i \text{IRCJTB}(i,1)} +$	Fuel temperature reactivity-coefficient table. The symbol π_i indicates the product of the following variable taken over the <i>i</i> subscript.
LRDPWR	RDPWR	NODES	Rod relative radial power density
LRDZ	RDZ	NCRZ+1	Axial node positions.
LRPKF	RPKF	NRODS	Rod power peaking factor.
LRPWRF	RPWRF	NRPWRF *2	Rate-factor table for the power or reactivity table.
LRPWTB	RPWTB	NRPWTB *2	Power or reactivity table.
LPS	RS	NODES	Pointer variable for the fuel-rod radial shape

		MOD(NFBPWT.2)	weight function used to average reactivity feedback parameters over the core volume, MOD(N,2) = N - (N/2)*2.
LSRP	SRP	0 or 1'	Summed programmed and feedback reactiv- ity changes.
LTC	тс	10	Thermocouple-model input parameters.
LXN	XN	0 or 4	New reactivity-feedback parameter values.
LXO	хо	0 or 4	Old reactivity-feedback parameter values.
LZPW	ZPW	NCRZ+1	Last interpolated axial power shape.
LZPWFB	ZPWFB	NCRZ+1	Subroutine ZPWHCI evaluated axial-power shape at NCRZ+1 nodes based on the input axial-power shaped defined at NZFWZ node locations.
LZPWRF	ZPWRF	NZPWRF *2	Axial power-shape rate-factor table.
LZPWTB	ZPWTB	NZPWTB * NZPWZ+1	Relative power density axial power-shape table.
LZPWZT	ZPWZT	NZPWZ	Axial locations where the axial-power shape ralative power densities are defined.
LZS	ZS	NCRZP1*(MOD (NFBPWT,4)/2)	Pointer variable for the axial-direction shape, $MOD(N,2) = N - (N/2)*2$.
LZZRD			Dummy pointer that provides a known end to the common block.

C.5.3. RODPT1-Heat-Structure Pointer Table

ROD DATA POINTERS:

Naille	Array	Dimension	Description
LALPR	ALPR	NCRZ+2	Coolant vapor fraction.
LALVR	ALVR	NCRZ+2	Liquid HTC times interfacial area.
LBITR	BITR	0	Variable not currently implemented.
LBITRN	BITRN	0	Variable not currently implemented.
LBURN	BURN	NCRZ+1	Fuel birnup.
LCHTIR	CHTIR	NCRZ+2	Vapor HTC times interfacial area.
LCLR	CLR	NCRZ+2	Liquid conductivity.
LCND	CND	NODES* (NCRZ+1)	Rod conductivity.

- 1			88.	
			88	
	87	72	87	
	ч.	40		

LCNDR	CNDR	NINT* (NCRZ+1)	Rod conductivity to right of interface.
LCONCR	CONCR	NCRZ+2	Mass concentration of dissolved solute in the coolant (kg solute/kg water).
LCPDR	CPDR	NINT* (NCRZ+1)	Rod specific heat to right of interface.
LCPLR	CPLR	NCRZ+2	Liquid specific heat.
LCPND	CPND	NODES* (NCRZ+1)	Rod specific heat.
LCPVR	CPVR	NCRZ+2	Vapor specific heat.
LCVR	CVR	NCRZ+2	Vapor conductivity.
LDRLDT	DRLDT	NCRZ+2	Derivative of liquid density with respect to liquid temperature.
LDRVD í	DRVDT	NCRZ+2	Derivative of vapor density with respect to vapor temperature.
LDRZ	URZ	NCRZ+1	Old zirconium dioxide reaction depth.
LDRZN	DRZN	NCRZ+1	New zirconium diaxide reaction depth.
LEAR	EAR	NCRZ+2	Specific internal energy of the noncondens- able gas component.
LELR	ELR	NCRZ+2	Liquid internal energy.
LEMIS	EMIS	NODES* (NCRZ+1)	Rod emissivity.
LEVR	EVR	NCRZ+2	Vapor internal energy.
LFINAR	FINAR	NCRZ+2	Not used.
LHDR	HDR	NCRZ+2	Rod-bundle hydraulic diameter.
LHFGR	HFGR	NCRZ+2	Latent heat of vaporization of fluid.
LHGAMR	HGAMR	NCRZ	Contribution to subcooled boiling.
LHGAP	HGAP	NCRZ+1	Gap conductance.
LHLAR	HLAR	NCRZ	Sum of all products of the liquid HTC and the heat-transfer area.
LHLATR	HLATR	NCRZ	Sum of all products of the liquid HTC, the heat-transfer area, and t a wall tempera- ture.

LHLSR	HLSR	NCRZ+2	Specific enthalpy of the liquid phase at satu- ration (corresponding to saturation temper- ature at partial pressure of steam).	
LHRFG	HRFG	NCRZ+1	New subcooled boiling HTC.	
LHRFGO	HRFGO	NCRZ+1	Old subcooled boiling HTC.	
LHRFL	HRFL	NZMAX	New fine-mesh liquid HTC.	
LHRFLO	HRFLO	NZMAX	Old fine-mesh liquid HTC.	
LHRFV	HRFV	NZMAX	New fine-mesh vapor HTC.	
LHRFVO	HRFVO	NZMAX	Old fine-mesh vapor HTC.	
LHRLG	HRLG	NZMAX	New fine-mesh subcooled boiling HTC.	
LHRLGO	HRLGO	NZMAX	Old fine mesh subcooled boiling HTC.	
LHRLL	HRLL	NCRZ+1	New liquid HTC for lower half-node.	
LHRLLO	HRLLO	NCRZ+1	Old liquid HTC for lower half-node.	
LHRLV	HRLV	NCRZ+1	New vapor HTC for lower half-node.	
LHRLVO	rcLVO	NCRZ+1	Old vapor HTC for lower half-node.	
LHVAR	HVAR	NCRZ	Sum of all products of the vapor HTC and the heat-transfer area.	
LHVATR	HVATR	NCRZ	Sum of all products of the apor HTC, the heat-transfer area, and the wall tempera- ture.	
LHVSR	HVSR	NCRZ-2	Specific enthalpy of the steam (not gas) at saturation (at partial pressure of steam and saturation temperature).	
LIDHT	IDHT	NZMAX	Rod node identifier.	
LIDRGR	IDRGR	NCRZ+2	Flow-regime flag.	
LINTE	IHTE	NZMAX	Fine-mesh heat-transfer regime flag.	
LNOHT	NOHT	1	Number of rows of heat-transfer nodes for each rod.	
LPAR	PAR	NCRZ+2	Partial pressure of the noncondensable gas component.	
LPGAP	PGAP	NCRZ+1	Gap local gas pressure.	
LPINT	PINT	NCRZ+1	Pellet-cladding contact pressure	
LPLDV	PLDV	NCRZ	Pellet dish volume.	

- 65			Ŀ.
185			ε.
-10			
- 18			
		æ	

LPR	PR	NCRZ+2	Coolant pressure.	
LQCHFF	QCHFF	NCRZ+1	New CHF.	
LQCHFO	QCHFO	NCRZ+1	Old CHF.	
LQCHFR	QCHFR	NZMAX	New fine-mesh CHF.	
LQCHRO	QCHRO	NZMAX	Old fine-mesh CHF.	
LQWRX	QWRX	NCRZ+1	Metal-water reaction heat source.	
LRADR	RADR	NODES* (NCRZ+1)	Old radial node positions.	
LRADRN	RADRN	NODES* (NCRZ+1)	New radial node positions.	
LRDHLO	RDHLO	NCRZ	Variable not currently implemented.	
LRDHLR	RDHLR	NCRZ	Liquid HTC.	
LRDHVO	RDHVO	NCRZ	Variable not currently implemented.	
LRDHVR	RDHVR	NCRZ	Vapor HTC.	
LRFT	RFT	NODES*NZMAX	Old finc mesh rod temperatures.	
LRFTN	RFTN	NODES*NZMAX	New fine-mesh rod temperatures.	
LRLQLV			Not used.	
LRND	RND	NODES* (NCRZ+1)	Rod density.	
LRNDR	RNDR	NINT* (NCRZ+1)-1	Rod density to right of material interface.	
LROAR	ROAR	NCRZ+2	Density of the noncondensatile ${\bf g}/\epsilon$ component.	
LROLR	ROLR	NCRZ+2	Liquid density.	
LROMR	ROMR	NCRZ+2	Mixture density.	
LROVR	ROVR	NCRZ+2	Vapor density.	
LRPOWF	RPOWF	NODES	Rod power density.	
LSIGR	SIGR	NCRZ+2	Surface tension.	
LSR	SR	NCRZ+2	Amount of plated-out solute (kg \cdot m ⁻³).	
LSTNU	STNU	NZMAX	Stanton number.	
LTCHFF	TCHFF	NZMAX	Fine-mesh wall temperature at CHF point.	
LTCHFR	TCHFR	NCRZ	Wall temperature at CHF	
LTLD	TLD	NZMAX	Liquid temperature at bubble departure.	
--------	-------	--------	--	--
LTLR	TLR	NCRZ+2	Liquid temperature.	
LTSATR	TSATR	NCRZ+2	Saturation temperature.	
LTSSNR	TSSNR	NCRZ+2	Saturation temperature corresponding to partial pressure of steam.	
LTVR	TVR	NCRZ+2	Vapor temperature.	
LVISLR	VISLR	NCRZ+2	Liquid viscosity.	
LVISVR	VISVR	NCRZ+2	Vapor viscosity.	
LVLCR	VLCR	NCRZ+2	Not used	
LVLZR	VLZR	NCRZ+2	Axial liquid velocity.	
LVMZR	VMZR	NCRZ+2	Axial mixture velocity.	
LVOLR	VOLR	NCRZ+2	Fluid volume in hydrodynamic mesh cells.	
LVVCR	VVCR	NCRZ+2	Vapor cross-flow velocity.	
LVVZR	VVZR	NCRZ+2	Axial vapor velocity.	
LWATR	WATR	NCRZ	Total rod heat-transfer area.	
LZHT	ZHT	NZMAX	Axial location of heat-transfer node.	

C.5.4. RODDAT-Heat-Structure Data Table

This data table includes the following COMMON blocks: RODVLT, defined in Sec. C.5.1; RODPT, defined in Sec. C 5.2; and RODPT1, defined in Sec. C.5.3.

C.6. PIPE COMPONENT

C.6.1. PIPEVLT-PIPE Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
BSMASS	Time-integrated mass flow from pipe.
CPOW	Special pipe power input.
ENINP	Total (time-integrated) energy directly input to the pipe.
EPSW	Wall surface roughness.
FL(2)	Liquid mass-flow corrections for mass-conservation checks.
FV(2)	Vapor mass-flow corrections for mass-conservation checks.
HOUTL	HTC between outer boundary of pipe wall and liquid.

HOUTV	HTC between outer boundary of pipe wall and vapor.
PLENT	Total length of the pipe.
POWIN	Initial power deposited in the liquid.
POWOFF	Power deposited in the liquid when the trip is OFF after it was ON.
QINT	Initial water volume in pipe.
QOUT	Volume of liquid that has been discharged from pipe used as accumulator.
QP3IN	Initial QPPP factor.
QP3OFF	QPPP factor when its trip is OFF after it was ON.
RADIN	Inner radius of pipe wall.
RPOWMX	Maximum rate of change frower deposited in the coolant.
RQP3MX	Maximum rate of chan, a of the chan is a term
тн	Thickness of pipe wall
TOUTL	Liquid temperature outside pipe.
TOUTV	Vapor temperature outside pipe.
VFLOW	Volume flow rate at discharge from pipe used as accumulator.
Z	Water height above discharge.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VARI	ABLES:
Parameter	Description

rarameter	Description
IA1111	Dummy variable that provides a known start to the COMMON block.
IACC	Pipe accumulator option switch.
ICHE	CHF calculation option.
ICJ1	Not used.
ICJ2	Not used
ICONC	Indicator for presence of solute in the coolant input.
IONOFF	Number of time steps the power deposited in the coolant trip has been ON.
IPF	Last interpolated interval in the power deposited in the coolant's rate- factor table.
IPOW	Indicator for presence of power deposited in the coolant.

IPOWSV		Power deposited in the coolant table's abscissa-coordinate variable ID number.		
IPOWTR		Trip ID number that controls evaluation of the power deposited in the coolant table.		
IPP		Last interpolated interval in the power deposited in the coolant table		
IQF		Last interpolated interval in the QPPP factor table's rate-factor table.		
IQP		Last interpolated interval in the QPPP factor table.		
IQP35V		QPPP factor table's abs	cissa-coordinate variable ID number.	
IQP3TR		Trip ID number that con	trols evaluation of the QPPP factor table.	
ISOLLB		Indicator for velocity upo	late at JUN1.	
ISOLRB		Indicator for velocity upr	late at JUN2.	
JS1		Junction sequence numb	er at cell 1 of the pipe.	
JS2		Junction sequence numb	er at cell NCELLS of the pipe.	
JUN1		Junction number of the	unction at cell 1.	
JUN2		Junction number of the	unction at cell NCELLS.	
NCELLS		Number of fluid cells.		
NONOFF		Number of time steps the QPPP factor table's controlling trip has been ON.		
NPOWRF		Number of pairs in the p table.	ower deposited in the coolant table's rate-factor	
NPOWSV		Power deposited in the coolant rate-factor table's abscissa-coordinate variable ID number.		
NPOWTB		Length of pipe power tab	ole.	
NQP3RF		Number of pairs in the G	PPP factor table's rate-factor table.	
NQP35V		QPPP factor rate-factor table's abscissa-coordinate variable ID number.		
NQP3TB		Number of pairs in the QPPP factor table.		
TYPE1		Type of adjacent component at JUN1.		
TYPE2		Type of adjacent component at JUN2.		
Z11111		Dummy variable that provides a known end to the COMMON block.		
C.6.2. PIF	PEPT-P	PIPE Pointer Table		
Name	Array	Dimension	Description	
DUALPT			General pointer table.	
C-28			APPENDIX C	

- 48			а.
8			12
122			59
. 16			97
- 1	42	98	

HYDROPT			General pointer table.
INTPT		y 👾 da se da Car	General pointer table.
HEATPT	-	승규는 것 같아요.	General pointer table.
LPOWRF	POWRF	NPOWRF *2	Rate-factor tables for the power deposited in the coolant tables.
LPOWTB	POWTB	NPOWTB *2	Power deposited in the coolant table.
LQP3RF	QP3RF	NQP3RF *2	Rate-factor table for the QPPP factor tables.
LQP3TB	QP3TB	INQP3TB *2	QPPP factor tables.

C.6.3. PIPEDATA-PIPE Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; PIPEVLT, defined in Sec. C.6.1; and PIPEPT, defined in Sec. C.6.2.

C.7. PLENUM COMPONENT

The plenum data are all contained in the PLENDATA COMMON block that consists of the following COMMON blocks: DIMNSION, IOUNITS, JUNCTION, FIXEDLT, and BLANKCOM, all defined in Appendix D; DUALPT, defined in Sec. C.1.1; HYDROPT, defined in Sec. C.1.2; VLTAB, defined in Sec. C.7.1; and PTAB, defined in Sec. C.7.2.

C.7.1. VLTAB-PLENUM Variable-Length Table REAL VARIABLES:

Parameter	Description
AA1114	Dummy variable that provides a known start to the COMMON block.
BL.	Temporary storage for liquid mass-conservation checks.
BSMASS	Time-integrated mass flow from plenum.
BV	Temporary storage for vapor mass-conservation checks.
EPSW	Wall surface roughness
FAS1	Summed flow area of all junctions on side 1 of the plenum cell.
FAS2	Summed flow area of all junctions on side 2 of the plenum cell.
FLXA	Total air mass flow into the plenum during a time step.
FLXAL	Total liquid volumetric flow into the plenum during a time step.
FLXAV	Total vapor (gas phase) volumetric flow into the plenum during a time step.
FLXC	Total solute mass flow into the plenum during a time step.
FLXEL	Total liquid internal energy flow into the plenum during a time step.

FLXFV	Total vapor internal energy flow into the plenum during a time step.
FLXL	Total liquid mass flow into the plenum during a time step.
FLXV	Total vapor mass flow into the plenum during a time step.
RXCL	Temporary storage for the right-hand side of the liquid stabilizer mass and energy equations.
RXCV	Temporary storage for the right-hand side of the vapor stabilizer mass and energy equations.
XL	Gross total liquid volumetric flow from the plenum during a time step.
XV	Gross total vapor volumetric flow from the plenum during a time step.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VAL	PLARIES.

Parameter		Description			
IA1111		Dummy variable that pr	rovides a known start to the COMMON block.		
К		Address location that de	that designates the location of the array data variables.		
ICONC Indicate		Indicator for the present	or for the presence of solute in the coolant or input.		
IPOW Ind		Indicator for the present	ndicator for the presence of power deposited in the coolant.		
JUNS1 Numl acros		Number of junctions on across the cell.	mber of junctions on side 1 of the plenum cell that convect momentum oss the cell.		
JUNS2 No ac		Number of junctions on side 2 of the plenum cell that convect momentum across the cell.			
NCELLS N		Number of fluid cells (equals one for a PLENUM).			
NPLJN		Number of plenum junctions.			
ZI1111		Dummy variable that pr	rovides a known end to the COMMON block.		
C.7.2. P1	AB-PLE	NUM Pointer Table			
Name	Array	Dimension	Description		
LALW	ALW	NPLJN	Temporary storage for the right-hand side of the liquid stabilizer mass and energy equa- tions.		
LAVW	AV' . '	NPLJN	Temporary storage for the right-hand side cf the vapor stabilizer mass and energy equa-		

tions. LDBND DBND 5*NPLJN Donor-cell quantities $\alpha \rho_v$, $(1 - \alpha)\rho_\ell$, $\alpha \rho_a$, $\alpha \rho_v e_v$, and $(1 - \alpha)\rho_\ell e_\ell$.

LI	DNFL	DONFL	NPLJN	Donor-cell flag for liquid. 0.0 = indicates flow into the plenum; 1.0 = indicates flow from the plenum.
L	DNFV	DONFV	NPLJN	Donor-cell flag for vapor. 0.0 = indicates flow into the plenum; 1.0 = indicates flow from the plenum.
L	LOJ	10J	NPLJN	Network junction numbers.
٤.	LUNJ	JUNJ	NPLJN	Plenum junction numbers.
L.	ISN	JSN	NPLJN	Plenum junction sequence numbers.
L	PAK	PAK	NPLJN	BIT array for the plenum junctions: how- ever, it is used only for storing the water packing and stretching bits.
L	SGN	SGN	NPLJN	Junction flow-reversal indicators
L	ZZZZZ		1	Dummy variable that provides a known end to the COMMON block

C.7.3. Equivalences Defined for BLANKCOM

Mnemonic	Variable	Description
ALP(1)	A(01)	Old void fraction.
ALPMN(1)	A(78)	Minimum value of void fraction among the plenum and all its neighbors.
ALPMX(1)	A(79)	Maximum value of void fraction among the plenum and all its neighbors.
ALPN(1)	A(27)	New void fraction.
ALPO(1)	A(57)	Void fraction from previous time step (α^{n-1}) .
ALV(1)	A(02)	Old value of liquid-to-interface HTC times the interfacial area due to flashing.
ALVE(1)	A(03)	Old value of liquid-to-interface HTC times the interfacial area due to evaporation.
ALVEN(1)	A(29)	New value of liquid-to-interface HTC times the interfacial area due to evaporation.
ALVN(1)	A(28)	New value of liquid-to-interface HTC times the interfacial area due to flashing.
AM(1)	A(58)	Air mass.
ARA(1)	A(04)	Old stabilizer value for $\alpha \rho_a$.

ARAN(1)	A(30)	New stabilizer value for $\alpha \rho_a$.	(B)
ARC(1)	A(59)	Solute density.	
AREL(1)	A(05)	Old stabilizer value for $(1 - \alpha)\rho_{\ell}e_{\ell}$.	
ARELN(1)	A(31)	New stabilizer value for $(1 - \alpha)p_{\ell}e_{\ell}$.	
AREV(1)	A(06)	Old stabilizer value for $\alpha \rho_v e_v$.	
AREVN(1)	A(32)	New stabilizer value for $\alpha p_v e_v$.	
ARL(1)	A(07)	Old stabilizer value for $(1 - \alpha)\rho_\ell$.	
ARLN(1)	A(33)	New stabilizer value for $(1 - \alpha)\rho_\ell$.	
ARV(1)	A(08)	Old stabilizer value for $\alpha \rho_v$.	
ARVN(1)	A(34)	New stabilizer value for αp_v .	
BIT(1)	A(24)	Old bit flag.	
BITN(1)	A(50)	New bit flag.	
BOR(1)	A(09)	Old solute-to-coolant mass ratio.	
BORN(1)	A(35)	New solute-to-coolant mass ratio.	
CHTAN(1)	A(40)	New value of noncondensible-to-interface HTC times the interfacial area.	0
CHTI(1)	A(13)	Old value of vapor-to-interface HTC times the interfacial area.	
CHTIA(1)	A(14)	Old value of noncondensible gas-to-interface HTC times the interfacial area.	
CHTIN(1)	A(39)	New value of vapor-to-interface HTC times the interfacial area.	
CL(:)	A(53)	Liquid conductivity.	
CPL(1)	A(54)	Liquid specific heat at constant pressure.	
CPV(1)	A(55)	Liquid specific heat at constant volume.	
CV(1)	A(56)	Vapor conductivity.	
DALP(1)	A(61)	Weighting factor XVSET.	
DALVA(1)	A(72)	Not implemented.	
DELDP(1)	A(84)	Derivative of the liquid internal energy with respect to pres- sure at constant temperature.	
DELDT(1)	A(86)	Derivative of the liquid internal energy with respect to tem- perature at constant pressure.	0

		8	
		ų	
	ų	1	
	alker.	١	

1

DEVAP(1)	A(98)	Derivative of air internal energy with respect to pressure at constant temperature.
DEVAT(1)	A(97)	Derivative of air internal energy with respect to tempera- ture at constant pressure.
DEVDP(1)	A(85)	Derivative of the steam internal energy with respect to pressure at constant temperature.
DEVDT(1)	A(87)	Derivative of the steam internal energy with respect to temperature at constant pressure.
DHLSP(1)	A(95)	Derivative of HLST with respect to pressure.
DHVSP(1)	A(94)	Derivative of HVST with respect to pressure.
DROLP(1)	A(88)	Derivative of the liquid density with respect to pressure at constant temperature.
DROLT(1)	A(90)	Derivative of the liquid density with respect to temperature at constant pressure.
DROVP(1)	A(89)	Derivative of the steam density with respect to pressure at constant temperature.
DROVT(1)	A(91)	Derivative of the steam density with respect to tempera- ture at constant pressure.
DRVAP(1)	A(99)	Derivative of air density with respect to pressure at con- stant temperature.
DRVAT(1)	A(100)	Derivative of air density with respect to temperature at constant pressure.
DTSDP(1)	A(83)	Derivative of TSAT with respect to pressure.
DTSSP(1)	A(96)	Derivative of TSSN with respect to pressure.
DXVOL(1)	A(73)	Plenum average length.
EL(1)	A(11)	Old liquid invernal energy.
ELEV(1)	A(70)	Plenum center elevation. This is used only if IELV is set to 1 in the NAMELIST input.
ELN(1)	A(37)	New liquid internal energy.
EV(1)	A(12)	Old vapor internal energy.
EVA(1)	A(10)	Old air internal energy.
EVAN(1)	A(36)	New air internal energy.
EVN(1)	A(38)	New vapor internal energy.
FASMLT(1)	A(81)	Interphase area multiplier during condensation.

.

APPENDIX C

1.014

C-33

1. 1. 1. 1.

FAVOL(1)	A(74)	Plenum average flow area.
FINAN(1)	A(106)	Inverted annular flow factor (currently not used).
GAM(1)	A(15)	Old vapor generation rate per unit volume.
GAMN(1)	A(41)	New vapor generation rate per unit volume.
GRAVOL(1)	A(77)	Plenum average GRAV.
HFG(1)	A(60)	Latent heat of vaporization.
HGAM(1)	A(101)	Subcooled liquid HTC.
HIL(1)	A(25)	Old HTC between inside wall and liquid.
HILN(1)	A(51)	New HTC between inside wall and liquid.
HIV(1)	A(26)	Old HTC between inside wall and vapor.
HIVN(1)	A(52)	New HTC between inside wall and vapor.
HLA(1)	A(102)	Average product of the HTC to liquid and the wall surface area of the liquid.
HLATW(1)	A(104)	Average product of the HTC to liquid, the wall surface area of the liquid, and the wall temperature.
HLST(1)	A(03)	Saturated liquid enthalpy (at TSSN and total pressure).
HVA(1)	A(103)	Average product of the HTC to vapor and the wall surface area.
HVATW(1)	A(105)	Average product of the HTC to vapor, the wall surface area of the vapor, and the wall temperature.
HVST(1)	A(92)	Saturated steam enthalpy (at TSSN and steam partial pressure).
P(1)	A(16)	Old pressure.
PA(1)	A(17)	Old air partial pressure.
PAN(1)	A(43)	New air partial pressure.
PN(1)	A(42)	New pressure.
QP3F(1)	A(71)	QPPP factor applied to the wall heat source.
ROL(1)	A(19)	Old liquid density.
ROLN(1)	A(45)	New liquid density.
ROM(1)	A(62)	Mixture density.
ROV(1)	A(20)	Old vapor density.
ROVA(1)	A(18)	Old air density.

C-34

ROVAN(1)	A(44)	New air density.
ROVN(1)	A(46)	New vapor density.
SIG(1)	A(63)	Surface tension.
SOLID(1)	A(21)	Old solute mass plated on structure surface.
SOLIDN(1)	A(47)	New boron solute mass plated on structure surface.
TL(1)	A(22)	Old liquid temperature.
TLN(1)	A(48)	New liquid temperature.
TSAT(1)	A(64)	Saturation temperature corresponding to total vapor pres- sure.
TSSN(1)	A(65)	Saturation temperature corresponding to steam partial pressure.
TV(1)	A(23)	Old vapor temperature.
TVN(1)	A(49)	New vapor temperature.
VISL(1)	A(66)	Liquid viscosity.
VISV(1)	A(67)	Vapor viscosity.
VLALP(1)	A(82)	Maximum value of the liquid mass flux entering the plenum from junctions located above the plenum.
VLVC(1)	A(80)	Absolute value of the liquid velocity at a junction where the donor-celled liquid fraction is maximum.
VLVOL(1)	A(75)	Plenum average liquid velocity.
VOL(1)	A(68)	Plenum volume.
VVVOL(1)	A(76)	Plenum average vapor velocity.
VRVPL(1)	A(108)	Volume average relative velocity in the plenum component (currently not used).
WA(1)	A(69)	Wall area.
WAT(1)	A(107)	Total wall area.

C.8. PRESSURIZER COMPONENT

ŵ.

C.8.1. PRIZEVLT-PRIZER Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.

APPENDIX C

C-35

BSMASS	Time-integrated mass flow from pressurizer.
BSMSSP	Current mass-flow rate during transient.
BXMASS	Current mass-flow rate during steady state.
EPSW	Wall surface roughness.
DPMAX	Differential pressure at which heaters have maximum power.
FL(2)	Liquid mass-flow corrections for mass-conservation checks.
FLOW	Volume flow rate at discharge.
FV(2)	Vapor mass-flow corrections for mass-conservation checks.
HOUTL	HTC between outer boundary of pressurizer wall and liquid.
HOUTV	HTC between outer boundary of pressurizer wall and vapor.
PSET	Pressurizer pressure set point for heater-spray control.
QHEAT	Total heater power.
QIN	Heater power being input to water.
QINT	Initial water volume in pressurizer.
QOUT	Volume of liquid that has discharged from the pressurizer.
QP3IN	Initial QPPP factor.
RADIN	Inner radius of pressurizer wall.
тн	Thickness of pressurizer wall.
TOUTL	Liquid temperature outside pressurizer.
TOUTV	Vapor temperature outside pressurizer.
Z	Water height above discharge.
ZHTR	Water height for heater cutoff.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VARI	ABLES:
Parameter	Description
IA1111	Dummy variable that provides a known start to the COMMON block.
ICHF	CHF calculation option.
ICJ	Not used.
in march	

ICONC Indicator for presence of solute in the coolant input.

h

ICT1	The sequence number (position in the IORDER array) of the component next to the junction of the pressurizer. This variable is computed but not used.
IUV1	Indicator for velocity update at JUN1.
IUV2	Indicator for velocity update at JUN2.
JS1	Junction sequence number at cell 1 of the pressurizer.
JS2	Junction sequence number at cell NCELLS of the pressurizer.
JUN1	Junction number of the junction at cell 1.
JUN2	Junction number of the junction at cell NCELLS.
NCELLS	Number of fluid cells.
TYPE1	Not used.
TYPE2	Not used.
Z(1111	Dummy variable that provides a known end to the COMMON block.
C.8.2. PRIZE	PT-r. ZER Pointer Table

Name	Array	Dimension	Description
DUALPT			General pointer table.
HYDROPT	-	-	General pointer table.
INTPT			General pointer table.
HEATPT	-		General pointer table.

C.8.3. PRZDATA-PRIZER Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; PRIZEVLT, defined in Sec. C 8.1; and PRIZEPT, defined in Sec. C.8.2.

C.9. PUMP COMPONENT

C.9.1. PUMPVLT-PUMP Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
AEFFMI	The coefficient for the (OMEGA/ROMEGA)**2 term in the calculation of the variable moment of inertia (kg \cdot m ²).
ALPHA.	Pump void fraction.
ALPHAO	Void fraction used on previous time step for pump head calculation.

BEFFMI	The coefficient for the (OMEGA/ROMEGA) term in the calculation of the variable moment of inertia (kg \cdot m ²).
BSMASS	Time-integrated mass flow from pump.
CEFFMI	The constant term in the calculation of the variable moment of inertia $(kg + m^2)$.
DELP	Delta P across pump.
DSMOM	Derivative of pump head with velocity.
EFFMI	Moment of inertia.
EFFMI1	The alternate effective moment of inertia.
EPSW	Wall surface roughness.
FL(2)	Liquid mass-flow corrections for mass-conservation checks.
FLOW	Pump volumetric flow rate.
FV(2)	Vapor mass-flow corrections for mass-conservation checks.
HEAD	Pump head.
HOUTL	HTC between outer boundary of pump wall and liquid.
HOUTV	HTC between outer boundary of pump wall and vapor.
MFLOW	Pump mass-flow rate.
OMEGA	Angular velocity at old time.
OMEGAN	Angular velocity at new time.
OMGOFF	Pump rotational speed when its controlling trip is OFF after it was ON.
OMTEST	The PUMP speed below which EFFMI1 (the alternate effective moment of inertia) is used (rad $\cdot s^{-1}$).
QP3IN	Initial QPPP factor.
QP30FF	QPCP factor when its controlling trip is OFF after it was ON.
RADIN	Inner radius of wall.
RFLOW	Rated flow.
RHEAD	Rated head.
RHO	Pump mixture density.
ROMEGA	Rated angular velocity.
ROMGMX	Maximum rate of change of the pump rotational speed.
RQP3MX	Maximum rate of change of the QPPP factor.

RHO	Rated density.
TORK	Rated torque.
MOM	Momentum source.
TFR0	Frictional torque constant coefficient.
FFR1	Frictional torque linear coefficient.
TFR2	Frictional torque quadratic coefficient.
TFR3	Frictional torque third-order coefficient.
TFRB	Pump speed that defines the low-speed regime.
TFRLO	Low pump speed frictional torque constant coefficient.
TFRL1	Low pump speed frictional torque linear coefficient.
TFRL2	Low pump speed frictional torque quadratic coefficient.
TFRL3	Low pump speed frictional torque third-order coefficient.
тн	Wall thickness.
TORQUE	Pump torque.
TOUTL	Liquid temperature outside wall.
TOUTV	Vapor temperature outside wall.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VAR	IABLES:
Parameter	Description
IA1111	Dummy variable that provides a known start to the COMMON block.
ICHF	CHF calculation option.
ICJ1	Not used.
ICJ2	Not used.
ICONC	Indicator for presence of solute in the coolant input.
INDXHM	Index on head degradation multiplier curve.
INDXTM	Index on torque degradation multiplier curve.
IONOFF	Number of time steps the pump-speed controlling trip has been ON.
IPF	Last interpolated interval in the pump-speed table's rate-factor table.
IPM	Two-phase indicator. 0 = use single-phase curves; 1 = use two-phase curves.

APPENDIX C

C-39

•

IPMPS	Flag that indicates whether or not the pump speed previously has dropped below OMTEST. 0 = pump speed always has been greater than OMTEST;
	1 = pump speed has dropped below OMTEST at some time.
IPMPS2	Flag that indicates the use of the variable pump inertia; set in subroutine RPUMP.
IPMPSV	Signal-variable ID number that defines the pump-speed table's indepen- dent variable.
IPMPTR	Pump trip identification
IPMPTY	Pump type (1 or 2).
IPP	Last interpolated interval in the pump-speed table.
IQF	Last interpolated interval in the QPPP factor table's rate-factor table.
IQP	Last interpolated interval in the QPPP factor table.
IQP3SV	QPPP factor rate-factor table's abscissa-coordinate variable ID number.
IQP3TR	Trip ID number that controls evaluation of the QPPP factor table.
IRP	Reverse speed indicator. 0 = reverse not allowed; 1 = reverse allowed.
ISOL1	Indicator for velocity update at JUN1.
ISOL2	Indicator for velocity update at JUN2.
JS1	Junction sequence number at cell 1 of the pump.
JS2	Junction sequence number at cell NCELLS of the pump.
JUN1	Junction number of the junction at cell 1.
JUN2	Junction number of the junction at cell NCELLS.
NCELLS	Number of fluid cells.
NDATA(16)	Number of sets of points in head and torque curves.
NDMAX	Size of scratch storage array.
NHDM	Number of points on the head degradation multiplier curve.
NONOFF	Number of time steps the QPPP factor table's controlling trip has been ON.
NPMPRF	The number of rate-factor table pairs whose rate factor is applied to the pump-speed table's independent variable.

.

C.9.2. PUMPPT-PUMP Pointer Table

Name	Array	Dimension	Description
DUALPT	-	-	General pointer table.
HYDROPT	-		General pointer table.
INTPT	-	- 10 A	General pointer table.
HEATPT			General pointer table.

HEAD AND TORQUE TABLE:

Array	Dimension	Description
HSP1	2*NDATA(1)	Single-phase head curve 1.
HSP2	2*NDATA(2)	Single-phase head curve 2.
HSP3	2*NDATA(3)	Single-phase head curve 3.
HSP4	2*NDATA(4)	Single-phase head curve 4.
HTP1	2*NDATA(5)	Two-phase head curve 1.
HTP2	2*NDATA(6)	Two-phase head curve 2.
НТР3	2*NDATA(7)	Two-phase head curve 3.
HTP4	2*NDATA(8)	Two-phase head curve 4.
TSP1	2*NDATA(9)	Single-phase torque curve 1.
TSP2	2*NDATA(10)	Single-phase torque curve 2.
TSP3	2*NDATA(11)	Single-phase torque curve 3.
	Array HSP1 HSP2 HSP3 HSP4 HTP1 HTP2 HTP3 HTP4 TSP1 TSP2 TSP3	Array Dimension HSP1 2*NDATA(1) HSP2 2*NDATA(2) HSP3 2*NDATA(3) HSP4 2*NDATA(4) HTP1 2*NDATA(5) HTP2 2*NDATA(6) HTP3 2*NDATA(7) HTP4 2*NDATA(8) TSP1 2*NDATA(9) TSP2 2*NDATA(10) TSP3 2*NDATA(11)

LTSP4	TSP4	2*NDATA(12)	Single-phase torque curve 4.
LTTP1	TTP1	2*NDATA(13)	Two-phase torque curve 1.
LTTP2	TTP2	2*NDATA(')	To o phase torque curve 2.
LTTP3	TTP3	2*NDATA(1_,	Two-phase torque curve 3.
LTTP4	TTP4	2*NDATA(16)	Two-phase torque curve 4.

MISCELLANEOUS TABLE:

Name	Array	Dimension	Description
LBD4	BD4	LENBD	Dummy variable.
LHDM	HDM	2*NHDM	Head degradation multiplier curve.
LIDXCS	IDXCS	16	Curve set index array.
LNDATA	NDATA	16	Number of sets of points in head and torque curves.
LPMPRF	PMPRF	NPMPRF *2	Rate-factor table for the pump-speed table.
LPMPTB	РМРТВ	INPMPTB *2	Pump rotational speed table.
LQP3RF	QP3RF	NQP3RF[*2	Rate-factor table for the QPPP factor table.
LQP3TB	QP3TB	NQP3TB *2	QPPP factor table.
LTDM	TDM	2*NTDM	Torque degradation multiplier curve.

C.9.3. PUMPDATA-PUMP Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D: PUMPVLT, defined in Sec. C.9.1; and PUMPPT, defined in Sec. C.9.2.

C.10. STEAM-GENERATOR COMPONENT

C.10.1. STGENVLT-STGEN Variable-Length Table

REAL VARIAB'LES:

Parameter	Description		
AA1111	Dummy variable that provides a known start to the COMMON block.		
BSMSS1	Time-integrated mass flow from primary side		
BSMSS2	Time-integrated mass flow from secondary side.		
CA1P	Fraction of liquid velocity at the right face of the primary see junction cell that contributes to the momentum transfer into the primary tee side leg.		

CAIVP	Fraction of vapor velocity at the right face of the primary tee junction cell that contributes to the momentum transfer into the primary tee side leg.		
САР	Fraction of liquid velocity at the left face of the primary tee junction of that contributes to the momentum transfer into the tee side leg.		
CAVP	Fraction of vapor velocity at the left face of the primary tee junction cell that contributes to the momentum transfer into the primary tee side leg.		
COSP	Cosine of the angle measured from the low-numbered side of the pr tube to the primary tee tube.		
EPSW	Wall surface roughness.		
FL(4)	Liquid mass-flow corrections for mass-conservation checks.		
FV(4)	Vapor mass-flow corrections for mass-conservation checks.		
HTLSGI	Heat loss on the inside of a general surface (HAAT).		
HTLSGO	Heat loss on the outside of a general surface (HAAT).		
QP3IN	Initial QPPP factor.		
RADIN	Inner radius of a tube wall.		
ТН	Tube wall thickness.		
Z11111	Dummy variable that provides a known end to the COMMON block.		
INTEGER VARIA	BLES:		
Parametar	Description		
IA1111	Dummy variable that provides a known start to the COMMON block.		
ICHF1	Indicator for a CHF calculation on the primary side. 0 = no CHF calculation; 1 = CHF calculation.		
ICHF2	Indicator for a CHF calculation on the secondary side. 0 = no CHF calculation; 1 = CHF calculation.		
ICNC2	Presence of solute in the secondary input flag. 0 = no boron present; 1 = boron present.		
ICONC	Presence of solute in the primary input flag. 0 = no boron present; 1 = boron present.		

ISVLB1	Indicator for velocity update at JUN11.		
ISVLB2	Indicator for velocity update at _UN21.		
ISVRB1	Indicator for velocity update at JUN12.		
ISVRB2	Indicator for velocity update at JUN22.		
JCLP	Junction cell index of a primary tee connection.		
JINL	Junction cell index for the secondary inlet junction.		
JOTL	Junction cell index for the secondary outlet jui. tion.		
JS11	Junction sequence number at JUN1.		
JS12	Junction sequence number at JUN2.		
JSP	Junction sequence number at JUNP.		
JUN11	Junction number adjacent to cell 1 on primary side.		
JUN12	Junction number adjacent to cell NCELL1 on primary side.		
JUNP	Junction number of the high-numbered-cell end of a primary tee.		
LGHT	Location in the pointer table of the old-time generalized heat-transfer variables.		
LGHTN	Location in the pointer table of the new-time generalized heat-transfer variables.		
LNGHT	Length of the variables of the generalized heat-transfer information for which old- and new-time values are stored.		
NCELL1	Number of fluid cells on tube side (primary side) excluding the side leg if the primary component is a tee.		
NCELL2	Number of fluid cells on shell side (secondary side).		
NCELLS	Total number of fluid cells (NCELL1 + NCELL2 + 1) excluding, if the primary component is a tee, the cells on the primary tee side leg.		
NCLP	Number of cells on the primary tee.		
NCLS(10)	Number of cells on the primary side of a secondary component.		
NCLT(10)	Number of cells on the side leg of a secondary component (a TEE).		
NDHT	Number of nodes used in the second set of heat conduction paths.		
NGHT	Number of heat conduction paths used to model structures in the second set of generalized heat-transfer volumes.		
NITJN	Number of junctions internal to the secondary flow path (includes the junctions).		

4	81	2	
8	14		
1			

NODMX	Maximum number of nodes for heat conduction paths (maximum of NODES and NOHT).		
NOTEE	Number of tees used to construct the secondary flow path.		
NSCMP	Number of components used to construct the secondary flow path.		
NSJNE	NE Total number of junctions in the secondary flow path (includes tee tions and external connections).		
NULZN	On input, the total number of junctions in the secondary flow path. This number then is reduced by the number of fills or breaks that are connected to the secondary external connections.		
NSTJN	Number of external connections on secondary steam generator.		
NTUBE	The number of conduction paths used to model the first set of generalized heat-transfer volumes.		
STYPE(10)	The component types (PIPEs or TEEs) used to construct the secondary flow path.		
TYPE11	Type of adjacent component at JUN11.		
TYPE12	Type of adjacent component at JUN12.		
TYPEP	Type of adjacent component at JUNP.		
Z11111	Dummy variable that provides a known end to the COMMON block.		
	NEW AWARDED TO THE OF ANALY MARKED ANALY MARKED		

C.10.2. STGENPT-STGEN Pointer Table (For STGEN, NCELLS = NCELL1 + NCELL2 + NCELL3 + NCELL4 + 3 and NCELLT = NCELL1 + NCELL2 + 1)

Name	Array	Dimension	Description
DUALPT	-		General pointer table.
HYDROPT	-	54 (st. 1	General pointer table.
INTPT			General pointer table.
LQPPL	QPPL	NCELLS-1	Heat flux (W \cdot m ⁻³) from wall to liquid.
LQPPV	QP'	NCELLS-1	Heat flux (W \cdot m ⁻³) from wall to vapor.
COMPONE	NT POINTE	RS:	
Name	Array	Dimension	Description
LCAS	CAS	NSCMP	Source term for a fluid cell containing a sid tee junction.
LCA15	CA15	NSCMP	Source term for a fluid cell that contains side tee junction

0

APPENDIX C

LCAIVS CAIVS NSCMP

C-45

Source term for a fluid cell that contains a

side tee junction.

LCAVS	CAVS	NSCMP	Source term for a fluid cell that contains a side tee junction.
LCOSS	COSS	NSCMP	Cosine of the angle measured from the low- numbered side of the primary tube to the side tube for a secondary TEE component.
LFLS	FLS	4*NSCMP	Liquid volumetric flow rate.
LFVS	FVS	4*NSCMP	Vapor volumetric flow rate.
LJCLSC	JCLSC	NSJUN	Secondary cell where secondary junction is located.
LJCLT	JCLT	NSCMP	Fluid cell number that contains a side-leg tee connection.
LJNPOS	JNPOS	NSJUN	Junction location parameter (inflow. out- flow, or tee).
LJNS	JNS	3*NSCMP	Junction numbers for components compos- ing the steam-generator secondary side.
LJNSC	JNSC	NSJUN	Secondary external junction number (from input).
LJSINT	JSINT	4*NSCMP	Sequence numbers for the junctions com- posing the steam-generator secondary-side flow path.
LJSSN	JSSN	NSJUN	BD array for the external junction.
LJUNS	JUNS	8*(NSJUN -NOTEE)	An array that contains junction information for the components composing the steam- generator secondary-side flow path.
LNCMSC	NCMSC	NSJUN	Secondary component number that contains the junction.
LNCTS	NCTS	NSJUN	A vector that contains the junction numbers for the components composing the steam- generator secondary side.
LNSOL	NSOL	4*NSCMP	An array that contains information about the method of connecting secondary-side steam-generator components.
LNUMS	NUMS	NSCMP	User-specified steam-generator secondary- side component numbers.
LVSS	VSS	NSJUN	An error that contains information about the methol: of connecting secondary-side steam-generator components.

HEAT-TRANSFER POINTERS:

Name	Array	Dimension	Description
LCPWG	CPWG	NGHT*NDHM1	Wall specific heat $(J \cdot kg^{-1} \cdot K^{-1})$
LCWG	CWG	NGHT*NDHM1	Wall conductivity (W \cdot m^{-1} \cdot K^{-1}).
LDRG	DRG	NGHT*NDHM1	Internodal spacing (`r in m) between nodes in the wall.
LEMSG	EMSG	NGHT	Wall emissivity.
LHILG	HHILG	NGHT	HTC (W \cdot m^{-2} \cdot K^{-1}) to the liquid on the interior of a wall.
LHILGN	HILGN	NGHT	New-time HTC (W \cdot m^{-2} \cdot K^{-1}) to the liquid on the interior of a wall.
LHIVG	HIVG	NGHT	HTC (W \cdot m^{-2} \cdot K^{-1}) to the vapor on the interior of a wall.
LHIVGN	HIVGN	NGHT	New-time HTC (W \cdot m^{-2} \cdot K^{-1}) to the vapor on the interior of a wall.
LHOLG	HOLG	NGHT	HTC (W \cdot m $^{-2}$ \cdot K $^{-1}) to the liquid on the exterior of a wall.$
LHOLGN	HOLGN	NGHT	New-time HTC (W \cdot m^{-2} \cdot K^{-1}) to the liquid on the exterior of a wall.
LHOVG	HOVG	NGHT	HTC (W \cdot m^{-2} \cdot K^{-1}) to the vapor on the exterior of a wall.
LHOVGN	HOVGN	NGHT	New-time HTC (VV \cdot m^{-2} \cdot K^{-1}) to the vapor on the exterior of a wall.
LIDGHI	IDGHI	NGHT	Heat-transfer regime flag for the interior of a wall.
LIDGHO	IDGHO	NGHT	Heat-transfer regime flag for the exterior of a wall.
LIDGI	IDGI	NGHT	Fluid cell identifier for heat transfer with the interior of a wal'.
LIDGO	IDGO	NGHT	Fluid cell identifier for heat transfer with the exterior of a wall.
LMATG	MATG	NGHT*NDHM1	Wall material identifier.
LQPCGO	QPCGO	NGHT*NODMX	Old wall volumetric heat source (currently not used).
LQPPCG	QPPCG	NGHT*NODMX	Wall volumetric heat source.

LQPPG	QPPG	NGHT*NODMX	Wall volumetric heat source (W \cdot m ⁻³).
LRADIG	RADIG	NGHT	Wall interior radius (m).
LRNG	RNG	NGHT*NODMX	Radial locations (m) of wall heat-transfer nodes.
LRN2G	RN2G	NGHT*NDHM1	Radial locations (m) of the heat conduction cell edges.
LROWG	ROWG	NGHT*NDHM1	Wall density (kg \cdot m ⁻³).
LTCHFG	TCHFG	NGHT*NODMX	CHF temperature (K).
LTHG	THG	NGHT	Wall thickness (m).
LTILG	TiLG	NGHT	Liquid temperature (K) of the fluid interior to the wall.
LTIVG	TIVG	NGHT	Vapor temperature (K) of the fluid interior to the wall.
LTOLG	TOLG	NGHT	Liquid temperature (K) of the fluid exterior to the wall.
LTOVG	TOVG	NGHT	Vapor temperature (K) of the fluid exterior to the wail.
LTWG	TWG	NGHT*NODMX	Old wall temperature distribution (K).
LWGN	TWGN	NGHT*NODMX	New wall temperature distribution (K).
LWAIG	WAIG	NGHT	Interior wall surface area (m ²).
LWAOG	WAOG	NGHT	Exterior wall surface area (m^2) .
NETWOR	K POINTERS:		
Name	Array	Dimension	Description
LAOLS	AOLS	NSJUN* (NSJUN+1)	Steam-generator network matrix.
LAOUS	AOUS	NSJUN*NSJUN	Steam-generator network matrix.
LAOVS	AOVS	NSJUN*NSJUN	Steam-generator network matrix.
LBDP	BDP	LENBD	Boundary array for the primary tee connec- tion.
LBDS	BDS	NSJUN*LENBD	Boundary arrays for the steam-generator secondary components.
LDRAS	DRAS	NSJUN	Steam-generator network vector.
LDRCS	DRCS	NULSN	Steam-generator network vector.

LDRELS	DRELS	NSJUN	Steam-generator network vector.
LDREVS	DREVS	NSJUN	Steam-generator network vector.
LDRLS	DRLS	NSJUN	Steal i-generator network vector.
LDRVS	DRVS	NSJUN	Steam-generator network vector.
LDVBS	DVBS	NSJUN	Steam-generator network vector.
LIOJS	IIOJS	NSJUN	Vector that contains information regarding the association of the steam-generator junc- tions and the external network neutrix.
LIOUS	IOUS	NSJUN	Vector containing information regarding the sequence numbers of the steam-generator secondary junctions.
LODS	ODS	4*NSJUN	Steam-generator network matrix.
LVRHS	VRHS	NSJUN	Steam-generator network matrix.

C.10.3. STGNDATA-STGEN Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; STGENVLT, defined in Sec. C.10.1; and STGENPT, defined in Sec. C.10.2.

C.11. TEE COMPONENT

C.11.1. TEEVLT-Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
AI	Standpipe flow area.
ALPD	JCELL void fraction for the separator component.
ALPOT	Old offtake void fraction.
ALPOTN	New offtake void fraction.
ALPOTO	Old-old offtake fraction.
ALPS	Side-arm sec. for void fraction for the separator component.
AN	Separator nozzle exit area.
BSMASS	Time-integrated mass flow from tee.
CA	Fraction of liquid velocity at the left face of the tee junction cell tha contributes to the momentum transfer into the tee side leg.

CA1	Fraction of liquid velocity at the right face of the tee junction cell that contributes to the momentum transfer into the side leg.		
CA1V	Fraction of vapor velocity at the right face of the tee junction cell that contributes to the momentum transfer into the tee side leg.		
CAV	Fraction of vapor velocity at the left face of the tee junction cell that contributes to the momentum transfer into the tee side leg.		
COST	Cosine of the angle from thew-numbered segment to the secondary tube.		
DELDIM	Constant in the dryer model (currently not used).		
DPSEP	Pressure drop across separator.		
DPSS	Desired pressure drop across separator.		
ENIN1	Total (time-integrated) energy directly input to the primary.		
ENIN2	Total (time-integrated) energy directly input to the secondary.		
EPSW	Wall surface roughness.		
FL(4)	Liquid mass-flow corrections for mass-conservation checks.		
FV(4)	Vapor mass-flow corrections for mass-conservation checks.		
HOUTL1	HTC to liquid at the outer boundary of the primary tube wall.		
HOUTL2	HTC to liquid at the outer boundary of the secondary tube wall.		
HOUTV1	HTC to vapor at the outer boundary of the primary tube wall.		
HOUTV2	HTC to vapor at the outer boundary of the secondary tube wall.		
POWR1	Power per length added to the tee primary.		
POWR2	Power per length added to the tee secondary.		
PWIN1	Initial power deposited in the coolant of the tee primary tube.		
PW/IN2	Initial power deposited in the coolant of the tee secondary tube.		
PWOFF1	Power deposited in the coolant of the tee primary tube when its control- ling trip is OFF after it was ON.		
PWOFF2	Power deposited in the coolant of the tee secondary tube when its con- trolling trip is OFF after it was ON.		
QPIN1	Initial QPPP factor in the tee primary tube.		
QPIN2	Initial QPPP factor in the tee secondary tube.		
QPOFF1	QPPF factor for the tee primary tube when its controlling trip is OFF after it was ON.		

QPOFF2	QPPP factor for the tee secondary tube when its controlling trip is OFI after it was ON.		
RADIN1	Inner radius of the primary tube.		
RADIN2	Inner radius of the secondary tube.		
RH	Radius of the separator hub at inlet.		
RPWMX1	Maximum rate of change of power deposites in the coolant sector tee primary tube.		
RPWMX2	Maximum rate of change of power deposited in the coolant for the tee secondary tube.		
RQPMX1	Maximum rate of change of the QPPP factor for the tee secondary tube.		
RQPMX2	Maximum rate of change of the QPPP factor for the tee secondary tube.		
RR1	Radius of larger pickoff ring at first stage of two-stage separator.		
TH1	Wall thickness of the primary tube.		
TH2	Wall thickness of the secondary tube.		
THETA	Angle between swirling vane and horizontal plane.		
TLEN1	Length of the primary.		
TLLN2	Length of the secondary.		
TOUTL1	Tempera		
TOUTL2	Temperature of liquid outside the secondary tube wall.		
TOUTV1	Temperature of vapor outside the primary tube wall.		
TOUTV2	Temperature of vapor outside the secondary tube wall.		
VDRYL	Lower limit for dryer velocity (currently not available).		
VDRYU	Upper limit for dryer velocity (currently not available).		
WL10	Liquid flow rate into the separator from the previous time step.		
хсо	Carryover ratio of liquid mass flow to total mass flow.		
XCU	Carryunder ratio of vapor mass flow to total mass flow.		
Z11111	Dummy variable that provides a known end to the COMMON block.		
INTEGER VARIAB	ILES:		

rarameter	Description
IA1111	Dummy variable that provides a known start to the COMMON block.
ICBS1	Control-block ID number that defines the separator carryover (the liquid mass flow divided by the total mass flow at the JCELL + 1 interface).

C-51

ICBS2	Control-block ID number that defines the separator carryunder (the vapor mass flow divided by the total mass flow at the JCELL $+ 1$ interface).		
ICHF	CHF calculation option.		
!CJ1	Iteration index of adjacent component to tee at JUN1.		
ICJ2	Iteration index of adjacent component to tee at JUN2.		
ICJ3	Iteration index of adjacent component to tee at JUN3.		
ICONC1	Indicator for presence of boron in the coolant of the tee primary tube.		
ICONC2	Indicator for presence of boron in the coolant of the tee secondary tube.		
IDRY	Dryer option flag (rently not available).		
IENTRN	Offtake model option indicator. 0 = model off; 1 = model on (side-tube internal-junction mass flow determined using offtake model.		
IONOF1	Number of time steps the power deposited in the coolant table for the tee primary tube's controlling trip has been ON.		
IONOF2	Number of time steps the power deposited in the coolant table for the tee secondary tube's controlling trip has been ON.		
IPF1	Last interpolated interval number of the rate-factor table for the power deposited in the coolant of the tee primary tube.		
IPF2	Last interpolated interval number of the rate-factor table for the power deposited in the coolant of the tee secondary tube.		
IPOW1	Indicator for presence of power deposited in the coolant of the tee primary tube.		
IPOW2	Indicator for presence of power deposited in the coolant of the tee sec- ondary tube.		
IPP1	Last interpolated interval number of the power deposited in the coolant table for the tee primary tube.		
IPP2	Last interpolated interval number of the power deposited in the coolant table for the tee secondary tube.		
IPWSV1	Power deposited in the coolant table's abscissa-coordinate variable ID number for the tee primary tube.		
IPWSV2	ver deposited in the coolant table's abscissa-coordinate variable ID number for the tee secondary tube.		
IPWTR1	Trip ID number that controls evaluation of the power deposited in the coolant table for the tee primary tube.		

APPENDIX C

C-52

IPWTR2	Trip ID number that controls evaluation of the power deposited in the coolant table for ' a tee secondary tube.
IQF1	Last interpolated interval number of the rate-factor table for the QPPP factor table of the we primary tube.
IQF2	Last interpolated interval number of the rate-factor table for the QPPP factor of the tee secondary tube.
IQP1	Last interpolated interval number of the QPPP factor table for the tee primary tube.
IQP2	Last interpolated interval number of the factor table for the tee secondary tube.
IQPSV1	QPPP factor table's abscissa-coordinate variable ID number for the tee primary tube.
IQPSV2	QPPP factor table's abscissa-coordinate variable ID number for the tee secondary tube.
IQPTR1	Trip ID number that controls evaluation of the QPPP factor table for the tee primary tube.
IQPTR2	Trip ID number that controls evaluation of the QPPP factor table for the tee secondary tube.
ISEP	Separator flag.
ISOL1	Indicator for velocity update at JUN1.
ISOL2	Indicator for velocity update at JUN2.
ISOL3	Indicator for velocity update at JUN3.
ISOLN	Advanced separator flag.
ISTAGE	Separator-type option.
JCELL	Index of the junction cell within the primary tube.
JS1	Junction sequence number at cell 1 of the primary tube.
JS2	Junction sequence number at cell NCELL1 of the primary tube.
JS3	Junction sequence number at cell NCELL2 of the side tube.
JUN1	Junction number of the junction at cell 1 of the primary tube.
JUN2	Junction number of the junction at cell NCELL1 of the primary tube.
JUN3	Junction number of the junction at cell NCELL2 of the side tube.
NCELL1	Number of fluid cells in the primary tube of the tee.
NCELL2	Number of fluid cells in the side tube of the tee.

NCELLS	NCELL1 + NCELL2 + 1.
NCSEP	Separator flag.
NDRYR	Dryer option flag (dryer not available).
NONOF1	Number of time steps the QPPP factor table for the tee primary tube's controlling trip has been ON.
NONOF2	Number of time steps the QPPP factor table for the tee secondary tube's controlling trip has been ON.
NPWRF1	Number of pairs in the rate-factor table for the power deposited in the coolant table of the tee primary tube.
NPWRF2	Number of pairs in the rate-factor table for the power deposited in the coolant table of the tee secondary tube.
NPWSV1	Rate-factor table's abscissa-coordinate variable ID number for the power deposited in the coolant table of the tee primary tube.
NPWSV2	Rate-factor table's abscissa-coordinate variable ID number for the power deposited in the coolant table of the tee secondary tube.
NPWTB1	Number of pairs in the power deposited in the coolant table for the tee primary tube.
NPWTB2	Number of pairs in the power deposited in the coolant table for the tee secondary tube.
NQPRF1	Number of pairs in the rate-factor table for the QPPP factor table of the tee primary tube.
NQPRF2	Number of pairs in the rate-factor table for the QPPP factor table of the tee secondary tube.
NQPSV1	Rate-factor table's abscissa-coordinate variable ID number for the QPPP factor table of the tee primary tube.
NQPSV2	Rate-factor table's abscissa-coordinate variable ID number for the QPPP factor table of the tee secondary tube.
NQPTB1	Number of pairs in the QPPP factor table for the tee primary tube.
NQPTB2	Number of pairs in the QPPP factor table for the tee secondary tube.
NSEPS	Number of physical separators modeled.
TYPE1	Type of adjacent component at JUN1.
TYPE2	Type of adjacent component at JUN2.
TYPE3	Type of adjacent component at JUN3.
Zi1111	Dummy variable that provides a known end to the COMMON block.
	방법 방법 방법 방법 방법 방법 이 가격 관계에 가지 않는 것이 있는 것이 없는 것이 많은 것이 없다.

C-54

C.11.2. TEEPT-TEE Pointer Table (For TEE, NCELLS = NCELL1 + NCELL2 + 1)

Name	Array	Dimension	Description
DUALPT	- NAMES OF	-	General pointer table.
HYDROPT	-	-	General pointer table.
INTPT	-	-	General pointer table.
HEATPT			General pointer table.
LAA	AA	ISTAGF	Void profile coefficient inside water layer ra- dius.
LADS	ADS	ISTAGE	Flow area of discharge path.
LBB	BP	ISTAGE	Void profile coefficient within water layer.
LBD4	BD4	LENBD	BD4 array.
LCKS	CKS	ISTAGE	Loss coefficient for discharge passage.
LDDS	DDS	ISTAGE	Hydraulic diameter of discharge passage.
LEFFLD	EFFLD	ISTAGE	Effective L/D coefficient at pickoff ring.
LHBS	HBS	ISTAGE	Length of the separator band.
LHSK	нѕк	ISTAGE	Axial distance between discharge and swirling vane.
LPOWRF	POWRF	(NPWRF1 + NPWRF2)*2	Rate-factor tables for the power deposited in the coolant tables.
LPOWTB	POWTB	(NPWTB1 + NPWTB2)*2	Power deposited in the coolant table.
LRWS	RWS	ISTAGE	Inner radius of separator wall.
LRRS	RRS	ISTAGE	Inner radius of the pickoff ring.
LQP3RF	QP3RF	(NQPRF1 + NQPRF2)*2	Rate-factor table for the QPPP factor tables.
LQP3TB	QP3TB	(NQPTB1 + NQPTB2)*2	QPPP factor tables.

C.11.3. TEEDATA-TEE Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D: TEEVLT, defined in Sec. C.11.1; and TEEPT, defined in Sec. C.11.2.

C.12. TURBINE COMPONENT

C.12.1. TURBNVLT-TURB Variable-Length Table

REAL VARIABLES:

Parameter	Description		
AA1111	Dummy variable that provides a known start to the COMMON block.		
ALPHA1	Upstream void fraction.		
ALPHA2	Downstream void fraction.		
AR	Area ratio (bucket exit area/nozzle exit area).		
BSMASS	Time-integrated mass flow from turbine.		
COEF1	Nozzle coefficient.		
COEF2	Bucket coefficient.		
COF3SQ	Fraction of reaction energy actually delivered in the stage.		
CP	Specific heat at constant pressure.		
CPOW	Special turbine input.		
DIA	Bucket centerline diameter.		
DSMOM	Derivative of SMOM with respect to velocity.		
EFFDSN	Stage efficiency at design conditions.		
EFFSTG	Stage efficiency.		
ENINP	Total (time-integrated) energy directly input to the turbine.		
EPSW	Wall surface roughness.		
FL(2)	Liquid mass-flow corrections for mass-conservation checks.		
FLODIR	Flow direction flag. -1 = indicates normal flow direction is from JUN2 to JUN1; 1 = indicates normal flow direction is from JUN1 to JUN2.		
FLOW	Mass-flow rate.		
FV(2)	Vapor mass-flow corrections for mass-conservation checks.		
GAMMA	Isentropic exponent of expansion.		
PHIREM	Remaining losses (rotation or diaphragm-packing).		
PLENT	Total length of the turbine stage.		
POWIN	Initial power in the coolant.		
POWDSN	Stage power output at design conditions.		
POWOFF	Power in the coolant when the controlling trip is OFF after it was ON.		
POWSTG	Stage power output.		
PRES1	Upstream pressure.		

	18		٤.
STORE T			8
ATTRACT.		12	σ.
	12	251	٢.

PRES2	Downstream pressure.			
QUALTY	Thermodynamic quality of steam.			
REACTN	Degree of reaction at design conditions.			
RHOL1	Upstream liquid density.			
RHOL2	Downstream liquid density.			
RHOM1	Upstream mixture density.			
RHOM2	Downstream mixture density.			
RHOV1	Upstream steam density.			
RHOV2	Downstream steam density.			
RPOWMX	Maximum rate of change of the power deposited in the coolant.			
SMOM	Source term in the momentum equation (head gain).			
SUPRHT	Upstream degree of superheat of steam.			
TEMPL1	Upstream liquid temperature.			
TEMPL2	Downstream liquid temperature.			
TEMPV1	Upstream steam temperature.			
TEMPV2	Downstream steam temperature.			
VELL1	Upstream liquid velocity.			
VELL2	Downstream liquid velocity.			
VELM1	Upstream mixture velocity.			
VELM2	Downstream mixture velocity.			
VELV1	Upstream steam velocity.			
VELV2	Downstream steam velocity.			
VSTAG	Stagnation velocity.			
Z11111	Dummy variable that provides a known end to the COMMON block.			
INTEGER VARI	ABLES:			
Parameter	Description			
IA1111	Dummy variable that provides a known start to the COMMON block.			

Iteration index of adjacent component at JUN1.

Iteration index of adjacent component at JUN2.

Presence of boron dissolved in the liquid coolant flag.

4			8
諁			
88			
- 18			ø

APPENDIX C

ICJ1

ICJ2

ICONC

Number of time steps the power deposited in the coolant trip has been ON.			
Power deposited in the coolant table's rate-factor table interval last in- terpolated.			
Presence of power in the coolant flag.			
Power deposited in the coolant table's abscissa-coordinate variable ID number.			
Trip ID number that controls power deposited in the coolant table eval- uation.			
Power 'eposited in the coolant table interval last interpolated.			
Indicator for velocity update at JUN1.			
Indicator for velocity update at JUN2.			
Stage number.			
Junction sequence number at cell 1 of the turbine.			
Junction sequence number at cell NCELLS of the turbine.			
Junction number of the junction at cell 1.			
Junction number of the junction at cell NCELLS.			
Length of the turbine block in array data (information pertaining to the entire turbine-generator assembly, that is, the sum over all stages).			
Number of fluid calculation cells in the turbine component.			
Turbine efficiency. 0 = stage efficiency to be computed at off-design conditions; 1 = constant efficiency.			
Number of entry pairs in the power deposited in the coolant table's rate- factor table.			
Power deposited in the coolant rate-factor table's abscissa-coordinate variable ID number.			
Number of entry pairs in the power deposited in the coolant table.			
Number of rows of moving blades.			
Type of adjacent component at JUN1.			
Type of adjacent component at JUN2.			
Dummy variable that provides a known end to the COMMON block.			

C.12.2. TURBPT-TURB Pointer Table

Name	Array	Dimension	Description
DUALPT			General pointer table.
HYDROPT	-		General pointer table.
INTPT			General pointer table.
HEATPT			General pointer table.
LANGL	ANGL	NROWS2	Pointer for blade angles.
LPOWRF	POWR	NPOWRF *2	Pointer variable address for the power de- posited in the coolant table's rate-factor ta- ble.
LPOWTB	POWTB	NPOWTB *2	Pointer variable address for the power de- posited in the coolant table.
LTURB	TURB	-1	Absolute LCM address for the turbine data common among all stages.

C.12.3. TURBDATA-TURB Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; TURBNVLT, defined in Sec. C.12.1; and TURBPT, defined in Sec. C.12.2.

C.13. VALVE COMPONENT

C.13.1. VALVEVLT-VALVE Variable-Length Table

REAL VARIABLES:

Parameter	Description			
AA1111	Dummy variable that provides a known start to the COMMON block.			
AVLVE	Valve open flow area.			
BSMASS	Time-integrated mass flow from the valve.			
EPSW	Wall surface roughness.			
FAVLVE	Fraction of the fully open flow area AVLVE to which the adjustable valve cross section is set.			
FL(2)	Liquid mass-flow corrections for mass-conservation checks.			
FMAXOV	Maximum flow area fraction or relative valve stem position during valve adjustment by the overriding trip.			
FMINOV	Minimum flow area fraction or relative valve stem position during valve adjustment by the overriding trip.			

FRICO	Fully open valve form-loss FRIC forward flow.			
FRICOR	Fully open valve form-loss FRIC reverse flow.			
FV(2)	Vapor mass-flow corrections for mass-conservation checks.			
HDRDX	Fully open valve hydraulic diameter over DX.			
HOUTL	HTC between outer boundary of valve wall and liquid.			
HOUTV	HTC between outer boundary of valve wall and vapor.			
HVLVE	Valve open hydraulic diameter.			
QP3IN	Initial QPPP factor.			
QP3OFF	QPPP factor when the controlling trip is OFF after it was ON.			
RADIN	Inner radius of pipe wall.			
RQP3MX	Maximum allowed rate of change of the QPPP factor(s).			
RVMX	Maximum rate of change of valve flow area fraction or relative valve stem position.			
RVOV	Rate of change of valve flow area fraction or relative valve stem position when controlled by the overriding trip being ON.			
ТН	Thickness of pipe wall.			
TOUTL	Liquid temperature outside valve.			
TOUTV	Vapor temperature outside valve.			
XPOS	Variable flag for valve operation in progress. 0 = no movement; 1 = opening movement.			
Z11111	Dummy variable that provides a known end to the COMMON block.			
INTEGER VARI	ABLES:			
Parameter	Description			
IA1111	Dummy variable that provides a known start to the COMMON block.			

- ICHF CHF calculation option.
- ICJ1 Iteration index of adjacent component at JUN1.
- ICJ2 Iteration index of adjacent component at JUN2.
- ICONC Indicator for presence of boron in the coolant.
- IONOFF Number of time steps the valve table's controlling trip has been ON.
- IQF Last interpolated interval number in the rate-factor table for the QPPP factor table.

	4		а.	2
1	8			8
1			84	8
2	5			ø
	1	193	85	٩.

IQP	Last interpolated interval number in the QPPP factor table.			
IQP3SV	QPPP factor table's abscissa-coordinate variable ID number.			
IQP3TR	Trip ID number that controls evaluation of the QPPP factor table.			
ISOLLB	Indicator for velocity update at JUN1.			
ISOLRB	Indicator for velocity update at JUN2.			
IVF	Last interpolated interval number in the rate-factor table for the valv adjustment table.			
IVP1	Last interpolated interval number in the first valve adjustment table.			
IVP2	Last interpolated interval number in the second valve adjustment table.			
IVPS	Adjustable valve interface position.			
IVSV	Signal-variable ID number that defines the valve table's independent vari- able.			
IVTR	Trip ID number that controls evaluation of the valve adjustment table(s).			
IVTROV	Trip ID number that overrides trip IVTR control of the adjustable valve.			
IVTY	Valve type option indicator.			
IVTYOV	Type of valve flow a stream by the overriding trip IVTROV.			
JS1	Junction sequence number at cell 1 of the valve.			
JS2	Junction sequence number at cell NCELLS of the valve.			
JUN1	Junction number of the junction at cell 1.			
JUN2	Junction number of the junction at cell NCELLS.			
MODE	Indicator for valve movement over the previous time step. -1 = closing; 0 = no movement; 1 = opening.			
NCELLS	Number of fluid cells.			
NONOFF	Number of time steps the QPPP factor table's controlling trip has been ON.			
NQP3RF	Number of pairs in the rate-factor table for the QPPP factor table.			
NQP35V	Rate-factor table's abscissa-coordinate variable !D number for the QPPP factor table.			
NQP3TB	Number of pairs in the QPPP factor table.			
NVRF	Number of rate-factor table pairs whose rate factor is applied to the valve table's independent variable.			

C-61

2
NVSV	Rate-factor	table's abscissa-coordinate	variable ID	number	for the valve	
	adjustment	table(s).				

- NVTB1 Number of pairs in the first valve adjustment table.
- NVTB2 Number of pairs in the second valve adjustment table.
- TYPE1 Type of adjacent component at JUN1.
- TYPE2 Type of adjacent component at JUN2.
- ZI1111 Dummy variable that provides a known end to the COMMON block.

C.13.2. VLVEPT-VALVE Pointer Table

Array	Dimension	Description
-		General pointer table.
	and a second	General pointer table.
-		General pointer table.
		General pointer table.
QP3RF	NQP3RF *2	Rate-factor table for the QPPP factor table.
QP3TB	NQP3TB *2	QPPP factor table.
VRF	NVRF *2	Rate-factor table for the valve adjustment table(s).
VTB1	(NVTB1)*2	First valve adjustment table.
VTB2	NVTB2 *2	Second valve adjustment table.
	Array — QP3RF QP3TB VRF VTB1 VTB2	ArrayDimensionQP3RF NQP3RF *2QP3TB NQP3TB *2VRF NVRF *2VTB1(NVTB1)*2VTB2 NVTB2 *2

C.13.3. VLVEDATA-VALVE Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; VALVEVLT, defined in Sec. C.13.1; and VLVEPT, defined in Sec. C.13.2.

C.14. VESSEL COMPONENT

C.14.1. VSSELVLT-VESSEL Variable-Length Table

REAL VARIABLES:

Parameter	Description
AA1111	Dummy variable that provides a known start to the COMMON block.
BSMASS	Integrated fluid flow from vessel at start of time step.
BSMSSN	Integrated fluid flow from vessel at end of time step.
CIMFR	Core inlet mass-flow rate.
CIMFRL	Core inlet liquid mass-flow rate.

		ь.
- 6		88
- 10		
		27

CIMFRV	Core liquid volume fraction.
COMFR	Core outlet mass-flow rate.
COMFRL	Core liquid outlet mass-flow rate.
COMFRV	Core outlet vapor pressure mass-flow rate.
CORELQ	Core liquid volume fraction.
DCFLOW	Downcomer mass-flow rate.
DCLQVL	Downcomer liquid volume fraction.
EPSW	Wall surface roughness.
GCC	Gravity-acceleration constant.
GEOMFC	Geometry factor $(1.0 = cylindrical, 0.0 = Cartesian)$.
GRAVZ	GRAV component in the z-direction.
PCORE	Average core pressure.
PDC	Downcomer average pressure.
PLP	Lower-plenum average pressure.
PUP	Upper-plenum average pressure.
QHSTOT	Total heat flux from heat structure components coupled to the vessel component.
QSLTOT	Total heat flux from heat-structure components coupled to the vessel component (not evaluated).
SHELV	Addition to the input vessel Z coordinates to get elevations for computing GRAV in one dimension.
TCILMF	Integrated core inlet liquid mass flow (kg).
TCIVMF	Integrated core inlet vapor mass flow (kg).
TCOLMF	Integrated core outlet liquid mass flow (kg).
TCORE	Average core temperature.
TCOVMF	Integrated core outlet vapor mass flow (kg).
TDC	Downcomer average liquid temperature.
TLP	Lower-plenum average temperature.
TSCORE	Average core saturation temperature.
TSDC	Downcomer average saturation temperature.
TSLP	Lower-plenum average saturation temperature.

TSUP	Upper-plenum average liquid temperature.
TUP	Upper-plenum average liquid temperature.
VBMASS	Mass counter for internal break sources.
VBMSSN	Mass counter for internal break sources.
VCORE	Total liquid mass in the core.
VDCLQ	Total liquid mass in the downcomer.
VFMASS	Mass counter for internal fill source.
VFMSSN	Mass counter for internal fill source.
VLCORE	Core liquid mass.
VLPLIQ	Lower-plenum liquid volume fraction.
VLPLM	Lower-plenum liquid mass.
VLPLQ	Total liquid mass in the lower plenum.
VLQMSS	Total liquid mass in the vessel.
VOLDC	Downcomer volume.
VOLLP	Lower-plenum volume.
VOLUP	Upper-plenum volume.
VSFLO'V	Vessel mass flow.
VUPLIQ	Upper-plenum liquid volume fraction.
VUPLM	Upper-plenum liquid mass.
Z11111	Dummy variable that provides a known end to the COMMON block.
INTEGER VARIA	ABLES:
Parameter	Description

Parameter	Description
IA1111	Dummy variable that provides a known start to the COMMON block.
IALL	IALLL.
IALLL	ICXL + NXBCP*NV.
ICO	ICOMM + NXBCM*NV.
ICOL	ICOMM + NXBCM*NV.
ICOM	ICOMM + (NXBCM-1)*NV.
ICOML	ICOMM + (NXBCM-1)*NV.
ICOMM	A array starting location for vessel three-dimensional arrays.

22			
10			
185			
			29
	15	25	

ICOMML	ICOMM.
ICONC	Presence of boron in the coolant flag.
ICRL	Core lower-boundary segment number, Z(ICRL).
ICRR	Core outer radial-boundary segment number, RAD(ICRR).
ICRU	Core upper-boundary segment number, Z(ICRU).
ICX	ICXL.
ICXL	1COMM + (NXBCM + NXR-2)*NV.
ICXP	ICXPL.
ICXPL	ICXL + NV.
IDCL	Downcomer lower-boundary segment number, Z(IDCL).
IDCR	Downcomer radial-boundary segment number, RAD(IDCR).
IDCU	Downcomer upper-boundary segment number, Z(IDCU).
IEXT	Specifies if this VESSEL input was generated by the post processor EX- TRACT. 0 = no; 1 = yes.
ve0	IFOL.
IFOL	ICOML if IGEOM.EQ.1.AND.IGBCXR.EQ.1, else ICOL.
IFX	IFXL.
IFXL	IFOL + (NXRV-1)*NV.
IGBC	IGBCXR + IGBCYT + IGBCZ.
IGBCXR	Flag (0 or 1) for internal pressure/velocity boundary conditions on the x- or r-direction walls of the VESSEL component.
IGBCYT	Flag (0 or 1) for internal pressure/velocity boundary conditions on the y- or θ -direction walls of the VESSEL component.
IGBCZ	Flag (0 or 1) for internal pressure/velocity boundary conditions on the z-direction walls of the VESSEL component.
IGEOM	Vessel geometry option. 0 = cylindrival geometry; 1 = Cartesian geometry.
ILCSP	Lower-core support-plate axial segment number.
INHSMX	Number of interfaces between dissimilar materials in the vessel slabs.
IUCSP	Upper-core support-plate axial segment number.

IUHP	Upper head-plate axial segment number.	(
IVSSBF	Internal vessel boundary condition. 0 = no internal boundaries (default); 2 = first axial level acts like a fill, last axial level acts like a break; 20 = first axial level acts like a break, last axial level acts like a fill; 22 = both the first and last axial levels act like breaks.		
IZBK	Switch for back-up on water pack.		
IZBK2	Switch for re-donor-cell logic.		
IZNX	Variable used in water-packing logic.		
JALL	JCX + NYBCP.		
JCO	NYBCM + 1		
JCOM	NYBCM.		
JCOMM	NYBCM-1.		
JCX	JCO + NYT-1.		
JCXP	JCX + 1.		
JFO	JCOM if IGEOM.EQ.1.AND.IGBCYT.EQ.1, else JCO.		
JFX	JF0 + NYT-1.		
KALL	KCX + NZBCP.		
KC0	NZBCM+1.		
KCOM	NZBCM.		
KCOMM	NZBCM-1.		
КСХ	KCO + NZZ-1.		
KCXP	KCX + 1.		
KF0	KCOM if IGBCZ.EQ.1, else KCO.		
KFX	KF0 + NZZ-1.		
LENLD	Length of level data.		
LENLDO	Defined to be zero and currently not used.		
LFVL	Relative position of old fundamental variables of level data.		
LFVNL	Relative position of new fundamental variables of level data.		
LNFVL	Length of fundamental variables of level data.		
LNPTRL	Number of level data pointers.	6	
LOCVSP	Beginning offset for the vessel pointer table.		

C-66

相		
453		
900		
- 16		83
	-	*

LSTVSP	Length of the vessel pointer table.
LTEMPL	Location of temporary space in the A array to contain one level of data for editing of level data. Calculated but not used.
NASX	Number of axial segments (levels).
NCELLS	Number of fluid cells.
NCLX	Number of fluid cells per level.
NCRX	Maximum number of core volumes per level.
NCSR	Number of cell sources (connections).
NIJT	NI * JALL.
NODHS	Number of nodes in the heat slab.
NRSX	Number of radial segments.
NSGRID	Number of spacer grids present in the core region. Spacer grids are modelled only when the reflood model has been selected by inputting NAMELIST variable NEWRFD $= 1$.
NTSX	Number of theta segments.
NVENT	Number of cells with vent valves in outer radial surface.
NVVTB	Number of input pairs in multiple-point vent-valve table.
NXRV	NRSX if IGEOM.EQ.0.AND.IGBCXR.NE.0, else NRSXH if IGEOM.NE.0.AND IGBCXR.NE.0, else NRSX-1.
NYTV	NTSX-1 if IGEOM.EQ.0.AND.IGBCYT.EQ.0, else NTSX+1 if IGEOM.NE.0. AND.IGBCYT.NE.0, else 0 if IGEOM.EQ.0.AND.NTSX.EQ.1, else NTSX.
NZZV	NASX+1 if IGBCZ.NE.0, else NASX-1.
ZI1111	Dummy variable that provides a known end to the COMMON block.
C.14.2. VSS	SLPT-VESSEL Pointer Table
COMMON D	ATA POINTERS:

Name	Array	Dimension	Description
LALPAG	ALPAG	NTSX*NCSX	Old void fraction at the agitated inverted annular flow.
LALPAN	ALPAN	NTSX*NRSX	New void fraction at the agitated IAF.
LALPCN	ALPCN	NTSX*NRSX	New void fraction at the CHF point.
LALPRN	ALPRN	NTSX*NRSX	New void fraction at the rough-wavy IAF.
LALPRW	ALPRW	NTSX*NRSX	Old void fraction at the rough-wavy IAF.

LALPSM	ALPSM	NTSX*NRSX	Old void fraction at the smooth IAF.
LALPSN	ALPSN	NTSX*NRSX	New void fraction at the smooth IAF.
LALPTN	ALPTN	NTSX*NRSX	New void fraction at the transition boiling.
LAVENT	AVENT	NVENT	Pointer for vent-valve areas.
LDPCVN	DPCVN	NVENT	Pointer for vent-valve maximum ΔP to be closed.
LDPOVN	DPOVN	NVENT	Pointer for vent-valve minimum ΔP to be open.
LDR	DR	NRSX	Radial segment lengths (delta R).
LDTH	DTH	NTSX	Theta segment length (delta theta).
LDVLDP	DVLDP	NCSR	Derivative of liquid source velocity with re- spect to pressure.
LDVVDP	DVVDP	NCSR	Derivative of vapor source velocity with re- spect to pressure.
LDZ	DZ	NASX	Axial segment lengths (delta Z).
LFI CVN	FRCVN	NVENT	FRIC value when vent valve closed.
LFROVN	FROVN	NVENT	FRIC value when vent valve opened.
LFUNH	FUNH	NCLX*NEWRFD	Fraction of the heat-structure surface in each horizontal-plant mesh cell that is unheated.
LGRAVR	GRAVR	NYBCM + NTSX + NYBCP	x- or y-direction component of the gravity unit vector on each y- or θ -direction mesh-cell interface.
LGRAVT	GRAVT	NYBCM + NTSX + NYBCP	y- or θ -direction component of the gravity unit vector on each y- or θ -direction mesh- cell interface.
LICJ	ICJ	NCSR	Component number adjacent to a source.
LISOLB	ISOLB	NCSR	Indicator for velocity update.
LISRC	ISRC	NCSR	Relative cell number associated with source.
LISRF	ISRF	NCSR	Face number associated with source.
LISRL	ISRL	NCSR	Level number associated with source.
LIZINI			(Not used.)
LIZINS			(Not used.)
C-68			APPENDIX C
had he hel			

LJSN	JSN	NCSR	Junction sequence number associated with source.
LJUNS	JUNS	NCSR	Junction number associated with source.
LLOCVN	LOCVN	NVENT	Pointer for vent-valve location
LMSC	MSC	NCSR	Absolute cell number of source.
LNHSCA	NHSCA	NTSX*NRSX	Heat-structure component number for aver- age rod.
LNSRL	NSRL	NASX	Number of sources on level.
LPSNEW	PSNEW	NCSR	New source pressure.
LPSOLD	PSOLD	NCSR	Old source pressure.
LRAD	RAD	NRSX	Radial segment outer radii.
LREFLD	REFLD	NTSX*NRSX	Reflood flag.
LSAC	SAC	NCSR*2	Air continuity source.
LSCC	SCC	NCSR*ISOLUT	Solute concentration source terms. ISO- LUT = 0 or 1.
LSLC	SLC	NCSR*2	Liquid continuity source.
LSLE	SLE	NCSR*2	Liquid energy source.
LSMOML	SMOML	NCSR*6	Liquid momentum source.
LSMOMV	SMOMV	NCSR*6	Vapor momentum source.
LSVC	SVC	NCSR*2	Vapor continuity source.
LSVE	SVE	NCSR*2	Vapor energy source.
LTEMPS	TEMPS	LENLD	Temporary array used to edit a level of vessel data.
LTH	ТН	NTSX	Theta segment angle.
LVELSL	VELSL	NCSR	Liquid source velocity.
LVELSV	VELSV	NCSR	Vapor source velocity.
LVVTB	VVTB	NVVTB*2	Pointer to multiple-point vent-valve table.
LZ	Z	NASX	Axial segment upper elevation.
LZAGS	ZAGS	NTSX*NRSX	Old location of agitated inverted annular flow (IAF).
LZAGSN	ZAGSN	NTSX*NRSX	New location of agitated IAF.
LZCHFN	ZCHFN	NTSX*N+3X	New location of CHF point.

LZDFS	ZDFS	NTSX*NRSX
LZDFSN	ZDFSN	NTSX*NRSX
LZRWS	ZRWS	NTSX*NRSX
LZRWSN	ZRWSN	NTSX*NRSX
LZSGRD	ZSGRD	NTSX*NRSX
LZSMS	ZSMS	NTSX*NRSX
LZSMSN	ZSMSN	NTSX*NRSX
LZTBN	ZTBN	NTSX*NRSX
LEVEL DATA	GRAPHICS	IDENTIFIERS:

Old location of dispersed IAF. New location of disposed IAF. Old location of rough-wavy IAF. New location of rough-wavy IAF. New location of grid spacer. Old location of smooth IAF. New location of smooth IAF. New location of transition boiling.

APPENDIX C

Name	Array	Dimension	Description
LAID1	AID1	0	Variable not used.
LAID1N	AID1N	0	Variable not used.
LAID2	AID2	0	Variable not used.
LAID2N	AID2N	0	Variable not used.
LALD1	ALD1	0	Variable not used.
LALD1N	ALD1N	0	Variable not used.
LALD2	ALD2	0	Variable not used.
LALD2N	ALD2N	0	Variable not used.
LALP	ALP	0	Variable not used.
LALPN	ALPN	NA	Graphics identifier for new vapor fraction.
LALV	ALV	0	Variable not used.
LALVEN	ALVEN	NA	Graphics identifier for new interface-to-liquid evaporation coefficient times interfacial area.
LALVN	ALVN	NA	Graphics identifier for new interfacial area.
LAM	AM	NA	Graphics identifier for Γ phase-change rate.
LARC	ARC	NA	Graphics identifier for cellular solute density. ISOLUT = 0 or 1.
LARV	ARV	NA	Graphics identifier for old product of void fraction and vapor density.
LARVN	ARVN	NA	Graphics identifier for new product of void fraction and vapor density.
LBIT	BIT	NA	Graphics identifier for bit flag.

122012300		
1000000		0
1.000	200	٢.

LBITN	BITN	NA	Graphics identifier for bit flag.
LC5P3			Variable not used.
LC5P4			Variable not used.
LC5P5			Variable not used.
LC5P6			Variable not used
LCINYT	CINYT	NA	Graphics identifier for interfacial drag coefficient for the θ -direction.
LCIXR	CIXR	NA	Graphics identifier for interfacial drag coef- ficient for radial direction.
LCIYT	CIYT	NA	Graphics identifier for interfacial drag coefficient for θ -direction.
LCIZ	CIZ	NCLX	Graphics identifier for interfacial drag coef- ficient for axial direction.
LCFZL	CFZL	NCLX*3* NFRC3	Graphics identifier for directional form-loss coefficient for liquid.
LCFZV	CFZV	*ICLX*3* NFRC3	Graphics identifier for directional form-loss coefficient for vapor.
LCHTAN	CHTAN	NCLX	New interface-to-noncondensible HTC times the interfacial area.
LCHTIN	CHTIN	NCLX	Graphics identifier for new interface-to-vapor HTC times interfacial area.
LCL	CL	0	Variable not used.
LCNHS	CNHS	0	Variable not used.
LCNHSN	CNHSN	0	Variable not used.
LCONC	CONC	0	Variable not used.
LCONCO	CONCO	0	Variable not used.
LCPHS	CPHS	0	Variable not used.
LCPHSN	CPHSN	0	Variable not used.
LCPL	CPL	0	Variable not used.
LCPV	CPV	0	Variable not used.
LCV	CV	0	Variable not used.
LDLL	DLL	0	Variable not us.
LDRIV	DRIV	0	Variable not used.

LDROP	DROP	0	Variable not used.
LDVD1	DVD1	0	Variable not used.
LDVD2	DVD2	0	Variable not used.
LDVV	DVV	0	Variable not used.
LDZZ	DZZ	0	Variable not used.
LEA	EA	0	Variable not used.
LEAN	EAN	0	Variable not used.
LEL	EL	0	Variable not used.
LELN	ELN	0	Variable not used.
LEMHS	EMHS	0	Variable not used.
LEV	EV	0	Variable not used.
LEVN	EVN	0	Variable not used.
LFA	FA	NCLX*3	Graphics identifier for cell-edge flow areas.
LFAG	FAG	0	Variable not used.
LFINAN	FINAN	0	Variable not used.
LFRIC1	FRICI	0	Variable not used.
LFRCIN	FRCIN	0	Variable not used.
LFRICI	FRICI	0	Variable not used.
LFRICL	FRICL	0	Variable not used.
LFRICV	FRICV	0	Variable not used.
LGAM	GAM	0	Variable not used.
LGAMN	GAMN	0	Variable not used.
LGCOND	GCOND	0	Variable not used.
LGEVAP	GEVAP	0	Variable not used.
LHD	HD	0	Variable not used.
LHDYT	HDYT	NCLX*3	Interface hydraulic diameters.
LHFG	HFG	0	Variable not used.
LHGAM	HGAM	0	Variable not used.
LHLA	HLA	0	Variable not used.
LHLATW	HLATW	0	Variable not used.

	LHLV	HLV	0	Variable not used.
	LHLVN	HLVN	0	Variable not used.
	LHSA	HSA	0	Variable not used.
	LHSHL	HSHL	0	Variable not used.
	LHSHLO	HSHLO	0	Variable not used.
	LHSHV	HSHV	0	Variable not used.
	LHSHVO	HSHVO	0	Variable not used.
	LHST	HST	0	Variable not used.
	LHSTN	HSTN	0	Variable not used.
	LHSX	HSX	0	Variable not used.
	LHVA	AVH	0	Variable not used.
	LHVATW	HVATW	0	Variable not used.
	LICMSH	ICMSH	0	Variable not used.
	LIDRGS	IDRGS	0	Variable not used.
	LIHSN	IHSN	0	Variable not used.
	LISRN	ISRN	0	Variable not used.
	LMATHS	MATHS	0	Variable not used.
	LMFRL	MFRL	NCLX*IMFR	Graphics identifier for liquid mass flow.
	LMFRV	MFRV	NCLX*IMFR	Variable not used.
	LP	Р	0	Variable not used.
	LPA	PA	0	Variable not used.
	LPAN	PAN	NCLX	Graphics identifier for new air partial pres- sure.
	LPN	PN	NCLX	Graphics identifier for new pressure.
	LQRD	QRD	0	Variable not used.
	LQSL	QSL	NCLX	Graphics identifier for slab heat flux.
	LQVD1	QVD1	0	Variable not used.
	LQVD2	QVD2	0	Variable not used.
	LRDZ	RDZ	0	Variable not used.
6	LRMEM	RMEM	0	Variable not used.
1	LROA	ROA	0	Variable not used.

· /

APPENDIX C

LROAN	ROAN	NCLX	Graphics identifier for new air density.	
LROHS	ROHS	0	Variable not used.	
LROHSN	ROHSN	5	Variable not used.	
LROL	ROL	0	Variable not used.	
LROUN	ROLN	NCLX	Graphics identifier for new liquid density.	
LROM	ROM	0	Variable not used.	
LROV	ROV	0	Variable not used.	
LROVN	ROVN	NCLX	Graphics identifier for new vapor density.	
LS	S	0	Veriable not used.	
LS1	S1	0	Vallable not used.	
LS2	S2	0	Variable not used.	
LSIG	SIG	0	Variable not used.	
LSN	SN	NCLX*ISOLUT	Graphics identifier for new solid solute in cell (kg solid). ISOLUT = 0 or 1.	
LST	ST	0	Variable not used.	
LTCHFS	TCHF	0	Variable not used.	A STORE
LTL	TL	0	Variable not used.	
LTLN	TLN	NCLX	Graphics identifier for new liquid tempera- ture.	
LTSAT	TSAT	NCLX	Graphics identifier for saturation tempera- ture.	
LTSSN	TSSN	0	Variable not used.	
LTV	ΤV	0	Variable not used.	
LTVN	TVN	NCLX	Graphics identifier for new vapor tempera- ture.	
LVD1	VD1	0	Variable not used.	
LVD1N	VD1N	0	Variable not used.	
LVD2	VD2	0	Variable not used.	
LVD2N	VD2N	0	Variable not used.	
LVISL	VISL	0	Variable not used.	
LVISV	VISV	0	Variable not used.	- Aller
LVL	VL	0	Variable not used.	00

LVLC	VLC	0	Variable not used.
LVLNYT	VLNYT	3*NCLX	Graphics identifier for new liquid θ velocity.
LVLYT	VLYT	3*NCLX	Graphics identifier for temporary storage for mixture θ velocity.
LVM	VM	0	Variable not used.
LVOL	VOL	NCLX	Graphics identifier for cell fluid volumes.
LVOLG	VOLG	0	Variable not used
LVV	VV	0	Variable not used.
LVVC	VVC	0	Variable not used.
LVVN	VVN	0	Variable not used.
LVVNYT	VNYT	3*NCLX	Graphics identifier for new vapor $ heta$ velocity.
LVVYT	VVYT	3*NCLX	Graphics identifier for temporary storage for mixture θ velocity.
LWAT	WAT	0	Variable not used.
LXA	XA	0	Variable not used.
C.14.3. E(QUIVALENC	ES-Defined	for BLANKCOM
C.14.3. EC Array	QUIVALENC Locat	ES-Defined	for BLANKCOM escription
C.14.3. E(Array HLA	QUIVALENC Locat C	ES-Defined ion D Sເ	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area.
C.14.3. E Array HLA HVA	QUIVALENC Locat C C	ES-Defined ion D Sເ Sເ	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area.
C.14.3. E Array HLA HVA WAT	QUIVALENC Locat C C C	ES-Defined ion D Su Su To	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea.
C.14.3. EO Array HLA HVA WAT HLATW	QUIVALENC Locat C C C C	ES-Defined ion D Su Su Su Si Pe	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature.
C.14.3. EO Array HLA HVA WAT HLATW HVATW	QUIVALENC Locat C C C C	ES-Defined ion D Su Su Su Si pe Si pe	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature.
C.14.3. EO Array HLA HVA WAT HLATW HVATW FINAN	QUIVALENC Locat C C C C C	ES-Defined ion D Su Su Su Si pe Si pe In	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regione factor.
C.14.3. EO Array HLA HVA WAT HLATW HVATW FINAN RMEM	QUIVALENC Locat C C C C C C	ES-Defined ion D Su Su Su Si pe Si pe In M	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regione factor. ixture energy.
C.14.3. EO Array HLA HVA WAT HLATW HVATW FINAN RMEM ROM	QUIVALENC Locat C C C C C C C C	ES-Defined ion D Su Su Su Su Su Su Su Su Su Su Su Su Su	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regione factor. ixture energy. ixture density.
C.14.3. EO Array HLA HVA WAT HLATW HVATW FINAN RMEM ROM QRD	QUIVALENC Locat C C C C C C C C C C	ES-Defined ion D Su Su Su Su Su Su Su Su Su Su N M M N	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regione factor. ixture energy. ixture density. ot presently used.
C.14.3. EC Array HLA HVA WAT HLATW HVATW FINAN RMEM ROM QRD SIG	QUIVALENC Locat C C C C C C C C C C C C	ES-Defined ion D Su Su Su Su Su Su Su Su Su Su Su Su Su	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regill a factor. ixture energy. ixture density. ot presently used.
C.14.3. EC Array HLA HVA WAT HLATW HVATW FINAN RMEM ROM QRD SIG AM	QUIVALENC Locat C C C C C C C C C C C C C C C C C C C	ES-Defined ion D Su Su Su Su Si Pe Si Pe Si Pe Si A Su A	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regill e factor. ixture energy. ixture density. of presently used. urface tension.
C.14.3. EC Array HLA HVA WAT HLATW HVATW FINAN RMEM ROM QRD SIG AM QSL	QUIVALENC Locati C C C C C C C C C C C C C C C C C C C	ES-Defined ion D Su Su Su Su Su Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si Pe Si V M Su Su Su Su Su Su Su Su Su Su Su Su Su	for BLANKCOM escription im of all products of liquid HTC with heat-transfer area. im of all products of vapor HTC with heat-transfer area. otal heat-transfer crea. milar to HLA except that the product includes wall tem- erature. milar to HVA except that the product includes wall tem- erature. verted annular regione factor. ixture energy. ixture density. of presently used. urface tension. ir mass.

VOL	С	Cell flow volume.
VOLG	С	Cel' geometric volume.
VMFRL	С	Liquid mass flux in the axial direction.
VMFRV	С	Vapor mass flux in the axial direction.
CPL	С	Liquid specific heat at constant pressure.
CPV	С	Vapor specific heat at constant pressure.
TSN	С	Saturation temperature for total pressure.
TSSN	C	Saturation temperature for steam pressure.
CL	С	Liquid conductivity.
CV	С	Vapor conductivity.
VISL	С	Liquid viscosity.
VISV	С	Vapor viscosity.
HFG	С	Latent heat of vaporization.
HGAM	С	Contribution to phase change from subcooled boiling.
LCCFL	F	CCFL flag.
FAYT	F	Actual flow area for theta (or y) face.
FAZ	F	Actual flow area for axial face.
FAXR	F	Actual flow area for radial (or x) face.
FAGYT	F	Geometric flow area for theta (or y) face.
FAGZ	F	Geometric flow area for axial face.
FAGXR	F	Geometric flow area for radial (or x) face.
VMYT	F	Mixture velocity for theta (or y) face.
VMZ	F	Mixture velocity for axial face.
VMXR	F	Mixture velocity for radial (or x) face.
HDYT	F	Interface hydraulic diameter for theta (or y) face.
HDZ	F	Interface hydraulic diameter for axial face.
HDXR	F	laterface hydraulic diameter for radial (or x) face.
WFLYT	F	Wall friction factor for liquid for theta (or y) face.
WFLZ	F	Wall friction factor for liquid for axial face.
WFLXR	F	Wall friction factor for liquid for radial (or x) face.

18.	300		Ŀ.
			8
			а.
1925			я.
195		88	Ρ.
1.00		er.	

WFVYT	F	Wali friction factor for vapor for theta (or y) face.
WFVZ	F	Wall friction factor for vapor for axial face.
WFVXR	F	Wall friction factor for vapor for radial (or x) face.
DVVYT	F	Derivative of vapor velocity with respect to pressure for theta (or y) face.
DVVZ	F	Derivative of vapor velocity with respect to pressure for axial face.
DVVXR	F	Derivative of vapor velocity with respect to pressure for radial (or x) face.
DVLYT	F	Derivative or liquid velocity with respect to pressure for theta (or y) face.
DVLZ	F	Derivative of liquid velocity with respect to pressure for axial face.
DVLXR	F	Derivative of liquid velocity with respect to pressure for tradial (or x) face.
CFZLYT	F	Liquid forward-flow-di.ection additive friction-loss coefficient for theta (or y) face.
CFZLZ	F	Liquid forward-flow-direction addicive friction-loss coefficient for axial face.
CFZLXR	F	Liquid forward-flow-direction additive friction-loss coefficient for radial (or x) face.
CFRLYT	F	Liquid reverse-flow-direction additive friction-loss coefficient for theta (or y) face.
CFRLZ	F	Liquid reverse-flow-direction additive friction-loss coefficient for axial face.
CFRLXR	F	Liquid reverse-flow-direction additive friction-loss coefficient for radial (or x) face.
CFZVYT	F	Vapor forward-flow-direction additive friction-loss coeffi- cient for theta (or y) face.
CFZVZ	F	Vapor forward-flow-direction additive friction-loss coeffi- cient for axial face.
CFZVXR	F	Vapor forward-flow-direction additive friction-loss coefficient for radial (or x) face.
CFRVYT	F	Vapor reverse-flow-direction additive friction-loss coefficient for theta (or y) face.

CFRVZ	F	Vapor reverse-flow-direction additive friction-loss coefficient for axial face.
CFRVXR	F	Vapor reverse-flow-direction additive friction-loss coefficient for radial (or x) face.
DTSDP	С	Derivative of TSAT with respect to pressure.
DELDP	¢	Derivative of the liquid internal chergy with respect to pres- sure at constant temperature.
DEGDP	С	Derivative of the steam internal energy with respect to pressure at constant temperature.
DELDT	С	Derivative of the liquid internal energy with respect to tem- perature at constant pressur
DEGDT	C	Derivative of the steam internal energy with respect to temperature at constant pressure.
DRLDP	с	Derivative of the liquid density with respect to pressure at constant temperature.
DRGDP	С	Derivative of the steam density with respect to pressure at constant temperature.
URLDT	С	Derivative of the liquid density with respect to temperature at constant pressure.
DRGDT	· · · · ·	Derivative of the steam density with respect to tempera- ture at constant pressure.
HVS		Enthalpy of the steam at TSAT.
HLS	С	Enth ; of the liquid at TSAT.
DHVS	C	Derivative of the enthalpy of the vapor at TSAT with re- spect to pressure.
DHLS	¢	Derivative of the enthalpy of the liquid at TSAT with re- spect to pressure.
DTSSDP	~	Derivative of the saturation temperature corresponding to the steam pressure with respect to pressure.
DEADT	С	Derivative of the non-condensible gas internal energy with respect to temperature at constant pressure.
DEADP	С	Derivative of the non-condensible gas internal energy with respect to pressure at constant temperature.
DRADP	r	Derivative of the non-condensible gas density with respect to pressure at constant temperature.

APPENDIX C

6

D

DRADT	с	Derivative of the non-condensible gas density with respect to temperature at constant pressure.
DRLAST		Unused variable.
ORYT	F	Scale factor used to reduce cross-flow at theta (or y) face to simulate the presence of an orifice (currently set $1 = 1$).
ORZ	F	Scale factor used to reduce cross-flow at axial face to sim- ulate the presence of an orifice (currently set to 1).
ORXR	F	Scale factor used to reduce cross-flow at radial (or x) face to simulate the presence of an orifice (currently set to 1).
W'AYT	F	Fraction of momentum cell at theta (or y) face that is associated with upstream cell.
WMZ	F	Fraction of momentum cell at axial face that is associated with upstream cell.
WMXR	F	Fraction of momentum cell at radial (or x) face that is associated with upstream cell.
DYT	С	Cell length in y direction or theta sector angle in radians.
DZZ	С	Cell length in axial direction.
DXR	С	Cell lengt., in radial (or x) direction.
RDYT	С	Reciprocal of DYT.
RDZ	С	Reciprocal of DZZ
RDXR	С	Reciprocal of DXR
RMEAN	C	Radius of cell center.
RDYTA	С	Reciprocal of momentum cell length in theta (or y) direc- tion.
RDZA	С	Reciprocal of momentum cell length in axial direction.
RDXRA	C	Reciprocal of momentum cell length in radial (or x) direc- tion.
RDDYT	C	The maximum of RDYTA and (VOL/FA) of the momen- tum cell in the theta (or y) direction.
RDDZ	C	The maximum of RDZA and (VOL/FA) of the momentum cell in the axial direction.
RDDXR	C	The maximum of RDXRA ans (VOL/FA) of the momen- tum cell in the radial (or x) direction.
ALPO	C	Void fraction at the start of the previous step (α^{n-1}) .
APPENDIX	с	C-79

DALVA	С	Unused variable.
DALP	С	Weighting factor for new-time level contribution to outflow in basic mass and energy equations.
FAVYT	F	Donor-cell averaged vapor volume fraction at theta or (y) face.
FAVZ	F	Donor-cell averaged vapor volume fraction at axial face.
FAVXR	F	Donor-cell averaged vapor volume fraction at radial or (x) face.
FALYT	F	Donor-cell averaged liquid volume fraction at theta or (y) face.
FALZ	F	Donor-cell averaged liquid volume fraction at axial face.
FALXR	F	Donor-cell averaged liquid volume fraction at radial or (x) face.
FRVYT	F	Product of domarcell averaged vapor macroscopic density with flow area and time-step at theta or (y) face.
FRVZ	F	Product of donor-cell averaged vapor macroscopic density with flow area and time-step at axial face.
FRVXR	F	Product of donor-cell averaged vapor macroscopic density with flow area and time-step at radial or (x) face.
FEVYT	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at theta or (y) face.
FEVZ	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at axial face.
FEVXR	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at radial or (x) face.
FRAYT	F	Product of donor-cell averaged non-condensible macro- scopic density with flow area and time-step at theta or (y) face.
FRAZ	F	Product of donor-cell averaged non-condensible macro- scopic density with flow area and time-step at axial face.
FRAXR	F	Product of donor-cell averaged non-condensible macro- scopic density with flow area and time-step at radial or (x) face.
FRLY I	F	Product of donor-cell averaged liquid macroscopic density with flow area and time-step at theta or (y) face.

(1)

APPENDIX C

5

C-80

FRLZ	F	Product of donor-cell averaged liquid macroscopic density with flow area and time-step at axia! face.
FRLXR	F	Product of donor-cell averaged liquid macroscopic density with flow area and time-step at radial or (x) face.
FELYT	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at theta or (y) face.
FELZ	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at axial face.
FELXR	F	Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at radial or (x) face.
CnPm	c	Variables used as temporaries in a number of routines. Also the coefficient of the change in pressure across the m-th cell face in the equation for the n-th primary depend at variable in the basic step. The variables in order from n = 1.5 are pressure, vapor temperature, liquid temperature, void fraction, and partial pressure of non-condensible. The faces in order from m = 1.6 are the lower-numbered radial (or x) face, the higher-numbered radial (or x) face, the lower-numbered theta (or y) face, the higher-numbered theta (or y) face, the lower-numbered axial face, and the higher-numbered axial face.
DPRHS	с	Iterate change in pressure during basic step before inclusion of effects due to the relative change in pressure across the cell faces.
DARHS	с	Iterate change in void fraction during bases tep before inclusion of effects due to the relative change in pressure across the cell faces.
DTVRHS	С	Iterate change in vapor temperature during basic step be- fore inclusion of effects due to the relative change in pres- sure across the cell faces.
DTLRHS	С	Iterate change in liquid temperature during basic step be- fore inclusion of effects due to the relative change in pres- sure across the cell faces.
DPARHS	С	Iterate change in partial pressure of non-condensible during basic step before inclusion of effects due to the relative change in pressure across the cell faces.
FBIT	C/F	Time-independent bit-flags.

DVVS1	с	Scale-factor applied to derivative of vapor velocity at outer radial face with respect to cell pressure for water-packing model.		
DVV51M	с	Scale-factor applied to derivative of vapor velocity at inner radial face with respect to cell pressure for water-packing model.		
DVLS1	с	Scale-factor applied to derivative of liquid velocity at outer radial face with respect to cell pressure for water-packing model.		
DVLS1M	с	Scale-factor applied to derivative of liquid velocity at inner radial face with respect. So cell pressure for water-packing model.		
SC1	с	Area ratio scale factor applied to outer radial (or x) con- vecting velocities for cross-term contribution to theta (or y) and axial motion equations.		
SC1M	С	Area ratio scale factor applied to inner radial (or x) con- vecting velocities for cross-term contribution to theta (or y) and axial motion equations.		
DVV53	с	Scale-factor applied to derivative of vapor velocity at upper axial face with respect to cell pressure for water-packing model.		
DVVS3M	C	Scale-factor applied to derivative of vapor velocity at lower axial face with respect to cell pressure for water-packing model.		
DVLS3	С	Scale-factor applied to derivative of liquid velocity at upper axial face with respect to cell pressure for water-packing model.		
DVLS3M	С	Scale-factor applied to derivative of liquid velocity at lower axial face with respect to cell pressure for water-packing model.		
SC3	С	Area ratio scale factor applied to upper axial convecting velocities for cross-term contribution to radial (or x) and theta (or y) motion equations.		
SC3M	С	Area ratio scale factor applied to lower axial convecting velocities for cross-term contribution to radial (or x) and theta (or y) motion equations.		
DVVS2	C	Scale-factor applied to derivative of vapor velocity at for- ward theta (or y) face with respect to cell pressure for water-packing model.		
C-82		APPENDIX C		

	4				9	i
- 1						
- 1						
1						
	18					8
	- 74				85	e
		-	200	87	٠	

.

DVL\$2	с	Scale-factor applied to derivative of liquid velocity at for- ward theta (or y) face with respect to cell pressure for water-packing model.
SC2	с	Area ratio scale factor applied to forward theta (or y) con- vecting velocities for cross-term contribution to radial (or x) and axial motion equations.
SCD1	С	Area ratio scale factor associated with outer face used in diagonal V del V term in radial (or x) motion equation.
SCD1M	с	Area ratio scale factor associated with inner face used in diagonal V del V term in radial (or x) motion equation.
SCD2	с	Area ratio scale factor associated with forward face used in diagonal V del V term in theta (or y) motion equation.
SCD2M	С	Area ratio scale factor associated with backward face used in diagonal V del V term in theta (or y) motion equation.
SCD3	C	Area ratio scale factor associated with upper face used in diagonal V del V term in axial motion equation.
SCD3M	С	Area ratio scale factor associated with lower face used in diagonal V del V term in axial motion equation.
BIT	C/F	Bit flags from previous time step.
FRCI1		Unused.
FRC12		Unused.
FRCI3		Unused.
CIYT	F	Old interfacial drag coefficient at theta (or y) face.
CIZ	F	Old interfacial drag coefficient at axial face.
CIXR	F	Old interfacial drag coefficient at radial (or x) face.
СНТІ	с	Old value of vapor-side interfacial HTC times interfacial area.
CHTIA	С	Old value of air interfacial HTC times interfacial area.
ALV	С	Old value of flashing interfacial HTC times interfacial area.
ALVE	с	Old value of liquid-side interfacial HTC times interfacial area.
ARV	С	Old stabilizer value for macroscopic vapor density, $\alpha \rho_v$.
CONCO	с	Old ratio of solute mass to liquid mass.
PA	С	Old air partial pressure.

APPENDIX C

-14

C-83

.

ROA	С	Old air density.
EA	C	Old air internal energy.
ALP	С	Old vepor fraction.
ROV	С	Old vapor density.
ROL	С	Old liquid density.
S	C	Old solute mass plated out.
VVYT	F	Old basic vapor velocity at theta (or y) face.
VVZ	F	Old basic vapor velocity at axial face.
VVXR	F	Old basic vapor velocity at radial (or x) face.
VLYT	F	Old basic liquid velocity at theta (or y) face.
VLZ	F	Old basic liquid velocity at axial face.
VLXR	F	Old basic liquid velocity at radial (or x) face.
EV	С	Old vapor internal energy.
EL	С	Old liquid internal energy.
TV	С	Old vapor temperature.
TL	С	Old liquid temperature.
GAM	С	Old vapor generation rate per unit volume.
Ρ	С	Old pressure.
AREV	с	Old stabilizer value for vapor macrosopic internal energy, $\alpha \rho_v \mathbf{e}_v$.
VVTYT	F	Old stabilizer vapor velocity at theta (or y) face.
VVTZ	F	Old stabilizer vapor velocity at axial face.
VVTXR	F	Old stabilizer vapor velocity at radial (or x) face.
ARL	С	Old stabilizer value for $(1-\alpha)\rho_\ell$
AREL	С	Old stabilizer value for $(1-\alpha)\rho_\ell e_\ell$.
VLTYT	F	Old stabilizer liquid velocity at theta (or y) face.
VLTZ	F	Old stabilizer liquid velocity at axial face.
VLTXR	F	Old stabilizer liquid velocity at radial (or x) face.
ARA	С	Old stabilizer value for $\alpha \rho_a$.
OWVYT	F	Old donor-cell factor at theta (or y) face for vapor.
OWVZ	F	Old donor-cell factor at axial face for vapor.

100		ь.	
		80	
		89	
180		æ	

OWVXR	Į.	Old donor-cell factor at radial (or x) face for vapor.
OWLYT	F	Old donor-cell factor at theta (or y) face for liquid.
OWLZ	F	Old donor-cell factor at axial face for liquid.
OWLXR	F	Old donor-cell factor at radial (or x) face for liquid.
BITN	C/F	Bit flags for current time step.
FRCI1N		Unused.
FRCI2N		Unused.
FRCI3N		Unused.
CINYT	F	New interfacial drag coefficient at theta (or y) face.
CINZ	F	New interfacial drag coefficient at axial face.
CINXR	F	New interfacial drag coefficient at radial (or x) face.
CHTIN	С	New value of vapor-side interfacial HTC times interfacial area.
CHTAN	С	New value of air interfacial HTC times interfacial area.
ALVN	C	New value of flashing interfacial HTC times interfacial area.
ALVEN	С	New value of liquid-side interfaciar HTC times interfacial area.
ARVN	С	New stabilizer value for $\alpha \rho_v$.
CONC	С	New solute mass to coolant mass ratio.
PAN	С	New air partial pressure.
ROAN	C	New air density.
EAN	C	New air internal energy.
ALPN	С	New vapor fraction.
ROVN	С	New vapor density.
ROLN	С	New liquid density.
SN	С	New solute mass plated on structure surface.
VVNYT	F	New basic vapor velocity at theta (or y) face.
VVNZ	F	New basic vapor velocity at axial face.
VVNXR	F	New basic vapor velocity at radial (or x) face
VLNYT	F	New basic liquid velocity at theta (or y) face.

VLNZ	F	New basic liquid velocity at axial face.
VLNXR	F	New basic liquid velocity at radial (or x) face.
EVN	С	New vapor internal energy.
ELN	С	New liquid internal energy.
TVN	С	New vapor temperature.
TLN	С	New liquid temperature.
GAMN	С	New vapor generation rate per unit volume.
PN	С	New pressure.
AREVN	С	New stabilizer value for $\alpha \rho_v e_v$.
VVNTYT	F	New stabilizer vapor velocity at theta (or y) face
VVNTZ	F	Nev: stabilizer vapor velocity at axial face
VVNTXR	F	New stabilizer vapor velocity at radial (or x) face
ARLN	Ċ	New stabilizer value for $(1 - \alpha)\rho_\ell$.
ARELN	C	New stabilizer value for $(1-\alpha)\rho_\ell \mathbf{e}_\ell$.
VLNTYT	F	New stabilizer liquid velocity at theta (or y) face
VLNTZ	F	New stabilizer liquid velocity at axial face
VLNTXR	F	New stabilizer liquid velocity at radial (or x) face
ARAN	C	New stabilizer value for $\alpha \rho_a$.
WVYT	F	New donor-cell factor at theta (or y) face for vapor.
WVZ	F	New donor-cell factor at axial face for vapor.
WVXR	F	New donor-cell factor at radial (or x) face for vapor.
WLYT	F	New donor-cell factor at theta (or y) face for liquid.
WLZ	F	New donor-cell factor at axial face for liquid.
WLXR	F	New donor-cell factor at radial (or x) face for liquid.
SPIFZ	С	Stratified flow weighting factor for interfacial heat transfer correlations.
DVVS2M	F	Scale-factor applied to derivative of vapor velocity at back- ward theta (c: y) face with respect to cell pressure for water-packing model.
DVLS2M	F	Scale-factor applied to derivative of vapor velocity at back- ward theta (or y) face with respect to cell pressure for water-packing model.

 SC2M
 F
 Area ratio scale factor applied to backward theta (or y) convecting velocities for cross-term contribution to tradial (or x) and axial motion equations.

 SCD2M
 F
 Area ratio scale factor associated with ibackward face used in diagonal V del V term in theta (or y) motion equation.

C.14.4. VSSLDATA-VESSEL Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; VSSELVLT, defined in Sec. C.14.1; and VSSLPT, defined in Sec. C.14.2.

APPENDIX D

DESCRIPTION OF COMMON-BLOCK VARIABLES

COMDECK BANDW

COMMON/BANDW/ MUX, MUY, MUZ

INTEGER VARIABLES:

MUX: The number of diagonal rows above and below the main diagonal lying within the MUX+1+MUX bandwidth of the VESSEL matrix for the x- or r-directional stabilizer motion equation.

MUY: The number of diagonal rows above and below the main diagonal lying within the MUY+1+MUY bandwidth of the VESSEL matrix for the y- or θ -direction stabilizer motion equation.

MUZ: The number of diagonal rows above and below the main diagonal lying within the MUZ+1+MUZ bandwidth of the VESSEL matrix for the z-direction stabilizer motion equation, pressure semi-implicit equation, and the stabilizer mass and energy equations.

COMDECK BKCNTRL

COMMON/BKCTRL/ IPREIT, LBCKV, LREIT, LREITV

INTEGER VARIABLE:

IPREIT: Flag to print messages on forced reiteration. LOGICAL VARIABLES:

LBCKV:	If TRUE.,	then	variable	forces	9	time-step back-up
LREIT	IF .TRUE.,	then	variable	forces	a	reiteration.
LREITV:	H.TRUE.,	then	variable	forces	a	reiteration.

COMMON/DONR/ ITDON, JDONP, NCOMDP

INTEGER VARIABLES:

ITDON:	If flow reversals occur for the	OITNO	> ITDON.	the time step	is backed
	up.				
JDONP:	Cell number in NCOMDP.				

NCOMDP: Component number of flow reversal forcing back-up.

COMDECK BKPOST

COMMON/	BKPOST/	BKPALL,	BKPALU,	BKPSTA,	BKPSTP,	BKPSTT
COMMON/	BKPOST/	IBKPST,	JBKPST,	LBKPST		

REAL VARIABLES:

BKPALL:	Maximum lower limits on void fraction such that a back-up is forced if the void fraction lies within these limits.
BKPALU:	Maximum upper limits on void fraction such that a back-up is forced if the void fraction lies within these limits.
BKPSTA:	Void-fraction variation that is allowed in the POST stage. If the void-fraction change exceeds BKPSTA, back-up is forced.
BKPSTP:	Maximum fractional pressure change that is allowed in the POST stage. If the fractional pressure change exceeds BKSTP, back-up is forced.
BKPSTT	Maximum variation in liquid and vapor temperatures that is allowed in the POST stage. If the temperature change exceeds BKPSTT, back-up is forced.
TEGER VARI	ABLES:
IBKPST:	Component forces back-up.

JBKPST: Cell number.

LOGICAL VARIABLE:

LBKPST: If .TRUE., then a time-step back-up is forced from POST.

COMDECK BLANKCOM

COMMON

11

A(300)

A(300): Dynamic SCM storage area. This array is dimensioned to other sizes or dynamically dimensioned for certain conditional directives imposed during compilation.

COMDECK BOIL

COMMON/BOIL/ COND, CVFAL, DALVJ, DHSDP, DHSDT, EHG, EVAP, FLASH, GAMDP, GAMDPA, GAMMA, SCL

COMMON/BOIL/ ITLEQ

DIMENSION	COND(NK),	CVFAL(NK).	DALVJ(NK),	DHSDP(NK).
	DHSDT(NK).	EHG(NK).	EVAP(NK).	FLASH(NK),
	GAMDP(NK).	GAMDPA(NK).	GAMMA(NK),	SCL(NK)

DIMENSION ITLEQ(NK)

REAL VARIABLES:

COND:	Vapor-side heat-transfer coefficient to the vapor/liquid interface.
CVFAL:	Energy transfer between the vapor and liquid based on DALVJ scal-
	ing.

DALVJ:	Derivative of ALV (FLASH coefficient) with respect to void fraction (currently set to zero).
DHSDP:	Derivative of EHG with respect to total pressure.
DHSDT:	Derivative of EHG with respect to saturation temperature.
EHG:	Internal energy of saturation temperature vapor.
EVAP:	Liquid-side heat-transfer coefficient to the vapor liquid interface based an evaporation when the liquid temperature is above the saturation temperature based on vapor pressure.
FLASH:	Liquid-side heat-transfer coefficient to the vapor/liquid interface based on flashing when the liquid temperature is above the saturation temperature based on total pressure.
GAMDP:	Derivative of Γ with respect to the total pressure.
GAMDPA:	Derivative of Γ with respect to the noncondensable-gas pressure.
GAMMA:	Energy transfer between the vapor and liquid based on SCL scaling.
SCL:	Scale factor for the phase-change heat-transfer coefficients.
NTEGER VARIA	ABLE:
ITLEQ:	Flag to indicate that no evaporation or condensation is expected to

occur to the single-phase fluid during the time step.

0 = evaporation or condensation is evaluated; 1 = no evaporation or condensation is evaluated.

A 4 110 11	100, 200	1020 -	per per	per 1 - 10	4.4
1111	111-	(K)		F1 C	0.0
C 1111	10.20	Sec. 15. 1	the loss	F As No	. 1 7 1

COMMON/CCFL/	CBETA, CCFLC, CCFLM, CTRANS, DIAH
COMMON/CCFL/	NCCFL, NHOLES
DIMENSION	CBETA(10), CCFLC(10), CCFLM(10), CTRANS(10), DIAH(10)
DIMENSION	NHOLES(10)

PEAL VARIABLES.

CBETA:	Bankoff interpolation constant for interpolating between Wallis and Kutalatze characteristic length dimensions.
CCFLC:	Constant of the CCFL correlation.
CCFLM:	Slope of the CCFL correlation.
LTRANS:	Bond number above which the CCFL constant is independent of the Bond number.
DIAH:	Diameter of one hole in the perforated plate.
TEGER VARI	ABLES:
NCCFL:	Number of CCFL parar sets.

the second second	have a set of the set of the set	and the second	
NHOLES:	Number of	holes in the	perforated plate

APPENDIX D

IN

COMDECK CDBLKS

COMMON/CODEBK/ CBNAM, ILEV, MAX1LV, MAXLEN, MAXLN3, MLNVMT

DIMENSION CBNAM(5)

INTEGER VARIABLES:

CBNAM:	Array containing the names of the overlays currently in memory.	
ILEV:	The number of overlays currently in core.	
MAX1LV:	Maximum amount of SCM storage needed for three-dimensional com- ponents when only one level of data is required.	
MAXLEN:	Maximum amount of SCM storage needed to process any one- dimensional component.	
MAXLN3	Maximum amount of SCM storage needed to process any three- dimensional component.	
MLNVMT:	The amount of SCM space required to solve the VESSEL matrix.	

COMDECK CFLOW

COMMON/CFLOW/	CHM1, CHM2, CHMLT1, CHMLT
COMMON/CFLOW/	ICFLOW, IHOR
DIMENSION	CHM1(~1, CHM2(5)

REAL VARIABLES:

CHM1:	Array of choked-flow multipliers on the subcooled flow.
CHM2:	Array of choked-flow multipliers on the two-phase flow
CHMLT1:	Multiplier on the subcooled flow.
CHMLT2:	Multiplier on the two-phase flow.

INTEGER VARIABLES:

ICFLOW: Choked-flow mode controller.

Drag controller.

0 = model turned off,

1 = model using default multipliers turned on only for components connected to a BREAK (default condition), or

2

2 = model using optional multipliers turned on at cell edges indicated in component input (note that this option requires additional array data for all one-dimensional hydrodynamic components).

IHOR:

0 = uses dispersed drag only,

- 1 = (default) uses stratified drag in one dimension if conditions are met;
- 2 = always uses stratified drag;

3 = turns off head gradient force.

COMDECK CHECKS

COMMON/CHECKS/ DTEND, HDUMP, HEDIT, HGRAF, HSEDIT

COMMON/CHECKS/ NALT, NDID

REAL VARIABLES:

DTEND:	Time interval during which the special time-step data are used.
HDUMP:	Saved value of the next restart/dump edit time from the regular time- step data when the special time-step data are used.
HEDIT:	Saved value of the next long edit time from the regular time-step data when the special time-step data are used.
HGRAF:	Saved value of the next graphics edit time from the regular time-step data when the special time-step data are used.
HSEDIT	Saved value of the next short edit time from the regular time-step data when the special time-step data are used.

INTEGER VARIABLES:

NALT:	Constant used to determine if void-fraction adjustments are needed
	when the interfacial drag is calculated at a one-dimensional junction
	connected to a BREAK.

NDID: ID number of the special time-step data that are being used.

COMDECK CHFINT

COMMON/CHFINT/ ALPCHF

REAL VARIABLE:

ALPCHF: Void fraction at the critical heat flux (CHF) location.

COMDECK CHGALP

COMMON/CHGALP/ JDAL, JDAU, JOAL, JOAU, NDAL, NDAU, NOAL, NOAU

REAL VARIABLES:

DAL:	Maximum decrease in void fraction.
DAU:	Maximum increase in void fraction over the time step.
OAL:	Maximum decrease in void fraction immediately following an in- crease.
OAU:	Maximum increase in void fraction immediately following a decrease.
XDAL:	Limit on DAL beyond which the time step is reduced.
XDAU:	Limit on DAU beyond which the time step is reduced.
XOAL:	Limit on OAL beyond which the time step is reduced.

XOAU: Limit on OAU beyond which the time step is reduced. INTEGER VARIABLES:

JDAL:	Cell where DAL occurred.
JDAU:	Cell where DAU occurred.
JOAL:	Cell where OAL occurred.
JOAU:	Cell where OAU occurred.
NDAL:	Component where DAL occurred.
NDAU:	Component where DAU occurred
NOAL:	Component where OAL occurred.
NOAU:	Component where OAU occurred

COMDECK CIFLIM

COMMON/CIFLIM/ FIFI, FIFR

REAL VARIABLES:

FIFI	Maximum decrease factor for the time-constant contstraint of the interfacial-drag coefficient (0.4).	
FIFR:	Maximum increase factor for the time-constant constraint of the interfacial-drag coefficient (2.0).	

COMDECK CNRSLV

COMMON/CNRSLV/	AA, BB, W
COMMON/CNRSLV/	KEY, M. M1, N. NRSLV
COMMON/CNRSLV/	ERR
DIMENSION	AA(NRFMX1,NRZFMX), BB(NRZFMX), W(NRZFMX)

REAL VARIABLES:

AA:	Coefficient matrix.
BB:	RHS vector.

W: Working-area vector.

INTEGER VARIABLES:

KEY:	Evaluation-flag option. 1 = solves the linear matrix equation by forward-elimination and backward-substitution.
	 2 = performs the forward-elimination only. 3 = performs the backward-substitution only.
M:	Number of x- or r-direction nodes in the heat-transfer mesh that defines a matrix A bandwidth of $M+1+M$.

M1:	M + 1.
N:	Order of matrix A that is stored in matrix AA.
NRSLV:	Namelist variable defining the axial-direction heat-transfer calculation numerics.
	0 = treats axial direction explicitly (default); 1 = treats axial direction implicitly.
LOGICAL VAR	HABLE:
ERR:	Error flag from subroutine BANSOL, which indicates a singular matrix when TRUE

COMDECK COMCOM

COMMON/CC/ IMAX, IMIN, JFLAG

INTEGER VARIABLES:

IMAX:	Last component (TRAC-assigned component number) in a loop in the outer calculation for one-dimensional components.
IMIN:	First component (TRAC-assigned component number) in a loop in the outer calculation for one-dimensional components.
JFLAG:	Flag that indicates an error in the outer calculation.

COMDECK CONCCK

COMMON/CONCCK/ JFLAGC

INTEGER VARIABLE:

JFLAGC: Flag that indicates an error in specifying the one-dimensional component input-parameter values.

COMDECK CONDHT

COMMON/CONDHT/ YLL, YLV

REAL VARIABLES:

YLL:	Axial distance above node row JL where the vapor-liquid interface is	5
	located.	

YLV: Axial distance above node row JL where the vapor-liquid interface is located.

COMDECK CONSTANT

COMMON/CONST/ PI, GC, ZERO, ONE, EPSALP

REAL VARIABLES:

PI: Constant π (3.1415926535898).

APPENDIX D

GC:	Gravitational constant (9.80665 m \cdot s ⁻²).
ZERO:	Real constant zero.
ONE:	Real constant one.
EPSALP	Void-fraction cutoff for thermodynamic vapor properties

COMDECK CONTRLLR

COMMON/CONTRL/ DAMMC, DAMX, DELT, DELTHT, DIFMIN, DPRMX, DTLMX, DTMAX, DTMIN, DTO, DTRAT, DTRMX, DTSMX, DTVMX, EPS1, EPS2, EPS0, EPS5, ETIME, HTLOSI, HTLOSO, ODELT, PSSMN, PSSMX, RFAT, RVMAX, TEND, TIMEC, TIMET, VARER, VCMN, VCMX, VMAXO, VMAXT, VMAXT3, VMCON, VMNEW, VMOLD, VMXT30, XTABLE

COMMON/CONTRL/ DSTEP, IADDED, ICCMX, ICMP, ICP, IDIAG, IEOS, IFF3D, IF-PREP, IGEOM3, IM100, IM100X, IMFR, INVAN, IOFFTK, IPAK, IPAK3D, IPAKON, IPKPMP, IRSTFL, ISOLUT, ISSFLG, ISTDY, ISTTC, ITHD, ITMIN, ITPAKO, JFAT, KCCMX, LCMPTR, LEV-STG, LLVFLG, NCMN, NCMX, NCONTR, NCONTS, NCONTT, NCRG, NDIA1, NEWRFD, NFRC1, NFRC3, NITAV, NITMN, NITMX, NLOOPP, NOSETS, NSEND, NSEO, NSMN, NSMX, NSPL, NSPU, NSSO, NSTAB, NSTP, NVGRAV, OITMAX, SIT-MAX, STDYST, TRANSI

REAL VARIABLES:

DAMMC:	Maximum void-fraction change during time step (not used).
DAMX:	Error caused by relative change in void fraction (not used).
DELT:	Current time increment for advancement of finite-difference equa- tions.
DELTHT:	Heat-transfer time-step size.
DIFMIN:	Minimum diffusion number required for stability of the nod conduction solution.
DPRMX:	Maximum pressure change during the current time step.
DTLMX:	Maximum liquid-temperature change during time step.
DTMAX:	Maximum allowable time-step size for time interval.
DTMIN:	Minimum allowable time-step size for time interval.
DTO:	Previous time-step size.
DTRAT:	Ratio of the previous time-step size to the reduced time-step size that results in a trip (with special time-step data assigned) crossing its set point at the end of the time step.
DTRMX:	Maximum rod-temperature change during time step.
DTSMX:	Maximum metal-temperature change during time step.

DTVMX:	Maximum vapor-temperature change during time step.
EPS1:	The lower-bound criterion for increasing the Kaganove-method inte- gration time step for solving the point-kinetics equation.
EPS2:	The upper-bound criterion for decreasing the Kaganove-method inte- gration time step for solving the point-kinetics equations.
EPSO:	Convergence criterion for outer iteration.
EPSS:	Convergence criterion for steady-state calculation.
ETIME:	Current calculation time used for edits.
HTI.OSI:	Inside system heat loss for one-dimensional components only (total system heat loss to the inside walls for one-dimensional components only).
HTLOSO:	Outside system heat loss for one-dimensional components only (total heat loss from the outside of the heat structures to the surroundings for one-dimensional components only).
ODELT:	Time increment for previous time step.
PSSMN:	Minimum steam-generator secondary-side pressure.
PSSMX:	Maximum steam-generator secondary-side pressure.
RFAT	Maximum ratio of the interface flow-area to the adjacent mesh-cell average flow area.
RVMAX:	Maximum ratio of the adjacent mesh-cell average flow areas when their interface does not have an additive loss coefficient specified.
TEND:	End time for the time-step data domain.
TIMEC:	Clock time in seconds.
TIMET:	Current calculation time.
VARER:	Variable error.
VCMN:	Final convergence for component NCMN at step NSMN.
VCMX:	Final convergence for component NCMX at step NSMX.
VMAX0:	Maximum one-dimensional component ratio of the Courant number to the time-step size at the beginning of the previous time step.
VMAXT:	Maximum one-dimensional component ratio of the Courant number to the time-step size at the beginning of the present time step.
VMAXT3:	Maximum three-dimensional component ratio of the Courant number to the time-step size at the beginning of the present time step.
VMCON:	Net water mass (liquid plus vapor) convected into VESSEL(s) during time interval $t^{n+1} - t^n$.
VMNEW:	VESSEL water mass (liquid plus vapor) at t^{n+1}
VMOLD:	VESSEL water mass (liquid plus vapor) at t"
VMXT30:	Maximum three-dimensional component ratio of the courant number to the time-step size at the beginning of the previous time step.

1

APPENDIX D

D-9

W
XTABLE: Abscissa coordinate value from the last axial power-shape table eval- uation.					
NTEGER VARIA	ABLES:				
DSTEP:	Time-step number of dump to be used for restart.				
IADDED:	Time-step interval for printing calculation summary to the terminal. (Zero suppresses this print.)				
ICCMX:	Component number in the IORDER array with the most severe time- step limit for stability.				
ICMP:	Component indicator.				
ICP:	Temporary pointer to next free location in the dynamic storage area for component data.				
IDIAG:	Namelist variable that defines different levels of debugging informa- tion on appropriate parameter values.				
IEOS:	Air-water option flag. 0 = steam-air-water; 1 = air-water (no steam present).				
IFF3D	Outer-iteration VESSEL evaluation flag. 0 = evaluate the VESSEL coefficient matrix equation; 1 = back-substitute the VESSEL matrix equation solution.				
IFPREP:	Flag that indicates sections of PREPER to be executed (nonzero only for one-dimensional cores).				
IGEOM3:	 VESSEL geometry flag. 0 = (default) flow areas between the downcomer and inside of the VESSEL set to zero; 1 = flow areas between the downcomer and inside of the VESSEL maintained at the user input values. Note: The vent-valve option overrides IGEOM3 = 1 option in cells that have vent-valve connections. 				
IM100:	Flag that indicates if back-up occurred on previous time-step (used for mass check on logic).				
IM100X:	Flag that indicates whether previous time step that failed was ob- tained from a restart.				
IMFR:	Calculates the theta, axial, and radial mass flows (kg/s) for both liquid and vapor, and adds them to the graphics. This option is invoked by a new NAMELIST variable IMFR. 1 = (default) one-dimensional VESSEL mass flow; 3 = three-dimensional VESSEL mass flow.				
INVAN:	Flag to select either T_{CHF} or T_{sat} for control of the inverted annular flow regime.				
IOFFTK:	Flag to select offtake model.				

	0 = off; 1 = op
IPAK:	Flag that indicates one-dimensional water-packing option. 0 = off; 1 = on.
IPAK3D:	Flag that indicates three-dimensional water-packing option. 0 = off; 1 = on.
IPAKON:	Fiag that indicates if water-packing logic is on during time step.
IPKPMP:	 Flag ti cates if water-packing corrections are made at a pump source. 0 = (default) water-packing corrections are not made at a pump source;
	1 = water-packing corrections are made at a pump source.
IRSTFL:	Flag to control dump generation in the interactive mode. 0 = normal operation;
	1 = termination with a dump because the interactive mode is re- questing a component modification.
ISOLUT:	Flag that turns on solute tracking option.
ISSFLG:	Flag that controls editing in steady state.
ISTDY:	Flag that indicates type of calculation. 0 = transient; 1 = steady state.
ISTTC:	Static check flag. 0 = normal mode; 1 = a static balance check was requested when STDYST = 5 was
	input.
ITHD:	Namelist variable to use hydraulic diameters (0) or input thermal diameters (1) for the heat-structure component heat-transfer calculation.
ITMIN:	Minimum stable film-boiling option flag.
ITPAKO:	Iteration number for which water packing was detected.
JFAT:	 Flow-area ratio test flag. 0 = flow-area ratios are appropriate; 1 = one or more ratios of interface flow area to adjacent mesh-cell average flow-area ratios are invalid. 2 = one or more adjacent volume average flow-area ratios are invalid. 3 = one or more of both types of flow-area ratios are invalid.
KCCMX:	Cell in above component that limits stability.
LCMPTR:	Pointer to end of component data for last component read.

APPENDIX D

D-11

LEVSTG	 Void-fraction averaging flag. 0 = default, no void-fraction averaging is performed in HTCOR in the steam-generator secondaries; 1 = special void-fraction averaging is performed in HTCOR for steam-generator secondaries.
LLVFLG:	Switch that determines averaging procedure used in subroutine HTIF.
NCMN:	Position in IORDER array for component that was last to converge at step NSMN.
NCMX:	Position in IORDER array for component that was last to converge at step NSMX.
NCONTR:	Number of constrained steady-state controllers.
NCONTS	Number of constrained steady-state controllers that adjust pumps or valves so that their coolant mass flow equals a monitored coolant mass flow elsewhere in the system.
NCONT I:	Number of constrained steady-state controllers that adjust the flow resistance across the VESSEL.
NCRG:	NAMELIST variable (not documented elsewhere and overwritten to zero) that could be used to force the input of ICRRG (see the VESSEL variable-length table, Appendix C). Logic is incomplete.
NDIA1:	 Heat-transfer diameter option for one-dimensional components. 1 = (default) no heat-transfer diameter input for one-dimensional components; 2 = heat-transfer diameter input for one-dimensional components.
NEWRFD:	Namelist variable that activates the reflood-model calculation for heat-structure components coupled to VESSEL components when in- ternal test criteria are safisfied.
NFRC1:	Set to 2 if forward and reverse loss coefficients are to be input for one-dimensional components.
NFRC3:	Set to 2 if forward and reverse loss coefficients are to be input in the VESSEL.
NITAV:	Average number of outer iterations since the last edit.
NITMN:	Minimum number of outer iterations since the last edit.
NITMX:	Maximum number of outer iterations since the last edit.
NLOOPP:	Flag to indicate inconsistent source connections of a one-dimensional component loop to different directional face of VESSEL compo- nent(s).
NOSETS	 Namelist variable defining when the SETS3D equations are to be evaluated for all VESSEL components. 0 = evaluate the SETS3D equations when the time-step size exceeds 0.8 times the VESSEL courant limit time-step size; 1 = do not evaluate the SETS3D equations;

	2 = evaluate the SETS3D equations every time step (default).
NSEND:	End the calculation at this time-step number.
NSEO:	Time-step number of last completed edit.
NSMN:	Last time step at which NITMN outer iterations occurred.
NSMX:	Last time step at which NITMX outer iterations occurred.
NSPL:	Debug print if NSPL < NSTEP < NSPU.
NSPU:	Debug print if NSPL < NSTEP < NSPU.
NSSO:	Time-step number of last completed short edit.
NSTAB:	SETS3D-equations evaluation flag for all VESSEL components.
NSTP:	Number of time steps since the last edit.
NVGRAV:	Namelist variable option to allow the orientation of each VESSEL component to be input specified.
OITMAX:	Maximum number of outer iterations.
SITMAX:	Maximum number of outer iterations for steady-state calculation.
STDYST:	Steady-state calculation indicator.
TRANSI	Transient calculation indicator.

COMDECK COUPLE

COMMON/COUPLE/ CCF, CCF1, RS

COMMON/COUPLE/ ICUPLE, IEVEN, NT1, NT2

REAL VARIABLES:

CCF:	Cylindrical-geoinetry factor (CCF = 0, when NTSX is an even number, and CCF = 1, when NTSX is an odd number).
CCF1:	Cylindrical-geometry factor (CCF1 = 1. when NTSX is an even num- ber and CCF1 = 0. when NTSX is an odd number).
RS:	Factor applied to radical velocity across the $r = 0$ cylindrical-geometry axis.

INTEGER VARIABLES:

ICUPLE	Flag to indicate radial-direction convective coupling across the $r = 0$ cylindrical-geometry axis (not used).
IEVEN:	Flag to indicate that the number of azimuthal sectors is an odd (0) or even (1) number.
NT1:	Number of azimuthal sectors divided by 2 (NTSX/2).
NT2:	NT1 + 1.

COMDECK CPVECT

COMMON/CPVECT/	CPVINT, RDIAM, RMASS, RSTMLT, TCPVPR, VCPVLP, VCPVPR								
COMMON/CPVECT/	IHTRIG, INTFLG, IPRCPV, KFLOW, KLEV&L, KPRESS, KTEMP, LASOG, LCPVLP, LCPVPR, NCPVP, NORMDP, NORMRS								
DIMENSION	LCPVLP(4,9), LCPVPR(9), VCPVLP(4,9), VCPVPR(6)								
REAL VARIABLES:									
CPVINT:	Print interval for control-panel vector.								
RDIAM:	Refueling storage tank diameter.								
RMASS:	Initial refueling storage tank water mass (kg).								
RSTMLT	Multiplier for converting refueling storage tank water mass to water level.								
TCPVPR:	Time of the last control-panel vector printout.								
VCPVLP:	Control-panel vector loop parameter values.								
VCPVPR:	Control-panel vector primary parameter values.								
INTEGER VARIABL	ES:								
IHTRIG:	Terminal (TTY) heading print trigger.								
INTFLG:	Flag that indicates an interrupt message has been received.								
IPRCPV:	Control-panel vector processing flag. 0 = control-panel vector processing selected; 1 = control-panel vector processing not selected.								
KFLOW:	Flow output units. 0 = kg/s; 1 = lb/s.								
KLEVEL:	Level output units. 0 = m; 1 = ft.								
KPRESS	Pressure output units. 0 = MPa; 1 = psi.								
KTEMP:	Temperature output units. 0 = K; $1 = {}^{\circ}F$.								
LASOG:	Length of each interactive graphics edit.								
LCPVLP:	LCM pointers to variables used in evaluating control-panel vector loop parameters.								

	LCPVPR	LCM pointers for variables used in evaluating control-panel vector primary parameters.
	NCPVP:	Number of interactive graphic dumps.
	NORMDP:	Flag that indicates a dump in the noninteractive mode. 0 = no dump occurs, default if code is interactive; 1 = dump occurs.
	NORMRS:	 Flag that indicates if a restart was obtained from a normal noninter- active TRAC version. 0 = no restart, default if code is interactive; 1 = a restart was obtained.
co	MDECK CPVINP	

ICELLS, ICOMPS, JCELL, JCOMPS, JDISCH, LOOPCT, COMMON/CPVINP/ LOOPID, LOOPS ICELLS(4,8), ICOMPS(4,9), JCELL(3), JCOMPS(4), JDISCH(4), DIMENSION LOOPID(4), LOOPS(4)

INTEGER VARIABLES:

- ICELLS(L,I):
- Cell number in loop L where the control-panel vector parameter I is located.
 - 1 = 1, hot-leg temperature;
 - 2, cold-leg temperature;
 - 3. primary-liquid mass flow;
 - 4, ECCS liquid mass flow;
 - 5, stearn-generator secondary-side pressure;
 - 6, steam-generator secondary-side steam-mass flow;
 - 7, steam-generator secondary-side main-feedwater mass flow; and
 - 8, steam-generator secondary-side auxiliary feedwater mass flow.

Cell number where the control-panel vector global parameter I is lo-

ICOMPS(L,I):

- Component number in loop L where the control-panel vector parameter | is located.
 - I == 1 through 8 defined in ICELLS(L,I).
 - 1 = 9, steam-generator secondary-side water level.
- JCELL(I):
- cated. 1 = 2, primary pressure; and
 - 3, containment pressure and temperature.

JCOMPS(1):

Component number where the control-panel vector global parameter I is located.

- 1 = 2 and 3 defined in ICELL(1).
 - 1, reactor power; and

4, pressurizer water level.

JDISCH(L):	Component number for refueling storage tank discharge in loop L (should be a FILL).
LOOPCT:	Number of loops in this model ($1 \leq LOOPCT \leq 4$).
LOOPID(L):	Loop identification for loop L.
LOOPS(L):	Number of physical loops in loop L.

COMDECK DAMPER

COMMON/DAMPER/ FIHT, IFRCR

REAL VARIABLES:

FIHT Wall drag coefficient adjustment factor (I.O. not used). INTEGER VARIABLES:

IFRCR:

Wall drag evaluation option. 0 = no; 1 = yes.

COMDECK DECAYC

COMMON/DECAYC/ FISPHI, FP235, FP238, FP239, QAVG, Q235, Q238, Q239, RANS, R239PF, TOPATE

COMMON/DECAYC/ IANS79

REAL VARIABLES:

FISPHI:	Fissions per initial fissile atom.
FP235:	Fraction of core power from U ²³⁵ fissions.
FP238:	Fraction of core power from U ²³⁸ fissions.
FP239:	Fraction of core power from Pu ²³⁹ fissions.
QAVG:	Average energy per fission.
Q235:	Energy per fission from U ²³⁵ .
Q238:	Energy per fission from U ²³⁸ .
Q239:	Energy per fission from Pu ²³⁹ .
RANS:	Multiplier applied to the ANS79 decay heat.
R239PF:	Atoms of U ²³⁹ produced per fission.
TOPATE: INTEGER VARI	Four years in seconds units. ABLE:

IANS79:	ANS79 decay-heat standard evaluation flag.
	0 = not evaluated;
	1 = evaluated the 69-group ANS79 decay-heat standard

2 = evaluated the ANS79 decay-heat standard plus the heavymetal decay for U²³⁹ and Np²³⁹.

COMDECK DEFVAL

COMMON/DEFVAL/

ALPQ, CFZ3Q, HD3Q, HSTNQ, PAQ, PQ, QPPPQ, TLQ, TVQ, TWQ, VLQ, VVQ

COMMON/DEFVAL/ ISTOPT

REAL VARIABLES:

LPQ:	Default	value for initi	al void	fractions i	nput	through	NAMELIST	and
	used to	specify void f	raction	s when IST	TOPT	= 1 or	2.	

CFZ3Q: Default value for three-dimensional VESSEL component additive loss coefficients input through NAMELIST and used to specify VESSEL additive loss coefficients when ISTOPT = 1 or 2.

HD3Q: Default value three-dimensional VESSEL component hydraulic diameters input through NAMELIST and used to specify VESSEL hydraulic diameters when ISTOPT = 1 or 2.

HSTNQ: Default value for initial heat-structure instruction in through NAMELIST and used to specify the heat-i .______ ture temperatures when ISTOPT = 1 or 2.

PAQ: Default value for initial air partial pressures input through NAMELIST and used to specify air partial pressures when STOPT = 1 or 2.

PQ: Default value for initial pressures input through NAMELIST and used to specify pressures when ISTOPT = 1 or 2.

QPPPQ: Default value for initial volumetric heat sources in flow channel walls input through NAMELIST and used to specify volumetric heat sources when ISTOPT = 1 or 2.

TLQ: Default value for initial liquid temperatures input through NAMELIST and used to specify liquid temperatures when ISTOPT = 1 or 2.

TVQ: Default value for initial vapor temperatures input through NAMELIST and used to specify vapor temperatures when ISTOPT = 1 or 2.

TWQ: Default value for initial wall temperatures input through NAMELIST and used to specify wall temperatures when ISTOPT = 1 or 2.

VLQ: Default value for initial liquid velocities input through NAMELIST and used to specify liquid velocities when ISTOPT = 1 or 2.

VVQ: Default value for initial vapor velocities input through NAMELIST and used to specify vapor velocities when ISTOPT = 1 or 2.

INTEGER VARIABLE:

ISTOPT: Input option for thermal-hydraulic parameter default values.

COMDECK DETC

COMMON/DETC/ NDETC

INTEGER VARIABLE:

NDETC: Flag for generating debug printout from the outer interation cell-wise matrix definition.

COMDECK DF1D/C

COMMON/DF1DC/ A11111, ALPST, ARDMIN, ARN, ARY, C1A, C1AV, C2A, C2AV, C7 DVJP, FL1, FL2, FLJP, FLJS, FV1, FV2, HAVLV, QTP, S01, S04 D12, SAVT, SSAC, SSE, SSMC, SSMOM, SSVC, SSVE, VJS, ZZZZZZ

COMMON/DF1DC/ IO1, IO2, IO3, IACC2, IBKS, ICLFLG, ICME, ICORL, ICORU, IIO1, IIO2, IIO3, IL, IPHSEP, ISFLG, ISLB, ICRB, IVPVLV, JS-TART, LPINDX, MSC, NC2, NJN, NSTG, NTEE

REAL VARIABLES:

ARDMIN: Ninimum value of the difference between the flow-area ratios one mesh-cell distance from a junction interface with a PLENUM component and at the junction interface with a PLENUM component for flow from the PLENUM component.

ARN: No factor for applying flow-area ratios in the momentum-convection term.

0.0 = apply siea ratios;

1.0 = do not apply area ratios.

- ARY: Yes factor for applying flow-area ratios in the momentum-convection term.
 - 1.0 = apply area ratios:

0.0 = do not apply area satios.

A111 Dummy variable that provides a known start to the COMMON block.

ALPST: The JCELL fluid void fraction to be convected into the TEE component side leg by the TEE offtake model.

C1A: Fraction of liquid velocity at the left face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.

C1AV: Vapor velocity fraction at the left face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.

C2A: Fraction of liquid velocity at the right face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.

C2AV: Vapor velocity fraction at the right face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.

CT: Momentum source coefficient.

DVJP:	Pressure derivative of source velocity.
FL1:	Temporary storage for liquid mass-flow corrections for mass-conservation chocks at low-numbered cell face.
FL2:	Temporary storage for liquid mass-flow corrections for mass-conservation checks at high-numbered cell face.
FLJP:	K-factor turning plus abrupt flow-area change loss times the side-leg RHO*FA*VM**2 at a TEE internal junction that is to be assigned to the primary-side interfaces that flow into JCELL.
FLJS:	FRIC turning plus abrupt flow-area change loss at a TEE internal junction that is to be assigned to the side-leg internal-junction inter- face.
FV1:	Temporary storage for vapor mass-flow corrections for mass-conservation checks at low-numbered cell face.
FV2:	Temporary storage for vapor mass-flow corrections for mass-conservation checks at high-numbered cell face.
HAVLV:	Temporary storage for the hydraulic diameter when the valve is open.
QTP:	Total direct power input.
S01:	Sign of IOU(1,current component).
S02:	Sign of IOU(2,current component).
SALT:	Source term to liquid for compressible work.
SAVT:	Source term to vapor for compressible work.
SSAC:	Air source.
SSE:	Energy source.
SSMC:	Mass source.
SSMOM:	Momentum source to left-hand cell boundary.
SSVC:	Vapor mass source.
SSVE:	Vapor energy source.
VJS:	Source velocity.
ZZZZZZ:	Dummy variable that provides a known end to the COMMON block.
NTEGER VAR	IABLES:
101:	ABS(IOU(1,current component)).
102:	ABS(IOU(2,current component)).
103:	IOU(3,current component) [always positive]
IACC2:	Flag for PIPE used to model accumulator.
IBKS:	Indicator for network solution.
ICLFLG:	Flag used by the STGEN (steam-generator) component in the post- pass to instruct the numerical stabilizer whether the second junction of a secondary component is connected to an external component.

APPENDIX D

D-19

ICME:	Component index for referencing IOU array.
ICORL:	Core-region lower boundary.
ICORU:	Core-region upper boundary.
1101:	101 plus a displacement for the current loop.
1102:	102 plus a loop displacement.
1103:	103 plus a loop displacement.
IL:	Loop number index.
IPHSEF:	Phase-separation evaluation flag of the TEE offtake model.
ISFLG:	Flag that indicates if the calculations are being performed for a STGEN (steam-generator) component.
1717	Left-hand boundary switch.
	Right-hand boundary switch.
	Interface number of the adjustable-valve flow area.
	Cell number at left end of one-dimensional segment.
	Loop index that indicates the loop in the system.
	Cell number for source terms.
NC2:	Cell number that begins a TEE and STGEN (steam-generator) TEE secondary.
NJN:	Number of network matrix junctions.
NSTG:	Counter for a STGEN (steam generator).
NTEE:	Counter for a TEE

COMDECK DIDDLE

COMMON/DIDDLE/

AFCT, ALPBCT, ALPCC, ALPLVL, ALPLVU, ALPSHL, ALP-SHU, ALW1, ALW2, CALV2, CBMIN, ENCUT, ENFAC1, EN-FAC2, ENMIN, FAREA1, FAREAH, FAREAV, FSE5, SCI-NAN, TGRAV, VDRPF, VDRPMX, VECLCT, VECVCT, VINTF, VLVCMX, VRBCUT, VRTCUT

COMMON/DIDDLE/ NIFSLB

REAL VARIABLES:

AFCT:	Area scaling for waves on inverted annular interface.
ALPBCT:	Lower bound on bubble void fraction used to compute interfacial heat-transfer rates (and resulting Γ) when boiling.
ALPCC:	Void fraction that gives the minimum value for the bubble condensa- tion rate.
ALPLVL:	Lowest value of the maximum adjacent void fraction allowed for cal- culating a plug interfacial area.

ALPLVU:	Highest value of the minimum adjacent void fraction allowed for cal- culating a plug interfacial area.
ALPSHL:	Void below which the interface sharpener is off.
ALPSHU:	Void above which the interface sharpener is completely on.
ALW1:	Void fraction lower limit for transition from bubbly-slug (at ALW1 = 0.5) to annular-mist (at ALW2 = 0.75) flow regimes.
ALW2:	Void fraction upper limit for transition from bubbly-slug (at ALW1 = 0.5) to annular-mist (at ALW2 = 0.75) flow regimes.
CALV2:	The liquid-side HTC for superheated drops.
CBMIN:	Minimum allowed mean bubble diameter.
ENCUT:	Minimum droplet entrainment fraction.
ENFAC1:	Scaling factor for minimum entrainment velocity.
ENFAC2:	Scaling factor for entrainment correlation exponent.
ENMIN:	Variable not implemented.
FAREA1:	Scale factor for one-dimensional plug flow condensation area.
FAREAH:	Scale factor for three-dimensional separated plug flow horizontal con- densation area.
FAREAV	Scale factor for three-dimensional separated plug flow vertical con- densation area.
FSE5:	Scale factor for pool entrainment.
SCINAN:	Scale factor for inverted annular drag.
TGRAV:	Absolute value of GRAV above which horizontal stratified flow cannot exist (0.75).
VDRPF:	Scale factor in the expression for the limiting circulation velocity in a drop.
VDRPMX:	Maximum allowed internal circulation velocity in a drop.
VECLCT:	Lowest allowed liquid speed when computing interfacial coefficients.
VECVCT:	Lowest allowed vapor speed when computing interfacial coefficients.
VINTF:	Factor in expression for mean circulation speed in a moving drop
VLVCMX:	Maximum liquid velocity used for the condensation ALV correlation.
VRBCUT:	Minimum allowed relative velocity for computing ALV during boiling.
VRTCUT:	Minimum allowed relative speed for computing interfacial coefficients (except during boiling).

INTEGER VARIABLE:

NIFSLB: If nonzero, then slabs should be used to test for inverted annular flow.

COMDECK DIDDLH

COMMON/DIDDLH/ AFLML, AFLMU, ALP2, ALP3, ALPAG, ALPBR, ALPCUT, ALPDF, ALOW, AUP, FBER, FBEX, FDALVA, FDFHL, FLILER, FLILES, FREQ1, FREQ2, FUDGE1, FUDGE2, HGF, HGVMN, LIMFLG

COMMON/DIDDLH/ IHTAV, IHTCN, NSHTCN

REAL VARIABLES:

- AFLML: Void fraction below which Bromley film boiling contributes fully to the liquid.
- AFLMU: Void fraction above which no Bromley coefficient is added to the liquid.
- ALP2: Void fraction above which vapor is in forced convection.
- ALP3: Void fraction above which there is no liquid heat transfer.
- ALPAG: Void fraction at the agitated-to-post-agitated inverted-annular flow transition boundary.
- ALPBR: Void fraction above which liquid convection is linearly faired off and vapor connection is faired on.
- ALPCUT: Void fraction above which nucleate boiling is not permitted (if other criteria are met).
- ALPDF: Void fraction describing the beginning of the highly dispersed inverted-annular flow.
- ALOW: Lowest value of void fraction in adjacent cells.
- AUP: Highest value of void fraction in adjacent cells.
- FBER: Variable not used.
- FBEX: Power of (1α) weighting of Bromley correlation.
- FDALVA: Multiplier of DALVA(J) which is rate of change of ALW with respect to void fraction and is currently set to zero.
- FDFHL: A scaling factor for the wall-to-droplet heat-transfer correlation.
- FLILER: Constant used to adjust the wall-to-liquid HTC obtained by modified Bromley correlation in reflood.

FLILES: Same as FLILER for non-reflood cases.

FREQ1: Time-constant constraint frequency for the maximum increase in interfacial heat-transfer and drag coefficients.

FREQ2: Time-constant constraint frequency for the maximum decrease in interfacial heat-transfer and drag coefficients.

FUDGE1:	step size is 1.0/FREQ1.
FUDGE2:	Time-constant constraint factor of maximum decrease when the time- step size is 1.0/FREQ2.
HGF:	Function of nucleate-boiling heat transfer, which contributed to sub- cooled boiling.
HGVMN:	Cutoff velocity for condensation used to suppress subconded nucleate boiling.
LIMFLG:	 Flag for evaluating time-constant constraint of the evaporation and condensation rate coefficients. 0 = no; 1 = yes.
TEGER VAR	ABLES:
IHTAV:	Variable is normally 1. If IHTAV is 0, then there is no time averaging of HTCs.
INTON-	Variable is normally 0. If IHTCN is 1, then HTCs are forced to emain

NSHTCN: Variable is normally 10 000 000. If NSTEP > NSHTCN, then IHTCH is set to 1 (for debugging only).

COMDECK DIDDLI

COMMON/	DIDDL1/	SMIVX

CONANAON	DIDDUI	HARK NSCOOL
COMMON	DIDDLI/	IMON, NOLUUL

REAL VARIABLE:

SMIVX: Constant 1.5 (not used).

INTEGER VARIABLES:

IIABK: Constant 1 (not used).

NSCOOL: Flag (when having its default value of 1) that constrains the subcooled boiling heat flux to not exceed the wall heat flux to the liquid.

COMDECK DIMNSION

COMMON/DIMEN/

IFREE, JNVSSL, KVEL1T, KVEL2T, KVEL3T, LAST, LDIM, LENBD, LENDIM, LENTBL, LFREE, LLAST, LNLDPV, LNRDPT, LOCRDP, LSTART, LSTRDP, LVER, MDIM, MEM-FLG, MOFF, NCOMP, NCOMPT, NHTSTR, NJNMX, NJNT, NJUN, NLOOPS, NMVSSL, NPX, NSTGJ, NTHM, NTHM1D, NTHM3D, NUMTCR, NVCON, NVELX, NVELY, NVELZ, NWRDA

INTEGER VARIABLES:

IFREE:	First free location in the dynamic storage area.
JNVSSL:	Maximum number of VESSEL junctions in a loop.
KVEL1T:	Order of the x- or r-direction stabilizer motion-equation VESSEL ma- trix.
KVEL2T:	Order of the y- or θ -direction stabilizer motion-equation VESSEL matrix.
KVEL3T:	Order of the z-direction stabilizer motion-equation VESSEL matrix.
LAST:	Last location in the dynamic storage area.
LDIM:	Maximum storage size order of the capacitance matrix.
LENBD:	Length of boundary data array for each junction.
LENDIM:	Variable that dimensions the component variable-length tables.
LENTBL:	Length of fixed-length table.
LFREE:	First free location in LCM.
LLAST:	Last location in LCM.
LNLDPV:	Pointer variable for the network matrix equation right-hand side vector.
LNRDPT:	Total number of ROD-data pointer variables.
LOCRDP:	Number 1 (the initial value of the do-loop index over rod-data pointer variables).
LSTART:	First free location in LCM.
LSTRDP:	Number of general ROD-data pointer variables.
LVER:	Location in LCM of version information data.
MDIM:	Maximum storage order of the banded VESSEL matrix.
MEMFLG:	Flag for monitoring dynamic memory expansion.
MOFF:	Array row number of the main diagonal elements from the banded VESSEL matrix.
NCOMP:	Number of components (each STGEN component counts as a single component).
NCOMPT:	Total number of components, including the secondary components defined as parts of the STGEN components.
NHTSTR:	Namelist variable defining the total number of heat-structure compo- nents.
NJNMX:	Maximum number of network junctions.
NJNT:	Total number of network junctions for all loops.
NJUN:	Number of junctions.
NLOOPS:	Number of one-dimensional loops in the system.

D-24

NMVSSL:	Number of VESSELs.
NPX:	Number of pointers in the PTRS COMMON block.
NSTGJ:	Number of internal junctions in a STGEN (steam generator).
NTHM:	Number of elements per cell in the DRIV array.
NTHM1D:	Length of the data stored per cell in the DRIV array (mostly thermo- dynamic derivatives) in one-dimensional components.
NTHM3D:	Length of the data stored per cell in the DRIV array (mostly thermo- dynamic derivatives) in three-dimensional VESSEL components.
NUMTCR:	Number of title cards.
NVCON:	Total number of VESSEL connections.
NVELX:	Order of the x- or r-direction stabilizer motion equation VESSEL ma- trix.
NVELY:	Order of the y- or θ -direction stabilizer motion equation VESSEL matrix.
NVELZ:	Order of the z-direction stabilizer motion equation VESSEL matrix.
NWRDA:	Size of the A array under *IF DEF, ASIZE.

COMDECK DLIMIT

£

COMMON/DLIM/ DELAMX, DELCMX, DELDMX, DELEMX, DELPMX, DEL-RMX, DELVMX, DELXMX, DTBKUP, FPMAX, FXMAX, GX-MAX

COMMON/DLIM/	NLIM, NLIM2
DIMENSION	NLIM(8), NLIM2(6)

REAL VARIABLES:

DELAMX:	Time-step limit caused by void-fraction change.
DELCMX:	Time-step limit caused by maximum changes in pressures and tem- peratures.
DEI DMX:	Time-step limit caused by numerical considerations in the ROD and SLAB heat transfer.
DELEMX:	Time-step limit caused by VESSEL mass errors.
DELPMX:	Time-step limit that results in a maximum 10% change in reactor-core power.
DELRMX:	Time-step limit caused by final value of the percentage variation in pressure from iteration to iteration.
DELVMX:	Material Courant stability limit (computed only in VESSELs).
DELXMX:	Time-step limit that results in the maximum allowed adjustment of VALVE components.

DTBKUP:	Time-step limit defined by DELPMX or DELXMX when a back-up calculation is required after the prep-stage calculation.	
FPMAX:	Maximum fractional change (0.1) in reactor-core power per time step.	
FXMAX:	VALVE-adjustment algorithm parameter (0.4).	
GXMAX:	Minimum fractional change (0.05) in the VALVE maximum flow-area fraction change over a time step.	

INTEGER VARIABLES:

NLIM: Array that stores the number of time steps that were constrained by each of the time-step limits since the last short or large edit.

NLIM2: Array that stores the number of time stops that were constrained by each of six different time-step limits defining DELCMX since the last short or large edit. [The sum of all six NLIM2(1) equals NLIM(5), which is the number of times DELCMX controls the time-step size.]

COMDECK DMPCK

COMMON/DMPCK/ LVCK

INTEGER VARIABLE:

LVCK:

Summed number of values over the VESSEL component that have been written to the dump file (summed by subroutine DLEVEL but not used).

COMDECK DMPCTRL

COMMON/CTRLDP/	DMPINT, LTDUMP, TDUMP
COMMON/CTRLDP/	DMPFLG, ICTRLD, NSDO
DIMENSION	ICTRLD(8)

REAL VARIABLES:

DMPINT:	Dump interval for time domain
LTDUMP:	CPU time when last dump was taken.
TDUMP:	Calculation time when next dump will be taken.
TEGER VARI	ABLES:
DMPFLG:	 Flag that signals whether the dump output file has been initialized. 0 = uninitialized; 1 = initialized.
ICTRLD:	Array that contains buffering information about the dump output file.
NSDO:	Time-step number of last completed dump.

IN

COMDECK DSKPTP

COMMON/DSKPTP/ NL, NR, NW

INTEGER VARIABLES:

NL:	Number of words of data in the process-to-process (PTP) message.
NR:	First word address on the I/O unit 9 disk where the PTP message is to be read from.
NW:	First word address on the I/O unit 9 disk where the PTP message is to be written to.

COMDECK EDIFF

COMMON/EDIFF/	IDIAG2.	JPRTST,	JTLTST,	JTMTST,	JTVTST,	KDAMX,
	LDAMX,	LPRTST,	LTLTST,	LTMTST,	LTVTST,	NDAMX,
	NPRTST	NTLTST.	NTMTST.	NTVTST		

INTEGER VARIABLES:

IDIAG2:	Flag that allows skipping of certain diagnostics generated in NEWDLT by IDIAG option. (Hardwired on.)
JPRTST:	Cell number of component that has controlled time step due to pres- sure change limits.
JTLTST:	Cell number of component that has controlled time step due to liquid temperature change limits.
JTMTST:	Structure node of component that has controlled time step due to "metal" temperature change limits.
JTVTST:	Cell number of component that has controlled time step due to vapor temperature change limits.
KDAMX:	Variable not used.
LDAMX:	Variable not used.
LPRTST:	Z-elevation number of component that has controlled time step due to pressure change limits.
LTLTST	Z-elevation number of component that has controlled time step due to liquid temperature change limits.
LTMTST:	Z-elevation number of component that has controlled time step due to "metal" temperature change limits.
LTVTST:	Z-elevation number of component that has controlled time step due to vapor temperature change limits.
NDAMX:	Variable not used.
NPRTST:	Component number that has controlled time step due to pressure change limits.

NTLTST:	Component number that has controlled time step due to liquid tem- perature change limits.
NTMTST	Component number that has controlled time step due to "metal" temperature change limits.
NTVTST:	Component number that has controlled time step due to vapor tem- perature change limits.

COMDECK ELVKF

CONTRICTATION INC.	COMMON	/ELVKF/	IELV,	IINL, IKFAC
--------------------	--------	---------	-------	-------------

INTEGER VARIABLES:

IELV:	Input option switch that allows user to input cell-centered elevations for gravity term.
IINL:	Index for the two passes through INIT.
IKFAC:	Input option switch that allows user to input K-factors for additive form-loss coefficients.

COMDECK EMOT

COMMON/EMOT/	CSF1D, CSF3D, FNCIF

COMMON/EMOT/ IVMN, IVMX, JIV, NOLDV

REAL VARIABLES:

CSF1D:	Maximum material courant number for the one-dimensional hydro
	components.
CSF3D:	Maximum material courant number for the three-dimensional hydro components.
FNCIF:	Constant 0.7 (not used).

INTEGER VARIABLES:

VMN:	Minimum time-step number for debug printing interface JIV veloci- ties.
IVMX:	Maximum time-step number for debug printing interface JIV veloci- ties.
JIV:	Mesh-cell interface number for debug printing vapor and liquid, tilde, and solution velocities in subroutine TF1DSI.
NOLDV	 Flag for setting the beta factor in the momentum-convection term to zero. 0 = no; 1 = ves.

COMDECK ERRCON

COMMON/ERRCON/ ANTEST, ATEST1, DARA, DARL, DARV, DDVL, DDVV, DTLL, DTLLM, DTLU, DTLUM, DTVL, DTVLM, DTVU, DTVUM, TIMDL, TIMDU

COMMON/ERRCON/ IATEST, ICHGA, ILREIT, IPTEST, IVTEST, JATEST, JDARA, JDARL, JDARV, JDDVL, JDDVV, JDTLL, JDTLU, JDTVL, JDTVU, JPTEST, JVTEST, KPTEST, NDARA, NDARL, NDARV, NDDVL, NDDVV, NDTLL, NDTLU, NDTVL, NDTVU, NPTEST, NSDL, NSDU

REAL VARIABLES:

ANTEST: End-of-time-step void fraction that is outside its 0. to 1. value range in mesh cell JATEST of component IATEST.

ATEST1: Beginning-of-time-step void fraction in mesh cell JATEST of component IATEST

DARA: Maximum change in αp_a .

DARL: Measure of the maximum difference in $(1 - \alpha)\rho_\ell$ between the basic and stabilizer steps.

DARV Measure of the maximum difference in $\alpha \rho_g$ between the basic and stabilizer steps.

DDVL: Measure of the maximum difference in V_ℓ between the basic and stabilizer steps.

DDVV: Measure of the maximum difference in V_g between the basic and stabilizer steps.

DTLL: Largest decrease in T₂ for current iteration.

DTLLM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

DTLU: Largest increase in Ty for current iteration.

DTLUM: DTVLM and DTLLM are limits on D1 VL and DTLL beyond which another iteration must be performed.

DTVL: Largest decrease in vapor temperature in a given iteration.

DTVLM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

DTVU: Largest increase in T_g for current iteration.

DTVUM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

TIMDL: If TIMDL ≤ TIMET ≤ TIMDU, details of DARV, etc., should be printed.

TIMDU: If TIMDL < TIMET < TIMDU, details of DARV, etc., should be printed.

INTEGER VARIABLES:

IATEST:	Component number with an out-of-range void fraction value.
ICHGA:	Flag to print maximum void fraction changes to the message file.
ILREIT:	Flag that allows reiteration messages when equation set changes.
IPTEST:	VESSEL x- or r-direction mesh-cell number having maximum $ \delta p/p $.
IVTEST:	Component number having a velocity that changed its numerical sign during the last outer iteration.
JATEST:	Mesh-cell number in component IATEST where the void fraction has an out-of-range value.
JDARA:	Cell where DARA occurred.
JDARL:	Cell where DARL occurred.
JDARV:	Cell where DARV occurred.
JDDVL:	Cell where DDVL occurred.
JDDVV:	Cell where DDVV occurred.
JDTLL:	Cell where DTLL occurred.
JDTLU:	Cell where DTLU occurred.
JDTVL:	Cell where DTVL occurred.
JOTVU:	Cell where DTVU occurred.
JPTEST:	VESSEL y- or θ -direction mesh cell or one-dimensional component mesh cell with maximum $ \delta p/p $.
JVTEST:	Mesh-cell interface number in component IVTEST with a velocity that changed numerical sign during the last outer iteration.
KPTEST:	VESSEL z-direction mesh cell with maximum $ \delta p/p $.
NDARA:	Component where DARA occurred.
NDARL:	Component where DARL occurred.
NDARV:	Component where DARV occurred.
NDDVL:	Component where DDVL occurred.
NDDVV:	Component where DDVV occurred.
NDTLL:	Component where DTLL occurred.
NDTLU:	Component where DTLU occurred.
NDTVL:	Component where DTVL occurred.
NDTVU:	Component where DTVU occurred.
NPTEST:	Component number with maximum $ \delta p/p $.
NSDL:	if NSDL \leq NSTEP \leq NSDU, a detailed diagnostic of DARV, etc., should be printed to TRCMSG.
NSDU:	If NSDL \leq NSTEP \leq NSDU, a detailed diagnostic of DARV, etc., should be printed to TRCMSG.

APPENDIX D

D-30

COMDECK FILM

CONFLM, FDMAX, FFUNH, FILML, FILMU, XFDCON

REAL VARIABLES:

COMMON/FILM/

CONFLM:	Constant used in film thickness calculation.
FDMAX:	Factor indicating how much bigger film drag may be than the wall drag.
FFUNH:	Factor indicating cross-channel cold-wall effect.
FILML:	Lower bound on film thickness.
FILMU:	Upper bound on film thickness.
XFDCON:	Multiplier on wet-wall film drag.

FIXED-LENGTH TABLES

COMDECK FIXEDLT

COMMON/FLTAB/	COILD, HTLSCI, HTLSCO
COMMON/FLTAB/	CTITLE, CTYPE, ICFLG, ID, IREST, LENARR, LENFV, LENFV2, LENPTR, LENVLT, LEXTRA, LFV, LFVN, NCELLT, NODES, NRVLT, NUM, NUMBM1, NUMBM2, NUMBM3, NUMBN1, NUMBN2, NUMBN3

DIMENSION CTITLE(4)

REAL VARIABLES:

COILD: Constant 0.0 (not used).

HTLSCI: Component inside surface heat-transfer coefficient.

HTLSCO: Component outside surface heat-transfer coefficient.

INTEGER VARIABLES:

Component description.
Component type.
Cell-edge choked-flow model options.
Component identification.
Component restart indicator.
Length of array block.
Length of fundamental variables.
Length of fundamental variables for which old-time and new-time values are the same at the start of the OUTER code block.
Length of pointer table.
Length of variable-length table.

LEXTRA:	Length of nonstandard dump for components.							
LFV:	Relative position of old fundamental variables.							
LFVN:	Relative position of new fundamental variables.							
NCELLT:	Total number of cells.							
NODES:	Number of heat-transfer nodes.							
NRVLT:	Number of real variables in each component VLT COMMON block.							
NUM:	Component number.							
NUMBM1:	Indices to access large numerals for printing component NUM and IORDER.							
NUMBM2:	Indices to access large numerals for printing component NUM and IORDER.							
NUMBM3:	Indices to access large numerals for printing component NUM and IORDER.							
NUMBN1:	Indices to access large numerals for printing component NUM and IORDER.							
NUMBN2:	Indices to access large numerals for printing component NUM and IORDER.							
NUMBN3:	Indices to access large numerals for printing component NUM and IORDER.							

COMDECK FIXUM

COMMON/FIXUM/ NOAIR, NSMEC, NTHRMC, NVTC

INTEGER VARIABLES:

NOAIR:	Variable that turns off noncondensable (air) field calculations.
NSMEC:	Variable that turns off stabilizer mass and energy equations.
NTHRMC:	Variable that turns off (debugs) basic equation set.
NVTC:	Variable that turns off stabilizer motion equations.

COMDECK GOBCOM

COMMON/GOBCOM/ IDUM, IGOB

INTEGER VARIABLES:

IDUM:	Variable not used.
IGOB:	Variable whose location stores the field length of available memory in SCM

COMDECK GRAPHICS

COMMON/GRAPH/ EDINT, GFINT, SEDINT, TEDIT, TGRAF, TSEDIT

COMMON/GRAPH/ IBUFF, ICTRLG, IPKG, KP, LCAT, LCMGCT, LENCAT, NCTX, NSGO, NWTX

[Nuclear Plant Analyzer (NPA) variables listed below currently are intended only for in-house Los Alamos use.]

COMMON/GRAPH/ EDTBLK, IGROUT, IBLK, NBLKOUT

COMMON/GRAFH/ RDYFRM, SENDFR

DIMENSION ICTRLG(8)

CEAL VARIABLES:

EDINT:	Print edit interval for time domain.				
GFINT:	Graphics edit interval for time domain				
SEDINT:	Interval for short edits.				
TEDIT:	Time of next print edit.				
TGRAF:	Time of next graphics edit.				
TSEDIT:	Time of next short edit.				

INTEGER VARIABLES:

IBLK:	Counter for number of data-edit blocks.
IBUFF:	Length of graphics buffer.
ICTRLG:	Array that contains buffering information about the graphics output file.
IGROUT:	Controller that maintains the address for NPA random disk writes.
IPKG:	Graphics file packing density.
KP:	Pointer in graphics catalog block.
LCAT:	Address of graphics catalog in SCM.
LCMGC	Address of graphics catalog in LCM.
LENCAT:	Number of words in each catalog entry.
NBLKOUT:	Counter for the number of words written to buffer in current graphics data edit.
NCTX:	Number of graphics catalog entries.
NSGO:	Time-step number of last completed graphics edit.
NWTX:	Number of words written to disk per graphics edit.
LOGICAL VARIA	BLES:
EDTBLK:	Flag that is set to TRUE when graphics file is written to start of the first data edit.

RDYFRM:	Flag for sending	TRAC NPA	data to	the HUNI	file for plotting.
SENDER:	Flag :r sending	TRAC NPA	data to	the HUNI	file for plotting.

COMDECK H2FDBK

COMMON/H2FDBK/ IH2SRC

INTEGER VARIABLE:

COMDECK HOLERITH

COMMON/HOLL/

ACCUMH, BREAKH, COREH, CTAINH, FILLH, PIPEH, PLENH, PRIZRH, PUMPH, RODH, SEPDH, SLABH, STGENH, TEEH, TURBH, VALVEH, VSSLH

INTEGER VARIABLES:

Hollerith representation of word "ACCUM."
Hollerith representation of word "BREAK."
Hollerith representation of word "CORE."
Hollerith representation of word "CTAIN."
Hollerith representation of word "FILL."
Hollerith representation of word "PIPE."
Hollerith representation of word "PLENUM."
Hollerith representation of word "PRIZER."
Hollerith representation of word "PUMP."
Hollerith representation of word "ROD."
Hollerith representation of word "SEPD."
Hollerith representation of word "SLAB."
Hollerith representation of word "STGEN."
Hollerith representation of word "TEE."
Hollerith representation of word "TURB."
Hollerith representation of word "VALVE."
Hollerith representation of word "VESSEL."

COMDECK HOLLR

COMMON/HOLLR/ HBREAK, HPLEN, HPRIZR, VSS

REAL VARIABLES:

HBREAK:	Real Hollerith BREAK component name.
HPLEN:	Real Hollerith PLENUM component name.
HPRIZR:	Real Hollerith PRIZER component name.
VSS:	Real Hollerith VESSEL component name.

IH2SRC: Namelist variable when nonzero forces namelist variables IGAS = 2and NOAIR = 0.

COMDECK HTCAV

FHTCU, FHTCL, OWHTD COMMON/HTCAV/

REAL VARIABLES:

Maximum factor of increase of the liquid and vapor heat-transfer FHTCU: coefficients (2.0).

Minimum factor of decrease of the liquid and vapor heat-transfer FHTCL: coefficient (0.0).

OWHTD: Fraction of the previous time-averaged liquid or vapor heat-transfer coefficient that is averaged together with a (1.0 - OWHTD) fraction of the present coefficient to define the present time-averaged value.

COMDECK HTCREF1

COMMON/HTCREF1/	ALPAG2,	ALPCF2,	ALPRW,	ALPSM,	ALPTB, FUNH,	QCHF,
	ZAGS, ZO	CHFL, ZDF	S, ZRWS	, ZSLAB,	ZSMS, ZTB	

IJ. NHSCA, NNODES COMMON/HTCREF1/

ZRWS(NXRYT),

NHSCA(NXRYT)

DII	ME	N	SI	0	N	

ALPAG2(NXRYT), ALPCF2(NXRYT), ALPSM(NXRYT), ALPTB(NXRYT), ZAGS(NXRYT),

ALPRW(NXRYT), FUNH(NXRYT), ZCHFL(NXRYT). ZSMS(NXRYT),

ZDFS(NXRYT), ZTB(NXRYT)

DIMENSION REAL VARIABLES:

ALPG2:	Array of void fractions at top of the agitated section for a given (r, θ).
ALPCF2:	Array of void fractions at CHF location for a given (r, θ) .
ALPRW:	Array of void fractions at top of the rough wavy section for a given (r, θ) .
ALPSM:	Array of void fractions at top of the smooth section for a given (r, θ).
ALPTB:	Array of void fractions at transition boiling location for a given (r, θ).
FUNH:	Array of fractions of the heat-structure surface that is unheated.
QCHF:	Critical heat flux (CHF).
ZAGS:	Array of elevation where agitated inverted annular flow ends for a given (r, θ) .
ZCHFL:	Array of elevations of CHF point for a given (r, θ) .
ZDFS:	Array of elevation where highly dispersed flow begins for a given (r, θ).

ZRWS:Array of elevations where rough-wavy inverted annular flow ends for
a given (r, θ) .ZSLAB:Elevation of heat-transfer node being considered.ZSMS:Array of elevations where smooth inverted annular flow ends for a
given (r, θ) .ZTB:Array of elevations of transition boiling point for a given (r, θ) .INTEGER VARIABLES:

IJ:	(r, θ) hydro-cell number.
NHSCA:	Array of component numbers of the heat structure that defines the principal powered RODs or SLABs.
NNODES:	Number of nodes for a given ROD or SLAB.

COMDECK HTCREF2

COMMON/HTCREF2/ TVZ, TWZ, ZNODES

DIMENSION TVZ(NZFMX), TWZ(NZFMX), ZNODES(NZFMX)

REAL VARIABLES:

TVZ:	Array of vapor temperatures for a given ROD or SLAB.
TWZ:	Array of wall temperatures for a given ROD or SLAB.
ZNODES:	Array of all node centers.

COMDECK HTCREF3

COMMON/HTCREF3/ IFREZ, NREFLD

DIMENSION NREFLD(NXRYT)

INTEGER VARIABLES:

IFREZ: Flag used to turn interfacial vapor heat transfer off, i.e., freeze the drop size.

NREFLD: Flag indicating the reflood model is on; set in subroutine CORE1.

COMDECK HTCS

COMMON/HTCS/	HLIQ, HTCWL, HTCWV, HVAP, QSTEAM, S	SLIP
COMMON/HTCS/	ICONHT	

REAL VARIABLES:

HLIQ:	The enthalpy of liquid.
HTCWL:	Namelist input for constant wall-to-liquid HTC used when $ICONHT = 1$.

HTCWV:

Namelist inpus or constant wall-to-vapor HTC used when ICONHT = 1.

HVAF: The enthalpy of vapor.

QSTEAM: Wall-to-wall heat flux.

SLIP: Slip ratio between phasic velocities.

INTEGER VARIABLE:

ICONHT: Namelist input, ICONHT = 0 normal heat-transfer calculation; ICONHT = 1. Constant heat-transfer coefficients.

COMDECK IFCRS

COMMON/IFCRS/

AL01, ALMAX, ALMIN, ALPBCD, ALPBCH, ALPBCW, ALPDCH, ALPGS, ALPMCT, ALPTM, ALPTP, ALPTS1, ALPTS2, ALVCN, ALVCN1, ALVCN2, ALVEFX, ALVEV, ALVEV1, ALVEV2, ALVFAX, ALPVS, AUPCT, AUPDRG, CCFLL, CCFUL, CCFVLM, CHTABH, CHTACC, CHTAFX, CHTANV, CHTCN1, CHTCN2, CHTEV1, CHTEV2, CHTFAX, CHTICN, CHTIEV, CHTINV, CNDBS, CNDFL, CNDPL, CNDRO, CNDST, D1X, D2X, DTVHT, EPMAX, EPMIN, EVFAX, F2MX, FCDROP, FC-SUB, FDIS, FDIS1, FDIS2, FDISV1, FDISV2, FFD, FFS, FIFAM, FIFBL, FIFBS, FIFCR, FIFEP, FIFST, FIFWL, FISHI, FLMIN, FLSH1, FLSH2, FLSHF, FMDIS, FRI1, FRI2, FRW

COMMON/IFCRS/ FSB, FSM, FUI1, FUI2, H0, HAMIN, HARMX, HCAMIN, HCMIN, HDMAX, HFVL, HFVU, HIMFAC, PC24, PCRIT, RD-MAX, RDMIN, REGMN, SLP1, STFRL, STFRU, STSTRT, TL-GTS, TVLTL, TVLTS, TWDFAC, TWDFAK, VLACC, VLMAX, VOIDD1, VOIDD2, VOIDS1, VOIDS2, VOIDS3, VR2MIN, VR-CMIN, VRFMIN, XHVDIS, XMDIS, XNB

COMMON/IRCRS/ IBLAUS, IEPRI, IHOTP, IWILS

REAL VARIABLES:

AL01:	Constant in subcooled boiling model.
ALMAX:	0.9999, maximum void fraction ($lpha$) to use in calculation of interfacial drag.
ALMIN:	0.00001, minimum void fraction ($lpha$) to use in calculation of interfacial drag.
ALPBCD:	0.00001, minimum void fraction (α) to use in calculation of bubbly interfacial drag.
ALPBCH:	0.00001, minimum void fraction (α) to use in calculation of bubbly interfacial heat transfer.
ALPBCW:	0.00001, minimum void fraction (α) to use in Wilson model (upper plenum) calculation of interfacial drag.

ALPDCH:	0.9995, maximum void fraction ($lpha$) for calculation of droplet diameter in the annular-mist regime.
ALPGS:	Variable not used.
ALPMCT:	Variable not used.
ALPTM:	0.1, maximum void fraction (α) in cell below for vertical stratified flow in the VESSEL.
ALPTP:	0.9, minimum void fraction (α) in cell above for vertical stratified flow in the VESSEL.
ALPTS1:	Variable not used.
ALPTS2:	Variable not used.
ALVCN:	Time constant in rate model for change in condensing ALVE.
ALVCN1.	Constant used in determining the upper bound at the liquid-side HTC for subcooled liquids.
ALVCN2:	Constant used in determining the lower bound of the liquid-side HTC for subcooled liquids.
ALVEFX:	Constant used in determining the limit of the liquid-side HTC between time steps.
ALVEV:	Constant used in determining the limit of the liquid-side HTC between time steps.
ALVEV1:	Constant used in determining the upper bound of the liquid-side HTC for saturated or superheated liquids.
ALVEV2:	Constant used in determining the lower bound of the liquid-side HTC for saturated or superheated liquids.
ALVFAX:	Constant used in determining the limit of flashing HTC between time steps.
ALPVS:	ALPVS = 0.3 constant in model for bubbly flow below a stratified level.
AUPCT:	Constant in stratified flow model for ACCUMs (accumulators).
AUPDRG:	Constant in stratified flow model for ACCUMs (accumulators).
CCFLL:	Variable not used.
CCFUL:	Variable not used.
CCFVLM:	Variable not used.
CHTABH:	Vapor-side HTC for noncondensable gas in bubbly-slug flow.
CHTACC:	Vapor-side HTC for ACCUMS (accumulators).
CHTAFX:	Constant used in determining the limit of vapor-side HTC for non- condensable gas.
CHTANV:	Liquid-side HTC for noncondensable gas for smooth, rough-wavy, and agitated inverted-annular flow.

CHTCN1:	Constant used in determining the upper bound of vapor-side HTC for subcooled vapor.
CHTCN2:	Constant used in determining the lower bound of vapor-side HTC for subcooled vapor.
CHTEV1:	Constant used in determining the upper bound of vapor-side HTC for saturated or superheated vapor.
CHTEV2:	Constant used in determining the lower bound of vapor-side HTC for saturated or superheated vapor.
CHTFAX:	Constant used in determining the limit of vapor-side HTC between time stops.
CHTICN:	Constant used in determining the limits of vapor-side HTC.
CHTIEV:	Constant used in determining the limits of vapor-side HTC.
CHTINV:	Liquid-side HTC for smooth, rough-wavy, and agitated inverted- annular flows.
CNDBS:	Constant to adjust the interfacial area for condensing bubble.
CNDFL:	Constant to adjust the liquid-side HTC in annular-mist flow.
CNDPL:	Constant to adjust the liquid-side HTC for condensation in plug flows.
CNDRO:	Constant to adjust the liquid-side HTC in annular-mist flows.
CNDST:	Multiplier for stratified-flow condensation interfacial heat transfer.
D1X:	Constant in EPRI model
D2X:	Constant in EPRI model.
DTVHT:	Variable not used.
EPMAX:	Maximum drag on EPRI model for CORE-component interfacial drag (not used).
EPMIN:	Minimum drag on EPRI model for CORE-component interfacial drag (not used).
EVFAX:	Constant in the evaporation model.
F2MX:	Factor in the droplet vapor to interface heat-transfer model.
FCDROP:	Constant to adjust the droplet interfacial-drag coefficient for lightly dispersed inverted-annular flow.
FCSUB:	Multiplication constant in the subcooled-boiling condensation model.
FDIS:	Constant to adjust the interfacial-drag coefficient for highly dispersed inverted-annular flow.
FDIS1:	Constant in the dispersed-droplet interfacial-drag model.
FDIS2:	Constant in the dispersed-droplet interfacial-drag model.
FDISV1:	Constant in the dispersed-droplet interfacial-drag model.
FDISV2:	Constant in the dispersed-droplet interfacial-drag model.

w.

FFD:	Constant to adjust the interfacial-drag coefficient of the liquid flow in highly dispersed inverted-annular flow
FFS:	Constant to adjust the interfacial-drag coefficient for the free-stream contribution in subcooled nucleate-boiling regime.
FIFAM:	Factor applied to annular-mist interfacial drag (1.0).
FIFBL:	Multiplier 1., downcomer interfacial-drag model.
FIFBS:	Factor applied to bubbly-slug interfacial drag (1.0).
FIFCR:	Variable not used.
FIFEP:	Multiplier in EPRI interfacial-drag model (1.0); not used.
FIFST:	Factor applied to stratified-flow interfacial drag (1.0).
FIFWL:	Multiplier for Wilson-model interfacial drag in the upper plenum of the VESSEL (1.0).
FISHI:	Variable not used.
FLMIN:	Minimum film thickness for annular flow.
FLSH1:	Maximum flash multiplier.
FLSH2:	Minimum flash multiplier.
FLSHF:	Multiplier on liquid superheat for flashing.
CMDIS:	Constant to adjust the interfacial-drag coefficient for the post- agitated inverted-annular flow.
FRI1:	Time constant for rate of decrease in C _i .
FR12:	Time constant for rate of increase in C ₁ .
FRW:	Constant to adjust the interfacial-drag coefficient for the rough-wavy inverted-annular flow.
FSB:	Constant to adjust the interfacial-drag coefficient for the subcooled nucleate-boiling regime.
FSM:	Constant to adjust the interfacial-drag coefficient for the smooth inverted-annular flow.
FUI1:	Minimum allowed change in C _i .
FUI2:	Maximum allowed change in Cr.
HO:	Constant in subcooled-boiling condensation model.
HAMIN:	Product of the heat-transfer coefficient times the interfacial area.
HARMX:	Variable not used.
HCAMIN:	Variable not used.
HCMIN:	Variable not used.
HDMAX:	Hydraulic diameter used in VESSEL component if user-input hydraulic diameter is less than 10 ⁻⁵ .
HFVL:	Constant used in dispersed-droplet interfacial-drag model.

HFVU:	Constant used in dispersed-droplet interfacial-drag model.
HIMFAC:	Multiplication constant used in the calculation of the minimum vapor- interface heat-transfer rate.
PC24:	Pressure constant (1.95187E+15 Pa ²)
PCRIT:	Critical-point pressure (2.209E+07 Pa).
RDMAX:	Maximum droplet radius in annuler-mist flow.
RDMIN:	Minimum droplet radius in annular-mist flow.
REGMN:	Minimum Reynold's number in stratified flow.
SLP1:	Constant in subcooled-boiling model.
STFRL:	Stratified-flow lower-velocity limit multiplier.
STFRU	Stratified-flow upper-velocity limit multiplier.
STSTRT:	Multiplier on stratified-flow interfacial heat transfer (1.0).
TLGTS:	Maximum liquid superheat used to calculate limit on interfacial heat transfer.
TVLTL:	Maximum vapor temperature less than liquid temperature used to calculate limit on interfacial heat transfer.
TVLTS:	Maximum vapor subcooling used to calculate limit on interfacial heat transfer.
TWDFAC:	Constant in subcooled-boiling model.
TWDFAK:	Constant in subcooled-boiling model.
VLACC:	Maximum liquid velocity in ACCUM (accumulator) for calculation of interfacial heat transfer.
VLMAX:	Maximum liquid velocity in annular film for calculation of interfacial heat transfer.
VOIDD1:	Variable not used.
VOIDD2:	Void fraction limit in the rough-wavy reflood flow regime.
VOIDS1:	Constant 0.05, the lower limit of the void fraction for smooth inverted- annular flow.
VOIDS2:	The upper limit on the void fraction for rough-wavy inverted-annular flow.
VOIDS3:	Constant 0.3, the upper limit on the void fraction for smooth inverted- annular flow.
VR2MIN:	Variable not used.
VRCMIN:	Constant 0.1 minimum relative velocity used to calculate a run.
VRFMIN:	Minimum relative velocity to be used in the bubbly-slug C, calcula- tion.

XHVDIS:	Constant to adjust the weighting for rough-wavy and smooth inverted- annular flow interfacial-drag coefficient in the intermediate void- fraction region.
XMDIS:	Constant to adjust the weighting for post-agitated inverted-annular flow interfacial-drag coefficient.
XNB:	Constant to adjust the weighting for the bubbly flow in the interme- diate void-fraction region.
TECEDIVADIAD	FC.

INTEGER VARIABLES:

IBLAUS:	Blasius friction-factor flag used in downcomer for interfacial drag if $set = 1$.
IEPRI:	EPRI interfacial-drag model flag used for rod bundle in core region if set $= 1$.
IHOTP:	Flag for hot-patch modeling, $1 = on$, $0 = off$.
IWILS:	Wilson interfacial-drag model flag for use in upper plenum when set to 1.

COMDECK IFDPTR

COMMON	/IFDPTR/	IWRTPT,	LASTP1,	NTMPV,	TMPVL

LVT1, LVT2, LVT3, LVT4, LVT5, LVT6, LVT7, LVT8, LVT9, COMMON/IFDPTR/ LVT10, LVT11, LVT12, LVT13, LVT14, LVT15, LVT16, LVT17, LVT18, LVT19, LVT20, LVT21, LVT22, LVT23, LVT24, LVT25, LVT26, LVT27, LVT28, LVT29, LVT30, LVT31, LVT32, LVT33, LVT34, LVT35, LVT36, LVT37, LVT38, LVT39, LVT40, LVT41, LVT42, LVT43, LVT44, LVT45, LVT46, LVT47, LVT48, LVT49, LVT50, LVT51, LVT52, LVT53, LVT54, LVT55, LVT56, LVT57, LVT58, LVT59, LVT60, LVT61, LVT62, LVT63, LVT64, LVT65, LVT66, LVT67, LVT68, LVT69, LVT70, LVT71, LVT72, LVT73, LVT74, LVT75, LVT76, LVT77, LVT78, LVT79, LVT80, LVT81, LVT82, LVT83, LVT84, LVT85, LVT86, LVT87, LVT88, LVT89, LVT90, LVT91, LVT92, LVT93, LVT94, LVT95, LVT96, LVT97, LVT98, LVT99, LVT100, LVT101, LVT102, LVT103, LVT104. LVT105, LVT106, LVT107, LVT108, LVT109, LVT110, LVT111, LVT112, LVT113, LVT114, LVT115, LVT116, LVT117, LVT118, LVT119, LVT120, LVT121, LVT122, LVT123, LVT124

INTEGER VARIABLES:

IWRTPT: Flag to set up temporary pointers for subroutines PREFWD and PREIFD.

LASTP1: LAST+1, pointer for the first free location in memory for the temporary storage arrays set up to vectorize the three-dimensional wall shear and interfacial-drag coefficient evaluations.

NTMPV:	Constant 124, the number of temporary storage arrays in subroutines PREFWD and PREIFD set up to vectorize the three-dimensional wall shear and interfacial-drag coefficient evaluations.
TMPVL:	Number of calculative mesh cells in the three-dimensional VESSEL component.
LVT#:	Pointer variable for the #th temporary storage array set up to vec- torize the three-dimensional wall shear and interfacial drag coefficient evaluation.

COMDECK INFOHL

COMMON/INFOHL/ DROPD, FHLF, QDEN, QFR, QTOTAL, QWEBB, VR2

REAL VARIABLES:

DROPD:	Calculated drop diameter used in Forsland-Rohsenow correlation.		
FHLF:	Factor carried along to separate Denham and Forsland-Rohsenow re- gions.		
QDEN:	Heat flux calculated using Denham correlation.		
QFR:	Heat flux calculated using Forsland-Rohsenow correlation.		
QTOTAL:	Total heat flux calculated, including radiation.		
QWEBB:	Heat flux calculated using Webb-Chen correlation.		
VR2	Local relative velocity minus quench-front relative velocity.		

COMDECK IOUNITS

COMMON/UNITS/ IBFADD, IBFADD,

COMMON/CUNITS/ CARD

INTEGER VARIABLES:

CARD:	Variable that	contains '	the	current	input	card in	character	format.	
-------	---------------	------------	-----	---------	-------	---------	-----------	---------	--

- IBFADD. Pointer to beginning of dump LCM buffer.
- IBFADG: Pointer to beginning of graphics LCM buffer.
- IBFADR: Pointer to beginning of restart LCM buffer.
- IBFLND: Length of dump buffer.
- IBFLNG: Length of graphics buffer.
- IBFLNR: Length of restart buffer.
- IDOUT: I/O unit number for dump output file (currently set to unit 12).
- IGOUT: I/O unit number for graphics output file (currently set to unit 11).

D-43

IMOUT:	1/O unit number for warning messages (currently set to unit 7).
IN:	I/O unit number for input to TRAC (initially set to unit 5 to point to file TRCINP; if the input does not invoke free format, IN is changed to 1 to point to file TRACIN).
INLAB:	I/O unit number for TRAC to senerate a labeled input-data file.
INPROC:	Flag used during input that indicates whether component data are being processed.
IODONE:	Flag that indicates if the current input card has been read.
IOERR:	Input error flag.
IOSKIP:	Flag that turns input processing off and on.
IOUT:	I/O unit number for printed output file (currently set to unit 5).
IRSTRT:	I/O unit number for restart input file (currently set to unit 13).
ITTY:	I/O unit number for terminal output (currently set to unit 59).
LCMCPD:	Storage for the beginning address for reading from or writing to LCM with calls to subroutines RDLCM and WRLCM.
NITTAB:	Flag for printing the time-step data table heading label to the termi- nal (-1) or message file (-2) because a warning message(s) has been printed since the last table values were printed.
NPWTAB:	Flag for printing the power/reactivity feedback table heading label to the message file (-1) because a warning message(s) has been printed since the last table values were printed.
ECK ITERSTA	T

COMD

COMMON/ISTAT/	VARERM, VERR
COMMON/ISTAT/	IOTT, NSTEP, OITNO

REAL VARIABLES:

VARERM:	Maximum variable error.
VERR:	Velocity error at component junction.

INTEGER VARIABLES:

	IOTT:	Temporary storage	for IITNO.
--	-------	-------------------	------------

- NSTEP: Number of time steps taken.
- OITNO: Outer-iteration number.

COMDECK JUNCTION

COMMON/JUNCT/ JMATCH, JPTR

INTEGER VARIABLES:

JMATCH: Counts the number of bad junction numbers detected during the network trace in SRTLP.

JPTR: Number of junction-component pairs.

COMDECK LCMSPACE

COMMON/LCMSP/ ALCM

ALCM(1): Dynamic LCM storage area.

COMDECK MASK

COMMON/MASK/ MSK1, MSK2, MSK3, MSK4, MSK5, MSK6, MSK7, MSK8, MSK9, MSK11, MSK12, MSK13, MSK14, MSK15, MSK16, MSK17, MSK18, MSK19, MSK21, MSK22, MSK23, MSK24, MSK25, MSK26, MSK27, MSK28, MSK29, MSK31, MSK32, MSK33, MSK34, MSK35, MSK36, MSK37, MSK38, MSK39, MSK41, MSK42, MSK43

REAL VARIABLES:

MSK#: Variable value having a 1 in bit # and 0 in all other bits of the word.

COMDECK MASSCK

COMMON/MASSCK/ NSTABO

INTEGER VARIABLE:

NSTABO: Old value of NSTAB from the previous time step (NSTAB is a flag for evaluating the SETS3D equations).

COMDECK MDFCOM

COMMON/MDFCOM/ ICLIST, INPT, INRST

DIMEN_ION ICLIST(100)

INTEGER VARIABLES:

- ICLIST: Component number list that is used during interactive deck modifications.
- INPT: Unit number for the input-data file that is to be interactively modified.
- INRST: Unit number for the restart input-data file, which contains interactively modified components.

COMDECK MDTBL

COMMON/MDTBL/ IDXENT, NIDXNT, VARENT

DIMENSION IDXENT(20), VARENT(600)

INTEGER VARIABLES:

IDXENT:

An array of 16 character entries that holds the component type index for the NPA master-dictionary table. Each entry contains the following:

CNAME	A8	component type
NENT	14	number of entries for this component
DSPTR	14	pointer to the first entry for this component

NIDXNT: An integer containing the number of entries in the master-dictionary table.

VARENT:

An array of 160 character entries that holds the master-dictionary table. Each entry contains the following:

NAME	6.8	variable name
INPATIVIL.	no	variable fiame
ITYPE	Al	use flag
TYPE	A1	variable type
/SIZE	12	variable size (characters/words)
NDIM	14	dimensionality
DVAL	416	maximum size of each dimension
MANC	4A12	variable controlling size of each diminision
SVAL	416	stride of each dimension
SNAM	4A12	variable controlling stride of each dimension

COMDECK MELFLG

COMMON/MELFLG/ MELTRC

INTEGER VARIABLE:

LTRC: Flag to indicate whether subroutine THERMO is called from TRAC components or MELVSL. Necessary due to differing convention on mixture properties.
 0 = call is from MELVSL;

1 = call is from TRAC.

COMDECK MEMORY

COMMON/TIMER/	ADATE, ATIME,	CPUT,	TIMCPU,	TIMEI,	MC:MIT	TIM. YS.
	TIMTOT					

COMMON/TIMER/ NSTEPT

REAL VARIABLES:

ADATE: Date ustained from a call to the system routine DATE.

APPENDIX D

D-46

Time obtained from a call to the system routine DATE. ATIME: CPUT: Cumulativ CPL time from previous jobs in a linked series of calculations: CPUT is set to 0.0 at time 0.0. CPU time obtained from a call to the system routine TIMING. TIMCPU: "me limit of the current job obtained from a call to the system TIMEI: routine GETJTL. TIMIOM: 1/O time obtained from a call to the system routine TIMING. TIMSYS: System time obtained from a call to the system routine TIMING. Total of CPU, I/O, and system times obtained from a call to the TIMTOT: system routine TIMING. INTEGER VARIABLE:

NSTEPT: Storage for the cumulative number of time steps from previous jobs in a linked series of calculations; NSTEPT is set to 0 at time 0.0.

COMDECK NAVGN

COMMON/NAVGN/ NAVG1

INTEGER VARIABLE:

NAVG1: Value defined to IDALPI in subroutine TF1DS when the interface is a junction connected to a BREAK component with flow into the BREAK.

COMDECK NMFAIL

COMMON/NMFAIL/ IFTP, ITFL1, NFL1, NFL3

INTEGER VARIABLES:

IFTP:	Flag that prevents " ermal failure messages if a message has come from TF1SD3 or FF3D.
ITFL1:	Iteration number of the last TF1DS3 failure.
NFL1:	Total number of TF1DS3 failures in the current time step.
NFL3:	Total number of FF3D failures in the cutrent time step.

COMDECK NPA

[Nuclear Plant Analyzer (NPA) variables listed below currently are intended only for in-house Los Alamos use.]

COMMON/NPA/	CONNPA, DTDUMP, DTEDIT, DTNPA, SRATIO, TGEDIT, TIMNPA, TPAUSE, TPDUMP, TRCNPA, TSTOP, VALNPA, ZNAME
COMMON/NPA/	IACT, IFD, NACT, NENPA, NPACOM, NTSNPA

APPENDIX D

NAPCOM(100), TIMNPA(100), VALNPA(100), ZNAME(6)

REAL VARIABLES:

DIMENSION

CONNPA:	Hollerith data name for the NPA executive "master" program con- nected to the process-to-process (PTP) data path.
DTDUMP:	Time edit, defined interactively by the the NPA user, between dump (restart) edits to file TRCDMP.
D'IEDIT:	Time interval, defined interactively by the NPA user, between large edits to file TRCOUT.
DTNPA:	Time error (0.1 s) allowed to implement an NPA user command before the user is prompted by the system to decide if a back-up procedure should be performed to implement the command action at the correct problem time.
SRATIO:	Maximum speed ratio of the problem time-step size to the computer time required to evaluate the time step.
TGEDIT:	Problem time after which the next NPA user-defined graphics edit to file TRCGRF will occur.
TIMNPA:	Array that defines the problem time when a pending NPA user-defined action will be implemented.
TPAUSE:	Problem time when the next NPA user-defined pause in the TRAC calculation will occur.
TPDUMP:	Problem time after which the next NPA user-defined dump (restart) edit to file TRCDMP will occur.
TRCNPA:	Hollerith data name for the TRAC "slave" program connected to the PTP duta path.
TSTOP:	Problem time specified by the NPA user after which the TRAC cal- culation will terminate.
VALNPA:	Array that defines the desired value of ar'A user-controlled action that is pending at time TIMMPA.
ZNAME:	'ray containing a Hollerith data message that communicates NPA user commands to TRAC or TRAC warning messages to the NPA executive program.
TEGER VARI	ABLES:
IACT:	Flag that is changed from 0 to 1 when an additional graphics edit and dump (restart) edit will be performed before an NPA user-defined component-action adjustment is performed.
IFD:	Number of PTP data paths.
NACT:	Number of pending NPA user-defined commands stored in arrays TIMNPA, VALNPA, and NPACOM.

11

NFNPA:	Flag that is changed from 0 to 1 when file PTPDSK will not be destroyed at the end of the TRAC run.
NPACOM:	Array that defines the component number to which a pending NPA user-defined action will be appl. I at time TIMNPA.
N'TSNPA:	Number of TRAC time steps (2) between TRAC status messages that are being sent to the NPA executive program.

COMDECK NRCMP

COMMON/NRCMP/ NCMPMX, NHTSMN, NRCOMP

INTEGER VARIABLES:

NCMPMX:	Maximum hydro component number.
NHTSMN:	Minimum heat-structure component number.
NRCOMP:	Number of components defined from the TRCRST restart-data file.

COMDECK OVLI

COMMON/OVLI/ ISTORE, JFLAG

INTEGER VARIABLES:

ISTORE Fointer variable for the A-array where unused memory storage starts.

JFLAG Flag which is set to 1 when an input-data error is encountered and TRAC is to abort the calculation after all input data has been processed.

COMDECK PMPSTB

COMMON/PMPSTB/ FW/PA

COMMON/PMPSTB/ .?MPCN

REAL VARIABLE:

FWPA: Fraction 0.1 of the present donor-celled void fraction across the pumpimpeller interface that is averaged with the fraction (1.0-FWPA = 0.9) of its previous void fraction average to define the void fraction for evaluating the PUMP HMD table.

INTEGER VARIABLE:

IPMPCN: Flag for not defining the donor-celled mixture density and void fraction across the pump-impeller interface.

COMDECK POINTERS

-----General Pointers------

COMMON/PTRS/

111111, LBD, LCNTL, LCOMPT, LCONTP, LCONTR, LDRA, LDRC, LICVS, LIITNO, LIJVS, LILCMP, LIOU, LISVF, LIVCON, LIVLJN, LJOUT, LJSEQ, LJUN, LLCMHS, LLCON, LLOOPN, LMATB, LMCMSH, LMSCT, LNBR, LNJN, LNSIG, LNSIGP, LNVCNL, LORDER, LPRPTB, LPTBLN, LTITLE, LVSI, LWP

----Network Solution Pointers------

COMMON/PTRS/ JAOL, JAOV, JDRA, JDRC, JDREL, JDREV, JDRL, JDRV, JN-JUN. JOD, LAOL, LAOU, LAOV, LDPVC, LDPVCV, LDREL, LDREV, LDRL, LDRV, LDVB, LIDPCV, LILPRB, LIVLFC, LIVLTO, LIVVTO, LOD, LVRH

----Combination of Unshifted Pointers and Array Lengths-----

COMMON/PTRS/ LBVEC, LBW, LDMAT, LEMAT, LENFXD, LFXD, LRMAT, LV-MAT, LVSSC, LVSSIP, NCLEAR, NMAT, NVCELL, NZZZZZ

DIMENSION IPT(52)

GENERAL POINTERS:

111111:	Dummy variable that provides a known start to the COMMON block.
LBD:	Boundary-data array pointer.
LCNTL:	A-array pointer for the signal-variable, control-block, and trip param- eter data.
LCOMPT:	Component LCM pointers stored in the order used for iteration.
LCONTP:	Number of constrained steady-state controllers that adjust a VALVE to achieve a desired upstream pressure.
LCONTR:	Pointer to the location where the first parameter of constrained steady-state parameter data is stored in the A array.
LDRA:	Storage for right-hand side of the noncondensable (air) stabilizer mass equation.
LDRC:	Pointers for network variables for the solute-tracking option.
LICVS:	Pointer for a temporary array that contains a list of all VESSEL composite-cell numbers that have a source connection to one of their cell faces.
LIITNO:	Number of inner iterations during the last outer iteration for each component (in the order used for iteration).
LIJVS:	Pointer for a temporary array that contains a list of all junction num- bers that link to a VESSEL.

LILCMP:	Component LCM pointers stored in the order in which components were read.
LIOU:	Network junction numbers for the junctions of all components exclud- ing BREAKs and FILLs.
LISVF:	Pointer to an array of flags indicating whether or not a particular component is used to evaluate one or more signal variables $(-1, no signal variable; +1, signal variable)$. This array uses the same order in which the component data are processed.
LIVCON:	Pointer to network junction numbers that connect to a VESSEL.
LIVLJN:	IVLJN(1) is the VESSEL junction number that corresponds to the network junction number given by IVCON(1).
LJOUT:	Storage area for pointers that locate the beginning of each system loop within data for IOU.
LJSEQ	Junction numbers in the order in which junctions occur in the junction-component array.
LJUN:	Junction-component pair array pointer.
LLCMHS:	Pointer to define the starting address for the fixed-length table of each heat-structure component.
LLCON:	Number of times each component was the last to converge since last edit.
LLOOPN.	IA(LLOOPN+IL-1) gives the element of the IORDER array that begins the IL th loop pass.
LMATB:	Pointer for additional material-property ID number.
LMCMSH:	Storage for number of coarse-mesh VESSEL source cells or absolute cell index if direct VESSEL solution is used.
LMSCT:	Temporary storage for VESSEL pressure changes adjacent to sources.
LNBR:	Component numbers stored in the order in which components were read.
LNJN:	NJN(IL) is the number of network junctions in loop IL.
LNSIG	N5IG(IL) is the total number of components excluding BREAKs and FILLs in a loop.
LNSIGP:	NSIGP(IL) is NSIG(IL) plus the number of STGENs (steam genera- tors) in loop IL.
LNVCNL:	IA(LNVCNL+IL-1) points to the elements of IVCON and IV JN that begin the IL ^{(h} loop.
LORDER:	Component numbers stored in the order used for iteration.
LPRPTB:	Pointer to user-defined material-property tables.
LPTBLN:	Pointer for the number of entry groups in the user-defined material- property table.

D-51

LTITLE:	Problem title and version information (stored using only the first four bytes of each word).
LV\$I:	Junction flow reversal indicators in the order in which junctions occur in the junction-component array.
LWP:	Pointer for the composite location numbers of hydro cells coupled to a heat-structure component surface.
ETWORK SO	LUTION POINTERS:
LAOL:	Variable to rework solution of ARL, AREL, and VLT (contains rework matrix).
LAOU:	Network junction coefficient matrix.
LAOV:	Variable to rework solution of ARV, AREV, and VVT (contains rework matrix).
LDPVC:	Locator that shows the beginning of coefficients to evaluate the derivatives of junction velocities with respect to VESSEL pressures.
LDPVCV:	Pointer for reordered coupling coefficients between the VESSEL and the one-dimensional network solution.
LDREL:	Storage for right-hand side of the liquid stabilizer equation.
LDREV:	Storage for right-hand side of the vapor stabilizer equation.
LDPL:	Variable to rework solution of ARL and VLT (contains right-hand aide of linear equations).
LDRV:	Variable to rework solution of ARV and VVT (contains right-hand side of linear equations).
LDVB	Storage for the right-hand side of the network junction equations or the changes in junction velocities.
LIDPCV:	Pointers to coefficients stored in DPCV.
LILPRB:	Pointer for the A array which defines if each hydro loop has VESSEL predictor velocities coupled in different directions.
LIVLFC:	Pointer for the A array which defines the face-connect number for all junction connections to VESSELs for a given hydro loop.
LIVLTO:	Pointer for the A array which defines the liquid tilde velocity at a source-connection junction to a VESSEL for a hydro loop.
LIVVTO:	Pointer for the A array which defines the vapor tilde velocity at a source-connection junction to a VESSEL for a hydro loop.
LOD:	Temporary storage for intercomponent coupling information.
LVRH:	Storage for explicit information to evaluate equations of motion at network junctions.
JAOL:	Pointer for STGEN (steam-generator) internal-network solution ma-
	trix

JAOV:	Pointer for STGEN (steam-generator) internal-network solution ma- trix.
JDRA:	Pointer for STGEN (steam-generator) internal-network solution vec- tor.
JDRC:	Pointer for STGEN (steam-generator) internal-network solution vec- tor.
JDREL:	Pointer for STGEN (steam-generator) internal-network solution vec- tor.
JDREV:	Network vector internal to the STGEN (steam generator).
JDRL:	Pointer for STGEN (steam-generator) internal-network solution vec- tor.
JDRV	Pointer for STGEN (steam-generator) internal-network solution vec- tor.
JNJUN:	Temporary storage location used to define the number of junctions in the current network solution procedure.
JOD:	Pointer for STGEN (steam-generator) internal-network solution ma- trix.
COMBINATION	OF UNSHIFTED POINTERS AND ARRAY LENGTHS:
LBVEC:	Pointer for storing in the A array the capacitance-matrix equation right-hand-side vector.
LBW:	Number of element rows in the array that stores the VESSEL banded coefficient matrix.
LDMAT:	Pointer for storing in the A array the capacitance coefficient matrix.
LEMAT:	Pointer for storing in the A array the E matrix of the capacitance- matrix method.
LENFXD:	Length of data that always remains in the SCM array A.
LFXD:	First word address in the A array of the data defined by LENFXD.
LRMAT:	Pointer for storing in the A array the R matrix of the capacitance- matrix method.
LVMAT:	VESSEL matrix storage for coarse-mesh rehalance or direct inversion.
LVSSC:	Right-hand side of equation associated with LVMAT.
LVSSIP:	Pivoting information for LVMAT.
NCLEAR	Number of values in the A (LVMAT) array storing the VESSEL banded coefficient matrix.
NMAT:	Number of additional material-property tables provided by the user.
NVCELL:	Total number of cells in all VESSELs.

NZZZZZ. Dummy integer that provides a known end to the COMMON block.

.

APPENDIX D

D-53

COMDECK PSE

COMMON/PSE/ NPICMP, NPSE, NPSE1, NPSE3, NPSHTI, NPSIZ, NPSJ, NPSK, NPSV1

INTEGER VARIABLES:

NPICMP:	Component number in TF1DS if NSTEP = NPSE1 and in HTIF if NSTEP = NPSHTI that causes a pause.
NPSE:	Pause in TRANS if NSTEP = NPSE.
NPSE1:	Pause in TF1DS if NSTEP = NPSE1. The cell number is NPSJ, and the component number is NPICMP.
NPSE3:	Pause in TF3DS if NSTEP = NPSE3. The cell index K is NPSK, and the second level is NPSIZ.
NPSH'TI:	Pause in HTIF if NSTEP = NPSHTI.
NPSIZ:	Pause in TF3DS for each level if NSTEP = NPSE3.
NPSJ:	Pause in TF1DS for each cell if NSTEP = NPSE1.
NPSK:	Pause in TF3DS for each cell if NSTEP = NPSE3.
NPSV1:	Pause in TF1DS1 if NSTEP = NPSE1. The cell number is NPSJ, and the component number is NPICMP.

COMDECK Q8LDBK

COMMON/Q8LDBK/ IBLK

DIMENSION IBLK(3,16)

INTEGER VARIABLE:

IBLK: Array that stores code block information in a packed format [IBLK(1,*) is the code block label).

COMDECK QEDMP

	2 Mar 201 Pro & # 200 1	A THE A PROPERTY AND	prover and a series
() KA KA() KI	/ THE INVERT	AIVEE	PXI MP
C IAIIAI CIA		79 1 1 1 hrs	has Produced at 1

DIMENSION EXCHP(16)

REAL VARIABLES:

ATYPE: Constant 0 defined by subroutine ERRTRP.

EXCHP: Array containing system execution information at the point where an execution error was encountered.

COMDECK REFHTI

COMMON/REFHTI/

AGALP, AGSZ, CAFJ, CHFALP, CHFHV, CHFZ, DFALP, DFSZ, RWALP, RWSZ, SMALP, SMSZ, TBALP, TBZ, UNHF

REAL VARIABLES:

AGALP:	Void fraction at the agitated section of inverted-annular flow.
AGSZ:	Elevation of the agitated section of inverted-annular flow.
CAFJ:	Capillary number.
CHFALP:	Void fraction at the CHF point.
CHFHV:	Vapor heat transfer at CHF.
CHFZ:	Elevation of CHF.
DFALP:	Void fraction at the highly dispersed section elevation.
DFSZ:	Elevation of highly dispersed section of inverted-annular flow.
RWALP:	Void fraction of rough-wavy section elevation.
RWSZ:	Elevation of rough-wavy section of inverted-annular flow.
SMALP:	Void fraction at the smooth section elevation.
SMSZ:	Elevation of smooth section of inverted-annular flow.
TBALP:	Void fraction at transition-boiling point.
TBZ:	Elevation of transition b iling.
UNHF:	Fraction of heated surface that is unheated.

COMDECK REFHT12

COMMON/REFHTI2/ ALPTAL, ALPTAU, ALPTRL, ALPTRU, ALPTSL, ALPTSU REAL VARIABLES:

ALPTAL:	Minimum void fraction allowed for end of agitated-inverted flow regime.
ALPTAU:	Maximum void fraction allowed for end of agitated-inverted flow regime.
ALPTRL:	Minimum void fraction allowed for end of rough-wavy-inverted flow regime.
ALPTRU:	Maximum void fraction allowed for end of rough-wavy-inverted flow regime.
ALPTSL:	Minimum void fraction allowed for end of smooth-inverted flow regime.
ALPTSU	Maximum void fraction allowed for end of smooth-inverted flow regime.

COMDECK RESTART

COMMON/RSTART/	DDATE, DD'FIME
COMMON/RSTART/	DLNFLT, DNCOMP, ICTRLR
DIMENSION	(CTRLR(8)

APPENDIX D

REAL VARIABLES:

DDATE:	Date	restart	file	was	created.
DDTIME:	Time	restart	file	was	created.

INTEGER VARIABLES:

DLNFLT:	Length of fixed , h tables read from restart file.
DNCOMP:	Number of components in the restart file.
ICTRLR(8):	Array that contains buffering information about the restart file.

COMDECK ROWS

COMMON/ROWS/ ISCL

INTEGER VARIABLE:

Flag (when not 0) that has TRAC divide by the largest matrix element in each matrix row all 4 or 5 matrix elements and 3 right-hand-side elements in each row of the 4 x 4 or 5 x 5 outer-iteration mesh-cell matrix equation.

COMDECK RSPARM

COMMON/RSPARM/ DTSTRT

COMMON/RSPARM/ ICDELT

REAL VARIABLE:

DTSTRT: Time step that can be forced as the initial time-step size at restart (default is -1.0).

INTEGER VARIABLE:

ICDELT:

Variable that allows the selection of DELT at the beginning of a transient. ICDELT forces DELT to be the value of the dump regardless of whether the previous run was a steady state. When DTSTRT is nonzero, its value is used for the initial DELT. The default is zero.

COMDECK SEPCB

COMMON/SEPCB/ ALPDRC, ALPSPC, DPSt	-F(2
------------------------------------	-----	---

COMMON/SELCO, IDNIED ISELCO, ISTAGE, RESELC, ADDITIO, HEELSE
--

REAL VARIABLES:

LPDRC:	Void fraction to be convected from dryer.	
LPSPC:	Separator void fraction.	
PSEPC:	Separator pressure drop.	

ISCL

INTEGER VARIABLES:

IDRYCB:	Dryer flag.
ISEPCB:	Separator flag.
ISTAGC:	Separator option type.
NCSEPC:	Cell number for separator.
NDRYRC:	Cell number for dryer.
NSEPSC:	Number of separators modele

COMDECK SIGNAL

OMMON/SIGNAL/	CPV, DSV
DIMENSION	CPV(42), DSV(2)

REAL VARIABLES:

CPV:

Control-panel vector for storing the values of signal-variable parameter numbers 1 through 6 for the global parameters and 7 through 15 for up to four coolant loops.

DSV:

Dummy signal-variable vector for storing the values of signal-variable parameter numbers 16 and 17.

COMDECK SOLCON

COMMON/SOLCON/ CNC, CNMAX, CNMIN, CNT, CNTLMN, CNTLMX

REAL VARIABLES:

CNC:	Constant term (kg solute/kg liquid) in linear fit to solubility.		
CNMAX:	Solubility (kg solute/kg liquid) when liquid temperature is at or above CNTLMX.		
CNMIN:	Solubility (kg solute/kg liquid) when liquid temperature is at or below CNTLMN.		
CNT:	Coefficient of liquid temperature (kg solute/ kg liquid K) in linear fit.		
CNTLMN:	Minimum liquid temperature (K) to use linear fit.		
CNTLMX:	Maximum liquid temperature (K) to use linear fit.		

COMDECK STDYERR

COMMON/SSCON/	CF, EPS, EPSPOW, FFLW, FMAX, MAXFLN, RPCF, RTWFP, STIME, TPOWR
COMMON/SSCON/	IPOVEL, IPOWR, LOK, NCORES, NEF, NET, NOPOW
DIMENSION	FMAX(7), LOK(7,2)

APPENDIX D

D-57

REAL VARIABLES:

CF:	Coolant mass flow through the reactor-core region.			
EPS:	Tolerance on calculation time for editing and terminating the prob- lem.			
EPSPOW:	Convergence criterion on the fractional change in liquid velocity per second for s tting on the steady-state power when all reactor-core inlet interfaces satisfy this criterion.			
FFLW:	Fraction of the steady-state power level that the coolant mass flow through the core times RPCF defines.			
FMAX:	Array of maximum normalized errors.			
MAXFLN:	Maximum one-dimensional mass flow at this steady-state convergence test.			
RPCF:	Ratio of reactor-core power to coolant mass flow based on the differ- ence in internal energies from the core inlet and outlet temperatures input.			
RTWFP:	Ratio of heat-transfer to fluid-dynamics time-step sizes.			
STIME:	Steady-state calculation time.			
TPOWR:	Steady-state calculation time (s) when the reactor-core power is set on.			
TEGER VARI	ABLES:			
IPOVEL:	Number of reactor-core inlet interfaces that ratisfy the EPSPOW cri- terion based on date-of-change of liquid velocity.			
IPOWR:	Flag that turns on the steady-state power.			
LOK:	Array of locations of maximum normalized errors.			
NCORES:	"stal number of reactor core region inlet interfaces.			
NEF	Number of time steps (100) between steady-state convergence check			

NEF: Number of time steps (100) between steady-state convergence chec printouts to the termin 1 and message files.

NET: Number of time steps (5) between steady-state convergence checks.

NOPOW: Steady-state power flag. 0 = on:

1 = off

COMDECK STNCOM

H

COMMON/STNCOM/	STNMAX, TMSTNU, TLDMIN, TMTLD
COMMON/STNCOM/	ISTNU, JSTNU, KSTNU, NSTNU, ITLDM, JTLDM, KTLDM, NTLDM

REAL VARIABLES:

STNMAX: Largest Stanton number calculated in this calculation.

TLDMIN:	The minimum liquid temperature (for any heat structure) when sub- cooled boiling begins based on the Saha-Zuber correlation.
TMTLD:	Time when TLDMIN was found.
TMSTNU:	Time at which STNMAX was calculated.
the second s	

INTEGER VARIABLES:

STNU:	Three-dimensional r-cell number for which STNMAX was found.
TLDM:	Unused variable.
JSTNU:	Thee dimensional θ -cell number for which STNMAX was found.
JTLDM:	Axial node number where TLDMIN was found.
KSTNU:	Three-dimensional z-level number for which STNMAX was found.
KTLDM:	Unused variable.
NSTNU:	Component number where STNMAX was calculated.
NTLDM:	Component number where TLDMIN was found.

COMDECK STRTNT

COMMON/STRTNT/ FSTRL, FSTRV, SDTINT, STFLL, STFLU, STFVL, STFVU INTEGER VARIABLES:

SDTINT:	Variable not used.
FSTRL:	Multiplier on the liquid velocity check for stratified flow in CELLA3.
FSTRU:	Variable not used.
STFLL:	Constants used to determine stratified-flow weighting factors.
STFLU:	Constants used to determine stratified-flow weighting factors.
STFVL:	Variable not used.
STFVU:	Variable not used.

COMDECK SUPRES

COMMON/SUPRES/ S

REAL VARIABLE:

S

Factor in nucleate-boiling heat-transfer coefficient evaluation in CHEN.

COMDECK SYSSUM

COMMON/SYSSUM/	ALQCOR, ALQPRZ, ALQUP, CORWM, PMX, TLMX, TLNCOR, TSHCOR, TSNCOR, TVMX, VOLCOR, XLQCOR, XTSHCR
COMMON/SYSSUM/	JPMX, JTLMX, JTVMX, NPMX, NTLMX, NTVMX

APPENDIX D

D-59

REAL VARIABLES:

Core-region mean liquid fraction.
PRIZER (pressurizer) mean liquid fraction.
Upper-plenum mean liquid fraction. (Calculated only for three- dimensional VESSELs.)
Core-region water mass.
Maximum pressure.
Maximum liquid temperature.
Core-region mean liquid temperature.
Core region mean super heat.
Core-region mean saturation temperature.
Maximum vapor temperature.
Core-region volume.
Minimum core-region liquid fraction.
Maximum core-region super heat.
BLES:
Cell number for the maximum pressure.
Cell number for the maximum liquid temperature.
Cell number for the maximum vapor temperature.

NPMX: Component number for the maximum pressure.

NTLMX: Component number for the maximum liquid temperature. NTVMX: Component number for the maximum vapor temperature.

COMDECK TF3DC

COMMON/TF3DC/	INSCT,	IZ, KABSC .	KCMSH, KI	, KLEV,	KU,	KVEL1,	KVEL2,
	KVEL3.	ORG					

INTEGER VARIABLES:

INSCT:	Variable used to obtain a displacement into network arrays involving VESSEL junctions when there is more than one VESSEL.
IZ:	VESSEL level number currently being used.
KABSO:	Storage offset to obtain an absolute cell number when multiple VES- SELs are used.
KCMSH	Offsot for coarse-mesh indexing with multiple VESSELs.
KL:	Displacement of level (IZ-1) from level (IZ) in A-array storage for the VESSEL three-dimensional data array.
KLEV:	VESSEL component axial-direction K index [the axial-level number IZ plus NZBCM (two lower pseudo-cell levels)].

APPENDIX D

San We

-

0 . C . A

ŝ

KU:	VESSEL three-dimensional data array.
KVEL1:	Order of the x- or r-direction stabilizer motion-equation matrix for the present VESSEL component.
KVEL2:	Order of the y- or θ -direction stabilizer motion-equation maxtix for the present VESSEL component.
KVEL3:	Order of the z-direction stabilizer motion-equation matrix for the present VESSEL component.
ORG:	Starting location of the three-dimensional VESSEL component IZ level data in the A array.

COMDECK THERM

OMMON/THERM/	ATC, ATW, AW	I, CKW, DIATC, NTC, VTC
--------------	--------------	-------------------------

COMMON/THERM/ ITTC

REAL VARIABLES:

ATC:	Area per unit length of thermocouple.
ATW:	Thickness of ROD or SLAB element to thermocouple weld.
AW	Area of ROD or SLAB element to thermocouple weld.
CKW:	ROD or SLAB element to thermocouple weld thermal conductivity
DIATC:	Diameter of thermocouple.
NTC:	Number of thermocouples per ROD or SLAB element.
VTC:	Volume per unit length of thermocouple.

INTEGER VARIABLE:

ITTC: Thermocouple flag. 0 = no thermocouple on heat-structure RCD or SLAB element; 1 = thermocouple present on heat-structure ROD or SLAB element.

COMDECK THERMV

COMMON/THERMV/ IEND3, ISTRT3, NDIMV1, NIXNJ NVTHM

INTEGER VARIABLES:

- IEND3: Last calculation cell number (ICX) in the VESSEL component x- or r-direction.
- ISTRT3: First calculation cell number (ICO) in the VESSEL component x- or r-direction.
- NDIMV1: NVTHM times the total number of x- or r-direction calculation plus pseudo cells dimensioned for.

APPENDIX D

D-61

NIXNJ:	NDIMV1 times the total number of y- or θ -direction calculation plus pseudo cells dimensioned for.	
NVTHM	Number of different array parameters in the EQUIV common block for a VESSEL component.	
DMDECK TMP		
COMMON/TMP/	AFLUX, ARLCK, ARVCK, S2A, S2B, S2C, S2D, S3A, S3B, S3C, S3D, S5A, STDER, STPRS, XVOLL, XVOLV	
COMMON/TMP/	LIFEQ	
DIMENSION	AFLUX(NK), ARLCK(NK), ARVCK(NK), S2A(NK), S2B(NK), S2C(NK), S2D(NK), S3A(NK), S3B(NK), S3C(NK), S3D(NK), S5A(NK), STDER(NK), STPRS(NK), XVOLL(NK), XVOLV (NK)	
DIMENSION	LIFEQ(NK)	
REAL VARIABLES		
AFLUX:	Net air mass flow into the NK-NZBCM level mesh cell.	
ARLCK:	Net liquid mass flow into the NK-NZBCM level mesh cell.	
ARVCK:	Net vapor mass flow into the NK-NZBCM level mesh cell.	
\$2A:	Vectorization mask factor for defining the vapor mass equation.	
S2B:	Vectorization mask factor for defining void fraction equal to 1.0.	
S2C:	Vectorization mask factor for defining void fraction equal to 0.0.	
\$2D:	Vectorization mask factor for defining the vapor pressure equal to the saturation pressure based on the vapor temperature.	
S3A:	Vecto-ization mask factor for defining the vapor energy equation.	

- 53B: Vectorization mask factor for defining the liquid temperature equal to the vapor temperature.
- 53C: Vectorization mask factor for defining the liquid temperature equal to the saturation temperature based on the vapor pressure.
- S3D: Vectorization mark factor for defining the vapor temperature equal to the saturation temperature based on the vapor pressure.
- S5A: Vectorization mask factor for defining the noncondensable-gas mass equation.
- STDER: Derivative of the saturation temperature with respect to the total pressure based on the saturation temperature and saturation pressure.

STPRS: Saturation pressure based on the liquid temperature.

XVOLL: Fluid volume (NSTAB=0) or fluid volume minus liquid volume outflow during the time step (NSTAB=1) in the NK-NZBCM level mesh cell.

CO

XVOLV: Fluid volume (NSTAB=0) or fluid volume minus vapor volume outflow during the time step (NSTAB=1) in the NK-NZBCM level mesh celi.

LOGICAL VARIABLE:

LIFEQ: Fluid-phase flag which is false when two-phase fluid may become single phase. If this flag is false on the second pass through the linearization, the cell will be relinearized.

COMDECK TOTALS

COLAR	AP381 /"	FOTALC/	TIEN	TMAN
COMP	MON/	IUTAL3/	ILCIV,	TYOL

REAL VARIABLES:

TLEN:	Total	length of a component section.
TVOL:	Total	volume of a component section.

COMDECK TSATCN

COMMON/TSATCN/	AEOS14, CEOS1, CEOS2, CEOS3, CEOSLP
COMMON/TSATCN/	IGAS, ILIQ
DIMENSION	CEOSLP(40)
the second se	

REAL VARIABLES:

EOS14:	Constant in expression for saturation temperature calculation at i	ñ-
	termediate pressures; defined in subroutine THERMO.	

CEOS1:	Constant in expression for saturation temperature calculation at in	1
	termediate pressures; defined in subroutine THEPMO.	

- CEOS2: Constant in expression for saturation temperature calculation at intermediate pressures; defined in subroutine THEPMO.
- CEOS3: Constant in expression for saturation temperature calculation at intermediate pressures; defined in subroutine THERMO.
- CEOSLP: Equation-of-state array for low pressures; defined in subroutine SE-TEOS.

INTEGER VARIABLES:

IGAS:	Noncondensable-gas type.
	1 = air;
	2 = hydrogen;
	3 = helium.
ILIQ:	Condensable-fluid type (variable not used)

CCMDECK TST3D

APPENDIX D

COMMON/TST3D/ CCIF, I1D, NIFHT, NIFSH, NOBOIL, NOIMP, NWSH

INTEGER VARIABLES:

CCIF	Namelist variable defining the constant value for the interfacial-drag coefficient when NIFSH $= 1$.
11D:	Flag to convert mean mass and vapor mass equations to vapor mass and liquid mass equations for evaluation by subroutine TF3DS.
NIFHT:	Flag for defining a constant 10.0 value to the ALVE, CHTI, ALV, and CHTIA evaporation and condensation coefficients.
NIFSH:	Interfacial-drag (shear) option flag and namelist variable.
NOBOIL:	Flag for not evaluating evaporation and condensation when IEO5-0.
NOIMP:	Flag for not evaluating the $\frac{\partial \alpha \rho}{\partial I}$ term in the motion equation.
NWSH:	Fing for defining the vapor-gas FRIC by its vapor-gas-field value rather than the liquid-field value.

COMDECK TWOSTEP

COMMON/TWOSTP/ NPSFE, NPSME, NTSPRN

INTEGER VARIABLES:

NPSFE:	Pause in FEMOM and CIF3 if NSTEP = NPSFE. The cell number is NPSJ or the level number is NPSIZ, and the component number is NPICMP.
NPSME:	Pause in STBME and STBMPL H NSTEP = NPSME. The cell num- ber is NPSJ and the component number is NPICMP.
NTSPRN:	Flag for printing extra thermal-hydraulic parameter information to TRCOUT.

COMDECK VCKDAT

COMMON/VCKDAT/ DONTOL

COMMON/VCKDAT/ IPRVCK, ISKIP, ITVKMX

REAL VARIABLE:

DONTOL: Tolerance for density difference requiring re-donor-celling in the VES-SEL.

INTEGER VARIABLES:

IPRVCK: Flag to print information about re-donor-celling in the VESSEL (normally set to 0 for no print).

ISKIP: Flag to skip re-donor-cell login in VESSEL component (normally set to 0 for no skip).

Maximum iteration count to check for need to re-donor-cell in VES-ITVKMX: SEL.

COMDECK VDVMOD

COMMON/VDVMOD/ IVDVS1, IVDVS2

INTEGER VARIABLES:

IVDVS1:	Flag for scaling V Δ V terms. 0 = no scaling;
	1 = scaling occurs.
IVDVS2:	Flag for scaling $\beta V \Delta V$ terms. 0 = no scaling:
	1 = scaling occurs.

COMDECK VELLIM

COMMON/VELLIM/	DFLLB, DFLUB, DFVLB, DFVUB, VLI	.B, VLUB, VVLB, VVUB
COMMON/VELLIM/	JVLIM	
REAL VARIABLES		

DFLLB:	Derivative of the pump-impeller interface liquid velocity (at its lower limit) with respect to total pressure.
DFLUB:	Derivative of the pump-impeller interface liquid velocity (at its upper limit) with respect to total pressure.
DFVLB	Derivative of the pump-impeller interface vapor velocity (at its lower limit) with respect to total pressure.
DFVUB:	Derivative of the pump-impeller interface vapor velocity (at its upper limit) with respect to total pressure.
VLLB:	Pump-impeller interface liquid velocity lower-limit value.
VLUB:	Pump-impeller interface liquid velocity upper-limit value.
VVLB:	Pump-impeller interface vapor velocity lower-limit value.
VVUB:	Pump-impeller interface vapor velocity upper-limit value.
NTEGER VAR	RIABLE:
Sec. 14	E DULID . IDUDTY O the sums impelles interface number

For PUMP type IPMPTY=0, the pump-impeller interface number JVLIM: (JVLIM=2) when the PUMP component-action table defines the fluid velocity.

Sa

1

COMDECK WEBNUM

4 1

COMMON/WEBNUM/ ALVFCP, ALVFCS, BMIN, CHTFCP, CHTFCS, CHTIBC, CHTIBH, CNDFC, DMIN, PENTL, PENTU, VLSPR, VVLOW, VVUP, WEB, WED, WEDU

APPENDIX D

D-65

COMMON/WEBNUM/ ICHVOL

9,

10⁴⁰ (1997)

REAL VARIABLES:

ALVFCP:	Multiplier on ALV for low-velocity vertical components.
ALVFCS:	Multiplier on ALV under spray conditions.
BMIN:	Minimum allowed bubble size.
CHTFCP:	Multiplier on CHTI for low-velocity vertical components.
CHTFCS:	Multiplier on CHTI under spray conditions.
CHTIBC:	Vapor-bubble interfacial HTC when TV > TSAT.
CHTIBH:	Vapor-bubble interfacial HTC when TV < . SAT.
CNDFC:	Condensation-rate scaling factor.
DMIN:	Minimum allowed drop size.
PENTL:	Lower bound on entrained void fraction a.
PENTU:	Upper bound on entrained void fraction α .
VLSPR:	Lower limit on the quantity $(1 - \alpha)V_\ell$ at the top of the cell above which spray condition is assumed to exist.
VVLOW:	Lower limit on vapor velocity for special condensation model for low- velocity vertical components.
VVUP	Upper limit on vapor velocity for special condensation model for low- velocity vertical components. Note: For liquid velocity greater than VLUP, the regular condensation model is used. For liquid velocity less than VLLOW, the special condensation model is used. For liquid velocity between VLLOW and VLUP, a linear interpolation between the two models is used.
WEB:	Bubble Weber number.
WED	Droplet Weber number.
WEDU:	Droplet Weber number during core-region upflow (not implemented).
INTEGER VARIA	BLE:
ICHVOL:	Fiag that invokes a minimum value on the interface HTC. 0 = has no effect, normal:
	$1 = \text{ sets the minimum to the cell volume times } 1.0 \times 10^7$.
MDECK XVOL	
OMMON/XVOL/	BGSS, DAWL, DAXVL, DAXVU, DGSS, FREV
COMMON/KVOL/	IFVT, IFVTU, LDAX
REAL VARIABLE	S:
BGSS:	Limits on special void-fraction prediction logic.
DAWL	Weighting factors in special TF1DS flux logic.

APPENDIX D

.

D-66

CO

1 5

DAXVL	Lower-velocity limit on special TF1DS flux logic.
DAXVU:	Upper-velocity limit on special TF1DS flux logic.
DGSS:	Limits on special void-fraction prediction logic.
FREV:	Sansitivity level for reiteration on flow reversal.
NTEGER VARIARI	ES.

NTEGER VARIABLES:

 IFVT:
 Flag for setting velocities passed to TF1DS for special flux logic.

 IFVTU:
 Time-of-velocity controller.

 0 = the XVSET logic uses the old-time velocity;

1 = the XVSET logic uses the the new-time velocity.

LDAX:

Bypass switches on special TF1D^C flux logic.

APPENDIX E

EXAMPLE UPDATE

*ident upldptr */ This is an example update showing how to add a pointer common */ to all 1-D components. The new pointers added in this update */ are LDNEW - new old-time dualpt pointer for the new old-time #/ #/ variable DNEW. LDNEWN - new new-time dualpt pointer for the new new-time #/ */ variable DNEWN. LH:NEW - new hydropt pointer for the new hydrodynamic variable */ */ HYNEW. LHTNEW - new heatpt pointer for the new heat transfer variable */ */ HTNEW. LINEW - new intpt pointer for the new integer variable INEW. */ */ */ This update also includes the necessary coding to add a generalized */ heat transfer variable to the steam generator (which does not use */ the heat transfer pointers in HEATPT). */ LHTNWG - new generalized heat transfer pointer for the new heat transfer variable HTNWG used by the steam generator */ instead of the variable HTNEW. */ */ */ Wherever possible, changed lines of coding are commented out, rather */ than simply deleted in this example update. This is done to allow */ the user a clearer picture of what is being changed. This update */ was generated from version 5.3. #/ \$/ -----#1 */ Add new old-time, new-time variable pointers to DUALPT comdeck. */ dualpt *delete dualpt.9 c * ld ,ldn ,lea ,lean ,lel , ,ldn ,ldnew ,ldnewn,lea ,lean ,lel * 1d #1 */ Add new heat calculation variable pointers to HEATPT comdeck. \$1 heatpt *delete heatpt.3 c * lemis , lhol , lhov , lrn , lrn2 , * lemis , lho' , lhov , lhtnew, lrn , lrn2 , */ Add new hydrodynamic calculation variable pointers to HYDRO comdeck.

APPENDIX E

E-1

```
*/
                                                              hydropt
*delet. hydropt.9
c * lhla , lhlatw, lhva , lhvatw, lqp3r ,
   * 1hla ,1hlatw,1hva ,1hvatw,1hynew,1qp3f ,
*/
*/ Add new integer variable pointers to INTPT comdeck.
*/
*delete intpt.2
                                                                intpt
     common/ptab/ lidr ,lmatid,lnff ,llccfl
C
      common/ptab/ lidr ,linew ,lmatid, lnff ,llccfl
*/
*/ Initialize newly added pointers in subroutine SIDPTR. Increment
*/ LENPTR by one for each pointer added in the appropriate section
*/ of SIDPTR. Adjust the length of the pointer initialized directly
*/ after each of the new pointers added to reflect correct lengths.
*/
                                                                sldptr
*delete sldptr.37
     iea = 1d(3) + 0
C
      1dnew = 1d(3) + 0
      lea = ldnew + nfaces
*delete sldptr.87
                                                                sldptr
     1ean = 1dn(3) + 0
0
      1dnewn = 1dr(3) + 0
      lean = ldnewn + nfaces
                                                                sldptr
*delete 31dptr.120
     lenptr = 80
 C
      lenptr = 82
                                                                 sldptr
 *delete sldptr.192, sldptr.193
     Jnxt = lregnm + nfaces
 C
     lenptr = lenptr + 63
 0
      lhynew = lregnm + nfaces
      lnxt = lhynew + nfaces
      lenptr = lenptr + 64
                                                                 sldptr
 *delete sldptr.213, sldptr.214
 c lnxt = llccfl + nfaces
     lenptr = lenptr + 4
 C
      linew = llccfl + nfaces
      lnxt = 'new + ncells
      lenptr * lenptr + 5
                                                                 sldptr
 *delete sldptr.233, sldptr.235
 Ċ
      lnxt = ltov + ncells
       1htnew = 1tov + ncells
       inxt = lhtnew + ncells
  100 continue
```

APPENDIX E

```
lenptr = lenptr + 12
Ċ.
     lenptr = lenptr + 13
* /
*/ Set up graphics catalogs for variables to be graphed.
*/
*insert igcomp.20
                                                                      igcomp
*call holerith
*insert igcomp.85
                                                                      igcomp
      call grfput (icomp, 2, 0, 1dnewn, scells+1, 1,
                 'new dualpt pointer', 'dnew')
     1
      call grfput (icomp, 2, 0, 1hynew, ncells+1, 1,
                  'new hydropt pointer', 'hynew')
     1
     if (type .ne. stgenh) then
        call grfput (icomp, 2, 0, 1htnew, ncells, 1,
     1
                    'new heatpt pointer', 'htnew')
     end if
*/
*/ Write the variables to be dumped to the dump/restart file.
*/ Increment LEDGE and LCNTR by the number of cell-edge and
*/ cell-center variables being dumped, respectively.
*/
*delete dcomp.31, dcomp.32
                                                                       dcomp
     lvcntr=25
C
     lvedge=13
0
      lvcntr=26
      lvedge=15
      if (type .ne. stgenh) lvcntr=lvcntr+1
*insert dcomp.130
                                                                       dcomp
      call bfout (a (ldnewn), ncellt+1, ictrld)
      call bfout (a (lhynew), ncellt+1, ictrld)
      if (type .ne. stgenh) then
        call bfout (a (lhtnew), ncellt, ictrld)
      endif
      call brout (a (linew), ncellt, ictrld)
+/
*/ Read in new variables from the dump/restart file in the same
*/ order that they were written.
*/
                                                                      recomp
*insert recomp.64
      call bfin(a(bump+ldnewn), ncells+1, ictrlr)
      call bfin(a(bump+lhynew), ncells+1, ictrlr)
      if (type .ne. stgenh) then
        call bfin (a (bump+1htnew), ncells, ictrlr)
      endif
```

```
call bfin(a(bump+linew), ncells, ictrlr)
*/
*/ Assuming that dnew, dnewn, and hynew are all calculated in FEMOM,
*/ add them to the argument list of FEMOM, add dimension statements
*/ in FEMOM, and perform their calculation.
*/
*delete femom.6
                                                                       femom
0
   4
           tssn, sigm, ga., rarl, rarv, nff, tchf, lccfl)
            tssn, sigm, gam, rarl, rarv, nff, tchf, lccfl,
            dnew, dnewn, hynew)
*delete femom.130
                                                                      femom
    6 tssn(1), sigm(1), gam(1), rarl(1), rarv(1), nff(1), tchf(1), lccrl(1)
     6 tssn(1), sigm(1), gam(1), rarl(1), rarv(1), nff(1), tchf(1), lccfl(1),
     7 dnew(1), dnewn(1), hynew(1)
*insert femom.168
                                                                       femom
c stick in some values for dnew, dnewn, and hynew
Ċ.
      do 1 j = jstart, ncp
       dnew(j) = 1.0
        dnewn(j) = 2.0
        hynew(j) = 3.0
    1 continue
12
*/
*/ Also change all call statements to FEMOM to include dnew, dnewn
*/ and hynew in the argument list.
*/
*delete preper.209
                                                                     preper
C
    7 a(lrarl), a(lrarv), a(lnff), tchf, a(llccfl))
    7 a(lrarl), a(lrarv), a(lnff), tchf, a(llccfl),
     8 a(ldnew), a(ldnewn), a(lhynew))
*/
*/ Similarly, assuming that htnew and inew are calculated in subroutine
*/ CYLHT, add them to the argument list of CYLHT, add dimension
*/ statements in CYLHT, and perform their calculation.
4/
*delete cylht.4
                                                                       cylht
0
     2dt, istdy, qp3f)
     2dt, istdy, qp3f, htnew, inew)
*delete cylht.18
                                                                      cylht
     4qppp(nodes,ncells),qp3f(ncells)
     4gppp(nodes,ncells),qp3f(ncells),htnew(ncells),inew(ncells)
*insert cylht.20
                                                                      cylht
c perform the calculation of htnew and inew.
```

E-4

Ċ. do 1 j=1, ncells htnew(j) = 4.0 inew(j) = 5 1 continue C. */ */ Also change all call statements to CYLHT to include htnew and inew */ 'n the argument list. #/ *delete poster.115 poster c 6 ncells,deltht,istdy,a(lqp3f+istml)) 6 ncells,deltht,istdy,a(lqp3f+istml), 7 a(lhtnew+istml), a(linew+istml)) *delete stgn3x.41 stgn3x C. * a(ldum2), nds, ndm1, 1, deltht, istdy, a(lgp3f+ii)) * a(ldum2), nds, ndml, 1, deltht, istdy, a(lcp3f+ii), * a(lhtnwg+iml),a(linew+iml)) #/ */ Add the special generalized heat calculation pointer for the */ steam generator component to its can pointer table. (Since */ the steam generator pointer table doesn't include comdeck HEATPT.) */ *delete stgenpt.12 stgenpt c * lcpwg ,lcwg ,ldrg ,lemsg ,lidgi , * lhtnwg,lcpwg ,lcwg ,ldrg ,lemsg ,lidgi , * / */ Initialize the special generalized heat calculation pointer for */ the steam generator component in it's own read and restart routines. */ *delete rstgen.166 rstgen lcpwg = lnxt C . lhtnwg = lnxt lopwg = 1htnwg + nght *delete rstyen.201 rstgen lenptr = lenptr + 34 C. lenptr = lenptr + 35*delete restgn.90 restan lcpwg = 1nxt č. 1htnwg = 1nxt lepwg = lhtnwg + nght *delete restgn.125 restgn lenptr = lenptr + 34 C lenptr = ?enptr + 35


```
*/
*/ Set up the graphics catalog for the steam generator's special
*/ generalized heat calculation pointer.
*/
*insert igstgn.50
                                                                    igstan
          call grfput (icomp, 2, 0, 1htnwg, nght, 1,
          'new stgen gen. heatpt pointer', 'htnwg')
#/
*/ Increase LEXTRA by the length of the steam generator's new
*/ generalized heat calculation pointer.
*/
Celete istgen.71
                                                                    istgen
      lextra = nght*(14+3*nodmx+ndm1) + 10*nscmp
     lextra = nght*(15+3*nodmx+ndm1) + 10*nscmp
*/
*/ Write the steam generator's new heat calculation
*/ pointer to the dump/restart file.
* /
*insert dstgen.50
                                                                    dstgen
      call bfout (a (lhtnwg), nght, ictrld)
$1
*/ Read in the steam generator's new heat calculation pointer
*/ from the restart file in the same order that it was dumped.
# /
*insert restgn.294
                                                                   restgn
       call bfin(a(lhtnwg),nght,ictrlr)
        call warray ('htnwg', a (lhtnwg), nght)
```


APPENDIX F

GRAPHICS VARIABLES

This appendix lists the variables that are written to the graphics (TRCGRF) file. Subroutine IGRAF controls the writing of the graphics catalog and writes the first graphics edit, subroutine GRAF reads the graphics catalog and writes the subsequent graphics edits for each graphics time-step edit. Those variables that contain the parenthetical "first edit only" do not vary with time and appear in only the first graphics edit.

The variables are listed by subroutine rather than component to prevent multiple listings of the variables in subroutine IGCOMP. The format of the appendix makes it easy to determine all possible variables for a given component while still making it clear which variables apply to particular components. Because the exact variables available from a given calculation are dependent on options and input parameters, we have not maintained the sequence of the variables, but we have alphabetized the variables for ease of reference. We have provided definitions, and as appropriate, the corresponding units. This listing is generated for TRAC-PF1/MOD2 (version 5.4).

F.1. GENERAL VARIABLES

The general variables apply to the overall calculation as opposed to specific components or cells within a component; subroutine IGRAF creates the graphics catalog for these variables.

Variable	Dimension	Description
CPUTOT	1	Total CPU time (s) since time 0.0 s in the calculation.
DELT	1	Time-step size (s).
DPRMAX	1	Maximum fractional pressure change over the current time step, a parameter used in the time-step-control logic.
DTLMAX	1	Maximum liquid-temperature change (K) over the current time step, a parameter used in the time-step-control logic.
DTVMAX	1	Maximum vapor-temperature change (K) over the current time step, a parameter used in the time-step-control logic.
TIMET	1	Transient time (s) in the calculation.
TNSTEP	1	Total number of time steps since time 0.0 s in the calcu- lation.

F.2. SIGNAL-VARIABLE AND CONTROL-BLOCK OUTPUTS

Subroutine IGSVCB creates the graphics catalog for all of the signal variables and control blocks specified in the input (including those from the restart dump). Subroutine IGSVCB first loops over all of the signal variables in the order of increasing magnitude of their IC numbers and similarly loops over all of the control blocks. The quantity ultimately written to the graphics file is the value of each signal variable and the output value from each control

APPENDIX F

F-1

Nork at the current time step; as such, the quantities in the graphics file are user-specified

Variable	Dimension	Description
SV	1	Signal-variable data; although the dimension of each is 1, there are NTSV of them.
CB	1	Control-block output; although the dimension of each is 1, there are NTCB of them.

F.3. GENERAL ONE-DIMENSIONAL COMPONENT GRAPHICS

Subroutine IGCOMP writes the graphics catalog for variables that are common to all of the one-dimensional components (ACCUM, PIPE, PRITTR, PUMP, STGEN, TEE, TURB, and VALVE). For STGEN and TEE, the dimension of the state includes necessary space for phantom cells, which are required to account for the total there are more interfaces than cells. In some cases, whether a variable is dited depends on user-specified options in the TRAC input file (TRACIN). Also, the STGEN component does not use IGCOMP to edit heattransfer-related data.

Variable	Dimension	Description
ALPHA	NCELLT	Cell vapor fractions.
ALV	NCELLT	Cell-flusning interfacial heat-transfer coefficients (Vv - K ⁻¹) [area 1-Ided in].
ALVE	NCELLT	Cell i juid-side interfacial heat-transfer coefficients (W · K ⁻¹) [area folded in].
AM	NCELLT	Cell nunconcunsable-gas masses (kg).
СНТІ	NCELLT	Cell vapor-side interfacial heat-transfer coefficients $(W \cdot K^{-1})$ [area folded in].
CHTIA	NCELLT	Cell nonconcensable-gas interfacial heat-transfer coefficients $(W + K^{-1})$ [area folded in].
CIF	NCELLT+1	Cell-interface interfacial-drag coefficients (kr n=4).
CONC	NCELLT	Cell dissolved-solute concentrations $[kg \cdot (kg-liquid)^{-1}]$.
DX	NCELLT	Cell lengths (m) [first edit only].
FA	NCELLT+1	Cell-interface flow areas (m ²) [first edit only].
FF	NCELLS+1	Cell-interface friction factors.
HL	NCELLT	Cell-wall liquid heat-transfer coefficients (W \cdot m ⁻² \cdot K ⁻¹).
HV	NCELLT	Cell-wall vapor heat-transfer coefficients (W \cdot m ⁻² \cdot K ⁻¹).
ID	1	User-specified component ID number (first edit only).

IDR	NCELLT	Cell-wall heat-transfer regimes.
MFLOW	NCELLT+1	Cell-interface mass flows (kg + s ⁻¹).
NCELLT	1	Total number of cells, including phantom cells (first edit only).
NUM	1	Component number (first edit only).
Ρ	NCELLT	Cell pressures (Pa).
PA	NCELLT	Cell noncondensable-gas partial pressures (Pa).
REGNM	NCE' 'T+1	Cell-interface flow regime numbers.
RHOL	NCELL	Cell liquid densities (kg \cdot m ⁻³).
RHOM	NCELLT	Cell mixture densities (kg · m ⁻³).
RHOV	NCELLT	Cell vapor densities (kg · m ⁻³).
ROAN	NCELLT	Cell noncondensable-gas densities (kg · m ⁻³).
SOLID	NCELLT	Cell plated-solute mass/cell fluid volume (kg · m ⁻³).
TI.	NCELLT	Cell liquid temperatures (K).
TSAT	MCELLT	Cell saturation temperatures (K) based on pressures.
TSSN	NCELLT	Cell saturation temperatures (K) based on steam partial pressures.
TV	NCELLT	Cell vapor temperatures (K).
ΤW	NODES*NCELL7	Cell-wall node temperatures (K) in the order from node 1 to NODES for cell 1, node 1 to NODES for cell 2, etc.
TYPE	1	Component type (first edit only).
VL	NCELLT+1	Cell-interface liquid velocities (m · s ⁻¹).
VMFR	NCELLT+1	Cell-interface vapor mass flows (kg \cdot s ⁻¹).
VOL	NCELLT	Cell volumes (m ³) [first edit only].
VV	NCELLT+1	Cell-interface vapor velocities $(m \cdot s^{-1})$.

F.3.1. ACCUM Component Graphics

In addition to a call to IGCOMP, subroutine IGACUM writes to the graphics catalog variables specific to the ACCUM component.

Variable	Dimension	Description
HEIGHT	1	Water level (m) in the ACCUM component (assumes the component is vertically oriented with cell 1 at the top).
HTLSCI	1	Inside heat loss (W) for the ACCUM slabs.

APPENDIX F

F-3

HTLSCO	1	Outside heat loss (W) for the ACCUM slabs.
VFLOW	1	Volumetric flow $(m^3 \cdot s^{-1})$ at the exit (interface NCELLS+1).
VLOSS	1	Liquid volume discharged (m ³) at the exit (interface NCELLS+1).

F.3.2. BREAK Component Graphics

Subroutine IGBRAK writes the entire graphics catalog for the BREAK component.

Variable	Dimension	Description
ALPHA	1	BREAK vapor fraction.
BSA	1	Integrated noncondensable-gas (air) mass flow (kg).
BXA	1	Noncondensable-gas mass flow (kg + 9 ⁻¹).
CONC	1	BREAK dissolved-solute concentration [kg · (kg-liquid) ⁻¹].
DX	1	BREAK length (m) [first edit only].
ENTH	1	Enthalpy (J · kg ⁻¹) at BREAK fluid-state conditions.
FA	2	BREAK interface flow areas (m ²) [first edit only].
ID	1	User-specified component ID number (first edit only).
IMFLOW	1	Integrated mass flow (kg) into the BREAK.
MFLOW	1	Mass flow $(kg \cdot s^{-1})$ into the BREAK.
NCELLT	1	Total number of cells (should be 1) [first edit only].
NUM	1	Component number (first edit only).
Ρ	:	BREAK pressure (Pa).
PA	1	BREAK noncondensable-gas partial pressure (Pa).
TL	1	BREAK liquid temperature (K).
TV	1	BREAK vapor temperature (K).
TYPE	1	Component type (first edit only).
VOL	1	BREAK volume (m ³) (first edit only).

F.3.3. FILL Component Graphics

Subroutine IGFILL writes the entire graphics catalog for the FILL component.

Variable	Dimension	Description
ALPHA	1	FILL vapor fraction.
CONC	1	FILL dissolved-solute concentration [kg \cdot (kg-liquid) ⁻¹].
DX	1	FILL length (m) [first edit only].

				89	
2010					ε.
					в.
					σ.
10.6					
- 166				80	
			22		
	-	100			

ENTH	1	Enthalpy (J - kg ⁻¹) at FILL fluid-state conditions.
FLOWAREA	2	FILL-interface flow areas (m ²) [first edit only].
ID	1	Usc. specified component ID number (first edit only).
MFLOW	1	Mass flow $(kg \cdot s^{-1})$ out of the FILL.
NCELLT	1	Total number of cells (should be 1) [first edit only].
NUM	1	Component number (first edit only).
Ρ	1	FILL pressure (Pa).
PA	1	FILL noncondensable-gas partial pressure (Pa).
TL	1	FILL liquid temperature (K).
TV	1	FILL vapor temperature (K).
TYPE	1	Component type (first edit only).
VL	1	FILL liquid velocity $(m \cdot s^{-1})$.
VOL	1	FILL volume (m ³) [first edit or iy].
VV	1	FILL vapor velocity $(m \cdot s^{-1})$.

F.3.4. Heat-Structure (ROD or SLAB) Component Graphics

Subroutine IGHSTR writes the entire graphics catalog for the heat-structure (ROD or SLAB) component.

Variable	Dimension	Description
ALREAC	1	Void-fraction reactivity.
DBREAC	1	Boron (dissolved and plated solute) reactivity.
ID	1	User-specified component ID number (first edit only).
IDBCI	1	Inner-surface boundary condition of the heat-structure ROD or SLAB.
IDBCO	1	Outer-surface boundary condition of the heat-structure ROD or SLAB.
IDRGRI	NZMAX	Heat-transfer regimes for the inner surface of the heat- structure ROD or SLAB.
IDRGRC	NZMAX	Heat-transfer regimes for the outer surface of the heat- structure ROD or SLAB.
NODES	1	Number of ROD-radial or SLAB-thickness heat-transfer nodes in the heat structure (first level only).
NRODS	1	Total nuncer of calculational RODs or SLABs defined by the heat structure.

NUM	1	Component number (first edit only).
NZMAX	1	Maximum number of rows of nodes in the axial direction (first edit only).
PGREAC	1	Programmed reactivity.
RMCKN	1	Reactor multiplication constant Keff.
RPOWER	1	Reactor power (W).
STNUI	NZMAX	Inner-surface Stanton number of the heat-structure ROD or SLAB.
STNUO	NZMAX	Outer-surface Stanton number of the heat-structure ROD or SLAB.
STRTMP	NODES*NZMAX	Heat-structure's ROD or SLAB element temperatures (K), ordered node 1 to node NODES for row 1, followed by node 1 to node NODES for row 2, etc.
TCREAC	1	Coolant-temperature reactivity.
TFREAC	1	Fuel-temperature reactivity.
TLDI	NZMAXZ	Inner-surface liquid temperatures (K) at bubble departure.
TLDO	NZMAXZ	Outer-surface liquid temperatures (K) at bubble departure.
TRHMAX	1	Maximum additional ROD or SLAB temperature.
TRAMAX	1	Maximum average ROD or SLAB temperature.
TYPE	1	Component type (first edit only).
ZHT	NZMAX	Axial positions (m) of the rows of nodes in the heat-

F.3.5. "IPE Component Graphics

Ó

In addition to a call to IGCOMP, subroutine IGPIPE writes to the graphics catalog variables specific to the PIPE component.

Variable	Dimension	Description
CPOW	1	Heater power (W) to the PIPE fluid.
HEIGHT	1	Water level (m) in the PIPE component (assumes the com- ponent is vertically oriented with cell 1 at the top) then the accumulator flag is set.
HTLSCI	1	Inside heat loss (W) for the PIPE slabs.
HTLSCO	1	Outside heat loss (W) for the PIPE slabs.
VFLOW	1	Volumetric flow $(m^3 \cdot s^{-1})$ at the exit (interface NCELLS+1) when the accumulator flag is set.

VLOSS

1

Liquid volume discharged (m^3) at the exit (interface NCELLS+1) when the accumulator flag is set.

F.3.6. PLENUM Component Graphics

Subroutine IGPLEN writes the entire graphics catalog for the PLENUM component. Although subroutine IGPLEN allows the option of writing variables relating to wall heat transfer, the heat-transfer option for the PLENUM has not been developed; therefore, the heat-transfer variables are not listed below.

Variable	Dimension	Description
ALPHA	1	Cell vapor fraction.
AM	1	Cell noncondensable-gas mass (kg).
CONC	1	Cell dissolved-solute concentration [kg \cdot (kg-liquid) ⁻¹].
DX	NPLJN	Cell lengths (m) associated with each PLENUM junction (first edit only).
ID	1	User-specified component ID number (first edit only).
NPLJN	1	Number of PLENUM junctions (first edit only).
NUM	1	Component number (first edit only).
NCELLT	1	Total number of cells (should be 1) [first edit only].
P	1	Cell pressure (Pa).
PA	1	Ceil noncondensable-gas partial pressure (Pa).
RHOL	1	Cell liquid density (kg · m ⁻³).
RHOM	1	Cell mixture density (kg · m ⁻³).
RHOV	1	Cell vapor density (kg \cdot m ⁻³).
ROAN	1	Cell noncondensable-gas density (kg · m ⁻³).
SOLID	1	Cell plated-solute mass, cell fluid volume (kg \cdot m ⁻³).
TL	1	Cell liquid temperature (K).
TSAT	1	Cell saturation temperature (K) based on pressure.
TV	1	Cell vapor temperature (K).
TYPE	1 .	Component type (first edit only).
VOL	1	Cell volume (m ³) [first edit only].

F.3.7. PRIZER Component Graphics

In addition to a call to IGCOMP, subroutine IGPRZR writes to the graphics catalog variables specific to the PRIZER component.

Variable	Dimension	Description
HEIGHT	1	Water level (m) in the PRIZER component (assumes the component is vertically oriented with cell 1 at the top).
HTLSCI	1	Inside heat loss (W) for the PRIZER slabs.
HTLSCO	1	Outside heat loss (W) for the PRIZER slabs.
POWER	1	Heater/sprayer power (W).
VFLOV.	1	Volumetric flow $(m^3 \cdot s^{-1})$ at the exit (interface NCELLS+1) of the PRIZER.
VLOSS	1	Liquid volume discharged (m^3) at the exit (interface NCELLS+1) of the PRIZER.

F.3.8. PUMP Component Graphics

In addition to a call to IGCOMP, subroutine IGPUMP writes to the graphics catalog variables specific to the PUMP component.

Variable	Dimension	Description
ALPHAP	1	PUMP void fraction as donor-celled to the second (pump- impeller) interface (weighted 10% new, 90% old).
DELTAP	1	PUMP △P (Pa) [cell 2 -cell 1].
HEAD	1	PUMP head $(m^2 \cdot s^{-2})$ from the homologous curves and two-phase degradation multiplier.
HTLSCI	1	Inside heat loss (W) for the PUMP slabs.
HTLSCO	1	Outside heat loss (W) for the PUMP slabs.
OMEGA	1	Pump-impeller speed (rad $\cdot s^{-1}$).
PFLOW	1	PUMP mass flow (kg \cdot s ⁻¹) at the second (pump) interface.
RHOP	1	PUMP mixture density (kg \cdot m ⁻³) as donor-celled to the second (pump-impeller) interface.
SMOM	1	PUMP momentum source $(m \cdot s^{-1})$ applied at the second (pump-impeller) interface based on the PUMP head.
TORQUE	1.	PUMP hydraulic torque $(kg \cdot m^2 \cdot s^{-2})$ from the homologous curves and two-phase degradation multiplier.
VFLOWP	1	PUMP volumetric flow $(m^3 \cdot s^{-1})$ at the second (pump- impeller) interface.

1
F.3.9. STGEN Component Graphics

In addition to a call to IGCOMP, subroutine IGSTGN writes to the graphics catalog variables specific to the STGEN component. Subroutine IGSTGN does not utilize the call to IGCOMP to write the wall heat-transfer variables but writes that part of the graphics catalog directly.

Variable	Dimension	Description
СНТІ	NCELLT	Vapor-side interfacial heat-transfer coefficients ($W \cdot K^{-1}$) [area folded in].
HILG	NTUBE+NGHT	Heat-structure inside liquid heat-transfer coefficients (W \cdot m^{-2} \cdot K^{-1}).
HIVG	NTUBE+NGHT	Heat-structure inside vapor heat-transfer coefficients (W \cdot m^{-2} \cdot K^{-1}).
HOLG	NTUBE+NGHT	Heat-structure outside liquid heat-transfer coefficients (W \cdot m ⁻² \cdot K ⁻¹).
HOVG	NTUBE+NGHT	Heat-structure outside vapor heat-transfer coefficients (W \cdot m^{-2} \cdot K^{-1}).
HTLSCI	1	Inside heat loss (W) for the first NTUBE heat structures.
HTLSCO	1	Outside heat loss (W) for the first NTUBE heat structures.
HTLSGI	1	Inside heat loss (W) for the last NGHT heat structures.
HTLSGO	1	Outside heat loss (W) for the last NGHT heat structures.
IDGHI	NTUBE+NGHT	Heat-structure inside heat-transfer regimes.
IDGHO	NTUBE+NGHT	Heat-structure outside heat-transfer regimes.
NCELL1	1	Number of cells in the primary component (does not in- clude side leg, if it exists) [first edit only].
NCELL2	1	Total number of cells in all secondary components (in- cludes accounting of phantom cells to allow for the fact that there are more interfaces than cells) [first edit only].
NCLP	1	Number of cells in the primary-component side tube (first edit only).
NCLS	10 ,	Number of cells in the secondary-component main tube (first edit only).
NCLT	10	Number of cells in the secondary-component side tube (first edit only).
NODMX	1	Number of radial nodes in each heat structure (first edit only).

NSCMP	1	Number of secondary components (first edit only).
STYPE	10	Secondary-component types (first edit only).
TWGI	NODMX* (NTUBE+NGHT)	Heat-structure node temperatures (K) in the order from node 1 to NODMX for structure 1, node 1 to NODMX for structure 2, etc., continuing through the NTUBE struc- tures for the tube walls and followed by the NGHT gener- alized heat structures.

F.3.10. TEE Component Graphics

In addition to a call to IGCOMP, subroutine IGTEE writes to the graphics catalog variables specific to the TEE component.

Variable	Oimension	Description
HTLSCI	1	Inside heat loss (W) for the TEE slabs.
HTLSCO	1	Outside heat loss (W) for the TEE slabs.
NCELL1	- 1	Number of cells in the main tube (first edit only).
NCELL2	1	Number of cells in the side tube (first edit only).
POWR1	1	Heater power (W) to the TEE main-tube fluid.
POWR2	1	Heater power (W) to the TEE side-tube fluid.

F.3.11. TURB Component Graphics

In addition to a call to IGCOMP, subroutine IGTURB writes to the graphics catalog variables specific to the TURB component.

Variable	Dimension	Description
CPOW	1	Heater power (W) to the TURB fluid.
EFFSTG	1	Turbine-sta; e efficiency.
OMEGA	1	TURB (turl ine) speed (rad s^{-1}).
FOWER	1	TURB (turbine) power (W).
POWSTG	1	Turbine-stage power output (W).
TRBSIG	1	TURB (turbine) governing signal.

F.3.12. VALVE Component Graphics

in addition to a call to IGCOMP, subjoutine IGVLVE writes to the graphics catalog variables specific to the VALVE component.

Variable	Dimension	Description
AREA	1	Adjustable-value interface flow area (m^2) .
HTLSCI	1	Inside heat loss (W) for the VALVE slabs.

HTLSCO 1

Outside heat loss (W) for the VALVE slabs.

F.4. THREE-DIMENSIONAL VESSEL COMPONENT GRAPHICS

Subroutine IGVSSL writes to the graphics catalog all of the variables for the VESSEL component. The cell and interface data are written on a level basis, with a do-loop over all levels. The rod-related data are written on a rod basis, with a loop over all rods. The variables written to the VESSEL graphics are very much dependent on the options selected and parameters set in the VESSEL input, in NAMELIST, and in other general options.

Variable	Dimension	Description
ALPHA	NCLX	Cell vapor fractions
ALV	NCLX	Cell flashing interfacial heat-transfer coefficients ($W \cdot K^{-1}$) [area folded in].
ALVE	NCLX	Cell liquid-side interfacial heat-transfer coefficients $(W \cdot K^{-1})$ [area folded in].
AM	NCLX	Cell noncondensable-gas masses (kg).
CEMFR	1	Core-outlet mass flow $(kg \cdot s^{-1})$.
СНТІ	NCLX	Cell vapor-side interfacial heat-transfer coefficients $(W \cdot K^{-1})$ [area folded in].
CHTIA	NCLX	Cell noncondensable-gas interfacial heat-transfer coefficients $(W + K^{-1})$ [area folded in].
CIF-R	NCLX	Radial or x-direction interfacial-drag coefficients (kg \cdot m ⁻⁴).
CIF-T	NCLX	Azimuthal or y-direction interfacial-drag coefficients (kg · m ⁻⁴).
CIF-Z	NCLX	Axial interfacial-drag coefficients (kg · m ⁻⁴).
CIMFRL	1	Core-inlet liquid mass flow $(kg \cdot s^{-1})$.
CIMFRV	1	Core-inlet vapor mass flow $(kg \cdot s^{-1})$.
CMASS	1	Core-region liquid mass (kg).
CMFLOW	1	Core-inlet mass flow (kg \cdot s ⁻¹).
COMFRL	1	Core-outlet liquid mass flow $(kg \cdot s^{-1})$.
COMFRV	1	Core-outlet vapor mass flow $(kg \cdot s^{-1})$.
CONC	NCLX	Cell dissolved-solute concentrations [kg · (kg-liquid) ^{- i}].
CRLIQFR	1	Core-region liquid volume fraction.
CRPRESS	1	Core-region average pressure (Pa) [volume averaged].

APPENDIX F

DCFLOW	1	Downcomer mass flow $(kg \cdot s^{-1})$ [sums the axial flows out of the downcomer at level IDCL].	-
DCLQVOL	1	Downcomer liquid volume fraction.	
DMASS	1	Downcomer liquid mass (kg).	
DR	NRSX	Δr or Δx (m) for each radial ring or x-directics cell (first edit only).	
DTHETA	NTSX	$\Delta \theta$ (rad) or Δy (m) for each azimuthal segment or y- direction cell (first edit only).	
DZ	NASX	لمع (m) for each axial level [first edit only].	
FLOWAREA	NCLX*3	Cell-interface fluid flow areas (m ²) [first edit only].	
LCI	NCSR	Components adjacent to sources (first edit only).	
ID	1	User-specified component ID number (first edit only).	
ISRC	NCSR	Cell numbers to which sources are connected (first edit only).	
ISRF	NCSR	Face numbers to which sources are connected (first edit only).	
ISRL	NCSR	Level numbers to which sources are connected (first edit only).	
MFRL	NCLX	Liquid axiai mass flows (kg \cdot s ⁻¹) [NAMELIST option IMFR = 1].	
MFRLR	NCLX	Liquid radial mass flows $(kg \cdot s^{-1})$ [NAMELIST option IMFR = 3].	
MFRLT	NCLX	Liquid azimuthal mass flows $(kg \cdot s^{-1})$ [NAMELIST option IMFR = 3].	
MFRLZ	NCLX	Liquid axial mass flows $(kg \cdot s^{-1})$ [NAMELIST option (MFR = 3].	
MFRV	NCLX	Vapor axial mass flows $(kg \cdot s^{-1})$ [NAMELIST option IMFR = 1].	
MFRVR	NCLX	Vapor radial mass flows (kg \cdot s ⁻³) [NAMELIST option IMFR = 3].	
MFRVT	NCLX	Vapor azimuthal mass flows (kg · s ⁻¹) [NAMELIST option IMFR == 3].	
MFRVZ	NCLX	Vapor axial mass flows (kg \cdot s ⁻¹) [NAMELIST option IMFR = 3].	
NASX	1	Number of axial levels (first exit only)	
F-12		APPENDIX F	

	1	đ	9	25		8
The second	1					1
	ł	i,	5			

10 (C) (G)

NCELLT	1	Total number of cells (NASX*NRSX*NTSX) [first edit only].
NCLX	1	Number of cells on each level (NRSX*NTSX) [first edit only].
NCSR	1	Number of VESSEL source connections (first edit only).
NODES	1	Number of radial heat-transfer nodes in each rod (not de- fined; first edit only).
NRSX	1	Number of radial rings or x-direction cells (first edit only).
NSRL	NASX	Number of sources on each level (first edit only).
NTSX	1	Number of azimuthal segments or y-direction cells (first edit only).
NUM	1	Component number (first edit only).
NZMAX	1	Maximum number of rows of nodes in each rod (not de- fined; first edit only).
Р	NCLX	Cell pressures (Pa).
PA	NCLX	Cell noncondensable-gas partial pressures (Pa).
PDC	1	Downcomer average pressure (Pa) [volume averaged].
PLP	1	Lower-plenum average pressure (Pa) [volume averaged].
PMASS	1	Liquid mass below downcomer (kg).
PUP	1	Upper-plenum average pressure (Pa) [volume averaged].
QHSTR	NCLX	Heat-structure heat transfer (W) to fluid in cell.
RHOL	NCLX	Cell liquid densities (kg · m ⁻³).
RHOV	NCLX	Cell vapor densities (kg \cdot m ⁻³).
ROAN	NCLX	Cell noncondensable-gas densities (kg · m ⁻³).
SOLID	NCLX	Cell plated-solute mass/cell fluid volume (kg · m ⁻³).
TCILMF	1	Integrated core-inlet liquid mass flow (kg).
TCIVMF	1	Integrated core-inlet vapor mass flow (kg).
TCOLMF	1	Integrated core-outlet liquid mass flow (kg).
TCORE	,1	Core-region average liquid temperature (K) (iiquid-mass averaged).
TCOVMF	1	Integrated core-outlet vapor mass flow (kg).
TDC	1	Downcomer average liquid temperature (K) [liquid-mass averaged].

1

APPENDIX F

F-13

•3

TL	NCLX	Cell liquid temperatures (K).
TLP	1	Lower-plenum average liquid temperature (K) [liquid-mass averaged].
TSA'I	NCLX	Cell saturation temperatures (K) based on pressures.
TSCORE	1	Core-region average saturation temperature (K) [based on the core-region average pressure].
TSDC	1	Downcomer average saturation temperature (K) [based on downcomer average pressure].
TSLP	1	Lower-plenum average saturation temperature (K) [based on the lower-plenum average pressure].
TSUP	1	Upper-plenum average saturation temperature (K) [based on the upper-plenum average pressure].
TUP	1	Upper-plenum average liquid temperature (K) [liquid-mass averaged].
TV	NCLX	Cell vapor temperatures (K).
TYPE	1	Component type (first edit only).
VLN-R	NCLX	Liquid radial or x-direction velocities (m \cdot s ⁻¹).
VLN-T	NCLX	Liquid azimuthal or y-direction velocities $(m \cdot s^{-1})$.
VLN-Z	NCLX	Liquid axial velocities (m · s ⁻¹).
VLPLIQ	1	Lower-planum liquid volume fraction.
VLPLM	1	Lower-plenum liquid mass (kg).
VMASS	• 1	VESSEL liquid mass (kg).
VOL	NCLX	Cell fluid volumes (m ⁰) [first edit only].
VSFLOW	1	VESSEL mass flow $(kg \cdot s^{-1})$ [sums over all VESSEL source connections].
VUPLIQ	1	Upper-plenum liquid volume fraction.
VUPLM	1	Upper-plenum liquid mass (kg).
VVN-R	NCLX	Vapor radial or x-direction velocities $(m \cdot s^{-1})$.
VVN-T	NCLX	Vapor azimuthal or y-direction velocities (m · s ⁻¹).
VVN-Z	NCLX	Vapor axial velocities (m · s ⁻¹).

APPENDIX F

TRAC ERROR MESSAGES

Subroutine ERROR handles errors diagnosed by TRAC. The subroutine uses the '-vel number associated with each error listed below to determine its course of action.

- Level
 Actions

 1, 3
 Fatal error, stop problem.

 2
 Nonfatal error, continue problem.

 4
 Fatal error, add dump to the TRCDMP file, then stop problem.

 -2
 Sceady-state nonconvergence warning.
- 4 Problem stopped by user.

The error messages are written to the TRCOUT and TRCMSG files and to the terminal. The message begins with the name of the subroutine, bounded by asterisks $(* \cdots *)$, which detected the error. Because of this format and because implementation of TRAC on various computers differs, we have used the subroutine name to alphabetize the following list of error messages. If an error message occurs that is not found in the following list, we suggest that you inspect the coding in the subroutine listed in the message for more detail.

Subroutine	Level	Message	Explanation
BFIN	1	DATA SET EOF ERROR	An illegal end-of-file was found when the data were read.
BFIN	1	DATA SET TYPE ERROR	An error occurred when the data were read in the binary format.
BFOUT	1	DATA SET TYPE ERROR	An error occurred when the data were written in a binary format.
BITS	1	ILLEGAL BIT SPECIFIED	An attempt was made to set bit be- yond the word length.
BITS	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	Variable ITYPE was not equal to 1, 2, or 3. This will only occur if there is a coding error.
BREAKX	1	BK TABLE LOOK JP ER- ROR	An error exists in interpolating a break table.
CBSET	1	C-BLOCK ID NOT FOUND TO SET NFLG	The first input parameter ID number for the control block could not be found in the list on control blocks so that it could be flagged with this control block's new flag.

APPENDIX G

CBSET	1	C-BLOCK ID NOT FOUND TO SET OFLG	The first input parameter ID number for this control block could not be found in the list of control blocks so that it could be flagged with this control block's old flag.
CBSET	1	CNTL.BLK. ID NOT FOUND	One of the control-block input pa- rameters has a negative ID number that could not be found in the list of control blocks.
CBSET	1	ERROR IN TABLE	An error was detected by subrouting LININT while it was linearly inter- polating in the control-block FNG1 table.
CBSET	1	SIG. VAR. ID NOT FOUND	One of the control block input pa- rameters has a positive ID number that could not be found in the list of signal variables.
CHBD	2	BOUNDARY ERROR DE- TECTED	Adjacent components have mis- matched geometry.
CHF	1	TCHF FAILED TO CON- VERGE	The calculation failed to converge on a unique critical heat-flux (CHF) wall temperature.
CHKSR	2	VESSEL SOURCE LOCA- TION ERROR	A vessel to one-dimensional source connection was either specified on a cell that dues not exist or on a face that does not exist.
CHOKE	1	CHARACTERISTIC SO- LUTION DID NOT CON- VERGE	The two-phase characteristic solution using a quick-solution search was bounded, but complete convergence could not be obtained within allowed iterations.
CHOKE	1	CONVERGENCE FAILED	The system's routine GREV has trouble calculating zli the eigenval- ues of the two-phase characteristic solution.
CHOKE	2	LARGEST CHARACTER- ISTIC ROOT WAS COM- PLEX	An informative message is printed under debug mode only.
CHOKE	2	NEGATIVE DFLDP CAL- CULATED, ASSUMED ZERO	The calculated derivative $\partial V_{\ell}/\partial \rho$ was negative because the round- off errors should always be > 0.0. Therefore, the derivative was set to 0.0.

CHOKE	2	NEGATIVE DEVDP CAL- CULATED, ASSUMED ZERO	The calculated derivative $\partial V_g / \partial \rho$ was negative because the round-off errors should be > 0.0. Therefore, the derivative was set to 0.0.
CHOKE	2	ONLY AFPROXIMATE SO- LUTION OBTAINED	The normal two-phase choking solu- tion maintains constant phasic slip. However, because of convergence problems, this condition could not be satisfied, but rather the relative velocity between the phases was ap- proximately maintained.
CHOKE	2	QUICK SOLUTION SEARCH FAILED	An informative message is printed under debug mode only.
CIVSSL	1	CONNECTIONS COM- PUTED AFTER VESSEL	The component calculational se- quence must compute the connec- tions before the vessel.
CIVSSL	1	IORDER PROBLEM	The calculational sequence must compute the component cont. so to the vessel before it calculate. As vessel.
CIVSSL	1	JUNCTION PROBLEM	A component adjacent to the VES- SEL cannot be found.
CIVSSL	1	VESSEL CONNECTED TO A FILL	A VESSEL cannot be connected to a FILL.
CIVSSL	1	VESSEL CONNECTED TO BREAK	A VESSEL cannot be connected to a BREAK.
CONBLK	1	BAD CNTL-BLOCK OPER- ATION NUMBER	A control-block operation number does not lie between 1 and 61.
CONBLK	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	Variable ICBN was incorrectly de- fined. This will only occur if there is a coding error.
CONBLK	1	IMPROPER LLAG BLOCK CONSTANTS	The lead-lag transfer function con- trol block 30 has a first constant that is negative or a second constant that is zero or negative.
CONBLK	1	IMPROPER SOTF BLOCK CONSTANTS	The second-order transfer function control block 51 has a first constant that is negative or a second constant that is zero or negative.
CONBLK	1	INVALID CNTL-BLOCK	A control block is defined with in- valid input parameter values.

CONBLK	1	INVALID DEAD- FUNCTION CONSTANTS	The dead control block 11 has a sec- ond constant that is less than the
CONBLK	1	NONPOSITIVE LAG TIME	The first-order LAG transfer function control block 26 has a first constant that is zero or negative.
CONVRT	1	ARRAY DIMENSIONS EX-	The subroutine, which extracts a vessel deck for modification and re-input, assumes that there are no more than 25 axial, radial, or theta zones
CORE1	1	BAD IDROD FOR ADDI-	TRAC cannot find a cell number that matches IDROD.
CORE3	1	BAD IDRUD FOR ADDI- TIONAL RODS	TRAC cannot find a cell number that matches IDROD.
CTAIN1	1	CONTAINMENT MODULE	Containment component will be in a future TRAC version.
CTAIN2	1	CONTAINMENT MODULE NOT YET IMPLEMENTED	Containment component will be in a future TRAC version.
CTAIN3	1	CONTAINMENT MODULE NOT YET IMPLEMENTED	Containment component will be in a future TRAC version.
DCHNID	1	INSUFFICIENT CORE FOR GRAPHICS DATA	There is insufficient memory for the INEL-NPA graphics data.
DCHNID	1	INSUFFICIENT CORE FOR PLOT VAR ID ARRAY	There is insufficient memory for the INEL-NPA plot variable ID array.
DELAY	1	ERROR IN DELAY TIME TABLE LOOKUP	An error was detected by sub-routine LININT when it tried to linearly interpolate the time delay table on a control block 100
DMPIT	3	DUMP FILE DEFINE ER-	File TRCDMP could not be created.
DMPIT	3	TYPE NOT RECOGNIZED	An invalid component type was en- countered.
ELGR	2	FORM LOSS VALUE TOO HIGH	The input value of a form loss was such that when the code converted it into an equivalent FRIC, the FRIC value exceeded 10^{20} . A FRIC value exceeding 10^{20} will invoke the steam separator model at the cell edge under consideration. Obviously, such was not the user's intention,
			otherwise the user would have input a form-loss value exceeding 10 ²⁰ in

C

the first place.

ENDDMP	2	DUMP FILE NOT CLOSED	An error occurred during the closing of the TRCDMP file.
ENDOMP	2	ERROR COMPACTING	An error occurred during the com- pacting of the TRCDMP file.
ENDGRF	2	GRAPHICS FILE NOT CLOSED	An error occurred during the closing of the TRCGRF file.
ENDGRF	2	ERROR COMPACTING	An error occurred during the com- pacting of the TRCGRF file.
EOVLY	2	OVERLAY UNLOAD ER-	An illegal overlay sequence exists.
EVALDE	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	An undefined variable was passed to subroutine EVALDF.
EVFXXX	1	NEED LOCAL DIM GT 50	Local array FXXXO is dimensioned to be 50; for components with more than 50 mesh cells, subroutine EVFXXX cannot evaluate a QPPP factor for each mesh cell.
EVFXXX	1	TABLE LOOKUP ERROR	Subroutine LININT encountered an error while trying to linearly inter- polate the component-action table value for the situation when the con- trolling trip is OFF after being ON.
EVLTAB	1	CNTL BLOCK NOT FOUND	The negative ID number that de- fines the independent variable of the component-action table was not specified in the control-block list.
EVLTAB	1	SIGNAL VAR. NOT FOUND	The positive ID number that de- fines the independent variable of the component-action table was not specified in the signal-variable list.
EVLTAB	1	TABLE LOOKUP ERROR	Subroutine LININT found an error when evaluating the component- action table
FBRCSS	1	BRANCH PATHS EXCEED	The number of blanch paths on the secondary side of a steam-generator component that have not been investigated yet and are connected branch paths already investigated exceeds the dimension of 10 for local arrays IIP, IJP, and IKP in subroutine FBRCSS.

FBRCSS	1	TOO MANY BREAKS	The number of BREAK components connected to the secondary side of a steam-generator component exceeds the dimension of 20 for temporary IA-array storage required by subrou- tine EBRCSS	(
FILLX	1	GENSTATE FILL TABLE	There are zero entries in the FILL table.	
GETBIT	1	ILLEGAL BIT SPECIFIED	The specified bit position is either too small or too large.	
GETCRV	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	An undefined pump curve index was passed to subroutine GETCRV.	
GRAF	1	DATA TYPE ERROR	There is an invalid data type in the graphics catalog.	
GRAF	1	SCM OVERFLOW	There is insufficient SCM for packing graphics data.	
GRFPUT	2	ERROR IN GRAPHICS	Integer is too large to be packed into a 15-bit word.	
GRFPUT	1	ERROR: GRAPHICS EDIT TOO LARGE	The graphics edit is too large and cannot be written. A FORTRAN modification is required.	(
HOUT	4	OUTER ITERATION DID NOT CONVERGE	The outer-iteration procedure failed three consecutive times.	
HTSTR3	1	NODES .GT. NRFMX	Maximum number of radial heat conduction nodes has been exceeded. Either the TRAC parameter NRFMX must be increased or NODES must be decreased.	
HTSTR3	1	NZMAX .GT. NZFMX	Maximum number of axial heat con- duction nodes has been exceeded. Either the TRAC parameter NZFMX must be increased or NZMAX must be decreased.	
HVWEBB	1	FAILURE TO CONVERGE IN WEBB-CHEN	The iteration to solve for the two- phase friction factor in the Webb- Chen correlation failed.	
ICOMP	1	FATAL INPUT ERROR(5)	An error was encountered during component data initialization causing JFLAG. NE. O at the end of subrou- tine ICOMP	

ICOMP	1	FRICTION LOSS HIGHER THAN TURBINE OUTPUT	The friction torque coefficients spec- ified for the turbine are so large that the friction loss exceeds the normal
ICOMP	1	INCONSISTENT JUNC- TION NUMBERS	design power from all stages. Inconsistent specification of junction numbers was made.
ICOMP	1	JUNCTION COUNT ER-	The number of junctions specified is inconsistent with the number found.
ICOMP	1	JUNCTION NUMBERS WRONG	The junctions are assigned incor- rectly.
ICOMP	2	LOOP SOURCE CONN. DIFF. DIRECTIONS	The vessel source connections of a component loop have cell-face connections to different directions. To eveluate this model, NAMELIST variable NOSETS must be set to 1 which results in the time step being constrained by the material-courant limit in the VESSEL components.
ICOMP	1	SCM OVERFLOW	Insufficient SCM is available to load problem.
ICOMP	1	TURBINE STAGES INCON- SISTENT WITH INPUT	The user specified component num- bers of the associated turbine stages under stage 1. This specification is not consistent with the other TURB components input.
ICOMP	1	UNRECOGNIZED COMPO- NENT	The component type was not recog- nized
ICOMP	1	WRONG TURB COM- PONENT NUMBER ON VALVE	The VALVE component for IVTY option of 5 or 6 requires a TURB component number. This number is inconsistent with the TURB compo- nents input.
IGRAF	1	COMPONENT TYPE NOT RECOGNIZED	An invalid component type was en- countered.
IGRAF	1	GRAPHICS FILE ALLOCA- TION FAILURE	An I/O error occurred while allo- cated space was sought for graphics file.
IGRAF	1	NO LCM SPACE FOR GRAPH CATALOG	Insufficient LCM is available.
IGRAF	1	NO SCM SPACE FOR GRAPH CATALOGUE	Problem too large to run with cur- rent code. User must reduce nodes or alter code.

.

G-7

ſ

IGRAF	1	SCM OVERFLOW	Insufficient SCM is available.
INIT	1	FAVOL & FA TOO LARGE	For a large change in volume- averaged flow areas across two ad- jacent cells, a flow loss must also be input for the involved junction. This can be accomplished by either in- putting a form loss or setting NFF to less than zero for a one-dimensional component or CFZL to less than zero for a three-dimensional com- ponent.
INIT	1	FAVOL CHANGE TOO LARGE	For a large change in volume- averaged flow areas across two ad- jacent cells, a flow loss must also be input for the involved junction. This can be accomplished by either in- putting a form loss or setting NFF to less than zero for a one-dimensional component or CFZL to less than zero for a three-dimensional com- ponent.
INIT	1	INTERFACE FA TOO LARGE	The flow area of a particular cell face cannot be larger than either of the two adjoining volume-averaged flow areas.
INPUT	2	CBETA MUST BE BE- TWEEN -1 & 1	The Bankoff interpolation constant (β) for interpolating between Wallis characteristic length dimension and Kutalatze characteristic length dimension must be between -1 and 1 in value.
INPUT	2	CCFLC IS .LE. ZERO	The intercept for the CCFL correla- tion must be greater than zero.
INPUT	2	CCFLM IS .LE. ZERO	The slope for the CCFL correlation must be greater than zero.
INPUT	2	DIAH MUST BE GT 0.0	The diameter of a single hole in the perforated plate of the CCFL model must be greater than 0.0 m.
INPUT	2	DUPLICATE COMP NUM- BERS IN IORDER	Two components with the same number were found in the TRACIN file.

. .

APPENDIX G

.

INPUT	1	FATAL INPUT ERROR(S)	A fatal input error was found when an input or restart file was read.
INPUT	1	FILE TRACIN DOES NOT EXIST	The input deck does not exist.
ΙΝΡυτ	2	GAMMA MUST BE GT 0.0	The ratio of open-plate flow area to total-plate flow area in the CCFL model must be greater than 0.0.
INPUT	2	HYDRO CMP NUM .GE. HT-ST CMP NUM	The component numbers for all heat structures must be larger than the largest hydro component number.
INPUT	1	INOPTS NAMELIST DATA NOT FOUND	The NAMELIST option was speci- fied; however, the NAMELIST data for group INOPTS are not in the TRACIN file.
INPUT	1	INSUFFICIENT MEMORY TO PROCEED PAST IN- PUT PROCESSING	Insufficient memory exists to proceed past the input processing stage.
INPUT	2	NCCFL IS OUT OF BOUNDS	The number of CCFL parameter sets being input must be between zero and ten.
INPUT	2	NHOLES MUST BE GT 0	The number of holes in the perfo- rated plate of the CCFL model must be greater than zero.
INPUT	1	NO LCM SPACE FOR CPD	Insufficient memory exists to store the trip and control block data.
INPUT	1	NO SPACE FOR BUFFERS	Insufficient LCM is available for I/O buffers.
INPUT	2	SCM OVERFLOW	Insufficient SCM is available for this problem. The user must reduce the number of nodes or redo the INPUT overlay.
INPUT	2	SOLUBILITY PARAME- TERS NOT REASONABLE	The solubility parameters entered for option ISOLCN do not define a rea- sonable linear relationship between solubility and temperature or may generate negative solubilities.
INPUT	2	STDYST=2 AND NCONTR .LT.1	The constrained steady-state option requires at least one steady-state controller to be specified.
INPUT	2	TP MUST BE GT 0.0	The thickness of the perforated plate in the CCFL model must be greater than 0.0 m.

-

APPENDIX G

.

IOVLY	1	A-ARRAY OVERFLOW	The main SCM data array is too small. This message occurs only for the CDC 7600 version with a fixed A-dimension (~25000 words). Rou- tine IOVLY directly issues diagnostic statistics. The global problem data are started at the high end of A, and the available space is smaller than the total dimension of A.	•
IOVLY	1	ERROR INITIALIZING SCM	Subroutine SETSCM found an error.	
IOVLY	1	SCM SPACE TOO SMALL FOR OVERLAY	Insufficient SCM is available for this overlay.	
IROD	2	BAD AXIAL-POWER SHAPE	Linear interpolation of the axial- power-shape table by subroutine LIN- INT failed.	
IROD	1	BAD FUEL-ROD POWER	Evaluating the heat-structure com- ponent volume-integrated power gave a negative value.	
IRODL	1	HS NOT ALLOW IN PLENUM	A heat-structure component cannot be connected to a plenum compo- nent.	
ISTGEN	1	2 JNCTS. OF 1 CELL COMP. EXT.	Code cannot find two internal sec- ondary junction numbers that have the same value.	
ISTGEN	2	JUNCTION ERROR	Error in the specification of the sec- ondary internal junction numbers of the steam generator.	
ITEE	1	INVALID GEOMETRY FOR	The geometry specified for the TEE component offtake model is invalid.	
IVLVE	1	INVALID VALVE LOCA- TION	The valve interface where the flow area is adjustable does not lie be- tween two cells within the VALVE component.	
JFIND	1	JUNCTION PROBLEM	A junction number could not be lo- cated in the junction sequence array.	
LCMTRN	2	SCM OVERFLOW	A small core memory overflow can occur when the NOLCM option is not defined and the amount of data which must be kept within the field length has exceeded the capacity of the executing computer.	

LOAD	2	ARRAY FILLED- OPERA- TION END NOT FOUND ON ARRAY CARD NO. XXXX OR NEXT CARD	Subroutine LOAD has filled up an ar- ray, but the letter "e" was not found at the end of the array input.
LOAD	2	ARRAY FILLED BUT OF- ERATION END NOT FOUND ON ARRAY CARD NO. XXXX	Subroutine LOAD has filled up an ar- ray, but the letter "e" was not found at the end of the array input.
LOAD	2	ARRAY FILLED THT OP- ERATION END NOT FOUND- SEE INPUT CARDS XXXX THRU XXXX	Suproutine LOAD has filled up an ar- ray, but the letter "e" was not found at the end of the array input.
LOAD	2	DATA OVERFLOWED AR- RAY ON INPUT CARD NO. XXXX – REPEAT COUNT RESET TO ONE	When the array data were read, a repeat operation overfilled the array.
LOAD	2	ERROR-UNEXPECTED NAMELIST DATA EN- COUNTERED	When the array data were loaded, NAMELIST data were found.
LOAD	2	INPUT ERROR ENCOUN- TERED ON CARD NO. XXXX – REST OF COM- PONENT SKIPPED	The array-reading routine found an error flag on a card set by the free- format input-option preprocessor routine. En acution of TRAC stops after the entire input deck is pro- cessed.
LOAD	2	INPUT ERROR ON CARD NO. XXXX - REAL DATA ENCOUNTERED IN INTE- GER ARRAY	Real data were found in an integer array.
LOAD	2	INPUT ERROR - NEW COMPONENT WAS EN- COUNTERED UNEXPECT- EDLY ON CARD NO. XXXX	When the array data for a compo- nent were loaded, data for an addi- tional component or an "END" card was specified.
LOAD	2	INTEGER INTERPOLA- TION NOT ALLOWED - SEE INPUT CARD NO. XXXX	When an integer array was read, an interpolation operation was specified.
LOAD	2	NOT ENOUGH DATA TO FILL APRAY. SEE INPUT CARDS XXXX THRU XXXX	Subroutine LOAD encountered an "e" end of operation before the array was filled.

MANAGE	1	ILLEGAL INDEX IN COM- PUTED GO TO	An invalid entry option was sent to subroutine MANAGE in variable IN- OPTS. This will only occur if there is a coding error.
MANAGE	1	SCM MEMORY OVER- FLOW	Insufficient SCM is available.
MATSOL	1	BAD BANDED-MATRIX FACTORIZATION	The LU matrix-decomposition factor- ization of a banded matrix failed.
MATSOL	1	BAD CAPACITANCE-MTX FACTORIZATN	The LU matrix-decomposition factor- ization of the capacitance matrix (a full matrix) failed.
MATSOL	1	MU=ML.GE.65	The vessel-matrix bandwidth exceeds 64+1+64 and cannot be solved by the banded-matrix solver subroutines BDLSDC and BGLSSL.
MDINIT	1	INDEX TABLE OVER- FLOW	The space allocated for the Master Dictionary index is insufficient.
MDINIT	1	VARIABLE TABLE OVER- FLOW	The space allocated for a Master Dictionary variable table is insuffi- cient.
MFROD	1	ILLEGAL MATERIAL ID NUMBER	The mate '. ' ID specified is not valid.
MFROD	1	INTERFACE .NE. NCRZ+1	The last heat-transfer coarse node at hydro cell interfaces must be equal to NCRZ +1.
MODCMP	3	EKROR CHANGING COM- PONENT	An error occurred when a component was modified. This will be preceded by a more specific error message (in- teractive mode only).
MODCMP	3	TYPE NOT RECOGNIZED	The component type specified is not available in TRAC.
MODIFY	-4	HALTED FOR MANUAL RESTART	A component has been modified us- ing the interactive mode.
MSTRCT	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	An undefined or invalid material type number has been passed to subrou- tine MSTRCT.
MSTRCT	2	INCORRECT TABULAR MAT. I.D.	A wall-material identifier could not be located.
MSTRCT	2	TEMPERATURE OUTSIDE TABLE RANGE	Wall temperature is outside range of the tabular material data.

APPENDIX G

NAMLST	2	ALP HAS OUT-OF-RANGE VALUE	When specifying a default value for void fractions using the NAMELIST data, the allowable input range is such that $0.0 < ALP < 1.0$.
NAMLST	2	CCIF HAS OUT-OF- RANGE VALUE	When specifying a constant two- phase flow interfacial drag coef- ficient (when NIFSH = 1) using NAMELIST data, the allowable in- put range is such that CCIF > 0.0.
NAMLST	2	CFZ3 HAS OUT-OF- RANGE VALUE	When specifying a default value for three-dimensional loss coefficients using the NAMELIST data, the allowable input range is such that CFZ3 \geq 0.0.
NAMLST	2	CHM1# HAS OUT-OF- RANGE VALUE	When specifying subcooled multipli- ers for the choked-flow model using NAMELIST data, the allowable input range is such that $CHM1\# > 0.0$.
NAMLST	2	CHM2# HAS OUT-OF- RANGE VALUE	When specifying two-phase multipli- ers for the choked-flow model using NAMELIST data, the allowable input range is such that $CHM2\# > 0.0$.
NAMLST	2	DTSTRT HAS OUT-OF- RANGE VALUE	When specifying an initial time-step size using the NAMELIST data, the allowable input range is such that DTSTRT > 0.0 or $= -1.0$.
NAMLST	2	HD3 HAS OUT-OF-RANGE VALUE	When specifying a default value for three-dimensional hydraulic diame- ters using the NAMELIST data, the allowable input range is such that HD3 \geq 0.0.
NAMLST	2	HSTN HAS OUT-OF- RANGE VALUE	When specifying a default value for heat-structure temperatures in three- dimensional components using the NAMELIST data, the allowable input range is such that HSTN ≥ 0.0 .
NAMLST	2	HTCWL HAS OUT-OF- RANGE VALUE	When specifying a constant wall to liquid heat-transfer coefficient (when ICONHT = 1) using NAMELIST data, the allowable input range is such that $HTCWL > 0.0$.

	NAMLST	2	HTCWV HAS OUT-OF- RANGE VALUE	When specifying a constant wall to vapor heat-transfer coefficient (when ICONHT = 1) using NAMELIST data, the allowable input range is such that HTCWV > 0.0.
	NAMLST	2	IADDED HAS OUT-OF- RANGE VALUE	When adding the numerical-solution status-parameter message to the TR-CMSG and TTY files using NAME-LIST data, the allowable input range is such that IADDED ≥ 0 .
	NAMLST	2	ICDELT HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable ICDELT are 0 and 1.
	NAMLST	2	ICFLOW HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable ICFLOW are 0, 1, and 2.
	NAMLST	2	ICONET HAS OUT-OF- RANGE VALUE	The Illowable input values for the NAMELIST - mable ICONHT are 0 and 1.
ĺ	NAMLST	2	IDIAG HAS OUT-OF- RANGE VALUE	The allowabis input values for the NAMELIST INOPTS variable IDIAG are 0, 1, 2, 3, and 4.
	NAMLST	2	IELV HAS OUT-OF-RANGE VALUE	The allowable input values for the NAMELIST variable 'ELV are 0 and 1.
	NAMLST	2	IGAS HAS OUT-OF- RANCE VALUE	The allowable input values for the NAMELIST variable IGAS are 1, 2, and 3.
	NAMLST	2	IGEOM3 HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IGEOM are 0 and 1.
	NAMLST	2	IHOR HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IHOR are 0, 1. and 2.
	NAMLST	2	IHORG HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IHORG are 0, 1, and 2.
	NAMLST .		IKFAC HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IKFAC are 0 and 1.
	NAMLST	2	IMFR HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELI', T variable IMFR are 1 and 3.

NAMLST	2	INLAB HAS OUT-OF- RANGE VALUE	The allowable input values for the AMELIST variable INLAB are 0
NAMLST	2	INVAN HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable INVAN are 0 and 3.
NAMLST	?	IOFFTK HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IOFFTK are 0 and 1.
NAMLST	2	IPOWR HAS OUT-OF- RANGE VALU!_	The allowable input values for the NAMELIST variable IPOWR are -1 , 0, and 1.
NAMLST	2	IPRCPV HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable IPRCPV are 0 and 1.
NAMLST	2	ISOLCN HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST value is ble ISOLCN are 0 and 1.
NAMLST	2	ISTOPT HAS C JT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable ISTOPT are 0, 1, and 2.
NAMLST	2	ITHD HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable ITHD are 0 and 1
NAMLST	2	LEVSTG HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable LEVSTG are 0 and 1
NAMLST	2	NDIA1 HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NDIA1 are 1 and
NAMLST	2	NEWRFD HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NEWRFD are 0 and 1.
NANUST	2	NFRCI HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NFRC1 are 1 and 2.
NAMLST	2	NFRC3 HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NFRC3 are 1 and 2.
NAMLST	2	NHTSTR HAS OUT-OF- RANGE VALUE	When specifying the number of heat- structure components using NAME- LIST data, the allowable input range

is such that NHTSTR \geq 0.

.

NAMLST	2	NIFSH HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NIFSH are 0 and 1.
NAMLST	2	NLT HAS OUT-OF-RANGE VALUE	When specifying a number of hydro- component loops using the NAME- LIST data, the allowable input range is such that NLT ≥ 1 .
NAMLST	2	NOAIR.NE.1 WHEN IEOS.EQ.1	The NAMELIST variable NOAIR must equal 1 when the IEOS \approx 1 option (gas phase treated as noncon- densable gas throughout the system) is selected.
NAMLST	2	NOAIR HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NOAIR are 0 and 1.
NAMLST	2	NORMDP HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NORMDP are 0 and 1.
NAMLST	2	NORMRS HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NORMRS are 0 and 1.
NAMLST	2	NOSETS HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NOSETS are 0, 1, and 2.
NAMLST	2	NRSLV HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NRSLV are 0 and 1.
NAMLST	2	NSEND HAS OUT-OF- RANGE ''ALUE	When specifying a calculation stop time using the NAMELIST data, the allowable input range is such that NSEND ≥ 0.0 or = -1.
NAMLST	2	NSDL & NSDU OUT-OF- RANGE VALUES	When specifying the first time step at which a short edit is to be printed to the TRCOUT file with additional diagnostics using the NAMELIST data, the allowable input range is such that NSDL \geq 0.0 or = -1.
NAMLST	2	NSPL & NSPU HAVE OUT-OF-RANGE VALUES	When specifying the last time step at which a short edit is to be printed to the TRCOUT file with additional diagnostics using the NAMELIST data, the allowable input range is such that NSPL ≥ 0.0 or = -1.

APPENDIX P

NAMLST	2	NVGRAV HAS OUT-OF- RANGE VALUE	The allowable input values for the NAMELIST variable NVGRAV are 0 and 1.
NAMLST	2	P HAS OUT-OF-RANGE VALUE	When specifying a default value for initial pressures using the NAME-LIST data, the allowable input range is such that $1.0 \le P \le 4.5 \times 10^7$.
NAMLST	2	PA HAS OUT-OF-RANGE VALUE	When specifying a default value for initial noncondensable-gas partial pressures using the NAMELIST data, the allowable input range is such that $0.0 \le P \le 4.5 \times 10^7$.
NAMLST	2	QPPP HAS OUT-OF- RANGE VALUE	When specifying a default value for volumetric heat distribution in the walls of one-dimensional components using the NAMELIST data, the allowable input range is such that QPPP ≥ 0.0 .
NAMLST	2	TIMDL&TIMDU HAVE OUT-OF-RANGE VALUES	When specifying the times to be- gin and end a debug print using NAMELIST data, the allowable in- put ranges are such that TIMDL and TIMDU ≥ 0.0 or $= -1$.
NANUST	2	TL HAS OUT-OF-RANGE VALUE	When specifying a default value for initial liquid temperatures using the NAMELIST data, the allowable input range is such that $273.15 \le TL \le 713.95$.
NAMLST	2	TPOVER HAS OUT-OF- RANGE VALUE	When specifying the time at which the core-power initialization at its steady-state level is activated using NAMELIST data, the allowable input range is such that TPOWR ≥ 0.0 .
NAMLST	2	TV HAS OUT-OF-RANGE VALUE	When specifying a default value for initial vapor temperatures using the NAMELIST data, the allowable input range is such that $273.15 \le TV \le 3090.0$.
NAMLST	2	TW HAS OUT-OF-RANGE VALUE	When specifying a default value for initial wall temperatures using the NAMELIST data, the allowable input range is such that $TW > 0.0$.

NAMLST	2	VL HAS OUT-OF-RANGE VALUE	When specifying a default value for initial liquid velocities using the NAMELIST data, the allowable input range is such that $ VL < 1.0 \times 10^4$.
NAMLST	2	VV HAS OUT-OF-RANGE VALUE	When specifying a default value for initial vapor velocities using the NAMELIST data, the allowable input range is such that $ VV < 1.0 \times 10^4$.
NPACTL	1	INSUFFICIENT CORE FOR PLOT DATA	There is insufficient memory for the INEL-NPA graphics data.
NXTCMP	2	CARD NO. XXXX SKIPPED – DATA FOR NEW COMPONENT OR END CARD EXPECTED.	When the component data were read, no new component or end-of- file was found after the completion of the current component data.
NXTCMP	1	END-OF-FILE REACHED WHEN SEARCHING FOR NEXT COMPONENT	When the data for a new component were read, an end-of-file was found.
OFFTKE	1	INVALID GEOMETRY FOR OFFTAKE MODEL	The geometry specified for the TEE component offtake model is invalid.
OUTID	1	COMPONENT TYPE NOT RECOGNIZED	Invalid component type was encoun- tered.
OUT3D	1	COMPONENT TYPE NOT RECOGNIZED	Invalid component type was encoun- tered.
OUT3D	1	EXTRA ELEMENTS OUT- SIDE BANDWIDTH	The number of matrix rows having nonzero elements outside the vessel- matrix bandwidth exceeds LDIM, the maximum dimension for the order of the capacitance matrix.
OUTER	4	FATAL ERROR	A fatal error occurred.
POST	1	COMPONENT TYPE NOT RECOGNIZED	Invalid component type was encoun- tered.
POST3D	1	COMPONENT TYPE NOT RECOGNIZED	Invalid component type was encoun- tered.
POST3D	1	EXTRA ELEMNTS OUT- SIDE BANDWIDTH	The number of matrix rows having nonzero elements outside the vessel- matrix bandwidth exceeds LDIM, the maximum dimension for the order of the capacitance matrix.
POSTER	1	NO SCM SPACE FOR	Insufficient SCM is available.

PRCINT	2	ABORTED BY CONTROL- LER	The user aborted this run (interac- tive mode only). No cleanup is done.
PRCINT	2	INTERRUPTED - CONTINUED	The user continued the program af- ter an interruption (interactive mode only).
PRCINT	-4	STOPPED BY REQUEST	The user stopped the run (interac- tive mode only). Run terminates normally.
PREFWD	1	SCM TO SMALL FOR SCRATCH ARRAYS	Insufficient memory exists for the temporary vectors used by subroutine PREFWD.
PREIFD	1	INSUFFICIENT SCM FOR SCRATCH VECTORS	Insufficient memory exists for the temporary vectors used by subroutine PREFWD.
PREINP	1.2	INPUT ERROR DETEC- TED IN TRACIN. CARD NUMBER XXXX	The free-format input-option pre- processor routine found an input er- ror. Possible causes include a miss- ing positive character (for example, 1.O.E. 07), the omission of the first (format-option switch) card, or a simple typographical error. Ar im- mediate fatal error occurs if the first card is incorrect. In all other cases, a flag is set that stops execution after the entire deck is processed.
PREPID	1	COMPONENT TYPE NOT RECOCNIZED	Invalid component type was encoun- tered.
PREP3D	1	COMPONENT TYPE NOT RECOGNIZED	Invalid component type was encoun- tered.
PREP3D	1	EXTRA ELEMENTS OJT- SIDE BANDWIDTH	The number of matrix rows having nonzero elements outside the vessel- matrix bandwidth exceeds LDIM, the maximum dimension. for the order of the capacitance matrix.
PTRSPL	1	INSUFFICIENT MEMORY FOR PLENUM POINTERS	Insufficient memory exists for the initializing the plenum pointers.
PUMPD	1	CANNOT LOCATE HEAD	The PUMP regime is outside the database.
PUMPD	1	CANNOT LOCATE	The FUMP regime is outside the database.
PUMPSR	1	ERROR IN ROUTINE PUMPX	An error was encountered when a pump head or torque was evaluated.

PUMPSR	1	INSUFFICIENT SCM SPACE	Insufficient SCM is available for PUMP since calculations.
PUMPSR	2	PUMP BELOW OMTEST	The pump speed has fallen below the pump-impeller rotational speed OMTEST specified by input.
FUMP5R	1	PUMP SPEED NOT FOUND	The signal-wriable or control-block ID number NPMPSD that defines the initial pump speed directly could not be found in the signal-variable or control-block list of ID numbers.
R1MACH	1	I OUT OF BOUNDS	The number of machine constants (required for the determination of eigenvalues) should be at least 1 but should not exceed 5. This number is out of bounds.
RACCUM	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change dimension VLT in GENVLT.
RBREAK	2	ERROR IN TABLE SPECI- FICATIONS	Incompatible BREAK options were selected.
RBREAK	2	IBTY INCONSISTENT WITH ISOLUT	A soluce-concentration table can- not be used at a BREAK unless the solute-tracker flag (ISOLUT) is set to one.
RBREAK	2	PAIN MUST NOT BE GREATER THAN PIN	The air partial pressure at the BREAK may not exceed the total pressure at the BREAK.
RBREAK	2	SCM OVERFLOW	Insufficient SCM is available for this BREAK.
RBREAK	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change dimension VLT in GENVLT.
RCNTL	2	# OF SET PT. FAC. TA- BLES .GT. 25 DIM	The number of set-point factor ta- bles is greater than the local dimen- sion of array IFSP (25), which stores the set-point factor-table 1D num- bers.

RCNTL	2	# OF T.S.E. OR T.C.T. .GT. 25 DIM.	The number of trip-signal expres- sions or trip-controlled trips is greater than the local dimension of array ISEN (25) or ITCN (25). These arrays are used to store the signal ID numbers that are compared to the signal ID numbers in the in- put.
RCNTL	2	ABSCISSA VALUES NOT INCREASING	The control-block table independent variable must be in increasing order.
RCNTL	2	BAD CBLK TABLE STOR- AGE	The total number of control-block FNG1 table values exceeds the num- ber of values specified by NTCF (Main-Control Card Number 5).
RCNTL	2	BAD SIG. EXP. OPERA- TOR	The arithmetic-operator ID num- ber for a subexpression within the signal-expression definition has an in- valid input value of less than one or greater than eight.
RCNTL	2	BAD TRIP # DEFINING T-C-T SIGNAL	When specifying the number of trip ID numbers whose ISET set-status values are summed or multiplied to evaluate the trip-controlled signal, the allowable input range is such that $2 \leq INTN \leq 10$.
RCNTL	2	BAD TRIP SIGNAL- RANGE TYPE VALUE	When specifying a signal-range type number using the trip-defining variable input, the allowable input values for ISRT are ± 1 , ± 2 , ± 3 , ± 4 , and ± 5 .
RCNTL	2	BAD TRIP ID DEFINITION	A trip ID has an absolute value that is 0 or greater than 9999.
RCNTL	2	INVALID TRIP SET STA- TUS DEFINED	The trip set-status variable ISET has an invalid input value.
RCNTL	2	SET POINT FACT.TAB. # PAIRS.GT.10	The set-point factor table has more than 10 data pairs.
RCNTL	2	SET PT.FAC.TABLE DIM. TOO SMALL	The number of set-point factor-table parameters is less than the storage allocated for such parameters by variable NTSE

RCNTL	2	TRIP-CONTROL TRIP DIM. TOO SMALL	The number of trip-controlled trip- signal parameters is less than the storage allocated for such parameters by variable NTCT.
RCNTL	2	TRIPS DOING DUMPS DIM. TOO SMALL	The number of trip IDs that produce restart dumps is greater than the storage allocated for such parameters by variable NTDF.
RCNTL	2	TRIP SIGNAL EXP. DIM. TOO SMALL	The number of trip signal-expression parameters is greater than the stor- age allocated for such parameters by variable NTSE.
RCOMP	*	GRAV IS OUTSIDE RANGE (-1.0, 1.0)	When specifying a gravity term, the allowable input range is such that $-1 \leq \text{GRAV} \leq 1$.
RCOMP		ICFLG MUST BE .LE. 5	Only five sets of multipliers are al- lowed in the choked-flow model.
RCOMP	2	ICONC & ISOLUT ARE INCONSISTENT	Solute concentrations were entered before the ISOLUT option was se- lected.
RCOMP	2	INCONSISTENT VALUES	All nonzero values of ICFLG must the the same in a given component.
RCOMP	2	LCCFL MUST BE GE 0 AND LE NCCFL	When specifying the CCFL calcula- tion for a component, the allowable input range is such that $0 \leq LCCFL \leq NCCFL$.
RCOMP	2	NEGATIVE FRIC. GE. -1.0E+20 NOT ALLOWED	An additive friction-factor of less than -10^{20} can be used to select the liquid-separator model. In all other cases, the additive friction factor must be positive.
RCOMP	2	NFF MUST BE 0, 1, -1, OR 100	The only NFF options in TRAC are $0, 1, -1, or -100$.
RCOMP	2	PA MUST EQUAL 0 IF NOAIR = 1	If the NOAIR = 1 NAMELIST op- tion was selected, then all noncondensable- gas partial pressures must be input as zeros.
RCOMP	2	PA MUST NOT BE GREATER THAN P	The noncondensable-gas partial pres- sure may not exceed the total pres- sure for a hydrodynamic cell.

RCPVEC	2	BAD LOOP COUNT GIVEN FOR CONTROL PANEL VECTOR	An incorrect number of reactor coolant loops was specified. The number must be 1, 2, 3, or 4.
RCPVEC	2	BAD LOOP NUMBER (XXXX), ASSUMED YYYY	The interactive-edit input specifies a loop that does not exist.
RDCOMP	1	COMPONENT TYPE NOT RECOGNIZED	An invalid component type was spec- ified.
RDDIM	2	ILLEGAL PUMP CURVE	An illegal PUMP option was speci- fied on PUMP Card Number 9.
RDREST	1	COMPONENT DATA NOT FOUND	Data for a specific component were not found in the input or the restart file.
RDREST	1	DUMP NOT FOUND ON RESTART FILE	The restart dump at the time spec- ified in the input file is not in the restart file.
RDREST	1	FILE TRCRST DOES NOT EXIST	Component data were omitted from the input deck, and a restart dump file to initialize the missing compo- nents cannot be found.
RDREST	1	IELV FROM TRCRST AND TRACIN DIFFER	The cell-centered evelation options in the input and the restart-file data differ The IELV parameter must be set either to ON or to OFF in both files.
RDREST	1	IKFAC FROM TRCRST AND TRACIN DIFFER	The K-factor options in the input and the restart-file data differ. The IKFAC parameter must be set either to ON or to OFF in both files.
RDREST	1	ISOLUT FROM TRCRST AND TRACIN DIFFER	The solute-tracking options in the input and the restart-file data differ. The ISOLUT parameter must be set either to ON or to OFF in both files.
RDREST	1	ITHD FROM TRCRST AND TRACIN DIFFER	The heat-structure heat-transfer di- smeter options in the input and the restart-file data differ. The ITHD parameter must be set either to ON or to OFF in both files.
RDREST	1	NDIA1 FROM TRCRST AND TRACIN DIFFER	The one-dimensional component heat-transfer diameter options in the input and the restart-file data differ. The NDIA1 parameter must be set either to ON or to OFF in both files.

RDREST	1	NEWRFD FROM TRCRST AND TRACIN DIFFER	The reflood model options in the input and the restart-file data differ. The NEWRFD parameter must be set either to ON or to OFF in both files
RDREST	1	NFRC1 FROM TRCRST AND TRACIN DIFFER	The one-dimensional component for- ward and reverse form-loss coeffi- cient options in the input and the restart-file data differ. The NFRC1 parameter must be set either to ON or to OFF in both files.
RDREST	1	NFRC3 FROM TRCRST AND TRACIN DIFFER	The three-dimensional component forward and reverse form-loss coef- ficient options in the input and the restart-file data differ. The NFRC3 parameter must be set either to ON or to OFF in both files.
RDREST	1	NO DUMPS ON FILE	Incomplete dumps are specified in the TRCRST file.
RDREST	1	INCOMPATIBLE RESTART FILE FORM	The restart file cannot be used with this TRAC version.
RDRFST	1	RESTART FILE HAS OPENING ERROR	An I/O error occurred when the restart file was opened.
RDREST	1	TYPE NOT RECOGNIZED	An invalid component type was spec-
REACCM	2	POINTER TABLE MIS- MATCH	The accumulator (ACCUM) pointer table loes not match the restart-file data.
READI	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	The number of integer variables specified on an input card must not exceed 5.
READI	*	INPUT ERROR ON CARD NO. XXXX - ENCOUN- TERED UNEXPECTED LOAD DATA	A load operation was found when integer data in 114 format were read.
READI	2	INPUT ERROR- NEW COMPONENT OR END ENCOUNTERED UNEX- PECTEDLY CARD NO. XXXX	Data for a new component were found before all of the data for the current component were read.
READI	2	INPUT ERPOR ON CARD NO. XXXX - REAL DATA ENCOUNTERED IN INTE- GER FIELD	Real data were found when integer data in 114 format were read.

RECNTL	1	CONTROL PARA. STOR- AGE TOO SMALL	The variable storage that was allo- cated by the input data for the signal variables, control blocks, and trips is too small to contain the remaining data from the restart file.
RECNTL	1	NUMBER TRIPS EXCEEDS DIMENSION	The number of trips with different ID numbers from the input and the restart files exceeds the input data- storage dimension.
RECNTL	1	SET-PT-FACTOR TABLES EXCEED DIM	The number of different setpoint point factor-table ID numbers in the input and the restart files exceeds the input data-storage dimension.
RECNTL	1	SIG. VARIABLES EXCEED DIMENSION	The number of signal variables with different ID numbers in the input and the restart files exceeds the in- put data-storage dimension.
RECNTL	1	TIME STEP DATA EX- CEED DIMENSION	The number of trip-controlled time- step data sets with different ID num- bers in the input and the restart files exceeds the input data-storage di- mension.
RECNTL	1	TOO MANY DMP TRIPS FROM RESTART	The number of trip ID numbers in the input and the restart files x- ceeds the input data-storag, dimen- sion. These trip ID numbers when set to ON generate restart dumps.
RECNTL	1	TOO MANY SETPOINT- FACTOR TABLES	The number of set-point factor ta- bles in the restart file exceeds the input data-storage dimension.
RECNTL	1	TOO MANY SP. TIME- STEP DATA SETS	The number of trip-controlled time- step data sets in the restart file ex- ceeds the input data-storage dimen- sion.
RECNTL	1	TOO MANY TRIPS GEN- ERATING DUMPS	The number of trip ID numbers in the restart file exceeds the input data-storage dimension. These trip ID numbers when set to ON gener- ate restart dumps.
RECNTL	1	TRIP-SIGNAL EXPS. EX- CEED DIMEN.	The number of signal-expression ID numbers in the input and the restart files exceeds the input data-storage dimension.

RECNTL	1	TRP-CONT-TRP SIGNALS EXCEED DIM.	The number of trip-controlled trip ID numbers with different ID num- bers in the input and the restart files exceeds the input data-storage di- mension.	(
REFILL	1	FATAL ERROR	An error stopped the processing of the input data.	
REFILL	2	LCM OVERFLOW	Insufficient LCM is available for the FILL data from the restart file.	
REFILL	2	POINTER TABLE MIS- MATCH	The FILL pointer table does not match the restart-file data.	
REFILL	2	SCM OVERFLOW	Insufficient SCM is available for this FILL.	
REHTST	2	POINTER TABLE SIZE HAS MISMATCH	The HTSTR pointer table does not match the restart-file data.	
REPIPE	2	POINTER TABLE MIS- MATCH	The PIPE pointer table does not match the restart-file data.	
REPLEN	2	POINTER TABLE MIS- MATCH	The PLENUM pointer table does not match the restart-file data.	
REPRZR	2	POINTER TABLE MIS- MATCH	The pressurizer (PRIZER) pointer table does not match the restan-file data.	(
REPUMP	2	POINTER TABLE MIS- MATCH	The PUMP pointer table does not match the restart-file data.	
RETEE	2	POINTER TABLE M'S- MATCH	The TEE pointer table does not match the restart-file data.	
RETURB	2	POINTER TABLE MIS- MATCH	The restart pointers do not match the original pointers. Probably a newer code version with updated pointers was used for the restart, whereas an older version was used for the previous run.	
REVLVE	2	POINTER TABLE MIS- MATCH	The VALVE pointer table does not match the restart-file data	
REVSSL	2	POINTER TABLE MIS- MATCH	The VESSEL pointer table does not match the restart-file data.	
REV:ISL	2	PROBLEM TOO LARGE	The problem being modelled is too large for the current TRAC parame- ter statements.	
RFDBK	1	CORE NZ+1000 INTER- FACE NOT FOUND	The hydro-cell interface NZ in the powered-core region could not be located in the A(LIDHT) array.	(

RFILL	2	BAD FILL TYPE OPTION	An illegal FILL option was specified on FILL Card Number 2.
RFILL	2	BAD TRIP ID DEFINITION	An incorrect trip ID of -1 , < -9999, or > .999 was specified.
RFILL	2	IFSV = 0 WHEN IFTY.GT.3	A F!LL table, based on IFTY > 4, cannot be defined because no table independent-variable ID number was specified.
RFILL	2	INCONSISTENT INIT AND TABLE FLOW	The initial values for the FILL table and for the FILL initial state are not equa!
RFILL	2	PAIN MUST NOT BE GREATER THAN PIN	The noncondensable-gas partial pres- sure is greater than the total pres- sure in a FILL.
RFILL	2	SCM OVERFLOW	Insufficient SCM is available for the FILL data from the input file.
RFILL	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RHTSTR	2	D'MENSION NEFMX .LT. NODES	Maximum number of radial heat conduction nodes has been exceeded. Either the TRAC parameter NRFMX must be increased or NODES must be decreased.
RHTSTR	2	DIMENSION NZFMX .LT. NCRZ+1	Maximum number of axial heat con- duction nodes has been exceeded. Either the TRAC parameter NZFMX must be increased or NCRZ and/or NZMAX must be decreased.
RHTSTR	2	EITHER IDBCI OR IDBCO MUST BE 2	Either the inner surface or the outer surface of the heat structure must have a boundary condition coupled to specified cells in one or more hy- dro components.
RHTSTR	2	FISPHI CANNOT BE .LT. ZERO	The number of fissions per initial fis- sile atom must be positive in value.
RHTSTR	2	GRAV IS OUTSIDE RANGE (-1.0, 1.0)	When specifying a biavity term, the allowable input range is such that $-1 \leq \text{GRAV} \leq 1$.

RHTSTR	2	HDRI MUST BE GREATER THAN ZERO	The thermal diameter for the inner surface of the heat-structure rod or slab must be greater than 0.0 m.	(
RHTSTR	2	HDRO MUST BE GREAT- ER THAN ZERO	The thermal diameter for the outer surface of the heat-structure rod or slab must be greater than 0.0 m.	
RHTSTR	2	HOT PATCHES ALLOWED	Hot patch modelling is allowed in only one slab at this time.	
RHTSTR	1	INSUFFICIENT MEMORY TO CONTINUE INPUT PROCESSING	Insufficient memory exists to con- tinue input processing.	
RHT5TR	2	IRFTR MUST .NE. 0 TO MODEL HOT PATCHES	Hot patch modelling requires the axial fine-mesh option to be selected.	
RHTSTR	2	NEWRFD MUST = 1 TO MODEL HOT PATCHES	Hot patch modelling requires the new reflood model option to be se- lected.	
RHTSTR	2	NHCELI(K) NOT IN- CREASING	The hydro cell numbers to which a hest-structure node is connected must be increasing in value.	
RHTSTR	2	NHCELO(K) NOT INCREASING	The hydro cell numbers to which a heat-structure node is connected must be increasing in value.	
RHTSTR	1	NOT ENOUGH MEMORY FOR A(LRFTN)	Insufficient memory exists to load the heat-structure temperature array.	
RHTSTR	2	NZMAX .LT. NCRZ+1 +SUM(NFAX(I))	The maximum number of rows of nodes in the axial direction must be greater than the sum of all the fine- mesh and coarse-mesh nodes.	
RHISTR	2	Q235 CANNOT BE .LE. TO ZERO	The energy per fission from U ²³⁵ must be positive.	
RHTSTR	2	Q238 CANNOT BE .LE. TO ZERO	The energy per fission from U ²³⁸ must be positive.	
RHTSTR	2	Q239 CANNOT BE .LE. TO ZERO	The energy per fission from Pu ²³⁹ must be positive.	
RHTSTR	2	QAVG CANNOT BE .LE. TO ZERO	The average energy per fission must be positive.	
RHTSTR	2	R239PF CANNOT BE .LE. TO ZERO	The atoms of U ²³⁹ produced per fission must be positive.	
RHTSTR	2	LANS CANNOT BE LE. TO ZERO	The multiplier applied to the ANS79 decay heat must be positive.	

- "·

APPENDIX G

G-30

n

P
RHTSTR	2	ROD RADII NOT MONO. INCREASING	Indicates input values for which $RADRD(I+1) < RADRD(I)$.
RHTSTR	2	VLT SIZE EXCEEDS ITS LIMIT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RHTSTR		Z(K) NOT MONOTONIC	The axial location of heat-transfer nodes must be monotonically in- creasing in value along the length of the heat structure.
RKIN	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	An invalid value for IRPWTY has occurred.
RODHT	1	SINGULAR MATRIX IN BANSOL	An error has occurred within subrou- tine BANSOL during the solut're for the new heat-structure temperatures.
RPIPE	2	INCONSISTENT INIT & TABLE POWER	The initial values for the PIPE power-to-fluid table POWTB and for the PIPE power-to-fluid variable POWIN are not equal.
RPIPE	2	INCC: ISISTENT INIT & TABLE QPPPF	The initial values for the PIPE power-to-wall table QP3TB and for the PIPE power-to-wall variable QP3IN are not equal.
RPIPE	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RPLEN	2	ICONC & ISOLUT ARE INCONSISTENT	Solute concentrations were entered before the ISOLUT option was se- lected.
RPLEN	1	JUNS1 AND JUNS2 IN- COMPATIBLE	The number of junctions on each side of the plenum ce'l should be either C or positive in value.
RPLEN	1	NPLJN .LE. JUNS1	The number of side 1 junctions must be less than the total number of plenum-component junctions.
RPLEN	1	NPLJN .LE. JUNS2	The number of side 2 junctions must be less than the total number of

RPLEN	2	PA MUST NOT BE GREATER THAN P	The noncondensable-gas partial pres- sure may not exceed the total pres- sure for a hydrodynamic cell.
RPLEN	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RPRIZR	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RPUMP	2	BAD TRIP ID DEFINITION	An incorrect trip ID of -1, < -9999, or >9999 was specified.
RPUMP	2	FRIC(2) .NE. 0.	The value for FRIC(2) must be 0.0 in the PUMP.
RPUMP	2	INCONSISTENT INIT & TABLE QPPPF	The initial values for the power-to- wall table QP3TB and for the power- to-wall variable QP3IN are not equal.
RPUMP	2	INCONSISTENT INIT & TABLE SPEED	The initial values for the PUMP- speed table and for the PUMP speed are not equal.
RPUMP	2	IPMPSV.NE.0	The independent-variable ID number for the PUMP-speed table should not be defined for PUMP-type 2.
RPUMP	2	NCELLS.LT.2	An incorrect number of PIPE fluid cells was specified. The PIPE must have at least two fluid cells.
RPUMP	2	NPMPRF.NE.0	The number of the rate-factor ta- ble's entry pairs should be zero for PUMP-type 2.
RPUMP	2	NPMPSV.NE.O	The independent-variable ID number for the rate-factor table assigned to the PUMP-speed table should not be defined for PUMP-type 2.
RPUMP	2	NPMPTB.NE.0	The number of the PUMP-speed table's entry pairs should be zero for PUMP-type 2.
RPUMP	2	PUMP TYPE NOT REC- OGNIZED	An incorrect PUMP type was speci- fied.
RPUMP	2	QPPP-F TABLE PARAM. BAD	The power-to-wall table QP3TB is defined but its independent-variable ID number is zero.

RPUMP	2	SPEED TABLE PARAM. BAD	The signal-variable ID number for the rotational-speed-table's inde- pendent variable for PUMP-type 1 is invalid. The PUMP-type variable IPMPTY must be either 1 or 2.
RPUMP	2	TYPE 0 PUMP MUST HAVE A SPEED CON- TROLER	The ID number of the signal-variable parameter or control-block param- eter (NPMPSD) that defines the pump-impeller rotational speed ini- tially when the controlling trip is OFF is invalid for a type 0 pump (IMPMTY = 0).
RPUMP	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RROD1	2	BAD TRIP ID DEFINITION	The trip ID number must be greater than zero but less than 10,000.
RROD1	2	INCONSISTENT REACT- POWER TABLE	The independent variable for the reactivity-power table (IRPWSV) must be specified when IRPWTY = 3, 4, 7, 13, 14, or 17.
RROD1	2	INCONSISTENT REACT- POWER TRIP	The trip ID number that controls the evaluation of the reactivity-power table (IRPWTR) must be specified when IRPWTY = $3, 4, 7, 13, 14$, or 17 .
RROD1	2	INVALID REACT-POWER TYPE OPTION	When specifying the neutronic point- kinetics or reactor-power option, the allowable input range for IRPWTY is such that $1 \leq \text{IRPWTY} \leq 8 \text{ or } 11 \leq \text{IRPWTY} \leq 18$.
RROD1	2	NOT ENOUGH FUEL RODS	The total number of rods or slabs defined by NRODS cannot be less than the number of different aver- age (power) rolls or slabs defined by NCRX.

1

RROD2	2	BAD ENTRY IN FP235/ FP239 TABLE	When specifying the fractions of fission power associated with U ²³⁵ and U ²³⁹ fission, the allowable in- put range for FP235 and FP239 is such that $0.0 \le FP235 \le 1.0$ and $0.0 \le FP239 \le 1.0$. In addition, it is assumed that FP235 + Γ P239 + FP238 = 1.0.
RROD2	2	FTD MUST BE .GT. 0.00 BUT .LE. 1.00	When specifying the fraction of the- oretical fuel density, the allowable input range is such that $0.0 < FTD$ < 1.0.
RROD2	2	INCONSISTENT HEATED	The total length for the independent variable for the axial power profile must equal the length of the heat structure.
RROD2	2	INIT & TABLE REACT- POWER UNEQUAL	The initial value of power/reactivity must be the same as the interpolated table value.
RROD2	2	NOT ENOUGH TEMPO- RARY STORAGE TO LOAD FP239 ARRAY. DE- CREASE NHIST.	Insufficient temporary storage ex- ists to load the FP239 data. NHIST must be decreased.
RROD2	2	NOT ENOUGH TEMPO- RARY STORAGE TO LOAD PHIST ARRAY. DE- CREASE NHIST.	Insufficient temporary storage exists to load the PHIST data. NHIST must be decreased.
RROD2	2	ZPWZT(K) NOT MONO- TONIC	The axial locations along the heat structure at which axial-power shape relative power densitites are defined must increase monotonically.
RSTGEN	2	GEN. H.T. IDI .EQ. IDO	The same fluid volume was speci- fied for both sides of the same heat- transfer surface in the steam genera- tor.
RSTGEN	2	H.T. I.D. ERROR	The component number (ICMP or OCMP) for a heat-transfer surface in the steam generator is incorrect.
RSTGEN	1	ILLEGAL INDEX IN COM- PUTED GO TO STATE- MENT	The computed GO TO index does not have a valid value of 1, 2, or 3.
RSTGEN	. 2	INCONSISTENT VALUES	All nonzero values of ICFLG must the the same in a given component.
G-34			APPENDIX G

đ

4

G-34

RSTGEN	1	INT. JUNCTION ERROR	The number of secondary-side con- nections was found to be greater than NSJUN.
RSTGEN	2	NODES .LT. 1 NOT AL- LOWED	A STGEN (steam generator) must have at least one radial heat-transfer node in the tube wa!ls.
RSTGEN	2	JODES .NE. NDHT	The number of nodes in the steam- generator tubes and in the additional heat-transfer surfaces must be equal.
RSTGEN	1	NO. EXT. JUNLT. 2	The number of external junctions on the steam-generator secondary side is incorrect. The number must be two or more.
RSTGEN	2	NSCMP ERROR	The number of secondary internal components is incorrect; the limits are $1 \leq NSCMP \leq 10$.
RSTGEN	2	TYPE ERROR	The secondary component is not a PIPE or TEE.
RSTGEN	2	VLT EXCEEDS ITS LIMIT- SEE TROOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RSTGEN	2	WALL AREA, WALL RA- DIUS ERROR	Either the steam-generator tube primary-side inner and/or secondary- side outer wall surface area is neg- ative or the tube inner radius is not positive in value.
RSTGEN	2	WALL AREAS INCONSIS- TENT	The internal and external wall areas for generalized heat transfer are in- consistent with cylindrical geometry; thus, the energy will be calculated incorrectly in the wall-conduction calculation.
RTEE	1	ICBS1 & ICBS2 MUST BE <0	When modelling a separator compo- nent (SEPD), the control-block ID numbers that define carryover and carryunder must be newgative.
RTEE	2	IENTRN MUST BE 1 TO INVOKE OFFTAKE MODEL	When specifying the offtake model option, the allowable input values for IENTRN are 0 and 1.

0

RTEE	2	INCONSISTENT INIT & TABLE POWER1	The TEE primary-side initial values for the power-to-fluid table POWTB and for the power-to-fluid variable PWIN1 are not equal.
RTEE	2	INCONSISTENT INIT & TABLE POWER2	The TEE secondary-side initial val- ues for the power-to-fluid table POWTB and for the power-to-fluid variable PWIN2 are not equal.
RTEE	2	INCONSISTENT INIT & TABLE QPPPF1	The TEE primary-side initial values for the power-to-wall table QP3TB and for the power-to-wall variable QPIN1 are not equal.
RTEE	2	INCONSISTENT INIT & TABLE QPPPF2	The TEE secondary-side initial val- ues for the power-to-wall table QP3TB and for the power-to-wall variable QPIN2 are not equal.
RTEE	2	INCONSISTENT VALUES	All nonzero values of ICFLG must the the same in a given component.
RTEE	1	INVALID VALUE OF	When modelling a separator com- ponent (SEPD), the allowable input values for the separator-type option ISTAGE are -3 , -2 , 0, 1, 2, and 3.
RTEE	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RTURB	2	#STAGES.LT.1	A TURB (turbine) must have at least one stage.
RTURB	2	INCONSISTENT INIT AND TABLE GEN FOWER	The turbine power table's initial power and the initial operating power POWOP have different val-
RTURB	2	NCELLS.LT.3	The number of cells in the TURB component is incorrect this compo- nent must have at least three cells
RTURB	2	POWER TABLE PARAM. BAD	Direct power into the coolant ta- ble is defined, but its independent- variable ID number is zero
RTURB	2	STAGE DESIGN PRES- SURE RATIO .GT 1.0	The stage downstream design pres- sure specified in input (PRES2) must be greater than the stage upstream design pressure specified in input (PRES1).

RTURB	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	Instructions were given in the TR- COUT file to increase LENDIM in BLKDAT and to change the dimen- sion in GENVLT.
RVLVE	2	BAD FIRST VALVE TABLE	A second VALVE table is defined, but a first VALVE table is not de- fined.
RVLVE	2	BAD QPPPF TABLE SIG- NAL	The QPPP-factor table is defined, but its independent-variable ID is zero.
RVLVE	2	BAD OVERRIDING TRIP VALVE ADJUST RATE	The overriding trip's VALVE adjust- ment rate is negative.
RVLVE	2	BAD OVERRIDING TRIP VALVE RANGE	The overriding trip's minimum and maximum VALVE closure states do not lie between 0 and 1.
RVLVE	2	BAD OV TRIP VALVE	An overriding trip is defined, but its VALVE type IVTYOV is not 0 or 1.
RVLVE	2	BAD TRIP ID DEFINITION	The trip ID number is greater than the maximum allowed value of 9999.
RVLVE	2	BAD VALVE TABLE DE- FINE	The number of pair entries in the first VALVE table is inconsistent with the VALVE option IVTY value.
RVLVE	2	BAD VALVE TABLE MAX ADJUST RATE	The VALVE's maximum adjustment rate is negative.
RVLVE	2	BAD VALVE TABLE SIG- NAL	The signal-variable ID number defin- ing the VALVE table's independent variable is inconsistent with the VALVE option IVTY value.
RVLVE	2	BAD VALVE TABLE TRIP	A nonzero trip ID number is input when the VALVE type option indi- cates no trip control, or a zero trip ID number is input when the VALVE is to be trip controlled.
RVLVE	2	BAD VALVE TYPE OP- TION	The VALVE option parameter IVTY has an input value outside the 0 to 6 defined range.
RVLVE	2	FAVLVE & XPOS INVALID	The input values of FAVLVE and XPOS are both outside their 0 to 1 physical range

RVLVE	2	INCONSISTENT INIT & FIRST TABLE	The first VALVE table's initial value and the initial VALVE closure state (FAVLVE or XPOS) have different values.
RVLVE	2	INCONSISTENT INIT & SECOND TABLE	The second VALVE table's initial value and the initial VALVE closure state (FAVLVE or XPOS) have different values.
RVLVE	2	INCONSISTENT INIT & TABLE QP?PF	The QPPP-factor table's initial value and the initial QPPP factor QFPIN have different values
RVLVE	2	VLT EXCEEDS ITS LIMIT	In the TRCOUT file instructions are given to increase LENDIM in BLK- DAT and change the dimension in GENVLT.
RVSSL	2	CORE ENTIRELY BLOCKED	The core-region flow area in the axial direction is zero at a VESSEL level causing axial-flow blockage through the core.
RVSSL	1	I/0 ERROR	An error occurred in a read routine while looking for a repeat card.
RVSSL	2	ICONC & ISOLUT ARE INCONSISTENT	The input values for ICONC and ISOLUT are not consistent with each other.
RVSSL	2	ILLEGAL REPEAT LEVEL	An illegal level number was read from a REPEAT LEVEL card.
RVSSL	1	ILLEGAL VALUE FOR	The only allowed values for IVSSBF are 0, 2, 20, and 22.
RVSSL	2	INCONSISTENT CORE DEFINING DATA	Indicates either NASX $<$ IDCU or NRSX $<$ IDCR or IDCL \geq IDCU when a downcomer region is present (IDCU \neq 0, IDCL \neq 0, IDCR \neq 0).
RVSSL	2	INCONSISTENT CORE DIM PARAMETERS	The core-region model parameters ICRU, ICRL, ICRR, NODES, NCRX, and NCRZ are defined inconsistently.
RVSSL	2	INCONSISTENT LEVEL ELEVATIONS	Indicates input values for which $Z_{i+1} \leq Z_i$.
RVSSL	2	INCONSISTENT RING	Indicates input values for which $r_{i+1} \leq r_i$.
RVSSL	2	INCONSISTENT THETA ANGLES	Indicates input values for which $\theta_{i+1} \leq \theta_i$.

RVSSL	1	TO CONTINUE INPUT PROCESSING	Insufficient memory exists to load the VESSEL input data.
RVSSL	2	LAST THETA ANGLE IS INCORRECT	When specifying the last θ angle, the allowable input values for TH(NTSX) are 30, 45, 60, 90, 120, 180, or 360 degrees.
RVSSL	2	NEWRFD MUST = 1 TO MODEL SPACER GRIDS	In order to model spacer grids within the VESSEL core region, the new reflood model must also be selected.
RVSSL	2	NSGRID MUST BE .GE. 0	The number of spacer grids in the VESSEL core region cannot be nega- tive.
RVSSL	2	PAN MUST EQUAL 0 IF NOAIR = 1	If the NOAIR = 1 NAMELIST op- tion was selected, then all noncondensable gas partial pressures must be input as zeros.
RVSSL	2	PAN MUST NOT BE GREATER THAN PN	The noncondensable-gas partial pres- sure is greater than the total pres- sure in a cell of a VESSEL level.
RVSSL	2	PROBLEM TOO LARGE	The VESSEL dimensions are larger than the maximum allowed by the TRAC parameters NXRMX, NYTMX, and NZMX. These pa- rameters must be increased or the VESSEL size reduced.
RVSSL	1	UNEXPECTED END-OF- FILE REACHED WHILE READING VESSEL LEVEL DATA	An end-of-file was encountered while reading VESSEL level data.
RVSSL	2	VLT EXCEEDS ITS LIMIT- SEE TRCOUT	In the TRCOUT file, instructions are given to increase LENDIM in BLKDAT and change the dimension in GENVLT.
SCLMOM	2	INCONSISTENT BD FLW- AREA RATIOS	The ratio of the interface flow area to its adjacent internal mesh-cell for area at the VESSEL-component outer-wall boundary does not have its value defined the same as the ra- tio for the interface one mesh-cell distance outside the wall boundary. These values must be equal and pos- live when an internal boundary con- dition is defined.
	RVSSL RVSSL RVSSL RVSSL RVSSL RVSSL RVSSL	RVSSL1RVSSL2RVSSL2RVSSL2RVSSL2RVSSL1RVSSL2SCLMOM2	RVSSL1INSUFFICIENT MEMORY T'J CONTINUE INPUT PROCESSINGRVSSL2LAST THETA ANGLE IS INCORRECTRVSSL2NEWRFD MUST = 1 TO MODEL SPACER GRIDSRVSSL2NSGRID MUST BE .GE. 0RVSSL2PAN MUST EQUAL 0 IF NOAIR = 1RVSSL2PAN MUST NOT BE GREATER THAN PNRVSSL2PAN MUST NOT BE GREATER THAN PNRVSSL2PROBLEM TOO LARGERVSSL2PROBLEM TOO LARGERVSSL2VITEXCEEDS ITS LIMIT- SEE TRCOUTSCLMOM2INCONSISTENT BD FLW- ARE.N RATIOS

(h)

SCMLCM	2	SCM OVERFLOW	Insufficient SCM is available for reading in component array data.	
SETCMP	2	CONTAINMENT MODULE NOT IMPLEMENTED	A control-panel vector input record has specified a CTAIN (containment) component.	
SETCMP	2	INVALID COMPONENT TYPE – AAAA	The component type selected as part of the control-panel vector could not be found.	
SETCMP	2	PARAMETER XXXX IS INVALID FOR AAAA	The parameter selected as part of the control-panel vector is not valid.	
SETCMP	2	TURBINE MODULE NOT	This version of the interactive fa- cility does allow use of the TURB (turbine) component in control-panel vector input.	
SETCPV	1	SPECIFICATION ERRORS FORCE TERMINATION	An error has been discerned while control-panel vector input records were processed. A flag is set so TRAC will halt after all input-data records have been processed.	
SETLCM	1,2	A-ARRAY OVERFLOW (CALLED BY SUBPRO- GRAM AAAA)	A subroutine of TRAC has requested more memory than is available.	
SETLCM	1,2	CANNOT EXPAND MEM- ORY (CALLED BY SUB- PROGRAM AAAA)	A subroutine of TRAC has requested more memory than is available.	
SGEEV	1	JOB.NE. 0, AND N .GT. LDV	The user has requested eigenvector calculation in addition to the eigen- values. However, the leading dimen- sion of the array V, where eigenvec- tors are stored, is less than the order of the input matrix A.	
SCEEV	2	LDA. GT.LDV, ELEMENTS OF A OTHER THAN N BY N INPUT ELEMENTS HAVE BEEN CHANGED.	The leading dimension of array V, where eigenvectors are stored, should be equal the order of the input matrix A. If this is the case, the elements of A are rear- ranged.	
SGEEV	2	LDA. LT.LDV, ELEMENTS OF V OTHER THAN THE THE N BY N OUTPUT ELEMENTS HAVE BEEN CHANGED.	The leading dimension of array V, where eigenve fors are stored, should be equal to the order of the input matrix A. If this is not the case, the elements of A are rear- ranged.	

SGEEV	1	N.GT. LDA	The order of the input matrix A ex- ceeds the leading dimension of A.
SGEEV	1	N .LT. 1	The order of the input matrix A is less than 1.
SOUND	2	CANNOT CONVERGE FOR MAXIMUM VAPOR FLOW	The iterative solution, for determin- ing the choking point by iterating on the cell-edge pressure while maximiz- ing the mass flux, did not converge.
SOUND	2	CANNOT CONVERGE ON PAIR AT THE CELL EDGE	Cannot converge on the non-con- densable condensable gas partial pressure while the condition: at the cell edge are estimated from the cell- center values.
SOUND	2	CANNOT FIND POSITIVE FLOW PRESSURE	When the flow is maximized by iter- ation of the cell-edge pressure, no physically realistic pressure value gives positive flow. This should never happen except under some extreme nonequilibrium conditions.
SOUND	2	CANNOT FIND THE EQUILIBRIUM CONDI- TION	Calculating the thermodynamic equi- librium condition in the presence of a noncondensable requires an iter- ative type solution, which did not converge.
SOUND	2	CANNOT FIND THE MAX- IMUM FLOW POINT	When the flow is maximized by iter- ation of the cell-edge pressure, the decrease in pressure (down to phys- ically realistic values) always keeps increasing the flow. Thus, the chok- ing condition is never determined.
SOUND	2	CANNOT LOCATE SATU- RATION LINE	Saturation conditions could not be found corresponding to an isentropic expansion from the cell center to the choking plane.
SOUND	2	SOUND SPEED SOLU- TION DID NOT CON- VERGE	The iterative solution, for determin- ing the choking point by iterating on the cell-edge pressure while maximiz- ing the mass flux, did not converge.
SRCHCL	2	COMPONENT XXXX NOT	The component number XXXX spec- ified on a central panel vector input card is not in the component list (in- teractive only).

G-4,

SRCHMDT	2	CATEGORY AAAA NOT	The requested component type was not found in the NPA Master Dictio- nary.
SRTLP	1	SRTLP FAILURE	SRTLP failed because of errors in component input data related to junction numbers. See file TRCOUT for additional clues.
STEADY	1	FAVOL CHANGE TOO LARGE	The change in volume-averaged flow area across an interface was found to be too large without requiring a form loss at that interface.
STEADY	-2	STEADY-STATE SOLU- TION NOT CONVERGED	The problem did not reach a steady state within the specified time do- mains.
STGN3X	1	INSUFFICIENT SPACE FOR CYLHT	Insufficient SCM is available.
STINIT	2	INVALID COMPONENT	The requested component number was not in the component list.
STINIT	2	INVALID COMPONENT TYPE AAAA FOR BBBB	The requested component type was not found in the component type list (ITYTAB).
STINIT	2	UNABLE TO LOCATE VARIABLE AAAA IN MAS- TER DICTIONARY	A variable that was requested by the NPA interface could not be located in the Master Dictionary.
SVSET	1	TRIP ID NOT FOUND	The trip ID number assigned to a signal variable defining the trip- signal or set-status value could not be found in the list of trip ID num- bers.
SVSET1	1	ILLEGAL INDEX IN COM- PUTED GO TO	The computed GO TO index based on the signal-variable parameter ISVN does not have a valid value.
SVSET1	1	INVALID SIGVAR. PARAM. NUMBER	The signal-variable parameter ISVN does not have a valid value based on definable parameters for a one-
SVSET3	1	ILLEGAL INDEX IN COM- PUTED GO TO	The computed GO TO index based on the signal-variable parameter ISVN doe: not have a valid value
SVSET3	1	INVALID SIGVAR. PARAM. NUMBER	The signal-variable parameter ISVN does not have a valid value based on definable parameters for a three- dimensional vessel component.

SVSET?	1	TOO FEW LEVELS DI- MENSIONED FOR	A vessel component has more than 50 levels and arrays VOLLEV and DZLEV are dimensioned in subrou- tine SVSET3 for a maximum of 50.
SVSETH	1	ILLEGAL INDEX IN COM- PUTED GO TO	The computed GO TO index based on the signal-variable parameter ISVN does not have a valid value.
4	1	INVALID SIGVAR. PARAM. NUMBER	The signal-variatile number ISVN does not have a slid value based on definable partimeters for a heat- structure component.
575	1	NO POWER IN THIS HEAT STRUCTURE	The signal variable parameter reactor power (ISVN = 18) or reactor period (ISVN = 19) cannot be defined for a nonpowered (NOPWR = 1) heat- structure component.
(1	CNRL. BLOCK NOT FOUND	The control block specified as part of the separator model could not be found.
11	1	NEED .GE. 2 CONTROL BLOCKS	At least two control blocks are needed for the separator model.
TF3DS	1	NMS=10 IN PARSET1 IS	The number of source connections to a single three-dimensional vessel cell has exceeded 10. The parameter NMS must be increased.
THERMO	2	LIQUID TEMP LIMIT EX- CEEDED	The liquid temperature in some cell has fallen below 273.15 K or has risen above 713.94 K
TRERMO	2	PRESSURE LIMIT EX- CEEDED	The pressure in some cell has fallen below 1.0 Pa or risen above 45 × 10 ⁶ Pa
THERMO	2	VAPOR TEMP LIMIT EX- CEEDED	The vapor temperature in some cell has fallen below 273.15 K or risen above 3000 K.
ТІМСНК	2	TERMINATING DUE TO TIME UMIT	The CPU time limit was reached before the end of the problem.
TIMSTP	4	CANNOT REDUCE TIME STEP FURTHER	The time step was reduced to the minimum allowed, and the outer iter- ation failed to converge.
TRAC	2	THIS EXECUTABLE HAS MEMORY PRESET TO ZERO	Los Alamos recommends that mem- ory be preset to negative indefinite.

G 43

TRPSET	2	TOO MANY PENDING	There are too many delay time pending set-status changes for a trip.
TRPSET	1	TRIP-CONT-TRIP SIGNAL NOT FOUND	The trip-controlled trip signal ID number that defines the trip- controlled trip signal could not be found in the list of trip-controlled trip-signal ID numbers.
TRPSET	1	TRIP ID NO. NOT FOUND	The trip ID number used to define the trip-controlled trip signal could not be foun
TRPSET	1	TRIP SIGNAL NOT FOUND	A signal-varian. ID number that defines the trip signal could not be found in the list of signal-variable ID numbers.
VLVEX	2	TURBINE CANNOT MEET POWER DEMAND	The turbine has been overloaded so much that with the governing valve fully open, it still cannot meet the power demand. This situation could sometimes temporarily occur under highly transient conditions when the steam flow through the turbine has not caught up with the power demand.
VSSL1	1	VENT VALVE TABLE LOOKUP ERROR	An error war encountered while try- ing to interpulate in the vent valve table.
VSSL2	•	EXTRA ELEMENTS OUT- SIDE BANDWIDTH	The number of matrix rows having nonzero elements outside the vessel- matrix bandwidth exceeds LDIM, the maximum dimension for the order of the capacitance matrix

APPENDIX H

UPDATE/HISTORIAN DEFINABLE NAMES IN TRAC

Name	Description
ASIZE	Sets the A array (container array) to a fixed size.
CRAY	Coding is unique to CRAY computers.
CYB205	Coding is unique to Cyber 205 computer (not tested ir the released version).
EIGHTB	Coding is unique to a machine with right 8-bit bytes in a word.
FOURB	Coding is unique to a machine with four 8-bit bytes in a word.
HEX	Uses hexadecimal rather than octal.
IBM	Uses coding unique to IBM computers.
INEL	Uses coding to write graphics output in INEL format.
INTERACT	Interactive version (not supported).
L7600	Coding is unique to CDC 7600 LTSS operating system (not supported).
LANL	Coding uses local LANL routines (on CTSS) or is unique to LANL computing environment.
MEL	Coding needed for link to MELPROG to generate MELPROG/TRAC severe core damage code.
MVS	Coding for IBM MVS operating system.
NOLCM	Coding for current machines with contiguous memory rather than small core/large core split as on a CDC 7600.
NPA	Additional coding for LANL Nuclear Plant Analyzer (NPA) link.
OVLAY	Code is overlaid.
\$7600	Coding is unique to CDC 7600 Scope operating system (not supported).
SRPNPA	Special logic for SRP NPA link.
TENB	Coding is unique to a machine with ten 6-bit bytes in a word.
UNICOS	Coding needed for UNICOS operating system.
VAX	Coding for VAX (not supported).
VDM	Coding to use variable-dimension memory by expanding blank com- mon dynamically during execution.
VECTOR	Selects special vectorized local LANL routines (on CTSS).

APPENDIX H

(2-86) NECH 1100	SION 1. REPORT NUMBER (Assigned by NRCAdd Vol., 5.9 Rev., and Addendum Numbers, Fany.1
BIBLIOGRAPHIC DATA SHEET	NUREG/Ci5673 LA-12031-M
2. THE AND SUBTITLE	3 DATE REPORT PUBLISHED
TRAC-PF1/MOD2 Code Manual	монты I уеля July 1992
Programmer's Guide	4 FIN OR GRANT NUMBER
5 01THOR/51	A7016
L. A. Guffee,* S. B. Woodruff, R. G. Steinke, and J. W. Spore	Technical 7. PERIOD COVERED (Inclusive Dates)
PERFORMING ONGANIZATION - NAME AND ADDRESS (# NRC, provide Division, Office or Region, U.S. Nu neuros and making address.)	desr Regilatory Commission, and melling address; if contractor, prov
Los Alamos, National Laboratory Los Alamos, NM 87545	
Division of Systems Research Office of Miclear Regulatory Research U. S. Nuclear Regulatory Commission Washington, DC 10555	r Nero: Lanasion, Office or Region, U. S. Nuclear Regulatory Commission
a SUPPLEMENTARY NOTES	Pd SE albuquerque NM 9710
our ou por a privational international ou por auon, a roo An ran	K NO., SE, Albuquerque, NIN 0710
1. ABSTRACT (200 words or lesse)	K Ha., SE, Albuqueique, NM 6710
ABSTRACT (200 mode or see) The Transient Reactor Analysis Code (TRAC) was developed international of postulated accidents of light-water reactors. In provides this capability for pressurized water reactors and the facilities. The code features either a one- or a three-dimension vessel and its associated internals, a two-fluid nonequilibria noncondonsable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-floconsistent treatment of entire accident sequences, including conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational sequences warious machine configurations supported by TRAC.	loped to provide best-astimate The TRAC-PF1/MOD2 program or many thermal-hydraulic test sional treatment of the pressura um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and
ABSTRACT (200 words or kee) The Transient Reactor Analysis Code (TRAC) was developedictions of postulated accidents of light-water reactors, provides this capability for pressurized water reactors and the facilities. The code features either a one- or a three-dimension on condensable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-flo consistent treatment of entire accident sequences, including conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational seq various machine configurations supported by TRAC.	loped to provide best-astimate The TRAC-PF1/MOD2 program or many thermal-hydraulic test sional treatment of the pressura um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and
 ABSTRACT (200 works or leve) The Transient Reactor Analysis Code (TRAC) was developedictions of postulated accidents of light-water reactors, provides this capability for pressurized water reactors and facilities. The code features either a one- or a three-dimenvessel and its associated internals, a two-fluid nonequilibrit noncondensable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-flo consistent treatment of entire accident sequences, includin conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational sequences warious machine configurations supported by TRAC. REY WORDSIDESCRIPTORS (Larverde or phrased that wat accel researchers in localing the report) TRAC, reactor, hydrodynamics, modeling 	loped to provide best astimate The TRAC-PF1/MOD2 program or many thermal-hydraulic test sional treatment of the pressura um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and
ABSTRACT (200 words or keep) The Transient Reactor Analysis Code (TRAC) was developed into a predictions of postulated accidents of light-water reactors, provides this capability for pressurized water reactors and the facilities. The code features either a one- or a three-dimension on condensable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-flo consistent treatment of entire accident sequences, includin conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational sequences. REY WORDS/DESCRIPTORS (Lat words or phrases that all sector measures in locating the meont) TRAC, reactor, hydrodynamics, modeling	loped to provide best-astimate The TRAC-PF1/MOD2 program for many thermal-hydraulic test sional treatment of the pressura- um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and
1. ABSTRACT (200 work or kee) The Transient Reactor Analysis Code (TRAC) was devery predictions of postulated accidents of light-water reactors, provides this capability for pressurized water reactors and it facilities. The code features either a one- or a three-dimension on condensable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-flo consistent treatment of entire accident sequences, includin conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational sequences warious machine configurations supported by TRAC. 2. KEY WORDS/OE SCRIPTORS (Law work or phrase the scalar researches in beauting the record) TRAC, reactor, hydrodynamics, modeling	loped to provide best-astimate The TRAC-PF1/MOD2 program for many thermal-hydraulic test sional treatment of the pressura- um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and
The Transient Reactor Analysis Code (TRAC) was devery predictions of postulated accidents of light-water reactors, provides this capability for pressurized water reactors and tacilities. The code features either a one- or a three-dimension on condensable gas field and solute tracking, flow-regime treatment, optional reflood tracking capability for bottom-flo consistent treatment of entire accident sequences, includin conditions. This manual is the third volume of a four-volume set of d This guide was developed to assist the TRAC programmer TRAC code and data structure, the TRAC calculational sequences warious machine configurations supported by TRAC. REYWORDSIDE SCRIPTORS (Larved or phone the science measure in example measure)	Ioped to provide best-astimate The TRAC-PF1/MOD2 program or many thermal-hydraulic test sional treatment of the pressura- um hydrodynamics model with a -dependent constitutive equation od and falling-film quench fronts, a g the generation of consistent initia ocumentation on TRAC-PF1/MOD2 and contains information on the uence, memory management, and I A AVAILABENY STATEMENT Unlimited In SECURITY CLASSERCATION I IM Page Unclassified IN Recort Unclassified IS NUMBER OF PAGES