$$
\begin{aligned}
& \text { NUREG/CR-5673 } \\
& \text { LA-12031-M } \\
& \text { Vol. } 3
\end{aligned}
$$

TRAC-PF1/MOD2 Code Manual

Programmer's Guide

Prepared by

1. A. Gutfee, 5. B. Wondruff R. G. Steinke. I. W. Spore

Los Alamos National Laboratory

Prepared for
U.S. Nuclear Regulatory Com, sion

```
9208060249 920731
PDR NUREG 920731
    PDR
```


TRAC-PF1/MOD2 Code Manual

Programmer's Guide

Manuscripi Completed: May 1992
Date Published: July 1992

Prepared by
L. A. Guffee*, S. B. Woodruff, R G. Steinke, J. W. spore

Los Alamos National Laboratory
Los Alamos, NM 87545

Prepared for
Division of Systems Research
Oftice of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN A7016

[^0]
AVAILABILITY NOTICE

Availability of Reterence Materials Crted in NRC Publications

Most documente etted in NRC publications will be available from one of the following sources
1 The NDC Bubtia Domiment Room 2120 L Street NW Lower Level Waehington DC 20555
2. The superintendeni of Documents, U S. Government Printing Office, P. O, Box 37082 , Washington. DC 20013-7082
3. The National Technical Information Servioe, Springfieid. VA 22161

Although the listing that follows represente the majority of documents olted in NRC publications it is not intended to be exhaustive

Referenced doouments availabie for inspaction and copying for a fee from the NRC Public Document Room inciude NRC correspondence and internal NAC memoranda: NRC bulietins, circulars, information notices inspection and investigatk. I notices; licensee event reports; vendor reports and correspondence: Commission papers: and applicant and licensee documerts and correspondence

The following documents in the NUAEG series are avalable for purchase from the GPO Sales Program: formal NAC staft and contractor reports. NRC-sponsored conference proceedings, itternational agreement reports, grant publications, and NAC bookiets and brochures. Also availabie are regulatory guides. NAC regulations in the Code of Federal Regulations and Numlear Reguiatocy Commission issuances

Doournents avallable from the National Technical information Service include NUFEG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commis. sion. forerunner agency to the Nuclear Regulatory Cormmission

Documents availabie from public and special technical libraries inolude all open literature items, such as books. Iournal articies, and transaciions. Federal Reglgter notices. Federal and State legislation, and oongressional reports can usually be obtained from these libraries

Doouments such as theses, dissertations, foreign reports and translations, and non-NAC oonference proceedings are avapale for purchase from the organization sponsoning the publioation cited

Single copies of NRC diaft reports are availabie tree to the extent of supply, upon written request to the Office of Administration. Distribution and Mail Services Section. U.S. Nuclear Regulatory Commission. Washington, DC 20555

Coples of industry codes and standards used in a substantive manner in the NAC regulatory process are maintained at the NRC Library, 7920 Nortoik Avenue. Bethesda. Maryland. for use by the public. Codes and standards are usually copyrighted and may be purohased from the originating organization or. it they are American National Standards from the American National Standards Institute 1430 Groadway, New York. NY 10018

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Govemment. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty. expressed or implied. or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any intormation, apparatus. product or process disciosed in this report, or tepresents that it use by such third party would not infringe privately owned rights.

AUTHORS AND ACKNOWLEDGMENTS

Many people contributed to the TRAC-PF1/MOD2 code development and to this report Because it was a team effort, th re was considerable overlap in responsibilities and contributions. The participants are listed according to their primary activity. Those with the prime responsibility for each area are listed first

PRINCIPAL INVESTIGATORS

FLUID DYNAMICS

HEAT TRANSFER:

NEUTRONICS

CODE DEVELOPMENT AND PROGRAMMING:

CONTROL PROCEDURE:

GRAPHICS:

REPORT COMPILATION

EDITING

REPORT TYPING:

Jay W. Spore, Ju-Chuan Lin, Susan B. Woodruff, Ralph A. Nelson, and Robert (7. Steinke

Jay W. Spore, Ju-Chuan Lin, Susan B. Woodruff Robert G. Steinke, and Laura A. Guffee

Ralph A. Nelson, Kemal Pasamehmetoglu, Cetin Unal, and Norman Mi. Schnurr

Robert G. Steinke and Jay W. Spore

Susan B. Woodruff, Jay W. Spore, Ju-Chuan Lin, Robert G. Steinke, Laura A. Guffee, and Victor Martinez

Robert G. Steinke

Victor Martinez and Kelly M. Tapia

Laura A. Guffee, Robert G. Steinke, and Jay W Spore

Karyn R. Ames

Cindy G. Martinez, Vera B. Metzger Laura A. Guffee, and Gloria E. Mirabal

In addition to those listed on the previous page, we acknowledge all others who contributed to earlier versions of TRAC. In particular, the two-step numerics and network solver developed by John Mahaffy are a major part of the MOD2 code. Dennis R. Liles contributed heavily to the thermal-hydraulics modeling and to the overall direction of MOD1 code development Frank L. Addessio developed the steam-generator component, and Manjit S. Sahota developed the critical flow model. Thad D. Knight provided direction for improvements to TRAC based on assessment-calculation feedback and coordinated the development of the MOD1 Correlation and Models document Richard J. Pryor, Sandia National Laboratories, and James Sicilian, Flow Science, Inc, provided major contributions to the code architecture. We also acknowledge useful discussions and technical exchanges with Louis M. Shotkin and Novak Zuber, U.S Nuclear Regulatory Commission; Terrence F. Bott. Francis H. Harlow. David A. Mandell, and Burton Wendroff, Los Alamos National Laboratory; John E. Meyer and Peter Griffith, Massachusetts Institute of Technology; \$. George Bankuff, Northwestern University; Garrett Birkhoff, Harvard University; and Ronald P. Harper, Flow Science, Ine

CONTENTS

AUTHORS AND ACKNOWLENGMENTS III
ABSTRACT 1

1. INTRODUCTION 1
2. CODE ARCHITECTURE 2
2.1. Code Structure 2
2.2. Data St:ucture 2
2.2.1. One-Dimensional Data Structure. 4
2.2.1.1. Adding a One-Dimensional Database Variable 4
2.2.2. Three-Dimensional Data Structure 6
2.2.2.1. Mesh-Wise vs Cell-Wise Data Storage 7
2.2.2.2. Cell-Wise Implementation for MOD2 Three-Dimensional Data 7
2.2.2.2.1 Comdecks EQUIV and PARSET1 8
2.2.2.2.2 Loop Limits 9
2.2.2.2.3. Temporary Mesh-Wise Storage for One Variable in One Level 13
2.2.2.3. Classification of Variables 13
2.2.2.3.1. Relation of Position and Classification and Comdeck PARSET1 15
2.2.2.3.2. Special Restrictions on Ordering Elements of Array Variables 15
2.2.2.3.3. Miscellaneous Restrictions on the Positions of VESSEL. Array Variables. 16
2.2.2.4. Referencing Three-Dimensional Arrays for VESSEL Coding. 16
2.2.2.5. Boundary or Phantom Cells 17
2.2.2.6. Adding or Deleting a Three-Dimensional Database Array Variable. 18
3. TRAC CALCULATIONAL SEQUENCE 19
3.1. General Summary 19
3.2. Input Processing 21
3.3. Initialization 23
3.4. Prepass, Outer-Iteration, and Postpass Calculations 25
3.4.1 Prepass Calculation 25
3.4.2 Outer-Iteration Calculation 27
3.4.3. Postpass Calculations 27
3.5. Time-Step Advancement or Back-up 28
3.6. Output Processing 29
4. MEMORY MANAGEMENT 31
5. TRAC FOR VARIOUS MACHINE CONFIGURATIONS 32
5.1. CRAY/CTSS 33
5.2. IBM and IBM-Compatible 33
5.3. CRAY, UNICOS 33
5.4. CDC Cyber 205 34
5.5. CDC 7600 34
APPENDIXA TRAC SUBPROGRAMS A- 1
APPENDIX B TRAC SUBROUTINE CALLING SEQUENCE B. 1
APPENDIX C COMPONENT DATA TABLES C-1
APPENDIXD DESCRIPTION OF COMMON-BLOCK VARIABLES D. 1
APPENDIXE EXAMPLE UPDATE E-1
APPENDIXF GRAPHICS VARIABLES F. 1
APPENDIX G TRAC ERROR MESSAGES G-1
APPENDIXH UPDATE/HISTORIAN DEFINABLE NAMES IN TRAC H-1

TRAC-PF1/MOD2

VOLUME III. PROGRAMMER'S GUIDE

by

L. A. Guffee S. B. Woodruff. R. G. Steinke, and J. W. Spore

Abstract

The Transient Reactor Analysis Code (TRAC) was developed to provide advanced best-estimate predictions of postulated accidents in lightwater reactors. The TRAC-PF1/MOD2 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute track ing. flow-regime-r'ependent constitutive equation treatment, optional reflood tracking sapability for bottom-flood and falling-film quench fronts, and consistr at treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step numerical algorithm is used in both the one- and three-dimensional hydrodynamics and permits violation of the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

In addition to the components contained in previous TRAC versions, TRAC.PF1/MOD2 includes a heat-structure component that allows the user to accurately model complicated geometries. An improved reflood mndel based on mechanistic and defensible modeis has been added. The new code also contains improved constituative models and additions and refinements for several components.

This manual is the third volume of a four-volume set of documentation on TRAC-PF1/MOD2. This guide was developed to assist the TRAC programmer and contains, formation on the TRAC code and data structure, the TRAr calculationa sequence, memory management, and various machine config tions suppor id by TRAC

1. INTRODUCTION

This guide has been developed to assist the Transient Reactor Analysis Code (TRAC) programmer. Much of the information presented here is included as appendices. These appendices are self-contained and are meant to be used as references. Topics of discussion addressed in this manual include the TRAC code structure and data structures, the TRAC calculational sequence, memory management, and various machine configurations supported by TRAC.

2. CODE ARCHITECTURE

The description of the TRAC code architecture given here is divided into two areas of discussion: code structure and data structure. Because the data structure for the one-dimensional components differs from that of the three-dimensional VESSEL component, these structures are detailed separately in the discussion that follows

2.1. Code Structure

In an effort to strive for a code structure that minim. es the prouems of maintaining and extending the code, TRAC was developed in a modular fashion. This modularity manifests itself in two important ways. First, because TRAC analyzes reactor systsms that consist of specific component types, the code is written to utilize subroutines that handle spe ${ }^{-15}$ s component types. For example, data and calculations pertaining to a PIPE component are handied separately from VESSEL data and VESSEL calculations. The different TRAC components are described in greater detail in the TRAC.PF1/MCN2 User's Guide, which is the second volume in the MOD2 documentation. Second, the TRAC program is writteri to be functionally modular: that is, each TRAC subprogram performs a specific function. Some of the low-level subprograms are used by all components, thereby strengthen g this modularity. Appendix A is a complete list of TRAC subroutines and function routines and their descriptions. Appendix B lists for each subroutine all routines from which it is called and all routines that it calls

Functi nal modularity within TRAC is taken a step further by division into overl-ys. Figure 1 displays a calung-tree representation of the TRAC overlays. Table 1 gives a brief description of each overlay's function. The use of an overlay structure originally was mandated ay computer-size limitations, but this is no longer the case. The overlay structure is maintained using UPDATE/HISTORIAN *DEFINEs for the convenience of users with smaller memory machines and as a starting point for future efforts in the area of parallelization. Overlays are loaded at Los Alamos by declaring the entry routine for each overlay, then satisfying all subsequent subroutine references from a global binary library of T\&AC routines. Whereas the CRAY verstun of TRAC does not need to be overlaid, we recommend that the user keep the input and initialization overlays to minimize memory charges.

The overall sequence of calculations is directed by the main program TRAC. Overlay INPUT always is invoked at the start of each TRAC execution to read control and component input data. The component data are initial.zed by the overlay INIT. The steady-state calculation (if requested) is performed by subroutine STEADY. During the steady-state calculation, the reactor power is initially zero and is set on after the fluid flow rates have been established. This is to prevent high rod temperatures early in the steady-state calculation when the flow rates generally are small. The transient calculation is performed by subroutine TRANS. Overlays EDIT, GRAF, and DMPIT are called during the steady-state calculation by subroutine STEADY and during the transient calculation by subroutine TRANS calling subroutine PSTEPQ to generate output as required. Overlay CLEAN is called to close all output files at the end of the problem or when a fatal error occurs.

2.2. Data Structure

TRAC divides the data for each component into four blocks: the fixed-length table, the variable-length table, the pointer table, and the array data. The first three of these blocks are

TABLE 1

TRAC OVERLAYS

Qverlay	Gescription
CLEAN	jloses all output files.
DUMP	Performs restart dumps.
EDIT	Adds an edit at the current time to the file TRCOUT.
CRAF	Adds a graphics edit at the current time to the file TRCGRF.
ICMP	Initializes component data.
IGRF	Initializes graphics table.
INIT	Controls initialization of component data and graphics tables.
INFUT	Controls reading input and restart files and analyzes piping loops.
TRAC	Controls overall flow of calculation. (Also contains many service routines used throughout the code.)
OUTER	Controls one complete outer iteration for all components
OUT1D	Performs one outer iteration on the basic finite-difference flow equations for all one-dimensional components.
OUT3D	Performs one outer iteration for all VESSEL components.
POST	Performs postpass for all components.
PREP	Performs prepass for all components.
PRP1D	Performs the prepass calculations for one-dimensional components.
PRP3D	Performs prepass calculation for all three-dimensional VESSEL components.
RDIN1	Inputs and stores one-dimensional component data.
RDIN3	Inputs and stores VESSEL component data,
RDRES	Reads and stores data from a restart dump file.
TRIPS	Evaluates signal variables, control blocks, and trips.

stored in memory as copies of the COMMON blocks, FLTAB, VLTAB, and PTAB, respectively The structure of the COMMON area FLTAB is the same for all components. The variables in the VLTAB and PTAB COMMON areas differ from one component to another. Appendix C describes the fixed-length, variable-length, and pointer tables for each component.

The array data are stored in memory within the dynamic storage array or A array. For a one-dimensional component, the location of an individual variable array is determined by the value of its pointer in the pointer table. For a VESSEL component, however, the pointer methodology is not used. Instead, EQUIVALENCE statements are used to locate VESSEL array data in the A array. Dynamic storage of data arrays permits effective use of space for many different problems. Aspects of memory management are discussed further in Sec. 4

In addition to the data that refer to a particular component, TRAC uses many variables to describe the overall solution state of the calculation. These variables are grouped according is their use into several other COMMON areas. Appendix D documents these COMMON blrcks and lists their variables and corresponding definitions.

2.2.1. One-Dimensional Data Structure

The pointer tables for all one-dimensional components have a similar structure consisting of four main groups of pointers and one special group. The first main group of pointers is contained within the comdeck DUALPT and locates dual-time hydrodynamic and thermodynamic information. The second main group of pointers locates remaining single-time hydrodynamic and thermodynamic information and is contained in the comdeck HYDROPT. Any integer data are located using the third main group of pointers from the comdeck INTPT. A fourth main group of pointers is used to locate data for wall heat transfer in those components that support the wall heat-transfer calculation, and these pointers are contained in the comdeck HEATPT. Array data that is specific to a particular component type, if any exists, is located using the last special group of pointers in the pointer table. This pointer table information is summarized in Appendix C for each component type

2.2.1.1. Adding a One-Dimensional Database Variable

In order to add a new variable to all one-dimensional components, standard guidelines are followed. These guidelines are given below. A sample update, provided as Appendix E, adds a new variable to each of the four main groups discussed above using these guidelines.

1. Create new pointer names for the new variables and add them to the pointer tables of the appropriate comdecks.
a. If the new variable requires both old-time and new-time storage, then two new pointers must be added to the DUALPT comdeck. If the pointers become the first two pointers of the DUALPT comdeck due to alphabetic considerations, the EQUIVALENCE statement in DUALPT must be changed to reflect this.
b. If the new variable with a single-time value is associated with the hydrodynamic calculation, its new pointer is added to the HYDROPT comdeck.
c. If the new variable is an integer variable with a single-time value, its new pointer is added to the INTPT comdeck.
d. If the new variable with a single-time value is associated with the wall heattransfer calculation, its new pointer is added to the HEATPT comdeck
2. Initialize the naw pointers.
a. If new pointers were added to DUALPT, these new pointers are initialized in subroutine SIDPTR in the DUALPT pointer section.
If the new variable is one for which old-time and new-time values are the same at the start of the OUTER code block (that is, the new-time value is reset to the old-time value in the event of a back-up due to one-dimensional component water packing for instance, then the new old-time pointer should be initialized after the LALP pointer but before the LVV pointer. Similarly, the new newtime pointer should be initialized after the LALPN pointer but before the LVVN pointer in the same relative position as the new old-time pointer
If the new variable is one for which old-time and new-time values are not the same at the start of the OUTER code block (that is, the new-time value is not reset to the old-time value in the event of a back-up due to one-dimensional component water packing for instance), then the new old-time pointer should be initialized after the LBIT pointer but before the LVVTO pointer. Similarly, the new new-time pointer should be initialized after the LBITN pointer but before the LVVT pointer in the same relative position as the new old-time pointer
Adjust the value of the pointer initialized array directly after each new pointer you add to correctly reflect the lengths of its storage requirement. Increment the value of LENPTR in the DUALPT pointer section of SIDPTR only by the number of pointers added to the DUALPT comdeck
b. If a new pointer was added to HYDROPT, it is initialized in subroutine SIDPTR The new pointer should be added just before the LNXT pointer in the HYDROPT section of S1DPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the vatiable LENPTR by one in the HYDROPT pointer section of S1DPTR only.
c. If a new pointer was added to INTPT, it is initialized in subroutine SIDPTR The new pointer should be added just before the LNXT pointer in the INTPT section of SIDPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the variable LENPTR by one in the INTPT pointer section of SIDPTR only
d. If a new pointer was added to HEATPT, it is initialized in subroutine S1DPTR The new pointer should be added just before the LNXT pointer in the HEATPT section of SIDPTR. Adjust the value of the LNXT pointer to reflect the length of the array storage of the newly added pointer. Increment the value of the variable LENPTR by one in the HEATPT pointer section of SIUPTR only.
3. If the new variables are to be graphed, set up the graphics catalogs by adding calls to GRFPUT in subroutine IGCOMP for each variable to be graphed. At this time, it is not possible to graph an integer artay variable
4. If the new variables are to be written to the dump file, include a call to BFOUT in subroutine DCOMP for each variable to be dumped. If the new variable being dumped is a cell-edge quantity with a length of NCELLS +1, then increment LVEDGE by one If the new variable being dumped is a cell-center quantity with a length of NCELLS, then increment LVCNTR by one. If the new variable has dimensions other than NCELLSS or NCELLS +1 , increase LCOMP by the length of the new array variable.
5. To read in the new variables from the dump file for restarting, add calls to BFIN in subroutine RECOMP in the same order as the BFOUT calls were added to DCOMP (Note that RECOMP must be changed if DCOMP is changed.)
6. Add the new variables to the argument list of the subroutines in which they will be calculated. Aiso include DIMENSION statements. Perform the necessary calculations to determine the new variables within the subroutines.
7. Add the new variables to the argument list of all calling statements to the subroutines in which the new variables are calculated
8. A special note about adding pointers to HEATPT. The one-dimensional STGEN (steam-generator) component does not use the heat-transfer calculation pointers contained in HEATPT. Instead, the steam generator initializes its own special "generalized" heat-transfer calculation pointers. Therefore, when adding a pointer ts "HEATPT, the corresponding generalized pointer must be added to the one-dimensional steam-generator routines. This is done as follows
a. Create the new generalized heat-transfer calculation pointer name for the new generalized heat-transfer calculation variable being added to the steam-generator routines and add this new pointer name to the steam-generator pointer table STGENPT
b. Initialize the new generalized pointer in subroutines RSTGEN and RESTGN in the generalized heat-transfer calculation pointer section. Increment LENPTR by one
c. If the new generalized heat-transfer calculation variable is to be graphed, set up the graphics catalog by adding a call to GRFPUT in subroutine IGSTGN
d. If the new generalized heat-transfer calculation variable is to be writ'en to the dump file, include a call to BFOUT in subrcutine DST GEN. In addition, increase LEXTRA in subroutine ISTGEN by the length of the new variable array being dumped. Also add a call to BFIN in subroutine RESTGN in the same order as the call to BFOUT was added to DSTGEN

2.2.2. Three-Dimensional Data Structure

The data structure used for the VESSEL hydrodynanic data in MOD2 is cell-wise, in contrast to the mesh-wise data structure used for the MOD1 VESSEL implementation. In addition, mosi of the coding is defined directly in terms of three-dimensional arrays. This new data structure was chosen primarily to simplify code development and to improve code readability. Its implementation was designed to reduce the number of locations in the source code where changes have to be made when variables are inserted or deleted. Despite the quite
different appearance of the MOD2 VESSEL coding persons familiar with MOD1 should find that the computational flow has not been changed unnecessarily.

2.2.2.1. Mesh-Wise vs Cell-Wise Data Storage

There are two ways to store data detined on a computational mesh: mesh-wise and cellwise. In mesh-wise storage, all of the values for a given kind of mesh data or a given array (eg., all of the pressures), are stored contiguously in computer memory. In cell-wise storage, all of the values for the different kinds of data zssociated with a single mesh cell (e.g., pressure, temperature, volume, etc.), are stored contiguously in computer memory. Reference to consecutive elements of a given array using cell-wise storage will, of course, necessitate use of a stride equal to the number of different kinds of data stored for a cell

TRAC MOD1 uses a variant of mesh-wise storage for the VESSEL three-dimensional hydrodynamic data: all of the values for a given array for a given axial level are stored contiguously. This is why this data is sometimes called "level" data. The variant method was chosen to simplify the coding used to provide for having only a portion of the VESSEL data in the active computer memory at a given time. However, as computer memories have become larger and cheaper, it is now pc sible to have all of the VESSEL data in active memory at one time.

Rather than using mesh-wise storage as in MOD1, TRAC MOD2 uses cell-wise storage for the VESSEL three-dimensional data. This methodology was chosen since it has certain advantages over mesh-wise storage. These advantages include simplet code development and code maintenance through the avoidance of large numbers of pointers and long subroutine argument ists. However, cell-wise implementations have drawbacks as well. A discussion of the tradeoffs and the motivation for the change from MOD1 is given in Sec. 4.

2.2.2.2. Cell-Wise Implementation for MOD2 Thr e-Dimensional Data

MOD2 uses the equivalence method described in Sec. 4 for implementing the cell-wise data storage. In addition, all of the mesh arrays are three-dimensional. For example,

```
real alp(ni,nj,1), rop (ni,nj,1)
equivalence (a(199), alp(1,1,1)), (a(200), rov(1,1,1))
```

Note that when multidimensinnal arrays appear in an EQUIVALENCE statement, standard FORTRAN requires that the array dimensions of the multi-dimensional arrays not be variable. In the MOD2 implementation of the three-dimensional data, the first two dimensions of the VESSEL mesh arrays, i.e. NI and NJ, are defined in PARAMETER statements. This results in an input limit on the number of radial rings and azimuthal sectors. (There is no limit on the number of axial levels arising from this consideration.) As discussed in Sec. 4, hard-coded array dimensions have both code development and code debugging advantages over variable array dimensions; however, they also have disadvantages, including the possibility of having to change the source code in order to adapt to problem input with a larger dimension requirement

Although the MOD2 implementation of the VESSEL data may seem very similar to staticmemory allocation, the implementation is, in fact, flexible and dynamic in that it allows for an arbitrary number of axial levels in each three-dimensional VESSEL as well as for an arbitrary number of three-dimensional VESSEL components. However, some space may be wasted with a multi-VESSEL input model since the radial and azimuthal array dimensions must be the same for all of three-dimensional VESSEL components in a problem.

We note that most of the implementation difficulties experienced with either cell-wise or mesh-wise storage could be avoided by use of the widely available but non-standard POINTER construct which associates arrays with variable starting addresses. However, the approach taken in TRAC has been to use standard FORTRAN in order to ensure code portability.

2.2.2.2.1. Comdecks EQUIV and PARSET1

All of the three-dimensional array data for the MOD2 VESSEL component are declared in comdeck EQUIV; the associated PARAMETERs are in comdecks PARSET1 and PARSET2. There are two sections to the declaration in EQUIV, the array dimensions and the equivalencing to the dynamically allocated container A array
*cd equiv
dimension

1	hla (ni, nj, 1),	hva (ni, nj, 1),	wat (ni, r
2	hlatw (ni, nj, 1),	hvatw($n \mathrm{i}, \mathrm{nj}, 1$),	finan (ni, n
3	ruem ($\mathrm{ni}, \mathrm{nj}, 1$	$\operatorname{ram}(\mathrm{ni}, \mathrm{nj}, 1)$,	qrd (ni,n
	sig (ni,nj, 1	am	

equivalence

As stated above, the implementation of cell-wise storage with equivalencing results in dynamic memory allocation when the loop limits used in the references to the mesh data are adjusted dynamically. The coding for these loop limits is discussed in Sec. 2.2.2.2.2

All of the arrays in a given cell-wise storage scheme have to have the same dimension. This is accomplished by the use of the following PARAMETERs defined in the comdeck PARSE i 1.

NV

NXRMX

NYTMX

NXBCP

NYBCM

NXBCM The number of phantom or boundary cells next to radial ring or x-direction cell 1.
The number of different three-dimensional array variables.

The maximum number of radial rings or x-direction cells in the three-dimensional mesh.

The maximum number of azimuthal sectors or y direction cells in the three-dimenstonad mesh.

The number of phantom or boundary cells next to radial ring or x-direction cell NXRMX

The number of phantom or boundary cells next to azimuthal θ - or y-direction cell 1

The number of phantom or boundary cells next to azimuthal θ-or y-direction cell NYTMX.

Combinations of these PARAMETERs are then used to determine the array dimensions, i.e..:

```
NICN = NXRMX + NXBCM + NXBCP The total number of radial or
x-direction cells.
NI = NICN*NV The first dimension of the three-
dimensional arrays
NJ = NYTMX + NYBCM + NYBCP The total number of azimuthal or y-
direction cells and the second di-
mension of the three-dimensional ar-
rays.
```

The TRAC user should not change any of these PARAMETERs, except for NV when array variables are added and deleted, and NXRMX and NYTMX if the maximum arrays sizes are either inadequate or too wasteful of cumputer memory. Further discussion of the use of phantom or boundary cells may be found in Sec 2.2.2.5.

The second section of the EQUIV coma' 's, shown above, contains the EQUIVALENCE statements implementing the cell-wise storage ell-wise storage necessarily imposes an order on the variables in a cell, and certain database management coding not related to dynamic memory management relies on this order. Consequently, the TRAC user should neither change the order of the variables nor insert or delete variables into comdeck EQUIV without a thorough understanding of the structure of the database as described in Sec .2 .2 .2 .3 . With respect to the memory management, the only important factor is that each of the different array variables be equivalenced to a different location of the A array (container array) in order to create ce". wise data storage. Obviously, these locations should be consecutive in order to avoid wasting computer memory.

2.2.2.2.2. Loop Limits

All of the loop limit variable names have the same naming convention with the first letter, i.e., I, J, and K, indicating, respectively, the first (radial or x -direction), second (azimuthal or y-direction), and third (axial of z-direction) array dimensions. The letter C in a name denotes a limit suitable for 'soping over cells and the letter F denotes a limit suitable for looping over cell faces. The convention for cell-face variables in the MOD2 VESSEL is the same as for MOD1: the cell-face data at the "outer," "forward," or "upper" face of a cell has the same index as the data at the cell center. (Note that, as indicated below, cell faces at the VESSEL boundaries are only included in the cell-face loops when their velocities need to be calculated as a result of using the generalized boundary-condition option.)

The numeral 0 in a name denotes a lower limit and the letter X denotes an upper limit The suffix M denotes a lower limit that includes the phantom cell adjacent to the first physical cell and the suffix MM denotes a lower limit that includes all the low-numbered phantom cells. The suffix P denotes an upper limit that includes the phantom cell adjacent to the last physical cell, and the suffix ALL denotes an upper limit that includes all the high-numbered phantom cells

The variable names for the the radial or x-direction are:
ICOMM
ICOM

ICO \begin{tabular}{l}
Lower limit for loop over all radial or x-direction cells in

the computational mesh.

Lower limit for loop over radial or x-direction cells in the

physical mesh and the adjacent low-numbered phantom or

boundary radial or x-direction cell.

Lower limit for loop over all radial or x-direction cells in

the physical mesh.

ICX

Lower limit for loop over all radial or x-direction cell isces

at which velocities are calculated.

Upper limit for loop over all radial or x-direction cells in

the physical mesh.

ICXP

Upper limit for loop over all radial or x-direction cell faces

at which velocities are calculated.

Upper limit for loop over radial or x-direction cells in the

physical mesh including the high-numberec hantom or

boundary radial or x-direction cell.
\end{tabular}

Upper limit for loop over all radial or x-direction cells in
the computational mesh.

The variable names for the azimuthal or y-direction luop limits can be obtained by replacing the leading I with a J and those for the axial loops by replacing the leading I with a K.

Before describing the definition of the loop limits, we want to emphasize that there is no reason why the code developer should have to change any of the coding of the loop limits in either comdeck PARSET2 or in subroutine RVSSL. In fact, this is one of the main advantages of the MOD2 VESSEL data implementation: all of the maintenance of the memory management functionality can be accomplished by changing only three variables in corndeck PARSET1: NV. NXRMX, and NYTMX. The coding of the 'oop limits is described here merely for completeness.

Certain of the loop limits can, of course, be hard-coded with PARAMETER statements. These are defined as follows in PARSET2:

```
JCOP = NYBCM + 1
JCOMP = JCOP - 1
JCOMMP - JCOP - NYBCM
KCOP = N2BCM + 1
KCOMP = KCOP - 1
KCOMMP = KCOP - NZBCM
```

The suffix P in these names stands for "parameter." These variables are copied to the corresponding COMMON variables JCO, JCOM, JCOMM, KCO, KCOM, and KC2MM using the standard naming convention in subroutine RVSSL.

Additional radial or x-direction, azimuthal or y-direction, and axial lower loop limits as well as all of the upper loop limits are defined dynamically for each three-dimensional VESSEL component in subroutine RVSSL. This coding is reproduced below (in a restructured form) where NXR is the input number of physical radial rings or x-direction cells. NYT is the input number of physical azimuthal sectors or y-direction cells, $N Z Z$ is the input number of physical axial levels, IGEOM is zero for cylindrical geometry and one for Cartesian geometry, IGBCXR is nonzero for generalized radial or x-direction boundary conditions. IGBCYT is nonzero for generalized azimuthal or y-direction boundary conditions, al:d $I G B C Z$ is nonzero for generalized axial boundary corditions. (In the current version of MOD2, IGBCXR and IGBCYT are always zero and IGBCZ is only nonzero when the VESSEL outer boundary-condition input flag. IVSSBF, is nor-ero.)

For the second index representing the azimuthal or y-direction:

```
jcx = jco + nyt - i
jcxp = jcx + 1
jall = jcx + nyLcp
C Calculate NYTV, the number of azimuthal or y-direction
c cell faces where velocities must be calculated.
If (igeom, eq. 0) then
    jf0 = jc0
    if (nyt,gt. 2) then
                nytv = nyt
    else
            nyt: = 0
        endif
else
        if (igbcyt .eq. 0) then
            jf0 = jc0
            nytv = nyt - 1
        else
            jf0 = jc0m
            nyLv = nyt + 1
        whdif
    endif
    jfx=jf0 + nytv - 1
```

For the third index representing the axial direction

```
kcx = kcO + nz - 1
kcxp = kex + 1
kall=kcx + nzbcp
C Calculate NZZV, the number of axial cell faces
C where velocities must be calculated
if (igbcz eq. 0) then
    kf0}=kc
```

PROGRAMMER'S GUIDE

```
    nzzv=nz-1
else
    kf0=kc0m
    nzzv=nz + = 1
endif
kfx=kf0 + nz2v - 1
```

Since the first index, i.e., 1 , is used to determine the dynamic offset into the container A array, all of the loop limits for the first index have to be defined dynamically for each threedimensional VESSEL component. This is done in RVSSL where IFREE is the first free location in the A a ray

For the first index representing the radial or x-direction

```
icOmm = ifree
ic0 =ic0mm + n\timesbcm*nv
icOm = icO - nv
icx = ic0 + (nxr-1)*nv
icxp = icx + nv
ia11 = icx + nxbcp*nv
```

C Calculate NXRV, the number of radial or x-direction
C cell faces where velocities must be calculated.
if (igeom eq. 0) then
$i f 0=i c 0$
if (igbcxr eg. 2) then
$n \times r y=n \times r-1$
¢1se
nxrv $=n \times r$
endif
else
if (igboxr , eq. 0) then
if $0=1 c 0$
$\mathrm{nxry}=\mathrm{nxr}-1$
else
if $0=i c 0 \mathrm{~m}$
$\mathrm{nxrv}=\mathrm{nXr}+1$
endif
endif
if $\mathrm{x}=\mathrm{if0}+(\mathrm{nx}+\mathrm{v}-1) * \mathrm{nv}$

The inclusion of the variable NV in this coding for the radial or x-direction loop limits creates the cell-wise storage. Note that if there is more than one three-dimensional VESSEL component in a problem, these indices are calculated for each VESSEL component. These indices are transferred from the component storage into the VESSEL variable-length table when needed using the standard TRAC data-management protocol

2.2.2.2.3. Temporary Mesh-Wise Storage for One Variable in One Level

In order to maintain compatibility with the MOD1 input and output procedures, MOD2 has the capability of temporary mesh-wise storage for a single axial level for a single array variable. A temporary mesh-wise atray sufficient to hold one level of data for one artay is allocated with tie pointer LTEMPS in subroutine RVSSL. This temporary array is then used for storing the specified data in mesh-wise form. Subroutine LEVELR is a generic procedure for transferring data from this temporary array to the appropriate locations of a permanent cellwise array and subroutine LEVELI is a generic procedure for transferring data from a permanent cell-wise array to this temporary array.

As an example of the use of subroutine LEVELR, all of the mesh data input in subroutine RVSSL is read into the temporary array on a level-by-level and array-by-array basis. After each "read," as processed by the LOAD routine, the data is transferred from the temporary array to the indicated permanent cell-wise array via the RLEVEL routine which calls the LEVELR procedure. The LEVELR procedure is also used directly from routine REVSSL to transfer data when reading the restart dump file

The LEVELI procedure for sonverting from the cell-wise storage to temporary mesh-wise storage is used by three output procedures: DLEVEL to write a restart dump for one level and one array, GLEVEL to write a graphics dump for one level and one array, and WLEVEL to write to the TRCOUT file for one level and one array. The GLEVEL routine makes use of the position concept discussed in Sec . 2.2.2. 4

Routines LEVELR, LEVELI, RLEVEL, DLEVEL, GLEVEL, and WLEVEL are all generic routines and should not need to be modified uniess the TRAC user wishes to make a major change in implementation

2.2.2.3. Classification of Variables

There are two basic categories of variables in the VESSEL hydrodynamic database: singletime and dual-time variables. Both categories have subcategories leading to seven classes of variables:

1. Single-time variables
1.1 Single-time, cell-centered, single-time (but not old-old-time) variables that are either cell-centered, defined at the higher numbered cell faces, or defined at the lower rumbered radial or axial ceil faces.
1.2 Old-old-time variables which store values at the start of the previous time step in order to create an ad hoc "triple-time" capability.
1.3 Single-time cell-face variables defined at the backwards or lower numbered azimuthal cell face.
2. Dual-time variable pairs:
2.1 Old-time variables for which the new-time values are calculated prior to the OUTER hydrodynamic stage.
22 Old-time variables for which the new-time values are not calculated prior to the OUTER hydrodynamic stage.
2.3 New-time variables for which the values are calculated prior to the OUTER hydrodynamic stage.
2.4 New-time variables for which the values are not calculated prior to the OUTER hydrodynamic stage but may have been incorrectly calculated during OUTER prior to a back-up.
The class of a variable is determined according to how the variable needs to be updated as the calculation progresses. There is currently no provision for variables belonging to more than one class.

Single-time variables in Class 1.1 do not need to be automatically updated. This does nut necessarily mean that their values don't change with time. Single-time variables in Class 1.2 (currently only the void fraction) are updated in subroutines TIMUPD and BAKUP in a manner analogous to that for dual-time variables as described below. Single-time variables in Class 1.3 require special logic, implemented in subroutine SETBDT, to ensure that values defined for azimuthal phantom cells have the proper identification with the values for the actual cells

Dual-time variables are automatically updated, i.e the old-time variables take on the values of the new-time ones at the start of a time-step calculation. This coding is in subroutine TIMUPD for the VESSEL. (Note that, in fact, this is the only mechanism for defining old-time values.) In addition, the provision for separate classes of dual-time variables allows for the code to back up (repeat a calculation with a different time step or other parameter) starting either at the beginning of a time step or at the beginning of the OUTER hydrodynamic stage. Both backup procedures are in subroutine BAKUP. The differences in the two types of back-ups are discussed more thoroughly in Sec. 3.4

Although an in-depth discussion of the implementation of the generic procedures applied to the different classes of variables is outside the scope of this section, two aspects of the implementation affect the addition of variables: the current implementation uses the relative position of a variable in the database to determine its classification, and the relative positions of the variables are known to the code through six parameters which rely on the database having a certain structure. In other words, the code developer must insert a new variable in a position appropriate to its class and must ensure the maintenance of the assumed structure

The relative position in memory of a cell variable is referred to here either as its position or as its position in the database. This position is thus identical to the index into the container array occurring in the EQUIVALENCE statement. (It is obviously convenient from the standpoint of readability for the EQUIVALENCE statements in the source to be ordered by position; however, this is not necessary. In any case, the use of the word position here refers to the relative position in memory when the code is executed, not the position in the source code.)

Implementation procedures used for the VESSEL three-dimensional database rely on a particular structure. This leads to a number of restrictions which must be observed when the code is modified by inserting variables. The major restrictions are related to the classification of the variables and are discussed in the nex: section. Special restrictions on the elements of array variables are given in $\operatorname{Sec} \quad 2 \cdot 2.2 .3 .2$ and same miscellaneous restrictions are given in Sec .2 .2 .2 .3 .3.

2.2.2.3.1. Relation of Position and Classification and Comdeck PARSET1

The current implementation of the generic procedures described above relies on the fact that the various classes of the VESSEL database are in the following order according to the position of the variables in the class:

1) 11 and 12 (may be intermixed)
2) 2.1
3) 2.2
4) 2.3 (in one-to-one correspondence with 2.1)
5) 2.4 (in one-to-one correspondence with 2.2)
6) 1.3

Since the implementation makes implicit lse of these restrictions, it is essential that array variables which are added to the code conform to these restrictions. Current releases of MOD2 also ailow for Class 1.1 variables immediately before the Class 13 variabies. We to not recommend this procedure as it complicates code maintenance

These particular restrictions were chosen to simplify the implementation of the generic procedures, to allow these procedures to be efficient on vector processors, and to reduce the number of PARAMETER constants needed to describe the database. The PARAMETER constants characterizing the structure of the database are

LALO* Position of the "old-old" time variable ALPO (corresponding to the variable $k . L P$).
LALM. Position of the old-time variable ALP (corresponding to the variable ALPO).

LOLD Position of first old-time category 2.1 variable.
LOLD1 Position of fi.st old-time category 2.2 variable.
LNEW Position of first new-time category 2.3 variable
NV Position of last variable (equal to number of variables).
Depending on the class of the variable, one or more of these six PARAMETER constants will have to be updated when a variable is added. (Refer to Sec. 2.2.2.6 for further details.)

2.2.2.3.2. Special Restrictions on Ordering Elements of Array Variables

For a subset of the cell-face array variables, the coding relies on the three components of the cell-face arrays being contiguous in memory and being ordered with the θ - or y-direction element first, the axial element second, and the radial- or x-direction element third. For example.

[^1]```
 equivalence (a(28), fayt(1,1,1)), (a(29), faz(1,1,1)),
&
(a(30), faxr (1,1,1))
```

These restrictions also apply to the cell-face variables in comdeck EQUIVF, which are referenced in routine J3D, and to the cell-face signal variables referenced in routine SVSET3. Consequently, insertion of new variables must not change the relative order of the components for these cell-face array variables. We recommend, for readability as well as for prevention of future coding errors, that all cell-face array variables be stored so that the components are contiguous and ordered as above.

### 2.2.2.3.3. Miscellaneous Restrictions on the Positions of VESSEL. Array Variables

Coding in the signal-variable evaluating subroutine SVSET3 relies on variable HLA being the first array variable.

We are not aware of any other restrictions othe, than those listed here explicitly. However, we recommend that if new variables are added that they not be put as the first variable of their class. Code developers familiar with MOD2 have assumed that they can depend an those variables which are currently first in their class to rem $=$ in in that relative position.

### 2.2.2.4. Referencing Three-Dimensional A, for VESSEL Coding

All of the VESSEL hydrodynamic routines are coded in MOD2 with direct usage of threedimensional arrays for the mesh data. This improves readability, i.e. ALP $(1, J, K)$ rather than $A L D(I T+(I R-1) \times N T S X)$ (for the $K^{\text {th }}$ axial level) as in MOD1. In addition to improving readabrity and simplifying debugging, this implementation considerably reduces the possibility of coding errors. Naturally, with typical TRAC noding, this use of three-dimensional arrays does not provide long vector lengths for inner do-loops. MOD2 has been coded with the loop over axial levels as the inner loop since that dimension is generally the largest. Achievement of long vector lengths by looping over the entire mesh would require a change to indirect addressing in order te scode the mesh connectivity in a vectorizable manner.

Reference to neighboring cells in the VESSEL mesh is straightforward using three-dimensional arrays. From the standpoint of the cell at (i $!, K$ ), the adjacent cell in the inner radial or $x$-direction is (I-NV,J,K) and in the outer radial or $x$-direction is (I +NV,J,K). The necessity for the stride, NV, arises from the cell-wise data storage described in Sec 2.2.2.2. The adjacent cell in the lower azimuthal or $y$-direction is $(1, J-1, K)$ and in the higher azimuthal or $y$-direction is $(1, J+1, K)$. Finally, the next lower cell (level) in the axial direction is $(1, J, K-1)$ and the next higher cell (level) above is ( $1, J, K+1$ ).

It also is convenient to have an abstract method for referencing individual variables. Such reference is currently used in generating the graphics catalog and in implementing the signalvariable evaluation logic. For one-dimensional data, which still use a mesh-wise data structure, pointers are used for this purpose. For the three-dimersional data, we have chosen to use the position in the database. We emphasize that a position is not a pointer and has to be referenced in a different manner. In particular, if "LPOS" is the position of a particular variable, then the value of that variable in the cell $(1, J, K)$ will be $A(1+L . P O S-1, J, K)$ given that the value of I incorporates the offsets in the container or A array as described in Sec. 2.2.2.2.2

The positions of the VESSEL array variables are defined dynamically in subroutine PTRS, and the identifiers are stored in the "VESSEL level-data pointers" (note mislabeling) section
of the comdeck VSSLPT. First, before any hydrodynamic calculations are done, the values of all of the array variables for the first phantom cell are temporarily set to their position in the database using the following coding

$$
\begin{aligned}
& \text { do }: 10 n=1, \text { nv } \\
& 10 \text { a }(1 c 0 \operatorname{mn}+n-1)=\text { float }(n)
\end{aligned}
$$

Next, the identifiers for those variables needed in the graphics and signal-variable evaluation procedures are defined as in the following exainple.

$$
\begin{aligned}
& \text { lpn }=\text { ifix }(\mathrm{pn}(1 c 0 \mathrm{~mm}, 1,1)) \\
& \text { lalpn }=\text { ifix(alpn(icomm, 1, 1) })
\end{aligned}
$$

- 

.
etc.

At the end of PTRS, the values for the first phantom cell are reset to a nominal value
Unless the TRAC user is adding a new variable to the graphics catalog of to the signalvariable evaluation logic, it is not necessary to define an identifier for the variable in PTRS and to add the identifier to the comdeck VSSLPT. We recor mend that, in order to minimize changes to the code as well as to minimize the amount of unused code, that identifiers not be added unless they are to be used.

### 2.2.2.5 Boundary or Phantom Cells

The VESSEL mesh in MOD2 is constructed with two rows of boundary cells outside the mesh in each of the tree lower-numbered directions and with one row of boundary cells in each of the higher-numbered directions Thn extra row in the lower-numbered directions is necessary to accommodate the face-centered data. The number of boundary cells in each direction is set by PARAMETER constants as described in $\mathrm{Sec} .2 \cdot 2 \cdot 2.2 .1$. The use of boundary cells allows all references from cells within the physical mesh to neightoring cells ou ide the physical mesh to be valid.

When using a three-dimensional VEJCEL :ompone model a typical cylindrical reactor vessel with outer boundary walls, the data in the bottom and top axial boundary cells and the outer radial boundary cells do not affect the calculation. However, the inner radial boundary cells can be used to incorporate the effect of radial-momentum convection across the center of the vessel. (Such a model was implemented using a different mechanism in MOD1. This model, which is partially implemented in routine VRBD, is not currently activated in MOD2.) The azimuthal boundary cells are used to avoid th : special logic necessary to indicate that the first physical azimuthal sector is adjacent to the last physical azimuthal sector. This is accomplished by subroutine SETBDT, which copies the data from the cells in the first and last physical sectors to the appropriate phantorn cells.

The boundary-cell implementation makes it simple to include generalized boundary conditions at the bottom and top axial and outer radial boundaries of a cylindrical VESSEL and at all of the external boundaries of a three-dimensional Cartesian-geometry VESSEL. MOD2 contains the approoriate coding in all of the VESSEL hydrodynamic routines to allow for fixedpressure (BREAK) or fixed-velocity (FILL) boundary conditions independently at any of these
boundaries. However, this coding for the radial or $x$ and azimuthal or $y$ boundaries has not yet been tested. In the currently released version of MOD2, there is no input mechanism to activate this coding. There is an input option, IVSSBF, which only activates the generalized boundary conditions at the lower and upper axial faces. There is currently no coding to allow for the generalized boundary conditions to be time dependent. However, implementing such a feature should not require major changes to the current code.

In addition to providing for the new generalized boundary conditions, the use of phantom cells allows for improved implementation of he standard hydrodynamic algorithms. Without the use of phantorn cells, special program logic is required to calculate expressions including gradients and fluxes for cells at the edge of the physical mesh. Such logic would increase the probability of coding errors and inhibit vectorizacion on hardware such, as the CRAY computers.

For typical coarse-mesh VESSEL.s, a large percent; : of the cells are at the edges of the mesh. For example, a three-dimensional VESSEL component with four radial rings and four dzimuthal sectors on each level actually has only 4 of the 16 cells on a level which have neither a radial nor an azimuthal boundary. Since even straightforward vectorization generally reduces computation time by more than a factor of 5 , it is obviously desirable to design implementations which are vectorizable for all cells.

As stated previously, if phantom cells are not used, special logic would be necessary to carry out calculations for cells at the edge of the physical mesh. On the other hand, when phantom cells are used, additional procedures are required to define the values associated with the phantom cells. The amount of code that must be maintained is similar in either case; however, the phantom-cell methodology is more easily modulanized

The major disadvantage in using phantom cells is the potential for significantly increased computer-memory requirements for coarse-mesh VESSELS. For our previous example, a VESSEL with 4 radial rings, 4 azimuthal sectors, and 10 axial levels has only $4 \times 4 \times 10$ or 160 physical mesh cells. However, it will have $(4+3) \times(4+3) \times(10+3)$ or 637 computational mesh cells when including the boundary cells. Naturally, the percentage of boundary cells is smaller for more finely noded problems. The current VESSEL array data contains about 300 different variables; thus, this example would require roughly 200,000 words of computer memory for the array data. However, for most modern computer hardware, this is not a large amount of memory and the cost-benefit ratio of this memory increase when compared with the more efficient coding is extremely favorable

Since the lowest-numbered rows of phantom cells in each direction are only used in conjuction with the generalized boundary-condition option associated with a fixed pressure boundary condition, it should be possible to reduce the memory requirements by changing the PARAMETER constants defining the number of lower-numbered phantom cells from 2 to 1 . However, doing this has not been tested

### 2.2.2.6. Adding or Deleting a Three-Dimensional Database Array Variable

There are three steps to adding a variable to the VESSEL hudrodynamic (cell-wise) database; these steps are sum. rized below. Note that these step; are incomplete for the case of old-old-time array variabl :

1. Determine an appropriate position in the database for the new array variable or dualtime array variable pair according to the classification of the array variable and the structure of the database
2. Insert the necessary EQUIVALENCE and DIMENSION statements for the new array variable(s) into comdeck EQQUIV and update any EQUIVALENCE statements for preexisting variables which have their A-array positions changed by the insertion (Although this can lead to a large amount of retyping, the retyping can be easily automated.)
3. Ensure that the six PARAMETER constants, i.e., LALO, LALM, LOLD, LOLD1, LNEW, and NV, which characterize the structure of the vessel database, are correct.
Once the new VESSEL array variable has been successfully added to the VESSEL hydrodynamic database, one then needs to modify the necessary subroutines to calculate, dump/restart, graph, or output the new variable. The following four guidelines give step-by-step instructions on how this is accomplished
4. Perform the nece ary calculations to determine the value of the new array variable within the ap, "opriate subroutine.
5. If the new array variable is to be written to the dump file for restart purposes, include a call to DLEVEL in routine DVSSL. In addition, increment the variable LV by one in subroutine DVSSL. To read in the new array variable from the dump file when restarting, adel calls to BFIN and LEVELR in subroutine REVSSL in the same position that the call was added to subroutine DV 3 SL. (Note that REVSSL must be changed if DVSSL is changed)
6. If the new array variable is to be graphed, initialize a new graphics identifier in subroutine PTRS. In addition, include the new graphics identifier in comdeck VSSLPT Include a call to GRFPUT in subroutine IGVSSL for the new graphics identifier. If special provision has to be made to output the newv variable, then subroutines IGRAF and GRAF may need to be changed.
7. If the new array variable is to be written to the output file TRCOUT as printed output, add a call to WLEVEL in subroutine WVSSL for the new array variable to be printed

## 3. TRAC CALCULATIONAL SEQUENCE

The full TRAC calculational sequence involves several stages: input processing, initialization; prepass, outer-iteration, and postpass calculations; time-step advancement or back-up; and output processing. Each of these stages is discussed in greater detail from a programmer's point of view in the sections that follow. First, a summary of the overall calculational sequences for transient and steady-state calculations is given.

### 3.1. General Summary

Depending on the values of the input parameters STDYST and TRANSI (Main Data Card 4). TRAC may perform a steady-state calculation, a transient calculation, or both. The general
control sequences of each type of calculation are outlined below, and specific details of the calculational sequence are discussed in more detail in the subsections that follow

The transient calculation is directed by subroutine TRANS. The system state is advanced through time by a sequence of prepass, outer-itetation, and postpass calculations that TRANS requests by invoking subroutines PREP, HOUT, and POST, respectively. In th se calculations, one or more sweeps are made through all the components in the system To provide the output requested by the user, TRANS invokes the EDIT, DUMP, and GRAF rerlays by calling subroutine PSTEPQ. Subroutine TRANS is structured as shown in Fig. 2. The major control variables within the time-step loop are: NSTEP, the current time-step number; TIMET, the time since the transient began; DELT, the size of the current time step; and OITNO, the current outer-iteration number. The time-step loop begins with the selection of the time-step size, DELT, by subroutine TIMSTP. A r.-pass is performed for each component by overlay PREP to evaluate the stabilizer motion equation and phenomenological coefficients. At this point, if the current time-step number is zero, TRANS calls the EDIT overlay to print the system state and the GRAF overlay to generate a graphics edit at the beginning of the transient. Subroutine TRANS then calls subroutine HOUT, which performs one or more outer iterations to solve the bas c hydrodynamic equations. Each outer iteration is performed by overlay OUTER and corresponds to one iteration of a Newton-raethod solution procedure for the fully coupled difference equations of the flow network. The outer-iteration loop ends when the outer-iteration convergence criterion (EPSO on Main-Data Card 5) is met. This criterion is applied to the maximum fractional change in the pressures throughout the system during the last iteration

The outer-iteration loop alternatively may terminate when the number of outer iterations reaches a user-specified limit (OITMAX on Main-Data Card 6). In this case, TRAC restores the state of all components to that at the beginning of the time step, reduces the time-step size (with the constraint that DELT be greater than or equal to DTMIN), and continues the calculation with the new time-step size. This represents a back-up situation and is discussed in greater detail in Sec. 3.5

When the outer iteration converges, TRANS calls the POS 1 overlay io perform a postpass evaluation of the stabilizer mass and energy equations and the heat-transfer calculation. Then the time-step number is incremented and TIMET is increased by DELT. The calculation is complete when TIMET reaches the last TEND time specified on the time-step data

The transient calculation is controlled by a sequence of time domains specified by the user on the time-step data. During each of these time domains, the minimum and maximum sime-step sizes and the edit, dump, and graphics intervals are fixed. When the EDIT, DUMP, and GRAF overlays are invoked, they calculate the time when the next output of the associated type is to occur by incrementing the current time by the time interval. When TRANS later finds that TIMET has reached or exceeded the indicated time, the corresponding output overlay is invoked again. Whenever TIMET equals or $x^{-}$- ds s the TEND ending time for a time-step $^{\text {a }}$ data domain, the next time-step data domain $i=\ldots n$. The output indicators are set to the current time plus the new values of the appropris atervals.

Subroutine STEADY directs steady-state calculations using the structure detailed in Fig. 3. The calculation sequence of this subroutine is similar to that of the transient driver subroutine TRANS. The same sequence of evaluations used for transient calculations also is used for the steady-state calculation. The main difference is the addition of a steady-state convergence
tes in STEADY, Iogic to turn on the steady-state power level, and the aptional evaluation of constrained steady-state controllers. To provide output requested by the user, STEADY invokes the EDIT, DUMP, and GRAF overlays by calling subroutine PSTEPG

Subroytine STEADY is called by the main program whether of not a steady-state calculation has been requested. If no steady-state calculation is required, STEADY simply returns to the :i in program.

7 time-step control in STEADY is identical to that implement of in TRANS. This includes the selection of the time-step size, the output timing, and the back-up of a time step if the outer-iteration limit is exceeded. In STEADY the input variable SITMAX, from Main-Data Card 6, is used as a delimiter in place of OITMAX. The marimum fractional rates of change of seven parameters are calculated by subroutines TF1DS3 and FF3D. These rates and their locations in the system are transmitted to STEADY through the array variables FMAX and LOK in COMMON block SSCON Tests for steady-state convergence are performed every 5 time steps and before every large edit. The maximum fractional rates of change and their locations are written to the TRCMSG and TRCOUT files as well as the TTY $1 / 0$ channel. The minimum value of the flow veiocity, MINVEL, and its maximam fractional rate of change, FMXLVZ, in the hydro channels coupled to powered heat sttuctures determine when the steadystate power should be set on. Once MINVEL exceeds $0.5 \mathrm{~m} / \mathrm{s}$ and $F M X I V Z$ falls below 0.5 , the steady-state power is set to its input value, RPOWRI (specified on Card Number 19). for each powered heat structure. The generalized steady-state calculation is completed when all fractional rates of change are below the user-specified convergence criterion, EPSS (on Main-Data Card 5), or when STIME reaches the end of the last time domain specified in the steady-state calculation time ztep data.

Both steady-state and transient calculations may be performed in one computer tun. The end of the generalized steady-state time-step cards is signified by a single card containing a -1.0 in columns 4-14. The transient time-step input cards should follow immediately If the generalized steady-state calculation converges before reaching the end of the last time domain, the remaining steady-state time-step data are read in but not used so that the :ransient calculation proceeds correctly.

### 3.2. Input Processing

The processing of all TRAC input data (except tor the ime-step data) is performed by the overlay INPUT and its sub-overlays RDIN1, RDIN3, and i. ORES. These data are of two types: input data retrieved from the input file TR: IN and restart data from the dump-restart file TRCRST. In addition to obtaining these input data, these overlays also orga-ize the component data in memory, assign the array pointer vatiables for each component, analyze the problem loop structure, and allocate the initial A-array spas for part of the global data. The remainder of the space necessary within the $A$ artay for the globei variables is allocated by subroutine INIT in overlay INIT, ft the end of each of the overiays, INPUT and INIT, these fixed data segments are moved to kie end of the dynamic-memory area.

As the controllin. ubroutine within the INPUT overlay, subroutine INPUT reads the namelist, ma ata, ana CCFL-model input from the TRACIN file. Using main-data parameter information, the initial A-stray global variable space is allocated. The interactive control-panelvector input is read and procersed by a call to subroutine RCPVEC if the TRAC executable
was updated with the interactive label on. The signal-variable, control-block, and trip controlparameter data are read and processed by calling subroutine RCNTL. Subroutine RDCOMP reads and processes the one-dimensional component data and subroutine RDCOM3 performs a similar function for the VESSEL component data from the TRACIN file. Any control-parameter and component data not provided by the TRACIN file are retrieved from the TRCRST restartdata file by subroutine RDREST. Finally, subroutine INPUT utilizes subroutine SRTLP to establish loops and pointers for the network solver, subroutine ASIGN to define the component pointer array, and subroutine SETCPV to initialize the control-panei-vector pointers.

Subroutine RDCOMP invokes component input-processing subroutines to read and process each component type. These routines have names which typically begin with the letter $R$. For example, the PIPE component input-processing subroutine is called RPIPE. In addition to reading component data from the TRACIN file, these component input-processing routines must also initialize the fixed-length, variable-length, and pointer tables and define the JUN array Each component input-processing subroutine may utilize a call to subroutine RCOMP. which processes the input data common to most one-dimensional components.

Pointer variables common to most one-dimensional components are initialized with a call to subroutine S1DPTR, and any additional pointers special to a component type are initialized within that component's input-processing subroutine. An example of specialized poirter variables are the many steam-generator generalized heat-transfer pointers initialized in subroutine RSTGEN. When adding a new variable to a one-dimensional component, it is necessary to initialize the new pointer in S1DPTR or in a specific component input-processing routine in addition to performing several other steps. The step-by-step procedure involved is diszussed in Sec 2.2.1.1, and a sample update is included as Appendix E

The JUN array defined by each component input-processing rout-ne is a doubly subscripted array, JUN $(4,2 \times N J U N)$. The four values of the first index are defined in Table 2. The second index indicates the order in which the component junction was encountered during input processing

## TASLE 2

## FIRST INDEX OF THE COMPONENT.JUNCTION ARRAY, JUN

| Index | Description |
| :--- | :--- |
| 1 | Junction number. |
| 2 | Component number. |
| 3 | Component type. |
| 4 | Junction direction flag <br> positive flow is into the component at this <br> junction: |
| $1=$positive flow is out of the component at this <br> junction. |  |

Subroutire RDCOM3 invokes the VESSEL component input-processing routine RVSSL. In addition to reading VESSEL input parameters from the TRACIN file, this routine also initializes the fixed-length, variable-length, and pointer tables, reads VESSEL level data, and performs input testing.

Subroutine RDREST opens the restart-data file TRCRST and obtains data from the dump edit corresponding to the requested time-step number (as specified by variable DSTEP on Main Data Card 3 of file TRACIN), If the requested time-step number is negative. RDREST uses the last dump edit available. The dump data initialize the signal-variable, control-block, ttip, and component data that were not provided by the TRACIN file. Component data are read in from the TRCRST file by calls to component restart-processing subroutines. These subroutines, whose names typically begin with the letters RE, function in much the same way as the component input-processing subroutines which begin with the letter $R$. For example, the PIPE component restart-processing subroutine is called REPIPE. The restart data common to most one-dimensional components is processed from the dump using a call to subroutine RECOMP. Details on the structure of the dump-restart file are given in Sec .36

Subroutine SRTLP sorts through the one-dimensional components of the system and groups them by loops that are isolated from one another by VESSEL components of TEE internal junctions. The IORDER array is rearranged to reflect this grouping and to provide a convenient order w ithin each group for the network solution procedure. The $I^{\text {th }}$ element of the array IORDER is the number of the component that is processed after the ( $1-1$ ) component but before the $(1+1)$ component

Subroutine ASIGN defines the component pointer array. COMP I R, according to the order of the IORDER array. The $\mathrm{I}^{\text {th }}$ element of array COMPTR is the starting location in the $A$ array of the fixed-length table data for component IORDER(1)

If the input file TRACIN is in free format (rather than in TRAC format), TRAC creates the additional file TRCINP. The TRACIN data are written into file TRCINP in a TRAC-format form that can be read by the TRAC input routines. File TRCINP is used as the input file rather than file TRACIN

The user has the option of creating an echo file of the input data contained in file TRACIN by defining NAMELIST variable $\operatorname{INLAB}=3$. When this option is selected, file INL.AB is created during input processing and contains all the input data from file TRACIN along with variablename comments contained between asterisks. This provides a useful means of labeling an otherwise difficult-to-interpret TRACIN file. It also allows the user to verify the input data being supplied to TRAC.

### 3.3. Initialization

During the initialization stage performed within overlay INIT, subroutine ICOMP performs the initialization of arrays and variables for each component that are required by TRAC but are not read in directly from files TRACIN and TRCRST. Also during this overlay, subroutine IGRAF controls the initialization of the graphics catalog

The overall component-initialization subroutine, ICOMP. first defines the junction sequence array JSEQ and velocity sign indicator array VSI and then initializes the data for heat-structure, one-dimensional, and three-dimensional components. The array JSEQ contains
junction numbers in the order they are processed as determined by the component order-ofevaluation array IORDER. The $1^{\text {th }}$ element of the array VSI is the junction flow-reversal indicator for junction JSEQ(1). Using a call to subroutine SETNET, tho array IOU is initialized to contain network junction numbers for the junctions of ail components excluding BREAKs and FILLs Finally. VESSEL source connections are checked to ensure that all connections for a particular loop are in the same direction. This is necessary to ensure that the predictor and stabilizet velocities solved for using FEMOMX, FEMOMY, and FEMOMZ remain independent of one anether.

Subroutine CIHTST controls the initialization of all heat-structure components with calls to subroutines IRODL and IROD. Subroutine IRODL initializes artays that provide information on the location of hydrodynamic data, ano subroutine IROD initializes various power-related arrays that are not input

The one-dimensional component initialization routines have names which typically begin with the letter I. For example, the PIPE component initialization subroutine is called IPIPE After determining the junction connection and component sequencing, these routines call subroutine VOLFA to calculate volume-averaged cell flow areas and to perform several input tests on valid flow area configurations. Next, subroutine COMPI is called to initialize several variable arrays (eg. tilde velocities). Thermodynamic properties, transport properties, and stabilizet quantitie: are initialized with a call to subroutine IPROP. Next, a call to subroutine SETBD initiaikes the boundary-array data. Junction data consistency then is checked using a call to subroutine CHKBD. Finally, subroutine ELGR is called to compute FRICs and GRAVs from form losses and elevations if these particular input options are selected using the NAMELIST options IKFAC and IELV, respectively.

The boundary data are stored in the doubly-dimensioned atray $\mathrm{BD}(65, \mathrm{NJUN})$. These data indicate the current solution state of the adjacent component and are evaluated at one of three possible space points: the edge of the mesh cell at the junction, the midpoint of that mesh cell, or the other edge of that mesh eell. The first index signifies the element description as determined by a call to J1D for one-dimensional components, to BDPLEN for plenum components, and to J3D for three-dimensional components. The second index indicates the order in which the junction numbers are processed.

Similarly, subroutine CIVSSL controls the intialization of all VESSEL components by calling subroutine IVSSL. Subroutine IVSSL performs analogous initializations for the VESSEL component as does subroutine IPIPE for the PIPE component. Obviously, due to the differer ${ }^{5}$ in the one-dimensional and three-dimensional databases, it is not possible to use many of se same low-level subroutines for both component types

After component initialization by subroutine ICOMP is complete, subroutine INIT calls subroutine IGRAF. The graphics initialization subroutine, IGRAF zreates the TRCGRF file: writes the header, catalog, and geometric data to the file; and places the file information into a storage area. The catalog data determine what information is to be written to the TRCGRF sile during the course of a problem and are defined by calls to component graphics initialization subroutines. These routines, whose names typically start with the letters IG, specify the data to be editted for each componert. For example, the PIPE component graphics initialization subroutine is called IGPIPE. The cotalog data common to most one-dimensional components are handled by subroutine IGCOMP. A complete listing of the available graphics variables for
each component is summarized in Appendix F. In order to graph a new variable, the appropriate graphics catalog edit need only be added to subroutine IGCOMP if the variable is common to most one-dimensional components, to subroutine IGVSSL if the variable is a VESSEL variable, or to a specific graphics initi-lization routine if the variable is particular to a component type.

### 3.4. Prepass, Outer-Iteration, and Postpass Calculations

One complete time-step calculation consists of a prepass outer-iteration, and postpass stage. Each stage of the time-step calculation is detailed below

### 3.4.1. Prepass Calculation

The prepass calculation uses the modeled-system solution state at the completion of the previous time step to evaluate numerous quantities to be used during the outer-iteration calculation. The prepass begins by evaluaring signal variables and control block, and determining the set status of all trips. Each component begins the prepass by moving the values calculated during the last time step into the storage area for old-time values. Next, wall and interfacial friction coefficients are calculated, and an initial forward elimination on the stabilizer motion equations is performed. For components that require heat-transfer calculations, the prepass also evaluates material properties and heat-transfer coefficients (HTCs). A second pass through all one-dimensional components is required to do the hackward substitution on the stabilizer equations of motion. The prepass for heat-structure components can be more complex. Besides calculating material properties and HTCs for both average and additional rods, the prepass evaluates quench-front positions and fine-mesh properties if the reflood model has been activated.

The prepass calculation is controlled by overlay PREP, whose entry-point subroutine is of the same name. Subroutine TRIPS controls the evaluation of signal-variable, control-block. and trip data. This is in contrast to subroutine TRIP that interrogates the trip set status in preparation for specific consequences of trips. Then subroutine PREP performs the first pass of the PREP stage for all one-dimensional components by calling PREP1D with IBKS set to 1. All heat-structure components are processed by calling HTSTR1. If the SETS3D method has been selected for all VESSEL components (NAMELIST option NOSETS $=0$ or 2 and NSTAB $=1$ ), overlay PREP3D is called at this time to evaluate the predictor and stabilizer motion equations. The second pass through the PREP stage performs the backwardsubstitution for the one-dimensional stabilizer tilde velocities by again calling PREP1D, this time with IBKS set to 2. If the SETS3D method is not selected (NAMELIST option NOSETS $=1$ or NSTAB $=0$ ), the prepass is completed with a call to PREP30 to define all tilde velocities by their beginning-of-time-step velocities for the three-dimensional VESSEL components.

Subroutine TRIPS calls subroutines SVSET, CBSET, and TRPSET. Subroutine SVSET uses current values of system-state variables to define the signal variables. Subroutine CON. BLK, which is called by subroutine CBSET, evaluates control-block function operators. Subroutine TRPSET uses the current signal-variz'le and control-block values to determine the set status of trips.

The one-dimensional prepass driver PREPID calls one-dimensional component prepass routines to perform both steps of the prepass for each one-dimensional component type. The compenent driver routines have names which ty rically end with the numeral 1 (see Table 3), For example, the PIPE component prepass syibroutine is called PIPE1. On the first pass through

## TABLE 3

## COMPONENT-DRIVER SUBROUTINES

| Component <br> Type | Prepass | Outer | Postpass |
| :--- | :--- | :--- | :--- |
| ACCUM | ACCUM1 | ACCUM2 | ACCUM3 |
| BREAK | BREAK1 | BREAK2 | BREAK3 |
| FILL | FILL1 | FILL2 | FILL3 |
| PIPE | PIPE1 | PIPE2 | PIPE3 |
| PLENUM | PLEN1 | PLEN2 | PLEN3 |
| PRIZER | PRIZR1 | PRIZR2 | PRIZR3 |
| PUMP | PUMP1 | PUMP2 | PUMP3 |
| ROD or SLAR | HTSTR1 |  | HTSTR3 |
| STGEN | STGEN1 | STGEN2 | STGEN3 |
| TEE | TEE1 | TEE2 | TEE3 |
| TURB | TURB1 | TURB2 | TURB3 |
| VALVE | VLVE1 | VLVE2 | VLVE3 |
| VESSEL | VSSL1 | VSSL2 | VSSL3 |

the PREP stage, during which the stabilizer motion equations are set up, the one-dimeasional component subroutines utilize the common low-level routines SAVBD, PREPER, and SETBD to avoid redundant coding. On the second pass, during which the stabilizer motion equations are solved, the common low-level routine BKMOM is used. The flag index IBKS ( 1 or 2$)$ indicates the pass being performed.

Subroutine SAVBD retrieves BD-array buundary data from adjacent components, stores it in the appropriate array locations, and moves data for the last completed time step into the old-time arrays. Subroutine PREPER evaluates wall friction by calling FWALL, evaluates material properties by calling MPROP, evaluates HTCs by calling HTPIPE, and evaluates interfacial-shear coefficients and begins the solution of the stabilizer equations of motion by ca ling FEMOM. For a specific component, any or all of these steps may occur under the cintrol of the PREPER argument list. Subroutine SETBD uses the information in the component data arrays to reset the BD-array boundary data at both ends of the component. Subroutine BKMOM solves the stabilizer equations of motion for the stabilizer velocities for one-dimensional components.

Subroutine HTSTR1 calls subroutine FLTOM to transfer hydrodynamic data into the necessary heat-structure arrays; subroutine CORE1 to evaluate HTCs, fine-mesh properties, and quench-front positions; and subroutine FLTOM again to transfer the resulting heat-transfer information back into the hydrodynamic database. From subroutine CORE1, subroutine RFD8K is called to evaluate reactivity feedback, and subroutine RKIN is called to evaluate the pointreactor kinetics model.

Each VESSEL component is processed by subroutine VSSL1. A time update is performed by calling subroutine TIMUPD. Donor-cell weighting factors are initialized, vent valve calculations are performed, and momentum source terms are defined. Next, subroutine CIF3 is called
to evaluate the interfacial shear coefficients, and subroutine PREFWD is called to evaluate wall-shear coefficients. Subroutines FEMOMX, FEMOMY, and FEMOMZ are called to compute the vessel predictor and stabilizer velocities. Finally, subroutine J3D is used to update the BD-array boundary information.

### 3.4.2. Outer-Iteration Calculation

The hydrodynamic state of the modeled system is analyzed in TRAC by a sequence of Newton iterations that use full inversion of the linearized equations for all one-dimensional component loops and the VESSELs during each iteration. Throughout the sequence of iterations that constitute a time step (each called an outer iteration within TRAC), the properties evaluated during the prepass and the previous postpass remain fixed. These include wall (SLAB and ROD) temperatures, HTCs, wall and interfacial shear coefficients, stabilizer velocities, and quench-front positions. The remaining fluid properties can vary to obtain the hydrodynamicmodel solution.

Each call to overlay OUTER completes a single outer (Newton) iteration. Subroutine HOUT, which is the entry-po $n$, sutine of this overlay, contrn' se overall structure of an outer iteration, as presented in Fig. 4.

Both the forward-elimination and backward-substitution sweeps through the one-dimensional component lonps are performed by subroutine OUT1D and the associated outer-iteration routines. The calculations that these routines perform are controlled by the common variable IBKS, which is set by subroutine OUTER. Subroutine OUT3D solves the hydrodynamic equations for all VESSEL components ( 1 BKS $=0$ ) or updates boundary data ( IBKS = 1)

All one-dimensional components in a particular loop are handled by a single call to subroutine OUT1D. This routine loads the data blocks for a component into memory, then calls the appropriate component outer-iteration subroutine. Component outer-iteration subroutines have names that end with the numeral 2 (see Table 3). For example, the PIPE component outer-iteration subroutine is cailed P!PE2. Subroutine OUT3D works in a similar manner, except that all three-dimensional VESSEL components call subroutice VSSL2

The outer-iteration subroutines for one-dimensional components utilize subroutirie INNER to perform common functions. Subroutine INNER retrieves boundyy information from the BD boundary array, tests other boundary information for consistencv, calls subroutine TF1D to periorm the appropriate hydrodynamic calculation, and resets the BD boundary array by calling subroutine J1D. Subroutine TF1D calls subroutines TF1DS1, TF1DS, and TF1DS3 to solve the basic semi-implicit finite-difference equations.

Subroutine VSSL2 solves the basic semi-implicit finite-difference equations defined by the VESSEL-matrix equation (depending on the value of $\operatorname{IBKS}$ ) for a single VESSEL component while subroutine OUT3D toes the same for a multi-VES: EL component problem. Subroutines TF3DS1 and TF3DS are called to linearize "ye hydrodyramic equations. Subroutine STDIR sets up the VESSEL matrix equation for direct inversion. Ubroutine MATSOL is called to solve the linear system and subrcutine BACIT stores the new- Wme pressures that are calculated

### 3.4.3. Postpass Calcuiations

After the modeled-system hydro ynamic state has been evaluated by a sequence of outer iterations, TRAC performs a postpass to solve the stabilizer mass and energy equations and to
determine both mixture properties and wall temperatures. Overlay POST performs this postpass. The same overlay also implements the time-step back-up procedure, which is explained in detail in the next section

As the controlling subroutine for this overlay, subroutine POST first processes all onedimensional components by calling the appropriate one dimensional component postpass subroutin. (see Table 3). Subroutine POST3D is called to handle all three-dimensional VESSEL. components, and subroutine HTSTR3 is called to handle all heat-structure components

The one-dimensional component postpass routines have names that end with the numeral 3. For example, the PIPE component postpass subroutine is called PIPE3. The onedimensional component postpass subroutines use the low-level routines SAVBD, POSTER, and SETBD to retrieve BD-array boundary conditions; to evaluate the stabilizer equations, wall temperatures, mixture properties, and transport properties; and to reset the BD boundary array, respectively.

The VESSEL postpass routine, VSSL.3, is called by POST3D. Within subroutine VSSL 3, stabilizer quantities are evaluated by subroutine BKSTB3 or defined by subroutine MIX3D, depending on the status of the VESSEL SETS3D-method flag NSTAB. Subroutines FF3D. FPROP, and J3D are used io complete the hydrodynamic calculation, evaluate transport properties, and update BD-array boundary data, respectively

Subroutine HTSTR3 controls the postpass for the heat-structure components by calling subroutine CORE3. From within subroutine CORE3, subroutine FROD is called to evaluate temperature profiles and gap heat-transfer coefficients using subroutines RODHT and GAPHT, respectively

### 3.5. Time-Step Advancement or Back-up

Upon the successful completion of one time-step calculation (performed by the prepass, outer-iteration, and postpass stages), the modeled-system state is updated to reflect the newtime conditions. This is accomplished at the start of the next PREP stage, and is handled on a component by component basis within the "1" subroutines, i.e.. PIPE1. During this step. all dual-time variables are updated by copying the values of the new-time variables into the old-time variables. The prepass, outer-iteration, and postpass steps that follow then attempt to assign new values to the new-time variables, allowing the process to be repeated as time is advanced.

Calculation of a new time-step size takes place just prior to the PREP stage and is controlled by subroutine TIMSTP. Two types of algorithms, inhibitive and promotional, are implemented in subroutine NEWDLT to evaluate the next time-step size. The inhibitive algorithms limit the new time-step size to ensure stability and to reduce finite-difference error. The promotional algorithm increases the time-step size to improve computational efficiency. A new maximum time-step size is calculated based on each of the following a ditions. the oneand three-dimensional Courant limits; the VESSEL and total mass error limits; the iteration count; the maximum allowable fractional change in void fraction, temperature, and pressure, the diffusion number for heat transfer; and the maximum allowable fractional change in reactor power and valve area. The actual new time-step size selected is the minimum imposed by the above conditions and the maximum time-step size specified by the user in the time-step data Each of the conditional maximum time-step sizes are calculated in subroutine NEWDLT with
the exception of those based on reactor power level and on valve adjustment. The reactor power maximum time-step size is evaluated by subroutine RKIN, and the vilve adjustment maximum time-step size is evaluated by subroutine VIVEX with subroutine HOUT defining those maximum time-step sizes.

In the event that a time-step is not successfully completed, TRAC will back up and try to reevaluate the new-time modeled-system state. Back-ups may occur when either the outer iteration does not converge (necessitating a reduction in the current time-step size) or when a flag indicating an extraordinary condition is activated, thereby requiring the outer iteration to be reevaluated. It is important to understand that there are two types of back-up, one corresponding to each of these scenarios. When the outer itetation fails to converge during the OUTER overlay, the current time step size is reduced and the calculation backs up to the start of the PREP stage. This is necessary because any variable calculated during the prepass and dependent on the time-step size was computed for the original time-step size and not the newly-reduced time-step size In addition, all new-time variables are reset to reflect their beginning-of-time-step values. This enables TRAC to begin again from the PREP stage in a manner no different than for any other time-step calculation except for having reduced the time-step size during the back-up. If repeated back-ups are performed for the same time steps: the time-step size is halved for each of the first three back-ups, quartered for the fourth and fifth back-up, and tenth thereafter

The second type of back-up is inititated by a flag being set signalling an extraordinary condition such as a water pack. This indicates that the oliter iteration needs to be repeated to account for the extraordinary condition. TRAC resets any new-time variables, that have been potentially evaluated incorrectly by the current attempt through subroutine OUTER, with their old-time values and repeats the outer iteration anew. For this type of back-up the time-step size does not change, making it unnecessary to repeat the PREP-stage calculation

The difference between the two types of back-ups is that for a back-up to the start of the PREP stage, the time-step size is adjusted, all new-time variables are reset to their beginning-of-time-step values, and variables evaluated during the PREP stage are reevaluated using the newly adjusted time-step size. For a back-un to the start of the outer iteration, no change occurs in the time-step size and only new-time variables calculated during the outer iteration are resei to reflect their beginning-of-time-step values

### 3.6. Output Processing

The TRAC program normally produces five output files: TRCOUT, TRCMSG, TRCGRF, TRCDMP, and TRCINP. TRAC may also produce a labeled input-data file INL.AB when NAMELIST option INLAB = 3 is defined. The first of these files is in printer format and contains a user-oriented analysis of the calculation. During the input process an input data description is placed in this file. At selected times during the calculation, overlay EDIT is invoked to add to this file a description of the current modeled-system state. The TRCMSG file is in printer format and contains diagnostic messages concerning the progress of the calculation. The TRCuRF file is a binary file designed to allow analysis by graphics postprocessing programs like EXCON and TRAP, while the TRCDMP file is a binary file designed for problem restarts by TRAC. The TRCGRF file is created and the header, catalog, and geometric data
are written into it during the initialization phase as de cribed in Sec. 3.3. File TRCDMP is created immediately thereafter by overlay DUMP. File TRCINP is created only when the TRACIN input-data file is in free format as discussed in Sec .3 .2

As the main controlling routine of overlay EDIT, subroutine EDIT calls subroutine WCOMP to direct the addition of a time-step short and long edit to the TRCOUT file. The first edit written to the file TRCOUT occurs during the first time step after the PREP stage, but all subsequent edits are written after the POST stage. Subroutire WCOMP writes general overall data first, then invokes lower level routines to describe the state of each component. The component edit routines, which typically have names that begin with the letter $\mathrm{W}_{\text {, add }}$ the parameter data that are important for that component to the TRCOUT file in an appropriate format. For example, the PIPE component edit routine is called WPIPE, while the VESSEL component edit routine is called WVSSL. The one-dimensional component edit routines generally utilize a call to subroutine ECOMP to write parameter data common to most one-dimensional components and then write any additional data special to that particular component

After initialization by subroutine IGRAF, the time-edit data are added to the TRCGRF file by overlay GRAF. This overlay contains the single subroutine GRAF. The TRCGRF file is a structured binary file written with unformatted write statements and containing information for graphics processing. Data contained on the TRCGRF file are divided into four sections: general, catalog. geometric, and time-edit. These data appeat on the file in the above order The general data section of the file contains title cards for problem identification and size information needed to describe the problem and the remainder of the file. The catalog data section contains information that is used to describe the data stored in the time-edit data section. The geometric data section contains information relating to the cell structure of components. The time-edit data section is made up of time edit blocks of data. Individual arrays within each block are packed to save space A block is written by each graphics edit performed during the course of a problem. The number of time-edit blocks written on the file is determined by the graphics edit frequency specified by the time-step data. The last time-edit block is followed by a word "EOF" to signify the "end-of-file." Figures 5 through 8 show the structure of the overall graphics file, as well as the general data section, a caialog entry, and the time-edit data section.

The TRCDMP file is a structured binaty fie written with unformatted write statements It contains sufficient data to restart the calculation at the time of a dump edit. This file is created by a sequence of calls to overlay DUMP. As the main controlling routine of overlay DUMP, subroutine DMPIT writes the dump header data and then calls the component dump subroutines. These component dump subroutines have names which typically begin with the letter D. For example the PIPE component dump routine is called DPIPE, while the VESSEL component dump routine is called DVSSL. The one-dimensional component dump routines generallv utilize a call to subroutine DCOMP to dump data common to most one-dimensional components to the TRCDMP file and then dump any additional data special to that particular component using individual calls to subroutine BFOIJT. The VESSEL component dump routine DVSSL also utilizes calls to subroutine BFOUT to dump general VESSEL arrays but uses subroutine DLEVEL to dump tevel arrays.

Figures 9 through 11 iliustrate various aspects of the dump-file structure. Figure 9 shows the overall dump-file structure with a general data section at ihe beginning followed by a
series of time-edit blocks. A time-edit block is written at each dump time during a problem The number of time-edit blocks written on the file is determined by the dump-cdit frequency specified on the time-step data. The last block is followed by a "EOF" to signify the end-of-file

The structure of each time-edit block in the dump file is illustrated in Fig. 10. Data from each component is included in the component dump section shown at the bottom of the figure. Figure 11 shows a more detailed structure of the component dump section. The variable LCOMP is calculated in subroutine DCOMP for each one-dimensional component and is the total number of all variable values written to the dump file for each component. This is the sum of the number of the variable values dumped by subroutine DCOMP and its calling routine. The number of any additional variable values special to a particular component and dumped by the component dump routine is reflected by the variable LEXTRA. It is important to remember to increment either the variable LCOMP of LEXTRA accordingry ... i. n adding new variables to the dump file.

## 4. MEMORY MANAGEMENT

In order to understand the data storage in TRAC, it is necessary to consider the memorymanagement requirements for a large code. First, any code that uses a large amount of memory must allocate that memory flexibly and dyramically during execution. Static dimensioning i.e. dimensioning at compile time to accommodate the largest possible problem, is at best wasteful of memory and at worst infeasible. The alternative strategy of pre-processing the input to determine array sizes prior to compilation would be extreniw, cumbersome for a sode as complex as TRAC. Static-memory allocation schemes of all fypes als i have the disadvantage that there is no possibility of increasing or decreasing memory requirements during a calculation when the evaluation path changes or when temporary arrays are no longer required

Second, since standard FORTRAN does not support dynamic-memory allocation, it is necessary to accomplish dynamic-memory allocation by using variable offsets into a single container array. Obviously, any implementation based on this concept will have some degree of awkwardness. On some operating systems, the size of the container array can be changed dynamically. On others, it must be fixed in advance. Although the latter implementation is not, technically speaking, dynamic, it is flexible, and fixing the size of the containet atray makes a trivial difference in the coding. The bulk of the memory-management implementation in TRAC arises in the computation and management of the offset or pointer variables.

As an example of using a container array for dynamic-memory management, consider the container array, $A\left({ }^{*}\right)$, where the actual dimensioned size of the $A$ array is sufficient for the problem at hand. Now assume that we wish to store two arrays, $X(20)$ and $Y(20)$, somewhere in this container array. There are a number of ways of doing this. One option is to define offset pointers as in this example:

$$
\begin{aligned}
& \text { IFREE }=14 \\
& \text { NCELLS }=20 \\
& \text { LX }=I F R E E \\
& \text { LY }=I X+\text { NCELLS } \\
& \text { IEREE }=I Y+\text { NCELLS }
\end{aligned}
$$

These pointer variables are defined in a manner that establishes mesh-wise stciage in this example, the arroys $X$ and $Y$ occupy locations $A(14)$ through $A(33)$ and $A(34)$ through $A(53)$.
respectively. With the use of these pointer variables, $X(N)$ can be referenced as $A(L X+N-1)$ and $Y(N)$ as $A(L Y+N-1)$. The referencing can be made more readable by passing $A(L X)$ and $A(L Y)$ as actual arguments to a subroutine that uses $X$ and $Y$ as the names for the corresponding local arrays

Two of the drawbacks of the pointer methodology are the large amount of coding needed to define the pointer variables and the need to use subroutine arguments for readibility. A third drawback arises when using pointer variables in the context of multi-dimensioned atray variables: the dimensions must be treated as variable. This complicates the coding and makes dynamic debugging more difficult. Another option for storing into a container array is to use EQUIVALENCE statements. This has the advantage that the variables cal; appear in COMMON. Using our previous example, we could achieve the same data storage and data structure by writing:

```
PARAMETER (LX = 14, LY = 34)
EQUIVALENCE (A (IX),X(1)), (A(LY), Y(1))
```

However, equivalencing which creates mesh-wise storage, as in this example, cannot be used for dynamic-memory allocation because knowledge of the atray sizes as well as theit actual memory locations is built into the EQUIVALENCE statement. The answer to using equivalencing for dynamic-memory allocation is to equivalence the arrays according to the cell-wise storage scheme, i.e.

$$
\text { EQUIVALENCE }(A(1), X(1)),(A(2), Y(1))
$$

The reason that establishment of a cell-wise storage scheme using EQUIVALENCE statements is useful for dynamic memory allocation is that the EQUIVALENCE statements can be treated as determining the relative order of the variables, rather than their actual locations in memory. The location in memory, or offset into the container array, is then defined dynamically in terms of loop limits. Using loop limits $N B=14$ and $N E=52$ with a stride of $N V=2$ in referencing arrays $X$ and $Y$ in the last example would establish a mesh-wise storage occupying the same memory locations in the $A$ array as in the two previous examples but with $X$ and $Y$ elements interspersed.

One of the drawbacks to a cell-wise scheme is the necessity for including the stride in the coding. Another drawback that can arise on certain hardware is inefficiency in referencing vectors with non-unit stride. Finally, this methodology can be cumbersome when combined with the use of temporary arrays which have mesh-wise storage. Nonetheless, our experience with this methodology has been positive in terms of eliminating coding errors resulting from maintenance of pointers and long subroutine argument lists.

## 5. TRAC FOR VARIOUS MACHINE CONFIGURATIONS

TRAC.PF1/MOD2 for various computer systems is supported by use of UPDATE/HISTO. RIAN conditional directives (*DEFINEs) in the code's program library. The desired configuration is selected with *DEFINEs when the compiler-ready source deck is created. Appendix $G$ provides a summary of all the possible UPDATE/HISTORIAN *DEFINEs used by TRAC. Our recommendations for specific systems are given below.

### 5.1. CRAY/CTSS

TRAC is run at Los Alamos on CRAY 1 and CRAY X-MP computers using the Cray Timesharing System (CTSS). We create compiler-ready FORTRAN source decks using the following $\quad$ PDATE/HISTORIAN *DEFINEs:

CRAY,
EIGHTB,
LANL.
NOLCM,
VDM.
VECTOR.
This CRAY/CTSS implementation uses two system-subroutine calls (to subroutines GETUFL and MEMADJ) for run-time memory expansion, as the input data is read. CRAY sites that do not run CTSS can create a static-memory version (one that has a large but fixed size for the A/ALCM container array) by using the following UPDATE/HISTORIAN *DEFINEs

> CRAY,
> EIGHTB,
> ASIZE,
> NOLCM,
> VDM,
> VECTOR.

### 5.2. IBM and IBM-Compatible

TRAC will not run in single precision on computers with a 32 -bit word length. There is at present no double-precision implementation in the MOD2 program library. External users with 32 -bit word lengths will have to use the following:

> ASIZE. EIGHTB, HEX, IBM,
> NOLCM,
> VDM.
> VECTOR.

### 5.3. CRAY/UNICOS

The recommended UPDATE/HISTORIAN *DEFINEs to use when implementing TRAC on a CRAY machine under the UNICOS operating system are the following

ASIZE,
CRAY,
EIGHTB.
NOLCM.
UNICOS.
VDM.

### 5.4. CDC Cyber 205

The recommended UPDATE/HISTORIAN *DEFINEs to use when implementing TRAC on a CDC Cyber 205 computer are the following

ASIZE,
CYB205,
EIGHTB,
HEX,
NOLCM.
VDM,
VECTOR

### 5.5. CDC 7600

An initial effori was made to support the Control Data Corporation's CDC 7600 data structure in MOD2. Most of this work involved data transfers between the 76.00's SCM and LCM. It soon became apparent, however, that the 7600's small memory severely restricts effective MOD2 usage. Also, the three-dimensional VESSEL data structure is very limited on a CDC 7600. Therefore, Los Alamos has stopped support for this particular machine configuration.


Fig. 1
TRAC overlay structure


Fig. 2
Transient calculation flow diagram


Fig. 3
Steady-state calculation fiow diagram


Fig 4
Outer calculation flow diagram

| General <br> Information <br> Data |
| :--- |
| Catalog <br> Data |
| Geometry <br> Data |
| lime-Edit <br> Data |
| Time-Edit |
| Data |
| Time-Edit |
| Data |
| EOF |
| EOF |
| EOF |

## Problem description and size information.

## Catalog entries describing the geometry and the time-edit variables.

## Geometry data grouped by component.

## TRA.C data corresponding to the

 first graphics edit.TRAC data corresponding to the second graphics edit.

Fig. 5
Structure of the TRCGRF graphics file

| NWTX |
| :--- |
| NUMTCR |
| TITLE (1) |
| $\vdots$ |
| TITLE ( NUMCTR) |
| NCOMP |
| COMP(1) |
| NCTX |
| COMP (NCOMF) |



Number of fitie pards. Each card can have a maximum of CD charactors (2GA4) with 20 storage elements.


Total number of components. Current version uses 0 (zero) io rertizin compatable with older code versions.


The total number of catalog entries. Every time a call to GRFPUT is made in TRAC, a catalog entry is created for that BRFPUT variable call.


```
ICOMP = TRAC assigned component number.
NUM = User assignad componem number.
ITYPE = Variable data type. For definitions of data types, see TRAC subroutine GRFPUT
NWRD \(=\) The number of values written to the grephics file for the variable.
 ILRN = The axial level or the rod number of the variable.
 KPT = The relative pointer to the starting location in the TIME-EDIT or GEOMETRY Block
 for the variable.
 NSKIP = Flag for the data skip frequency that is used by TRAP.
 IPOS \(=\) The value of the location of the variable relative to the start of the array containing
 the variable
```

Fig. 7 Structure of the "Catalog Data" for the TRCGRF graphics file


## DATA WRITTEN TO THE GEOMETRY BLOCK

If (ITYPE.GT. 10) - The data is written to the Geometry Block.
If (ITYPE.GT. 10. AND.ITYPE.LT. 20) - The data is type real and it is packed.
i! (ITYPE. GT. 20) - The data is not packed and it can be type real, integer, or character
If (ITYPE EQ. 31 . AND Variable Name. EQ. 4ype') - The data is type charaster
If (ITYPE EQ 33 AND. Varicu'e Name EQ.'stype') - The data is type charac'or at ; ; : dimensioned NWRD.
If (ITYPE.EQ.33.AND. Variable Name. NE 'stype') - The data is type integer.
If (ITYPE GT. 20.AND. ITYPE. LT. 26) - The data is type integer and the data is dimensioned NWRD.

For all othe* >ases the data is type real and the data is dimensioned NWRD. The data is also packed and writter, to the graphics file as (NWRD+7)/4 packed words.
NOTE: The variables ITYPE NWRD and KPT are wittan to the catalog section of the graphics file. Please refer io subroutine PACKIT for packing information.

Fig. 8
Structure of the "Geometry Data" for the TRCGRF graphics file


Fig 9.
Structure of the "Time-Edit Data" 'or the TRCGRF graphics file


| ETIME |
| :---: |
| NSTEP |
| DELT |
| DELPMX |
| DELXMX |
| OITNO |
| NSTEPS |
| CPUTOT |
| VMAXT |
| VMAXO |
| VMNEW |
| VMOLD |
| VMCON |
| DAMX |
| DAL |
| DAU |
| OAL |
| OAU |
| VARERM |
| 1SOUUT |
| IELV |
| IKFAC |
| NOAIR |
| 1GAS |
| NFRC1 |
| NFRC3 |
| NDIA1 |
| ITHD |
| DTEND |
| HDUMP |
| HEDIT |
| HGRAF |
| HSEDIT |
| NDID |
| NSTAB |
| NEWRFD |
| VMAXT3 |
| VMAXT30 |
| Continued on the next pape |

```
 Wunert problem time
 Time-step ruimber of the present calculation
```



```
 Maxirum tme-siop size for a 10% change in neulronic power
FWy.y. Maximum time-slep size for the maximum value adjustmem
 Ouler-teration rumber.
 Time-siep number acoummulated over all previous cakculations
 Total CPU (Central processing units) time
#W/Reuprocal time-glep size for the Courant imit in 10 components at I (n+1)
 Reciprocal time-step size for the Courart Imit in 1D componemis at I (n)
|% VESSEL water mass (kquid and vapor) at I (}n+1)\mathrm{) (%)
 VESSEL. water mass (*quid and vapor) sil I (n).
```



```
 Error caused by relative change in void traction.
```



```
 widximum decrease in void fraction.
```



```
 Maximum decrease in void fraction atier an increase.
```



```
 Flag for the optional solute field.
#% Flag for GRAV or ELEV input (-x)
 Flag for FRIC or K-factor input.
```



```
 Flag tor the cype of noncondensabie gas
```



```
 Flag for l.puting fonward and reverse loss coetlicients for VESSEL components
```



```
 Fiag for inpuling heat-franster diameters for heat-structure components
```



```
 Temoorary variable lor the time-step data-set next dump time TDUMP.
```



```
 Temporary variable for the time-step data-set next graphics-edit time TGRAF
```



```
 Flag for when trip-controlled time-step data overnides regular time-step data.
```



```
 Fiag that activates the retlood model for heat-structure components coupled to VESSELs
```



```
 Reciprocal time-step size for the Courant lmit in VESSEL. components at t(n)
```

    Fig. 11
    Structure of the "Time-Edit Data" for the TRCDMP dump file


Fig. 11 (cont.)
Structure of the "Time-Edit Data" for the TRCDMP dump file

## APPENDIX A

## TRAC SUBPROGRAMS

| Name | Function |
| :---: | :---: |
| ACCM1 ${ }^{\text {P }}$ | Evaluates ACCUM (accumulator) water level. |
| ACCMBD | Sets boundary array for the ACCUM (accumulator) component. |
| ACCUM1 | Controls ACCUM (accumulator) prepass. |
| ACCUM2 | Conirols ACCUM (accumulator) outer iteration. |
| ACCUM3 | Contrals ACCUM (accumulator) postpass. |
| ALLBLK | Tests for all blanks in specified substring of string |
| ASIGN | Assigns the component pointers according to the internal order (IORDER) array. |
| ASTPLN | Calculates mass and energy fluxes at the PLENUM junctions during postpass. |
| ATERM | Sends message to the nuclear plant analyzer (NPA) if TRAC terminates prematurely. |
| AUXPLN | Calculates mass and energy fluxes at the PLENUM junctions during the outer iteration. |
| BACIT | Initiates backward substitution after direct vessel matrix inversion. |
| BAKUP | Overwrites end-of-time-step variables with start-of-time-step values for one vessel level. |
| BALANC | Support subroutine for SGEEV |
| BALBAK | Support subroutine for SGEEV. |
| BANSOL | Solves linear matrix equation. |
| BDPLEN | Fills the PLENUM boundary array. |
| BEENAL | Assigns axis labels to grapics variables for plotting |
| BFALOC | Allocates files and buffers for buffe ed 1/O. |
| BFCLOS | Empties buffers and closes file. |
| BFIN | Initiates binary input subroutine. |
| BFOUT | Initiates binary output subroutine. |
| BGLSDC | Factors the banded matrix $A$ into $A=L U$ |
| BGLSSL | Solves the general banded linear system of equations $A * X=B$. |
| BITS | Manages bit address flags. |

Name

BKMOM
BKSMOM
BKSPLN

BKSSTB BKSTB3

BLKDAT
BREAK1
BREAK2
BREAK3
BREAKX
BSPDOC BSPDSL CREDIT

CDTHEX

CELLA3

CELLAV

CHBD
CHBSAV

CHBSET

CHEN

CHF
CHF1
CHKBD

Initiates backward substitution for stabilizing mowentum equations.
Pefforms Dackward substitution for stabilizing momentum equations
Initiates backward substitution for stabilizing mass and eneigy equations for the plenum component

Initiates backward substitution for stabilizing mass and energy equation.s
Initiates backward substitution for stabilizing mass and energy equations for the VESSEL component.

Initializes common variables in a biock data statement.
Controls BREAK prepass
Controls BREAK outer iteration.
Controls BREAK postpass
Evaluates BREAK pressure, temperature, and void fraction
Factors a symmetric positive definite banded system of linear equations.
Solves a symmetric positive definite banded system of linear equations
Edits the first 10 control-block parameter values along with their variable. name labels and a control-block schematic diagram.

Calculates the diametral thermal expansion of Zircaloy as a function of temperature.

Calculates cell-averaged quantities that are required for the interphasic heat-transfe' calculation for the VESSEL component.

Calculates cell-averaged quantities that are required for the interphasic heat-transfer calculation for one-dimensional components.

Che - 4 boundary data
Transiers selected BD-array data into the A array required for the accumulator phase-sepatation model

Stores data in the BD array temporarily to check for consistency in the junction data.

Uses Chen forrelation to evaluate the forced convection nucleate builing heat-transfer coefficient.

Evaluates the CHF based on a local-conditions formulation
Applies Biasi CHF correlation.
Checks for the consistency in the boundary-array data during initialization.

## Name

CHKSR
CHOKE
CIF3
CIHTST
CIVSSL

CLEAN
CLEAR
CLRINT
COMPI

CCNBLK

CONCF

CONSTB
CONVRT
COPYA
COREI
CORE3
CPLL

CPVEC3
CPVPRT
CPVV1

CCVMGT
CTAIN1
CTAIN2
CTAIN3
CWVSSL
CYLHT

## Function

Checks VESSEL component source locations.
Establishes the choked phasic velocities and the derivatives
Calculates interfacial shear for VESSEL component
Sets up arrays for heat-structure component
Transfers vessel data from LCM to SCM so that the remaining data can be initialized

Closes TRAC output files.
Sets an atray to a constant value.
Support subroutine for IBM
Performs various A-array loading tasks common to most one-dimensional components.
Compuies all 61 types of control-block outputs that do not require table storage (that is, except for "DLAY" and "FN51")

Returns maximum solubility ( kg solute/kg water) for species ISPEC at pressure $P$ and water temperature TL

Drives subroutine STBMF
Takes absolute areas and converts them into fractional areas
Copies value of variable SRCVAL into variable SNKVAL
Evaluates rod heat-transfer coefficients and tracks quench fronts
Evaluates rod temperature distributions.
Calculates specific heat of liquid water as a function of enthalpy and pressure

Evaluates the control-panel vector parameters
Prints the control-panel status, which is called from PSETQ
Calculates specific heat of water vapor as a function of temperature and pressure.

Logical magnitude function.
Controls containment prepass
Controls containment outer iteration
Controls containment postpass.
Transfers VESSEL data from LCM to SCM so that they can be printed Calculates temperature fields in a cylinder

Name
DATER Date routine.
DATEU Date routine
DBRK
DCHNID
DCODF
DCOMP DDACUM DDBRAK DDFILL DDGCMP

DDGVAR
DDHSTR DDPIPE DDPLEN DDPRZR DDPUMP DDSTGN DDTEE DDTURB DDVLVE DECAYS

DELAY

DELTAR
DFILL
DGBFA

## Function

 nent. 1979 sta..dard.Generates BREAK data dump
Defines id for each variable in a frame of graphics data.
Calculates a numeric code based on data types
Dumps one-dimensional component data.
Gets the address of variables for the ACCUM component.
Gets the address of variabler for the BREAK component
Gets the address of variables for the FILL component.
Gets the address of variables that are common to more than one compo-

Gets the address of variables which are not component-related
Gets the address of variables for the HTSTR component.
Gets the address of variables for the PIPE component.
Gets the address of variables for the PLENUM component.
Gets the address of variables for the PRIZR component
Gets the address of variables for the PUMP component
Gets the address of variables for the STGEN component
Gets the address of variables for the TEE component.
Gets the address of variables for the TURE componert:
Gets the address of variables for the VALVE component
Inicializes the decay-heat constants to be consiscent with the ANS5.1

Provides a time-delay function for the input variable (XIN). The output (XOUT) is played back with the value that the input had TAU seconds previously. Linear interpolation is used for playback when (TIMET minus TAU) falls between two stored time values. The user specifies the number of table storage pairs (NINT) to be saved. Both the time and the value of the input are stored in the table array as pairs of points.

Calculates transient fuel-cladding gap spacing (only if $\mathrm{NFCl}=1$ )
Generates FILL data dump.
Factors a double precision band matrix by elimination

DLEVEL
DMPIT
DPIPE
DPLEN
DPUMP
DROD1

DSTGEN
DTEE
DTURE
DVLVE
DVPSCL

DVSSL
ECOMP

EDIT
ELGR

ENABIN
ENDDMP
ENDGRF
EOVLY
ERRGET
ERROR
ERRTRP
ESTGEN
ETEE

## Function

Solves double precision band system $A * X=B$ or $\operatorname{TRANS}(A)^{*} X=B$ using factors computed by subicutine DGBFA

Determines the size of the data dump and writes the restart input data for a heat-structure component to the dump file

Generates VESSEL level data dump
Main module for generating a dump
Generates PIPE data dump.
Generates PLENUM data dump
Generates PUMP data dump
Writes the restart input data arrays for a subset of the heat-structure component data to the TRCDMP file

Generates ST GEN (steam-generater) data dump
Generates TEE data dump
Generates TURB (turbine) data dump
Generates VALVE data dump
Initializes scale factors on derivative of velocities with respect to pressure for one VESSEL level

Generates VESSEL data dump
Writes hyurodynamic and heat-transfer information for one-dimensional components to output file

Entry routine for edit module
Converts cell elevations to the slope between cells and converts $K$-factors to additive friction-loss coeffirients.

Enables and processes (CTRL-E) 1 interrupts
Empties dump buffers and closes dump file
Empties graphics buffers and closes graphics file
Closes overlay bookkeeping
Sets error trap indicators.
Processes different kinds of error conditions
Processes trapped errors.
Evaluates STGEN (steam-generator) parameters on explicit pass
Evaluates TEE parameters on explicit pass

## Name

EVAIDF
EVFXXX
EVLTAB

EXPAND
FAXPOS

FBRCSS

FEMOM
FEIMOMX
FEMOMY
FEMOMZ
FEXIST
FF3D
FILLI
FILL?
FILL3
FILLX
FLTOM
FLUX

FLUXES
FNMESH

FPROP

FROD
FTHEX

FWALL
FWKF

## Function

Evaluates the absolute difference between XOLD and XNEW
Evaluates the $X X X$ component-action function
Interpolates the function value F from the tabular data based on the value of the table's independent variable: a signal variable (NVAR.GT.0), a control block (NVAR LT. 0 ), or a trip-signal difference DELSV (NVAR.EQ 0)
Adds rows of conducti in nodes within the vessel rods during reflood Evaluates the flow-area fraction, FA, or valve-stem fractional position, XPOS, for the VALVE.
Identifies break components that are coupled through a fluid-flow path to the secondary side of a steam generator.

Sets up stabilizing momentum equations.
Perfornis forward elimination on radial motion equation.
Performs forward elimination on azimuthal motion equation
Performs forward elimination on axial motion equation
Mirrics CTSS subroutine FEXIST for UNICOS.
Makes final pass update for all variables in three-dimensional VESSEL
Controls FILL prepass.
Controls FILL outer iteration
Controls FILL postpass.
Fvaluates postpass FILL velocity.
Controls transíer of data between hydro and heat-structure databases.
Calculates mass flow at the boundary of a one-dimensional component for use in mass inventory.

Defines explicit partion of mass and energy flux terms.
Initializes the supplemental user-specified rows of conduction nodes within the vessel rods at the start of reflood.
Calculates values for fluid enthalpy, transport properties, and surface tension.

Calculates temperature profiles in nuclear or electrically heated fuel rods.
Calculates the fuel lineat thermal-expansion coefficient for uraniumdioxide and mixed-oxids fuels.
Computes a two-phase friction factor
Evaluates form-loss $K$-factors for an abrupt contraction or expansion

## Function

Calculates fuel-cladding gap heat-transfer coefficient Returns value of bit $N$ of word $B$

Gets appropriate pump curves from database
Performs dummy return for UNICOS.
Transfers data for axial level 12 from inverted form to stacked form and calls subroutine PACKIT

## Edits graphics data during transient

Returns entries in graphics catalog block
Places entries in graphics catalog block.
Calculates integrated vessel parameters for graphics purposes
Calculates average value: for vessel graphics (integrated values calculated in subroutine GVSSL1).

Calculates the heat of evaporation of liquid corresponding to a given temperature for low pressures.

Calculates wall to liquid heat-transfer coefficient in transition and film boiling

Calculates wall to liquid heat-transfer coefficient in reflood transition and film boiling

Controls the outer-iteration logic for a complete time step.
Support subroutine for SGEEV
Support subroutine for SGEEV
Computes heat-transfer coefficients.
Calculates the interphasic heat-transfer for the zero-dimensional and onedimensional components.
Averages velocities and generates heat-transfer coefficients for onedimensional components.

Controls heat-structure prepass.
Controls heat-structure postpass
Initializes to zero some VESSEL-component hydro-cell arrays used to store heat-structure information.

Averages velocities and generates heat-transfer coefficients for the vessel
Searches character string for specified search string

## Name

HVFILM

HVNB
HVW'EBB
IACCUM
IBRK
ICHL
ICMP
ICMPR
ICOMP
IDEL

IDIFF
IFILL
IFSET

IGACUM
IGBRAK
IGCOMP

IGFILL
IGHSTR
IGPIPE
IGPLEN
IGPRZR
IGPUMP
IGRAF
IGRF
IGSTGN
IGSVCB
IGTEE
IGTURB

## Function

Calculates the vapor heat-transfer coefficient that is the maximum of the Bromley, natural-convection, and the Dougall-Rohsenow coefficients.

Calculates vapor heat-transfer coefficient for nucleate boiling
Calculates vapor heat-transfer coefficient for dispersed vapor flow. Initializes the ACCUM (accumulator) data arrays that are not input.

Initializes the BREAK data arrays that are not input.
Returns character at given position in string (left-justified, blank-filled).
Main module to control the initialization of component data.
Logically compares a real variable with an integer variable.
Controls the routines that initialize component data
Searches specified substring of string for any one character in a set of specified characters.

Difference function.
Initializes the FILL data arrays that are not input from carris
Initializes three-dimensional interfacial shear at start of each VESSEL prepass.

Supplies ACCUM (accumulator) data for graphics.
Supplies BREAK data for graphics.
Supplies graphic output information for most one-dimensional components to the graphics COMMON block

Supplies FILL data for graphics
Supplies heat-structure data for graphics.
Supplies PIPE data for graphics
Supplies PLENUM data for graphics.
Supplies PRIZER (pressurizer) data for graphics
Supplies PUMP data for graphics
Initializes graphics variables and writes a header to the grap vics file.
Controls the creation of the graphics dictionary.
Supplies STGEN (steam-generator) data for graphics.
Obtains the signal-variable values.
Supplies TEE data for graphics.
Supplies TURB (turbine) stage data for graphics

## Name

IGVLVE IGVSSL LEVEL INDEL

INIT
INITBC

INNER
INPUT
IOVLY
IPIPE
IPLEN

IPRIZR
IPROP

IPUMP
IROD
IRODL

ISAMAX

ISORT
ISTGEN
ITEE
ITOHX
ITOLA
ITURB
IVLVE
IVSSL
IWALL3

## Function

Supplies VALVE data for graphics.
Supplies VESSEL data for graphics.
Writes integer VESSEL level array to output file TRCOUT
Searches specified substring of string for first nonoccurrence of any one character in a set of specified characters.
Entry routine for subroutine INIT
Initializes VESSEL component phantom cells and sets some boundary conditions.

Performs an inner iteration for a one-dimensional component
Entry routine for subroutine INPUT
Initializes overlay bookkeeping
Initializes the PIPE data arrays that are not input.
Loads the PLENUM arrays that are needed, but not input, to start a problem.
Initializes the PRIZER (pressurizer) data atrays that are not input Calls subroutines THERMO, FPROP, and MIXPRP for most onedimensional components.
Initializes the PUMP data arrays that are not input
Initializes rod component parameters that are not user-input.
Initializes heat-structure arrays that provide information on the location of hydro data.

Finds the smallest index of an element of maximum magnitude of a vector.

Sorts a list of integers in ascending order.
Initializes the STGEN (steam-generator) data arrays that are not input.
Initializes the TEE data arrays that are not input from cards.
Used to create data address for the output file
Used to convert addresses for the data dictionary file
Loads the arrays that are not input but that are needed to start a problem.
Initializes the VALVE data arrays that are not input.
Initializes the VESSEL data arrays that are not input
Divides input friction factor by hydraulic diameter

## Function

Fills boundary array at component junctions.
Fills boundary array at vessel source junctions.
Locates junctioris in junction sequence array.
Determines junction parameters for connecting and sequencing components.

Converts one character of a string to a binary number: $0-9$ returned as binary mode; blank, as binary 0 ; all others, as less than 0 .
Edits the H 2 O properties comments
Defines the pointer to the hydro array data for a one-dimensional component

Defines the pointer to the hydro array data for a VESSEL component
Copies data from one pait of LCM to another
Transfers data to LCM
Copies contents of R1 into R2
Computes lengths of various pointer tables.
Uses a curve fit :o obtain the water level in a cylindrical pipe as a function of the void fraction

Transfers data for axial level IZ from inverted form to stacked form Transfers data for axial level IZ from stacked form to inverted form. Performs linear interpolation on arrays.

Linearly interpolates a function table with zero to four independent variables.

Reads in specially formatted input data
Locates the variable address.
Calculates the required relative variable location in a common block for the PUMP

Calculates the required relative variable location in a common block for the TEE

Calculates the required relative variable location in a common block for the TURB

Calculates the required relative variable location in a common block for the VALVE

Controls modification of an ACCUM (accumulator) component

| Name | Function |
| :---: | :---: |
| MANAGE | Performs all level and rod-data management operations for the VESSEL and heat-structure components. |
| MAPIN | Converts data types (for the NPA only). |
| MATSOL | Solves the vessel-matrix equation $A * X=C$ using the capacitance method. |
| MBN | Calculates values for electrically heated nuclear fuel-rod insulator properties. |
| MBREAK | Controls modification of a BREAK component. |
| MCTAIN | Controls modification to a CTAIN component. |
| MDINIT | Creates the master dictionary table. |
| MFILL | Controls modification to a FILL component. |
| MFROD | Orders fuel-rod property selection and evaluates an average temperature for property evaluation. |
| MFUEL | Calculates uranism-dioxide and uranium-plutonium dioxide properties. |
| MGAP | Calculates values for the thermal conductivity of the gap-gas mixture. |
| MHTR | Calculates values for electrically heated fuel-rod heater coil properties. |
| MIX3D | Initializes stabiiizer quantities at start of problem and equivalences stabilizer quantities to basic values when two-step method is not being used. |
| MIXPRP | Calculates mixture properties from those of separate phases. |
| MOVLEV | Copies N elements from array A into array B . |
| MPIPE | Controls modification to a PIPE component. |
| MPLEN | Controls modification to a PLENUM component. |
| MPRIZR | Controls modification of a PRIZER (pressurizer) component. |
| MPROP | Orders structure property selection and evaluates an average temperature for property evaluation. |
| MPUMP | Controls modification of a PUMP component. |
| MSTGEN | Controls modification of a STGEN (steam-generator) component. |
| MSTRCT | Calculates properties for certain types of steel. |
| MTEE | Controls modification of a TEE component. |
| MTURB | Controls modification of a TURB (turbine) component. |
| MVALVE | Controls modification of a VALVE component. |
| MVSSL | Controls modification of a VESSEL component. |

Name
MWRX

MZIRC
NAMLST
NEWDLT
NPACTL
NXTCMP
OFFTKE
ORDER

ORTHES
ORTRAN
OUT1D
OUT3D
OUTER
PACKIT
PIPE1
PIPE1X

PIPE2
PIPE3
PIPROD

PLEN1

PLEN2
PLEN3
PNTROD
PNTVSS
POST

## Function

Calculates the Zircaloy steam reaction in the cladding at high temperatures.
Calculates properties for Zircaloy-4.
Performs input-data check on all namelist variables.
Evaluates prospective new-time increment.
Gets NPA user interactive input.
Finds the beginning of data for the next component.
Calculates exit void fraction for TEE component offtake model
Rearranges the signal-variable, control-block, and trip ID numbers in $2 \mathrm{~s}^{-}$ cending order based on their absolute value and searches for the do-loop index values for each control-parameter evaluation pass through the sig. nal variables, control blocks, and trips.
Support subroutine for SGEEV
Support subroutine for SGEEV.
Controls outer calculation for one-dimensional components.
Controls outer calculation for a VESSEL.
Controls outer calculation for one time step
Packs data from one array into another
Controls PIPE prepass.
Calculates liquid volume discharged (qout), collapsed liquid level ( $z$ ), and volumetric flow rate ( $\mathrm{V}_{\text {flow }}$ ); assumes vertical component with lownumbered cell at top.

Controls PIPE outer iteration.
Controls PIPE postpass.
Moves hydro data for a one-dimensional component to and from the heat-structure database.
Performs the prep stage calculation for the PLENUM time-step initialization.

Controls PLENUM outer iteration
Controls PLENUM postpass
Initializes rod pointers.
Initializes general vessel pointers
Controls postpass calculation for one time step.

## Name

POST3D
POSTER PRCINT PRCNPA

PREFWD
PREINP

PREP
PREP1D
PREP3D
PREPER
PRIZR1
PRIZR2
PRIZR3
PRZR1X
PSTEPQ

PTRSA
PTRSPL
PUMP1
PUMP2
PUMP3
PUMPD
PUMPI
PUMPSR
PUMPX
QADJUST
QTIME
R1MACH
RACCUM

## Function

Controls postpass calculation for the VESSEL
Performs postpass calculation for ane-dimensional components
Processes interrupts.
Processes NPA commands that affect TRAC execution during an NPA simulation.

Prepares for evaluation of the three-dimensional wall shear coefficients
Converts free-format TRACIN deck to format used by TRA.C input subroutine.

Controls prepass calculation for one time step.
Controls the prepass calculation for one-dimensional components.
Controls prepass calculation for three-dimensional components
Performs prepass calculation for one-dimensional components
Controls PRIZER (pressurizer) prepass.
Controls PRIZER (pressurizer) outer iteration
Controls PRIZER (pressurizer) postpass.
Evaluates pressurizer mass change during steady-state calculation
Controls printing, dumping, and graphing of data at the completion of a time step.
Initializes general vessel pointers for use by signal variables and graphics Initializes general plenum pointers for use by signal variables and graphics.
Controls PUMP prepass
Controls PUMP outer iteration.
Controls PUMP postpass
Calculates head and torque from PUMP curves.
Supplies built-in PUMP characteristics
Evaluates PUMP momentum and energy source.
Calculates PUMP head and torque.
Dummy routine for UNICOS
Mimics CTSS subroutine QTIME for UNICOS.
Support subr~utine for SGEEV
Reads ACCUM (accumulator) data input file and creates pointer table for these data

Name
Function

RBREAK

RCNTL
RCOMP

RCPVEC
RDCOM3
RDCOMP
RDCRDS
RDCRVS
RDDIM
RDLCM
RDREST
RDZMOM
, $E$ EACCM

READI
READR
REBRK

RECNTL
RECOMP

RECPV

REFILL

REHTST

REPIPE

REPLEN data these data ponents. these data. these data.

Reads BREAK data from input file and creates a pointer table for these

Reads in signal-variable, trip, and controller input data
Reads data common tc most one-dimensional components from input files and writes these data to output file.

Processes the control panel vector input cards.
Controls reading of three-dimensional VESSEL data trom input file.
Controls reading of component data from inpur file.
Reads time-s+ep cards until DTMIN $<0$ is encountered
Reads PUMP curves from input file
Reads number of points on PUMP curves from input file
Moves data from LCM to SCM
Controls reading of component data from a restart dump file
Defines momentum cell reciprocal lengths and weighting factors
Reads ACCUM (accumulator) data from a restart dump and creates a pointer table for these data

Reads integer data in 114 format
Reads real data in E14. 6 format
Reads BREAK data from a restart dump and creates a pointer table for

Reads the signal-variable, trip, and controller data from the restart file
Reads data from a restart dump common to most one-dimensional com-

Adds the restart file control panel vector data that was not specified on input and prints it out.

Reads FILL data from a restart dump and creates a pointer table for

Reads heat-structure scalar input data from a restart dump and creates a pointer table for these data
Reads PIPE data from a restart dump and creates a pointer table for

Reads PLENUM data from a restart dump and creates a pointer table for these data.

## Name

REPRZR

REPUMP

REROD1 RESTGN

## RETEE

RETURB

REVLVE

REVSSL.

RFDBK

RFILL

RHOLIQ
RHTSTR

RINGO
RKIN
RLEVEL
RODHT
RPIPE

RPLEN

RPRIZR

RPUMP

## Function

Reads PRIZER (pressurizer) data from a restart dump and creates a pointer table for these data.
Reads PUMP data from a restart dump and creates a pointer table for these data.

Reads heat-structure input-data arrays from a restart dump.
Reads STGEN (steam-generator) data from a restart dump and creates a pointer table for these data.
Reads TEE data from a restart dump and creates a pointer table for these data.

Reads TURB (turbine) stage data from a restart dump and creates a pointer table for these data.
Reads VALVE data from a restart dump and creates a pointer table for these data
Reads VESSEI, data from a restart dump and creates a pointer table for these data.

Evaluates the reactor core reactivity feedback caused by changes in the fuel temperature, coolant temperature, and coolant void from the beginning of the previous time step.
Reads FILL data from input file and creates a pointer table for these data.

Calculates values of liquid density and its derivatives.
Reads ROD or SLAB heat-structure data from the input file and creates a pointer table for these data
Initializes certain variables for the vessel inner ring radial boundary.
Integrates the neutron point-kinetics equations
Writes real VESSEL level array to output file TRCOUT
Calculates the fuel-rod temperature field
Reads PIPE data from the input file and creates a pointer table for these data.
Reads PLENUM data from the input file and creates a pointer table for these data.

Reads PRIZER (pressurizer) data from input file and creates a pointer table for these data.
Reads PUMP data from input file and creates a pointer table for these data

Name
RRDLCM
RROD1
RROD2
RSPERR
RSTGEN

RTEE
RTURB

RVLVE

RVSLCM
RVSSL

SIDPTR
SATDER

SATPRS

SATTMP

SAVBD
SAXPY
SCLMOM

SCLTBL
SCMLCM

SCOPY
SCOPYM
SDOT
SEDIT
SEPDI

## Function

Reads rod data from LCM.
Reads basic ROD input parameters.
Reads and checks array data for powered heat structures.
Support subroutine for IBM.
Reads STGEN (steam-generator) data from input file and creates pointer tables for these data.

Reads TEE data from input file and creates a pointer table for these data.
Reads TURB (turbine) stage data from input file and creates a pointer table for these data.

Reads VALVE data from input file and creates a pointer table for these data.

Reads VESSEL data from LCM.
Reads VESSEL data from input file and creates a pointer table for these data.

Sets pointers for one-dimensional components.
Calculates the derivative of saturation temperature of vapor with respect to pressure.

Calculates saturation pressure of vapor corresponding to a given temperature.

Calculates saturation temperature of vapor corresponding to a given pressure.

Moves boundary information into component arrays.
Performs single precision computation of $Y=A * X+Y$.
Sets up geometric scale factors for velocities to improve momentum conservation.

Scales input table according to scale factor passed by input routine.
Checks for overflow. Transfers fixed-length, variable-length, and pointer tables to LCM. Adjusts pointers.
Support subroutine for SGEEV.
Support subroutine for SGEEV.
Computes single precision inner product of single precision vectors.
Writes short edit to TRCOUT file.
Computes separator side-arm void fraction and mixture velocity.

## Name

SEPDX SETBD SETBDT

SETBRK SETCMP SETCPV

SETEOS SETERR SETFIL SETIC SETLCM SETNET SETPMP SETPRZ SETVA SETVSL SFA44 SFA55 SGBFA SGBSL SGEDI SGEEV SGEFA SGEFAV

## Function

Computes mechanistic separator carryover and carryunder quantities.
Stores component information in boundary arrays
Sets values for boundary to first theta cell equal to values for last theta cell and sets values for boundary to last theta cell equal to values for first theta cell.

Sets special pointers for a BREAK component
Determines the component type and sets the LCM pointer for controlpanel vector parameter IPARAM for component ICOMP.
Sets up the control-panel vector pointers. All errors encountered by subordinate routines are treated as warning errors. If an error would inhibit further processing. IERRFL is set to 1 . At the end of this routine a fatal error is issued if IERRFL is not 0 . This allows checking of all parameters in a single pass

Sets the equation-of-state constants
Support subroutine for IBivi.
Sets special pointers for a FILL
Currently not used
Monitors use of LCM dynamic area
Provides the information needed to set up the network solution mat'ices Sets the volume flow pointer for a PUMP

Sets special pointers for a PRIZER (pressurizer)
Sets value of variable VAR to VAL for one level of VESSEL data.
Sets special pointers for a VESSEL.
Hardwired version of subroutine SGEFA for $4 \times 4$ matrices.
Handwired version of subroutine SGEFA for $5 \times 5$ matrices
Factors a real band matrix for elimination
Solves the real band system $A^{*} X=B$ or $\operatorname{TRANS}(A)^{*} X=B$ using factors computed by subroutine SGBFA.
Computes the determinant of a matrix using the factors computed by SGEFA

Computes the eigenvalues and eigenvectors of a general real matrix.
Factors a real matrix by Gaussian elimination
Factors a real matrix by Gaussian elimination

Name
SGEMM
SGESL

SGESLM
SGESLV
SHIFT
SHIFTB

SHIFTR

SHRINK

SIGMA
SMOVE
SMOVEN
SOUND
SPLIT
SRCHCL

SRCHMDT
SRCHTB
SRCHVT

SRTLP
SSCAL
SSEPOR
SSL 44
SSL55
SSWTCH
STBME
STBME3
STBMPL

## Function

## Performs matrix multiplication.

Solves the real system $A * X=B$ or $\operatorname{TRANS}(A) * X=B$ using the factors computed by or SGEFA.
Solves a system of linear equations with many right hand sides
Solves the real system $A * X=D$ or $\operatorname{TRANS}(A) * X=B$.
Support subroutine for IBM
Translates the table's abscissa-coordinate values so that the function value $F$ in the table corresponds to an abscissa-coordinate valu of 0.0 .
Shifts an argument to the right by a specified number of bits and fills remaining space with zerus.

Removes rows of conduction nodes within the heat-structure re ts or slabs during reflood.
Returns surface iension of water as a function of pressure.
Moves a character from one string to another.
Moves a specified number of characters from one string to another
Performs homogeneous equilibrium sound speed calculation.
Reads appropriate data from PUMP curves.
Searches the component list for component number IC MMP. It returns the component LCM pointer in IBASE. If the component is not found, it sets IERR to 1 and returns -1 in IBASE

Searches master dictionary tabel for a specified entry
Searches variable name table for a specified entry.
Searches a set of master dictionary variable name table entries for a specified variable name.
Sorts components into loops and reorders them for the network solution.
Performs single precision vector scale $\mathrm{X}=\mathrm{A} * \mathrm{X}$.
Performs detailed calculation of a steam-water separator
Hardwired version of subroutine SGES: for $4 \times 4$ matrices.
Hardwired version of subroutine SGESL for $5 \times 5$ matrices
Mimics CTSS subroutine SSWTCH for UNICOS.
Sets up the stabilizing mass and energy equations.
Sets up stabilizer mass and energy equations for VESSEL component Sets up the stabilizing mass and energy equations for the PLENUM.

| Name | Function |
| :---: | :---: |
| STDIR | Sets up direct inversion of the VESSEL matrix. |
| STEADY | Generates a steady-state solution. |
| STGABD | Finds the void fractions in adjacent cells within a steam generator to use in heat-transfer averaging. |
| STGEN1 | Controls STGEN (steam-generator) prepass. |
| STGEN 2 | Controls STGEN (steam-generator) outer iteration. |
| STGEN3 | Controls STGEN (steam-generator) postpass. |
| STGN1X | Evaluates heat-transfer coefficients for STGEN (steam-generator) secondary side. |
| STGN3X | Performs STGEN (steam-generator) heat-transfer calculation. |
| STGNTX | Computes needed quantities on prepass for STGEN (steam generator). |
| STGPTH | Initializes TRAC communication to the NPA controller. |
| STINIT | Creates the problem specific Data Dictionary File used by the NPA Protocol Handler. |
| STPCLS | Closes disk file used for NPA controller communication. |
| STPMSG | Checks for message from the NPA controller. |
| STPRD | Reads message from the NPA controller. |
| STPWRT | Writes message to the NPA controller. |
| STRLER | Provides error message for NPA controller communication failure (reserved for future use). |
| SVSET | Evaluates location-independent ( $0=15 \cup N<17$ ) signal variables. |
| SVSET1 | Evaluates sigral variables with locations defined in the one-dimensional components. |
| SVSET3 | Evaluates signal variables with locations defined in the three-dimensional VESSEL. |
| SVSETH | Evaluates signal variables defined in heat structures. |
| SWITCH | Moves one level of VESSEL data starting at IADD1 to !ADD2 and vice versa. (Not currently maintained.) |
| TEE1 | Controls TEE prepass. |
| TEE1X | Calculates source for TEE side-leg hydrodynamics. |
| TEE2 | Controls TEE outer iteration. |
| TEE3 | Controls TEE postpass. |
| TF1D | Drives one-dimensional hydrodynamics routines. |

Name
TF1D,

TF1DS1

TF1DS3

TF3DS

TF3DS1

TF3DS3
TFPI.BK

TFPLN

THCl

THCV

THERM2
THERMO
TIMCHK

TIME
TIMER
TIMING
TIMSTP
TIMUPD

TMPPTR
TMSFB
TRAC

## Function

Solves the hydrodynamic equations for the one-dimensional two-fiuid pipe medel.

Suts up initial velocity approximations and their pressure derivatives for the one-dimensional two-fluid pipe model

Perferms the backward-substitution for the one-dimensional two-fluid pipe model
Sets up bisic mass and energy equations for three-dimensional VESSEL component.

Estimates new-time velocities from motion equation and calculates variation of velocities with respect to pressure for three-dimensional VESSEL component.
Performs back-substitution for three-dimensional VESSEL component.
Performs the backward-substitution for the basic difference equations for the PLENUM (similar to TF1DS3 for the other one-dimensional components)
Solves the basic hydrodynamic equations for the PLENUM (similar to TF1DS for the other one-dimensional components)

Returns thermal conductivity of water as a function of pressure and enthalpy.
Returns thermal conductivity of steam as a function of pressure and enthalpy.
Computes THERMO flag for use with MELPROG.
Calculates thermodynamic properties of water.
Checks elapsed time to see whether certain functions should be performed.

Mimics CTSS subroutine TIME for UNICOS.

> Timekeeping routine.

Mimics CTSS subroutine TIMING for UNICOS.
Sets up time-step and time-edit interval times.
Updates start-of-time-step values with end-of-time-step values for one VESSEL level.

Sets up temporary pointers for subroutines PREIFD and PREFWD Calculates the minimum stable film-boiling temperature ( $T_{\text {min }}$ ).

## Name

TRANS
TRANSF

TRBPOW
TRBPRE

TRBPST

TRIP
TRIPS

TRISLY
TRPSET
TURB1

TURB2
TURB3
UNPKIT
VALUE
VDPCSS

VELBC
VFWALL 3
VISCL
VISCV
VLEVEL
VIVE1
VIVE2
VIVE3
VIVEX
VMCELL
VOLFA

## Function

Controls overall calculation for each time step
Transfers data from the ST GEN (steam-generator) internal network matrix to the loop network matrix.

Calculates the efficiency and power output of a turbine stage.
Calculates the data pertaining to the entire turbine-generator set (common/surn all stages) during the prep stage.

Calculates the data pertaining to thie entire turbine-generator set (common/sum ." stages) during triv post stage.
Returns status of a trip
Evaluates the conrol parameters for the beginning of the time-step system state.

Solves linear system of the form $A^{*} X=B$ where $A$ is tridiagonal
Sets up trip status flags
Performs the prep stage calculation for the turbine stage componeni timestep initialization.
Controls turbine stage outer iteration
Controls turbine stage postpass
Unpacks data packed by subroutine PACKIT
Converts an ASCII string to its binary value.
Defines necessary signal variables, control blocks, and controllers for constrained steady-state calculation

Sets velocities at internal FILL boundaries for a vessel
Evaluates three-dimensional wall shear coeflicients
Evaluates viscosity of water as a function of pressure and enthalpy.
Evaluates viscosity of steam as a function of pressure and enthalpy. Indicates the beginaing of a certain level in a VESSEL
Controls VALVE prepass
Controls VALVE outer iteration.
Controls VALVE postpass
Evaluates the value of the flow-area change action for a VALVE
Converts a VESSEL cell number to a VESSEL-matrix cell number Calculates cell volume flow areas

Name
VOLV
VRBD

VSLGEO VSLLEV VSLROD VSSLI VSSL?

VSSL 3 VSSROD VSSSSR WACCUM WARRAY WBREAK WCOMP WDRAG WFILL WHTSTR WIARR WL.ABI

WLABR

WLEVEL
WPIPE
WPLEN
WPRIZR
WPUMP
WRCOMF
WRITEE

## Function

Calculates ell-averaged phase velocities for one-dimensional components Defines VESSEL velocities in the upstream radial direction for the inner ring. (Nct currently used.)
Writes the geometry cards $f=$ it: vissel on the ir tart input file.
Writes the level data cards for the ${ }^{\prime}$ 'ESSEI, on the restart input file.
Writes the rod-data cards for the VESSEL to the restart input file.
Performs prepass calculations for VESSEL dyamics
Performs inner iterations for VESSEL dyr snics.
Performs postpass calculations for VESSEL dynamics.
Transfers data between hydro and heat-structure databases.
Performs steady-state change ratio calculations for vessel
Writes selected ACCUM (accumulator) data to output file TRCOUT
Writes a real array to cur nut file TRCOUT
Writes selected BREAK data to output file TRCOUT
Controls the writing of selected component data to output file TRCOUT
Calculates coefficient of friction for liquid and vapor at the wall
Writes selected FILL data to output file TRCOUT
Writes selected heat-structure data to output file TRCOUT
Writes an integer array to output file TRCOUT
Edits labeled integer-valued input data that is to be read by the LOAD subroutine.

Edits labeled real-valued input data that is to be read by the LOAD subroutine

Writes real VESSEL level array to output file TRCOUT
Writes selected PIPE data to output file TRCOUT.
Writes selected PLENUM quantities to the output file TRCOUT
Writes selected PRIZER (pressurizer) data to output file TRCOUT
Writes selected P MP data to output file TRCOUT
Writes data common to one-dimensional components to output files.
This subroutine does not combine numbers as does subroutine R. It merely puts an $E$ at the end of the data for a variable to make it compatible with the LOAD subroutine of the TRAC code.

Name
WRITEI

WRITER

WRLCM
WSTGEN
WTEE
WTURB

WVLVE
WVSSL
XOR
ZCORE

ZEROV
$\angle P W H C I$

## Function

Takes integers and puts them into format compatible with the LOAD subroukine of TRAC

Takes real numbers and puts them inio format compatible with the LOAD subroutine of TRAC

Transfers a given number of words from SCM to LCM
Writes selected STGEN (steam gencrator) data to output file TRCOUT
Writes selected TEE data to output file TRCOUT
Writes selected quantities to the printer for a TURB (turbine) stage component

Writes selected VALVE data to output file TRCOUT
Writes selected VESSEL data to output file TRCOUT
Support subroutine for IBM
Calculates axial locations for CHF and transition boiling within the core and computes associated void fractions.

Zeroes velocities at zero flow areas
Evaluates axial power shape based on user input

## APPENDIX B

## TRAC SUBROUTINE CALLING SEQUENCE

```
TRAC
CALLS
PRODCTN, ERROR, GETUFL, LENTAB , BLKDAT SAMPLE SAMPON GETJTL SETLCM , LOADTMM, LABELP, INPUT , INIT , DMPIT , STEADY, TRANS , QTIME , CLEAN , SAMPTRM, EXIT
ACCM1X
CALLED BY ACCUM1
ACCMBD
CALLS
J1D.
CALLED BY
ACCUM1, ACC'JM2, ACCUM3, IACCUM.
ACCUM1
CALLS
SAVBD, J1D , PREPER, ACCM1X, ACCMBD ,BKMOM
CALLED BY
PREP1D
ACCUM2
CALLS
INNER ACCMBD
CALLED BY
OUT1D
ACCUM3
CALLS POSTER, SAVBD, EVALDF, CONSTB, ACCMBD
CALLEDBY POST.
ALLBLK
CALLS
iNDEL.
CALLEDBY
PREINP.
ASIGN
CALLED BY INPUT.
ASTPLN
CALLED BY PLEN3.
AUXPLLN
CALLS
GETBIT
CALLEDBY PLEN2.
BACIT
CALLEDBY
VSSL. 2
BAKUP
CALLEDBY
VSSL2 , VSSL3
BANSOL
CALLED BY
RODHT
BDPLEN
```

    CALLED GY
        INPUT, PLEN1 , PLEN2 , PLEN3.
    BFALOO
        CALLS
        LDCHAR.
    CALLEDBY
                DMPIT , IGRAF, RDRENT
    BFCLOS
CALLEDBY
ENDDMP,ENDGRF,
BFWN
CALLS
ERROR , RDLCM.
CALLEDBY
RDREST, REACCM , REBRK, RECOMP , REFILL, REHTST , REPIFE , REPLEN
REPRZR , REPUMP ,REROD1 RESTGN, REIEE ,RETURB, REVLVE ,REVSSL
RFOUT
CALLS
ERROR ,WRLCM
CALLEDBY
DBRK ,DCOMP ,DFILL, DHTSTR ,DLEVEL ,DMPIT, DPIPE ,DPLEN , DPUMP
DRODI ,DSTGEN, DTEE , DTURB, DVLVE,DVSSL GRAF IGRAF
BITS
CALLS
SETBIT, OFFBIT, CHGBIT OF1123, ON1123 , ERROR
SETBIT
CALLEDBY
BITS ,CHBSET ,FF3D ,HTIF J3D ,PLEN3 , POSTER , PREPER , RCOMP ,
TF1DS ,TF1DS1 , TF1DS3 , TFPLBK , TFPLN.
OFFBIT
CALLED BY
BITS ,CHBSET, HTIF ,TF1DS ,TF1DS3 ,TFPLN
CHGBIT
CALLED BY
BITS
OF1123
CALLED BY
BITS J3D POSTER
ON1123
CALLEDBY
BITS , INNER.
BKMOM
CALLS
BKSMOM
CALLEDBY
ACCUM1 , PIPE1 , PRIZR1, PUMP1 ,STGEN1, TEE1 ,TURB1, VLVE1
BKSMOM
CALLEDBY
BKMOM.
BKSPLN
CALLS
SFA55 , 3SL55 , CONCF
CALLEDBY
PLEN3.
BKSSTB
CALLS
SFA55,SSL55, CONCF

```
```

    CALLED BY
        POSTER.
    BKSTB3
CALLS
SFA55 ,SSL55 ,CONCF
CALLED BY
VSSL3.
BLKDAT
CALLED BY
TRAC.
BREAK1
CALLS
BREAKX, J1D ,SH1FTB,GETBIT.
CALLEDBY
PREP1D.
BREAK2
CALLS
J1D.
CALLEDBY
OUT1D.
BREAK3
CALLS
THERMO , FPROP ,JID
CALLED BY
POST.
BREAKX
CALLS
TRIP , SHIFTB , EVLTAB, LININT , ERROR ,THERMO ,FPROP ,MIXPRP
SATTMP.
CALLEDBY
BREAK1.
BSPDDC
BSPDSL
CBEDIT
CALLED BY
RCNTL, RECNTL.
CBSET
CALLS
ERROR , CONBLKK, DELAY , LININT , LINT4D.
CALLEDBY
TRIPS.
CDTHEX
CALLS
LININT.
CALLEDBY
DELTAR.
CELLA3
CALLED BY
VSSL2.
CELLAV
CALLEDBY
TF1D.
CHBD
CALLS
ERROR.
CALLED BY
CHKSD.

```
```

CH3SAV
CALLED BY
IACCUM, INPUT ,ISTGEN,ITEE ,ITUPB ,MLVE
CHBSET
CAL'S
OFFBIT, SETBIT.
CALLEDBY
IACCUM, INPUT, ISTGEN, ITEE, TTURB ,IMLVE
CHEN
CALLS
SATPRS.
CALLEDBY
HTCOR ,HTVSSL
CHF
CALLS
CHF1 , ERROR , SATPRS
CALLED BY
HTCOR, HTVSSL
CHF1
CALLEDBY
CHF ,HTCOR ,HTVSSL.
CHKBD
CALLS
CHBD , ICMPR ,GETBIT
CALLEDBY
IACCUM, INPUT, ISTGEN, ITEE, ITURB ,IVLVE
CHKSR
CALLS
ERROR.
CALLED BY
RVSSL.
CHOKE
CALLS
SOUND ,THERMO , ERPDR ,SGEFA ,SGEDI ,SGESL ,SGEEV,SATPRS
CALLED BY
TF1DS1.
CIF3
CALLS
GETBIT.
CALLEDBY
VSSL.1.
CIHTST
CALLS
ROLCM , RRDLCM , IRODL, IROD ,WFLCM.
CALLEDBY
ICOMP.
CIVSSL
CALLS
RVSLCM ,IVSSL , ERROR ,LDCHAR ,WRLCM ,PTRSA , JFIND
CALLEDBY
ICOMP.
CLEAN
CALLS
IOVLY , ENDGRF , ENDDMP , COMPACT, EOVLY
CALLED BY
TRAC ERROR ERRTRP STEADY
CLEAR

```
B-4

\section*{CALLEDBY}

CORE1, HOUT , ICOMP, INPUT LCMTRN, LOAD OUTID, OUT3D, OUTER , PLEN1 PLEN2 PLEN3 , PNTROD PNTVSS POF POST3D PREP1D PREP 3 D , PREPER , RACCUM RBREAK, RCNTL, HCOMP , RDDIM , REROD 1 ,REVSSL, RFILL , RHTSTR , RPIPE , RPLEN ,RPRIZR , RPUMP , RROD2 RSTGEN, RTEE RTURE, RVLVE, RVSSL, SIDPTR, SCMLCM ,SEDIT , SRTLP STGEN1, STGEN2, STGEN3 ,WVSSL.

\section*{COMPI}

CALLED BY
WPUT , ISTGEN, TTEE , TTURB , MLVE.

\section*{CONBLK}

CALLS
ERROR.
CALLED BY CBSET.

\section*{CONCF}

CALLED BY
BKSPLN , BKSSTB , BKSTB3 ,FF3D
CONSTB
CALLS
STBME , J1D , ICMPR
CALLED BY ACCUM3 , PIPE3 , PRIZR3 , PUMP3 , STGEN3 ,TEE3, URB3 , VLVE3
COPYA
CALIED BY
MIX \({ }^{2} \mathrm{D}\).
CORE 1
CALLS
TRIP , MANAGE, CLEAR , ERROR MFROD ,FNMESH, SHRINK , EXPAND , ZCORE, HTVSSL, HTCOR , EVFXXX, ZPWHCI , RFDBK, RKIN.
CALLEDBY
HTSTR1.
CORE3
CALLS
MANAGE, ERROR FROD , EVALDF.
CALLED BY
HTSTR3.
CPLL
CALLED BY
FPROP.
CPVV1
CALLED BY
FPROP , HTCOR , HTVSSL, IA'WEBB.
CTAINT
CALLS
ERROR.
CALLEE BY
PREP10.
CTAIN2
CALLS
ERROR.
CALLEDBY
OUT10
CTAIN3
CALLS
ERROR.
CALLED BY
```

        POST.
    CWVSS!,
CALLS
RVSLCM ,WVSSL.
CALLEDBY
WCOMP.
CYLTT
CALLEDBY
POSTER, STGN3X.
DATEU
CALLS
DATE.
CALLEDBY
INPUT.
DBRK
CALLS
BFOUT , RDLCM
CALLEDBY
DMPIT.
DCODF
CALLED BY
LOAD.
DCOMP
CALLS
RDLCM , BFOUT.
CALLEDBY
DMPIT ,DPIRE, DPUMP ,DSTGEN, DTEE ,LTLIRB ,DVLVE
DECAYS
CALLED BY
RROD2.
DELAY
CALLS
LININT, ERROR.
CALLEDBY
CBSET.
DELTAR
CALLLS
CDTHEX , FTHEX.
CALLED BY
GAPHT.
DFILL
CALLS
RDLCM, BFOUT.
CALLEDBY
DMPIT.
DGBFA
CALLS
DSCAL ,DAXPY.
DGBSL
CALLS
DAXPY.
DHTSTR
CALLS
RDLCM ,RRDLCM,BFOUT,DROD1
CALLEDBY
DMPIT.
DLEVEL

```
 B- 6
```

    CALLS
        LEVELI, BFOUT.
    CALLEDBY
        DVSSL.
    DAPIT
CALLS
IOVLY,BFALOC, ERFOR,SFOUT,QTIME ,RDLCM, DPIPE ,DTEE ,DPUMP
DVLVE DBRK, DFIL, DCOMP, DSTGEN, DTINB ,DPLEN, DVSSL, DHTSTR
EOVLY
CALLED BY
TRAC ERROH , ERRTRP, PSTEPQ, TMCHK TRANS
CPIFE
CALLS
DCOMT BFOUT.
CALLEDBY
DMPIT.
DPLEN
CALLS
RDLCM ,BFOUT.
CALLEDBY
DMPIT
DPUMP
CALLS
DCOMP , BFOUT.
CALLEDBY
DMPIT.
DROD1
CALLS
BFOUT ,MANAGE
CALLEDBY
DHTSTR
DSTGEN
CALLS
DCOMP, BFOUT.
CALLEDBY
DMPIT
DTEE
CALLS
DCOMP , BFOUT.
CALLEDBY
DMPIT.
DTURE
CALLS
DCOMP ,BFOUT.
CALEDBY
DMPIT.
DVLVE
CALLS
DCOMP, BFOUT.
CALLEDBY
DMPIT.
DVPSCL
CAlLS
SETVA.
CALLEDBY
IVSSL, VSSL1.
DVSSL

```
APPENDIX B
0.7

\section*{CALLS}

RVSLCM , BFOUT ,MANAGE, DLEVEL.
CALLEDBY
DMPIT.
ECOMP
CALLS
WARRAY, GETBIT.
CALLED BY
WACCUM WRREAK, WFILL , WPIPE , WPRIZR ,WPUMP , WSTGEN, WTEE , WTURB , WVLVE.
EDIT
CALLS
GOVLY, SEDIT, WCOMP EOVLY,
CNLLEDBY
ERAOA ERRTRP, HOUT , PSTEPO, STEADY, TIMCHK, TRANS
ELGR
CALLS
ERROR WARRAY
KLED BY
IACCUM, BNPUT, ISTGEN, TTEE, TTURB , IVLVE
ENDDMP
CALLS
BFCLOS , ERROR , COMPACT.
CALLEDBY
CLEAN.
ENDGRF
CALLS
BFCLOS , ERROR , COMPACT
CALLEDBY
CLEAN.
EOVLY
CALLS
ERROR.
CALLEDBY
CLEAA, DMPIT, EDIT, ERROR, GRAF INIT, INPUT, OUT1D OUT3D OUTER , POST , PREP , PREP1D , PREP3D, RDCOM 3 , RDCOMP , RDREST TRIPS.

\section*{ERRGET}

CALLS
QXIT.
ERROR
CALLS
DMPIT , EDIT , QTIME , QADJUST, EOVLY CLEAN
CALLEDBY
TRAC , BFIN , BFOUT, BITS , BPEAKX CBSET, CHBD CHF CHKSR CHOKE , CIVSSL, CONELK, CORE1, CORE3, CTAIN1, CTAIN2, CTAIN3 DELAY , DMPIT, ELGR ENDDMP ENDGRF, EOVLY EVALDF, EVFXXXX EVLTAB, FBRCSS, FILLX, GETBIT, GETCRV GRAF GRFPUT HOUT , HTSTR3 , HMNEPR ICOAP IGRAF, INIT, INPUT, ISTGEN ITEE MLVE IFIND, LOAD , LOCPMP , LOCTEE, LOCTRB, LOCVLV MANAGE, MATSOL MFROD MSTRCT
, NAMLST , NXTCMP, OFFTKE OUT1D, OUT3D, OUTER, POST , POST3D
POSTER, PREFWD, PREINP , PREPID, PREP3D , PTRS, , PUMPD PUMPSR
RACCUM, RBREAK, RCNTL RCOMP RDCOMP RDCRDS, RDDIM RDREST
REACCM, READI, READR RSBRK RECNTL, REFILL REHTST REPIPE,
REPLEN REPRZR, REPUMP, RETEE, RETURB, REVLVE REVSSL, RFDBK
RFILL, RHTSTR, RKIN RODHT RPIPE, RPLEN RPRIZR RPUMP ,RROD 1 RROD2, RSTGEN, RTEE , RTURB ,RVLVE, RVSSL, SCLMOM SETLCM.
```

                SOUND SRTLP, STEADY, STGN3X, SVSET , SVSET1 ,SVSET3, SVSETH
                TEE1 , THERMO, TMMCHK TMMSTP, TRANS , TRIP , TRPSET, VLVEX ,VSSLI,
                VSSL:2
    ERRTRP
CALLS
QXIT ,POST ,DMPIT ,EDIT ,OLEAN EXIT.
ESTGEN
CALLEDBY
ISTGEN, STGEN1, STGEN3.
ETEE
CALLEDBY
ITEE ,TEE9 ,TEE3.
EVALDF
CALLS
ERROR
CALLEDBY
ACOUM3 ,CORE3 , PIPE3 , PRIZR3, PUHP3 ,STGEN3, TEE3 ,TURE3 ,VLVE3
, VSSL.3.
EVFXXX
CALLS
ERROR,TRIP , LININT, EVLTAB
CALLEDBY
CORE1, PIPE1, PIPE3 ,PUTP3 , FIKIN ,TEE1X,TEE3 ,TURB:,VLVE3
EVLTAB
CALLS
ERROQ, LININT.
CALLEDBY
BREAKX, EVFXXX, FILLX, PUMPSA, TRBPRE,VLVEX
EXPAND
CALLEDBY
CORE1.
FAXPOS
CALLEDEY
RVLVE, VLVEX.
FBRCSS
CALLS
ERROR.
CALLEOBY
INPUT.
FEMOM
CALLS
LEVEL ,GETBIT.
CALLEDBY
PREPER.
FEM\ivit
CALLS
SATTMMP.
CALLEDB'?
VS!\L1.
FEMOMY
CALLS
SATTMP.
CALLEDBY
VSSL.1.
FEMOMZ
CALLS
SATTMP.

```
```

    CALLEDBY
        VESL1.
    FF3D
CALLS
GVSSL1,SETBIT ,CONCF
CALLEDBY
VSSL3.
FILL
CALLS
FLLX ,JID ,GETBT
CALEDBY
PREP4D.
FILL2
CALLS
JID.
6.4.7BY
JTT10
Fill
CALLS
J1D.
CALLED BY
POST.
FILX
CALLS
TRIP ,SHIFTB , EVLTAB , LININT, ERROR ,THERMO ,FPROP ,MIXPRP.
CALLED BY
FILL4.
FLTOM
CALLS
LDCHAR,VSSROD , PIPROD
CALLEDBY
HTSTR4.
FLUX
CALLS
GETBIT , ICMPR
CALLEDBY
PREPER
FLUXES
CALLEDBY
VSSL2.
FNMESH
CALLEDBY
CORE1.
FPROP
CALLS
CPLL ,CPW1, VISCL, VISCV ,THCL ,THCV , SIGMA.
CALLEDBY
BREAK3, BREAKX, FILX, IBRK, IFILL ,INPUT, IVSSL, PLEN3 , POSTER,
VSSL3.
FROD
CALLS
MWRX ,GAPHT, RODHT
CALLEDBY
CORES.
FTHEX
CALLED BY
DELTAR

```
```

FWALL
CALLS
FWKF,
CALLEDBY
PAEPEF.
FWKF
CALLEDBY
FWALL., IWALL.3.
GAPHT
CULLS
DELTAR , MGAP.
CALLEDBY
FFOD.
GETETT
CALLS
EAROR.
CALLEOBY
ALXPLN, BREAK1, CHKBD, CIF3 , ECOMP ,FEMOM, FLLL, FLUX ,GRAF
HTIF PLEN3, POSTER, PREPER,STBME, TEE3 TF1DS,TFIDS1,TFIDS3
TF3DS ,TF3DS1 ,TFPLBK, TFPLN.
GETCRV
CALLS
ERROR SPLIT,
CALLEDBY
PUMPD
GLEVEL
CALLS
LEVELI, PACKIT,
CALLEDBY
GRAF,IGRAF
GFAF
CALLS
IOVY, RDLCM, GRFGET, BFOUT, OTIME RVSLCM, RRDI.CM , RHVGET
SETLCM , PACKIT ,ERROR ,MANAGE ,GLEVEL, EOVLY ,LOCTRB ,GETBIT
CALLED BY
PSTEPO,STEADY,TRANS.
GRFGET
CALLEDBY
GRAF , IGRAF,
GRFPUT
CALLS
SETLCM ERAOR.
CALLED EY
IGACUM, IGBRAK, IGCOMP, IGFILL, IGHSTR ,IGPIPE, IGPLEN, IGPRZR, IGPUMP
, IGRAF ,IGSTGN, IGSVCB, IGTEE, IGTURB, IGVLVE ,IGVSSL
GVSSL. }
CALLEDBY
FF3D.
GVSSL2
CALLS
SATTMP
CALLEDBY
VSSL3.
HEV
CALLESBY
SATDEF, SATTMP,SETEOS THEFMO
HLFILM

```
```

    CALLEDBY
        HTCOA
    HLFLMR
    CALLEDBY
        HTVSSL
    HOUT
CALLS
CLEAR ,OUTER , EDTT ,POST ,ERROR ,QTIME.
CALLEDBY
STEADY, TRANS
HTCOR
CALLS
CHEN, CHF1, CHF , YVNB ,TMSF8 HVFILM, HLFILM, VISCV, CPVVI,
THCV
CALLED EY
CORE1 , ITPIPE,STGN1X.
HMF
CALLS
OFFBIT, SETBIT,SATPRS GETBIT
CALLEDEY
PLEN2,TF1D ,VSSL2.
HTPIPE
CALLS
HTCOR
CALLEDBY
PREPER
HTSTR1
CALLS
HTSTRV, RDLCM , RROLCM,MANAGE,FLTOM ,CORE1 ,WRLCM
CALLEDBY
PREP
HTSTR3
CALLS
RDLCM , RRDLCM , MANAGE , ERROR , CORE3 ,WRLCM
CALLEDBY
POST
HTSTRV
CALLS
RDLCM ,RVSLCM, MANAGE,SETVA
CALLEDBY
HTSTA1
HTVSSL
CALLS
CHEN ,CHF1 ,CHF ,HVNB ,HLFLMR ,HVWEBB , VISCV ,CPVV1, THCV
CALLEDBY
COREI
HVWEBE
CALLS
EFROR, CPVY, THCV , VISCV
CALLEDBY
HTVSSL.
HUNTS
CALLS
IDEL
CALLEDBY
PREINP
HVFILM

```
```

    CALLEDBY
        HTCOR.
    HVNB
CALLEDBY
HTCOR ,HTVSSL.
HCCUM
CALLS
JUNSOL, VOLFA , IPROP ,CHBSAV ACCMBD ,CHBSET , WRLCM ,CHKBD
ELGR ,JFIND.
CALLEDBY
ICOMP.
IBRK
CALLS
THERMO FPROP ,MIXPRP WHLCM , JID IFIND.
CALLEDBY
NCOMP
ICHL
CALLEDBY
INPUT.
ICMPR
CALLEDBY
CHKBD, CONSTB, FLUX INNER , PREPER SAVBD, SETBD
ICOMP
CALLS
ERFOR, RDLCM, WTLCM, CLEAR,CIHTST SETLCM, IPIPE, TTEE ,IPUMP
\#FIL ,IBRK IPRIZF, ISTGEN, IACCUM, ITURB IVLVE , IPLEN ,SETNET,
CIVSSL, LOCTRE ,LOCVLV.
CALLED BY
INT,
IDEL
CALLEDBY
HUNTS, INPUT, PREINP.
IDIFF
CALLED BY
JVALUE.
IFILL
CALLS
THERMO ,FPROP ,MIXPRP,WRLCM JID JFIND.
CALLEDBY
ICOMP.
IFSET
CALLS
SETVA.
CALLEDBY
VSSL1.
IGACUM
CALLS
IGCOMP,GRFPUT.
CALLEDBY
IGRAF.
IGBRAK
CALLS
GRFPUT.
CALLEDBY
IGRAF
IGCOMP
CALLS

```
 GRFFUT.
 CALLEDBY
 IGAOUM, IGPIPE , IGPRZA, IGPUMP, IGSTGN,IGTEE, IGTURB, IGVLVE.
IGFIL:
 CALLS
 GRFPUT,
 CALLEDBY
 IGRAF
KMHSTR
 CALLS
 GFFPUT
 CALLEDBY
 KGAAF.
KSPIPE
 CALLS
 GCOMP,GRFPUT
 CALLEDBY
 IGRAF
IGPLEN
 CALLS
 GRFPUT.
 CALLEDBY
 IGRAF.
IGPRZZA
 CALLS
 IGCOMP ,GRFPUT
 CALLEDBY
 IGPAF.
KGPUMP
 CALLS
 IGCOMP ,GRFPUT.
 CALLEDBY
 IGRAF
IGRAF
 CALLS
 BFALOC, ERROR ,SETLCM ,GRFPUT, IGSVCE ,RDLCM , IGPIPE, IGTEE
 KGPUMP, IGFIL IGBRAK IGPFZA, IGSTGN IGVSSL IGACUM IGTURB IGPLEN
 , IGHSTA, IGVLVE, BFOUT ,GFFGET, RVSLCM, RVVGET, PACKIT, MANAGE
 GLEVEL, LOCTRE
 CALLEDBY
 |NTT.
IGSTGN
 CALLS
 GRFPUT, IGCOMP.
 CALLEDBY
 IGRAF
IGSVCB
 CALLS
 GRFFUT.
 CALLEDBY
 IGRAF.
IGTEE
 CALLS
 GRFPUT IGCONO
 CALLEDBY
 IGRAF
```

IGTURB

```
 CALLS
 IGCOMP,GPRPUT,
 CALLEOBY
 IGRAF
IGVVE
 CALLS
 IGCOMP , GRFPUT.
 GALLEDBY
 IGFAF
IGVSSL
 CA:LS
 GRFPUT
 CALLEDBY
 KBAF.
ILEVEL
 CALLS
 WIARR , LEVELR
 CALLEDGY
 AVSSL.
INDEL
 CALLEDBY
 ALLBLK, PREINP
NTT
 CALLS
 IOVLY, ICOMP, IGRAF, ERROR EOVLY.
 CALLEDBY
 TRAC
INTBC
 CALLS
 SETVA
 CALLEDBY
 IVSSL.
INNER
 CALLS
 ON1123,TF1D,J1D ,ICMPR
 CALLED BY
 ACNUM2 , PIPE2, PRIZR2, PUMP2 , STGEN2, TEE2 ,TURB2 , VLVE2.
INPUT
 CALLS
 FEXIST, ERROR, CIEAR, IOVLY, DATEU,TIME ,PREINP, READI ,SETLCM ,
 SETEOS NAMLST, ASSIGN, READR , LOAD , ISORT ,WLABI , WARRAY
 FCNTL NXTCMP, RDCOMP ,RDCOM3, RDREST, ORDER, FBRCSS ,SRTLP
 ,VMCELL, ASIGN, EOVLY , JUNSOL, VOLFA ,COMPI, IPROP , CHBSAV
 SETBD , CHBSET WRLCM , CHKBD , ELGR , THERMO, FPROP ,MIXPRP ,
 BDPLEN ,MANAGE, LININT, ZPWHCI ,LCHVSS , LDCHAR , LCHPIP ,TRSLBL,
 IDEL ,ICHL. JFIND.
 CALLEDBY
 TRAC.
IOVLY
 CALLED BY
 CLEAN, DMPIT, EDT, GRAF, INIT ,INPUT, OUT1D,OUT3D ,OUTER, POST
 ,PREP , PREP1D , PREP3D , RDCOM3 , RDCOMP ,RDREST, TRIPS
IPIPE
 CALLEDBY
 ICOMP.
IPLEN
 CALLED BY
```

ICOMP.
IPRIZA
CALEDBY ICOMP.

## IPROP

CALLED BY LACCUM, INPUT, ISTGEN, ITEE , TURB , MLVE.
IPUM ${ }^{\circ}$
CALLEDBY ICOMF.
HOD
CALLED GY
CIHTST.
IRODL
CALLEDBY CIHTST.
ISORT
CALLED BY INPUT.

## ISTGEN

CALLS JUNSOL, VOLFA, COMPI, IPROP, CHBSAV, JID , CIBSET, SETBL , ERFOR , ESTGEN ,WRLCM , CHKBD , ELGR , JFIND.
CALLED BY LCOMP.
ITEE
CALLS
COMPI, IPROP, JUNSOL , VOLFA , CHBSAV SETBD, CHBSET, ETEE WRLCM , CHKBD ,ELGR , ERROR , JFIND
CALLEDBY ICOMP.
ITURB

## CALLS

TRBPOW , JUNSOL, VOLFA COMPI, IPROP , CHESAV, SETBD , CHBSET, WRLCM , CHKBD ELGR JFIND.
CALLEDEY ICOMP.
IVLVE
CALLS
JUNSOL , VOLFA , COMPI , IPROP , CHBSAV , SETBD , CHBSET , ERROR , WRLCM , CHKBD ,ELGR ,JFIND
CALLED BY ICOMP.
IVSSL
CALLS
SETVA MANAGE, WLEVEL, THERMO, FPROP , INITBC, RDZMOM, IWALL 3 . MIX3D, SCLMOM ,DVPSCL , SETBDT, J3D
CALLED BY CIVSSL.
IWALL3
CALLS
SETVA FWKF.
CALLED BY IVSSL.
J1D

```
 CALLEDBY
 ACCMBD, ACCUMI, BREAK1, BREAK2, BREAK3 CONSTB, FILL1 FILL2
```

FILL 3 , IBRK , IFILL, INNER , ISTGEN, SETBD , STGEN1 ,STGEN2, STGEN3 STGITX , TEEIX
J3D
CALLS
MANAGE , OF 1123 , SETBIT.
CALLED BY IVSSL , POST3D , VSSL. 1 , VSSL2 , VSSL3.
JFIND
CALLS
ERROR
CALEDBY
CIVSSL, IACCUN, IBFK, IFILL, NNPUT ISTGEN, TTEE, TTURB, IVLVE
JUNSOL
CAL.LS LDCHAR.
CALLEDBY LACCUM, INPUT, ISTGEN, ITEE, TTURB ,MVE.
JVALUE
CALLS IDIFF.
CALLEDBY PREINP , VALUE.
LABELP
©ALLEDBY TRAC.
LCHPIP
CALLED BY INPUT.
LCHVSS
CALLED BY INPUT.
LCMTRN
CALLS
SETLCM , WRLCM , CLEAR
CALLED BY PEHTST, REVSSL, RHTSTR, RVSSL.
LDCHAR
CALLEDBY
BFALOC , CIVSSL, FLTOM, INPUT, JUNSOL, RACCUM, RBREAK, REACCM , REBRK, REFILL REPIPE, REPLEN, REPRZA , REPUMP, RESTGN RETEE RETURB, REVLVE, REVSSL, RFILL RPIPE, RPLEN, RPRIZA, RPUMP, RSTGEN ,RTEE , RTURB , RVLVE ,RVSSL, SRTLP.
LENTAB
CALLEDBY TRAC.
LEVEL
CALLEDBY
FEMOM , OFFTKE.
LEVELI
CALLEDBY
DLEVEL, GLEVEL, WLEVEL, WVSSL
LEVELR
CALLEDBY
ILEVEL, REVSSL, RLEVEL, RVSSL.
LININT
CALLEDBY
BREAKX, CBSET, CDTHEX, DELAY, EVFXXX EVLTAB, FILLX, INPUT, MZIRC

```
 PUMPD ,PUMPX , RFILL, RPIPE , RPUMP ,RROD2 ,RTEE ,RTURB ,RVLVE , VSSLI.
LINT4D
 CAiLEDBY
 CBSET , RFDBK
LOAD
 CALLS
 CLEAR,DCODF, ERAOR.
 CALLEDBY
 INPUT, RBREAK, ACNTL, RCOMP RDCRVS ,RFILL, RHTSTR, RPIPE, RPLEN
 , RPUMP ,RROD2, RISTGEN, RTEE , RTURB , FVLVE ,RVSSL.
LOCPMP
 CALLS
 ERROR.
 CALLEDBY
 SVSET1.
LOCTEE
 CALLS
 ERFOR
 CALLEDBY
 SVSET.
LOCTRB
 CALLS
 EAROR.
 CALLEDBY
 GRAF , ICOMP ,IGRAF,
LOCVLV
 CALLS
 ERROR
 CALLEDBY
 1OOMP,SVSET1
MANAGE
 CALLS
 ERROR.
 CALLEDBY
 CORE1 , CORE3 ,DROD1, DVSSL, GRAF ,HTSTR1, HTSIR3, HTSTRV, IGRAF
 , INPUT IVSSL ,J3D ,POST3D, RFDBK ,SVSET3 ,SVSETH, VSSLY ,VSSL2 ,
 VSSL3 ,WHTSTR ,WVSSL.
MATSOL
 CALLS
 BGLSDC, ERAOR , BGLSSL,SGEFAV,SGESLV.
 CALLEDBY
 OUT3D , POST3D , PAEP3D, VSSL2.
MBN
 CALLEDBY
 MFROD
MFROD
 CALLS
 ERROR,MFUEL,MZIRC,MBN ,MHTR ,MSTRCT.
 CALLEDBY
 CORE1.
MFUEL
 CALLEDBY
 MFROD
MGAP
 CALLEDBY
 GAPHT.
```

```
MHTR
 CALLEDBY
 MFROD.
M|X3D
 CALLS
 COPYA.
 CNLLEDBY
 NSSL, VSSL3.
MIXPRP
 CALLEDBY
 BRE NKX,FLLX, IBRK, IFLL, INFUN.
MCDIFY
MPROP
 CALLS
 MSTRCT.
 CALLEDBY
 PREPER, STGN1X.
MSTACT
 CALLS
 ERROR
 CALLEDBY
 MFROD MPROP.
MWRX
 CALLEDBY
 FROD.
MZIRC
 CALLS
 LININT.
 CALLED BY
 MFROD
NAMLST
 CALLS
 ERROR.
 CALLEDEY
 INPUT.
NEWDLT
 CALLS
 SEDIT.
 CALLEDBY
 TIMSTP.
STDIR
 CALLED BY
 VSSL2.
NXTCMP
 CALLS
 ERROR
 CALLEDBY
 INPUT.
OFFTKE
 CAL'S
 LEVEL, ERROR
 CALLED BY
 TEE3.
ORDER
 CALLED BY
 INPUT.
OUTID
```

APPENDIX B ..... B. 19

```
 CALLS
 IOVLY RDLCM SETLCM CLEAR PIPE2 PUMP2 TEE2 VLVE2 BREAK2
 FH12, PRIZR2, CTAIN2, STGEN2, ACCUM2, TURB2 ,PLEN2 , ERROR ,WRLCM
 EOVLY.
 CNLLEDBY
OUT30
 CALLS
 IOVLY , CLEAR , RDLCM , EFROR , RVSLCM , YSSL2, WRLCM ,MATSOL,
 EOVLY.
 CNLEDBY
 OUTER.
OUTER
 CALLS
 IOVLY ,CLEAR ,OUT1D ,SGEFAV,SGESLV ERROR ,OUT3D ,EOVLY.
 CALLEDBY
 HOUT.
PACKIT
 CALLED BY
 GLEVEL, GRAF ,IGRAF
PIPE゙1
 CALLS
 SAVBD , PREPER , PIPE1X , SETBD , EVFXXXX ,BKMOM
 CNLEDBY
 PREP1D
PIPE1X
 CALLEDBY
 PIPE1.
PIPE2
 CALLS
 INNER
 CALLEDBY
 OUT1D
PIPE3
 CALLS
 POSTER,SETBD,SAVBD, EVFXXX, EVALDF CONSTB
 CALLEDBY
PIPROD
 CALLS
 RDLCM.
 CALLEDBY
 FLTOM.
PLEN1
 CALLS
 CLEAR ,BDPLEN
 CHLLEDBY
 PREP1D.
PLEN2
 CALLS
 CLEAR ,THERMO, HTIF AUXPLN, TFPLN ,BDPLEN, TFFLBK
 CALLED BY
 OUTID
PLEN3
 CALLS
 ASTPLN , STBMPL, BKSPLN , SETBIT, CLEAR ,THERMO ,FPROP , BDPLEN
 GETBIT.
```

```
 CALLEDBY
 POST.
PNTHOD
 CALLS
 CLEAR
 CALLEDBY
 REHTST , PHTSTR.
PNTVSS
 CALLS
 CLEAR.
 CALLEDBY
 REVSSL. , AVSSL.
POST
 CALLS
 IOVIY, TRBPST, CLEAR, RDLCM, SETLCM PIPE3, PUMP3, TEE3, VLVE3
 BREAK3 ,FILL3, PRIZR3, CTAIN3,STGEN3, ACCUM3 TURB3 , PLEN3 , ERROR
 WRLCM ,SGEFAV SGESLV , POST3D ,HTSTR3, EOVLY.
 CALLEDBY
 ERRTRP ,HOUT ,STEADY,TRANS.
POST3D
 CALLS
 CLEAR , RDLCM ,RVSLCM , VSSL. 3 , ERROR ,WRLCM ,MATSOL ,MANAGE ,
 J30.
 CALLEDBY
 POST.
POSTER
 CALLS
 OF1123 , THERMO, BKSSTB , ERROR , CYLHT ,SETBIT , FPROP ,GETBIT
 CALLEDBY
 ACCUM3 , PIPE3 , PRIZR3 , PLMMP3 , STGEN3 ,TEE3 ,TURB3 , VLVE3.
PREFWD
 CALLS
 SETLCM, ERROR,TMPPTR, VFWALL3.
 CALLEDBY
 VSSL.1.
PREINP
 CAlLS
 ERROR, VALUE ,HUNTS , IDEL , ALLBLK, INDEL, JVALUE
 CALLEDBY
 INFUT.
PREP
 CALLS
 IOVLY , TRIPS ,PREP1D,HTSTR1 ,PREP3D ,EOVLY.
 CALLEDBY
 STEADY , TRANS.
PREP1D
 CALLS
 IOVLY , TRBPRE, CLEAR , RDLCM ,SETLCM ,PIPE1 , PUMP1 , TEE1 VLVEI ,
 BREAK1 ,FILL1, PRIZR1, CTAIN1, STGEN1, ACCUM1, TURB1, PLENI ,
 ERAOR,WRLCM,SGEFAV,SGESLV, EOVLY.
 CALLEDBY
 PREP.
PREP3D
 CALLS
 IOVLY, CLEAR ,RDLCM ,RVSLCM, VSSL1 ERROR,WRLCM ,MATSOL ,
 EOVLY.
 CALLEDBY
```

```
 PREP.
PREPER
 CALLS
 CLEAR ,SETBIT, VOLV ,FWAL ,WPROP NTTPIPE ,FLUX ,PUMPSR, FEMOM
 GETBIT ,ICMPR.
 CNLLEDBY
 AOCUM1, PIPE1, PFIZZR1, PUMP1,STGEN1,TEE1, TUAB1,VLVE1.
PRIZR1
 CAlLS
 SAVBD ,PREPER , PRZR1X, SETBD, BKMOM
 CCLLEDBY
 PREPID
PRIZR2
 CALLS
 INNER.
 CALLED) EY
 OUT1D.
PRIZR3
 CALLS
 POSTER,SETBD, SAVBD , EVALDF,CONSTB
 CALLEDBY
 POST.
PRZR1X
 CALLED BY
 PRIZR1.
PSTEPQ
 CALtS
 EDIT , SEDIT ,GRAF ,DMPIT
 CALLEDBY
 STEADY,TRANS.
PTRSA
 CALLEDBY
 CIVSSL.
PTRSPL
 CALLS
 SETLCM ERROR
 CALLEDBY
 REPLEN, RPLEN
PUMP1
 CALLS
 SAVED , PREPER ,SETBD , BKMOM.
 CALLED BY
 PREP1D.
PUMP2
 CALLS
 INMER.
 CALLEDBY
 OUT1D.
PUMP3
 CALLS
 POSTER,SETBD ,SAVBD , EVFXXX, EVALDF ,CONSTB
 CALLEDBY
 POST.
PUMPD
 CALLS
 GETCRV , ERROR , LININT
 CALLEDBY
```

PUMPX.
PUMP:
CALED BY
PIMPSA
CALIS
TRIF, ENTAS, ERAOR ,PUMPX, SHFTB.
CALEDBY
PREPEA.
PUMPX
CALLS
LININT , WARRAY, PUMPD.
CALLEDBY
PUMPSA
RACCUM
CALLS
ERROR , CLEAR , READI , LDCHAR ,S1DPTR ,SCMLCM , RCOMP
CALLEDBY
RDCOMP
RBREAK
CALLS
ERROR , CLEAR , READI, READA , LDCHAR ,SIDPTR, SETLCM, LOAD WARRAY, SCLTBL WRLCM, SATTMP
CALLEDBY
RDCOMP.
RCNTL
CALLS
CLEAR , LOAD , READI , READR , CBEDIT , WLABR , ERROR , SETLCM
CALLEDBY
INPUT.
RCOMP
CALLS
LOAD WARRAY, ERROR , WIARR , SETBIT CLEAR
CALLEDBY
RACCUM, RPPPE, RPRIZA, RPUMP, RSTGEN ,RTEE, RTURB, RVLVE.
RDCOM3
CALLS
IOVLY, RVSSL, EOVLY.
CALLEDBY
INPUT.
ADCOMP
CALLS
IOVLY, RPIPE, RPUMP, RTEE, RVLVE RBREAK, RFILL, RPRIZR, RSTGEN,
RACCUM RTURB, RPLEN, RHTSTR, ERROR, WRLCM ,EOVLY.
CALLEDBY
INPUT.
RD $\quad$ RDS
CALLS
ERROR
CALLED BY STEADY.
RDCRVS
CALLS
LOAD WARRAY, PUMPI
CALLEDBY
APUMP.
RDDIM

CALLS
CLEAR, READI, MARR , ERROR
CNIEDBY
RPUMP.
RDLICM
CALLEDBY
BFIN , CHTST, DERK, DCOMP, DFILL DHTSTR, DMPIT, DPLEN , GRAF HTSTR1 HTSTR3, HTSTRV, ICOMP IGRAF OUTID OUT3D , PIPROD POST POST3D PREP1D PREP3D RRDLCM, RVSLCM, SVBET, SVSETH TRBPRE, TRBPST, VLVEX , WCOMP , WHTSTR.

## RDREST

CALLS
IOVLY, SETLCM, FEXIST, ERROR , BFALOC ,BFIN , RECNTL, EOVLY, REPIPE REPUMP RETEE, REVLVE, REBRK, REFIL , REPRZA , RESTGN, REACCM , RETURB , REPLEN , REHTST ,REVSSL

## CALLEDBY

INPUT.

## RDZMOM

CALLS
SETVA.
CALLEDBY
IVSSL.

## REACCM

CALLS
BFIN , LDCHAR , SIDPTR , ERROR , SCMLCM ,RECOMP , WRCOMP.
CALLEDBY RDAEST.
READI
CALLS
ERROR
CALLED BY
INPUT RACCUM, RBREAK, RCNTL, RDDIM RFILL , RHTSTR, RPIPE, RPLEN , RPRIZR ,RPUMP , RRODI , RSTGEN, RTEE , RTURB ,RVLVE, RVSSL

## READR

CALLS
ERROR.
CALLEDBY
INPUT RBREAK, RCNTL, RFILL, RHTSTR, RPIPE, RPRIZR, RPUMP, RROD 1 , RSTGEN ,RTEE , RTURB , RVLVE, RVSSL , TIMSTP.
ne:BRK
CALLS
BFIN , LDCHAR , SIDPTR , SETLCM , EFROR , WARRAY, WRLCM.
CALLED BY RDREST.

## RECNTL

CALLS
ERROR , CBEDIT.
CALLED BY RDREST.
RECOMP
CALLS
BFIN .
CALLED BY
REACCM , REPIPE, REPRZR, REPUMP, RESTGN RETEE, RETURB, REVLVE

## REFILL

CALLS
BFIN , LL 'AAR , SIDPTR , SETLCM , ERROR , WARRAY, WRLCM

```
 CALLEDBY
 RDREST.
AEHTST
 CALLS
 BFIN , PNTACD, ERFOF , LCMTRN, RERODI
 CALLEDBY
 RDREST.
REPIPE
 CALLS
 BFIN ,LDCHAR,SIDPTR, ERROF ,SCMLCM ,RECOMP,WRCOMP,WARRAY,
 CALLEDBY
 RDREST.
REPLEN
 CAlLS
 BFIN ,PTRSPL, ERROR SCMLCM , WARRAY LDCHAR.
 CALLEDBY
 ADREST.
REPRZR
 CALLS
 BFIN , LDCHAR,SIDPIA, ERROR ,SCMLCM ,RECOMP, WRCOMP
 CALLEDBY
 RDPEST
REPUMP
 CALLS
 BFIN , LDCHAR , SIDPTR,ERAOR,SCMLCM, RECOMP, WARRAY, WRCOMP
 CALLEDBY
 RDREST.
REROD1
 CAlLS
 BFIN ,WIARR ,WARRAY,CLEAR
 CALLEDBY
 REHTST.
RESTGN
 CALLS
 BFIN , LDCHAR,SIDPTR,SUMLCM , RECOMP ,WIARR, WAKRAY, WRCOMP
 CALLEDBY
 RDREST.
RETEE
 CALLS
 BFIN, LDCHAR,SIDPTR,ERROR,SCMLCM,FECOMP, WRCOMP, WARRAY.
 CALEOBY
 ADREST.
RETURB
 CALLS
 BFIN , LDCHAR,SIDPTR, ERROR ,SCMLCM ,RECOMP, WIARR , WARRAY,
 WRCOMP, WRLCM.
 CALLEDBY
 RDREST
REVLVE
 CALLS
 BFIN , LDCHAR , SIDPTR, ERROR , SCMLCM , RECOMP , WRCOMP, WARRAY,
 CALLEDBY
 RDREST.
REVSSL
 CAlLS
 BFIN , ERROR, PNTVSS , LCMTAN , WARRAY WIARR , LDCHAR, WRLCM
 CLEAR , LEVELR.

\section*{CALLED BY}

RDREST.
RFDBK
CALLS
MANAGE , ERROR , UINTAD.
CALLED BY COREI.
RFILL
CALLS
ERROR , CLEAR , READI, READR, LDCHAR ,SIDPTR, SEILCM , LOAD , WARRAY , SCLTBL ,LININT , WRLCM.
CALEDBY RDCOMP.
RHOLIO
CALEDBY
RHTSTR
CALLS
ERROR , CLEAR , READI, READR, RROD1 , PNTROD , LCMTRN , LOAD , WIARR, WARRAY WLABR, RROD2 WRLCM
CALLED BY
RINGO
RKIN
CALLS EVFXXOX, TRIP ERRUR.
CALLED BY CORE 1.
ALEVEL
CALLS
WARRAY, LEVELR.
CALLEDBY RVSSL.
RODHT
CALLS TRISLV , BANSOL , ERROR.
CALLEDBY FROD.
RPIPE
CALLS
ERROR CLEAR , READI, READR , LDCHAR , SIDPTR , SCMLCM , RCOMP LOAD , WARRAY ,SCLTBL , LININT, WRLCM.
CALLEDBY RDCOMP.
RPLEN
CALLS
ERROR , CLEAR , READI , PTRSPL , SCMLCM , LOAD , WLABI , WARRAY, LDCHAR.
CALLED BY RDCOMP.
RPRIZR
CALLS ERROR , CLEAR , READI, READR , LDCHAR , SIDPTR , SCMLCM , RCOMP
CALLEDBY RDCOMP.
RPUMP
CALLS
```

    ERPOR, CLEAR, READI ,READR, LDCHAR ,RDDIM ,SIDFTH, SCMLCM,
    RDCRVS , RCOAP ,LOAD ,WARFAY,SCLTBL, LININT , THERMO.
    CALLEDBY
    RDCOMP
    FrTDLCM
CALLS
RHVGET , RDLCM.
CALLEDBY
GIHTST, DHTSTR ,GRAF ,HTSTR1 ,HTSTR3 ,SVSETH , WHTSTR
AHFGET
CALLEDBY
GRAF ,RRDLCM
RROD1
CALLS
READI, READR, ERAOR.
CALLEDBY
RHTSTR.
RROD2
CALLS
LOAD ,WARRAY, CLEAR ,WLABR , ERROR ,SCLTBL, LININT, DECAYS.
CALLEDBY
RHTSTR.
RSTGEN
CALLS
ERROR, CLEAR, READI, READR, LDCHAR ,SIDPTR,SCMLCM, HCOMP
WRLCM ,LOAD WLABI,WIARR WARRAY.
CALLED BY
RDCOMP
RTEE
CALLS
ERROR, CLEAR ,READI ,READR ,LDCHAR ,SIDPTR,SCMLCM , RCOMP
LOAD ,WARRAY ,SCLTBL, LININT, WRLCM.
CALLEE BY
RDCOMP.
RTURB
CALLS
ERROR, CLEAR, READI, READR, LDCHAR SIDPTR,SCMLCM LOAD
WIARR, WARRAY ,SCLTBL, LININT, WRLCM , RCOMP.
CALLEDBY
RDCOMP
RVLVE
CALLS
ERROR ,CLEAR , READI ,READR , FAXPOS ,LDCHAR,SIDPTR ,SCMLOM ,
RCOMP , LOAD ,WARRAY, LININT, SCLTBL, THFRMO.
CALLEDBY
RDCOMP
RVSLCM
CALLS
RVVGET, RDLCM.
CALLEDBY
CIVSSL, CWVSSL, DVSSL, GRAF ,HTSTRV ,IGRAF ,OUT3D ,POST3D,
PREP3D, SVSET3.
RVVGET
CALLEDBY
IGRAF ,RVSLCM
RVSSL.
CALLS

```
```

                            ERROR ,CLEAR, READI, READA PNTVSS,LCMTRN, LOAD ,WARRAY
                            WIARR ,LDCKAR,CHKSR ,WRLCM , RLEVEL, ILEVEL, LEVELR ,VDPCSS
    CALLLD EY
                            RDCOM3.
    S1DPTR
CALLS
CLEAA.
CALIEDBY
RACCUM, RBREAK, REACCM, REBRK, REFILL, REPIPE, REPRZR, REPUMP,
RESTGN, RETEE ,RETURB, REVLVE ,RFILL , RPIPE , RPRIZR ,RPUMP ,
RSTGEN, RTEE,RTURB, RVVE.
SATDER
CALLS
HEV.
CALIEDBY
TFIDS , TF3DS , TFPLN , THERMO.
SATPRS
CALLED BY
CHEN , CHF ,CHOKE, HTIF SATTMP ,SOUND TF1DS,TF1DS3,TF3DS
TF3DS3 ,TFPLBK, TFPLN , THERMO.
SATTMP
CALLS
HEV SATPRS
CALLEDBY
BREAKX, FEMOMX, FEMOMY, FEMOMZ,GVSSL2 RBREAK,SOUND,TF1DS3
TF3DS1 , TF3DS3 ,TFPLBK ,THERMO ,TRBPOW.
SAVBD
CALLS
ICMPR.
CALLEDBY
ACCUM1 , ACCUM3 , PIPE1 ,PIPE3 , PRIZR1 ,PRIZR3 ,PUMP1 ,PUMP3
STGEN1, STGEN3 ,T:5 ,TEE3 ,TURB1, TURB3 ,VLVE1 ,VLVE3.
SCLMOM
CALLS
ERROR
CALLEDBY
IVSSL.
SCLTBL
CALLS
WARRAY
CALLEDBY
RBREAK, RFIL , RPIPE, RPUMP , RROD2 ,RTEE , RTURB , RVLVE,
SCMLCM
CALLS
SETLCM ,WRLCM , CLEAR
CALIEDBY
ACCUN FEACCM, REPIPE, REPLEN, REPRZR, REPUMP, RESTGN, RETEE
- ITUAI*, AEVLVE ,RPIPE , RPLEN , RPRIZR , RPUMP , RSTGEN ,RTEE ,
URB , RVLVE.
SEDr;
L
CLEAR ,OTIME
CALLEDBY
EDIT ,NEWDLT, PSTEPQ
SEPDI
CALLEOBY
JEE?

```
```

SEPDX
CALLS
SSEPOR.
CALIEDR
TEEi.
SETBD
CNLS
\ID , ICMMF
CALLEDBY
NPUT, ISTGEN, ITEE , TURB ,MLVE ,PIPE1 ,PIPE3 ,PRIZR1,PRIZR3
PUMP1 ,PUMP3 ,STGEN1, STGEN3, TEE1 ,TEE3 ,TURB1,TURB3 , VLVE1,
VLVE3.
SETBDT
CALLEDBY
IVSS', ,VSSL.1 ,VSSL2.
SETEOS
CALLS
HEV.
CALLEDBY
INPUT
SETIC
SETLCM
CALLS
MEMADJ, ERROR
CALLEDBY
TRAC,GT \F ,GRFPUT,ICOMP, YGRAF ,NNPUT, LCMTRN OUT1D, POST
PREFWD PREPID, PTRSPL, RBREAK, RCNTL, RDREST REBRK, REFILL
RFILL,SCMLCM.
SETNET
CALLEDBY
ICOMP
SETVA
GALLEDBY
DVPSCL, HTSTRV, IFSET , INITBC, IVSSL ,IWALL3,ROZMOM, VSSL1.
SFA44
CALLEDBY
TFIDS, TFPLN.
SFA55
CALLEDBY
BKSPLN , BKSSTB , BKSTB3 , TF1DS , TF3DS ,TFPLN
SGBFA
CALLS
SSCAL.,SAXPY
SGBSL
CALLS
SAXPY,
SGEFA
CALLEDBY
CHOKE.
SGESL
CALLED BY
CHOKE
SHIFTB
CALLED क्षे
BREAK1 , BREAKX, FILLX ,PUMMPSA, VLVEX
SHRINK
CALLED BY

```
```

SEPDX
CALLS
SSEPOR.
CALLEDBY
TEE
SETBD
CALLS
J1D , ICMPR
CALLEDBY
NPUT, ISTGEN, TEE, TURB ,MVE PIPE1,PIPE3 , PRIZR1, PRIZR3 ,
PUMP1 ,PUMP3, STGEN1, STQEN3, TEE1, TEE3 ,TURB1, TURB3, VLVE1,
VLVE3.
SETBDT
CALLEDBY
IVSSL ,VSSL1 ,VSSL2.
SETEOS
CALLS
HEV.
CALLEDBY
INPUT.
SETIC
SETLCM
CALLS
MEMADJ, ERROR
CALLEDBY
TRAC, GRAF,GRFPUT, ICOMP, GRAF, INPUT, LCMTRN,OUT1D, POST
PREFWD ,PREPID, PTASPL, RBREAK, RCNTL, RDREST ,REBRK , REFILL
RFILL,SCMLCM.
SETNET
CALLED BY
ICOMP.
SETVA
CALLEDBY
DVPSCL, HTSTRV, IFSET , INITBC, IVSSL IWALL.3 , RDZMOM, VSSL.1.
SFA44
CALLEDBY
TFIDS , IFPLN.
SFA55
CALLEDBY
BKSPLN, BKSSTB , BKSTB3, TFIDS ,TF3DS ,TFPLN.
SGBFA
CALLS
SSCAL , SAXPY.
SGBSL
CALLS
SAXPYY.
SGEFA
CALLEDBY
CHOKE.
SGESL
CALLEDBY
CHOKE.
SHIFTB
CAJLED BY
BREAKY, BREAKX, FILLX, PUMPSR, VLVEX
SHRINK
CALLEDBY

```

CORE1.

\section*{SIGMA}

CALLEDBY FPROP.
SMOVE
CALLED BY SMOVEN.
SMOVEN
CALLS SMOVE.
SOUND
CALLS THERMO, ERROR , SATPRS, SATTMP
CALLED BY CHOKE.
SPLIT
CALLED BY GETCRV.
SRTLP
CALLS CLEAR , LDCHAR, ERROR , EXIT
CALLEDBY
INPUT.
SSEPOR
CALLED BY SEPDX.
SSL44
CALLED BY TFIDS , TFPLN.
SSL55
CALED BY BKSPLN , BKSSTB , BKSTB3 , TF1DS , TF3DS TFPLN
STBME
CALLS
GETBIT.
CALLEDBY CONSTB.
STBME3
CALLED BY VSSL3.
STBMPL
CALLED BY PLEN3.
STEADY
CALLS TIMCHK, TINSTP , PREP , ERROR , EDT ,GRAF , HOUT , POST , PSTEPQ, RDCRDS ,CLEAN , EXIT.
CALLED BY TRAC.
STGABD
CALLED BY STGNIX.
STGEN1
CALLS
CLEAR , SAVBD, STGNTX, PREPER, J1D ,SGEFAV, SGESLV, TRANSF STGN1X, SETBD ,BKMOM , ESTGEN.
CALLED BY

PRE.21D
```

STGEN2
CALTS
TRANSF, CLEAR,STGNTX, INNER , J1D ,SGEFAV,SGESLV.
CALLEDBY
OUT1D.
STGEN3
CALLS
POSTER , SETBD , TRANSF , SAVBD ,ESTGEN STGN3X, J1D , EVALDF,
CLEAR ,CONSTB ,SGEFAV, SGESLV.
CALLEDBY
POST.
STGN4X
CALLS
MPROP , STGABD , HTCC .
CALLEDBY
STGN3X
CALLS
ERROR,CYLHT
CALLEDBY
STGEN3.
STGNTX
CALLS
J1D.
CALLEDBY
STGEN1, STGEN2
SVSET
CALLS
RDLCM , SVSET1, SVSET3 , SVSETH , ERROR ,LOCTEE.
CALLEDBY
TRIPS.
SVSET1
CALLS
ERROR ,LOCPMP, LOCVLV.
CALLEDBY
SVSET.
SVSET3
CALLS
RVSLCM, ERROR , MANAGE
CALLEDBY
SVSET.
SVSETH
CALLS
RDLCM , RRDLCM , ERROR , MANAGE.
CALLEDBY
SVSET.
SWITCH
CAL.LS
MOVLEV.
TEE1
CALLS
SAVBD , TEEIX , PREPER , SEPDX , ERROH ,SETBD ,BKMOM , ETEE
CALLEDBY
PREP10.
TEE1X
CALLE

```
```

        J1D EVFXOOX
    CALLEDBY
        TEE1,TEE2.
    TEE2
CALLS
TEEIX, SEPLII, INNER.
CALLEDBY
OUTID.
TEE3
CALLS
POSTE {, SETBD , SAVBD, EVFXXX, OFFTKE EVALDF, ETEE, UONSTB ,
GETBIT.
CALLEDBY
TF1D
POST.
CALLS
THERMO CELLAV ,HTIF ,TF1DS1, TF1DS ,TF1DS3.
CALLEDEBY
INNER.
TF1DS
CALLS
SETBIT,OFFBIT,SFA44,SFA55 ,SSL44 ,SSL55,GETBIT,SATPRS SATDER
CALLEDBY
TF1D.
TFIDS1
CALLS
SETBIT, CHOKE ,GETBIT
CALLEDBY
TFID.
TFIDS3
CALLS
SETBIT , OFFBIT , THERMO , GETBIT , SATPRS ,SATTMP
CALLEDBY
TFID.
TF3DS
CALLS
THERMO ,SFA55 ,SSL55 , GETBIT , SATPRS ,SATDER
CALLEDBY
VSSL2.
TF3DS1
CALLS
VELBC, ZEROV ,GETBIT , SATTMP.
CALLEDBY
VSSL2.
TF3DS3
CALLS
THERMO,SATPRS, SATTMP.
CALLELBY
VSSL2.
TFPLBK
CALLS
SETBIT , TFIERMO , GETBIT , SATPRS , SATTMF
CALLEDBY
PLEN2
TFPLN
CALLS
SETBIT ,OFFBIT, SFA44 ,SSL44 SFA55 SSL55 , GETBIT,SATPRS,SATDER

```
```

    CALEDEY
        PLEN2.
    THCL
CALLEDBY
FPFOP.
THCV
CALEDBY
FPROP, HTCOR ,HTVSSL, HVWEE 3.
THERMO
CALLS
ERROR, RHOLIO , SATTMP , SATDER, SATPRS ,HEV.
CALLEDBY
BREAK3, BREAKX, CHOKE FILLX, IBRK ,IFILL, INPUT, IVSSL PLEN2 ,
PLEN3 ,POSTER, RPUMP, RVLVE,SOUND ,TF1D ,TF1DS3 ,TF3DS ,TF3DS3
,TFPLBK, VSSL2 ,VSSL3.
THMCHK
CALLS
SSWTCH, SYCAL, ERROR ,OTIME , EDI ,
DMPIT.
CALLEDBY
STEADY ,TRANS.
TMSTP
CALLS
ERROR, READR,TRIP ,NEWDLT.
CALLEDBY
STEADY,TRANS
TMMUPD
CALLEDBY
VSSL4
TMPPTR
CALLEDBY
PREFWD
TMSFB
CALLEDBY
HTCOR
TRANS
CALLS
TIMCHK, TMMSTP , PREP , ERROR , EDIT GRAF ,HOUT , POST , PSTEPO ,
DMPIT.
CNLLEDEY
TRAC.
TRANSF
CALLED BY
STGEN1,3TGEN2,STGEN3
TRBPOW
CALLS
SATTMP.
CALLEDGY
ITURB ,TURB1.
TRBPRE
CALLS
RDLCM ,TRIP , EVLTAB
CALLEDBY
PREP1D.
TRBPST
CALLS
RDLCM.

CALLEDBY
TRIP POST.

CALLS
ERROR.
CALLEDBY
BREAKX, CORE1 , EVFDOXX, FILX , PUMPSR ,RKIN , TIMSTP , TRBPRE , VLVEX , WPUMP.
TRIPS
CALLS
IOVLY, SVSET, CBSET , TRPSET , EOVLY.
CALEDBY PREP.
TRISLV
CALLED BY RODUT.
TRPSET
CALLS
ERROR
CAILED BY TRIPS.
TURE 1
CALLS
SAVBD , PREPER, SETBD , TRBPOW , EVFXXX , BKMOM
CALLED BY
PREP1D.
TURB2
CALLS
INNER.
CALLED BY OUT1D.
TURB3
CALLS
POSTER , SETBD , SAVBD , EVALDF, CONSTB.
CALLED BY
UNPKIT
VALUE
CALLS
JVALUE.
CALLED BY
PREINP.
VDPCSS
CAL ED EY RVSSL.
VEL.BC
CALLEED BY
TF3DS1.
' 3
*LS
WDRAG.
CALLED BY
PREFWD.
VISC:
CALLED BY
FPROP.

```
 CNHEDBY
 FPROP, HTCOR, HTVSSL, HVWEBB
VLVE4
 CALLS
 VLVEX ,SAVBD ,PREPER,SETBD ,BKMOM
 CALLEDBY
 PREPID.
VLVE2
 CAlLS
 INNER.
 CALIEDBY
 OUT1D.
VLVE3
 CALLS
 POSTER,SETBD , SAVBD , EVFXXX, EVALDF ,CONSTB
 CALLEDBY
 POST.
VLVEX
 CALLS
 TRIP, FAXPOS, SHIUTR, EVLTAB, RDLCM ERROR
 CALLEDBY
 VLVE1.
VMCELL
 CALLEDBY
 INPUT
VOLFA
 CALLEDBY
 LACCUM, INPUT, ISTGEN, TEE , TTURB ,IVLVE
VOLV
 CL "OBY
 3HEPER.
VRP'
 B'
 SSL1.
VSSI.
 MANAGE, TMMUPD, DVPSCL, VRED, IFSET ,SETVA ,LININT, ERROR ,
 SETBDT, CIF3 ,PREFWD ,FEMOMX, FEMOMY ,FEMOMZ, J3D.
 CALLEOBY
 PREP3D
VSSL2
 CALLS
 MANAGE, BAKUP ,THERMO TF3DS1, CELLA3 ,HTIF SETBDT, FLUXES,
 TF3DS , STDIR ,ERROR , MATSOL , BACIT , TF3DS3 , VSSSSR ,J3D.
 CALLEDBY
 OUT3D.
VSSL3
 CALLó
 MANACE, BAKUP , THERM(, EPROP , STBME3 ,BKSTB3, MIX3D ,FF3D
 EVALDF,GVSSL2,J3D.
 CALLEDBY
 POST3.
VSSROD
 CALLED BY
 FLTOM.
VSSSSR
 CALLED BY
```

```
 VSSL2
WACCUM
 CALLS
 ECOMP
 CALLEDBY
 WCOMP
WARRAY
 CALLS
 WLABR.
 CQLLEDBY
 ECOMP, ELGR, INPUT, PUMPX, RBREAK, RCOMP , RDCRVS, REBRK
 REFIL, FEPIPE ,REPLEN , REPUMP , REROD1, RESTGN , RETEE ,RETURB ,
 REVLVL, REVSSL, RFILL, RHTSTR ,RLEVEL, RPIPE, RPLEN, RPUMP
 RROD2, RSTGEN, RTEE, RTURB, RVLVE, RVSSL SCLTBL,WLEVEL,
 WRCOMP, WVSSL.
WBREAK
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP
WCOMP
 CALLS
 RDLCM, WRLCM ,WPIPE,WTEE ,WPUMP WFILL ,WPRIZR,WSTGEN,
 CWVSSL, WACCUM WTURB,WVLVE,WBREAK,WPLEN,WHTSTR.
 CALLEDBY
 EDIT.
WDFAG
 CALLED BY
 VFWALL3.
WFILL
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP.
WHTSTR
 CALLS
 RDLCM , RRDLCM, WRLCM ,MA':AGE
 CALLEDBY
 WCOMP
WIARR
 CALLS
 WLABI.
 CALLEDBY
 IIEVEL, RCOMP , RDDIM , RERODI, RESTGN ,RETURB, REVSSL, RHTSTR,
 FSTGEN, RTURB ,RVSSL, WRCOMP.
WLABI
 CALIEDBY
 INPUT , RPLEN , RSTGEN, WIARR
WLABR
 CALLEDBY
 RCNTL, RHTSTR, RROD2, WARRAY,
WLEVEL
 CALLS
 LEVELI, WARRAY
 CALLEDBY
 IVSSL, WVSSL
WPIPE
```

```
 CALLS
 ECOMP
 CALLEDBY
 WCOMP
WPLEN
 CALLED BY
 WCOMP
WPRRZR
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP
WPUMP
 CALLS
 TRIP, ECOMP.
 CALLED BY
 WCOMP.
WRCOMF
 CAL.LS
 WARRAY, WIARR.
 CALLEDBY
 REACCM , REPIPE , REPRZR , REPUMP , RESTGN ,RETEE , RETURB , REVLVE
WRLCM
 CALLEDBY
 BFOUT, CIHIST, CIVSSL, HTSTR1, HTSTR3, IACCUM, IBRK ,ICOMP, IFILL,
 INPUT, ISTGEN, TTEE, ITURB , IVLVE ,LCMTRN ,OUT1D, OUT3D ,POST
 POST3D , PREPID ,PREP3D , RBREAK, RDCOMP, REBRK , REFILL ,RETURE
 REVSSL RFILL, RHTSTR, RPIPE RSTGEN, RTEE, RTURE, RVSSL.
 SCMLCM WCOMP , WHTSTR.
WSTGEN
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP
WTEE
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP
WTURB
 CALLS
 ECOMP.
 CALLEDBV
 WLOMP
WVLVE
 CALLS
 ECOMP.
 CALLEDBY
 WCOMP
WVSSL
 CALLS
 MANAGE,WLEVEL, LEVELI ,CLEAR , WARRAY
 CALLED BY
 CWVSSL
ZCORE
 CALIELIBY
 CORE1
```

ZEROV
CALLED BY TF3DS1.
ZPWHCl
CALLED BY CORE1, INPUT.

## LIBRARY SUBROUTINES

PRODCTN
CALIEDBY TRAC.
GETUFL
CALLEDBY TRAC.
SAMPLE
CALLED BY TRAC.
SAMPON
CALLED BY TRAC.
GETJTL
CALLED BY TRAC.
LOADTIM
CALLED BY TRAC.
QTIME
CALLEDBY TRAC , DMPIT , ERROR , GRAF , HOUT ,SEDIT , TIMCHK
SAMPTRM
CALLEDBY TRAC.
EXIT
CALLED BY IRAC , ERRTRP, SRTIP , SIEADY.
SGEDI
OALLEDBY CHOKE
SGEEV
CALLED BY CHOKE.
COMPACT
CALLED BY CLEAN , ENDDMP , ENDGRF.
DATE
CALLED BY DATEU.
DSCAL
CALLEDBY
DGBFA.
DAXPY
CALLED BY DGEFA , DGBSL.
QxTI
CALLED $B^{\circ}$
ERRGCT , ERRTRP.

```
QADJUST
 CALLEDBY
 ERROR.
FEXIST
 CALLEDBY
 INPUT , RDREST.
TIME
 CALIEDBY
 INPUT.
ASSIGN
 CALLED BY
 INPUT,
TRSLBL
 CALLEDBY
 INFUT
BGLSDC
 CALLEDBY
 MATSOL.
BGLSSL
 CALLEDBY
 MATSOL.
SGEFAV
 CALLEDBY
 MATSOL , OUTER , POST ,PREP1D,STGEN1 ,STGEN2 , STGEN3
SGESLV
 CALLED GY
 MATSOL , OUTER , POST , PREP1D ,STGEN1 ,STGEN2 ,STGEN3
MEMADJ
 CALLED BY
 SETLCM
SSCAL
 CALLED BY
 SGBFA
SAXPY
 CALLEDBY
 SCBFA,SGBSL.
MOVLEV
 CALLEDBY
 SWITCH.
SSWTCH
 CALLEDBY
 TIMCHK.
SYCALL
 CALLED BY
 TIMCHK.
```


## APPENDIX C

## COMPONENT DATA TABLES

## C.1. POINTER TABLES

The pointer tables for one-dimensional components (described below) use four general sets of pointers: DUALPT, HYDROPT, INTPT, and HEATPT

## C.1.1. DUALPT

These pointers refer to variables whose values are stored for both old- and new-time values

| Name | Array | Dimension | Description |
| :---: | :---: | :---: | :---: |
| LALP | ALP | NCELLS | Old vapor fraction. |
| LALPD | ALPD | 0 | Variable not currently implemented. |
| LALPDN | ALPDN | 0 | Variable not currently implemented. |
| LALPN | ALPN | NCELLS | New vapor fraction. |
| LALV | ALV | NCELLS | Old value of flashing interfacial HTC times interfacial area. |
| LALVE | ALVE | NCELLS | Old value of liquid-side interfacial HTC times interfacial area. |
| LALVEN | ALVEN | NCELLS | New value of liquid-side interfacial HTC times interfacial area. |
| LALVN | ALVN | NCELLS | New value of flashing interfacial HTC times interfacial area |
| LARA | ARA | NCELLS | Old stabilizer value for $\alpha \rho_{a}$. |
| LARAN | ARAN | NCELLS | New stabilizer value for $\alpha \rho_{a}$. |
| LAREL | AREL | NCELLS | Old stabilizer value for ( $1-\alpha$ ) $\rho_{\ell} e_{\ell}$. |
| LARELN | ARELN | NCELLS | New stabilizer value for ( $1-\alpha$ ) $\rho<\mathbf{e} \boldsymbol{\ell}$. |
| LAREV | AREV | NCELLS | Old stabilizer value for $\alpha \rho_{v} \mathbf{e}_{v}$. |
| LAREVN | AREVN | NCELLS | New stabilizer value for $\alpha \rho_{v} e_{v}$. |
| LARL | API. | NCELLS | Old stabilizer value for $(1-\alpha) \rho_{e}$. |
| LARLN | ARL N | NCELLS | New stabilizer value for $(1-\alpha) \rho \ell$. |
| LARV | ARV | NCELLS | Old stabilizer value for $\alpha \rho_{v}$. |
| LARVN | ARVN | NCELLS | New sistinzet value for $\alpha \rho_{v}$, |
| LBIT | BIT | NCELLS +1 | Bit flags from previous time step. |
| LBITN | BITN | NCELLS +1 | Bit flags for current time step. |


| LCHTI | CHTI | NCELLS | Old value of vapor-side interfacial HTC times interfacial area. |
| :---: | :---: | :---: | :---: |
| LCHTIA | CHTIA | NCELLS | Old value of air interfacial HTC times interfacial area. |
| LCHTAN | CHTAN | NCELLS | New value of air interfacial HTC times interfacial area. |
| LCHTIN | CHTIN | NCELLS | New value of vapor-side interfacial HTC times interfacial area. |
| LCIF | CIF | NCELLS +1 | Old interfacial drag coefficients. |
| LCIFN | CIFN | NCELLS +1 | New interfacial drag coefficients. |
| LCONC | CONC | $\begin{aligned} & \text { NCELLS* } \\ & \text { ISOLUT } \end{aligned}$ | Olí solute mass to coolant mass ratio. ISOLUT $=0$ or 1 . |
| LCONL | CONC | NCELLS* ISOLUT | New solute mass to coolant mass ratio. ISOLUT $=0$ or 1 . |
| LD(3) | D | NCELLS | Variable not currently implemented. |
| LDN(3) | DN | NCELLS | Variable not currently implemented. |
| LEA | EA | NCELLS | Old air internal energy. |
| LEAN | EAN | NCELLS | New air internal energy. |
| LEL. | EL | NCELLS | Old liqu'd internal energy. |
| LELN | ELN | NCELLS | New liquid internal energy. |
| LEV | EV | NCELLS | Old vapor internal energy. |
| LEVN | EVN | NCELLS | New vapor internal energy. |
| LGAM | GAM | NCELLS | Old vapor generation rate per unit volume. |
| LGAMN | GAMN | NCELLS | New vapor generation rate per unit volume. |
| LHIG | HIG | NCELLS | New HTC between inside wall and air. |
| LHIGO | HIGO | NCELLS | Old HTC between inside wall and air. |
| LHIL | HIL | NCELLS | New HTC between inside wall and liquid |
| LHILO | HILO | NCELLS | Old HTC between inside wall and liquid. |
| LHIV | HIV | NCELLS | New HTC between inside wall and vapor. |
| LHIVO | HIVO | NCELLS | Old HTC between inside wall and vapor. |
| LP | $P$ | NCELLS | Old pressure. |
| LPA | PA | NCELLS | Old air partial pressure. |


| LPAN | PAN | NCELLS | New air partial pressure. |
| :---: | :---: | :---: | :---: |
| LPN | PN | NCELLS | New pressure. |
| LQPPC | QPPE | NCELLS | New critical heat flux (CHF). |
| LQPPCO | QPPCO | NCELLS | Old CHF |
| LROA | ROA | NCELLS | Old air density. |
| LROAN | ROAN | NCFLLS | New air density. |
| IROL | ROL | NCELLS | Old liquid density. |
| LROLN | ROLN | NCELLS | New liquid density. |
| LROV | ROV | NCELLS | Old vapor density. |
| LROVN | RCVN | NCELLS | New vapor density. |
| 1.5 | S | NCELLS* ISOLUT | Old solute mass plated on structure surface. ISOLUT $=0$ or 1 . |
| LSN | SN | NCELLS* ISOLUT | New solute mass plated on structure surface. ISOLUT $=0$ or 1 . |
| LTD | TD | 0 | Variable not currently implemented. |
| LTDN | TDN | 0 | Variable not currently implemented. |
| LTL | TL | NCELLS | OId liquid temperature. |
| LTLN | TLN | NCELLS | New liquid temperature. |
| LTV | TV | NCELLS | Old vapor temperature. |
| LTVN | TVN | NCELLS | New vapor temperature. |
| LTW | TW | NCELLS* NODES | Old wall temperatures. |
| LTWN | TWN | NCELLS* NODES | New wall temperatures. |
| LVL | VL. | NCELLS+1 | Old liquid velocity. |
| LVLN | VLN | NCELLS +1 | New liquid valocity. |
| LVLT | VLT | NCELLS +1 | New stabilizer liquid velocity ( $V_{e}^{n+1}$ ). |
| LVLTO | VITO | NCELLS +1 | Old stabilizer liquid velocity ( $\hat{V}_{\ell}^{n}$ ). |
| LVM | VM | NCELLS +1 | Cid mixture velocity. |
| IVMN | VMN | NCELL. $5+1$ | New mixture velocity. |
| LVV | VV | NCELLS +1 | Old vapor velocity. |
| LVVN | VVN | NCELLS +1 | New vapor velocity. |


| LVVT | VVT | NCELLS +1 | New stabilizer vapor velocity $\left(\bar{V}_{g}^{n+1}\right)$. |
| :--- | :--- | :--- | :--- |
| LVVTO | VVTO | NCELLS +1 | Old stabilizer vapor velocity $\left(\tilde{V}_{g}^{n}\right)$. |

## C.1.2. HYDROPT

These pointers refer to variables associated with the hydrodynamic calculations.

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| LALPMN | ALPMN | NCELLS | Minimum value of void fraction among a cell <br> and all its neighbors. |
| LALPMX | ALPMX | NCELLS | Maximum value of void fraction among a <br> ce!l and all its neighbors. <br> Void fraction at the start of the previous <br> step $\left(\alpha^{n-1}\right)$ |
| LALPO | ALPO | NCELLS | Air mass. |


| LFSMLT | FSMLT | NCELLS | Interphasic area multiplier during condensation. |
| :---: | :---: | :---: | :---: |
| LGRAV | GRAV | NCELLS+1 | Gravitation terms (cosine theta). |
| LGRVOL | GRAVOL | NCELLS | Cell-averaged GRAV. |
| LH(1) | WFHF | NCELLS +1 | Weighting factor for stratified-flow regime. |
| LH(2) | SI*DX | NCELLS +1 | Stratified interfacial area. |
| L.H(3) | DHLDZ | NCELLS +1 | Gravitational head force caused by void gradient. |
| LHD | HD | $\begin{aligned} & (\text { NCELLS }+1) \\ & *(\text { NDIA1-1) } \end{aligned}$ | Hydraulic diameters. |
| LHDHT | HDHT | (NCELLS + 1) | Heat-transfer hydraulic diameters. |
| LHFG | HFG | NCELLS | Latent heat of vaporization. |
| LHGAM | HGAM | NCELLS | Contribution to phase change from subcooled boiling. |
| LHLA | HLA | NCELLS | Sum of all products of liquid HTC with heattransfer area. |
| LHLATW | HLATW | NCELLS | Similar to HLA except that the product includes wall temperature. |
| LHVA | HVA | NCELLS | Sum of all products of vapor HTC with heattransfer area. |
| LHVATW | HVATW | NCELLS | Similar to HVA except that the product includes wall temperature. |
| LQP3F | QP3F | NCELLS | QPPP factor applied to the wall heat source. |
| LQPPP | QPPP | NODES* <br> NCELLS | Wall heat source. |
| LRARL | RARL | 0 | Variable not currently implemented. |
| LRARV | RARV | 0 | Variable not currently implemented. |
| LREGNM | REGNM | NCELLS +1 | Flow-regime number. |
| LRHS | RHS | NCELLS | Implicit vs explicit weighting factor, $g$ \% |
| LRMEM | RMEM | 0 | Variable not currently implemented. |
| LRMVM | RMVM | NCELLS +1 | Mixture density times mixture velocity. |
| LROM | ROM | NCELLS | Mixture density. |


| LRVMF | RVMF | NCELLS +1 | Vapor mass flow |
| :---: | :---: | :---: | :---: |
| LSIG | SIG | NCELLS | Surface tension. |
| LTRID | TRID | $6^{*}($ NCELLS +1$)$ | Storage for stabilizer linear system. |
| LTSAT | TSAT | NCELLS | Saturation temperature. |
| LTSSN | TSSN | NCELLS | Saturation temperature for steani pressure. |
| LVISL | VISL. | NCELLS | Liquid viscosity. |
| LVISV | VISV | NCELLS | Vapor viscosity. |
| LVLALP | VLALP | NCELLS | Liquid mass flux that enters the cell from the cell edges located above the cell. |
| LVIVC | VLVC | NCELLS | Liquid velocity at a neighboring cell edge where the donor-celled liquid fraction is maximum. |
| LVLVOL | VLVOL | NCELLS | Choked-flow model cell liquid velocity. |
| LVLX | VLX | 0 | Variable not currently implemented. |
| LVOL | VOL | NCELLS | Cell volumes. |
| LVR | VR | NCELLS +1 | Relative velocity |
| IVRV | VRV | NCELLS | Cell-averaged relative velocity. |
| IVVVOL | VVVOL | NCELLS | Choked-flow model cell vapor velocity. |
| LVVX | VVX | 0 | Variable not currently implemented. |
| LWA | WA | NCELLS | Wall areas. |
| LVIAT | WAT | NCELLS | Total heat-transfer area. |
| LWEL | WFI. | NCELLS +1 | Wall friction factor for liquid. |
| LWFV | WFV | NCELLS +1 | Wail friction factor for vapor. |
| C.1.3 INTPT |  |  |  |
| Name | Array | Dimension | Description |
| LIDR | IDR | NCELLS | Heat-transfer regime. |
| LLCCFL | LCCFL | NCELLS +1 | CCFL flag. |
| LMATID | MATID | NODES-1 | Structural material identifications. |
| LNFF | NFF | NCELLS +1 | Friction-correlation options. |

## C.1.4. HEATPT

These pointers refer to variables associated with the wall heat-transfer calculations for embedded heat structures

| Name | Array | Dimension | Description |
| :---: | :---: | :---: | :---: |
| LCPW | CPW | (NODES-: <br> *NCELLS | Specific reat of wall. |
| LCW | CW | (NODES-1) <br> *NCELLS | Wall conductivity. |
| LDR | DR | NODES-1 | Radial mesh size. |
| LEMIS | EMIS | NCELLS | Wall emissivity. |
| LHOL | HOL | NCELLS | HTC between outside wall and liquid. |
| LHOV | HOV | NCELLS | HTC between outside wall and vapor. |
| LRN | RN | NODES | Radii at nodes. |
| LRN2 | RN2 | NODES-1 | Radii at node centers. |
| LROW | ROW | (NODES-1) <br> *NCELLS | Wall density. |
| LTCHF | TCHF | NCELLS | CHF temperature. |
| LTOL | TOL | NCELLS | Liquid temperature outside wall. |
| LTOV | TOV | NCELLS | Vapor temperature outside wall. |
| C.2. ACCUMULATOR COMPONENT |  |  |  |
| C.2.1. ACCUMVLT-ACCUM Variable-Length Table |  |  |  |
| REAL VARIABLES: |  |  |  |
| Parameter | Description |  |  |
| AA1111 | Dummy variable that provides a known start to the COMMON block |  |  |
| BSMASS | Time-integrated mass flow from component. |  |  |
| FL(2) | Liquid mass-flow corrections for mass-conservation checks. |  |  |
| FLOW | Volume flow rate at discharge. |  |  |
| FV(2) | Vapor mass-flow corrections for mass-conservation checks. |  |  |
| QINT | Initial water volume in accumulator. |  |  |
| QOUT | Volume of liquid that has been discharged from the accumulator. |  |  |
| $z$ | Water height above discharge. |  |  |
| 211111 | Dummy variable that provides a known end to the COMMON block. |  |  |

INTEGER VARIABLES:

## Parameter Description

141111 Dummy variable that provides a know i start to the COMMON block
ICJ
ICONC
Iteration index of adjacent component.
Indicator for presence of solute in the coolant.
ISTOP
IUV1
Indicator that accumulator has emptied.

HVV2
J52
Indicator for velocity update at JUN1 (equal to zero).
Indicator for velocity updato at JUN2.
Junction sequence number at cell NCELLS of the accumulator.
JUN2 Junction number of the junction at cell NCELLS
NCELLS
TYPE2
Number of fluid cells
Type of adjacent component at JUN2
211111 Dummy variable that provides a known end to the COMMON block

## C.2.2. ACCUMPT-ACCUM Pointer Table

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| DUALPT | - | - | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| INTPT | - | - | Generai pointer table. |
| LBD1 | BD1 | LENBD | Dummy BD1 array. |
| LQPPL | QFPL | NCELLT | Heat flux from wall to liquid. |

## C.2.3. ACCDATA-ACCUM Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; ACCUMVL.T, defined in Sec. C.2.1; and ACCUMPT, defined in Sec. C.2.2.

## C.3. BREAK COMPONENT

C.3.1. BREAKVLT-BREAK Variable-Length Table

REAL VARIABLES:
Parameter Description
AA1111 Dummy variable that provides a known start to the COMMON block.
ALPOFF Coolant void fraction when the trip is OFF after it was ON
BSA Total air from break

BSMASS
BXA
BXMASS
CONOFF

PAOFF
POFF
RBIAX
TIN
TLOFF
TVOFF
Z111111

Time-integrated mass flow from break
Air mass flow from break
Current mass flow from break
Ratio of solute mass to coolant mass when the trip is OFF after it was ON
Air partial pressure when the trip is OFF after it was ON
Coolant pressure when the trip is OFF after it was ON
Maximum rate of change of pressure at the break
Fluid temperature at the break.
Liquid temperature when the trip is OFF after it was ON
Vapor temperature when the trip is OFF after it was ON
Dummy variable that provides a known end to the COMMON block

## INTEGER VARIABLES

## Parameter

|A111]
IBF
IBP
IBSV
IBTR
IBTY
iC.
INEXTI
IOFF
IONOFF
ISAT
IS1
JUN1
NBRF
NBSV
NBTB
TYPE1

## Description

Dummy variable that provides a known start to the COMMON block
Last interpolated interval in the rate-factor table.
Last interpolated interval in the break composition parameter tables
Break-table abscissa-coordinate variable ID number
Trip ID number that controls evaluation of the break tables
Break-table input option
Iteration index of adjacent component
Variable no longer used
Fluid-state option when the trip is OFF after it was ON
Number of time steps the trip is ON

> Break-table use option.

## Junction sequence number

Junction number where break is located
Number of pairs in the rate-facter table
Rate-factor table's abscissa-coordinate variable ID number
Number of pairs for each break table
Variable no longer used

## C.3.2. EREAKPT-BREAK Pointer Table (For BREAKS, NCELLS $=1$ )

| Name | Array | Dimension | Der sription |
| :--- | :--- | :--- | :--- |
| DUALFT | - | - | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| LALPTB | ALPTB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Void fraction table. |
| LCONTB | CONTB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Ratio of solute mass to coolant mass table |
| LPATB | PTAB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Air partial pressure table. |
| LPTB | PTB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Pressure table. |
| LRFTB | RFTB | $\mid$ NBRF $\left.\right\|^{* 2}$ | Rate-factor table. |
| LTLTB | TLTB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Liquid temperature table. |
| LTVTB | TVTB | $\mid$ NBTB $\left.\right\|^{* 2}$ | Vapor temperature table. |

## C.3.3. BRKDATA-BREAK Data Table

This data table includes the following COMMION blocks: BLANKCOM and FIXEDLT. both defined in Appendix D; BREAKVLT, defined in Sec. C.3.1; and BREAKPT, defined in Sec. C.3.2

## C.4. FILL COMPONENT

## C.4.1. FILLVLT-FILL Variabie-Length Table

REAL VARIABLES

## Parameter Description

AA1111
ALPOFF
CONOFF

FXMASS
PAOFF
POFF
RFMX

FLOWIN Initial mass flow ints or from adjacent comporent.
FIWOFF Coolant mass flow when the trip is OFF after it was ON
FSMAASS Time-integrated mass-flow out of fill.
Dummy variable that provides a known start to the COMMON block Coolant void fraction when the trip is OFF after it was ON Ratio of solute mass to coolant mass when the trip is OFF after it was ON

Current mass-flow rate out of fill.
Air partial pressure when the trip is OFF after it was ON
Coolant pressure when the trip is OFF after it was ON
Maximum rate of change of fill velocity or mass flow

TI.OFF
TVOFF
TWTOLD

VLOFF
VVOFF
211111

Liquid temperature when the trip is OFF after it was ON
Vapor temperature when the trip is OFF after it was ON
The fraction of a previous fill fluid dynamic-state parameter that is averaged with the fill table's defined parameter and that defines the fill parameter value for this time step $(0.0 \leq$ TWTOLD $<1.0)$
Liquid velocity when the trip is OFF after it was ON.
Vapor velocity when the trip is JFF after it was ON

INTEGER VARIABLES:

## Parameter

|A1111
(CJ
IFASV

IFCNSV

IFF
IFMALSV

IFMVSV

IFP
IFPASV

IFPSV

IFSV

IFTLSV

IFTR
IFTVSV

IFTY

## Description

Dummy variable that provides a known start to the COMMON block Iteration index of adjacent component.
1D number of the signal variable of control block defining the void fraction for the IFTY' $=10$ option

1D number of the signal variable or control block defining the ratio of solute mass to liquid-coolant mass for the IFTY $=10$ option

Last interpolated interval in the rate-favior table.
iD number of the signal variable or control block defining liquid mass flow for the IFTY $=10$ option

10 number of the signal variable or control block defining vapor mass flow for the IFTY $=10$ option

Last interpolated interval in the fill table.
ID number of the signal variable or control block defining the partial air pressure for the IFTY $=10$ option

ID) number of the signal variable or control block defining the pressure for the IFTY $=10$ option.

The signal-variable ID number, which defines the fill table's independent variable.

ID number of the signal variable or control block defining the liquid temperature for the IFTY $=10$ option

Fill trip number
ID number of the signal variable or control block defining the vapor temperature for the IFTY $=10$ option

Fill type

INEXTI Variable no longer used.
1OFF Fill fluid-state option when the trip is OFF after it was ON
IONOFF The number of time steps the trip has been ON
Junction sequence number at JUN1
JUN1
NFRF Numbe -i rate-factor table pairs whose rate factor is applied to the fill table's independent variable

NFSV
NFTB
Rate-factor table's abscissa-coordinate variable ID number.
Number of pairs in the fill table
TYPE1 Variable no longer used.
Z11111 Durnmy variable that provides a known end to the COMMON block
C.4.2. FILLPT-FILL Pointer Table (For FILLS, NCELLS $=1$ )

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| DUALPT | - |  | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| : ALPTB | ALPTB | $\mid$ NFTB $\left.\right\|^{* 2}$ | Void fraction table. |
| LCONTB | CONTB | $\mid$ NFTB $\left.\right\|^{* 2}$ | Ratio of solute mass to coolant mass |
| LPATB | PATB | $\mid$ NFTB $\left.\right\|^{* 2}$ | Air partial pressure table. |
| LPTB | PTB | $\mid$ NFTB\|*2 | Pressure table. |
| LRFTB | RFTB | $\mid$ NFRF\|*2 | Fill rate-factor table. |
| LTLTB | TLTB | $\mid$ NFTB\|*2 | Liquid tempera :ure table. |
| LTVTB | TVTB | $\mid$ NFTB\|*2 | Vapor temperature table. |
| LVMTB | VMTB | $\mid$ NFTB\|*2 | Liquid velocity table. |
| LVVTB | VVTB | $\mid$ NFTB\|*2 | Vapor velocity table. |

## C. 4.3 FILLDATA-FILL Data Table

This data table includes the following COMMON blocks: B!ANKCOM and FIXEDLT both defined in Appendix D; FILLVLT, defined in Sec. C.4.1; and FILLPT, defined in Sec. C.4.2

## C.5. HEAT-STRUCTURE COMPONENT

## C.5.1. RODVLT-Heat-Structure Variable-Length Table

REAL VARIABLES:

## Parameter <br> Description

AA1111
AMH2
BCRO

BCR1

BEFF
BPPO

BPP1

DRFB
DRI
DRIO

DTNHT(2)
DTPK

DTXHT(2)
DZNHT
ENEFF
EXTSOU

FUCRAC
HDRI

HDRO

HGAPO
Dummy variable that provides a known start to the COMMON block Hydrogen mass generated from metal-water reaction.
Zero-order coefficient of the first-order polynomial that defines the effective core-averaged concentration of control-rod pin boton.

First-order coefficient of the first-order polynomial that defines the effective core-averaged roncentration of control-rod pin boron
Total delayed neutron fraction.
Zero-order coefficient of the first-order polynomial that defines the effective core-averaged concentration of burnable-poison pin boron.

First-order coefficient of the first-order polynomial that defines the effective core-averaged concentration of burnable-poison pin boron.
Reactivity-feedback change in $K$ over last time step.
Estimated change in reactivity over the previous time step.
Old value of DRI equals the old value of the power or reactivity-estimate correction.

Delta temperature minimums used in reflood calculation
Kaganove-method integratich time step for solving the point-kinetics equations.
Delta temperature maximums used in reflood calculation.
Delta $Z_{\text {min }}$
Total decay heat fraction.
Thermal power (W) produced by external source neutrons in the reactor core.

Fraction of uncracked fuel.
Thermal diameter $(\mathrm{m})$ for the inside surface of the heat-structure rod or slab element. Used only when NAMELIST variable ITHD $=1$.
Thermal diameter $(\mathrm{m})$ for the outside surface of the heat-structure rod or slab element. Used only when NAMELIST variable ITHD $=1$
Rod gap-conductance coefficient (MATRD $=3$ )

| HLI | Constant liquid heat-transfer coefficient (W. $\mathrm{m}^{-2}, \mathrm{~K}^{-1}$ ) at the inner surface. Used when inner surface boundary condition flag is set such that $\mid D B C I=1$, indicating constant $H T C s$ and external temperatures. |
| :---: | :---: |
| HLO | Constant liquid heat-transfer coefficient ( $\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ) at the outer surface. Usea when outer surface boundary condition flag is set such that $\operatorname{IDBCO}=1$, indicating constant HTCs and external temperatures. |
| HVI | Constant vapor heat-transfer coefficient (W. $\mathrm{m}^{-2}, \mathrm{~K}^{-1}$ ) at the inner surface. Used when inner surface boundary condition flag is set such that $\mid D B C I=1$, indicating constant HTCs and external temperatures. |
| HVO | Constant vapor heat-transfer coefficient (W. $\mathrm{m}^{-2} . \mathrm{K}^{-1}$ ) at the outer surface. Used when outer surface boundary condition flag is set such that $I D B C O=1$, indicating constant HTCs and external temperatures. |
| PDRAT | Rod pitch-te-diameter ratio. |
| PLDR | Pellet dish radius. <br> $0.0=$ no pellet dish calculation: <br> $1.0=$ pellet dish calculation. |
| POWEXP | Exponent value to which the power distribution is raised to define tre weighting function for averaging the reactivity-feedback paramitiers over the core volume. |
| QRDTOT | Total rod heat flux. |
| REAC | Reactivity feedback at the beginning of the previous time step. |
| REACN | Reactivity-feedback estimate at the end of the present time step. |
| REACT | Total reactivity at the beginning of the present time step. |
| RMCK | Reactor multiplication constant at the beginning of the present time step |
| RMCKN | Reactor multiplication constant estimate at the end of the present time step. |
| RPOWPF | Prompt fission power. |
| RPOWR | Beginning-of-time-step reactor power. |
| RPOWRI | Initial reactor power. |
| RPOWRN | End-of-time-step reactor power. |
| RPOWRO | End-of-time-step reactor power of the previous time step. |
| RPOWTO | Beginning-of-time-step reactor power of the previous time step. |
| RPWOFF | Programmed reactivity or reactor power when the controlling trip is OFF after it was $O N$. |

RPWSCL

RRPWMX RZPWMX

SDT
STIMET

TLI

TLO

TNEUT
TPOWI
TPOWO
TRAMAX
TRHMAX
TVI

TVO

WATLEV
WIDTH
ZPWIN

ZPWOFF

ZLPBOT
$71 P T O P$
ZUPBOT

Reactivity-power sble's scale factor for programmed reactivity or reactor power.
Maximum rate of change of programmed reactivity or reactor power.
Maximum rate of change of the axial power shape.
Time interval (s) since the last reactivity change printout.
Problem time (s) at which the last reactivity change was summed to variable storage for later printout
Constant liquid temperature ( $K$ ) at the inner surface. Used when inner surface boundary condition flag is set such that $\mid \mathrm{DBCI}=1$, indicating constant HTCs and external temperatures.
Constant liquid temperature $(\mathbb{K})$ at the outer surface. Used when outer surface boundary condition flag is set such that $I D B C O=1$, indicating constant HTCs and external temperatures.
Neutron generation time.
Total power across the inner surface of the heat-structure compo. ant. Total power across the outer surface of the heat-structure component
Average-rod peak-cladding temperature.
Maximum supplemental rod temperature.
Constant vapor temperaturc $(K)$ at the inner surface. Used when inner surface boundary condition flag is set such that $\mid D B C I=1$, indicating constant HTCs and external temperatures.
Constant vapor temperature ( $K$ ) at the outer surface. Used when outer surface boundary condition flag is set such that $1 D B C O=1$, indicating constant HTCs and external temperatures.
Not used.
Width ( $m$ ) of slab surface (used to compute surface area).
Axial power-shape table's abscissa-coordinate variable value corresponding to the initial axial power shape.
Axial power-shape table's abscissa-coordinate variable value that corresponds to the axial power shape that is used when the controlling trip is OFF after it was ON.
Axial location $(\mathrm{m})$ of the bottom of the lower hot patch.
Axial location ( m ) of the top of the lower hot patch.
Axial location ( m ) of the bottom of the upper hot patch.

ZUPTOP Axial location (m) of the top of the upper hot patch.
211111 Dummy variable that provides a known end to the COMMON block

## INTEGER VARIABLES:

## Parameter Description

1 A1111 Durmmy variable that provides a known start to the COMMON block.
IAXCND

IBU(4)
IDBCI

IDBCO

IEXT

IONOFF

IPATCH
Hot patch modelling indicator.
$0=$ no modelling.
$1=$ modelling of hot patches.
IRC(4) Number of values that defines the argument number reactivity-coefficient table.

IRCJFM(4) Form number of reactivity coefficient for the argument number reactivityfeedback parameter.

IRCJTB(4,4) Number of first argument reactivity-feedback parameter value entries for the second argument reactivity-coefficient table

IRF Last interpolated interval number in rate-factor table for the reactivitypower table.

IRFTR

IRP
IRPWSV
IRPWTR
IRPWTY
ISNOTB

12F

12P
IZPWSV
IZPWTR
LENRD
LFVNR
LFYNPI
LFVR
L.FVR1

LIQLEV

LNDRD

LNFVR
LNFVR1
LNPTRR
LOCROD
NCRX

Trip ID number that controls evaluation with the reflood axial fine mesh in the fuel rod

Last interpolated interval number in the reactivity-power table.
Reactivity-power table's abscissa-coordinate variable ID number.
Trip ID number that controls evaluation of the reactivity-power table.
Reactor-kinetics nption indicator.
A flag variable that is defined if the solute is boron for the reactivityfeedback calculation.
$0=$ solute is boron;
$1=$ solute is not boron.
Last interpolated interval number in the rate-factor table for the axial power-shape table.
Last interpolated interval number in the axial power-shape table.
Axial power-shape table's abscissa-coordinate variable ID number.
Trip 10 number that controls evaluation of the axial power-shape table.
Length of rod data.
Relative position of new fundamental variables of rod data
Relative position of new heat-transfer data.
Relative position of old fundamental variables of rod data.
Re'ative position of old heat-transfer data
Specification of liquid level.
$0=$ no liquid leval salculated on rod or slat surface;
$1=$ liquid level tracked on rod or slab surface (this smooths the heattransfer solution).
Offset for double-sided heat structures. If the heat structure is connected to hydro components on one side, then LNDRD $=0$. If the heat structure is connected to a hydro component on both the inside and outside surfaces, then LNDRD $=$ the offset for the inside surface heat-transfer parameters.
Length of fundamental variables of rod data
Length of heat-transfer data.
Number of pointers of rod data.
Pointer for beginning of rod data.
Number of copies of structure that affect fluid dynamics.

| NCRZ | Number of (course) axial intervals between temperature nodes. |
| :---: | :---: |
| NDG | Input-specified number of delated-neutron groups. |
| NDGX | Number of delayed-neutron groups. |
| NDH | Input specified number of decay-heat groups. |
| NDHX | Number of decay-heat groups. |
| NFBPWT | Flag that defines the spatial distribution used to weight the averaging of the reactivity-feedback parameters over the reactor-vessel volume. |
| NFCl | FCl flag. <br> $0=$ no calculation; <br> $1=$ calculation. |
| NFCIL | Limit on FCI calculations per time step. |
| NFUEL | Number of nodes in fuel pellet. |
| NHIST | Number of value pairs in :he power-history table. |
| NINT | Maximum possible number of interfaces between dissimilar materials in rods. |
| NMWRX | Metal-water reaction flag. <br> $0=$ no calculation; <br> $1=$ calculation. |
| NONOFF | Number of time steps the trip-controlling evaluation of the axial powershape table has been ON . |
| NOPOWR | Specification of whether a power source is present in the heat-structure rod or slab element. <br> $0=$ power source present in the rod or slab; <br> $1=$ no power source present in the rod or slab. |
| NRAMAX | Location of average-rod peak-cladding temperature used in reflood calculation. |
| NRFD | Reflood flag. <br> $0=$ takes no action; <br> $1=$ turns on fine mesh flag if it is off. |
| NRHMAX | Location of supplemental rod peak-cladding temperature. |
| NRIDR | Specification of the hydro-rell location that is coupled to the inner and/or outer surfaces of the heat-structure rod or slab element. <br> $0=$ the IDROD array is input for only the additional rods or slabs; <br> $1=$ the IDROD array is input for all rods or slabs; <br> $2=$ the IDROD array is input for all rods or slabs for both surfaces of the heat structure. |



| LCLENN | CLENN | NCRX | New total cladding length. |
| :---: | :---: | :---: | :---: |
| LCPOWR | CPOWR | NCRX | Relative power per rod. |
| LEDH | EDH | NDHX | Energy yield fraction of decay-heat groups. |
| LFPUO2 | FPUO2 | NCRX | Fraction of plutonium oxide in mixed-axide fuel fraction. |
| LFTD | FTD | NCRX | Fuel density (fraction of theoretical). |
| LGMIX | GMIX | NCRX*7 | Mole fraction of gap-gas constituents. |
| LGMLES | GMLES | NCRX | Moles of gap gas. |
| LGRAVR | GRAVR | NCRZ | Cosine of the angle between a vector pointing upward and a vector from the lower-tohigher numbered axial cells. |
| LHCELI | NHCELI | NCRZ +2 | Cell number coupled to the heat-structure nodes at the inner surface. |
| LHCELO | NHCELO | $N C R Z+2$ | Cell number coupled to the heat-structure nodes at the outer surface. |
| LHCOMI | NHCOMI | $N C R Z+2$ | Comporient number of the hydro cells coupled to the heat-structure inner surface. |
| LHCOMO | NHCOMO | $N C R Z+2$ | Comionent number of the hydro cells coupled to the heat-structure outer surface. |
| LHIGH |  |  | Not used. |
| LHS | HS | NCRX* <br> (NFBPWT/4) | Pointer variable for the horizontal plane shape weight function used. |
| LIDROD | IDROD | NRCDS | Cell identifier for rods. |
| LLAMDA | LAMDA | NDGX | Decay constant of delayed groups. |
| LLAMDH | LAMDH | NDHX | Decay constant of decay-heat groups. |
| LLCHCl | LCHCl | $2^{*}($ NCRZ +2$)$ | The hydro-cell parameters for heat-transfer coupling to the heat-structure inner surface. |
| LLCHCO | LCHCO | $2 *(N C R Z+2)$ | The hydro-cell parameters for heat-transfer coupling to the heat-structure outer surface. |
| LMATRD | MATRD | NINT | Rod material identification. |
| LNFAX | NFAX | NCRZ | Rod fine-mesh noding factor. |
| LNRDX | NRDX | NCRX | Number of rods in bundle. |
| LNTSXX | NTSXX | $\operatorname{MAX}(1$, NRIDR $)$ | Number of mesh cells in the plane transverse to the axial direction |


| LPGAPT | PGAPT | NCRX | |
|---|---|---|---|
| LPLVOL | PLVOL | NCRX |
| LPOWL.I | POWLI | NCRZ |
| LPOWLO | POWLO | NCRZ |
| LPOWVI | POWVI | NCRZ |
| LPOWVO | POWVO | NCRZ |
| LPSLEN | PSLEN | NCRX |
| LRADRD | RADRD | NODES |
| LRCAL | RCAL | EIRCJTB $(1,3)+$ $\pi, \operatorname{RCJTB}(i, 3)$ |
| LRCBM | RCBM | $\begin{aligned} & \operatorname{\Sigma IRCJTB}(i, 4)+ \\ & \pi, \operatorname{IRCJTB}(i, 4) \end{aligned}$ |
| LRCN | RCN | 0 or 4 |
| LRCTC | RCTC | $\begin{aligned} & \operatorname{\Sigma IRCJTB}(i, 2)+ \\ & \pi i \operatorname{IRCJTB}(i, 2) \end{aligned}$ |
| LRCTF | RCTF | $\operatorname{EIRCJTB}(i, 1)+$ <br> $\pi, \operatorname{RCJTB}(i, 1)$ |
| LRDPWR | RDPWR | NODES |
| LRDZ | RDZ | NCRZ +1 |
| LRPKF | RPKF | NRODS |
| LRPWRF | RPWRF | \|NRPWRFF*2 |
| LRPWTB | RPWTB | \|NRPWTB|*2 |
| LPS | RS | NODES |

Gap total gas pressure.
Rod plenum volume
Total power across the heat-structure inner surface to the liquid.

Total power across the heat-structure outer surface to the liquid

Total power across the heat-structure inner surface to the gas (vapor).

Total power across the heat-structure outer surface to the gas (vapor)
Pellet stack length
Rod node radius (cold).
Coolant void-fraction reactivity-coefficient table. The symbol $\pi$, indicates the product of the following variable taken over the $i$ suiuscript.
Boron reactivity-coefficient table
The symbol $\pi_{i}$ indicates the product of the following variable taken over the $i$ subscript

Reactivity-coefficient values at the beginning of the previous time step.
Coolant temperature reactivity-coefficient table. The symbol $\pi_{i}$ indicates the product of the following variable taken over the i subscript.

Fuel temperature reactivity-coefficient table. The symbol $\pi_{i}$ indicates the product of the following variable taken over the $i$ subscript.

Rod relative radial power density
Axial node positions.
Rod power peaking factor
Rate-factor table for the power or reactivity table.

Power or reactivity table
Pointer variable for the fuel-rod radial shape

|  |  | MOD(NFBPWT, 2 ) | weight function used to average reactivity feedback parameters over the core volume. $M O D(N, 2)=N-(N / 2) * 2$ | |
|---|---|---|---|---|
| LSRP | SRP | 0 or 1 r | Summed programmed and feedback reactivity changes. |
| LTC | TC | 10 | Thermocouple-model input parameters. |
| LXN | XN | 0 or 4 | New reactivity-feedback paramete, values. |
| LXO | $\times 0$ | 0 or 4 | Old reactivity-feedback parameter values. |
| LZPW | ZPW | NCRZ +1 | Last interpolated axial power shape. |
| LZPWFB | ZPWFB | NCRZ +1 | Subroutine ZPWHCl evaluated axial-power shape at NCRZ +1 nodes based on the input axial-power shaped defined at NZFWZ node locations. |
| L. ZPWRF | ZPWRF | \|NZPWRF|*2 | Axial power-shape rate-factor table. |
| LZPWTB | ZPWTB | $\begin{aligned} & \text { NZPWTB\|* } \\ & \text { NZPWZ+1 } \end{aligned}$ | Relative power density axial power-shape table. |
| LZPWZT | ZPWZT | NZ.PWZ | Axial locations where the axial-power shape ralative power densities bre defined. |
| LZS | 25 | NCRZP1* ${ }^{*}$ MOD <br> (NFBPWT,4)/2) | Pointer variable for the axial-direction shape, $\operatorname{MOD}(\mathrm{N}, 2)=\mathrm{N} \cdot(\mathrm{N} / 2)^{*} 2$. |
| LZZRD |  |  | Dummy pointer that provides a known end to the common block |

## C.5.3. RODPT1-Heat-Structure Pointer Table

ROD DATA POINTERS:

| Nai.e | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| LALPR | ALPR | NCRZ +2 | Coolant vapor fraction. |
| LALVR | ALVR | NCRZ +2 | Liquid HTC times interfacial area. |
| LBITR | BITR | 0 | Variable not cu ently implemented. |
| LBITRN | BITRN | 0 | Variable not currently implemented. |
| LBURN | BURN | NCRZ +1 | Fuel burnup. |
| LCHTIR | CHTIR | NCRZ +2 | Vapor HTC times interfacial area. |
| LCLR | CLR | NCRZ +2 | Liquid conductivity. |
| LCND | CND | NODES* | Rod conductivity. |
|  |  | $(N C R Z+1)$ |  |


| LCNDR | CNDR | NINT* <br> ( $\mathrm{NCRZ}+1$ ) |
| :---: | :---: | :---: |
| LCONCR | CONCR | NCRZ +2 |
| LCPDR | CPDR | NINT* <br> ( $N C R Z+1$ ) |
| LCPLR | CPLR | NCRZ +2 |
| LCPND | CPND | NODES* <br> ( $N C R Z+1$ ) |
| LCPVR | CPVR | NCRZ +2 |
| LCVR | CVR | NCRZ +2 |
| LDRLDT | DRLDT | NCRZ +2 |
| LDRVD 1 | DRVDT | $N C R Z+2$ |
| LDRZ | SRZ | $N C R Z+1$ |
| LDRZN | DRZN | NCRZ +1 |
| LEAR | EAR | NCRZ +2 |
| LELR | ELR | NCRZ +2 |
| LEMIS | EMIS | NODES* <br> (NCRZ+1) |
| LEVR | EVR | NCRZ +2 |
| LFINAR | FINAR | NCRZ +2 |
| LHDR | HDR | NCRZ +2 |
| LHFGR | HFGR | NCRZ +2 |
| LHGAMR | HGAMR | NCRZ |
| LHGAP | HGAP | NCRZ +1 |
| LHLAR | HLAR | NCRZ |
| LHiATR | HLATR | NCRZ |

Rod conductivity to right of interface.

Mass concentration of dissolved solute in the coolant ( kg solute $/ \mathrm{kg}$ water)
Rod specific heat to tight of interface.

Liquid specific heat
Rod specific heat

Vapor specific heat.
Vapor conductivity
Derivative of liquid density with respect to liquid temperature.

Derivative of vapor density with respect to vapor temperature.

Old zirconium dioxide reaction depth
New zirconium dioxide reaction depth.
Specific internal energy of the noncondensable gas component.
Liquid internal energy
Rod emissivity.

Vapor internal energy.
Not used.
Rod-bundle hydraulic diameter.
Latent heat of vaporization of fluid.
Contribution to subcooled boiling.
Gap conductance.
Sum of all products of the liquid HTC and the heat-transfer area.

Sum of all products of the iquid HTC, the heat-transfer area, and $t$ wall temperature

| LHLSR | HLSR | $N C R Z+2$ | Specific enthalpy of the liquid phase at saturation (corresponding to saturation temperature at partial pressure cf steam). |
| :---: | :---: | :---: | :---: |
| LHRFG | HRFG | NCRZ +1 | New subcooled boiling HTC. |
| LHRFGO | HRFGO | NCRZ +1 | Old subcooled boiling HTC. |
| LHRFL. | HRFL | N: MAX | New fine-mesh liquid HTC. |
| LHRFLO | HRFLO | NZMAX | Old fine-mesh liquid HTC. |
| LHRFV | HRFV | NZMAX | New fine-mesh vapor HTC. |
| LHRFVO | HRFVO | NZMAX | Old fine-mesh vapor HTC. |
| LHRLG | HRLG | NZMAX | New fine-mesh subcooled boiling HTC. |
| LHRLGO | HRLGO | NZMAX | Old fine-mesh subcooled boiling HTC. |
| LHRLL | HRLI | NCRZ + 1 | New liquid HTC for lower half-node. |
| LHRLLO | HRLLO | NCRZ +1 | Old liquid HTC for lower half-node. |
| LHRLV | HRLV | NCRZ +1 | New vapor HTC for lower half-node. |
| LHRLVO | (LVO | is $C R Z+1$ | Old vapor HTC for lower half-node. |
| LHVAR | HVAR | NCRZ | Sum of all products of the vapor HTC and the heat-transfer area. |
| LHVATR | HVATR | NCRZ | Sum of all products of the apor HTC, the heat-transfet area, and the wall temperature. |
| LHVSR | HVSR | NCRZ-2 | Specific enthalpy of the steam (not gas) at saturation (at partial pressure of stearn and saturation temperature). |
| LIDHT | IDHT | NZMAX | Rod node identifier. |
| LIDRGR | IDRGR | $N C R Z+2$ | Flow-regime flag. |
| LIHTF | IHTF | NZMAX | Fine-mesh heat-transfer regime flag. |
| LNOHT | NOHT | 1 | Number of rows of heat transfer nodes for each rod |
| LPAR | PAK | $N C R Z+2$ | Partial pressure of the noncondensable gas component. |
| LPGAP | PGAP | NCRZ +1 | Gap local gas pressure. |
| LPINT | PINT | NCRZ +1 | Pellet-cladding contact pressure. |
| IPLDV | PLDV | NCRZ | Pellet dish volume. |


| LPR | PR | $N C R Z+2$ | Coolant pressure. |
| :---: | :---: | :---: | :---: |
| LQCHFF | QCHFF | NCRZ +1 | New CHF. |
| LQCHFO | QCHFO | NCRZ +1 | Old CHF. |
| LQCHFR | QCHFR | NZMAX | New fine-mesh CHF , |
| LQCHRO | QCHRO | NZMAX | Old fine-mesh CHF. |
| LQWRX | QWRX | NCRZ +1 | Metal-water reaction heat source. |
| LRADR | RADR | NODES* <br> (NCRZ+1) | Old radial node positions. |
| LRADRN | RADRN | NODES* <br> ( $N C R Z+1$ ) | New radial node positions. |
| LRDHLO | RDHLO | NCRZ | Variable not currently implemented. |
| LRDHLR | RDHLR | NCRZ | Liquid HTC. |
| LRDHVO | RDHVO | NCR2 | Variable not currently implemented. |
| LRDHVR | RDHVR | NCRZ | Vepor HTC. |
| LRFT | RFT | NODES*NZMAX | Old finc mesh rod temperatures. |
| LRFTN | RFTN | NODES*NZMAX | New fine-mesh rod temperatures. |
| LRLQLV |  |  | Not used. |
| LRND | RND | NODES* <br> (NCRZ+1) | Rod density. |
| LRNDR | RNDR | NINT* <br> (NCRZ $\mathbf{Z}+1$ )-1 | Rod density to right of material interface. |
| LROAR | ROAR | NCRZ +2 | Density of the noncondensaliey \% component. |
| LROLR | ROLR | $N C R Z+2$ | Liquid density. |
| LROMR | ROMR | NCRZ +2 | Mixture density. |
| LROVR | ROVR | NCRZ +2 | Vapor density. |
| LRPOWF | RPOWF | NODES | Rod power density. |
| LSIGR | SIGR | NC: $2+2$ | Surface tension. |
| LSR | SR | $N C R Z+2$ | Amount of platsd-out solute ( $\mathrm{kg} \mathrm{c} \mathrm{m}{ }^{-3}$ ). |
| LSTNU | STNU | NZMAX | Stanton number: |
| LTCHFF | TCHFF | NZMAX | Fine-mesh wall temperature at CHF point. |
| LTCHFR | TCHFR | NCRZ | Wall temperature at CHF |
| APPENDI | C |  | C-25 |


| LTLD | TLD | NZMAX | Liquid temperature at bubble departure. |
| :---: | :---: | :---: | :---: |
| LTLR | TLR | $N C R Z+2$ | Liquid temperature. |
| LTSATR | TSATR | NCRZ +2 | Saturation temperature. |
| LTSSNR | TSSNR | $N C R Z+2$ | Saturation temperature corresponding to partial pressure of steam. |
| LTVR | TVR | $N C R Z+2$ | Vapor temperature. |
| IVISLR | VISLR | NCRZ +2 | Liquid viscosity. |
| LVISVR | VISVR | NCRZ +2 | Vapor viscosity. |
| LVLCR | VLCR | NCRZ +2 | Not used. |
| LVLZR | VLZR | $N C R Z+2$ | Axial liquid velocity. |
| LVMZR | VIMZR | NCRZ +2 | Axial mixture velocity. |
| LVOLR | VOLR | $N C R Z+2$ | Fluid volume in hydrodynamic mesh cells. |
| LVVCR | VVCR | NCRZ +2 | Vapor cross-flow velocity. |
| IVVZR | VVZR | $N C R Z+2$ | Axial vapor velocity. |
| IWATR | WATR | NCRZ | Total rod heat-transfer area. |
| LZHT | ZHT | NZMAX | Axial location of heat-transfer node. |
| C.5.4. RODDAT-Heat-Structure Data Table <br> This data table includes the following COMMON blocks: RODVLT, defined in Sec. C.5.1: RODPT, defined in $\operatorname{Sec}$. (5.2; and RODPT1, defined in Sec. C.5.3. |  |  |  |
| C.6. PIPE COMPONENT |  |  |  |
| C.6.1. PiPEVLT-PIPE Variable-Length Table |  |  |  |
| REAL VARIABLES: |  |  |  |
| Parameter | Description |  |  |
| AA1111 | Dummy variable that provides a known start to the COMMON block. |  |  |
| BSMASS | Time-integrated mass flow from pipe. |  |  |
| CPOW | Special pipe power input. |  |  |
| ENINP | Total (time-integrated) energy directly input to the pipe. |  |  |
| EPSW | Wall surface roughness. |  |  |
| FL(2) | Liquid mass-flow corrections for mass-conservation checks. |  |  |
| $\mathrm{FV}(2)$ | Vapor mass-flow corrections for mass-conservation checks. |  |  |
| HOUTL | HTC between outer boundary of pipe wall and liquid. |  |  |


| HOUTV | HTC between outer boundary of pipe wall and vapor, |
| :---: | :---: |
| PLENT | Total length of the pipe. |
| POWIN | Initial power deposited in the liquid. |
| POWOFF | Power deposited in the liquid when the trip is OFF after it was ON. |
| QINT | Initial water volume in pipe. |
| QOUT | Volume of liquid that has been discharged from pipe used as accumulator. |
| QP3IN | Initial QPPP factor. |
| QP3OFF | QPPP factor when its trip is OFF after it was ON. |
| RADIN | Innet radius of pipe wall. |
| RPOWMX | Maximum rate of chang: ' $n$ wer deposited in the coolant. |
| RQP3MX | Maximum rate of chan s of is. ins ty ar |
| TH | Thickness of pipe wall. |
| TOUTL | Liquid temperature outside pipe. |
| TOUTV | Vapor temperature outside pipe. |
| VFLOW | Volume flow rate at discharge from pipe used as accumulator. |
| 2 | Water height above discharge. |
| 211111 | Dummy variable that provides a known end to the COMMON block. |
| INTEGER VARIABLES: |  |
| Parameter | Description |
| \|A111] | Dummy variable that provides a known start to the COMMON block. |
| IACC | Pipe accumulator option switch. |
| ICHF | CHF calculation option. |
| [CJ1 | Not used. |
| $1 \mathrm{CJ} / 2$ | Not used. |
| ICONC | Indicator for presence of solute in the coolant input. |
| IONOFF | Number of time steps the power deposited in the coolant trip has been ON. |
| IPF | Last interpolated interval in the power deposited in the coolant's ratefactor table. |
| IPOW | Indicator for presence of power deposited in the coolant. |


| IPOWSV | Power deposited in the coolant table's abscissa-coordinate variable ID number |
| :---: | :---: |
| IPOWTR | Trip ID number that controls evaluation of the power deposited in the coolant table. |
| IPP | Last interpolated interval in the power deposited in the coolant table. |
| IQF | Last interpolated interval in the QPPP factor table's rate-factor table. |
| IQP | Last interpolated interval in the QPPP factor table. |
| IQP3SV | QPPP factor table's abscissa-coordinate variable ID number. |
| IQP3TR | Trip ID number that controls evaluation of the QPPP factor table. |
| ISOLLB | Indicator for velocity update at JUN1. |
| ISOLRB | Indicator for velocity upriate at JUN2. |
| JS1 | Junction sequence number at cell 1 of the pipe. |
| JS2 | Junction sequence number at cell NCELLS of the pipe. |
| JUN1 | Junction number of the junction at cell 1. |
| JUN2 | Junction number of the junction at cell NCELLS. |
| NCELLS | Number of fluid cells. |
| NONOFF | Number of time steps the QPPP factor table's controlling trip has been ON. |
| NPOWRF | Number of pairs in the power deposited in the coolant table's rate-factor table. |
| NPOWSV | Power deposited in the coolant rate-factor table's abscissa-coordinate variable ID number. |
| NPOWTB | Length of pipe power table. |
| NQP3RF | Number of pairs in the QPPP factor table's rate-factor table. |
| NQP3SV | QPPP factor rate-factor table's abscissa-coordinate variable ID number. |
| NQP3TB | Number of pairs in the QPPP factor table. |
| TYPE1 | Type of adjacent companent at JUN1. |
| TYPE2 | Type of adjacent component at JUN2. |
| 211111 | Dummy variable that provides a known end to the COMMON block. |

## C.6.2. PIPEPT-PIPE Pointer Table

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| DUALPT | - | - | General pointer table |


| HYDROPT | - | - | General pointer table. | |
|---|---|---|---|---|
| INTPT | - | - | General pointer table. |
| HEATPT | - | - | General pointer table. |
| LPOWRF | POWRF | \|NPOWRF|*2 | Rate-factor tables for the power deposited in the coolant tables. |
| LPOWTB | POWTB | \|NPOWTB|*2 | Power deposited in the coolant table. |
| LQP3RF | QP3RF | \|NQP3RF/*2 | Rate-factor table for the QPPP factor tables. |
| LQP3TB | QP3TB | \|NQP3TB|*2 | QPPP factor tables. |

## C.6.3. PIPEDATA-PIPE Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; PIPEVLT, defined in Sec. C.6.1; and PIPEPT, defined in Sec. C.6.2.

## C.7. PLENUM COMPONENT

The plenum data are all contained in the PLENDATA COMMON block that consists of the following COMMON blocks: DIMNSION, IOUNITS, JUNCTION, FIXEDLT, and BLANKCOM, all defined in Appendix D; DUALPT, defined in Sec. C.1.1; HYDROPT, defined in Sec C.1.2; VLTAB, defined in Sec. C.7.1; and PTAB, defined in Sec. C.7.2.

## C.7.1. VLTAB-PLENUM Variable-Length Table REAL VARIABLES:

## Parameter

AA1121 Dummy variable that provides a known start to the COMMON block
BL Temporary storage for liquid mass-conservation checks.
BSMASS Time-integrated mass flow from plenum.
BV Temporary storage for vapor mass-conservation checks.
EPSW
FAS1
FA52
FLXA
FIXAI
FLXAV

FLXC
FiXEL
Wall surface roughness
Summed flow area of all junctions on side 1 of the plenum cell
Summed flow area of all junctions on side 2 of the plenum cell.
Total air mass flow into the plenum during a time step.
Total liquid volumetric flow into the plenum during a time step.
To:a! vapor (gas phase) volumetric flow into the plenum during a time step.

Total solute mass flow into the plenum during a time step
Total liquid internal energy flow into the plenum during a time step.

| FLXFV | Total vapor internal energy flow into the plenum during a time step. |
| :--- | :--- |
| FLXL | Total liquid mass flow into the plenum during a time step. |
| FLXV | Total vapor mass flow into the plenum during a time step. |
| RXCL | Temporary storage for the right-hand side of the liquid stabilizer mass <br> and energy equations. |
| RXCV | Temporary storage for the right-hand side of the vapor stabilizer mass <br> and energy equations. |
| GLoss total liquid volumetric flow from the plenum during a time step. |  |
| XV | Gross total vapor volumetric flow from the plenuin during a time step. |
| ZIII11 | Dummy variable that provides a known end to the COMMON block. |
| INTEGER VARIABLES: |  |

## Parameter Description

IA1111 Dummy variable that provides a known start to the COMMON block
K
ICONC Indicator for the presence of solute in the coolant or input
IPOW Indicator for the presence of power deposited in the coolant
JUNS1 Number of junctions on side 1 of the plenum cell that convect momentum across the cell

JUNS2 Number of junctions on side 2 of the plenum cell that convect momentum across the cell.

NCELLS Number of fluid cells (equals one for a PLENUM).
NPLJN Number of plenum junctions.
211111 Dummy variable that provides a known end to the COMMON block

## C.7.2. PTAB-PLENUM Pointer Table

| Name | Ariay | Dimension | Description |
| :---: | :---: | :---: | :---: |
| LALW | ALW | NPLJN | Temporary storage for the right-hand side of the liquid stabilizer mass and energy equations. |
| LAVW | AV': | NPL.JN | Temporary storage for the right-hand side cf the vapor stabilizer mass and energy equations. |
| LDBND | DBND | 5*NPLJN | Donor-cell quantities $\alpha \rho_{v i}(1-\alpha) \rho_{\ell}, \alpha \rho_{a}$. $\alpha \rho_{v} e_{v}$, and $(1-\alpha) \rho_{\ell} e_{i}$. |


| LDNFL | DONFL | NPLJN |
| :--- | :--- | :--- |
| LDNFV | DONFV | NPLJN |
|  |  |  |
| LIOJ | 10J | NPLJN |
| LJUNJ | JUNJ | NPLJN |
| LJSN | JSN | NPLJN |
| LPAK | PAK | NPLJN |
|  |  |  |
| LSGN | SGN | NPLJN |
| LZZZZZ | - | 1 |

Donor-cell flag for liquid.
$0.0=$ indicates flow into the plenum; $1.0=$ indicates flow from the plenum
Donor-cell flag for vapor.
$0.0=$ indicates flow into the plenum; $1.0=$ indicates flow from the plenum.
Network junction numbers.
Plenum junction numbers.
Plenum junction sequence numbers.
BIT array for the plenum junctions; however, it is used only for storing the water packing and stretching bits.
Junction flow-reversal indicators.
Dummy variable that provides a known end to the COMMON block.

## C.7.3. Equivalences Defined for BLANKCOM

| Mnemonic | Variable | Description |
| :---: | :---: | :---: |
| ALP(1) | A(01) | Old void fraction. |
| ALPMN(1) | $\mathrm{A}(78)$ | Minimum value of void fraction among the plenum and all its neighbors. |
| ALPMX(1) | A(79) | Maximum value of void fraction among the fienum and all its neighbors. |
| ALPN(1) | $A(27)$ | New void fraction. |
| ALPO(1) | A(57) | Void fraction from previous time step ( $a^{n-1}$ ). |
| $\operatorname{ALV}(1)$ | $A(02)$ | Old value of liquid-to-interface HTC times the interfacial area due to flashing |
| ALVE(1) | A(03) | Old value of liquid-to-interface HTC times the interfacial area due to evaporation. |
| ALVEN(1) | A(29) | New value or liquid-to-interface HTC times the interfacial area due to evaporation. |
| ALVN(1) | A(28) | New value of liquid-to-interface HTC times the interfacial area due to flashing. |
| AM(1) | $A(58)$ | Air mass. |
| ARA(1) | A(04) | Old stabilizer value for $\alpha \rho_{\mathrm{a}}$. |


| ARAN(1) | A(30) | New stabilizer value for $\alpha \rho_{a}$. |
| :---: | :---: | :---: |
| ARC(1) | A(59) | Solute density. |
| AREL (1) | $A(05)$ | Old stabilizer value for ( $1-a$ ) peet. |
| ARELN(1) | A(31) | New stabilizer value for (1-a)pete. |
| AREV(1) | A(06) | Old stabilizer value for $\alpha \rho_{v} \epsilon_{v}$. |
| AREVN(1) | A(32) | New stabilizer value for $\alpha \rho_{v} e_{\psi}$. |
| ARL(1) | $A(07)$ | Old stabilizer value for ( $1-\alpha$ ) $p$ f. |
| ARLN(1) | A(33) | New stabilizer value for $(1-\alpha) p$ e |
| ARV(1) | A(08) | Old stabilizer value for $\alpha \rho_{\mathrm{e}}$. |
| ARVN(1) | A(34) | New stabilizer value for $\alpha \rho_{e}$. |
| BIT (1) | A(24) | Old bit flag. |
| BITN(1) | A(50) | New bit flag |
| BOR(1) | A(09) | Old solute-to-coolant mass ratio. |
| BORN(1) | A(35) | New solute-to-coolant mass ratio. |
| CHTAN(1) | A(40) | New value of noncondensible-to-interface HTC times the interfacial area. |
| CHTI(1) | A(13) | Oid value of vapor-to-interface HTC times the interfacial area. |
| CHTIA(1) | A(14) | Old value of noncondensible gas-to-interface HTC times the interfacial area. |
| CHTIN(1) | A(39) | New value of vapor-to-interface HTC times the interfacial area. |
| $\mathrm{CL}(\mathrm{a})$ | A(53) | Liquid conductivity. |
| CPL(1) | A(54) | Liquid specific heat at constant pressure. |
| CPV(1) | A(55) | Liquid specific heat at constant volume |
| CV(1) | A(56) | Vapor conductivity. |
| DALP(1) | A(61) | Weighting factor XVSET. |
| DALVA(1) | A(72) | Not implemented. |
| DELDP(1) | A(84) | Derivative of the liquid internal energy with respect to pressure at constant temperature. |
| DELDT(1) | A(86) | Derivative of the liquid internal energy with respect to temperature at constant pressure. |


| DEVAP(1) | A(98) |
| :---: | :---: |
| DEVAT(1) | A(97) |
| DEVDP(1) | A(85) |
| DEVDT(1) | A(87) |
| DHLSP(1) | A(95) |
| DHVSP(1) | A(94) |
| DROLP(1) | A(88) |
| DROLT(1) | A(90) |
| DROVP(1) | A(89) |
| DROVT(1) | A(91) |
| DRVAP(1) | A(99) |
| DRVAT (1) | A(100) |
| DTSDP(1) | A(83) |
| DTSSP(1) | A(96) |
| DXVOL(1) | A(73) |
| EL(1) | A(11) |
| ELEV(1) | A(70) |
| ELN(1) | A(37) |
| EV(1) | A(12) |
| EVA(1) | A(10) |
| EVAN(1) | A(36) |
| EVN(1) | A(38) |
| FASMLT(1) | A(81) |

Derigative of air internal energy with respect to pressure at constant temperature.

Derivative of air internal energy with respect to temperature at constant pressure.

Derivative of the steam internal energy with respect to pressure at constant temperature.
Derivative of the steam internal energy with respect to temperature at constant pressure
Derivative of HLST with respect to pressure.
Derivative of HVST with respect to pressure.
Derivative of the liquid density with respect to pressure at constant temperature.

Derivative of the liquid density with respect to temperature at constant pressure.

Derivative of the steam density with respect to pressure at constant temperature.

Derivative of the steam density with respect to temperature at constant pressure.

Derivative of air density with respect to pressure at constant temperature.

Derivative of air density with respect to temperature at constant pressure.

Derivative of TSAT with respect to pressure.
Derivative of TSSN with respect to pressure.
Plenum average length
Old liquid iniernal energy.
Plenum center elevation. This is used only if IELV is set to 1 in the NAMELIST input.

New liquid internal energy.
Old vapor internal energy.
Old air internal energy.
New air internal energy.
New vapor internal energy.
Interphase area multiplier during condensation

| FAVOL(1) | A(74) | Plenum average flow area. |
| :---: | :---: | :---: |
| FINAN(1) | A(106) | Inverted annular flow factor (currently not used). |
| GAM(1) | A(15) | Old vapor generation rate per unit volume. |
| GAMN(1) | A(41) | New vapor generation rate per unit volume. |
| GRAVOL(1) | A(77) | Plenum average GRAV. |
| HFG(1) | A(60) | Latent heat of vaporization. |
| HGAM(1) | $A(101)$ | Subcooled liquid HTC. |
| HIL(1) | A(25) | Old HTC between inside wall and liquid. |
| HILN(1) | A(51) | New HTC between inside wall and liquid. |
| HIV(1) | A(26) | Old HTC between inside wall and vapor. |
| HIVN(1) | A(52) | New HTC between inside wall and vapor. |
| HLA(1) | A(102) | Average product of the HTC to liquid and the wall surface area of the liquid. |
| HLATW(1) | A(104) | Average product of the HTC to liquid, the wall surface area of the liquid, and the wal' temperature. |
| HLST(1) | $A(03)$ | Saturated liquid enthalpy (at TSSN and total pressure). |
| HVA(1) | A(103) | Average product of the HTC to vapor and the wall surface area. |
| HVATW(1) | A(105) | Average product of the HTC to vapor, the wall surface area of the vapor, and the wall temperature. |
| HVST(1) | A(92) | Saturated steam enthalpy (at TSSN and steam partial pressure) |
| $P(1)$ | A(16) | Old pressure. |
| PA(1) | A(17) | Old air partial pressure. |
| PAN(1) | A(43) | New air partial pressure. |
| PN(1) | A(42) | New pressure. |
| QP3F(1) | A(71) | QPPP factor applied to the wall heat source. |
| ROL(1) | A(19) | Old liquid density. |
| ROLN(1) | A(45) | New liquid density. |
| ROM(1) | $A(62)$ | Mixture density. |
| ROV(1) | A(20) | Old vapor density. |
| ROVA(1) | A(18) | Old ait density. |


| ROVAN(1) | A(44) | New air density. |
| :---: | :---: | :---: |
| ROVN(1) | A(46) | New vapor density. |
| SIG(1) | A(63) | Surface tension. |
| SOLID(1) | A(21) | Old solute mass plated on structure surface. |
| SOLIDN(1) | A(47) | New boron solute mass plated on structure surface. |
| TL(1) | A(22) | Old liquid temperature. |
| TLN(1) | A(48) | New liquid temperature. |
| TSAT(1) | A(64) | Saturation temperature corresponding to total vapor pressure. |
| TSSN(1) | A(65) | Saturation temperature corresponding to steam partial pressure. |
| TV(1) | A(23) | Old vapor temperature. |
| TVN(1) | A(49) | New vapor temperature. |
| VISL(1) | A(66) | Liquid viscosity. |
| VISV(1) | A(67) | Vapor viscosity. |
| VLALP(1) | A(82) | Maximum value of the liquid mass flux entering the plenum from junctions located above the plenum. |
| VLVC(1) | A(80) | Absolute value of the liquid velucity at a junction where the donor-celled liquid fraction is maximum. |
| VLVOL(1) | A(75) | Plenum average liquid velocity. |
| VOL (1) | A(68) | Plenum volume. |
| VVVOL(1) | A(76) | Plenum average vapor velocity. |
| VRVPL(1) | A(108) | Volume average relative velocity in the plenum component (currently not used). |
| WA(1) | A(69) | Wall area |
| WAT(1) | A(107) | Total wall area |

## C.8. PRESSURIZER COMPONENT

## C.8.1. PRIZEVLT-PRIZER Variable-Length Table

REAL VARIABLES:

## Parameter

AA1111

## Description

Dummy variable that provides a known start to the COMMON block.

BSMASS Time-integrated mass flow from pressurizer
BSMSSP Current mass-flow tate during transient
BXMASS Current mass-flow rate during steady state

EPSW
DPMAX
FL(2)
FLOW
$\mathrm{FV}(2)$
HOUTL
HOUTV
PSET
QHEAT
QIN
QINT
QOUT
QP3IN
RADIN
TH
TOUTL
TOUTV
2
ZHTR
211111

Wal! surface roughness.
Differential pressure at which heaters have maximum power
Liquid mass-flow corrections for mass-conservation checks.
Volume flow rate at discharge.
Vapor mass-flow corrections for mass-conservation checks.
HTC between outer boundary of pressurizer wall and liquid.
HTC between outer boundary of pressurizer wall and vapor
Pressurizer pressure set point for heater-spray control
Total heater power
Heater power being input to water
Initial water volume in pressurizer
Volume of liquid that has discharged from the pressurizer.
Initial QPPP factor.
Inner radius of pressurizer wall
Thickness of pressurizer wail
Liquid temperature outside pressurizer.
Vapor temperature outside pressurizer
Water height above discharge
Water height for heater cutoff.

INTEGER VARIABLES:

## Parameter Description

1 A1111 Dummy variable that provides a known start to the COMMON block.
ICHF CHF calculation option.
ICJ
Not used
ICONC
Indicator for presence of solute in the coolant input

ICT1

IUV1
HIV?
JS1
JS2
HN1
JUN2
NCELLS
TYPE1
TYPE2
211111

The sequence number (position in the IORDER array) of the component next to the junction of the pressurizer. This variable is computed but not used.

Indicator for velocity update at JUN1
Indicator for velocity update at JUN2.
Junction sequence number at cell 1 of the pressurizer.
Junction sequence number at cell NCELLS of the pressurizer.
Junction number of the junction at cell 1.
Junction number of the junction at cell NCELLS.

## C.8.2. PRIZEPT-r ZER Pointer Table

| Name Array | Dimension | Description |  |
| :--- | :--- | :--- | :--- |
| DUALPT | - | - | General pointer table. |
| HYDROPT - | - | General pointer table. |  |
| INTPT | - | - | General pointer table. |
| HEATPT | - | General pointer table. |  |

## C.8.3. PRZDATA-PRIZER Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; PRIZEVLT, defined in Sec ( 8.1; and PRIZEPT, defined in Sec. C.8.2.

## C.9. PUMP COMPONENT

## C.9.1. PUMPVLT-PUMP Variable-Length Table

REAL VARIABLES:

## Parameter Description

AA1111 Dummy variable that provides a known start to the COMMON block.
AEFFM1 The coefficient for the (OMEGA/ROMEGA)** 2 term in the calculation of the variable moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$.
ALPHA
Pump void fraction.
AlPHAO Void fraction used on previous time step for pump head calculation.

| BEFFMI | The coefficient for the (OMEGA/ROMEGA) term in the calculation of the variable moment of inertia ( $\mathrm{kg} \cdot \mathrm{m}^{2}$ ). |
| :---: | :---: |
| BSMASS | Time-integrated mass flow from pump. |
| CEFFMI | The constant term in the calculation of the variable moment of inertia ( $\mathrm{kg} \cdot \mathrm{m}^{2}$ ). |
| DELP | Delta $P$ across pump. |
| DSMOM | Derivative of pump head with velocity. |
| EFFMI | Moment of inertia. |
| EFFMI1 | The alternate effective moment of inertia. |
| EPSW | Wall surface roughness. |
| FL(2) | Liquid mass-flow corrections for mass-conservation checks |
| FLOW | Pump volumetric flow rate. |
| FV(2) | Vapor mass-flow corrections for mass-conservation checks. |
| HEAD | Pump head. |
| HOUTL | HTC between outer boundary of pump wall and liquid. |
| HOUTV | HTC betwesn outer boundary of pump wall and vapor. |
| MFLOW | Pump mass-flow rate. |
| OMEGA | Angular velocity at old time. |
| OMEGAN | Angular velocity at new time. |
| OMGOFF | Pump retational speed when its controlling trip is OFF after it was ON. |
| OMTEST | The PUMP speed below which EFFMi1 (the alternate effective moment of inertia) is used (rad . $s^{-1}$ ) |
| QP3IN | Initial QPPP factor. |
| QP30FF | QP'-P factor when its controlling trip is OFF after it was ON. |
| RADIN | Inner radius of wall. |
| RFLOW | Rated flow. |
| RHEAD | Rated head. |
| RHO | Pump mixture density. |
| ROMEGA | Rated angular velocity. |
| ROMGMX | Maximum rate of change of the pump rotational speed. |
| RQP3MX | Maximum rate of change of the QPPP factor. |

RRHO
RTORK
SMOM
TFRO
TFR1
TFR2
TFR3
TFRB
TFRLO
TFRL1
TFRL2
TFRL3
TH
TORQUE
TOUTL
TOUTV
211111

Rated density.
Rated torque.
Momentum source.
Frictional torque constant coefficient.
Frictional torque linear coefficient.
Frictional torque quadratic coefficient.
Frictional torque third-order coefficient.
Pump speed that defines the low-speed regime.
Low pump speed fictional torque constant coefficient.
Low pump speed frictional torque linear coefficient.
Low pump speed frictional torque quadratic coefficient
Low pump speed frictional torque third-order coefficient.
Wall thickness.
Pump torque.
Liquid temperature outside wall.
Vapor temperature outside wall.
Dummy variable that provides a known end to the COMMON block.
INTEGER VARIABIES:

## Parameter

|A1111
ICHF
ICJI
ICJ2
ICONC
INDXHM
INDXTM
IONOFF

## IPF

IPM

## Description

Dummy variable that provides a known start to the COMMON block. CHF calculation option.
Not used.
Not used.
Indicetor for presence of solute in the coolant input.
Index on head degradation multiplier curve.
Index on torque degradation multiplier curve.
Number of time steps the pump-speed controlling trip has been ON
Last interpolated interval in the pump-speed table's rate-factor table.
Two-phase indicator.
$0=$ use single-phase curves:
$1=$ use two-phase curves.

IPMPS

IPMPS2

IPMPSV

IPMPTR
IPMPTY
IPP
IQF
IQP
IQP3SV
IQP3TR
IRP

ISOL. 1
ISOL?
JS1
JS2
JUN1
JUN2
NCELLS
NDATA(16)
NDMAX
NHDM
NONOFF

NPMPRF

Flag ihat indicates whether or not the pump speed previously has dropped below OMTEST.
$0=$ pump speed always has been greater than OMTEST;
$1=$ pump speed has dropped below OMTEST at some time.
Flag that indicates the use of the variable pump inertia; set in subroutine RPUMP.

Signal-variable ID number that defines the pump-speed table's independent variable.
Pump utip identification
Pump type ( 1 or 2 ).
Last interpolated interval in the pump-speed table.
Last interpolated interval in the QPPP factor table's rate-factor table.
Last interpolated interval in the QPPP factor table.
QPPP factor rate-factor table's abscissa-coordinate variable ID number.
Trip ID number that controls evaluation of the QPPP factor table.
Reverse speed indicator.
$0=$ reverse not allowed;
$1=$ reverse allowed.
Indicator for velocity update at JUN1.
Indicator for velncity update at JUN2.
Junction sequence number at cell 1 of the pump.
Junction sequence number at cell NCELLS of the pump.
Junction number of the junction at cell 1.
Junction number of the junction at cell NCELLS.
Number of fluid cells.
Number of sets of points in head and torque curves.
Size of scratch storage array.
Number of points on the head degradation multiplier curve.
Number of time steps the QPPP factor table's controlling trip has been ON.

The number of rate-factor table pairs whose rate factor is applied to the pump-speed table's independent variable.

NPMPSD

NPMPSV
NPMPTB
NQP3RF
NQP3SV
NQP3TB
NTDM
OPTION
TYPE1
TYPE2
Signal-variable or control-block iD number that defines the pump rotational speed when the pump-speed controlling trip is initially OFF

211111 Pump-speed rate-factor table's abscissa-coordinate variable ID number. Number of pairs in the fump-speed table
Number of pairs in the QPPP factor table's rate-factor table QPPP factor rate-factor table's abscissa-coordinate variable ID number. Number of pairs in the QPPP factor table Number of points on the torque degradation multiplier curve. Pump curve option.
Type of adjacent component at JUN1
Type of adjacent component at JUN2
Dummy variable that provides a known end to the COi... ON block

## C.9.2. PUMPPT-PUMP Pointer Table

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| DUALPT | - | - | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| INTPT | - | - | General pointer table. |
| HEATPT | - | - | General pointer table. |

HEAD AND TORQUE TABLE

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| LHSP1 | HSP1 | 2*NDATA(1) | Single-phase head curve 1. |
| LHSP2 | HSP2 | 2*NDATA(2) | Single-phase head curve 2. |
| LHSP3 | HSP3 | 2*NDATA(3) | Single-phase head curve 3. |
| LHSP4 | HSP4 | 2*NDATA(4) | Single-phase head curve 4. |
| LHTP1 | HTP1 | 2*NDATA(5) | Two-phase head curve 1. |
| LHTP2 | HTP2 | 2*NDATA(6) | Two-phase head curve 2. |
| LHTP3 | HTP3 | 2*NDATA(7) | Two-phase head curve 3. |
| LHTP4 | HTP4 | 2*NDATA(8) | Two-phase head curve 4. |
| LTSP1 | TSP1 | 2*NDATA(9) | Single-phase torque curve 1. |
| LTSP2 | TSP2 | 2*NDATA(10) | Single-phase torque curve 2. |
| LTSP3 | TSP3 | 2*NDATA(11) | Single-phase torque curve 3 |


| LTSP4 | TSP4 | 2*NDATA(12) | Single-phase torque curve 4. |
| :--- | :--- | :--- | :--- |
| LTTP1 | TTP1 | 2*NDATA(13) | Two-phase torque curve 1. |
| LTTP2 | TTP2 | 2*NDATA, ") | T*: o-phase torque curve 2. |
| LTTP3 | TTP3 | 2*NDATA(1-1 | Two-phase torque curye 3. |
| LTTP4 | TTP4 | 2*NDATA(16) | Two-phase torque curve 4. |
| MISCELLANEOUS TABLE: |  |  |  |


| Name | Array | Dimension | Description | |
|---|---|---|---|---|
| LBD4 | BD4 | LENBD | Dummy variable. |
| LHDM | HDM | 2*NHDM | Head degradation multiplier curve. |
| LIDXCS | IDXCS | 16 | Curve set index array |
| LNDATA | NDATA | 16 | Number of sets of points in head and torque curves. |
| LPMPRF | PMPRF | \|NPMPRF|*2 | Rate-factor table for the pump-speed table. |
| LPMPTB | PMPTB | \|NPMPTB|*2 | Pump rotational speed table. |
| LQP3RF | QP3RF | \|NQP3RF|*2 | Rate-factor table for the QPPP factor table. |
| LQP3TB | QP3TB | \|NQP3TB|*2 | QPPP factor table. |
| LTDM | TDM | 2*NTDM | Torque degradation multiplier curve. |

## C.9.3. PUMPDATA-PUMP Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDL.T, both defined in Appendix D: PUMPVLT, defined in Sec C.9.1; and PUMPPT, defined in Sec C.9.2.

## C.10. STEAM-GENERATOR COMPONENT

## C.10.1. STGENVIT-STGEN Variable-Length Table

REAL VARIAB'-ES:

## Parameter

AA1111
BSMSS1
ESMS52 Time-integrated mass flow from secondary side
CA1P Fraction of liquid velocity at the right face of the primary see junction cell that contributes to the momentum transfer into the primary tee side leg

Fraction of vapor velocity at the right face of the primary tee junction cell that contributes to the momentum transfer into the primary tee side leg

FL(4)
FV(4)
HTLSGI
HTLSGO
QP3IN
RADIN
TH
Z11111

Fraction of liquid velocity at the left face of the primary tee junction cell that contributes to the momentum transfer into the tee side leg
Fraction of vapor velocity at the left face of the primary tee junction cell that contributes to the momentum transfer into the primary tee side leg
Cosine of the angle measured from the low-numbered side of the primary tube to the primary tee tube.

Wall surface roughness.
Liquid mass-flow corrections for mass-conservation checks.
Vapor mass-flow corrections for mass-conservation checks.
Heat loss on the inside of a general surface (HAAT)
Heat loss on the outside of a general surface (HAAT).
Initial QPPP factor.
Inner radius of a tube wall
Tube wall thickness
Dummy variable that provides a known end to the COMMON block INTEGER VARIABLES:

## Parametar

|A1111
ICHF1

ICNC2

ICONC

ISOLP

## Description

Dummy variable that provides a known start to the COMMON block
Indicator for a CHF calculation on the primary side.
$0=$ no CHF calculation;
$1=$ CHF calculation.
Indicator for a CHF calculation on the secondary side. $0=$ no CHF calculation;
$1=$ CHF calculation.
Presence of solute in the secondary input flag
$0=$ no boron present:
$1=$ boren present.
Presence of solute in the primary input flag
$0=$ no boron present ;
$I=$ boron present.
Indicator for velocity update at JUNP

ISVLB1
1SVL.B2
ISVRB1
ISVRB2
ICIP
JINL.
JOTL
1511
1512
JSP
JUN11
JUN12
JUNP
LGHT

LGHTN

LNGHT

NCELLI

NCELL2
NCELLS

NCLP
NCLS(10)
NCLT(10)
NDHT
NGHT

NITJN

Indicator for velocity update at JUN11
Indicator for velocity update at _UN21
Indicator for velocity update at JUN12.
Indicator for velocity update at JUN22.
Junction cell index of a primary tee connection
Junction cell index for the secondary inlet junction.
Junction cell index for the secondary outlet jui. tion.
Junction sequence number at JUN1
Junction sequence number at JUN2.
Junction sequence number at JUNP
Junction number adjacent to cell 1 on primary side.
Junction number adjacent to cell NCELL1 on primary side.
Junction number of the high-numbered-cell end of a primary tee
Location in the pointer table of the old-time generalized heat-transfer variables.

Location in the pointer table of the new-time generalized heat-transfer variables.

Length of the variables of the generalized heat-transfer information for which old- and new-time values are stored

Number of fluid cells on tube side (primary side) excluding the side leg if the primary component is a tee.

Number of fluid cells on shell side (secondary side).
Total number of fluid cells (NCELL1 + NCELL $2+1$ ) excluding, if the primary component is a tee, the cells on the primary tee side leg.
Number of cells on the primary tee.
Number of cells on the primary side of a secondary component
Number of cells on the side leg of a secondary component (a TEE).
Number of nodes used in the second set of heat conduction paths.
Number of heat conduction paths used to model structures in the second set of generalized heat-transfer volumes.

Number of junctions internal to the secondary flow path (includes the junctions).

NODMX

NOTEE NSCMP NSJNE NSJUN

NSTJN
NTUBE

STYPE (10)

TYPE11
TYPE12
TYPEP
Z11111

Maximum number of nodes for heat conduction paths (maximum of NODES and NOHT).
Number of tees used to construct the secondary flow path
Number of components used to construct the sezondary flow path
Total number of junctions in the secondary flow path (includes tee junctions and external connections).
On input, the total number of junctions in the secondary flow path. This number then is reduced by the number of fills or breaks that are connected to the secondary external connections.
Number of external connections on secondary steam generator.
The number of conduction paths used to model the first set of generalized heat-transfer volumes.
The component types (PIPEs or TEEs) used to construct the secondary flow path.
Type of adjacent component at JUN11
Type of adjacent component at JUN12
Type of adjacent component at JUNP.
Dummy variable that provides a known end to the COMMON block.
C.10.2. STGENPT-STGEN Pointer Table (For STGEN, NCELLS $=$ NCELL1 + NCELL2 + NCE!L3 + NCELL $4+3$ and NCELLT $=$ NCELL $1+$ NCELL $2+1)$

| Name | Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| DUALPT | - | - | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| INTPT | - | - | General pointer table. |
| LQPPL | QPPL | NCELLS-1 | Heat flux $\left(\mathrm{W} \cdot \mathrm{m}^{-3}\right)$ from wall to liquid. |
| LQPPV | QPr | NCELLS-1 | Heat fiux $\left(\mathrm{W} \cdot \mathrm{m}^{-3}\right)$ from wall to vapor. |

COMPONENT POINTERS:

| Name | Array | Dimension |
| :--- | :--- | :--- |
| LCAS | CAS | NSCMP |
| LCAIS | CA1S | NSCMP |
| LCAIVS | CAIVS | NSCMP |

APPENDIX C

| LCAVS | CAVS | NSCMP | Source term for a fluid cell that contains a side tee junction. |
| :---: | :---: | :---: | :---: |
| LCOSS | cos5 | NSCMP | Cosine of the angle measured from the lownumbered side of the primary tube to the side tube for a secondary TEE component. |
| LFLS | FLS | 4*NSCMP | Liquid volumetric flow rate. |
| LFVS | FVS | 4*NSCMP | Vapor volumetric flow rate. |
| LJCLSC | JCLSC | NSJUN | Secondary cell where secondary junction is located. |
| LJCLT | JCLT | NSCMP | Fluid cell number that contains a side-leg tee connection. |
| LJNPOS | JNPOS | NSJUN | Junction location parameter (inflow cutflow, or tee). |
| LJNS | JNS | 3*NSCMP | Junction numbers for components composing the steam-generator secondary side. |
| LJNSC | JNSC | NSJUN | Secondary external junction number (from input). |
| LJSINT | JSINT | 4*NSCMP | Sequence numbers for the junctions composing the steam-generator secondary-side flow path. |
| LJSSN | JSSN | NSJUN | $B D$ array for the external junction. |
| LJUNS | JUNS | $\begin{aligned} & 8^{*} \text { (NSJUN } \\ & - \text { NOTEE) } \end{aligned}$ | An array that contains junction information for the components composing the steamgenerator secondary-side flow path. |
| LNCMSC | NCMSC | NSJUN | Secondary component number that contains the junction. |
| LNCTS | NCTS | NSJUN | A vector that contains the junction numbers for the components composing the steamgenarator secondary side. |
| LNSOL | NSOL | 4*NSCMP | An array that contains information about the method of connecting secondary-side steam-generator components. |
| LNUMS | NUMS | NSCMP | User-spacified steam-gen-zatix secondaryside compunent numbars. |
| LVSS | VSS | NSJUN | An pray th at contains information about the methe: sf connecting secondary-side steam generator components. |

HEAT-TRANSFER POINTERS

| Name | Array | Dimension | Description |
| :---: | :---: | :---: | :---: |
| LCPWG | CPWG | NGHT*NDHM1 | Wall specific heat ( $\mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$ ) |
| LCWG | CWG | NGHT*NDHM1 | Wall conductivity (W $\mathrm{m}^{-1}, \mathrm{~K}^{-1}$ ). |
| LDRG | DRG | NGHT*NDHM1 | Internodal spacing ( $i \times$ in m ) between nodes in the wall. |
| LEMSG | EMSG | NGHT | Wall emissivity. |
| LHILG | HHILG | NGHT | HTC (W $\left.\cdot \mathrm{m}^{-2}, \mathrm{~K}^{-1}\right)$ to the liquid on the interior of a wall. |
| LHILGN | HILGN | NGHT | New-time HTC (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ) to the liquid on the interior of a wall. |
| LHIVG | HIVG | NGHT | HTC (W $\left.\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}\right)$ to the vapor on the interior of a wall. |
| LHIVGN | HIVGN | NGHT | New-time HTC (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ) to the vapor on the interior of a wall. |
| LHOLG | HOLG | NGHT | HTC (W $\left.\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}\right)$ to the liquid on the exterior of a wall. |
| LHOLGN | HOLGN | NGHT | New-time HTC (W. $\mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ) to the liquid on the exterior of a wall. |
| LHOVG | HOVG | NGHY | HTC (W $\left.\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}\right)$ to the vapor on the exterior of a wall. |
| LHOVGN | HOVGN | NGHT | New-time HTC (VV $\left.\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}\right)$ to the vapor on the exterior of a wall. |
| LIDGHI | IDGHI | NGHT | Heat-transfer regine flag for the interior of a wall. |
| LIDGHO | IDGHO | NGHT | Heat transfer regime flag for the exterior of a wall. |
| LIDGI | IDGI | NGHT | Fluid cell identifist for heat transfer with the interior of a wall. |
| LIDGO | IDGO | NGHT | Fluid cell identifier for heat transfer with the exterior of a wall. |
| LMATG | MATG | NGHT*NDHM1 | Wall material identifier. |
| LQPCGO | QPCGO | NGHT*NODMX | Oid wall volumetric heat source (currently not used). |
| LQPPCG | QPPCG | NGHT*NODMX | Wall volumetric heat source. |


| LQPPG | QPPG | NGHT*NODMX | Wall volumetric heat source ( $\mathrm{W} \cdot \mathrm{m}^{-3}$ ). |
| :---: | :---: | :---: | :---: |
| LRADIG | RADIG | NG.HT | Wall interior radius (m). |
| LRNG | RNG | NGHT*NODMX | Radial locations ( m ) of wall heat-transfer nodes. |
| LRN2G | RN2G | NGHT*NDHM1 | Radial locations ( m ) of the heat conduction cell edges. |
| LROWG | ROWG | NGHT*NDHMI | Wall density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| LTCHFG | TCHFG | NGHT*NODMX | CHF temperature ( K ). |
| LTHG | THG | NGHT | Wall thickness (m). |
| LTILG | TiLG | NGHT | Liquid temperature ( $K$ ) of the fluid interior to the wall |
| LTIVG | TIVG | NGHT | Vapor temperature (K) of the fluid interior to the wall. |
| LTOLG | TOLG | NGHT | Liquid temperature ( $K$ ) of the fluid exterior to the wall. |
| LTOVG | TOVG | NGHT | Vapor temperature ( $K$ ) of the fluid exterior to the wail. |
| LTWG | TWG | NGHT*NODMX | Old wall temperature distribution (K). |
| L'NGN | TWGN | NGHT*NODMX | New wall temperature distribution (K). |
| LWAIG | WAIG | NGHT | Interior wall surface area ( $\mathrm{m}^{2}$ ). |
| LWAOG | WAOG | NGHT | Exterior wall surface area ( $\mathrm{m}^{2}$ ). |
| NETWORK POINTERS: |  |  |  |
| Name | Array | Dimension | Description |
| LAOLS | AOLS | NSJUN* <br> (NSJUN+1) | Steam-generator network matrix. |
| LAOUS | AOUS | NSJUN*NSJUN | Steam-generator network matrix. |
| LAOVS | AOVS | NSJUN*NSJUN | Steam-generator network matrix. |
| LBDP | BDP | LENBD | Boundary array for the primary tee connection. |
| LBDS | BDS | NSJUN*LENBD | Boundary arrays for the steam-generator secondary components. |
| LDRAS | DRAS | NSJUN | Steam-generator network vector. |
| LDRCS | DRCS | NSJUN | Steam-generator network vector. |



Fraction of liquid velocity at the right face of the tee junction cell that contributes to the momentum transfer into the side leg.

Fraction of vapor velocity at the right face of the tee junction cell that contributes to the momentum transfer into the tee side leg.

Fraction of vapor velocity at the left tace of the tee junction cell that contributes to the momentum transfer into the tee side leg.

Cosine of the angle from the w-numbered segment to the secor.dary tube.

Constant in the dryer model (currently not used)
Pressure drop across separator.
Desired pressure drop across separator.
Total (time-integrated) energy directly input to the primary.
Total (time-integrated) energy directly input to the secondary.
Wall surface roughness.
Liquid mass-flow corrections for mass-conservation checks.
Vapor mass-flow corrections for mass-conservation checks.
HTC to liquid at the outer boundary of the primary tube wall
HTC to liquid at the outer boundary of the secondary tube wall.
HTC to vapor at the outer boundary of the primary tube wall.
HTC to vapor at the outer boundary of the secondary tube wall.
Power per length added to the tee primary.
Power per length added to the tee secondary.
Initial power deposited in the coolant of the tee primary tube.
Initial power deposited in the coolant of the tee secondary tube.
Power deposited in the coolant of the tee primary tube when its controlling trip is OFF after it was ON.

Fower deposited in thr coolant of the tee secondary tube when it controlling trip is OFF after is was ON.

Initial QPPP factor in the tee primary tube.
Inital QPPP factor in the tee secondary tube.
QPPF factor for the tee primary tube when its controlling trip is OFF after it was ON .

QPOFF2

RADIN1
RADIN2
RH
RPWMX1

RPWMX2

RQPMX1
RQPMX2
RR1
TH1
TH2
THETA
TLEN1
TLiN2
TOUTLI
TOUTL2
TOUTV1
TOUTV2
VDRYL
VDRYU
WLIO
XCO
XCU
211111

QPPP factor for the tee secondary tube when its controlling trip is OFF after it was ON.

Inner radius of the primary tube.
Inner radius of the secondary tube.
Radius of the separator hub at inlet.
Maximum rate of change of power deposits $n$ the coolant $n$ tee primary tube.
Maximum rate of change of power deposited in the coolant for the tee secondary tube.
Maximum rate of change of the QPPP factor for the tee secondary tube.
Maximum rate of change of the QPPP factor for the tee secondary tube
Radius of larger pickoff ring at first stage of two-stage separator
Wall thickness of he primary tube.
Wall thickness of the secondary tube
Angle between swirling vane and horizontal plane.
Length of the primary.
Length of the secondary.
Tempera. : of liquid outside the primary tube wall.
Temperature of liquid outside the secondary tube wall.
Temperature of vapor outside the primary tube wall
Temperature of vapor outside the secondary tube wall.
Lower limit for dryer velocity (currently not available).
Upper limit for dryer velocity (currently not available)
Liquid flow rate into the separator from the previous time step.

## INTEGER VARIABLES:

## Parameter

|A1111
ICBS1

## Description

Dummy variable that provides a known start to the COMMON block
Control-block ID numbe: that defines the separator carryover (the liquid mass flow divided by the total mass flow at the JCELL +1 interface).

## ICHF

! C 11
ICJ2
ICJ3
ICONCl
ICONC2
IDRY
IENTRN

IONOF1

1ONCF2

IPF1

IPF2

IPOW1

IPOW2

IPP1

IPP2

IPWSV1

IPWSV2

IPWTR1

C- 52
Trip ID number that controls evaluation of the power deposited in the coolant table for the tee primary tube mass flow divided by the total mass flow at the JCELL +1 interface)
CHF calculation option.
Iteration index of adjacent component to tee at JUN1.
Iteration index of adjacent component to tee at JUN2.
Iteration index of adjacent component to tee at JUN3.
Indicator for presence of boron in the coolant of the tee primary tube.
Indicator for presence of boron in the coolant of the tee secondary tube.
Dryer option flay " 'ently not available).
Offtake model option indicator.
$0=$ model off;
$1=$ model on (side-tube internal-junction mass flow determined using offtake model

Number of time steps the power deposited in the coolant table for the tse primary tube's controlling trip aas been ON.

Number of time steps the power deposited in the coolant table for the tee secondary tube's controlling trip has been ON.

Last interpolated interval number of the rate-factor table for the power deposited in the coolant of the tee primary tube.

Last interpolated interval number of the rate-factor table for the power deposired in the coolant of the tee secondary tube.

Indicator for presence of power deposited in the coolant of the tee primary tube.

Indicator for presence of power deposited in the crolant of the tee secondary tube.

Last interpolated interval number of the power deposited in the coolant table for the tee primary tube.

Last interpolated interval number of the power deposited in the coolant table for the tee secondary tube.

Power deposited in the coolant table's abscissa-coordinate variable ID number for the tee primary tube.
rer deposited in the coolant table's abscissa-coordinate variable ID nember for the tee secondary tube.
coolant table for the tee primary tube

IPWTR2

IQF1

1QF2

IQP1

IQP2

IQPSV1

IQPSV2

IQPTR1

IQPTR2

ISEP
ISOL. 1
ISOL2
ISOL3
ISOLN
ISTAGE
JCELL
JS1
JS2
JS3
JUN1
JUN2
JUN3
NCELL1
NCELL2

Trip ID number that controls evaluation of the power deposited in the coolant table for ' etee secondary tube.

Last interpolated interval number of the rate-factor table for the QPPP factor table of the we primary tube.

Last interpolated interval number of the rate-factor table for the QPPP factor of the tee secondary tube.

Last interpolated interval number of the QPPP factor table for the tee primary tube.

Last interpolated interval number of the factor table for the tee secondary tube.

QPPP factor table's abscissa-coordinate variable ID number for the tee primary tube.

QPPP factor table's abscissa-coordinate variable ID number for the tee sacondary tube.
Trip ID number that controls evaluation of the QPPP factor table for the tee primary tube.
Trip ID number that controls evaluation of the QPPP factor table for the tee secondary tube.

Separator flag
Indicator for velocity update at JUN1
Indicator for velocity update at JUN2.
Indicator for velocity update at JUN3
Advanced separator flag
Separator-type option
Index of the junction cell within the primary tube.
Junction sequence number at cell 1 of the primary tube
Junction sequence number at cell NCELL1 of the primary tube.
junction sequence number at cell NCELL2 of the side tube.
Junction number of the junction at cell 1 of the primary tube
Junction number of the junction at cell NCELLL of the primary tube.
Junction number of the junction at cell NCELL2 of the side tube.
Number of fluid cells in the primary tube of the tee
Number of fluid culls in the side tube of the tee

| NCELLS | NCELL1 + NCELL2 + 1. |
| :--- | :--- |
| NCSEP | Separator flag. |
| NDRYR | Dryer option flag (dryer not available). |
| NONOF1 | Number of time steps the QPPP factor table for the tee primary tube's |
| controlling trip has been ON. |  |
| Number of time steps the QPPP factor table for the tee secondary tube's |  |
| controlling trip tas been ON. |  |


C.11.2. TEEPT-TEE Pointer Table (For TEE, NCELLS $=$ NCELLI + NCELL $2+1$ )

| Name | Array | Dimension |
| :--- | :--- | :--- | Description | General pointer table. |
| :--- |
| DUALPT |
| HYDROPT |
| INTPT |
| HEATPT | General pointer table.

## C.1:.3. TEEDATA-TEE Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D: TES.VLT, defined in Sec.C.11.1; and TEEPT, defined in Sec. C.11.2

## C.12. TURBINE COMPONENT

C.12.1. TURBNVIT-TURB Variable-Length Table

REAL VARIABLES:

## Parameter

AA1111
ALPHA1
ALPHA2
AR
BSMASS
COEF1
COEF2
COF3SQ
CP
CPOW
DIA
DSMOM
EFFDSN
EFFSTG
ENINP
EPSW
FL.(2)
FLODIR

FLOW
FV(2)
GAMMA
PHIREM
PLENT
POWIN
POWDSN
POWOFF
POWSTG
PRES1

## Description

Dummy variable that provides a known start to the COMMON block.
Upstream void fraction.
Downstream void fraction.
Area ratio (bucket exit area/nozzle exit area).
Fime-integrated mass flow from turbine.
Nozzle coefficient.
Bucket coefficient.
Fraction of reaction energy actually delivered in the stage.
Specific heat at constant pressure.
Special turbine input.
Bucket centerline diameter.
Derivative of SMOM with respect to velocity.
Stage efficiency at design conditions.
Stage efficiency.
Total (time-integrated) energy directly input to the turbine.
Wall surface roughness.
Liquid mass-flow corrections for mass-conservation checks.
Flow direction flag.
$-1=$ indicates normal flow direction is from JUN2 to JUN1;
$1=$ indicates normal flow direction is from JUN1 to JUN2.
Mass-flow rate.
Vapor mass-flow corrections for mass-conservation checks.
Isentropic exponent of eipansion.
Remaining losses (rotation or diaphragm-packing).
Total length of the turbine stage.
Initial power in the coolant.
Stage power output at design conditions.
Power in the coolant when the controlling trip is OFF after it was ON.
Stage power output.
Upstream pressure.

PRES2
QUALTY
REACTN
RHOL1
RHOL2
RHOM1
RHOM2
RHOV1
RHOV2
RPOWMX
SMOM
SUPRHT
TEMPL1
TEMPL2
TEMPV1
TEMPV2
VELLI
VELL2
VELM1
VELM2
VELV1
VELV2
VSTAG
211111

Downstream pressure.
Thermodynamic quality of steam.
Degree of reaction at design conditions.
Upstream liquid density.
Downstream liquid density.
Upstream mixture density.
Downstream mixture density.
Upstream steam density
Downstream steam density.
Maximum rate of change of the power deposited in the coolant
Source term in the momentum equation (head gain)
Upstream degree of superheat of steam.
Upstream liquid temperature.
Downstream liquid temperature.
Upstream steam temperature.
Downstream steam temperature.
Upstream liquid velocity
Downstream liquid velocity.
Upstream mixture velocity.
Downstream mixture velocity
Upstream steam velocity.
Downstream steam velocity.
Stagnation velocity.

INTEGER VARIABLES:

## Parameter Description

IA1111 Dummy variable that provides a known start to the COMMON bluck
IC 11 Iteration index of adjacent component at JUN1
IC 12
ICONC
Iteration index of adjacent component at JUN2
Presence of boron dissolved in the liquid coolant flag.

IONOFF

IPF

IPOW
IPOWSV

IPOWTR

IPP
ISOLLE
ISOLRB
ISTG
J\$1
JS2
JUN1
JUN2
LENTRB

NCELLS
NEFCON

NPOWRF

NPOWSV

NPOWTB
NROWS
TYPEI
TYPE2
211111

Number of time steps the power deposited in the coolant trip has been ON.

Power deposited in the coolant table's rate-factor table interval last interpolated.

Presence of power in the coolant flag.
Power deposited in the coolant table's abscissa-coordinate variable ID number.

Trip ID number that controls power deposited in the coolant table evaluation.

Power 'eposited in the coolant table interval last interpolated.
Inouicator for velocity update at JUN1
Indicator for velocity update at JUN2
Stage number.
Junction sequence number at cell 1 of the turbine.
Junction sequence number at cell NCELLS of the turbine.
Junction number of the junction at cell 1.
Junction number of the junction at cell NCELLS.
Length of the turbine block in array data (information pertaining to the entire turbine-generator assembly, that is, the sum over all stages).
Number of fluid calculation cells in the turbine component.
Turbine efficiency.
$0=$ stage efficiency to be computed at off-design conditions;
$1=$ constant efficiency.
Number of entry pairs in the power deposited in the coolant table's ratefactor table.

Power deposited in the coolant rate-factor table's abscissa-coordinate variable ID number.

Number of entry pairs in the power deposited in the coolant table.
Number of rows of moving blades.
Type of adjacent component at JUN1.
Type of adjacent component at JUN2.
Dummy variable that provides a known end to the COMMON block.
C.12.2. TURBPT-TURB Pointer Table

| Name | Array | Dimension | Description | |
|---|---|---|---|---|
| DUALPT | - | - | General pointer table. |
| HYDROPT | - | - | General pointer table. |
| INTPT | - | - | General pointer table. |
| HEATPT | - | - | General pointer table. |
| LANGL | ANGL | NROWS2 | Pointer for blade angles. |
| LPOWRF | POWR | \|NPOWRF|*2 | Pointer variable address for the power deposited in the coolant table's rate-factor table. |
| LPOWTB | POWTB | \|NPOWTB|*2 | Pointer variable address for the power deposited in the coolant table. |
| LTURB | TURB | -1 | Absolute LCM address for the turbine data common among all stages. |

## C.12.3. TURBDATA-TURB Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; TURBNVLT, defined in Sec. C. 12.1; and TURBPT, defined in Sec. C.12.2.

## C.13. VALVE COMPONENT

## C.13.1. VALVEVLT-VALVE Variable-Length Table

REAL VARIABLES:

| Parameter | Description |
| :--- | :--- |
| AA1111 | Dummy variable that provides a known start to the COMMON block. |
| AVLVE | Valve open flow area. |
| BSMASS | Time-integrated mass flow from the valve. |
| EPSW | Wall surface roughness. |
| FAVLVE | Fraction of the fully open flow area AVLVE to which the adjustable valve <br> cross section is set. |
| FL(2) | Liquid mass-flow corrections for mass-conservation checks. |
| FMAXOV | Maximum flow area fraction or relative valve stem position during valve <br> adjustment by the overriding trip. |
| FMINOV | Minimum flow area fraction or relative valve stem position during valve <br> adjustment by the overriding trip. |

FRICO
FRICOR
FV(2)
HDRDX
HOUTL
HOUTV
HVLVE
QP3IN
QP3OFF
RADIN
RQP3MX
RVMX

RVOV

TH
TOUTL
TOUTV
XPOS

211111

Fully open valve form-loss FRIC forward flow.
Fully open valve form-loss FRIC reverse flow.
Vapor mass-flow corrections for mass-conservation checks.
Fully open valve hydraulic diameter over DX.
HTC between outer boundary of valve wall and liquid.
HTC between outer boundary of valve wall and vapor.
Valve open hydraulic diameter
Initial QPPP factor.
QPPP factor when the controlling trip is OFF after it was ON Inner radius of pipe wall.
Maximum allowed rate of change of the QPPP factur(s).
Maximum rate of change of valve flow area fraction or relative value stem position.

Rate of change of valve flow area fraction or relative valve stem position when controlled by the overriding trip being ON.
Thickness of pipe wall.
Liquid temperature outside valve
Vapor temperature outside valve.
Variable flag for valve operation in progress.
$0=$ no movement;
$1=$ opening movement
Dummy variable that provides a known end to the COMMON block.

## INTEGER VARIABLES:

## Parameter

|A1111
ICHF CHF calculation option
ICJ1 Iteration index of adjacent component at JUN1.
ICJ2 Iteration index of adjacent component at JUN2.
ICONC Indicator for presence of boron in the coolant.
IONOFF Number of time steps the valve table's controlling trip has been ON .

## Description

Dummy variable that provides a known start to the COMMON block.

Last interpolated interval number in the rate-factor table for the QPPP factor table.

Last interpolated interval number in the QPPP factor table. QPPP factor table's abscissa-coordinate variable ID number Trip ID number that controls evaluation of the QPPP factor table. Indicator for velocity update at JUN1. Indicator for velocity update at JUN2. Last interpolated interval number in the rate-factor table for the valve adjustment table.
Last interpolated interval number in the first valve adjustment table.
Last interpolated interval number in the second valve adjustment table.
Adjustable valve interface position.
Signal-variable ID number that defines the valve table's independent variable.

Trip ID number that controls evaluation of the valve adjustment tabie(s) Trip ID number that overrides trip IVTR control of the adjustable valve. Valve type option indicator.
Type of valve flow a "stment by the overriding trip IVTROV Junction sequence number at cell 1 of the valve. Junction sequence number at cell NCELLS of the valve. Junction number of the junction at cell 1.
Junction number of the junction at cell NCELLS.
Indicator for valve movement over the previous time step. $-1=$ closing:
$0=$ no movement; $1=$ opening.
Number of fluid cells.
Number of time steps the QPPP factor table's controlling trip has been OiN.

Number of pairs in the rate-factor table for the QPPP factor table.
Rate-factor table's abscissa-coordinate variable ID number for the QPPP factor table.
Number of pairs in the QPPP factor table.
Number of rate-factor tabie pairs whose rate factor is applied to the valve table's independent variable.

NVSV

NVTB1
NVTB2
TYPE1
TYPE2
211111

Rate-factor table's abscissa-coordinate variable ID number for the valve adjustment table(s).

Number of pairs in the first valve adjustment table.
Number of pairs in the second valve adjustment table.
Type of adjacent component at JUN1.
Type of adjacent component at JUN2
Dummy variabla that provides a knowr end to the COMMON block.

## C.13.2. VLVEPT-VALVE Pointer Table

| Name | Array | Dimension | Description | | |
|---|---|---|---|---|---|
| DUALPT | - | General pointer table. |  |
| HYDROPT | - | General pointer table. |  |
| INTPT | - | General pointer table. |  |
| HEATPT | - | General pointer table. |  |
| LQP3RF | QP3RF | $\mid$ NQP3RF\|*2 | Rate-factor table for the QPPP factor table. |
| LQP3TB | QP3TB | $\mid$ NQP3TB\|*2 | QPPP factor table. |
| LVRF | VRF | $\mid$ NVRF ${ }^{* 2}$ | Rate-factor table for the valve adjustment <br> table(s). |
| LVTB1 VTB1 \|NVTB1|*2 First valve adjustment table. <br> LVTB2 VTB2 \|NVTB2|*2 Second valve adjustment table. |  |  |  |

## C.13.3. VLVEDATA-VALVE Data Tabie

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT. both defined in Appendix D; VALVEVLT, defined in Sec. C.13.1; and VLVEPT, defined in Sec C. 13.2.

## C.14. VESSEL COMPONENT

C.14.1. VSSELVLT-VESSEL Variable-Length Table

REAL VARIABLES

## Parameter Description

AA1111 Dummy variable that provides a known start to the COMMON block.
BSMASS Integrated fluid flow from vessel at start of time step.
BSMSSN Integrated fluid flow from vessel at end of time step.

## CIMFR

CIMFRL Core inlet mass-flow rate.
Core inlet liquid mass-flow rate.

CIMFRV
COMFR
COMFRL COMFRV CORELQ DCFLOW DCLQVL EPSW

GCC
GEOMFC
GRAV?
PCORE
PDC
PLP
PUP
QHSTOT

QSLTOT

SHELV

TCILMF
TCIVMF
TCOLMF
TCORE
TCOVMF
TDC
TLP
TSCORE
TSDC
TSLP

Core liquid volume fraction.
Core outlet mass-flow rate.

Core liquid outlet mass-flow rate.
Core outlet vapor pressure mass-flow rate.
Core liquid volume fraction.
Downcomer mass-flow rate.
Downcomer liquid volume fraction.
Wall surface roughness.
Gravity-acceleration constent.
Geometry factor ( $1.0=$ cylindrical, $0.0=$ Cartesian ).
GRAV component in the $z$-direction.
Average core pressure.
Downcomer average pressure.
Lower-plenum average pressure.
Upper-plenum average pressure.
Total heat flux from heat-structure components coupled to the vessel component.
Total heat flux from heat-structure components coupled to the vessel component (not evaluated).
Addition to the input vessel $Z$ coordinates to get elevations for computing GRAV in one dimension.

Integrated core inlet liquid mass flow (kg).
Integratec' core inlet vapor mass flow (kg).
Integrated core outlet liquid mass flow (kg).
Average core temperature.
Integrated core outlet vapor mass flow (kg)
Downcomer average liquid temperature.
Lower-plenum average temperature.
Average core saturation temperature.
Downcomer average saturation temperature.
Lower-plenum average saturation temperature.

| TSUP | Upper-plenum average liquid temperature. |
| :---: | :---: |
| TUP | Upper-olenum average liquid temperature. |
| VBMASS | Mass counter for internal break sources. |
| VBMSSN | Mass counter for internal break sources. |
| VCORE | Total liquid mass in the core. |
| VDCLQ | Total liquid mass in the downcomer. |
| VFMASS | Mass counter for internal fill source. |
| VFMSSN | Mass counter for internal fill source. |
| VLCORE | Core liquid mass. |
| VLPLIQ | Lower-plenum liquid volume fraction. |
| VLPLM | Lower-plenum liouid mass. |
| VLPLQ | Total liquid mass in the lower plenum. |
| VLQMSS | Total liquid mass in the vessel. |
| VOLDC | Downcomer volume. |
| VOLLP | Lower-plenum volume |
| VOLUP | Upper-plenum volume. |
| VSFLO'V | Vessel mass flow. |
| VUPLIQ | Upper-plenum liquid volume fraction. |
| VUPLM | Upper-plenum liquid mass. |
| 211111 | Dummy variable that provides a known end to the COMMON block. |
| INTEGER VARIABLES: |  |
| Parameter | Description |
| \|A1111 | Dummy variable that provides a known start to the COMMON block |
| IALL | IALLL. |
| IALLL | $1 C X L+N X B C P * N V$. |
| ICO | $1 C O M M+N \times B C M * N V$. |
| 1 COL | $1 C O M M+N \times B C M * N V$. |
| ICOM | $1 \mathrm{COMM}+(\mathrm{NXBCM}-1)^{*} \mathrm{NV}$. |
| 1COML | $1 \mathrm{COMM}+(\mathrm{NXBCM}-1)^{*} \mathrm{NV}$. |
| ICOMM | A array starting location for vessel three-dimensional arrays. |

ICOMML
ICONC
ICRL
ICRR ICRU

ICX
ICXL
ICXP
ICXPL
IDCL
IDCR
IDCU
IEXT
vo
IFOL
IFX
IFXL
IGBC
IGBCXR

IGBCYT

IGBCZ

IGEOM

ILCSP
INHSMX
IUCSP

ICOMM
Presence of boron in the coolant flag
Core lower-boundary segment number, Z(ICRL)
Core outer radial-boundary segment number, RAD (ICRR).
Core upper-boundary segment number, Z (ICRU)
ICXL
ICOMM $+(\mathrm{NXBCM}+\mathrm{NXR}-2)^{*} N V$
ICXPL.
$1 C X L+N V$
Downcomer lower-boundary segment number, $Z(I D C L)$.
Downcomer radial-boundary segment number, RAD (IDCR)
Downcomer upper-boundary segment number, Z (IDCU)
Specifies if this VESSEL input was generated by the post processor EX.
TRACT
$0=$ no;
$1=$ yes.
IFOL
ICOML if IGEOM.EQ.1.AND.IGBCXR.EQ.1, else ICOL
IFXL
IFOL + (NXRV-1)*NV
$I G B C X R+I G B C Y T+I G B C Z$
Flag (0 or 1) for internal pressure/velocity boundary conditions on the $x$ or r -direction walls of the VESSEL component.

Flag (0 or 1) for internal pressure/velocity boundary conditions on the $y$ or $\theta$-direction walls of the VESSEL component.

Flag (0 or 1 ) for internal pressure/velocity boundary conditions on the $z$-direction walls of the VESSEL component

Vessel geometry option
$0=$ cylindrival geometry:
$1=$ Cartesian geometry
Lower-core support-plate axial segment number
Number of interfaces between dissimilar materials in the vessel slabs Upper-core support-plate axial segment number

| IUHP | Upper head-plate axial segment number. |
| :---: | :---: |
| IVSSBF | Internal vessel boundary condition. <br> $0=$ no internal boundaries (default); <br> $2=$ first axial level acts like a fill, last axial level acts like a break; <br> $20=$ first axial level acts like a break, last axial level acts like a fill; <br> $22=$ both the first and last axial levels act like breaks. |
| IZBK | Switch for back-up on water pack. |
| IZBK2 | Switch for re-doner-cell logic. |
| IZNX | Variable used in water-packing logic. |
| JALL | $J C X+N Y B C P$. |
| JCO | NYBCM +1 . |
| JCOM | NYBCM. |
| JCOMM | NYBCM-1. |
| JCX | $J C O+$ NYT-1. |
| $J C X P$ | $J C X+1$ |
| JFO | JCOM if IGEDM.EQ. 1. AND IGBCYT EQ. 1 , else JCO. |
| JFX | $J F O+N Y T-1$. |
| KALL | $K C X+N Z B C P$. |
| KCO | NZBCM +1. |
| KCOM | NZBCM. |
| KCOMM | NZBCM-1. |
| KCX | $\mathrm{KCO}+\mathrm{NZZ-1}$. |
| KCXP | $K C X+1$ |
| KFO | KCOM if IGBCZ.EQ.1, else KCO. |
| KFX | KFO + NZZ-1. |
| LENLD | Length of level data. |
| LENLDO | Defined to be zero and currently not used. |
| LFVL | Relative position of old fundamental variables of level data. |
| LFVNL | Relative position of new fundamental variables of level data. |
| LNFVL | Length of fundamental variables of level data. |
| LNPTRL | Number of level data pointers. |
| LOCVSP | Beginning offset for the vessel pointer table. |


| LSTVSP | Length of the vessel pointer table. |  |  |
| :---: | :---: | :---: | :---: |
| LTEMPL | Location of temporary space in the A array to contain one level of data for editing of level data. Calculated but not used. |  |  |
| NASX | Number of axial segments (levels). |  |  |
| NCELLS | Number of fluid cells. |  |  |
| NCLX | Number of fluid cells per level. |  |  |
| NCRX | Maximum number of core volumes per level. |  |  |
| NCSR | Number of cell sources (connections). |  |  |
| NIJT | NI * JALL. |  |  |
| NODHS | Number of nodes in the heat slab. |  |  |
| NRSX | Number of radial segments. |  |  |
| NSGRID | Number of spacer grids present in the core region. Spacer grids are modelied only when the reflood model has been selected by inputting NAMELIST variable NEWRFD $=1$. |  |  |
| NTSX | Number of theta segments. |  |  |
| NVENT | Number of cells with vent valves in outer radial surface. |  |  |
| NVVTB | Number of input pairs in multiple-point vent-valve table. |  |  |
| NXRV | NRSX if IGEOM.EQ.O.AND. IGBCXR.NE. 0 , else NRSXH if IGEOM.NE.O.AND IGBCXR.NE 0 , else NRSX-1. |  |  |
| NYTV | NTSX-1 if IGEOM. EQ 0 AND IGBCYT.EQ. 0 , else NTSX +1 if IGEOM.NE. 0. AND.IGBCYT.NE. 0 , else 0 if IGEOM. EQ. 0 AND.NTSX.EQ. 1 , else NTSX. |  |  |
| NZZV | NASX +1 if IGBCZ NE .0 , else NASX-1. |  |  |
| 211111 | Dummy variable that provides a known end to the COMMON block. |  |  |
| COMMON DATA POINTERS: |  |  |  |
|  |  |  |  |
| Name | Array | Dimension | Description |
| LALPAG | ALPAG | NTSX*NCSX | Old void fraction at the agitated inverted annular flow. |
| LALPAN | ALPAN | NTSX*NRSX | New void fraction at the agitated IAF. |
| LALPCN | ALPCN | NTSX*NRSX | New void fraction at the CHF point. |
| LALPRN | ALPRN | NTSX*NRSX | New void fraction at the rough-wavy IAF, |
| LALPRW | ALPRW | NTSX*NRSX | Old void fraction at the rough-wavy IAF |


| LALPSM | ALPSM | NTSX*NRSX | Old void fraction at the smooth IAF. |
| :---: | :---: | :---: | :---: |
| LALPSN | ALPSN | NTSX*NRSX | New void fraction at the smooth IAF. |
| LALPTN | ALPTN | NTSX*NRSX | New void fraction at the transition boiling. |
| LAVENT | AVENT | NVENT | Pointer for vent-valve areas. |
| LDPCVN | DPCVN | NVENT | Pointet for vent-valve maximum $\Delta P$ to be closed. |
| LDPOVN | DPOVN | NVENT | Pointer for vent-valve minimum $\Delta P$ to be open. |
| LDR | DR | NRSX | Radial segment lengths (delta R). |
| LDTH | DTH | NTSX | Theta segment length (delta theta). |
| LDVLDP | DVLDP | NCSR | Derivative of liquid source velocity with respect to pressure |
| LDVVDP | DVVDP | NCSR | Derivative of vapor source velocity with respect to pressure. |
| LDZ. | DZ | NASX | Axial segment lengths (delta $Z$ ) |
| LFI CVN | FRCVN | NVENT | FRIC value when vent valve closed. |
| LFROVN | FROVN | NVENT | FRIC value when vent valve opened. |
| LFUNH | FUNH | NCLX*NEWRFD | Fraction of the heat-structure surface in each horizontal-plant mesh cell that is unheated. |
| LGRAVR | GRAVR | $\begin{aligned} & \text { NYBCM + NTSX } \\ & +N Y B C P \end{aligned}$ | $x$ - or $y$-direction component of the gravity unit vector on each $\mathbf{y}$ - or $\theta$-direction meshcell interface. |
| LGRAVT | GRAVT | $\begin{aligned} & \text { NYBCM + NTSX } \\ & + \text { NYBCP } \end{aligned}$ | $y$ - or $\theta$-direction component of the gravity unit vector on each y - or $\theta$-direction meshcell interface. |
| LICJ | ICJ | NCSR | Component number adjacent to a source. |
| LISOLB | ISOLB | NCSR | Indicator for velocity update. |
| LISRC | ISRC | NCSR | Relative cell number associated with source. |
| LISRF | ISRF | NCSR | Face number associated with source. |
| LISRL | ISRL | NCSR | Level number associated with source. |
| LIZINI. |  |  |  |
| LIZINS |  |  | (Not used.) |


| LJSN | JSN | NCSR |
| :--- | :--- | :--- | | junction sequence number associated with |
| :--- | :--- |
| source. |


| LZDFS | ZDFS | NTSX*NRSX | Old location of dispersed IAF. |
| :--- | :--- | :--- | :--- |
| LZDFSN | ZDFSN | NTSX*NRSX | New location of disposed IAF. |
| LZRWS | ZRWS | NTSX*NRSX | Old location of rough-wavy IAF. |
| LZRWSN | ZRWSN | NTSX*NRSX | New location of rough-wavy IAF. |
| LZSGRD | ZSGRD | NTSX*NRSX | New location of grid spacer. |
| LZSMS | ZSMS | NTSX*NRSX | Old location of smooth IAF. |
| LZSMSN | ZSMSN | NTSX*NRSX | New location of smooth IAF. |
| LZTBN | ZTBN | NTSX*NRSX | New location of transition boiling. |
| LEVEL DATA GRAPHICS IDENTIFIERS: |  |  |  |


| Name | Array | Dimension |
| :--- | :--- | :--- |
| LAID1 | AlD1 | 0 |
| LAID1N | AlD1N | 0 |
| LAID2 | AID2 | 0 |
| LAID2N | AID2N | 0 |
| LALD1 | ALD1 | 0 |
| LALD1N | ALD1N | 0 |
| LALD2 | ALD2 | 0 |
| LALD2N | ALD2N | 0 |


| LBITN | BITN | NA |
| :---: | :---: | :---: |
| LC5P3 |  |  |
| LC5P4 |  |  |
| 1.65 P 5 |  |  |
| LC5P6 |  |  |
| LCINYT | CINYT | NA |
| LCIXR | CIXR | NA |
| LCIYT | CIYT | NA |
| LCIZ | Clz | NCLX |
| LCFZL | CFZL | NCLX*** <br> NFRC3 |
| LCFZV | CFZV | $\begin{aligned} & \because C L X * 3^{*} \\ & \text { NFRC } \end{aligned}$ |
| LCHTAN | CHTAN | NCLX |
| LCHTIN | CHTIN | NCLX |
| LCL | CL | 0 |
| LCNHS | CNHS | 0 |
| LCNHSN | CNHSN | 0 |
| LCONC | CONC | 0 |
| LCONCO | CONCO | 0 |
| LCPHS | CPHS | 0 |
| LCPHSN | CPHSN | 0 |
| LCPL | CPL | 0 |
| LCPV | CPV | 0 |
| LCV | CV | 0 |
| LDLL | DLL | 0 |
| LDRIV | DRIV | 0 |

Graphics identifier for bit flag.
Variable not used.
Variable not used.
Variable not used.
Variable not used
Graphics identifier for interfacial drag coefficient for the $\theta$-direction.

Graphics identifier for interfacial drag soefficient for radial direction.

Graphics identifier for interfacial drag coefficient for $\theta$-direction.

Graphics identifier for interficial drag coefficient for axial direction

Graphics identifier for directional form-loss coefficient for liquid.

Graphics identifier for directional form-loss coefficient for vapor.

New interface-to-noncondensible HTC times the interfacial rea.

Graphics identifier for new interface-to-vapor HTC times interfacial area.

Variable not used
Variable not used.
Variable not used
Variable not used.
Variable not used
Variable not used
Variable not use
Variable not used.

| LDROP | DROP | 0 | Variable not used. |
| :---: | :---: | :---: | :---: |
| LDVD1 | DVD1 | 0 | Variable not used. |
| LDVD2 | DVD2 | 0 | Variable not used. |
| LDVV | DVV | 0 | Variable not used. |
| LDZZ | DZZ | 0 | Variable not used. |
| LEA | EA | 0 | Variable not used. |
| LEAN | EAN | 0 | Variable not used. |
| LEL | EL | 0 | Variable not used. |
| LELN | ELN | 9 | Variable not used. |
| LEMHS | EMHS | 0 | Variable not used. |
| LEV | EV | 0 | Variable not used. |
| LEVN | EVN | 0 | Variable not used. |
| LFA | FA | NCLX*3 | Graphics identifier for cell-edge flow areas. |
| LFAG | FAG | 0 | Variable not used. |
| LFINAN | FINAN | 0 | Variable not used. |
| LFRICI | FRICI | 0 | Variable not used. |
| LFRCIN | FRCIN | 0 | Variable not used. |
| LFRICI | FRICl | 0 | Variable not used. |
| LFRICL | FRICL | 0 | Variable not used. |
| LFRICV | FRICV | 0 | Variable not used. |
| LGAM | GAM | 0 | Variable not used. |
| LGAMN | GAMN | 0 | V/ariable not used. |
| LGCOND | GCOND | 0 | Variable not used. |
| LGEVAP | GEVAP | 0 | Variable not used. |
| LHD | HD | 0 | Variable not used. |
| LHDYT | HDYT | NCLX*3 | Interface hydraulic diameters. |
| LHFG | HFG | 0 | Variable not used. |
| LHGAM | HGAM | 0 | Variable not used. |
| LHLA | HLA | 0 | Variable not used. |
| LHLATW | HLATW | 0 | Variable not used. |


| LHLV | HLV | 0 | Variable not used. |
| :---: | :---: | :---: | :---: |
| LHLVN | HLVN | 0 | Variable not used. |
| LHSA | HSA | 0 | Variable not used. |
| LHSHI | HSHL | 0 | Variable not used. |
| LHSHLO | HSHLO | 0 | Variable not used. |
| LHSHV | HSHV | 0 | $V$ ariable not used. |
| LHSHVO | HSHVO | 0 | $V$ ariable not used. |
| LHST | HST | 0 | Variable not used. |
| LHSTN | HSTN | 0 | Variable not used. |
| LHSX | HSX | 0 | Variable not used. |
| LHVA | HVA | 0 | Variable not used. |
| LHVATW | HVATW | 0 | Variable not used. |
| LICMSH | ICMSH | 0 | Variable not used. |
| LIDRGS | IDRGS | 0 | Variable not used. |
| LIHSN | IHSN | 0 | $V$ Vriable not used. |
| LISRN | ISRN | 0 | Variable not used. |
| LMATHS | MATHS | 0 | Variable not used. |
| LMFRL | MFRL | NCLX*IMFR | Graphics identifier for liquid mass flow. |
| LMFRV | MFRV | NCLX*IMFR | Variable not used. |
| LP | P | 0 | Variable not used. |
| LPA | PA | 0 | Variable not used. |
| LPAN | PAN | NCLX | Graphics identifier for new air partial piessure. |
| LPN | PN | NCLX | Graphics identifier for new pressure. |
| LQRD | QRD | 0 | Variable not used. |
| LQSL | QSL | NCLX | Graphics identifier for slab heat flux. |
| LQVD1 | QVD1 | 0 | Variable not used. |
| LQVD2 | QVD2 | 0 | Variable not used. |
| LRDZ | RDZ | 0 | $V$ Variable not used. |
| LRMEM | RMEM | 0 | Variable not used. |
| LROA | ROA | 0 | Variable not used. |


| LROAN | ROAN | NCLX |
| :---: | :---: | :---: |
| LROHS | ROHS | 0 |
| LROHSN | ROHSN | , |
| LROL | ROL | 0 |
| LROI.N | ROLN | NCLX |
| LROM | ROM | 0 |
| LROV | ROV | 0 |
| LROVN | ROVN | NCLX |
| LS | $S$ | 0 |
| LS1 | SI | 0 |
| LSE | S2 | 0 |
| LSIG | SIG | 0 |
| LSN | SN | NCLX*ISOLUT |
| L.ST | ST | 0 |
| LTCHFS | TCHF | 0 |
| LTL | TL | 0 |
| LTLN | TLN | NCLX |
| LTSAT | TSAT | NCLX |
| LTSSN | TSSN | 0 |
| LTV | TV | 0 |
| LTVN | TVN | NCLX |
| LVD1 | VD1 | 0 |
| LVD1N | VDIN | 0 |
| LVD2 | VD2 | 0 |
| LVD2N | VD2N | 0 |
| LVISL. | VISL | 0 |
| LVISV | VISV | 0 |
| LVL | VL | 0 |

Graphics identifier for new air density.
Variable not used
Variable not used
Variable not used
Graphics identifier for new liquid density.
Variable not used.
Variable not used.
Graphics identifier for new vapor density.
V -riable not used.
Va.able not used.
Variable not used
Variable not used.
Graphics identifier for new solid solute in cell ( kg solid). $\mathrm{ISOLUT}=0$ or 1 .
Variable not used.
Variacle not used
Variable not used
Graphics identifier for new liquid temperature.

Graphics identifier for saturation temperature.

Variable not used.
Variable not used
Graphics identifier for new vapor temperature.

Variable not used
Variable not used.
Variable not used

| LVLC | VLC | 0 | Variable not used. |
| :---: | :---: | :---: | :---: |
| LVLNYT | VLNYT | 3*NCLX | Graphics identifier for new liquid $\theta$ velocity. |
| LVLYT | VLYT | 3*NCLX | Graphics identifier for temporary storage for mixture $\theta$ velocity. |
| LVM | VM | 0 | Variable not used. |
| LVOL | VOL | NCLX | Graphics identifier for cell fluid volumes. |
| LVOLG | VOLG | 0 | Variable not used |
| LVV | VV | 0 | Variable not used. |
| LVVC | VVC | 0 | Variable not used. |
| LVVN | VVN | 0 | Variable not used. |
| LVVNYT | VNYT | 3*NCLX | Graphics identifier for new vapor $\theta$ velocity. |
| LVVYT | VVYT | 3*NCLX | Graphics identifier for temporary storage for mixture $\theta$ velocity. |
| LWAT | WAT | 0 | Variable not used. |
| LXA | XA | 0 | Variable not useci. |
| C.14.3. EQUIVALENCES-Defined for BLANKCOM |  |  |  |
| Array | Location |  | Description |
| HLA | C |  | Sum of all products of liquid HTC with heat-transfer area. |
| HVA | C |  | Sum of all products of vapor HTC with heat-transfer area. |
| WAT | C |  | Total heat-transfer - 'ea. |
| HLATW | C |  | Similar to HLA except that the product includes wall temperature. |
| HVATW | C |  | Similar to HVA except that the product includes wall temperature. |
| FINAN | C |  | Inverted annular regi a factor. |
| RMEM | C |  | Mixture energy. |
| ROM | C |  | Mixture density. |
| QRD | - |  | Not presently used. |
| SIG | C |  | Surface tension. |
| AM | C |  | Air mass. |
| QSL | C |  | Wall heat flux. |
| ARC | C |  | Density of solute in cell, $\mathrm{c}(1-\alpha) \rho_{\ell}$. |
| APPEND |  |  | C. 75 |


| VOL | C | Cell flow volume. |
| :--- | :--- | :--- |
| VOLG | C | Cel' geometric volume. |
| VMFRL | C | Liquid mass flux in the axial direction. |
| VMFRV | C | Vapor mass flux in the axial direction. |
| CPL | C | Liquid specific heat at constant pressure. |
| CPV | C | Vapor specific heat at constant pressure. |
| TSN | C | Saturation temperature for total pressure. |
| TSSN | C | Saturation temperature for steam pressure. |
| CL | C | Liquid conductivity. |
| CV | C | Vapor conductivity. |
| VISL | C | Vapuid viscosity. |
| VISV | C viscosity. |  |
| HFG | F | Latent heat of vaporization. |
| HGAM | F | Contribution to phase change from subcooled boiling |
| LCCFL | F | CCFL flag. |
| FAYT | F | F |


|  |
| :---: |
| WFVZ |
| WFVXR |
| DVVYT |
| DVVZ |
| DVVXR |
| DVLYT |
| DVLZ |
| DVLXR |
| CFZLYT |
| CFZLZ |
| CFZLXR |
| CFRLYT |
| CFRLZ |
| CFRLXR |
| CFZVYT |
| CFZVZ |
| CFZVXR |
| CFRVYT |

Wali fric ion factor for vapur for theta (or y) face.
Wall friction factor for vapor for axial face.
Wall friction factor for vapor for radial (or x ) face
Derivative of vapor velocity with respect to pressure fur theta (or y) face.
Derivative of vapor velocity with respect to pressure for axial face.

Derivative of vapor velocity with respect to pressure for radial (or X ) face

Derivative or liquid velocity with respect to pressure for theta (or y) face

Derivative of liquid velocity with respect to pressure for axial face.

Derivative of liquid velocity with respect to pressure for tradial (or x ) face.

Liquid forward-fiow-di ection additive friction-loss coefficient for theta (or y) face.

Liquid forward-flow-direction addiaive friction-loss coefficient for axial face.

Liquid forward-flow-direction additive friction-loss coefficient for radial (or X) face.

Liquid reverse-flow-direction additive friction-loss coefficient for theta (or y) face.

Liquid reverse-flow-direction additive friction-loss coefficient for axial face.

Liquid reverse-flow-direction additive friction-loss coefficient for radial (or X) face.

Vapor forward-flow-direction additive friction-loss coefficient for theta (or y) face.

Vapor forward-flow-direction additive friction-loss coefficient for axial face.

Vapor forward-flow-direction additive friction-loss coefficient for radial (or X) face.

Vapor reverse-flow-direction additive friction-loss coefficient for theta (or y) face.

| CFRVZ | F | Vapor reverse-flow-direction additive friction-loss coefficient for axial face. |
| :---: | :---: | :---: |
| CFRVXR | F | Vapor reverse-flow-direction additive friction-loss coefficient for radial (or x ) face. |
| DTSDP | C | Derivative of TSAT with respect to pressure. |
| DELDF | C | Derivative of the liquid internal s-ergy with respect to pressure at constant temperature. |
| DEGDP | C | Derivative of the steam internal energy with, respect to pressure at constant temperature. |
| DELDT | C | Derivative of the liquid internal energy with respect to temperature at constant pressur |
| DEGDT | C | Derivative of the steam internal energy with respect to temperature at constant pressure. |
| DRLDP | c | Derivative of the liquid density with respect to pressure at constant temperature. |
| DRGDP | C | Derivative of the steam density with respect to pressure at const ant temperature. |
| URLDT | C | Derivative of the liquid density with respect to temperature at constant pressure. |
| DRGDT | $r$ | Derivative of the steam density with respect to temperature at constant pressure. |
| HVS |  | Enthalpy of the steam at TSAT. |
| HLS | C | Enth ; of the liquid at TSAT. |
| DHVS | C | Derivative of the enthalpy of the vapor at TSAT with respect to pressure. |
| DHLS | C | Derivative of the enthalpy of the liquid at TSAT with respect to pressure. |
| DTSSDP | $r$ | Derivative of the saturation temperature corresponding to the steam pressure with respect to pressure. |
| DEADT | C | Derivative of the non-condensible gas internal energy with respect to temperature at constant pressure. |
| DEADP | C | Derivative of the non-condensible gas internal energy with respect to pressure at constant temperature |
| DRADP | $r$ | Derivative of the non-cor. densible gas density with respect to pressure at constant temperature. |



| DALVA | C | Unused variable. |
| :---: | :---: | :---: |
| DALP | C | Weighting factor for new-time level contribution to outflow in basic mass and energy equations. |
| FAVYT | F | Donor-cell averaged vapor volume fraction at theta or ( $y$ ) face. |
| FAVZ | F | Donor-cell averaged vapor volume fraction at axial face. |
| FAVXR | F | Donor-cell averaged vapor volume fraction at radial or ( x ) face. |
| FALYT | F | Donor-cell averaged liquid volume fraction at theta or ( $y$ ) face. |
| FALZ | F | Donor-cell averaged liquid volume fraction at axial face. |
| FALXR | F | Donor-cell averaged liquid volume fraction at radial or ( $x$ ) face. |
| FRVYT | F | Product of dap :-cell averaged vapor macroscopic density with flow area and time-step at theta or ( $y$ ) face. |
| FRVZ | F | Product of donor-cell averaged vapor macroscopic density with flow area and time-step at axial face. |
| FRVXR | F | Product of donor-cell averaged vapor macroscopic density with flow area and time-step at radial or ( x ) face. |
| FEVYT | F | Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at theta or (y) face. |
| FEVZ | F | Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at axial face. |
| FEVXR | F | Product oi donor-cell averaged vapor macroscopic internal energy with flow area and time-step at radial or ( x ) face. |
| FRAYT | F | Product of donor-cell averaged non-condensible mactoscopic density with flow area and time-step at theta or (y) face. |
| FRAZ | F | Product of donor-cell averaged non-condensible macroscopic density with flow area and time-step at axial face. |
| FRAXR | F | Product of donor-cell averaged non-condensible macroscopic density with flow area and time-step at radial or (x) face. |
| FRLY $T$ | F | Product of donor-cell averaged liquid macroscopic density with flow area and time-step at theta of ( $y$ ) face. |


| FRLZ | F | Product of donor-cell averaged liquid macroscopic density with flow area and time-step at axial face |
| :---: | :---: | :---: |
| FRLXR | F | Product of donor-cell averaged liquid macroscopic density with flow area and time-step at radial or ( $x$ ) face. |
| FELYT | F | Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at theta or (y) face. |
| FELZ | F | Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at axial face. |
| FELXR | F | Product of donor-cell averaged vapor macroscopic internal energy with flow area and time-step at radial or (x) face. |
| CnPm | C | Variables used as temporaries in a number of routines. Also the coefficient of the change in pressure across the $m$-th cell face in the equation for the $n$-th primary depend at variable in the basic step. The variables in order from $n$ $=1.5$ are pre zure, vapor temperature, liquid temperature, void fraction, and partial pressure of non-condensible. The faces in order from $m=1.6$ are the lower-numbered radial (or $x$ ) face, the higher-numbered radial (or $x$ ) face, the lower-numbered theta (or $y$ ) face, the higher-numbered theta (or y) face, the lower-numbered axial face, and the higher-numbered axial face. |
| DPRHS | C | Iterate change in pressure during basic step before inclusion of effects due to the relative change in pressure across the cell faces. |
| DARHS | C | Iterate change in void fraction during bas: tep before inclusion of effects due to the relative change in pressure across the cell faces. |
| DTVRHS | C | Iterate change in vapor temperature during basic step before inclusion of effects due to the relative change in pressure across the cell faces. |
| DTLRHS | C | Iterate change in liquid temperature during basic step before inclusion of effects due to the relative change in pressure across the cell faces. |
| DPARHS | C | Iterate change in partial pressure of non-condensible during basic step before inclusion of effects due to the relative change in pressure across the cell faces. |
| FBIT | C/F | Time-independent bit-flags. |

Scale-factor applied to derivarive of vapor velocity at outer radial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of vapor velocity at inner radial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of liquid velocity at outer radial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of liquid velocity at inner radial face with respect. e ; cell pressure for water-packing model.

Area ratio scale factor applied to outer radial (or x) convecting velocities for cross-term contribution to theta (or y) and axial motion equations.

Area ratio scale facior applied to inner radial (or x) convecting velocities for cross-term contribution to theta (or y) and axial motion equations.

Scale-factor applied to derivative of vapor velocity at upper axial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of vapor velocity at lower axial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of liquid velocity at upper axial face with respect to cell pressure for water-packing model.

Scale-factor applied to derivative of liquid velocity at lower axial face with respect to cell pressure for water-packing model.

Area ratio scale factor applied to upper axial convecting velocities for cross-term contribution to radial (or x ) and theta (or y) motion equations.
Area ratio scale factor applied to lower axial convecting velocities for cross-term contribution to radial (or x ) and theta (or y) motion equations.
Scale-factor applied to derivative of vapor velocity at forward theta (or y) face with respect to cell pressure for water-packing model.
\(\left.$$
\begin{array}{lll}\text { DVLS2 } & \text { C } & \begin{array}{l}\text { Scale-factor applied to derivative of liquid velocity at for- } \\
\text { ward theta (or y) face with respect to cell pressure for } \\
\text { water-pactring model. }\end{array} \\
\text { SC2 } & \text { C } & \begin{array}{l}\text { Area ratio scale factor applied to forward theta (or y) con- } \\
\text { vecting velocities for cross-term contribution to radial (or } \\
\text { x) and axial motion equations. }\end{array}
$$ <br>
SCD1 \& Crea ratio scale factor associated with outer face used in <br>

diagonal V del V term in radial (or \mathrm{x} ) motion equation.\end{array}\right\}\)| Area ratio scale factor associated with inner face used in |
| :--- |
| SCDIM |
| SCD2 |


| ROA | C | Old air density. |
| :---: | :---: | :---: |
| EA | C | Old air internal energy. |
| ALP | C | Old vepor fraction. |
| ROV | C | Old vapor density. |
| ROL | C | Old liquid density. |
| S | C | Old solute mass plated out. |
| VVYT | F | Old basic vapor velocity at theta (or y) face. |
| VVZ | F | Old basic vapor velocity at axial face. |
| VVXR | F | Old basic vapor velocity at radial (or $x$ ) face. |
| VIYT | F | Old basic liquid velocity at theta (or $y$ ) face. |
| VLZ | F | Old basic liquid velocity at axial foce. |
| VLXR | F | Old basic liquid velocity at radial (or x ) face. |
| EV | C | Old vapor internal energy. |
| EL | C | Old liquid internal energy. |
| TV | C | Old vapor temperature. |
| TL | C | Old liquid temperature. |
| GAM | C | Old vapor generation rate per unit volume. |
| $P$ | C | Old pressure. |
| AREV | C | Old stabilizer value for vapor macrosopic internal energy. $\alpha \rho_{v} e_{v}$. |
| VVTYT | F | Old stabilizer vapor velocity at theta (or y) face. |
| VVTZ | F | Old stabilizer vapor velocity at axial face. |
| VVTXR | F | Old stabilizer vapor velocity at radial (or $x$ ) face. |
| ARL | C | Old stabilizer value for ( $1-\alpha$ ) ft . |
| AREL | C | Old stabilizer value for ( $1-\alpha$ ) $p_{\text {c }}$ el |
| VLTYT | F | Oid stabilizer liquid velocity at theta (or y) face. |
| VLTZ | F | Old stabilizer liquid velocity at axial face. |
| VLTXR | F | Old stabilizer liquid velocity at radial (or x ) face. |
| ARA | C | Old stabilizer value for $\alpha \rho_{a}$. |
| OWVYT | F | Old donor-cell factor at theta (or y) face for vapor |
| OWVZ | F | Old donor-cell factor at axial face for vapor. |


| OWVXR | $F$ | Old donor-cell factor at radial (or x ) face for vapor. |
| :---: | :---: | :---: |
| OWLYT | F | Oid donor-cell factor at theta (or y) face for liquid. |
| OWL2 | F | Old donor-cell factor at axial face for liquid. |
| OWLXR | F | Old donor-cell factor at radial (or x ) face for liquid. |
| BITN | C/F | Bit flags for current time step. |
| FRCIIN | , | Unused. |
| FRCl2 ${ }^{\text {N }}$ | * | Unused. |
| FRCI3N | . | Unused. |
| CINYT | F | New interfacial drag coefficient at theta (or y) face. |
| CINZ | F | New interfacial drag coefficient at axial face. |
| CINXR | F | New interfacial drag coefficient at radial (or $x$ ) face. |
| CHTIN | C | New value of vapor-side interfacial HTC times interfacial area. |
| CHTAN | C | New value of air interfacial HTC times interfacial area. |
| ALVN | C | New value of flashing interfacial HTC times :-ieriacial area. |
| ALVEN | C | New value of liquid-side interfaciar HTC times interfacial area. |
| ARVN | C | New stabilizer value for $\alpha \rho_{v}$ - |
| CONC | C | New solute mass to coolant mass ratio. |
| PAN | C | New air partial pressure. |
| ROAN | C | New air density. |
| EAN | C | New air internal energy. |
| ALPN | C | New vapor fraction. |
| ROVN | C | New vapor density. |
| ROLN | C | New liquid density. |
| SN | C | New solute mass plated on structure surface. |
| VVNYT | F | New basic vapor velocity at theta (or y) face. |
| VVNZ | F | New basic vapor velocity at axial face. |
| VVNXR | F | New basic vapor velocity at radial (or $x$ ) face |
| VLNYT | F | New basic liquid velocity at theta (or y) face. |


| VLNZ | F | New basic liquid velocity at axial face. |
| :---: | :---: | :---: |
| VLNXR | F | New basic liquid velocity at radial (or x ) face. |
| EVN | C | New vapor internal energy. |
| ELN | C | New liquid internal energy |
| TVN | c | New vapor temperature. |
| TLN | C | New liquid temperature. |
| GAMN | C | New vapor generation rate per unit volume. |
| PN | C | New pressure. |
| AREVN | C | New stabilizer value for $\alpha \rho_{v} e_{v}$. |
| VVNTYT | F | New stabilizer vapor velocity at theta (or y) face |
| VVNTZ | F | Nevi stabilizer vapor velocity at axial face |
| VVNTXR | F | New stabilizer vapor velocity at radial (or x ) face |
| ARLN | C | New stabilizer value for ( $1-\alpha$ ) $\mathrm{pe}_{\text {e }}$. |
| ARELN | C | New stabilizer value for ( $1-\alpha$ ) $\rho_{\ell} \mathbf{e}$ e. |
| VLNTYT | F | New stabilizer liquid velocity at theta (or y) face |
| VLNTZ | F | New stabilizer liquid velocity at axial face |
| VLNTXR | F | New stabilizer liquid velocity at radial (or x ) face |
| ARAN | C | New stabilizer value for $\alpha \rho_{a}$. |
| WVYT | F | New donor-cell factor at theta (or y) face for vapor. |
| WVZ | F | New donor-cell factor at axial face for vapor. |
| WVXR | F | New donor-cell factor at radial (or x ) face for vapor. |
| WLYT | F | New donor-cell factor at theta (or $y$ ) face for liquid. |
| WLZ | F | New donor-cell factor at axial face for liquid. |
| WLXR | F | New donor-cell factor at radial (or x ) face for liquid. |
| SPIFZ | C | Stratified flow weighting factor for interfacial heat transfer correlations. |
| DVVS2M | F | Scale-factor applied to derivative of vapor velocity at backward theta ( $0: y$ ) face with respect to cell pressure for water-packing model. |
| DVLS2M | F | Scale-factor applied to derivative of vapor velocity at backward theta (or y) face with respect to cell pressure for water-packing model. |

SC2M

SCD2M F

Area ratio scale factor applied to backward theta (or y) convecting velocities for cross-term contribution to tradial (or x ) and axial motion equations.
Area ratio scale factor associated with ibackward face used in diagonal $V$ del $V$ term in theta (or $y$ ) motion equation.

## C.14.4. VSSLDATA-VESSEL Data Table

This data table includes the following COMMON blocks: BLANKCOM and FIXEDLT, both defined in Appendix D; VSSELVLT, defined in Sec. C.14.1; and VSSLPT, defined in Sec. C. 14.2 .

## APPENDIX D DESCRIPTION OF COMMON-BLOCK VARIABLES

## COMDECK BANDW

COMMON/BANDW/ MUX,MUY,MUZ

INTEGER VARIABLES:
MUX: The number of diagonal rows above and below the main diagonal lying within the MUX $+1+M U X$ bandwidth of the VESSEL matrix for the $x$-or $r$-directional stabilizer motion equation.
MUY: The number of diagonal rows above and below the main diagonal lying within the MUY $+1+$ MUY bandwidth of the VESSEL matrix for the $y$ - or $\theta$-direction stabilizet motion equation.
MUZ The number of diagonal rows above and below the main diagonal lying within the MUZ $M+1+M U Z$ bandwidth of the VESSEL matrix for the $z$-direction stabilizer motion equation, pressure semi-implicit equation, and the stabilizer mass and energy equations

## COMDECK BKCNTRL

COMMON/BKCTRL/ IPREIT. LBCKV, LREIT, LREITV
INTEGER VARIABLE:
IPREIT: Flag to print messages on forced reiteration.
LOGICAL VARIABLES
LBCKV: If TRUE, then variable forces a time-step back-up.
LREIT If TRUE, then variable forces a reiteration.
LREITV: If TRUE, then variable forces a reiteration.
COMMON/DONR/ ITDON. IDONP. NCOMDP

## INTEGER VARIABLES:

ITDON: If fiow reversals occur for OITNO $>$ ITDON, the time step is backed up.
JDONP: Cell number in NCOMDP.
NCOMDP: Component number of flow reversal forcing back-up.

## COMDECK BKPOST

REAL VARIABLES:
BKPALL: Maximum lower limits on void fraction such that a back-up is forced if the void fraction lies within these limits.
BKPALU: Maximum upper limits on void fraction such that a back-up is forced if the void fraction lies within these limits.
BKPSTA: Void-fraction variation that is allowed in the POST stage. If the void-fraction change exceeds BKPSTA, back-up is forced.
BKPSTP: Maximum fractional pressure change that is allowed in the POST stage. If the fractional pressure change exceeds BKSTP, back-up is forced.
BKPSTT: Maximum variation in liquid and vapor temperatures that is allowed in the POST stage. If the temperature change exceeds BKPSTT, back-up is forced.
INTEGER VARIABLES:
IBKPST: Component forces back-up.
JBKPST: Cell number
L.OGICAL VARIABLE:

LBKPST: If TRUE, then a time-step back-up is forced from POST
COMDECK BLANKCOM

COMMON
A(300)
$\mathrm{A}(300): \quad$ Dynamic $S C M$ storage area. This array is dimensioned to other sizes or dynamically dimensioned for certain conditional directives imposed during compilation.

COMDECK BOIL

COMMON/BOLL/

COMMON/BOIL/
DIMENSION

DIMENSION
REAL VARIABLES:
COND: Vapot-side heat-transfer coefficient to the vapor/liquid interface
CVFAL: Energy transfer between the vapor and liquid based on DALVJ scaling.

COND, CVFAL, DALVJ, DHSDP, DHSDT, EHG, EVAP, FLASH, GAMDP, GAMDPA, GAMMA, SCL

## ITLEQ

COND(NK), CVFAL(NK), DALVJ(NK), DHSDP(NK), DHSDT(NK), EHG(NK), EVAP(NK). FLASH(NK), GAMDP(NK), GAMDPA(NK), GAMMA(NK), SCL(NK) ITLEQ(NK)
$\qquad$


DALVJ: Derivative of ALV (FLASH coefficient) with respect to void fraction (currently set to zero).
DHSDP: Derivative of EHG with respect to total pressure.
DHSDT: Derivative of EHG with respect to saturation temperature.
EHG: Iternal energy of saturation temperature vapor.
EVAP: Liquid-side heat-transfer coefficient to the vapor liquid interface based the evaporation when the liquid temperature is above the saturation temperature based on vapor pressure.
FLASH: Liquid-side heat-transfer coefficient to the vapor/liquid interface based on flashing when the liquid temperature is above the saturation temperature based on total pressure.
GAMDP: Derivative of $\Gamma$ with respect to the total pressure.
GAMDPA: Derivative of $\Gamma$ with respect to the noncondensable-gas pressure.
GAMMA: Energy transfer between the vapor and liquid based on SCL scaling
SCL: Scale factor for the phase-change heat-transfer coefficients.
INTEGER VARIABLE:
ITLEQ: Flag to indicate that no evaporation or condensation is expected to occur to the single-phase fluid during the time step. $0=$ evaporation or condensation is evaluated;
$1=$ no evaporation or condensation is evaluated.

## COMDECK CCFLCM

COMMON/CCFL/ CBETA, CCFLC, CCFLM, CTRANS, DIAH

COMMON/CCFL/ NCCFL, NHOLES
DIMENSION CBETA(10), CCFLC(10), CCFLM(10), CTRANS(10), DIAH(10)
DIMENSION
NHOLES(10)
PEAL VARIABLES.
CBETA: Bankoff interpolation constant for interpolating between Wallis and Kutalatze characteristic length dimensions.
CCFLC: Constant of the CCFL correlation
CCFLM: Slope of the CCFL correlation.
CTRANS: Bond number above which the CCFL constant is independent of the Bond number.
DIAH: Diameter of one hole in the perforated plate.
INTEGER VARIABLES:
NCCFL: Number of CCFL parar seis.
NHOLES: Number of holes in the perforated plate

## COMDECK CDBLKS

## COMMON/CODEBK/ CBNAM, ILEV, MAXILV, MAXLEN, MAXLN3, MLNVMT <br> DIMENSION CBNAM(5)

INTEGER VARIABLES:
CBNAM: Array containing the names of the overlays currently in memory.
ILEV: The number of overlays currently in core.
MAX1LV: Maximum amount of SCM storage needed for three-dimensional components when only one level of data is required.
MAXLEN: Maximum amount of SCM storage needed to process any onedimensionai component.
MAXLN3 Maximum amount of SCM storage needed to process any threedimensional component
MLNVMT: The amount of SCM space required to solve the VESSEL matrix.

## COMDECK CFLOW

## COMMON/CFLOW/ <br> CHM1, CHM2, CHMLT1, CHMLT2

## COMMON/CFLOW/ ICFLOW IHOR

DIMENSION CHM1(*), CHM2(5)
REAL VARIABLES:
CHM1: Array of choked-flow multipliers on the subcooled flow
CHM2: Array of choked-flow multipliers on the two-phase flow
CHMLT1: Multiplier on the subcooled flow
CHMLT2: Multiplier on the iwo-phase flow.
INTEGER VARIABLES:
ICFLOW: Choked-flow mode controller.
$0=$ model turned off.
$1=$ model using default multipliers turned on only for components connected to a BREAK (default condition), or
$2=$ model using optional multipliers turned on at cell edges indicated in component input (note that this option requires additional array data for all one-dimensional hydrodynamic components).
IHOR: Drag controller.
$0=$ uses dispersed drag only,
$1=$ (default) uses stratified drag in one dimension if conditions are met:
$2=$ always uses stratified drag.
$3=$ turns off head gradient force.

```
 COMMON/CHECKS/ DTEND, HDUMP, HEDIT, HGRAF, HSEDIT
 COMMON/CHECKS/ NALT,NDID
```

    REAL VARIABLES:
    DTEND. Time interval during which the special time-step data are used.
    HDUMP: Saved value of the next restart/dump edit time from the regular time-
        step data when the special time-step data are used
    HEDIT: Saved value of the next long edit time from the regular time-step data
when the special time-step data are used.
HGRAF: Saved value of the next graphics edit time from the regular time-step
data when the special time-step data are used.
HSEDIT: Saved value of the next short edit time from the regular time-step
data when the special time-step data are used.
INTEGER VARIABLES:

NALT: Constant used to determine if void-fraction adjustments are needed when the interfacial drag is calculated at a one-dimensional junction connected to a BREAK.
NDID: $\quad 10$ number of the special time-step data that are being used

## COMDECK CHFINT

## COMMON/CHFINT/ ALPCHF

REAL VARIABLE:
ALPCHF: Void fraction at the critical heat flux (CHF) location

## COMDECK CHGALP

COMMON/CHGALP/ DAL, DAU, OAL, DAU, XDAL, XDAU, XOAL, XOAU COMMON/CHGALP/ JDAL, JDAU, JOAL, JOAU, NDAL, NDAU, NOAL, NOAU REAL VARIABLES:

DAL: Maximum decrease in void fraction
DAU: Maximum increase in void fraction over the time step.
OAL: Maximum decrease in void fraction immediately following an increase.
OAU: Maximum increase in void fraction immediately following a decrease.
XDAL: Limit on DAL beyond which the time step is reduced
XDAU: Limit on DAU beyond which the time step is reduced.
XOAL: Limit on OAL beyond which the time step is reduced.

XOAU: Limit on OAU beyond which the time step is reduced INTEGER VARIABLES

| JDAL: | Cell where DAL occurred. |
| :--- | :--- |
| JDAU: | Cell where DAU occurred. |
| JOAL: | Cell where OAL occurred. |
| JOAU: | Cell where OAU occurred. |
| NDAL: | Component where DAL occurred. |
| NDAU: | Component where DAU orcurred. |
| NOAL: | Component where OAL occurred. |
| NOAU: | Component where OAU occurred. |

## COMDECK CIFLIM

COMMON/CIFLIM/ FIFI, FIFR
REAL VARIABLES:
FIFI: Maximum decrease factor for the time-constant contstraint of the interfacial-drag coefficient (0.4).
FIFR: Maximum increase factor for the time-constant constraint of the interfacial-drag coefficient (2.0)

## COMDECK CNRSLV

COMMON/CNRSLV/ AA,BB,W

COMMON/CNRSLV/ KEY, M, M1, N, NRSLV
COMMON/CNRSLV/ ERR
DIMENSION AA(NRFMXI,NRZFMX), BB(NRZFMX), W(NRZFMX)
REAL VARIABLES:
AA: Coefficient matrix.
BB: RHS vector.
W: Working-area vector.
INTEGER VARIABLES:
KEY: Evaluation-flag option.
$1=$ solves the linear matrix equation by forward-elimination and backward-substitution.
$2=$ performs the forward-elimination only.
$3=$ performs the backward-substitution only.
M: Number of $x$ - or r-diection, nodes in the heat-transfer mesh that defines a matrix $A$ bandwidth of $M+1+M$

M1:
$M+1$.
$\mathrm{N}: \quad$ Order of matrix A that is stored in matrix $A A$
NRSLV: Namelist variable defining the axial-direction heat-transfer calculation numerics.
$0=$ treats axial direction explicitly (default);
$1=$ treats axial direction implicitly.
IOGICAL VARIABIE:
ERR. Error flag from subroutine BANSOL, which indicates a singular matrix when TRUE

## COMDECK COMCOM

COMMON/CC/ IMAX, IMIN, JFLAG
INTEGER VARIABLES:
IMAX: Last component (TRAC-assigred component rumber) in a loop in the outer calculation for one-dir iensional components.

IMIN: First component (TRAC-assignec enmponsitt number) in a loop in the outer calculation for one-dimensional components
JFLAG: Flag that indicates an error in the outer calculation

## C JMDECK CONCCK

COMMON/CONCCK/ JFLAGC INTEGER VARIABLE:

JFLAGC: Flag that indicates an error in specifying the one-dimensional component input-parameter values.

## COMDECK CONDHT

COMMON/CONDHT/ YLL, YLV
REAL VARIABLES
YLL: Axial distance above node row JL where the vapor-liquid interface is located.
YLV: Axial distance above node row JL where the vapor-liquid interface is located

COMDECK CONSTANT

```
COMMON/CONST/ PI,GC, ZERO,ONE, EPSALP
 REAL VARIABLES
```

PI: $\quad$ Constant $\pi(3.1415926535898)$

| GC: | Gravitational constant ( $9.80665 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ ). |
| :---: | :---: |
| ZERO: R | Real constant zero. |
| ONE: R | Real constant one. |
| EPSALP Vols | Void-fraction cutoff for thermodymamic vapor properties. |
| COMDECK CONTRLLR |  |
| COMMON/CONTRL/ | DAMMC, DAMX, DELT, DELTHT, DIFMIN, DPRMX, DTLMX, DTMAX, DTMIN, DTO, DTRAT, DTRMX, DTSMX, DTVMX EPS1, EPS2, EPSO, EPSS, ETIME, HTLOSI, HTLOSO, ODELT, PSSMN, PSSMX, RFAT, RVMAX, TEND, TIMEC, TIMET, VARER, VCMN, VCMX, VMAXO, VMAXT, VMAXT3, VMCON, VMNEW, VMOLD, VMXT3O, XTABLE |
| COMMON/CONTRL/ | DSTEP, IADDED, ICCMX, ICMP, ICP, IDIAG, IEOS, IFF3D, IF. PREP, IGEOM 3 , IM100, IM100X, IMFR, INVAN, IOFFTK, IPAK, IPAK3D, IPAKON, IPKPMP, IRSTFL, ISOLUT, ISSFLG, ISTDY, ISTTC, ITHD, ITMIN, ITPAKO, JFAT, KCCMX, LCMPTR, LEVSTG, LLVFLG, NCMN, NCMX, NCONTR, NCONTS, NCONTT, NCRG, NDIA1, NEWRFD, NFRC1, NFRC3, NITAV, NITMN, NITMX, NLOOPP, NOSETS, NSEND, NSEO, NSMN, NSMX, NSPL, NSPU, NSSO, NSTAB, NSTP, NVGRAV, OITMAX, SIT. MAX, STDYST, TRANSI |
| REAL VARIABLES: |  |
| DAMMC: | Maximum void-fraction change during time step (not used). |
| DAMX: | Error caused by relative change in void fraction (not used). |
| DELT: | Current time increment for advancement of finite-difference equa tions. |
| DELTHT: | Heat-transfer time-step size. |
| DIFMIN: | Minimum diffusion number required for stability of the nod conduction solution. |
| DPRMX: | Maximum pressure change during the current time step. |
| DTLMX | Maximum liquid-temperature change during time step. |
| DTMAX: | Maximum allowable time-step size for time interval. |
| DTMIN: | Minimum allowable time-step size for time interval. |
| DTO: | Previous time-step size. |
| DTRAT: | Ratio of the previous time-step size to the reduced time-step size that results in a trip (with special time-step data assigned) crossing its set point at the end of the time step. |
| DTRMX: | Maximum rod-temperature change during time step. |
| DTSMX: | Maximum metal-temperature change during time step. |

COMDECK CONTRLLR
COMMON/CONTRL/ DAMMC, DAMX, DELT, DELTHT, DIFMIN, DPRMX, DTLMX, DTMAX, DTMIN, DTO, DTRAT, DTRMX, DTSMX, DTVMX, EPS1, EPS2, EPSO, EPSS, ETIME, HTLOSI, HTLOSO, ODELT, PSSMN, PSSMX, RFAT, RVMAX, TEND, TIMEC, TIMET, VARER, VCMN, VCMX, VMAXO, VMAXT, VMAXT3, VMCON, VMNEW, VMOLD, VMXT3O, XTABLE
nOR O PREP, IGEOM3, IM100, IM100X, IMFR, INVAN, IOFFTK, IPAK, IPAK3D, IPAKON, IPKPMP, IRSTFL, ISOLUT, ISSFLG, ISTDY, ISTTC, ITHD, ITMIN, ITPAKO, JFAT, KCCMX, LCMPTR, LEVSTG, LLVFLG, NCMN, NCMX, NCONTR, NCONTS, NCONTT, NCRG, NDIA1, NEWRFD, NFRC1, NFRC3, NITAV, NITMN, NITMX, NLOOPP, NOSETS, NSEND, NSEO, NSMN, NSMX, NSPL, NSPU, NSSO, NSTAB, NSTP, NVGRAV, OITMAX, SIT. MAX, STDYST, TRANSI

REAL VARIABLES:
DAMMC: Maximum void-fraction change during time step (not used).
DAMX: Error caused by relative change in void fraction (not used)
DELT: Current time increment for advancement of finite-difference equations.
DELTHT: Heat-transfer time-step size.
DIFMIN: Minimum diffusion number required for stability of the nod conduction solution.

DPRMX: Maximum pressure change during the current time step.
DTLMX: Maximum liquid-temperature change during time step
DTMAX: Maximum allowable time-step size for time interval
DTMIN: Minimum allowable time-step size for time interval
DTO: Previous time-step size.
DTRAT: Ratio of the previous time-step size to the reduced time-step size that results in a trip (with special time-step data assigned) crossing its set point at the end of the time step.
DTRMX: Maximum rod-temperature change during time step.
DTSMX: Maximum metal-temperature change during time step.


DTVMX: EFS1:

EPS2:

EPSO: EPSS: ETIME: HTI.OSI: HTLOSO: ODELT: PSSMN: PSSMX: RFAT:

RVMAX:

## TEND:

TIMEC:
TIMET:
VARER:
VCMN :
VCMX:
VMAXO:
VMAXT:
VMAXT3:

VMCON
VMNEW:
VMOLD:
VMXT3O:

Maximum vapor-temperature change during time step.
The lower-bound criterion for increasing the Kaganove-method integration time step for solving the point-kinetics equation.
The upper-bound criterion for decreasing the Kaganove-method integration time step for solving the point-kinetics equatıons.
Convergence criterion for outer iteration.
Convergence criterion for steady-state calculation.
Current calculation time used for edits.
Inside system heat loss for one-dimensional components only (total system heat loss to the inside walls for one dimensional components only).
Outside system heat loss for one-dimensional components only (total heat loss from the outside of the heat structures to the surroundings for one-dimensional components only).
Time increment for previous time step.
Minimum steam-generator secondary-side pressure.
Maximum steam-generator secondary-side pressure.
Maximum ratio of the interface flow-area to the adjacent mesh-cell average flow area.
Maximum ratio of the adjacent mesh-cell average flow areas when their interface does not have an additive loss coefficient specified.

> End time for the time-step data domain.

Clock time in seconds.
Current calculation time.
Variable error.
Final convergence for component NCMN at step NSMN .
Final convergence for component NCMX at step NSMX.
Maximum one-dimensional component ratio of the Courant number to the time-step size at the beginning of the previous time step.
Maximum one-dimensional component ratio of the Courant number to the time-step size at the beginning of the present time step.
Maximum three-dimensional component ratio of the Courant number to the time-step size at the beginning of the present time step.
Net water mass (liquid plus vapor) convected into VESSEL(s) during time interval $t^{n+1}-t^{n}$.
VESSEL water mass (liquid plus vapor) at $\mathrm{t}^{\mathrm{n+1}}$
VESSEL water mass (liquid plus vapor) at $t^{n}$.
Maximum three-dimensional component ratio of the couran: number to the time-step size at the beginning of the previous time step.

XTABLE: Abscissa coordinate value from the last axial power-shape table evaluation.
INTEGER VARIABLES:

| DSTEP: | Time-step number oi dump to be used for restart. |
| :--- | :--- |
| IADDED: | Time-step interval for printing calculation summary to the terminal. <br> (Zero suppresses this print.) |
| ICCMX: | Component number in the IORDER array with the most severe time- <br> step limit for stability. |
| ICMP: | Component indicator. |
| ICP: | Temporary pointer to next free location in the dynamic storage area <br> for component data. |
| IDIAG: | Namelist variable that defines different levels of debugging informa- <br> tion on appropriate parameter values. |
|  | Air-water option flag. <br> IEOS: |
|  | $0=$ steam-air-water; |
| $1=$ air-water (no steam present). |  |


| IFF3D: | Outer-iteration VESSEL evaluation flag. |
| :--- | :--- |
| $0=$ evaluate the VESSEL coefficient matrix equation: |  |
|  | $1=$ back-substitute the VESSEL matrix equation solution. |
| IFPREP: | Flag that indicates sections of PREPER to be executed (nonzero only |

IGEOM3: VESSEL geometry flag
$0=$ (default) flow areas between the downconier and inside of the VESSEL set to zero:
$1=$ flow areas between the downcomer and inside of the VESSEL maintained at the user input values.
Note: The vent-valve option overrides IGEOM3 $=1$ option in cells that have vent-valve connections.
Flag that indicates if back-up occurred on previous time-step (used for mass check on logic)
Flag that indicates whether previous time step that failed was obtained from a restart.

IMFR: Calculates the theta, axial, and radial mass flows ( $\mathrm{kg} / \mathrm{s}$ ) for both liquid and vapor, and adds them to the graphics. This option is invoked by a new NAMELIST variable IMFR.
$1=$ (default) one-dimensional VESSEL mass flow:
$3=$ three-dimensional VESSEL mass flow.
INVAN: Flag to select either $T_{\text {CHF }}$ or $T_{\text {sat }}$ for cintrol of the invarted annular flow regime.
IOFFTK: Flag to select offtake model.
$0=$ off;
$1=$ on
IPAK:
IPAK3D:

IRSTFL:

ISOLUT:
ISSFLG:
ISTDY:

ISTTC:

ITHD:

ITMIN
ITPAKO:
JFAT:

KCCMX:
LCMPTR:
Flag that indicates one-dimensional water-packing option.
$0=$ off;
$1=$ on.
IPAK3D: Flag that indicates three-dimensional water-packing option.
$0=$ off;
$1=$ on.
IPAKON: Fiag that indicates if water-packing logic is on during time step.
IPKPMP: flag ti cates if water-packing corrections are made at a pump solice.
$0=$ (default) water-packing corrections are not made at a pump source:
1 = water-packing corrections are made at a purnp source.
Flag to control dump generation in the interactive mode.
$0=$ normal operation;
$1=$ termination with a dump because the interactive mode is requesting a component modification.
Flag that turns on solute tracking option.
Flag that controls editing in steady state.
Flag that indicates type of calculation.
$0=$ transient;
$1=$ steady state.
Static check flag.
$0=$ normal mode;
$1=$ a static balance check was requested when STDYST $=5$ was input.
Namelist variable to use hydraulic diameters (0) or input thermal diameters (1) for the heat-structure component heat-transfer calculation.
Minimum stable film-boiling option flag.
Iteration number for which water packing was detected.
Flow-area ratio test flag.
$0=$ flow-area ratios are appropriate;
$1=$ one or more ratios of interface flow area to adjacent mesh-cell average flow-area ratios are invalid.
$2=$ one or more adjacent volume average flow-area ratios are invalid.
$3=$ one or more of both types of flow-area ratios are invalid
Cell in above component that limits stability.
Pointer to end of component data for last component read

| LEVSTG | Void-fraction averaging flag. <br> $0=$ default, no void-fraction averaging is performed in HTCOR in the steam-generator secondaries: <br> $1=$ special void-fraction averaging is performed in HTCOR for steam-generator secondaries. |
| :---: | :---: |
| LLVFLG | Switch that determines averaging procedure used in subroutine HTIF. |
| NCMN: | Position in IORDER array for component that was last to converge at step NSMN. |
| NCMX: | Position in IORDER array for component that was last to converge at step NSMX. |
| NCONTR: | Number of constrained steady-state controllers. |
| NCONTS | Number of constrained steady-state controllers that adjust pumps or valves so that their coolant mass flow equals a monitored coolant mass flow elsewhere in the system. |
| NCONT F : | Number of constrained steady-state controllers that adjust the flow resistance across the VESSEL. |
| NCRG: | NAMELIST variable (not documented elsewhere and overwritten to zero) that could be used to force the input of ICRRG (see the VESSEL variable-length table. Appendix C). Logic is incomplete. |
| NDIA1: | Heat-transfer diameter option for une-dimensional components. <br> $1=$ (default) no heat-transfer diameter input for one-dimensional components; <br> $2=$ heat-transfer diameter input for one-dimensional components. |
| NEWRFD: | Namelist variable that activates the reflood-model calculation for heat-structure components coupled to VESSEL components when internal test criteria are safisfied. |
| NFRC1: | Set to 2 if forward and reverse loss coefficients are to be input for one-dimensional components. |
| NFRC3: | Set to 2 if forward and reverse loss coefficients are to be input in the VESSEL. |
| NITAV: | Average number of outer iterations since the last edit. |
| NITMN: | Minimum number of outer iterations since the last edit. |
| NITMX: | Maximum number of outer iterations since the last edit. |
| NLOOPP: | Flag to indicate inconsistent source connections of a one-dimensional component loop to different directional face of VESSEL component(s). |
| NOSETS: | Namelist variable defining when the SETS3D equations are to be evaluated for all VESSE $i$ components. <br> $0=$ evaluate the SETS3D equations when the time-step size exceeds 0.8 times the VESSEL courant limit time-step size; <br> $1=$ do not evaluate the SETS $3 D$ equations; |

$2=$ evaluate the SETS3D equations every time step (default).
NSEND: End the calculation at this time-step number.
NSEO: Time-step number of last completed edit.
NSMN: Last time step at which NITMN outer iterations occurted
NSMX: Last time step at which NITMX outer iterations occurred.
NSPL: Debug print if NSPL < NSTEP < NSPU.
NSPU: Debug print if NSPL < NSTEP < NSPU.
NSSO: Time-step number of last completed short edit.
NSTAB: SETS3D-equations evaluation flag for all VESSEL components.
NSTP: Number of time steps since the last edit.
NVGRAV: Namelist variable option to allow the orientation of each VESSEL component to be input specified.
OITMAX: Maximum number of outer iterations.
SITMAX: Maximum number of outer iterations for steady-state calculation.
STDYST: Steady-state calculation indicator
TRANSI: Transient calculation indicator

## COMMON/COUPLE/ CCF, CCF1,RS

COMMON/COUPLE/ ICUPLE, IEVEN, NT1, NT2
REAL VARIABLES:
CCF: Cylindrical-geometry factor (CCF $=0$, when NTSX is an even number, and CCF $=1$. when NTSX is an odd number).
CCF 1: Cylindrical-geometry factor (CCF1 $=1$. when NTSX is an even number and CCF1 $=0$. when NTSX is an odd number).
RS: $\quad$ Factor applied to radical velocity across the $r=0$ cylindrical-geometry axis.

## INTEGER VARIABLES:

ICUPLE: $\quad$ Flag to indicate radial-direction convective coupling across the $r=0$ cylindrical-geometry axis (not used).
IEVEN: $\quad$ Flag to indicate that the number of azimuthal sectors is an odd (0) or even (1) number.
NT1: $\quad$ Number of azimuthal sectors divided by 2 (NTSX/2).
NT2: $\quad$ NT1 +1 . VCPVPR

COMMON/CPVECT/ IHTRIG, INTFLG, IPRCPV, KFLOW, KLEVEL, KPRESS, KTEMP, LASOG, LCPVLP, \&CPVPR, NCPVP, NORMDP, NORMRS

DIMENSION
LCPVLP(4,9), LCPVPR(9), VCPVLP(4,9), VCPVPR(6)
REAL VARIABLES
CPVINT: Print interval for control-panel vector.
RDIAM: Refueling storage tank diameter.
RMASS: Initial refueling storage tank water mass ( kg )
RSTMLT: Multiplier for converting refueling storage tank water mass to water level.
TCPVPR: Time of the last control-panel vector printout
VCPVLP: Control-panel vector loop parameter values.
VCPVPR: Control-panel vector primary parameter values
INTEGER VARIABLES:

| IHTRIG | Terminal (TTY) heading print trigger. |
| :---: | :---: |
| INTFLG | Flag that indicates an interrupt message has been received. |
| IPRCPV: | Control-panel vector processing flag. <br> $0=$ control-panel vector processing selacted; <br> $1=$ control-panel vector processing not selected. |
| KFLOW: | Flow output units. $\begin{aligned} & 0=\mathrm{kg} / \mathrm{s} \\ & 1=\mathrm{lb} / \mathrm{s} \end{aligned}$ |
| KLEVEL: | Level output units. $\begin{aligned} & 0=m \\ & 1=\mathrm{ft} \end{aligned}$ |
| KPRESS: | Pressure output units. $\begin{aligned} & 0=\mathrm{MPa} ; \\ & 1=\mathrm{psi} . \end{aligned}$ |
| KTEMP: | Temperature output units. $\begin{aligned} & 0=K_{i} \\ & 1={ }^{\circ} \mathrm{F} \end{aligned}$ |
| LASOG | Length of each interactive graphics edit. |
| LCPVLP: | LCM pointers to variables used in evaluating control-panel vector loop parameters. |

LCPVPR: LCM pointers for variables used in evaluating control-panel vector primary parameters.
NCPVP: Number of interactive graphic dumps.
NORMDP: Flag that indicates a dump in the noninteractive mode.
$0=$ no dump occurs, default if code is interactive:
$1=$ dump occurs.
NORMRS: Flag that indicates if a restart was obtained from a normal noninteractive TRAC version.
$0=$ no restart, default if code is interactive;
$1=a$ restart was obtained.

## COMDECK CPVINP

COMMON/CPVINP/ ICELLS, ICOMPS, JCELL, JCOMPS, JDISCH, LOOPCT, LOOPID, LOOPS

DIMENSION
ICELLS(4,8), ICOMPS(4,9), JCELL(3), JCOMPS(4), JDISCH(4). LOOPID(4), LOOPS(4)

INTEGER VARIABLES:
ICELLS(LI) Cell number in loop $L$ where the control-panel vector parameter I is located.
$\mathrm{I}=1$, hot-leg temperature
2, cold-leg temperature;
3. primary-liquid mass flow;
4. ECCS liquid mass flow:

5, stear-generator secondary-side pressure:
6, steam-generator secondary-side stearm-mass flow;
7, steam-generator secondary-side main-feedwater mass flow: and
8, steam-generator secondary-side auxiliary feedwater mass flow.
ICOMPS(L,I): Component number in loop $L$ where the control-panel vector parameter I is located.
$1=1$ through 8 defined in ICELLS(L.I)
I $=9$, steam-generator secondary-side water level.
JCELL(1): Cell number where the control-panel vector global parameter I is located.
$1=2$. primary pressure; and
3, containment pressure and temperature.
JCOMPS(1): Component number where the control-panel vector global parameter I is located
$1=2$ and 3 defined in ICELL(1)

1. reactor power; and

APPENDIX D
4. pressurizer water level.

JDISCH(L) Component number for refueling storage tank discharge in loop $L$ (should be a FILL).
LOOPCT: Number of loops in this model $(1 \leq$ LOOPCT $\leq 4)$.
LOOPID(L): Loop identification for loop L
LOOPS(L): Number of physical loops in loop L

## COMDECK DAMPER

## COMMON/DAMPER/ FIHT, IFRCR

REAL VARIABLES:
FIHT Wall drag coefficient adjustment factor (1.0, not used) INTEGER VARIABLES:

> IFRCR: $\quad \begin{aligned} & \text { Wall drag evaluation option. } \\ & 0=\text { no; } \\ & 1=\text { yes }\end{aligned}$

## COMDECK DECAYC

COMMON/DECAYC/ F1SPHI, FP235, FP238, FP239, QAVG, Q235, Q238, Q239, RANS, R239PF, TOPATE

COMMON/DECAYC/ IANS79
REAL VARIABLES:
FISPHI: Fissions per initial fissile atom.
FP235: Fraction of core power from $U^{235}$ fissions
FP238: Fraction of core power from U $\mathrm{U}^{238}$ fissions
FP239: Fraction of core power from $\mathrm{Pu}^{239}$ fissions.
QAVG: Average energy per fission
Q235: Energy per fission from $U^{235}$
Q238: Energy per fission from $U^{238}$.
Q239: Energy per fission from $\mathrm{Pu}^{239}$
RANS: Multiplier applied to the ANS79 decay heat
R239PF: Atoms of $U^{239}$ prodiceed per fission.
TOPATE: Four years in seconds units.
INTEGER VARIABLE:

1ANS79: $\quad$| ANS79 decay-heat standard evaluation flag. |
| :--- |
| $0=$ not evaluated; |
| $1=$ evaluated the 69 -group ANS79 decay-heat standard. |

$2=$ evaluated the ANS79 decay-heat standard plus the heavymetal decay for $\mathrm{U}^{239}$ and $\mathrm{Np}^{239}$

## COMDECK DEFVAL

COMMON/DEFVAL/ ALPQ,CFZ3Q,HD3Q,HSTNQ,PAQ,PQ,QPPPQ,TLQ,TVQ. TWQ, VLQ, VVQ<br>COMMON/DEFVAL/ ISTOPT

REAL VARIABLES:
ALPQ: Default value for initial void fractions input through NARAELIST and used to specify void fractions when ISTOPT $=1$ or 2
CF23Q: Default value for three-dimensional VESSEL component additive loss coefficients input through NAMELIST and used to specify VESSEL additive loss coefficients when ISTOPT $i=1$ or 2
HD3Q: Default value three-dimensional VESSEL component hydraulic diameters input through NAMELIST and used to specify VESSF L hydraulic diameters when ISTOFT $=1$ or 2 .
HSTNQ: Default value for initial heat-structurs ratures input through NAMELIST and used to specify the heat-4 ..-rure temperatures when ISTOPT $=1$ or 2 .
PAQ: Default value for initial air partial pressures input through NAMELIST and used to specify air partial pressures when STOPT $=1$ or 2 .
$P Q: \quad$ Default value for initial pressures input through NAMELIST and used to specify pressures when ISTOPT $=1$ or 2 .
QPPPQ: Default value for initial volumetric heat sources in flow channel walle input through NAMELIST and used to specify volumetric heat sources when ISTOPT $=1$ or 2 .

TLQ: Default value for initial liquid temperatures input through NAMELIST and used to specify liquid temperatures when 1 STOPT $=1$ or 2 .
TVQ: Default value for initial vapor temperatures input through NAMELIST and used to specify vapor temperatures when ISTOPT $=1$ or 2 .
TWQ: Default value for initial wall temperatures input through NAMELIST and used to specify wall temperatures when ISTOPT $=1$ or 2 .
VLQ: Default value for initial liquid velocities input through NAMELIST and used to specify liquid velocities when ISTOPT $=1$ or 2 .
VVQ: Default value for initial vapor velocities input through NAMELIST and used to specify vapor velocities when ISTOPT $=1$ or 2 .
INTEGER VARIABLE:
ISTOPT: Input option for thermal-hydraulic parameter default values.

## INTEGER VARIABLE:

NDETC:
Flag for generating debug printout from the outer interation cell-wise matrix definition

COMDECK DF1D ${ }^{\circ}$

COMMON/DF:DC/

COMMON/D̈ㅍDC/

REAL VARIABLES:
ARDMIN: Nimum value of the difference between the flow-area ratios one mesh-cell distance from a junction interface with a PLENUM component and at the junction interface with a PLENUM component for flow from the PLENUM component.
ARN: No factor for applying flow-arta ratios in the momentum-convection term.
$0.0=$ apply siea ratios;

$$
1.0=\text { do not apply area ratios. }
$$

ARY: Yes factor for applying flow-area ratios in the momentum-convection term.
$1.0=$ apply area ratios:
$0.0=$ do not apply art. iatios.
A111: Dummy variable that provides a known start to the COMMON block
ALPST: The JCELL fluid void fraction to be convected into the TEE component side leg by the TEE offtake model.
C1A: Fraction of liquid velocity at the left face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.
C1AV: Vapor velocity fraction at the left face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.
C2A: Fraction of liquid velocity at the right face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.
C2AV: Vapor velocity fraction at the right face of the TEE junction cell that contributes to the momentum transfer into the TEE side leg.
CT: Momentum source coefficient
DVJP: Pressure derivative of source velocity.

FL.1: Temporary storage for liquid mass-flow corrections for mass-conservation ch. .xcks at low-numbered cell face.
FL2: $\quad$ Temporary storage for liquid mass-fiow corrections for mass-conservation checks at high-numbered cell face.
FL.JP: K-factor turning plus abrupt flow-area change loss times the side-leg RHO*FA*VM **2 at a TEE internal junction that is to be assigned to the primary-side interfaces that flow into JCELL.
FLJS: $\quad$ FRIC turning plus abrupt flow-area change loss at a TEE interna! junction that is to be assigned to the side-leg internal-junction interface.
FV1: $\quad$ Temporary storage for vapor mass-flow corrections for mass-conservation checks at low-numbered cell face.
FV2: Temporary storage for vapor mass-flow corrections for mass-cons?rvation checks at high-numbered cell face.
HAVLV: Temporary storage for the hydraulic diameter when the valve is open.
QTP: Total direct power input.
S01: Sign of IOU(1, current component).
S02: Sign of $\operatorname{IOU}$ (2, current component).
SALT: Source term to liquid for compressible work.
SAVT: Source term to vapor for compressible work.
SSAC: Air source.
SSE: Energy source.
SSMC: Mass source.
SSMOM: Momentum scurce to left-hand cell boundary.
SSVC: Vapor mass source.
SSVE: Vapor energy source.
VJS: Source velocity.
ZZZZZZ: Dummy variable that provides a known end to the COMMON block. INTEGER VARIABLES:

101:
102:
103:
IACC2:
IBKS: ICLFLG:

ABS (IOU(1, current component)).
ABS(IOU(2, current component))
IOU(3,current component) [always positive]
Flag for PIPE used to model accumulator. Indicator for network solution.
Flag used by the STGEN (steam-generator) component in the postpass to instruct the numerical stabilizer whether the second junction of a secondary component is connected to an external component
ICME: Component index for referencing IOU array.
ICORL: Core-region lower boundary.
ICORU: Core-region upper boundary.
1101: 101 plus a displacement for the current loop.
102 plus a loop displacement.
103 plus a loop displacement.
Loop number index.
Phase-se paration evaluation flag of the TEE offtake model.
Flag that indicates if the calculations are being performed for aSTGEN (steam-generator) component.
Left-hand boundary swi:ch.
Right-hand boundary switch
Interface number of the adjustable-valve flow area
Cell number at left end of one-dimensional segment
Loop index that indicates the loop in the system.
Cell number for source terms
$\mathrm{NC} 2:$ Cell number that begins a TEE and STGEN (steam-generator) TEEsecondary
NJN: Number of network matrix junctions.
NSTG: Counter for a STGEN (steam generator)
NTEE:
Counter for a TEE

## COMDECK DIDDLE

COMMON/DIDDLE/ AFCT, ALPBCT, ALPCC, ALPLVL, ALPLVU, ALPSHL, ALP. SHU, ALVV1, ALW2, CALV2, CBMIN, ENCUT, ENFAC1, EN- FAC2, ENMIN, FAREA1, FAREAH, FAREAV, FSE5, SCI- NAN, TGRAV, VDRPF, VDRPMX, VECLCT, VECVCT, VINTF, VLVCMX, VRBCUT, VRTCUT
COMMON/DIDDLE/ NIFSLB
REAL VARIABLES
AFCT: Area scaling for waves on inverted annular interface.
ALPBCT: Lower bound on bubble void fraction used to compute interfacial
ALPCC: Void fraction that gives the misimum value for the bubble condensa-
ALPLVL:heat-transfer rates (and resulting $\Gamma$ ) when boilingtion rate.Lowest value of the maximum adjacent void fraction allowed fur cal-culating a plug interfacial area.

| ALPLVU: | Highest value of the minimum adjacent void fraction allowed for calculating a plug interfacial area. |
| :---: | :---: |
| ALPSHL: | Void below which the interface sharpener is off. |
| ALPSHU: | Void above which the interface sharpener is completely on. |
| ALW1: | Void fraction lower limit for transition from bubbly-slug (at ALW1 $=0.5$ ) to annular-mist (at ALW2 $=0.75$ ) flow regimes. |
| AlW2: | Void fraction upper limit for transition from bubbly-slug (at ALW1 $=0.5$ ) to annular-mist (at $\mathrm{ALW} 2=0.75$ ) flow regimes. |
| CALV2 | The liquid-side HTC for superheated drops. |
| CBMIN: | Minimum allowed mear bubble diameter. |
| ENCUT: | Minimum droplet entrainment fraction. |
| ENFAC1: | Scaling factor for minimum entrainment velocity. |
| ENFAC2: | Scaling factor for entrainment correlation exponent. |
| ENMIN: | Variable not implemented. |
| FAREA1: | Scale factor for one-dimensional plug flow condensation area. |
| FAREAH: | Scale factor for three-dimensional separated plug flow horizontal condensation area. |
| FAREAV: | Scale factor for three-dimensional separated plug flow verical condensation area. |
| FSE5: | Scale factor for pool entrainment. |
| SCINAN | Scale factor for inverted annular drag. |
| TGRAV: | Absolute value of GRAV above which horizontal stratified flow cannot exist ( 0.75 ). |
| VDRPF: | Scale factor in the expression for the limiting circulation velocity in a drop. |
| VDRPMX | Maximum allowed internal circulation velocity in a drop. |
| VECLCT: | Lowest allowed liquid speed when computing interfacial coefficients. |
| VECVCT: | Lowest allowed vapor speed when computing interfacial coefficients. |
| VINTF: | Factor in expression for mean circulation speed in a moving drop |
| VIVCMX: | Maximum liquiu velocity used for the condensation ALV correlation. |
| VRBCUT: | Minimum allowed reiative velociiy for computing ALV during boiling. |
| VRTCUT: | Minimum allowed relative speed for computing interfacial coefficients (except during boiling). |

## INTEGER VARIABLE:

NIFSLB: If nonzero, then slabs should be used to test for inverted annular flow.

## COMDECK DIDDLH

COMMON/DIDDLH/

COMMON/DIDDLH/
REAL VARIABLES:

AFLML, AFLMU, ALP2, ALP3, ALPAG, ALPBR, ALPCUT, ALPDF, ALOW, AUP, FBER, FBEX, FDALVA, FDFHL, FLILER, FLILES, FREQ1, FREQ2, FUDGE1, FUDGE2, HGF, HGVMN, LIMFLG

IHTAV, IHTCN, NSHTCN

AFLML: Void fraction below which Broriley film boiling contributes fully to the liquid.
AFLMU: Void fraction above which no Bromley coefficient is added to the liquid
ALP2: Void fraction above which vapor is in forced convection.
ALP3: Void fraction above which there is no liquid heat transfer.
ALPAG: Void fraction at the agitated-to-post-agitated inverted-annular flow transition boundary.
ALPBR: Void fraction above which liquid convection is linearly faired off and vapor connection is faired on.
ALPCUT: Void fraction above which nucleate boiling is not permited (if other criteria are met).
ALPDF: Void fraction describing the beginning of the highly dispersed inverted-annular flow.
Lowest value of void fraction in adjacent cells.
Highest value of void fraction in adjacent cells.
Variable not used.
Power of ( $1-\alpha$ ) weighting of Bromley correlation
Multiplier of DALVA(J) which is rate of change of ALW with respect to void fraction and is currently set to zero.
FDFHL: A scaling factor for the wall-to-droplet reat-transfer correlation.
FLILER: Constant used to adjust the wall-to-liquid HTC obtained by modified Bromley correlation in reflood.
Same as FLILER for non-reflood cases.
Time-constant constraint frequency for the maximum increase in interfacial heat-transfer and drag coefficients.
Time-constant constraint frequency for the maximum decrease in interfacial heat-transfer and drag coefficients.

FUDGE1: Time-constant constraint factor of maximum increase when the timestep size is $10 /$ FREQ1
FUDGE2: Time-constant constraint factor of maximum decrease when the timestep size is $1.0 /$ FREQ2
HGF: Function of nucleate-boiling heat transfer, which contributed to subcooled boiling.
HGVMN: Cutoff velocity for condensati.. used to suppress subco ded nucleate boiling.
LIMFLG: Flag for evaluating time-constant constraint of the evaporation and condensation rate coefficients.
$0=$ no;
$1=$ yes.
INTEGER VARIABLES:
IHTAV: Variable is normally 1. If IHTAV is 0 , then there is no time averaging of HTCs.
IHTCN: Variable is normally 0 . If IHTCN is 1 , then HTCs are forced to emain constant. ©
NSHTCN: Variable is normally 10000000 . If NSTEP $>$ NSH ${ }^{-1} C N$, then $1 H T C H$ is set to 1 (for debugging only).

## COMDECK DIDDLI

COMMON/DIDDLI/ SMIVX
COMMON/DIDDLI IIABK, NSCOOL.
REAL VARIABLE:
SMAIVX: Constant 1.5 (not used)
INTEGER VARIABLES:
llABK: Constant 1 (not used).
NSCOOL: $\quad$ Flag (when having its default value of 1 ) that constrains the subcooled boiling heat flux to not exceed the wall heat flux to the liquid.

COMDECK DIMNSION
COMMON/DIMEN/ IFREE, JNVSSL, KVELIT, KVEL2T, KVEL3T, LAST, LDIM, LENBD, LENDIM, LENTBL, LFREE, LLAST, LNLDPV, LNRDPT, LOCRDP, LSTART, LSTRDP, LLER, MDIM, MEMFLG, MOFF, NCOMP, NCOMPT, NHTSTR, NJNMX, NJNT, NJUN, NLOOPS, NMVSSL, NPX, NSTGJ, NTHM, NTHM1D NTHM3D, NUMTCR, NVCON, NVELX, NVELY, NVELZ, NWRDA

## INTEGER VARIABLES:

IFREE: First free location in the dynamic storage area
JNVSSL: Maximum number of VESSEL junctions in a loop.
KVEL1T: Order of the $x$ - or $r$-direction stabilizer motion-equation VESSEL ma trix.
KVEL2T: Order of the y - or $\theta$-direction stabilizer motion-equat in VESSEL matrix.

KVEL3T: Order of the z-direction stabilizer motion-equation VESSEL matrix.

LAST:
LDIM:
LENBD:
LENDIM:
LENTBL:
L.FREE:

LLAST:
LNLDPV:
LNRDPT: Total number of ROD-data pointer variables.
LOCRDP: Number 1 (the initial value of the do-lonp index over rod-data pointer variables).
LSTART: First free location in LCM.
LSTRDP: Number of general ROD-data pointer variables.
LVER:
MDIM
MEMFLG:
MOFF:

NCOMP: Number of components (each STGEN component counts as a single component).
NCOMPT: Total number of components, including the secondary components defined as parts of the STGEN componenis.
NHTSTR: Namelist variable defining the total number of heat-structure components.
NJNMX: Maximumi number of network junctions.
NJNT:
NJUN
NLOOPS Last location in the dynamic storage area.
Maximum storage size order of the capacitance matrix.
Length of boundary data array for each junction.
Variable that dimensions the component variable-length tables.
Length of fixed-length table.
First free location in LCM.
Last location in LCM.
Pointer variable for the network matrix equation right-hand side vector.

Location in LCM of version information data.
Maximum storage order of the banded VESSEL matrix.
Flag for monitoring dynamic memory expansion.
Atray row number of the main diagonal elements from the banded VESSEL matrix.

Total number of network junctions for all loops.
Number of junctions.
Number of one-dimensional loops in the system.

| NMVSSL: | Number of VESSELs. |
| :---: | :---: |
| NPX: | Number of pointers in the PTRS COMMON block. |
| NSTGJ: | Number oi internal junctions in a STGEN (steam generator). |
| NTHM: | Number of eleinents per cell in the DRIV array. |
| NTHM1D: | Length of the data stored per cell in the DRIV array (mostly thermodynamic derivatives) in one-dimensional components. |
| NTHM3D | Length of the data stored per cell in the DRIV array (mostly thermodynamic derivatives) in three-dimensional VESSEL components. |
| NUMTCR: | Number of title cards. |
| NVCON: | Total number of VESSEL connections. |
| NVELX: | Order of the $x$ - or $r$-direction stabilizer motion equation JESSEL matrix. |
| NVELY: | Order of the $y$ - or $\theta$-direction stabilizer motion equation VESSEL matrix. |
| NVELZ: | Order of the z-direction stabilizer motion equation VESSEL matrix. |
| NWRDA: | Size of the A array under *IF DEF, ASIZE. |
| COMDECK DLIMIT |  |
| COMMON/DLIM/ | DELAMX, DELCMX, DELDMX, DELEMX, DELPMX, DELRMX, DELVMX, DELXMX, DTBKUP, FPMAX, FXMAX, GXMAX |
| COMMON/DLIM/ | NLIM, NLIM2 |
| DIMENSION | NLIM(8), NLIM2(6) |
| REAL VARIABLES: |  |
| DELAMX: | Time-step limit caused by void-fraction change. |
| DELCMX | Time-step limit caused by maximum changes in pressures and temperatures. |
| DEI DMX: | Time-step limit caused by numerical considerations in the ROD and SLAB heat transfer. |
| DELEMX: | Time-step limit caused by VESSEL mass errors. |
| DELPMX: | Time-step limit that results in a maximum $10 \%$ change in reactor-core power. |
| DELRMX: | Time-step limit caused by final value of the percentage variation in pressure from iteration to iteration. |
| DEIVMX: | Material Courant stability limit (computed only in VESSELs). |
| DELXMX: | Time-step limit that results in the maximum allowed adjustment of VALVE components. |

DTBKUP: Time-step limit defined by DELPMX or DELXMX when a back-up calculation is required after the prep-stage calculation
FPMAX: Maximum fractional change (0.1) in reactor-core power per time step.
FXMAX: VALVE-adjustment algorithm parameter (0.4).
GXMAX: Minimum fractional change ( 0.05 ) in the VALVE maximum flow-area fraction change over a time step.
INTEGER VARIABLES:
NLIM: Array that stores the number of time steps that were constrained by each of the time-step limits since the last short or large edit.
NLIM2: $\quad$ Array that stores the number of time staps that were constrained by each of six different time-step limits defining DELCMX since the last short or large edit. [The sum of all six NLIM2(1) equals NLIM(5), which is the number of times DELCMX controls the time-step size.]

## COMDECK DMPCK

COMMON/DMPCK/ LVCK

INTEGER VARIABLE:
LVCK: Summed number of values over the VESSEL component that have been written to the dump file (summed by subroutine DLEVEL but not used).

COMDECK DMPCTRL
COMMON/CTRLDP/ DMPINT, LTDUMF, TDUMP COMMON/CTRLDP/ DMPFLG, ICTRLD, NSDO

DIMENSION ICTRLD(8)
REAL VARIABLES:
DMPIC!T: Dump interval for time domain
LTDUMP: CPU time when last dump was taken
TDUMP: Calculation time when next dump will be taken
INTEGER VARIABLES:
DMPFLG: Flag that signals whether the dump output file has been initialized. $0=$ uninitialized;
$1=$ initialized.
ICTRLD: Array that contains buffering information about the dump output file.
NSDO: Time-step number of last completed dump

COMDECK DSKPTP
COMMON/DSKPTP/ NL, NR, NW

## INTEGER VARIABLES:

NL: $\quad$ Number of words of data in the process-to-process (PTP) message.
NR: $\quad$ First word address on the $1 / O$ unit 9 disk where the PTP message is to be read from.
NW: $\quad$ First word address on the $1 / O$ unit 9 disk where the PTP message is to be written to.

COMDECK EDIFF
COMMON/EDIFF/
IDIAG2, JPRTST, JTLTST, JTMTST, JTVTST, KDAMX, LDAMX, LPRTST, LTLTST, LTMTST, LTVTST, NDAMX, NPRTST, NTLTST, NTMTST, NTVTST

INTEGER VARIABLES:
IDIAG2: Flag that ailows skipping of certain diagnostics generated in NEWDLT by IDIAG option. (Hardwired on.)
JPRTST: Cell number of component that has controlled time step due to pressure change limits.
JTLTST: Cell number of component that has controlled time step due to liquid temperature change limits.
JTMTST: Structure node of component that has controlled time step due to "Inetal" lemperature change limits
JTVTST: Cell number of component that has controlled time step due to vapor temperature change limits.
KDAMX: Variabla not used.
LDAMX: Variable not used.
LPRTST: Z-elevation number of component that has controlled time step due to pressure change limits.

LTLTST: Z-elevation number of component that has controlled time step due to liquid temperature change limits.
LTMTST: Z-elevation number of component that has controlled time step due to "metal" temperature change limits.
LTVTST: $\quad Z$-elevztion number of component that has controlled time step due to vapor temperature change limits.
NDAMX: Variable not used
NPRTST: Component number that has controlled time step due to pressure change limits.

NTLTST: Component number that has controlled time step due to liquid temperature change limits.
NTMTST: Component number that has controlled time step due to "metal" temperature change limits.
NTVTST: Component number that has $c$ antrolled time step due to vapor temperature change limits

## COMDECK ELVKF

COMMON/ELVKF/ IELV, IINL, IKFAC INTEGER VARIABLES:

IELV: Input option switch that allows user to input cell-centered elevations for gravity term.
IINL: Index for the two passes through INIT.
IKFAC: Input option switch that allows user to input $K$-factors for additive form-loss coefficients.

## COMDECK EMOT

COMMON/EMOT /
CSF1D, CSF3D, FNCIF
COMMON/EMOT/IVMN IVMX, JIV. NOLDV
REAL VARIABLES:
CSF1D: Maximum material courant number for the one-dimensional hydro components
CSF3D: Maximum material courant number for the three-dimensional hydro components.
FNCIF: Constant 0.7 (not used)
INTEGER VARIABLES:

| IVMN. | Minimumi time-step number for debug printing interface JIV veloci- |
| :--- | :--- |
| ties. |  |
| IVMX: | Maximum time-step number for debug printing interfacu JIV veloci- <br> ties. |
| JIV: | Mesh-cell interface number for debug printing vapor and liquid, tilde, <br> and solution velocities in subroutine TF1DSI. |
| NOLDV | Flag for setting the beta factor in the momentum-convection term to <br> zero. <br> 0 <br> 1 |
|  | no; yes. |

COMMON/ERRCON/

COMMON/ERRCON/

ANTEST, ATEST1, DARA, DARL, DARV, DDVL, DDVV, DTLL, DTLLM, DTLU, DTLUM, DTVL, DTVLM, DTVU, DTVUM, TIMDL, TIMDU

IATEST, ICHGA, ILREIT, IPTEST, IVTEST, JATEST, JDARA, JDARL, JDARV, JDDVL, JDDVV, JDTLL, JDTLU, JDTVL, JDTVU, JPTEST, JVTEST, KPTEST, NDARA, NDARL, NDARV, NDDVL, NDDVV, NDTLL, NDTLU, NDTVL, NDTVU, NPTEST, NSDL, NSDU

REAL VARIABLES:
ANTEST: End-of-time-step void fraction that is outside its 0 to 1 . value range in mesh cell JATEST of component IATEST
ATEST1: Beginning-of-time-step void fraction in mesh cell JATEST of component IATEST
DARA: Maximum change in $\alpha \rho_{a}$
DARL: Measure of the maximum difference in $(1-\alpha) \rho_{\ell}$ between the basic and stabilizer steps.
DARV. Measure of the maximum difference in $\alpha \rho_{g}$ between the basic and st ebilizer steps.
DDVL: Measure of the inaximum difference in $V_{l}$ between the basic and stabilizer steps.
DDVV: Measure of the maximum difference in $\mathrm{V}_{g}$ between the basic and stabilizer steps.
DTLL: $\quad$ argest decrease in $T_{\ell}$ for current iteration.
DTLLM: DTVLM and LTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTLU: Largest increase in $T_{\text {e for }}$ current iteration
DTLUM: DTVLM and DTLLM are limits on DT VL and DTLL beyond which another iteration must be performed
DTVL: Largest decrease in vapor temperature in a given iteration.
DTVLM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTVU: Largest increase in $T_{g}$ for current iteration.
DTVUM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
TIMDL: If TIMDL $\leq$ TIMET $\leq$ TIMDU, details of DARV, etc., should be printed.
TIMDU: If TIMDL $\leq$ TIMET $\leq$ TIMDU, details of DARV, etc, should be printed

## INTEGER VARIABLES:

| IATEST. | Component number with an out-of-range void fraction value |
| :---: | :---: |
| ICHGA: | Flag to print maximum void fraction changes to the message file. |
| ILREIT: | Flag that allows reiteration messages when equation set changes. |
| IPTEST: | VESSEL $\times$ - or r -direction mesh-cell number having maximum $\|\delta \mathrm{p} / \mathrm{p}\|$. |
| IVTEST: | Component number having a velocity that changed its num rrical sign during the .ast outer iteration. |
| JATEST: | Mesh-cell number in component IATEST where the void fraction has an out-of-range value. |
| JDARA: | Cell where DARA occurred. |
| JDARL: | Cell where DARL occurred. |
| JDARV: | Cell where DARV occurred. |
| JDDVL: | Cell where DDVL occurred. |
| JDDVV: | Cell where DDVV occurred. |
| JDTLL: | Cell where DTLL occurred. |
| JDTLU: | Cell where DTLU occurred. |
| JDTVL: | Cell where DTVL occurred. |
| JDTVU | Cell where DTVU occurred. |
| JPTEST: | VESSEL $y$ - or $\theta$-direction mesh cell or one-dimensional component mesh cell with maximum $\|\delta \mathrm{p} / \mathrm{p}\|$. |
| JVTEST: | Mesh-cell interface number in component IVTEST with a velocity that changed numerical sign during the last outer iteration. |
| KPIEST: | VESSEL $z$-direction mesh cell with maximum $\|\delta \mathrm{p} / \mathrm{p}\|$ |
| NDARA: | Component where DARA occurred. |
| NDARL: | Component where DARL occurred. |
| NDARV: | Component where DARV occurred. |
| NDDVL: | Component where DDVL occurred. |
| NDDVV: | Component where DDVV occurred. |
| NDTLL: | Component where DTLL occurred. |
| NDTLU: | Component where DTL.U occurred. |
| NDTVL: | Component where DTVL occurred. |
| NDTVU | Component where DTVU occurred. |
| NPTEST: | Component number with maximum $\|\delta p / p\|$. |
| NSDL | if NSDL $\leq$ NSTEP $\leq$ NSDU, a detailed diagnostic of DARV, etc, should be printed to TRCMSG. |
| NSDU: | If NSDL $\leq$ NSTEP $\leq$ NSDU, a detziled diagnostic of DARV, etc. should be printed to TRCMSG. |

COMMON/FILM/ CONFLM, FDMAX, FFUNH, FILML, FILMU, XFDCON
REAL VARIABLES:
CONFLM: Constant used in film thickness calculation.
FDMAX: Factor indicating how much bigger film drag may be than the wall drag.
FFUNH: Factor indicating cross-channel cold-wall effect.
FILML: Lower bound on film thickness.
FILMU: Upper bound on film thickness.
XFDCON: Multiplier on wet-wall film drag.
FIXED-LENGTH TABLES

## COMDECK FIXEULT

COMMON/FLTAB/ COILD, HTLSCI, HTLSCO
COMMON/FLTAB/ CTITLE, CTYPE, ICFLG, ID, IREST, LENARR, LENFV, LENFV2, LENPTR, LENVLT, LEXTRA, LFV, LFVN, NCELLT, NODES, NRVLT, NUM, NUMBM1, NUMBM2, NUMBM3, NUMBN1, NUMBN2, NUMBN3

DIMENSION CTITLE(4)

REAI VARIABLES:
COILD: Constant 0.0 (not used).
HTLSCI: Component inside surface heat-transfer coefficient.
HTLSCO: Component outside surface heat-transfer coefficient.
INTEGER VARIABLES:
CTITLE: Component description.
CTYPE: Component type.
ICFLG: Cell-edge choked-flow model options.
ID: Component identification.
IREST: Component restart indicator.
LENARR: Length of array block.
LENFV: Length of fundamental variables.
LENFV2: Length of fundamental variables for which old-time and new-time values are the same at the start of the OUTER code block.
LENPTR: Length of pointer table.
LENVLT: Length of variable-length table.

LEXTRA: Length of nonstandard dump for components
LFV: Relative position of old fundamental variables.
LFVN: Relative position of new fuadamental variables.
NCELLT: Total number of cells.
NODES: Number of heat-transfer nodes
NRVLT: Number of real variables in each component VLT COMMON block
NUM: Component number.
NUMBM1: Indices to access large numerals for printing component NUM and IORDER.

NUMBM2: Indices to access large numerals for printing component NUM and IORDER.

NUMBM3: Indices to access large numerals for printing component NUM and IORDER.
NUMBN1: Indices to access large numerals for printing component ivUM and IORDER
NUMBN2: Indices to access large numerals for printing component NUM and IORDER.
NUMBN3: Indices to access large numerals for printing component NUM and IORDER.

## COMDECK FIXUM

COMMON/FIXUM/ NOAIR, NSMEC, NTHRMC, NVTC INTEGER VARIABLES:

NOAIR: Variable that turns off nonconderisable (air) field calculations.
NSMEC: Variable that turns off stabilizer mass and eneigy equations.
NTHRMC: Variable that turns off (debugs) basic equation set.
NVTC: Variable that turns off stabilizer motion equations.

## COMDECK GOBCOM

COMMON/GOBCOM/ IDUM, IGOE
INTEGER VARIABLES
IDUM: Variable not used.
IGOB: Variable whose location stores the field length of available memory in SCM


COMDECK H2FDBK
COMMMON/H2FDBK/ H2SRC
INTEGER VARIABLE:
IH2SRC: Namelist variable when nonzero forces namelist variables $I G A S=2$ and NOAIR $=0$.

COMDECK HOLERITH
COMMON/HOLL/
ACCUMH, BREAKH, COREH, CTAINH, FILLH, PIPEH, PLENH, PRIZRH, PUMPH, RODH, SEPDH, SLABH, STGENH, TEEH, TURBH, VALVEH, VSSLH

INTEGER VARIABLES:
ACCUMH: Hollerith representation of word "A CUM."
BREAKH: Hollerith representation of word "BREAK.
COREH: Hollerith representation of word "CORE."
CTAINH: Hollerith representation of word "CTAIN."
FILLH: Hollerith representation of word "FILL."
PIPEH: Hollerith representation of word "PIPE."
PLENH: Hollerith representation of word "PLENUM"
PRIZRH: Hollerith representation of word "PRIZER."
PUMPH: Hollerith representation of word "DUMP."
RODH: Hollerith representation of word "ROD."
SEPDH: Hollerith representation of word "SEPD."
SLABH: Hollerith representation of word "SLAB."
STGENH: Hollerith representation of word "STGEN."
TEEH: Hollerith representation of word "TEE."
TURBH: Hollerith representation of word "TURB."
VALVEH: Hollerith representation of word "VALVE."
VSSLH: Hollerith representation of word "VESSEL."
COMDECK HOLLR
COMMON/HOLLR/ HBREAK, HPLEN, HPRIZR, VSS
REAL VARIABLES:
HBREAK: Real Hollerith BREAK component name.
HPLEN: Real Hollerith PLENUM component name
HPRIZR: Real Hollerith PRIZER component name.
VSS: Real Hollerith VESSEL component name

COMMON/HTCAV/
REAL VARIABLES:

FHTCU: Maximum factor of increase of the liquid and vapor heat-transfer coefficients (2.0).
FHTCL: Mininum factor of decrease of the liquid and vapor heat-transfer coefficient ( 0.0 ).
OWHTD: Fraction of the previous time-averaged liquid or vapor heat-transfer coefficient that is averaged together with a (1.0-OWHTD) fraction of the present coefficient to define the present time-averaged value.

## COMDECK HTCREF1

COMMON/HTCREF1/ ALPAG2, ALPCF2, ALPRW, ALPSM, ALPTB, FUNH, QCHF, ZAGS, ZCHFL, ZDFS, ZRWS, ZSLAB, ZSMS, ZTB

COMMON/HTCREF1/ II, NHSCA, NNODES

DIMENSION

DIMENSION
REAL VARIABLES:
ALPG2: Array of void fractions at top of the agita+ ad section for a given ( r , $\theta$ ).
ALPCF2: Array of void fractions at CHF location for a given ( $r, \theta$ ).
ALPRW: Array of void fractions at top of the rough wavy section for a given ( $r, \theta$ ).
ALPSM: Array of void fractions at top of the smooth section for a given ( $r$, $\theta)$.

ALPTB: Array of void fractions at transition boiling location for a given ( $r$, A).

FUNH: $\quad$ Array of fractions of the heat-structure surface that is unheated.
QCHF: Critical heat flux (CHF).
ZAGS: $\quad$ Array of elevation where agitated inverted annular flow ends for a given $(r, \theta)$.
ZCHFL: Array of elevations of CHF point for a given ( $r, \theta$ )
ZDFS: Array of elevation wheie highly dispersed flow begins for a given ( $r$, $\theta$ ).
ZRWS: $\quad$ Array of elevations where rough-wavy inverted annular flow ends for a given ( $r, \theta$ ).
ZSLAB: Elevation of heat-transfer node being considered.
ZSMS: Array of elevations where smooth inverted annular flow ends for a given $(r, \theta)$.
ZTB: Array of elevations of transition boiling point for a given ( $r, \theta$ ) INTEGER VARIABLES:
11: $(r, \theta)$ hydro-cell number.
NHSCA: Array of component numbers of the heat structure that defines the principal powered RODs or SLABs.
NNODES: Number of nodes for a given ROD or SLAB

## COMDECK HTCREF2

COMMON/HTCREF2/ TVZ, TWZ, ZNODES
DIMENSION TVZ(NZFMX), TWZ(NZFMX), ZNODES(NZFMX)
REAL VARIABLES:
TVZ: Array of vapor temperatures for a given ROD or SLAB
TWZ: Array of wall temperatures for a given ROD or SLAB.
ZNODES: Array of all node centers.

## COMDECK HTCREF3

COMMON/HTCREF3/ IFREZ, NREFLD
DIMENSION NREFLD(NXRYT)
INTEGER VARIABLES:
IFREZ: Flag used to turn interfacial vapor heat transfer off, i.e., freeze the drop size.
NREFLD: Flag indicating the reflood model is on; set in subroutine CORE1.

## COMDECK HTCS

COMMON/HTCS/ COMMON/HTCS/

HLIQ, HTCWL, HTCWV, HVAP, QSTEAM, SLIP
ICONHT
REAL VARIABLES:
HLIQ: The enthalpy of liquid
HTCWL: Namelist input for constant wall-to-liquid HTC used when ICONHT $=1$.

HTCWV: Namelist inpu $\quad$ r constant wall-to-vapor HTC used when ICONHT $=1$.

HVAF: The enthalpy of vapor
QSTEAM: Wall-to-wall heat flux.
SLIP: Slip ratio between phasic velocities.
INTEGER VARIABLE:
ICONHT: Namelist input, ICONHT $=0$ normal heat-transfer calculation; ICONHT $=1$. Constant heat-transfer coefficients

## COMDECK IFCRS

COMMON/IFCRS/

COMMON/IRCRS/
REAL VARIABLES

| AL01: | Constant in subcooled boiling model. |
| :--- | :--- |
| ALMAX: | 0.9999, maximum void fraction $(\alpha)$ to use in calculation of interfacial <br> drag. |
| ALMIN: | 0.00001, minimum void fraction $(\alpha)$ to use in calculation of interfacial <br> drag. <br> ALPBCD: |
|  | 0.00001, minimum void fraction $(\alpha)$ to use in calculation of bubbly <br> interfacial drag. |
| ALPBCH: | 0.00001, minimum void fraction $(\alpha)$ to use in calculation of bubbly <br> interfacial heat transfer. <br> ALPBCW: |
|  | 0.00001, minimum void fraction $(\alpha)$ to use in Wilson model (upper <br> plenum) calculation of interfacial drag. |


| ALPDCH: | 0.9995, maximum void fraction $(\alpha)$ for calculation of droplet diameter |
| :--- | :--- |
| in the annular-mist regime. |  |
| Variable not used. |  |

CHTCN1: Constant used in determining the ufper bound of vapor-side HTC for subcooled vapor.

CHTCN2: Constant used in determining the lower bound of vapor-side HiC for subcooled vapor.
CHTEV1: Constant used in determining the upper bound of vapor-side HTC for saturated or superheated vapor.
CHTEV2: Constant used in determining the lower bound of vapor-side HTC for saturated or superheated vapor.
CHTFAX: Constant used in determining the limit of vapor-side HTC between time st.jps.
CHTICN: Constant used in determining the limits uf vapor-side HTC.
CHTIEV:
CHTINV:

CNDBS
CNDFL:
CNDPL:

CNDRO:
CNDST:
D1X:
D2X:
DTVHT
EPMAX:

EPMIN: Minimum drag on EPRI mode' for CORE-component interfacial drag (not used).
EVFAX: Constant in the evaporation model.
F2MX:
FCDROP: Constant to adjust the droplet interfacial-drag coefficient for lightly dispersed inverted-annular flow.
FCSUB
FDIS:

FDIS1
FOIS?
FDISV1
FDISV2

FFD: Constant to adjust the interfacial-drag coefficient of the liquid flow in highly dispersed inverted-annular flow
FFS: Constant to adjust the interfacial-drag coefficient for the free-stream contribution in subcooled nucleate-boiling regime.

FIFAM:
FIFBL:
FIFBS:
FIFCR:
FIFEP:
FIFST:
FIFWL:

FISHI:
FLMIN
FLSH1:
FLSH2:
FLSHF:
ᄃMDIS:

FRI1:
FRI2:
FRW:

FSB: Constant to adjust the interfacial-drag coefficient for the subcooled nucleate-boiling regime.
FSM:

FUI1: $\quad$ Minimum allowed change in $C_{i}$.
FUI2: Maximum allowed change in $\mathrm{C}_{1}$
HO:
HAMIN:
HARMX:
HCAMIN:
HCMIN:
HDMAX: Hydraulic diameter used in VESSEL component if user-input hydraulic diameter is less than $10^{-5}$.
HFVL: Constant used in dispersed-droplet interfacial-drag model

| HFVU: | Constant used in dispersed-droplet interfacial-drag model. |
| :---: | :---: |
| HIMFAC: | Multiplication constant used in the calculation of the minimum vaporinterface heat-transfer rate. |
| PC24: | Pressure constant ( $1.95187 \mathrm{E}+15 \mathrm{~Pa}^{2}$ ) |
| PCRIT: | Critical-point pressure ( $2.209 \mathrm{E}+07 \mathrm{~Pa}$ ) . |
| RDMAX: | Maximum droplet radius in annuler-mist flow. |
| RDMIN: | Minimum droplet radius in annular-mist flow. |
| REGMN: | Minimum Reynold's number in stratified flow. |
| SLP1: | Constant in subcooled-boiling model. |
| STFRL: | Stratified-flow lower-velocity limit multiplier. |
| STFRU | Stratified-flow upper-velocity limit multiplier. |
| STSTRT: | Multiplier on stratified-flow interfacial heat transfer (1.0) |
| TLGTS: | Maximum liquid superheat used to calculate limit on interfacial heat transfer. |
| TVLTL: | Maximum vapor temperature less than liqzid ternperature used to calculate limit on interfacial heat transer. |
| TVLTS: | Maximum vapor subcooling used to calculate limit on interfacial heat transfer. |
| TWDFAC: | Constant in subcooled-boiling model. |
| TWDFAK: | Constant in subcooled-boiling model. |
| VLACC: | Maximum liquid velocity in ACCUM (accumulator) for calculation of interfacial heat transfer. |
| VLMAX: | Maximun : liquid velocity in annular film for calculation of interfacial heat transier. |
| VOIDD1: | Variable not used. |
| VOIDD2: | Void fraction limit in the rough-wavy reflood flow regime. |
| VOIDS1: | Constant 0.05 , the lower limit of the void fraction for smooth invertedannular flow. |
| VOIDS2: | The upper limit on the void fraction for rough-wavy inverted-annular flow. |
| VOIDS3: | Constant 0.3, the upper limit on the void fraction for smooth invertedannular flow. |
| VR2MIN | Variable not used. |
| VRCMIN: | Constant 0.1 minimum relative velocity used to calculate a run. |
| VRFMIN | Minimum relative velocity to be used in the bubbly-slug $C_{i}$ calculation. |

XHVDIS: Constant to adjust the weighting for rough-wavy and smooth invertedannular flow interfacial-drag coefficient in the intermediate voidfraction region.
XMDIS: Constant to adjust the weighting for post-agitated inverted-annular flow interfacial-drag coefficient
XNB: Constant to adjust the weighting for the bubbly flow in the intermediate void-fraction region.
INTEGER VARIABLES:
IBLAUS: Blasius friction-factor flag used in downcomer for interfacial drag if set $=1$.
IEPRI: EPRI interfacial-drag model flag used for rod bundle in core region if set $=1$.
IHOTP: $\quad$ lag for hot-patch modeling, $1=$ on, $0=$ off
IWILS: Wilson interíacial-drag model flag for use in upper plenum when set to 1.

## COMDECK IFDPTR

COMMON/IFDPTR/ IWRTPT,LASTP1,NTMPV, TMPVL
COMMON/IFDPTR/ LVT1, LVT2, LVT3, LVT4, LVT5, LVT6, LVT7, LVT8, LVT9, LVT10, LVT11, LVT12, LVT13, LVT14, LVT15, LVT16, LVT17, LVT18, LVT19, LVT20, LVT21, LVT22, LVT23, LVT24, LVT25, LVT26, LVT27, LVT28, LVT29, LVT30, LVT31, LVT32, LVT33, LVT34, LVT35, LVT36, LVT37, LVT38, LVT39, LVT40, LVT41, LVT42, LVT43, LVT44, LVT45, LVT46, LVT47, LVT48, LVT49, LVT50, LVT51, LVT52, LVT53, LVT54, LVT55, LVT56, LVT57, LVT58, LVT59, LVT60, LVT61, LVT62, LVT63, LVT64, LVT65, LVT66, LVT67, LVT68, LVT69, LVT70, LVT71, LVT72, LVT73, LVT74, LVT75, LVT76, LVT77, LVT78, LVT79, LVT80, LVT81, LVT82, LVT83, LVT84, LVT85, LVT86, LVT87, LVT88, LVT89, LVT90, LVT91, LVT92, LVT93, LVT94, LVT95, LVT96, LVT97, LVT98, LVT99, LVT100, LVT101, LVT102, LVT103, LVT104, LVT105, LVT106, LVT107, LVT108, LVT109, LVT110, LVT111, LVT112, LVT113, LVT114, LVT115, LVT116, LVT117, LVT118. LVT119, LVT120, LVT121, LVT122, LVT123, LVT124
INTEGER VARIABLES:
IWRTPT: Flag to set up temporary pointers for subroutines PREFWD and PREIFD.
LASTP1: LAST + 1, pointer for the first free location in memory for the temporary storage arrays set up to vectorize the three-dimensional wall shear and interfacial-drag coefficient evaluations.

NTMPV: Constant 124, the number of temporary storage arrays in subroutines PREFWD and PREIFD set up to vectorize the three-dimensiona! wall shear and interfacial-drag coefficient evaluations
TMPVL: Number of calculative mesh cells in the three-dimensional VESSEL component.
LVT\#: Pointer variable for the \#th temporary storage array set up to vectorize the three-dimensional wall shear and interfacial drag coefficient evaluation.

COMDECK INFOHL
COMMON/INFOHL/ DROPD, FHLF, QDEN, QFR, QTOTAL, QWEBB, VR2
REAL VARIABLES:
DROPD: Calculated drop diameter used in Forsland-Rohsenow correlation.
FHLF:

QDEN:
QFR:
QTOTAL:
QWEBB:
VR2:
Factor carried along to separate Denham and Forsland-Rohsenow regions.
Heat flux calculated using Denham correlation
Heat flux calculated using Forsland-Rohsenow correlation.
Total heat flux calculated, including radiation
Heat flux calculated using Webb-Chen correlation.
Local relative velocity minus quench-front relative velocity.

## COMDECK IOUNITS

COMMON/UNITS/

COMMON/CUNITS/
INTEGER VARIABLES:
CARD:

IBFADD:
IBFADG:
IBFADR:
IBFLND:
IBFLNG: IBFLNR:
IDOUT
IGOUT:

IBFADD, IBFADG, IBFADR, IBFLND, IBFLNG, IBFLNR, IDOUT, IGOUT, IMOUT, IN, INLAB, INPROC, IODONE, IOERR, IOSKIP, IOUT, IRSTRT, ITTY, LCMCPD, NITTAB, NPWTAB

## CARD

Variable that contains the current input card in character format. Pointer to beginning of dump LCM buffer.
Pointer to beginning of graphics L.CM buffer.
Pointer to beginning of restart LCM buffer.
Length of dump buffer
Length of graphics buffer.
Length of restart buffer
I/O unit number for dump output file (currently set to unit 12)
$1 / 0$ unit number for graphics output file (currently set to unit 11).

IMOUT: $\quad$ : $/ 0$ unit number for warning messages (currently set to unit 7 )
IN:

INLAB: $\quad 1 / O$ unit number ior TRAC to generate a labeled input-data file.
INPROC: Flag used during input that indicates whether component data are being processed.
IODONE: Flag that indicates if the current input card has been read.
IOERR: Input error flag
IOSKIP: Flag that turns input processing off and on.
IOUT: $\quad 1 / 0$ unit number for printed output file (currently set to unit 5).
IRSTRT: $\quad 1 / 0$ unit number for restart input file (currently set to unit 13 ).
ITTY: $\quad 1 / 0$ unit number for terminal output (cיrrently set to unit 59).
LCMCPD: Storage for the beginning address for reading from or writing to LCM with calls to subroutines RDLCM and WRLCM.
NITTAB: Flag for printing the time-step data table heading label to the terminal ( -1 ) or message file $(-2)$ because a warning message(s) has been printed since the last table values were printed.
NPWTAB: $\quad$ Flag for printing the power/reactivity feedback table heading label to the message file (-1) because a warning message(s) has been printed since the last table values were printed.

## COMDECK ITERSTAT

```
COMMON/ISTAT/ VARERM, VERR
COMMON/ISTAT/ IOTT, NSTEP.OITNO
 REAL VARIABLES:
 VARERM: Maximum variable error.
 VERR: Velocity error at component junction.
 INTEGER VARIABLES:
```

    IOTT: Temporary storage for IITNO.
    NSTEP: Number of time steps taken.
    OITNO: Outer-iteration number
    INTEGER VARIABLES:
IMATCH: Counts the number of bad junction numbers detected during the network trace in SRTLP.
JPTR: Number of junction-component pairs.

## COMDECK LCMSPACE

COMMON/LCMSP/ ALCM
$\operatorname{ALCM}(1): \quad$ Dynamic LCM storage area.
COMDEこK MASK
COMMON/MASK/ MSK1, MSK2, MSK3, MSK4, MSK5, MSK6, MSK7, MSK8, MSK9, MSK11, MSK12 MSK13, MSK14, MSK15, MSK16, MSK17, MSK18, MSK19, MSK21, MSK22, MSK23, MSK24, MSK25, MSK26, MSK27, MSK28, MSK29, MSK31, MSK32, MSK33, MSK34, MSK35, MSK36, MSK37, MSK38, MSK39, MSK41, MSK42, MSK43

REAL VARIABLES:
MSK \#: Variable value having a 1 in bit \# and 0 in all other bits of the word.
COMDECK MASSCK
COMMON/MASSCK/ NSTABO
INTEGER VARIABLE:
NSTABO: Old value of NSTAB from the previous time step (NSTAB is a flag for evaluating the SETS3D equations).

## COMDECK MDFCOM

COMMON/MDFCOM/ ICLIST, INPT, INRST

DIMEA ION ICLIST(100)
INTEGER VARIABLES:
ICLIST: Component number list that is used during interactive deck modifications.

INPT: Unit number for the input-data file that is to be interactively modified.

INRST: Unit number for the restart input-data file, which contains interactively modified components.

## COMDECK MDTBL

## COMMON/MDTBL/ IDXENT, NIDXNT, VARENT

DIMENSION
IDXENT(20), VAKENT(600)

## INTEGER VARIABLES:

IDXENT An array of 16 character entries that holds the component type index for the NPA maste- dictionary table. Each entry contains the following

| CNAME | A8 | component type |
| :--- | :--- | :--- |
| NENT | 14 | number of entries for this component |
| DSPTR | 14 | pointer to the first entry for this component |

NIDXNT: An integer containing the number of entries in the master-dictionary table.
VARENT: An array of 160 character entries that holds the master-dictionary table. Each entry contains the following

| VNAME | A8 | variable name |
| :--- | :--- | :--- |
| UTYPE | A1 | use flag |
| VTYPE | A1 | variable type |
| VSIZE | 12 | variable size (characters/words) |
| NDIM | 14 | dimentionality |
| DVAL | 416 | maximum size of each dimension |
| DNAM | 4A12 | variable controlling size sf each sim usion |
| SVAL | 416 | stride of each dimension |
| SNAM | 4 A12 | variable controlling stride of eac.l dimension |

## COMDECK MELFLG

## COMMON/MELFLG/ MELTRC

INTEGER VARIABLE:
ITRC: Flag to indicate whether subroutine THERMO is called from TRAC components or MELVSL. Necesiary duc to differing convention on nixture properties.
$0=$ call is from MELVSL;
$1=$ call is from TRA .
COMDECK MEN:ORY

| COMMON/TIMER/ | ADATE, ATIME, CPUT, TIMCPU, TIMEI, TIM:DM, TIM, YS, |
| :--- | :--- |
|  | TIMTOT |
| COMMON/TIMER/ | NSTEPT |

REAL VARIABLES:
ADATE: Date utained frum a call to the system routine DATE.

ATIME: $\quad$ Time obtained from a call to the system routine DATE
CPUT: Cumslativ CPL time from previous jobs in a linked series of calculations: CPUT is set to 0.0 at time 0.0 .
TIMCPU: CPU time obtained from a call to the system routine TIMING.
TIMEI: me limit of the current job obtained from a call to the system routine GETJTL.
TIMIOM: $\quad 1 / O$ time obtained from a call to the system routine TIMING.
TII:'今YS: System time obtained from a call to the system routire TIMING.
TIMTOT: Total of CPU, I/O, and system times obtained from a call to the systam routine TIMING.
INTEGER VARIABLE:
NSTEPT: Storage for the cumulative number of time steps from previous jobs in a linked series of calculations; NSTEPT is set to 0 as time 0.0 .

## COMDECK NAVGN

COMAMON/NAVGN/ NAVGI
INTEGER VARIABLE:
NAVG1: Value defined to IDALPI in subroutine TF1DS when the interface is a junction connected to a BREAK component with flow into the BREAK.

COMDECK NMFAIL
COMMON/NMFAIL/ IFTP,ITFL1,NFL1, NFL3
INTEGER VARIABLES:
IFTP: Flag that prevrats * ermal failure messages if a message has come from TF1SD3 or +r3D.

ITFL1: Iteration number of the last TF1D\$3 failure.
NFL1: Total number of TF1DS3 failures in the current time step.
NFL3: Total number of FF3D failures in the cu:rent sime step.

## COMDECK NPA

[Nuclear Plant Analyzer (NPA) variables listed below currently are intended only for in-house Los Alamos use.]

| COMMON/NPA/ | CONNPA, DTDUMP, DTEDIT, DTNPA, SRATIO, TGEDIT, |
| :--- | :--- |
|  | TIMNPA, TPAUSE, TPDUMP, TRCNPA, TSTOP, VALNPA, |
|  | ZNAME |
| COMMON $/ N P A /$ | IACT, IFD, NACT, NFNPA, NPACOM, NTSNPA |

```
 DIMENSION NAPCOM(100), TIMNPA(100), VALNFA(100), ZNAME(6)
REAL VARIABLES:
 CONNPA: Hollerith data name for the NPA executive "master" program con-
 nected to the process-to-process (PTP) data path
 DTDUMP: Time edit, defined interactively by the the NPA user, between dump
 (restart) edits to file TRCDMP.
 D'FEDIT: Time interval, defined interactively by the NPA user, between large
 edits to file TRCOUT.
 DTNPA: Time error (0.1 s) allowed to implement an NPA user command before
 the user is prompted by the system to decide if a back-up procedure
 should be performed to implement the command action at the correct
 problem time.
 SRATIO: Maximum speed ratio of the problem time-step size to the computer
 time required to evaluate the time step.
TGEDIT: Problem time after wlich the next NPA user-defined graphics edit to
 file TRCGRF will occur.
 TIMNPA: Array that defines the problem time when a pending NPA user-defined
 action will be implemented
TPAUSE: Problem time when the next NPA user-defined pause in the TRAC
 calculation will occur.
TPDUMP: Problem time after which the next NPA user-defined dump (restart)
 edit to file TRCDMP will occur.
TRCNPA: Hollerith data name for the TRAC "slave" program connected to the
 PTP dsta path.
TSTOP: Problem time specified by the NPA user after which the TRAC cal-
 culation will terminate.
VALNFA: Array that defines the desired value of al 'A user-controlled action
 that is pending at time TIMNPPA.
ZNAVE: ray containing a Hollerith data message that communicates NPA
 user commands to TRAC or TRAC warning messages to the NPA
 executive program.
```

INTEGE ? VARIABLES:
IACT: Flag that is changed from 0 to 1 when an additional graphics edit and dump (restart) edit will be performed before an NPA uset-defined component-action adjustment is performed.
IFD: $\quad$ Number of PTP data paths.
NACT: Number of pending NPA user-defined commands stored in arrays TMMNPA, VALNPA, and NPACOM

NFNPA: Flag that is changed from 0 to 1 when file PTPDSK will not be destioyed at the end of the TRAC run.
NPACOM: Array that defines the component number to which a pending NPA user-defined action will be appl. I at time TIMNPA.
NTSNPA: Number of TRAC time steps (2) between TRAC status messages that are being sent to the NPA executive program.

## COMDECK NRCMP

COMMON/NRCMP/ NCMPMX, NHTSMN, NRCOMP
INTEGER VARIABLES:
NCMPMX: Maximum hydro component number.
NHTSMN: Minimum heat-structure component number
NRCOMP: Number of components defined from the TRCRST restart-diata file.
COMDECK OVLI
COMMON/OVLI ISTORE, JFLAG
INTEGER VARIABLES:
ISTORE Fointer variable for the A-array where unused memory storage starts.
JFLAG Flag which is set to 1 when an input-data error is encountered and TRAC is ts abort the calculation after all input data has been processed.

## COMDECK PMPSTB

COMMON/PMPSTB/ FWPA
COMMON/PMPSTB $\quad, 7 \mathrm{MPCN}$
REAL VARIABLE:
FWPA: Fraction 0.1 of the pesent donor-celled void fraction across the pumpimpeller interface that is averaged with the fraction ( $1.0-\mathrm{FWPA}=0.9$ ) of its previous void fraction average to define the void fraction for evaluating the PUMP HMD table.
INTEGER VARIABLE:
IPMPCN: Flag for not defining the donor-celled mixture density and void fraction across the pump-impeller interface

## -General Pointers-

COMMON/PTRS/
111111. LBD, LCNTL, LCOMPT, LCONTP, LCONTR, LDRA, LDRC, LICVS, LIITNO, LIJVS, LILCMP, LIOU, LISVF, LIVCON, LIVLJN, LJOUT, LJSEQ, LJUN, LLCMHS, LLCON, LLOODN, LMATB, LMCMSH, LMSCT, LNBK, LNJN, LNSIG, LNSIGP, LNVCNL, LORDER, LPRPTB, LPTBLN, LTITLE, LVSI, LWP

## -Network Solution Pointers-

COMMON/PTRS/ JAOL, JAOV, JDRA, JDRC, JDREL, JDREV, JDRL, JDRV, JN. JUN. JOD, LAOL, LAOU, LAOV, LDPVC, LDPVCV, LDREL, LDREV, LDRL, LDRV, LDVB, LIDPCV, LILPRB, LIVLFC, LIVLTO, LIVVTO, LOD, LVRH

## -Combination of Unshifted Pointers and Array Lengths-

COMMON/PTRS/
DIMENSION

LBVEC, LBW, LOMAT, LEMAT, LENFXD, LFXD, LRMAT, LV. MAT, LVSSC, LVSSIP, NCLEAR, NMAT, NVCELL, NZZZZZ

## GENERAL POINTERS:

111111
LBD:
LCNTL:
LCOMPT:
LCONTP:
LCONTR: Pointer to the location where the first parameter of constrained steady-state parameter data is stored in the $A$ array.
LDRA: Storage for right-hand side of the noncondensable (air) stabilizer mass equation.
LDRC: Pointers for network variables for the solute-tracking option.
LICVS: Pointer for a temporary array that contains a list of all VFSSEL composite-cell numbers that have a source connection to one of their cell faces.
LIITNO: Number of inner iterations during the last outer iteration for each component (in the order used for iteration).
LIJVS: Pointer for a temporary array that contains a list of all junction numbers that link to a VESSEL.

| LILCMP: | Component LCM pointeris stored in the order in which components |
| :--- | :--- |
| were read. |  |
| LIOU: | Network junction numbers for the junctions of all components exclud- |
| ing BREAKs and FILLs. |  |
|  | Pointer to an array of flags indicating whether or not a particular |
| component is used to evaluate one or more signal variables (-1, no |  |
| signal variable; +1, signal variable). This array uses the same order |  |
| in which the component data are processed. |  |


| LTITLE | Problem title and version information (stored using only the first four bytes of each word). |
| :---: | :---: |
| LVSI: | Junction flow reversal indicators in the order in which junctions occur in the junction-component array. |
| LWP: | Pointer for the composite location numbers of hydro cells coupled to a heat-structure component surface. |
| NETWORK SOLUTION POINTERS: |  |
| LAOL: | Variable to rework solution of ARL, AREL, and VLT (contains rework matrix). |
| LAOU: | Network junction coefficient matrix. |
| LAOV: | Variable to rework solution of ARV, AREV, ant VVT (contains rework ruatrix). |
| LDPVC: | Locator that shows the reginning of coefficients to evaluate the derivatives of junction velocities with respect to VESSEL pressures. |
| LDPVCV: | Pointer for reordered coupling coefficients between the VESSEL and the one-dimensional network solution. |
| LDREL | Storage for right-hand side of the liquid stabilizer equation. |
| LDREV: | Storage for right-hand side of the vapor stabilizer equation. |
| LDPL | Variable to rework solution of ARL and VLT (contains right-hand side of linear equations) |
| LDRV: | Variable to rework solution of ARV and VVT (contains right-hand side of linear equations). |
| LDVB | Storage for the right-hand side of the network junction equations or the changes in junction velocities. |
| LIDPCV: | Pointers to coefficients stored in DPCV. |
| LILPRB: | Pointer for the A array which defines if each hydro loop has VESSEL. predictor velocities coupled in different directions. |
| LIVLFC: | Pointer for the $A$ array which defines the face-connect number for all junction connections to VESSELs for a given hydro loop. |
| LIVLTO: | Pointer for the A array which defines the liquid tilde velocity at a source-connection junction to a VESSEL for a hydro loop. |
| LIVVTO: | Pointer for the A array which defines the vapor tilde velocity at a source-connection junction to a VESSEL for a hydro loop. |
| LOD: | Temporary storage for intercomponent coupling information. |
| LVRH: | Storage for explicit information to evaluate equations of motion at network junctions. |
| JAOL | Pointer for STGEN (steam-generator) internal-network solution matrix. |


| JAOV: | Pointer for STGEN (steam-generator) internal-network solution matrix. |
| :---: | :---: |
| JDRA: | Pointer for STGEN (steam-generator) internal-network solution vector. |
| JDRC: | Pointer for STGEN (steam-generator) inte-nal-network solution vector. |
| JDREL: | Pointer for STGFN (steam-generator) internal-network solution vector. |
| JDREV: | Network vector internal to the STGEN (steam generator). |
| JDRL: | Pointer for STGEN (steam-generator) internal-network solution vector. |
| JDRV | Pointer for STGEN (steam-generator) internal-network solution vector. |
| JNJUN: | Temporary storage location used to define the number of junctions in the current network solution procedure. |
| JOD | Pointer for STGEN (steam-generator) internal-network solution matrix. |

## COMBINATION OF UNSHIFTED POINTERS AND ARRAY LENGTHS:

L.BVEC: Pointer for storing in the $A$ array the capacitance-matrix equation right-hand-side vector
Number of element rows in the array that stores the VESSEL banded coefficient matrix.

LDMAT: Pointer for storing in the $A$ array the capacitance coefficient matrix
LEMAT: Pointer for storing in the $A$ array the E matrix of the capacitancematrix method.
LENFXD: Length of data that always remains in the SCM array A
LFXD:
-RMAT

LVMAT: VESSEL matrix storage for coarse-mesh reh alance or direct inversion
LVSSC: Right-hand side of equation associated with LVMAT
LVSSIP: Pivoting information for LVMAT
NCLEAR Number of values in the A (LVMAT) array storing the VESSEL banded coefficient matrix.

NMAT: Number of additional material-property tables provided by the user.
NVCELL: Total number of cells in all VESSELs
NZZ7Z7
Dummy integer that provides a known end to the COMMON block.

## COMDECK PSE

```
COMMON/PSE/ NPICMP, NPSE,NPSE1, NPSE3, NPSHTI, NPSIZ, NPSJ,
NPSK, NPSV1
```

INTEGER VARIABLES:
NPICMP: Component number in TF1DS if NSTEP $=$ NPSE1 and in HTIF if NSTEP $=$ NPSHTI that causes a pause.
NPSE: $\quad$ Pause in TRANS if NSTEP $=$ NPSE.
NPSE1: $\quad$ Pause in TF1DS if NSTEP $=$ NFSE1. The ceil number is NPSJ, and the component number is NPICMP.
NPSE3: Pause in TF3DS if NSTEP $=$ NPSE3. The cell index $K$ is NPSK, and the second level is NPSIZ.
NPSH TI: $\quad$ Pause in HTIF if NSTEP $=$ NPSHTI.
NPSIZ: $\quad$ Pause in TF3DS for each level if NSTEP $=$ NPSE3
NPSJ: $\quad$ Pause in TF1DS for each cell if NSTEP $=$ NPSE1
NPSK: Pause in TF3DS for each cell if NSTEP $=$ NPSE3
NPSV1: Pause in TF1DS1 if NSTEP $=$ NPSE1. The cell number is NPSJ, and the component number is NPICMP

## COMDECK Q8LDBK

## COMMON/Q8L.DBK/ IBLK

DIMENSION IBLK $(3,16)$
INTEGER VARIABLE:
1BLK: Array that stores code block information in a packed format |IBLK(1,*) is the code block label)

## COMDECK QEDMP

## COMMON/QEDMP/ <br> ATYPE, EXCHP

DIMENSION EXCHP(16)
REA: VARIABLES:
ATYPE: Constant 0 defined by subroutine ERRTRP.
EXCHP: Array containing system execution information at the point where an execution error was encountered.

## COMDECK REFHTI

REAL VARIABLES:
AGALP: Void fraction at the agitated section of inverted-annular flow
AGSZ: Elevation of the agitated section of inverted-annular flow.
CAFJ: Capillary number.
CHFALP: Void fraction at the CHF point.
CHFHV: Vapor heat transfer at CHF.
CHFZ: Elevation of CHF
DFALP: Void fraction at the highly dispersed section elevation
DFSZ:
RWALP:
Elevation of highly dispersed section of inverted-annular flow.
Void fraction of rough-wavy section elevation.
RWSZ:
SMALP:
SMSZ:
TBALP:
TBZ:
UNHF:
Elevation of rough-wavy section of inverted-annular flow.
Void fraction at the smooth section elevation.
Elevation of smooth section of inverted-annular flow.
Void fraction at transition-boiling point.
Elevation of transition b iling
Fraction of heated surface that is unheated

COMMON/FEFHTI2/ ALPTAL, ALPTAU, ALPTRL, ALPIRU, ALPTSL, ALPTSU REAL VARIABLES:

ALPTAL: Minimum void fraction ailowed for end of agitated-inverted flow regime.
ALPTAU: Maximum void fraction allowed for end of agitated-inverted flow regime
ALPTRL: Minimum void fraction allowed for end of rough-wavy-inverted flow regime.
ALPTRU: Maximum void fraction allowed for end of rough-wavy-inverted flow regime.
ALPTSL: Minimum void fraction allowed for end of smooth-inverted flow regime.
ALPTSU: Maximum void fraction allowed for end of smooth-inverted flow regime.

COMDECK RESTART
COMMON/RSTART/ DDATE, DDTIME
COMMON/RSTART/DLNFLT, DNCOMP, ICTRLR
DIMENSION ICTRLR(8)

REAL VARIABLES:

| DDATE: | Date restart file was created. |
| :--- | :--- |
| DDTIME: | Time restart file was created |

INTEGER VARIABLES:
DLNFLT Length of fixeo , h tables read from restart file.
DNCOMP: Number of components in the restart file.
ICTRLR(8): Array that contains buffering information about the restart file.

## COMDECK ROWS

## COMMON/ROWS/ ISCL

INTEGER VARIABLE:
15 Cl
Flag (when not 0 ) that has TRAC divide by the largest matrix element in each matrix row all 4 or 5 matrix elements and 3 right-hand-side elements in each row of the $4 \times 4$ or $5 \times 5$ outer-iteration mesh-cell matrix equation.

## COMDECK RSPARM

## COMMON/RSPARM/ <br> DTSTRT

## COMMO:N/RSPARM/ICDELT

REAL VAFIIABLE:
DTSTKT: Time step that can be forced as the initial time-step size at restart (default is -1.0 ).
INTEGER VARIABLE:
ICGELT: Variable that allows the selection of DELT at the beginning of a transient. ICDELT forces DELT to be the value of the dump regardless of whether the previous run was a steady state. When DTSTRT is nonzero, its value is used for the initial DELT. The default is zero.

## COMDECK SEFCB

COMMON/SEPCB/
ALPDRC, ALPSPC, DPSEFC
COMMON/SEPCB IDRYCB ISEPCB, ISTAGC, NCSEPC, NDRYRC, NSEPSC
REAL VARIABLES:
ALPDRC: Void fraction to be convected from dryer
ALPSPC: Separator void fraction.
OPSEPC: Separator pressure drop.

## INTEGER VARIABLES

| IDRYCB: | Dryer flag |
| :--- | :--- |
| ISEPCB: | Separator flag |
| ISTAGC: | Separator option type. |
| NCSEP: | Cell number for separator. |
| NDRYRC: | Cell number for dryer. |
| NSEPSC: | Number of separators modeled |

## COMDECK SIGNAL

COMMON/SIGNAL/
D:MENSION

## REAL VARIABLES

CPV.

DSV:

COMDECK SOLCON


COMDECK STDYERR
COMMON/SSCON/ CF, EPS, EPSPOW, FFLW, FMAX, MAXFLN, RPCF, RTWFP.

COMMON/SSCON DIMENSION

Tontrol-panel vector for storing the values of signal-yariable parameter numbers 1 through 6 for the global parameters and 7 through 15 for up to four coolant loops
Dummy signal-variable vector for storing the values of signal-variable parameter nu mbers 16 and 17 STIME,TPOWR
IPOVEL, IPOWR LOK, NCORES, NEF, NET, NOPOW $\operatorname{FMAX}(7), \operatorname{LOK}(7,2)$

REAL VARIABLES:

| CF: | Coolant mass flow through the reactor-core region. <br> EPS: |
| :--- | :--- |
| Tolerance on calculation time for editing and terminating the prob- |  |
| Iem. |  |
| EPSPOW: | Convergence criterion on the fractional change in liquid velocity per <br> second for s tting on the steady-state power when all reactor-core <br> inlet interfaces satisfy this criterion. |
| Fraction of the steady-state power level that the cuolant mass flow |  |
| through the core times RPCF defines. |  |

INTEGER VARIABLES:
IPOVEL: Number of reactor-core inlet interfaces that satisfy the EPSPOW criterion based on date-of-change of liguid velocity
IPOWR: Flag that turns on the steady-state power
LOK:
NCORES:
Array of locations of maximum normalized errors.

NEF:

NET: Number of time steps (5) between steady-state :onvergence checks.
NOPOW: Steady-state power flag.
$0=$ on ;
$1=$ off.

## COMDECK STNCOM

COMMON/STNCOM/ STNMAX, TMSTNU, TLDMIN, TMTLD
COMMON/STNCOM/ ISTNU, JSTNU, KSTNU, NSTNU, ITLDM, JTLDM, KTLDM, NTLDM

REAL VARIABLES:
STNMAX Largest Stanton number calculated in this calculation.

TLDMIN: The minimum licuid temperature (for any heat structure) when subcooled boiling begins based on the Saha-Zuber correlation.
TMTLD: Time when TLDMIN was found
TMSTNU: Time at which STNMAX was calculated.
INTEGER VARIABLES:
ISTNU: Three-dimensional r-cell number for which STNMAX was found.
ITLDM:
JSTNU:
JTLDM:
KSTNU: Three-dimensional $z$-level number for which STNMAX was found.
KTLDM: Unused variable.
NSTNU: Component number where STNMAX was calculated.
NTLDM: Component number where TLDMIN was found.

## COMDECK STRTNT

## COMMON/STRTNT/ FSTRL, FSTRV, SDTINT, STFLL, STFLU, STFVL, STFVU INTEGER VARIABLES:

SDTINT: Variable not used
FSTRL: Multiplier on the liquid velocity check for siratified flow in CELLA3.
FSTRU: Variable not used.
STFLL: Constants used to deiermine stratified-flow weighting factors
STFLU: Constants used to determine stratified-flow weighting factors.
STFVL: Variable not used
STFVU: Variable not used.
COMUECK SUPRES
COMMON/SUPRES/ S
REAL VARIABLE:
S: Factor in nucleate boiling heat-transfer coefficient evaluation in CHEN

## COMDECK SYSSUM

COMMON/SYSSUM/ ALQCOR, ALQPRZ, ALQUP, CORWM, PMX, TLMX, TLNCOR, TSHCOR, TSNCOR, TVMX, VOLCOR, XLQCOR, XTSHCR
COMMON/SYSSUM JPMX, JTLMX, JTVMX, NPMXX, NTLMX, NTVMX

REA! VARIABLES:
ALQCOR: Core-region mean liquid fraction.
ALQPRZ: PRIZER (pressurizer) mean liquid fraction.
ALQUP: Upper-plenum mean liquid fraction. (Calculated only for threedimensional VESSELs.)
CORWM: Core-region water mass.
PMX: Maximum pressure.
TLMX: Maximum liquid temperature.
TLNCOR: Core-region mean liquid temperasure.
TSHCOR: Core region mean super heat.
TSNCOR: Core-region mean saturation temperature.
TVMX: Maximum vapor temperature.
VOLCOR: Core-region volume.
XLQCOR: Minimum core-region liquid fraction.
XTSHCR: Maximum core-region super heat.
INTEGER VARIABLES:
JPMX: Cell number for the maximum pressure.
JTLMX: Cell number for the maxirnum liquid temperature.
JTVMX: Cell number for the maximum vapor temperature.
NPMX: Component number for the maximum pressure.
NTLMX: Component number for the maximum liquid temperature.
NTVMX: Component number for the maximum vapor temperature.

## COMDETK TF3DC

INSCT, 12, KABSC, KCMSH, KL, KLEV, KU, KVEL1, KVEL2, KVEL3, ORG

## INTEGER VARIABLES:

INSCT: Variable used to obtain a displacement into network arrays involving VESSEL junctions when there is more than one VESSEL.
IZ: VESSEL level number currently being used.
KABSO: Storage offset to obtain an absolute call number when multiple VES. SELs are used.
KCMSH Offet for coarse-mesh indexing with multiple VESSELs.
KL: $\quad$ Displacement of level $(I Z-1)$ from level (IZ) in A-array storage for the VESSEL three-dimensional data array.
KLEV: VESSEL component axial-direction $K$ index |the axial-level number IZ plus NZBCM (two lower pseudo-cell levels)]


KU: Displacement of level ( $1 Z+1$ ) from level (IZ) in $A$-array storage for the VESSEL three-dimensional data array.
KVEL1: Order of the $x$ - or $r$-direction stabilizer motion-equation matrix for the present VESSEL component.
KVEL2: Order of the $y$ - or $\theta$-direction stabilizer motion-equation maxtix for the present VESSEL component.
KVEL3: Order of the $z$-direction stabilizer motion-equation matrix for the present VESSEL component.
ORG: $\quad$ Starting location of the three-dimensional VESSEL component iZ level data in the $A$ array.

## COMDECK THERM

$$
\begin{aligned}
& \text { COMMON/THERM/ } \\
& \text { ATC, ATW, AW, CKW, DIATC, NTC, VTC } \\
& \text { COMMON/THERM/ } \\
& \text { REAL VARIABLES: } \\
& \text { ATC: Area per unit length of thermocouple. } \\
& \text { ATW: Thickness of ROD or SLAB element to thermocouple weld. } \\
& \text { AW: Area of ROD or SLAB element to thermocouple weld. } \\
& \text { CKW: } \\
& \text { ROD or SLAB element to thermocouple weld thermal conductivity. } \\
& \text { DIATC: Diameter of thermocouple. } \\
& \text { NTC: Number of thermocouples per ROD or SLAB element. } \\
& \text { VTC: Volume per unit length of thermucouple. } \\
& \text { INTEGER VARIABLE: } \\
& \text { ITTC: Thermocouple flag } \\
& 0=\text { no thermocouple on heat-structure RCD of SLAB element; } \\
& 1=\text { thermocouple present on heat-structure ROD or SLAB element. }
\end{aligned}
$$

## COMDECK THERMV

COMMON/THERMV/ IEND3, ISTRT3, NDIMV1, NIXN:」 NVTHM
INTEGER VARIABLES:
IEND3: Last calculation cell number (ICX) in the VESSEL component $x$ - or $r$-direction.
ISTRT3: First calculation cell number (ICO) in the VESSEL component $x$ - or t-direction.
NDIMV1: NVTHM times the cotal number of $\gamma$ - or $r$-direction calculation plus pseudo cells dimenrioned for.

NIXNJ: $\quad$ NDIMV1 times the total number of $y$ - or $\theta$-direction calculation plus pseudo cells dimensioned for
NVTHM: Namber of different array parameters in the EQUIV common block for a VESSEL component

## COMDECK TMP

COMMON/TMP /

COMMON/TMP/
DIMENSION

## DIMENSION

REAL VARIABLES
AFLUX:
ARLCK:
ARVCK:
S2A:
S2B:
S2C:
S2D:

S3A:
S3B:

S3C:

S3D

XVOLL:

AFLUX, ARLCK, ARVCK, S2A, S2B, S2C, S2D, S3A, S3B, S3C, S3D, S5A, STDER, STPRS, XVOLL, XVOLV

LIFEQ
AFLUX(NK), ARLCK(NK), ARVCK(NK), S2A(NK), S2B(NK), S2C(NK), S2D(NK), S3A(NK), S3B(NK), S3C(NK), S3D(NK), S5A(NK), STDER(NK), STPRS(NK), XVOLL(NK), XVOLV (NK)

LIFEQ(NK)

S5A: Vectorization mask factor for defining the noncondensable-gas mass equation.
STDER: $\quad$ Derivative of the saturation temperature with respect to the total
pressure based on the saturation temperature and saturation pres-
Derivative of the saturation temperature with respect to the total
pressure based on the saturation temperature and saturation pressure.
STPRS: Saturation pressyre based on the liquid temperature.
Net air mass flow into the NK-NZBCM level mesh cell.
Net liquid mass flow into the NK-NZBCM level mesh cell. Net vapor mass flow into the NK-NZBCM level mesh cell.
Vectorization mask factor for defining the vapor mass equation
Vectorization mask factor for defining void fraction equal to 1.0.
Vectorization mask factor for defining void fraction equal to 0.0 .
Vectorization mask factor for defining the vapor pressure equal to the saturation pressure based on the vapor iemperature.
Vecto:ization mask facto for defining the vapor energy equation.
Vectsrization mask fartor for defining the liquid temperature equal to the vapor temperat re
Vectorization mask factor for defining the liquid temperature equal to the saturation temperature based on the vapor pressure.
Vectorization mark factor for defining the vapor temperature equal to the saturation temperature based on the vaper pressure.

Fluid volume (NSTAB $=0$ ) or fluid , 'ume ninus liquid volume outflow dunag the time step ( $N S T A B=1$ ) in the NK-NZBCM level mesh cell.

XVOLV: $\quad$ Fluid volume (NSTAB $=0$ ) of fluid volume minus vapor volume outHow during the time step (NSTAB $=1$ ) in the NK-NZBCM level mesh celi.
LOGICAL VARIABLE:
LIFEQ: Fluid-phase flag which is false when two-phase fluid may become single phase. If this flag is false on the second pass through the linearization, the cell will be relinearized.

COMDECK TOTALS
COMMON/TOTALS/ TLEN. TVOL
REAL VARIABLES:
TLEN: Total length of a component section
TVOL: Total volume of a component section.

## COMDECK TSATCN

```
COMMON/TSATCN/ AEOS14.CEOS1, CEOS2, CEOS3, CEUSLP
```

COMMON/TSATCN/ IGAS,ILIQ

DIMENSION CEOSLP(40)
REAL VARIABIES:
AEOS14: Constant in expression for saturation temperature calculation at intermediate pressures; defined in subroutine THERMO.
CEOS1: Constant in expression for saturation temperature calculation at intermediate pressures; defined in subroutine THE 9 MO
CEOS2: Constant in expression for saturation temperature calc ilatior, at intermediate pressures; defines in subroutine THEPMO
CEOS3: Constant in expression for saturation temperature calculation at intermediaie pressures; defined in subroutine THERMO.
CEOSLP: Equation-of-state array for low pressures; defined in subroutine SETEOS.

INTEGER VARIABLES:
IGAS: Noncondensable-gas type.
$1=$ ait:
$2=$ hydrogen:
$3=$ helium.
ILIQ: Condensable-fluid type (variable not used)

COMMON/TST3D/CCIF, IID, NIFHT, NIFSH, NOBOIL, NOIMP, NWSH
INTEGER VARIABLES:
CCIF: Namelist variable defining the constani value for the interfacial-drag coefficient when NIFSH $=1$.
11D: Fiag to convert mean mass and vapor mass equations to vapor mass and liecuid mass equations for evaluation by subroutine TF3DS.

NIHHT: Flag for defining a constant 10.0 value to the ALVE, CHTI, ALV, and CHTIA evaporation and condensation coefficients.
NIFSH: Interfaciai-drag (shear) option flag and namelist variable.
NOBOIL: $\quad$ Flag for not evaluating evaporation and condensation when IEO $=0$.
NOIMP: Fidg for not evaluating the $\frac{f a \rho}{\partial t}$ term in the motion equation.
NWSH: Flag for defining the vapor-gas FRIC by if vapor-gas-field value rather than the liquid-field value.

## COMDECK TWCSTEP

```
COMMMON/TWOSTP/ NPSFE, NPSME, NTSPRN
```


## INTEGER VARIABLES:

NPSFE: Pause in FEMOM and CIF 3 if NSTEP $=$ NPSFE. The cell number is NPS) or the level number is NPSIZ, and the component number is NPICMP.
NPSME: Pause in STBME and STBMPL if NSTEP = , WFSME. The cell number is NPSJ and the component number is NPICMP.
NTSPXN: Flag for printing extra thermal-hydraylic parameter i.formation to TRCOUT.

## COMDECK VCKDA?

COMMON/VCKDAT/ DONTOL
COMMON/VCKDAT/ IPRVCK, ISKIP, ITVKMX
REAL VARIABLE:
DONTOL: Toler nce for density difference requiring re-donor-celling in the VESSEL.

## INTEGER VARIABLES:

IPRVCK: Flag to print information about re donor-celling in the VESSEL (normally set to 0 for no print)
ISKIP: Flag to skip re-donor-cell logi- in VESSEL component (normally set to 0 for no skip). Maximum iteration count to check for need to re-donor-cell in VESSEL.

## COMDECK VDVMOD

COMMON/VDVMOD/ IVDVS1, IVDVS2
INTEGER VARIABLES:

| IVDVS1: | Flag for scaling $V \Delta V$ terms. |
| :--- | :--- |
|  | $0=$ no scaling: |
|  | $1=$ scaling occurs. |
| IVDVS2: | Flag for scaling $\beta V \Delta V$ ierms. |
|  | $0=$ no scaling: |
|  | $1=$ scaling occurs. |

## COMDECK VELLIM

## COMMON/VELLIM/ COMMON/VELLIM/ DFLLE, DFLUB, DFVLB, DFVUB, VLLB, VLUB, VVLB, VVUB

 REAL VARIABLESDFLLB: Derivative of the pump-impeller interface liquid velocity (at its lower limit) with respect to total pressure.
DFLUB: Derivative of the pump-impeller interface liquid velocity (at its upper limit) with respect to to ad pressure.
DFVLB: Derivative of the pump-impeller interface vapor velocity (at its lower limit) with respect to total pressure
DFVUB Derivative of the pump-impeller interface vapor velocity (at its upper limit) with respect to total pressure.
VLLB: Pump-impeller interface liquid velocity lower-limit value
VLUB: Pump-impeller interface liquid velocity upper-limit value.
VVLB: Pump-impeller interface vapor velocity lower-limit value.
VVUB: $\quad D_{u m p}$-impeller interface vapor velocity upper-limit value.
INTEGER VARIABLE:
JVLIM: $\quad$ For PUMP type IPMPTY $=0$, the pump-impeller interface number (JVLIM =2) when the PUMP component-action table defines the fluid velocity.

## COMDECK WEBNUM

ALVFCP, ALVFCS, BMIN, CHTFCP, CHTFCS, "HTIBC, CHTIBH, CNDFC, DMIN, PENTL, PENTU, VLSPR, VVLOW, VVUP, WEB, WED, WEDU
APPENDIX D ..... D-65

## COMMON/WEBNUM/ ICHVOL

REAL VARIABLES:

| ALVFCP: | Multiplier on ALV for low-velocity vertical components. |
| :---: | :---: |
| ALVFCS: | Multiplier on ALV under spray conditions. |
| BMIN: | Minimum allowed bubble size. |
| CHTFCP: | Multiplier on CHTI for low-velocity vertical components. |
| CHTFCS: | Multiplier on CHTI under spray conditions. |
| CHTIBC: | Vapor-bubble interfacial HTC when TV > TSAT. |
| CHTIBH: | Vapor-bubble interfacial iTC when TV < . SAT. |
| CNDFC: | Condensation-rate scaling factor. |
| DMIN: | Minimum allowed drop size. |
| PENTL: | Lower bound on entrained void fraction $\alpha$. |
| PENTU: | Upper bound on entrained void fraction $\alpha$. |
| VLSPR: | Lower linuit on the quantity $(1-\alpha) \mathrm{V}_{\ell}$ at the top of the cell above which spray condition is assumed to exist. |
| VVLOW: | Lower limit on vapor velocity for special condensation model for lowvelocity vertical components. |
| VVUP | Upper limit on vapor velocity for special condensation modei for luwvelocity vertical components. Note: For liquid velocity groater than VLUP, the regular condensation model is used. For liquid velocity less than VLLCW, the special condensation model is used. For liquid velocity between VLLOW and VLUP, a linear inte;polation between the two models is used |
| WEB | Bubble Weber number. |
| WED | Droplet Weber number. |
| WEDU: | Droplet Weber number during core-region upflow (not implemented). |
| INTEGER VARIABLE: |  |
| ICHVOL: | Fiag that invokes a minimum value on the interface HTC <br> $0=$ has no effect, normal; <br> $1=$ sets the minimum to the cell volume times $1.0 \times 10^{7}$ |

COMDECK XVOL

| COMMON/XVOL/ | BGSS, DAWL, DAXVL, DAXVU, DGSS, FREV |
| :--- | :--- |
| COMMON/AVOL/ | IFVT, IFVTU, LDAX |

REAL VARIABLES
BGSS Limits on special void-fraction prediction logic
DAWL: Weighting factors in special TF1DS flux logic

| DAXVL: | Lower-velocity limit on special TF1DS flux logic. |
| :--- | :--- |
| DAXVU: | Upper-velocity limit on special TF1DS flux logic. |
| DGSS: | Limits on special void-fraction prediction logic. |
| FREV: | Sensitivity level for reiteration on flow reversal. |
| INTEGER VARIABLES: |  |


| IFVT: | Flag for setting velocities passed to TF1DS for special flux logic. |
| :--- | :--- |
| IFVTU: | Time-of-velocity controller. |
|  | $0=$ the XVSET logic uses the old-;ime velocity; |
|  | $1=$ the XVSET Ingic uses the the new-time velocity. |
| LDAX: | Bypass switches on special TF1DC flux logic. |

## APPENDIX E

## EXAMPLE UPDATE

*ident upidptr
*/ This is an example update showing how to add a pointer common
*/ te all 1-D components. The new pointers added in this update
*/ are

* LDNEW - new old-time dualpt pointer for the new old-time
*/ variable DNEW.
*/ LDNEWN - new new-time dualpt pointer for the new new-time
*/ variable DNEWN.
*/ LHzNEW - new hydropt pointer for the new hyarodynamic variable
*/ HYNEW.
*/ LHTNEW - new heatpt pointer for the new heat transfer variable
*/ HTNEW.
*/ LINEW - new intpt pointer for the new integer variable INEW.
*/
*/ This update also includes the necessary coding to add a generalized
*/ heat transfer variable to the steam generator (which does not use
*/ the heat transfer pointers in HEATPT).
*/ LHTNWG - new generalized heat transfel pointer for the new heat transfer variable HTNWG used by the steam generator
*/ instead of the variable HTNEW.
*/
*/ Wherever possible, changed lines of coding are commented out, rather
*/ than simply deleted in this example update. This is done to allow
*/ the user clearer picture of what is being changed. This update
*/ was jenerated from version 5.3.
*/
$* 1$
*/
*/ Add new old-time, new-time variable pointers to DUALPT comdeck.
*/
*delete dualpt. 9 dualpt
c * Id , 1dn , lea ,lean ,lel ,
* Id , Idn , Idnew, Idnewn,1ea ,lean , Lel
*/
*/ Add new heat calculation variable pointers to HENIPPT condeck.
*/
*delete heatpt. 3
heatpt
c * lemis, hhol, lhov , Irn , 1 n 2 ,
* Lemis, thot , Lhov, thtnew, 1rn , Irn2 ,
$* /$
*/ Add new hydrodynamic calculation variable p.inters to HYDRO comdeck.


## APFENDIXE

```
*/
*delet e hydropt.9
c * Ihla ,1hlatw,1hva ,lhvatw,1qp3r,
 * Ihla , 2hlatw, Ihva , Ihvatw, Ihynew,1qp3f,
*/
*/ Add new integer variable pointers to INTPT comdeck.
*/
*delete intpt.2
intpt
e common/ptab/ 2idr ,1matid,2nff ,11cofl
 common/ptab/ lidr ,linew, lmatid,2nff ,1lccfl
*/
*/ Initialize newly added pointers in subroutine SiDPTR. Increment
*/ LENPTR by one for each pointer added in the appropriate section
*/ of SIDPTR. Adjust the length of the pointer initialized directly
*/ after each of the new pointers added to reflect correct lengths.
*/
*delete s1dptr. 37
c iea = = 1d(3) + 0
 ldnew = 2d(3) + 0
 lea = ldnew + nfaces
*delete sldptr,87 sidptr
c lean = 1dn(3) + 0
 1dnewfi = ldr (3) + 0
 lean m ldnewn + nfaces
*delete 31dptr.220 s1dptr
c lenptr = 80
 lenptr = 82
* delete s1dptr.192,s1dptr. }19
sidptr
c Inxt = lregnm + nfaces
c lenptr = lenptr + 63
 lhynew = Iregnm + nfaces
 Inxt * lhynew + nfaces
 lenptr = lenptr + 64
*delete s1dptr,213,s1dptr,2:4
sldptr
c lnxt = llecfl + nfaces
c lenptr = lenotr + 4
 11new = 1lccfl + nfaces
 lnxt m new + ncells
 lenptr * lenptr + 5
 *delete s1dptr.233,s1dptr.235
 sldptr
 c Inxt = ltov + ncells
 lhtnew = ltov + ncells
 lnxt = 1htnew + ncells
 100 continue
```

```
c lenptr = lenptr + 12
 lenptr = lenptr + 23
*/
*/ Set up graphics catalogs for variables to be graphed.
*/
*insert igcomp.20 igcomp
*call holerith
*insert igcomp.85
 call griput (1comp, 2,0,1 dnewn, ncel1s+1,1,
 1 'new dualpt pointer','dnew')
 call grfput (icomp, 2,0,1hynew, ncel1s+1,1,
 1 'new hydropt pointer', 'hynew')
 if (type,ne, stgenh) then
 cal1 greput (icomp, 2,0,1htnew, ncells,2,
 1. 'new heatpt pointer' ', htnew')
 end it
*/
*/Write the variables to be dumped to the dunp/restart file.
*/ Incroment LEDGE and LCNTR by the number of cell-edge and
*/ cell-center variables being dumped, respectively,
*/
* delete dcomp. 31, dcomp.32
 doomp
c Lventr=25
c Lvedge=13
 1vent }=2
 Ivedge=15
 if (type, ne, stgenh) Iventrmiventz+1
*insert dcomp. }13
 dcomp
 call bfout (a (ldnewn), ncellt+1, letrld)
 call bfout (a (lhynew), ncellt+1, ictrld)
 if (type, ne, stgenh) then
 call bfout (a (ahtnew), ncellt, ictrld)
 endif
 cald bioout (a (12new), ncellt,1ctrld)
*/
*/ Read in new variables from the dump/restart ilie in the same
*/ order that they were written.
*/
*Insert recomp.64 recomp
 cal1 bfin(a (bump+1dnewn), ncel1s+1,ictrlr)
 call bfin(a (bump+1hynew), ncells+1, ictrin)
 If (type,ne. stgenh) then
 cal1 bfin(a (bump+1ht new),ncel1s,ictr1r)
 endif
```

```
 call bfin(a (bump+linew), ncel2s,ictrix)
```

*/
*/ Assuming that dnew, dnewn, and hynew are all calculated in FEMOM,
*/ add them to the argument list of FEMOM, add dimension statements
*/ in FEMOM, and perform thedr calculation.
*/
*elete femom. 6 femom
c 4 tssn,siqm,gau, rard, rarv, nff,tchf,lecfl)
4 tssn, sigm, gam, rard, rarv, nff, tchf, lcefl,
5 dnew, dnewn, hynew)
*delete femom. 130

## femom

c $6 \operatorname{tssn}(1), \operatorname{sigm}(1), \operatorname{gan}(1), \operatorname{rax} 1(1), \operatorname{rarv}(1), \operatorname{nff}(1), \operatorname{tch} f(1), 1 \cos 1(1)$
$6 \operatorname{tssn}(1), \operatorname{sigm}(1), \operatorname{gam}(1), \operatorname{rar}(1), \operatorname{rarv}(1), \operatorname{nff}(1), \operatorname{tch} f(1), 1 \operatorname{ccf}(1)$,
7 dnew (1), dnewn (2), hynew (1)
*insert femom. 168 femom
c stick in some values for dnew, dnewn, and hynew
$c$
do 1 j jstart, nop
dnew $(j)=1.0$
dnewn $(j)=2.0$
hynew $(j)=3.0$
1 continue
0
*/
*/ Also change ail call statements to FEMOM to include dnew, dnewn
*/ and hynew in the argument $21 s t$.
*)
*dedete preper. 209 preper
c $\quad 7 \mathrm{a}(1$ rard), a(1rarv), a(lnff),tchf,a(1lccfl))
7 a(2rarl), a(lrarv), a(lnff),tchf,a(2lccfl),
8 a (1 dnew), b(1dnewn), a (1hynew))
*/
*/ Similarly, assuming that htnew and inew are calculated in subroutine
*/ CYLHT, add them to the argument isst of CYLHT, add dimension
*/ statements in CYLHT, and perform tiair calculation.
*/
*delete cydht. 4 cylht
c $2 \mathrm{dt}, 18 \mathrm{sty}$, पp 3 f )
2dt, istdy, $\operatorname{qp} 3 f$, ht new, inew)

* delete cylht. 18
cylht
c 4 gppp (nodes, ncel1s), qp3f (ncel1s)
4 वppp (nodes, ncel1s), qp 3f (ncel2s), htnew (ncel1s), inew (ncells)
*insert cylht. 20
cylht
c perform the calculation of htnew and inew.

```
C
 do 1 }y=1\mathrm{ , ncel1s
 htnew(y) = 4.0
 inew(j) = 5
 1 continue
c
*/
*/ Also change all call statements to CyLHT to include htnew and inew
*/ An the argument list.
*/
*delete poster.115 postez
c 6 ncelis,deltht, istay, a (1 qp 3f+istml))
 6 nce11s,de1tht,istdy, e(1qp3f+1stm1),
 7 s(2htnew+istm2), a(1inew+istm1))
* delete stgn3x,41 stgn3x
c * a(1dum2), nds, ndin1, 2, deltht, istdy, a (2qp 3f+11))
 * a(1dum2),nds,ndm2,1, deltht,istdy, a (1Gp?f+11),
 * a (1htriwg+iml),a(linew+im1))
*/
*/ Add the special qeneralized heat calculation pointer for the
*/ steam generator component to its can pointer table. (Since
*/ the steam generator pointer table does\mp@subsup{2}{}{\prime}t include comdeck HEATPT.)
*/
*delete stgenpt. }1
 stgenpt
c * lcpwg, 1cwg ,1drg ,lemsg,1idgi,
 * Ihtnwg,1cpwg, 1cwg ,1drg ,Iemsg, 1idgi,
*/
*/ Initialize the special generalized heat caloulation pointer for
*/ the steam generator component in it's own read and restart routines.
*/
*delete xstgen.166 Istgen
c lopwg = Inxt
 Intnwg= inxt
 Icpwg = Ihtnwg + nght
*delete rstyen.201 rstgen
c lenptr = lenptr + 34
 lenptr = 1enptr + 35
* delete restgn.90
restgn
c lopwg = Inxt
 Intnwg = lnxt
 lopwg = Intnwg + nglit
*delete restgn. }12
restgn
```

```
c lenptr e lenptr + 34
```

c lenptr e lenptr + 34
lenptr = ?enptr + 35

```
 lenptr = ?enptr + 35
```

```
*/
*/ Set up the graphics calalog for the steam generator's special
*/ generalized heat calculation pointer.
*/
*insert igstgn.50 igstgn
 call grfput (icomp, 2, 0, 2htnwg,nght, 2,
 * 'new stgen gen, heatpt pointer','htnwg')
*/
*/ Increase LEXTRA by the length of the steam generator's new
*/ generalized heat calculation pointer.
*/
 Celete istgen.72 istgen
 lextra = nght*(24+3*nodmx+ndm1) + 10*nscmp
 lextra = nght*(15+3*nodmx+ndml) + 10*nscmp
*/
*/ Write the steam generator's now heat calculation
*/ pointer to the dump/restart file.
*/
*insert dstgen.50
dstgen
 call bfout (a (1htnwg), nght, ictrid)
*/
*/ Read in the steam generator's new heat calculation pointer
*/ from the restart file in the same order that it was dumped.
*/
*Insert restgn.294 restgn
 call bfin(a (1htnwg), nght, ictrlr)
 call warray ('htnwg', a (lhtnwg),nght)
```


## APPENDIX F

## GRAPHICS VARIABLES

This appenvix lists the variables that are written to the grawhics (TRCGRF) file. Subroutine IGRAF controls the writing of the graphics catalog and writes the first graphics edit; subroutine GRAF reads the graphics catalog and vrites the subse quent graphics edits for each graphics time-step edit. Those variables that contain the parentretical "first edit only" do not vary with time and appear in only the first graphics edit.

The variables are listed by subroutine rather than component to prevent multiple listings of the variables in subroutine IGCOMP. The format of the appelidix makes it easy to determine all possible variables for a given component while still makirg it clear which variables apply to particular components. Because the exact variables available from a given calculation are dependent on options and input parameters. we have not maintained the sequence of the variables, but we have alphabetized the variabies for ease of reference. We have provided definitions, and as appropriate, the corresponding units. This listing is generated for TRACPF1/MOD2 (version 5.4).

## F.1. GENERAL VARIABLES

The general variables apply to the overall calculation as opposed to specific components or cells srithin a component; subroutine IGRAF creates the graphics catalog for these variables.

## Variable

CPUTOT 1
DELT 1
DPFMAX 1

DTLMAX 1

DTVMAX 1

## TIMET 1

TNSTEP 1

## Description

Total CPU time (s) since time 0.0 s in the calculation.
Time-step size ( s ).
Maximum fractional pressure change over the current time step, o parameter used in the time-step-control logic.
inaximum liquid-temperature change $(K)$ over the current time step, a parameter used in the time-step-control logic.

Maximum vapor-temperature change ( $K$ ) over the current time step, a parameter used in the time-step-control logic.

Transient time (s) in the calculation.
Total number of time steps since time 0.0 s in the calculation.

## F.2. SIGNKL-VARIAGLE AND CJNTROL-BLOCK OUTPUTS

Subroutine IGSVCB creates the graphics catalog for all of the signal variables and control blocks specified in the input (including those from the restart dump). Subroutine IGSVCB first loops over all of the signal variables in the order of increasing magnitude of the: If numbers and similarly loops over all of the control blocks. The quantity ultimately written to the graphics file is the value of each signal variable and the output value from each control

Lu at the current time step; as such, the quantities in the graphics file are user-specified e uniss depend on that specification.

## Variable

SV

CB

Dimension
1

1

## Description

Signal-variable data; although the dimension of each is 1. there are NTSV of them.

Control-block output; although the dimension of each is 1, there are NTCB of them.

## F.3. GENERAL ONE-DIMENSIONAL COM. ONENT GRAPHICS

Subroutine IGCOMP writes the graphics catalog fo variables that are common to all of the one-dimensional components (ACCUM, PIPE, PR ${ }^{-7}$. R . PUMP, STGEN, TEE, TURB, and VALVE). For STGEN and TEE, the dimension of phantom cells, which are required to arcount for the : : includes necessary space for cells. In some cases, whether a variable ... dite depencs on user-specified options in the TRAC input file (TRACIN). Also, the STGEN component does not use IGCOMP to edit heat-transfer-related data.

| Variable | Dimension | Description |
| :---: | :---: | :---: |
| ALPHA | NCELLT | Cell vapor fractions. |
| ALV | NCELLT | Cell-flis ning interfacial heat-transfet coefficients (Viv . K-1) [area $1 \cdot$ Ided in]. |
| ALVE | NCELLT | Cell i pid-sije interfacial heat-transfer coefficients (W. K- ${ }^{-1}$ ) [area folded in]. |
| AM | NCELLT | Cell n -nconuansable-gas masses (kg). |
| CHTI | NCELLT | Cell vapor-side interfacial heat-transfer coefficients (W K $\mathrm{K}^{-1}$ ) [area folded in). |
| CHTIA | NCELLT | Cell nonconc ensable-gas interfacial heat-transfer mufficients (W. $\mathrm{K}^{-1}$ ) [area folded in]. |
| CIF | NCELLT+1 | Cell-intrrface interfacial-drag coefficients ( $\mathrm{k}_{\mathrm{y}},,^{-6}$ ). |
| CONC | NCEI LT | Cell dissolved-solute concentrations $\left[\mathrm{kg} \cdot\left(\mathrm{kg}\right.\right.$-liquid) $\left.{ }^{-1}\right]$. |
| DX | NCéllt | Cell lengths ( m ) [first edit only]. |
| FA | NCELLT+1 | Cell-interface flow areas ( $\mathrm{m}^{2}$ ) [first edit only]. |
| FF | NCELLS +1 | Cell-interface friction factors. |
| HL | NCELLT | Cell-wall liquid heat-transfer coefficients ( W. . $\mathrm{m}^{-2} . \mathrm{K}^{-1}$ ). |
| HV | NCELLT | Cell-wall vapor heat-transfer coefficients (W. $\mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ). |
| 1D | 1 | User-specified component ID number (first edit only). |


| IDR | NCELLT | Cell-wall heat-transfer regimes. |
| :---: | :---: | :---: |
| MFLOW | NCELLT+1 | Cell-interface mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| NCELLT | 1 | Total number of cells, including phantom cells (first edit only). |
| NUM | 1 | Component number (first edit only). |
| P | NCELLT | Cell pressures ( Pa ). |
| PA | NCELLT | Cell noncondensable-gas partial pressures ( Pa ). |
| REGNM | NCE' ' $T+1$ | Cell-interface flow regime numbers. |
| RHOL | NCELL: | Cell liquid densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| RHOM | NCELLT | Cell mixture densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| RHOV | NCELLT | Cell vapor densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| ROAN | NCELLT | Cell nencondensable-gas densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| SOLID | NCELLT | Cell plated-solute mass/cell fluid volume ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| T!. | NCELLT | Cell liquid temperatures ( $K$ ). |
| TSAT | ALELLT | Cell saturation temperatures ( $K$ ) based on pressures. |
| TSSN | NCELLT | Cell saturation temperatures ( $K$ ) hased on steam partial pressures. |
| TV | NCELLTT | Cell vapo: tamperatures ( $K$ ). |
| TW | NODES*NCELLT | Cell-wall node temperatures ( $K$ ) in the order from node 1 to NODES for cell 1, node 1 to NODES for cell 2, etc. |
| TYPE | 1 | Component type (îrst edit only). |
| VL | NCELLT + 1 | Cell-interface liquid velocities ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ). |
| VMFR | NCELLT +1 | Cell-interface vapor mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| VOL | NCELLT | Cell volumes ( $\mathrm{m}^{3}$ ) [first edit only]. |
| VV | NCELLT +1 | Cell-interface vapor velocities ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ) |

## F.3.1. ACCUM Component Graphics

In addition to a call to IGCOMP, subroutine IGACUM writes to the graphics catalog variables specific to the ACCUM component.

| Variable Dimension | Description |
| :--- | :--- | :--- |
| HEIGHT 1 | Water level ( m ) in the ACCUM component (assumes the <br> component is vertically oriented with cell 1 at the tof) |
| HTLSCl 1 | Inside heat loss (W) for the ACCUM slabs. |


| HTLSCO 1 | Outside heat loss $(W)$ for the ACCUM slabs. <br> VFLOW <br> Volumetric flow $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)$ at the exit (interface <br> NCELLS +1$)$ |
| :--- | :--- | :--- |
| VLOSS 1 | Liquid volume discharged $\left(\mathrm{m}^{3}\right)$ at the exit (interfac <br> NCELLS +1$).$ |

## F.3.2. BREAK Component Graphics

Subroutine IGBRAK writes the entire graphics catalog for the BREAK component.

| Variable | Dimension | Description |
| :---: | :---: | :---: |
| ALPHA | 1 | BREAK vapor fraction. |
| BSA | 1 | Integrated noncondensable-gas (air) mass flow (kg). |
| BKA | 1 | Noncondensable-gas mass flow ( $\mathrm{kg} \cdot{ }^{-1}$ ). |
| CONC | 1 | BREAK dissolved-solute concentration $\left[\mathrm{kg} \cdot\left(\mathrm{kg}\right.\right.$-liquid) $\left.{ }^{-1}\right]$. |
| DX | 1 | BREAK length (m) [first edit only]. |
| ENTH | 1 | Enthalpy ( $\mathrm{J} \cdot \mathrm{kg}^{-1}$ ) at BREAK fluid-state conditions. |
| FA | 2 | BREAK interface flow areas ( $\mathrm{m}^{2}$ ) [first edit only]. |
| ID | 1 | User-specified component ID number (firs: edit only). |
| IMFLOW | 1 | Integrated mass flow (kg) into the BREAK. |
| MFLOW | 1 | Mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) into the BREAK. |
| NCELLT | 1 | Total number of cells (should be 1) [first edis only]. |
| NUM | 1 | Component number (first edit only). |
| P | : | BREAK pressure ( Pa ). |
| PA | 1 | BREAK noncundensable-gas partial pressure ( Pa ). |
| TL | 1 | BREAK liquid temperature ( $K$ ). |
| TV | 1 | BREAK vapor temperature ( $K$ ). |
| TYPE | 1 | Component type (first edit unly). |
| VOL | 1 | BREAK volume ( $\mathrm{m}^{3}$ ) (first edit only). |

## F.3.3. FILL Component Graphics

Subroutine IGFILL writes the entire graphics catalog for the FILL component.

## Variable Dimension <br> Description

| ALPHA | 1 | FILL vapor fraction. |
| :--- | :--- | :--- |
| CONC | 1 | FILL dissolved-solute concentration $\left[\mathrm{kg} \cdot(\mathrm{kg} \text {-liquid })^{-1}\right]$ |
| DX | 1 | FILL length $(\mathrm{m})[$ first edit only $]$. |


| ENTH | 1 | Enthalpy ( $\mathrm{J} . \mathrm{kg}^{-1}$ ) at FILL fluid-state conditions. |
| :---: | :---: | :---: |
| FLOWAREA | 2 | FILL-interface flow areas ( $\mathrm{m}^{2}$ ) [first edit only]. |
| ID | 1 | Ush. specified component ID number (first edit only). |
| MFLOW | 1 | Mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) out of the FILL. |
| NCELLT | 1 | Total number of cells (should be 1) [firsi edit only]. |
| NUM | 1 | Component number (first edit only). |
| $P$ | 1 | FILL pressure ( Pa ). |
| PA | 1 | FILL noricondensable-gas partial pressure ( Pa ). |
| TL | 1 | FILL liquid temperature (K). |
| TV | 1 | FILL vapor temperature (K). |
| TYPE | 1 | Component type (first edit only). |
| VL | 1 | FILL liquid velocity (m $\mathrm{s}^{-1}$ ). |
| VOL | 1 | FILL volunie ( $\mathrm{m}^{3}$ ) [first edit oriy]. |
| VV | 1 | FILL vapor velocity ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ). |
| F.3.4. Heat-Structure (ROD or SLAB) Component Graphics <br> Subroutine IGHSTR writes the entire graphics catalog for the heat-structure (ROD or SLAB) component. |  |  |
| Variable | Dimension | Description |
| ALREAC | 1 | Void-fraction reactivity. |
| DBREAC | 1 | Boron (dissolved and plated solute) reactivity. |
| ID | 1 | User-specified component ID number (first edit only). |
| 10 BCl | 1 | Inner-surface boundary condition of the heat-structure ROD or SLAB. |
| IDBCO | 1 | Outer-surface boundary condition of the heat-structure ROD or SLAB. |
| IDRGRI | NZMAX | Heat-transfer regimes for the inns; s ifface of the heatstructure ROD or SLAB. |
| IDRGRC | NZMAX | Heat-transfer regimes for the outer surface of the heatstructure ROD or SLAB. |
| NODES | 1 | Number of ROD-radial or SLAB-thickness heat-transfer nodes in the heat structure (first level only). |
| NRODS | 1 | Total nun er of calculational RODs or SLABs defined by the heat structure. |
| APPENDIX | F | F. 5 |


| NUM | 1 | Component number (first edit only). |
| :---: | :---: | :---: |
| NZMAX | 1 | Maximum number of rows of nodes in the axial direction (first edit only) |
| PGREAC | 1 | Programmed reactivity. |
| RMCKN | 1 | Reactor multiplication constant $K_{\text {eff }}$. |
| RPOWER | 1 | Reactor power (W). |
| STNUI | NZMAX | Inner-surface Stanton number of the heat-structure ROD or SLAB. |
| STNUO | NZMAX | Outer-surface Stanton number of the heat-structure ROD or SLAB. |
| STRTMP | NODES*NZMAX | Heat-structure's ROD or SLAB element temperatures ( $K$ ), ordered node 1 to node NODES for row 1 , followed by node 1 to node NODr's for row 2 , etc. |
| TCREAC | 1 | Coolant-temperature reactivity. |
| TFREAC. | 1 | Fuel-temperature reactivity. |
| TLDI | NZMAXZ | Inner-surface liquid temperatures ( $K$ ) at bubble departure. |
| TLDO | NZMAXZ | Outer-surface liquid zemperatures ( $K$ ) at bubble departure. |
| TRHMAX | 1 | Maximum additional ROD or SLAB temperature. |
| ITRAMAX | 1 | Maximum average ROD or SLAB temperature. |
| TYPE | 1 | Component type (first edit only). |
| ZHT | NZMAX | Axial positions (m) of the rows of nodes in the heatstructure component. |
| F.3.5. ${ }^{\text {I IPE Component Graphics }}$ <br> In addition to a call to IGCOMP, subroutine IGPIPE writes to the graphics catalog variables specific to the PIPE component. |  |  |
| Variable | Dimension | Description |
| CPOW | 1 | Heater power (W) to the PIPE fluid. |
| HEIGHT | 1 | Water level ( $m$ ) in the PIPE component (assumes the component is vertically oriented with cell 1 at the top) hen the accumulator flag is set. |
| HTLSCI | 1 | Inside heat luss (W) for the PIPE slabs. |
| HTLSCO | 1 | Outside heat loss (W) for the PIPE slabs. |
| VFLOW | 1 | Volumetric flow ( $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$ ) at the exit (interface NCELLS +1 ) when the accumulator flag is set. | NCELLS +1) when the accumulator flag is set.

## F.3.6. PLENUM Component Graphics

Subroutine IGPLEN writes the entire graphics catalog for the PLENUM component. Although subroutine IGPLEN allows the option of writing variables relating to wall heat transfer, the heat-transfer option for the PLENUM has not been d-reloped; therefore, the heat-transfer variables are not listed below.

| Variable | Dimension | Deacription |
| :---: | :---: | :---: |
| ALPHA | 1 | Cell vapor fraction. |
| AM | 1 | Cell noncondensable-gas mass (kg). |
| CONC | 1 | Cell dissolved-solute concentration [ $\mathrm{kg} \cdot\left(\mathrm{kg}\right.$-liquid) ${ }^{-1}$ ]. |
| DX | NPLJN | Cell lengths ( m ) associated with each PLENUM junction (first edit only). |
| 10 | 1 | User-specified component ID number (first edit only) |
| NPLJN | 1 | Number of PLENUM junctions (first edit only). |
| NUM | 1 | Component number (first esit only). |
| NCELLT | 1 | Toral number of cells (should be 1) [first edit only]. |
| $p$ | 1 | Cell pressure ( Pa ). |
| PA | 1 | Ceil noncondensable-gas partial pressure ( Pa ). |
| RHOL | 1 | Cell liquid density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| RHCM | 1 | Cell mixture density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| RHOV | 1 | Cell vapor density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| ROAN | 1 | Cell noncondensable-gas density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| SOLID | 1 | Cell plated-solute mass,'cell fluid volume ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ). |
| TL | 1 | Cell liquid temperature ( $K$ ). |
| TSAT | 1 | Cell saturation temperature ( $K$ ) based on pressure. |
| TV | 1 | Cell vapor temperature ( $K$ ). |
| TYPE | 1 | Component type (first edit only). |
| VOL | 1 | Cell volume ( $\mathrm{m}^{3}$ ) [first edit only]. |

[^2]| Variable | Dimension | Description |
| :---: | :---: | :---: |
| HEIGHT | 1 | Water level ( m ) in the PRIZER component (assumes the component is vertically oriented with cell 1 at the top). |
| HTLSCI | 1 | Inside heat loss (W) iot the PRIZER slabs. |
| HTLSCO | 1 | Outside heat loss (W) for the PRIZER slabs. |
| POWER | 1 | Heater/sprayer power (W). |
| VFLOV: | 1 | Volumetric flow ( $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$ ) at the exit (interface NCELLS+1) of the PRIZER. |
| VLOSS | 1 | Liquid volume discharged $\left(\mathrm{m}^{3}\right)$ at the exit (interface NCELLS +1 ) of the PRIZER. |

## F.3.8. PUMP Component Graphics

la addition to a call to IGCOMP, subroutine IGPUMP writes to the graphics catalog variables specific to the PUMP component.

| Variable | Dimension |
| :--- | :--- |
| ALPHAP | 1 |
| DELTAP | 1 |
| HEAD | 1 |
| HTLSCI | 1 |
| HTLSCO | 1 |
| OMEGA | 1 |
| PFLOW | 1 |
| RHOP | 1 |
| SMOM | 1 |
| TORQUE | 1 |
| VFLOWD | 1 |

## Description

PUMP woid fraction as donor-celled to the second (pumpimpeller) interface (weighted $10 \%$ new, $90 \%$ old).
PUMP $\triangle P(P a)$ [cell 2 -cell 1]
PUMP head ( $\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$ ) from the homologous curves and two-phase degradation multiplier.

Inside heat loss (W) for the PUMP slabs.
Outside heat loss (W) for the PUMP slabs.
Pump-impiler speed (rad . $\mathrm{s}^{-1}$ )
PUMP ma: sflow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) at the second (pump) interface.
PUMP mixture density ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ) as donor-celled to the secont (pump-impeller) interface.

PUMP momentum source ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ) applied at the second (pump-impelier) interface based on the PUMP head.
PUMP hydraulic torque ( $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$ ) from the homologous curves and two-phase degradation multiplier.
PUMP volumetric flow ( $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$ ) at the second (pumpimpeller) interface

## F.3.9. STGEN Component Graphics

In addition to call to IGCOMP, subroutine IGSTGN writes to the graphics catalog variables specific to the STGEV component. Subroutine IGSTGN does not utilize the call to IGCOMP to write the wall heat-transfer variables but writes that part of the graphics catalog directly.

| Variable | Dimension | Description |
| :---: | :---: | :---: |
| CHTI | NCELLT | Vapor-side interfacial heat-transfer coefficients (W. K-1) [area folded in]. |
| HILG | NTUBE+NGHT | Heat-structure inside liquid heat-transfer coefficients (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ). |
| HIVG | NTUBE+NGHT | Heat-structure inside vapor heat-transfer coefficients (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ). |
| HOLG | NTUBE+NGHT | Heat-structure outside liquid heat-transfer coefficients (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ). |
| HOVG | NTUBE+NGHT | Heat-structure outside vapor heat-transfer coefficients (W $\cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}$ ). |
| HTLSCI | 1 | Inside heat loss (W) for the first NTUBE heat structures. |
| HTLSCO | 1 | Outside heat loss (W) for the first NTUBE heat structures. |
| HTLSGI | 1 | Inside heat loss (W) for the last NGHT heat structures. |
| HTLSGO | 1 | Outside heat loss (W) for the last NGHT heat structures. |
| IDGHI | NTUBE+NGHT | Heat-structure inside heat-transfer regimes. |
| IDGHO | NTUBE+NGHT | Heat-structure outside heat-transfer regimes. |
| NCELLI | 1 | Number of cells in the primary component (does not include side leg, if it exists) [first edit only]. |
| NCELL2 | 1 | Total number of cells in all secondary components (includes accounting of phantom cells to allow for she fact that there are more interfaces than cells) [first edit only] |
| NCLP | 1 | Number cf cells in the primary-component side tube (first edit only). |
| NCLS | 10 | Number of cells in the secondary-component main tube (first edit only). |
| NCLT | 10 | Number of cells in the secondary-component side tube (first edit only) |
| NODMX | 1 | Number of radial nodes in each heat structure (first edit only). |


| NSCMP | 1 |
| :--- | :--- |
| STYPE | 10 |
| TWGI | NODMX* |
|  | (NTUBE+NGHT) |

Number of secondary components (first edit only).
Secondary-component types (first edit only).
Heat-structure node temperatures $(K)$ in the order from node 1 to NODMX for structure 1. node 1 to NODMX for structure 2 , etc., continuing through the NTUBE structures for the tube walls and followed by the NGHT generalized heat structures.
F.3.10. TEE Component Graphice

In addition to a call to IGCOMP, subtoutine IGTEE writes to the graphics catalog variables specific to the TEE comsonent.

| Variable | Dimension | Description |
| :--- | :--- | :--- |
| HTLSCl | 1 | Inside heat loss (W) for the TEE slabs. |
| HTLSCO | 2 | Outside heat loss (W) for the TEE slabs. |
| NCELL1 | 1 | Number of cells in the main tube (first edit only). |
| NCELL2 | 1 | Number of cells in the side tube (first edit only) |
| POWR1 | 1 | Heater power (W) to the TEE main-tube fluid. |
| POWR2 | 1 | Heater power $(W)$ to the TEE side-*ube fluid. |

## F.3.11. TURB Component Graphics

In addition to a call to IGCOMP, subroutine IGTURB writes to the graphics catalog variables specific to the TURE component.

Variable Dimension Descriptio.

| CPOW | 1 | Heater power (W) to the TURB fluid |
| :--- | :--- | :--- |
| EFFSTG | 1 | Turbine-sta e efficiency. |
| OMEGA | 1 | TURB (turt ine) speed (rad $\cdot \mathrm{s}^{-1}$ ). |
| FOWER | 1 | TURB (turbine) power (W) |
| POWSTG 1 | Turbine-stage power output (W) |  |
| TRBSIG | 1 | TURB (turbine) governing signal. |

## F.3.12. VALVE Component Graphics

In addition to a call to IGCOMP, subioutine IGVLVE writes to the graphics catalog variables specific to the VAlVE component.

| Veriable Dimension | Description |  |
| :--- | :--- | :--- |
| AREA | 1 | Adjustable-valve interface flow area $\left(\mathrm{m}^{2}\right)$. |
| HTLSCI | 1 | Inside heat loss $(W)$ for the VALVE slabs. |

## F.4. THREE-DIMENSIONAL VESSEL COMPONENT GRAPHICS

Subroutine IGVSSL writes to the graphics catalog all of the variables for the VESSEL. component. The cell and inierface data are written on a level basis, with a do-loop over all levels. The rod-related data are written on a rod basis, with a loop over all rods. The variables written to the VESSEL graphics are very much dependent on the options selected and parameters set in the VESSEL input, in NAMELIST, and in other general options.

| Variable | Dimension | Description |
| :---: | :---: | :---: |
| ALPHA | NCLX | Cell vapor fractions |
| ALV | NCLX | Cell flashing interfacial heat-transfer coefficients (W. K-1) [area folded in]. |
| ALVE | NCLX | Cell liquid-side interfacial heat-transfer coefficients (W $\cdot K^{-1}$ ) [area folded in]. |
| AM | NCLX | Cell noncondensable-gas masses ( kg ). |
| CEMFR | 1 | Core-outlet mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| CHTI | NCLX | Cell vapor-side interfacial heat-transfer coefficients (W. $K^{-1}$ ) [area folded in]. |
| CHTIA | NCLX | Cell noncondensable-gas interfacial heat-transfer coefficients (W . K ${ }^{\prime 1}$ ) [area folded in]. |
| CIF-R | NCLX | Radial or x -direction interfacial-drag coefficients ( $\mathrm{kg} \mathrm{c} \mathrm{m}^{-4}$ ). |
| CIF.T | NCLX | Azimuthal or $y$-direction interfacial-drag coefficients (kg $\cdot \mathrm{m}^{-4}$ ). |
| CIF-Z | NCLX | Axial interfacial-drag coefficients ( $\mathrm{kg} \cdot \mathrm{m}^{-4}$ ). |
| CIMFRL | 1 | Core-inlet liquid mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) |
| CIMFRV | 1 | Core-inlet vapor mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| CMASS | 1 | Core-region liquió mass (kg). |
| CMFLOW | 1 | Core-in!et mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| COMFRL | 1 | Core-outlet liquid mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| COMFRV | 1 | Core-outlet vapor mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ). |
| CONC | NCLX | Cell dissolved-solute concentrations [ kg . $\left(\mathrm{kg}\right.$-liquid) $\left.{ }^{-1}\right]$. |
| CRLIQFR | 1 | Core-region liquid volume fraction. |
| CRPRESS | 1 | Core-region average pressure ( Pa ) [volume averaged]. |


| DCFLOW | 1 |
| :---: | :---: |
| DCLQVOL | 1 |
| DMASS | 1 |
| DR | NRSX |
| DTHETA | NTSX |
| DZ | NASX |
| FLOWAREA | NCLX*3 |
| ICJ | NCSR |
| ID | 1 |
| ISRC | NCSR |
| ISRF | NCSR |
| ISRL | NCSR |
| M.FRL | NCLX |
| MFRLR | NCLX |
| MFRLT | NCLX |
| MFPLZ | NCLX |
| MFRV | NCLX |
| MFRVR | NCLX |
| MFFVT | NCLX |
| MFRVZ | NCLX |
| NASX | 1 |
| F-12 |  |

Do: ncomer mass flow (kg . $\mathrm{s}^{-1}$ ) [sums the axial flows out of the downcomer at level IDCL].

Downcomer liquid volume fraction.
Downcumer liquid mass ( kg ).
$\Delta r$ or $\Delta x(m)$ for each radial sing or $x$-directicos call (first edit only).
$\Delta \theta(\mathrm{rad})$ or $\Delta y(\mathrm{~m})$ for each azimuthal segment of $y$ direction cell (first edit only).
$\Delta x(m)$ for each axial level [first edit only].
Cell-interface fluid flow areas ( $\mathrm{m}^{2}$ ) [first edit only].
Components adjacent to sources (first edit unly).
User-specified component ID number (first edit only).
Celi numbers to which sources are connected (first edit only)

Face numbers to which sources are connected (first edit only)
Level numbers to whith sources are connected (first edit only).

Liquid axiai mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [NAMELIST option IMFR = 1].

Liquid radial mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [NAMELIST option IMFR = 3].
Liquid azimuthal mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [NAMELIST option IMFR = 3].
Liquid axial mass flows (kg $\mathbf{s}^{-1}$ ) [NAMELIST option , MFR = 3].

Vapor axial mass flows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [NAMELIST option (MFR $=1$ ].

Vepor redial mass flows ( $\mathrm{kg} \cdot 5^{-3}$ ) [NAMELIST option IMFR = 3].
Vapor azimuthal mass fiows ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [NAMELIST option IMFR $=3$ ]

Vapor axial mass flows (kg . $\mathrm{s}^{-1}$ ) [NAMELIST option (MFR = 3).

Number of axial levels [first euin on!?

| NCELLT | 1 |
| :---: | :---: |
| NCLX | 1 |
| NCSR | 1 |
| NODES | 1 |
| NRSX | 1 |
| NSRL | NASX |
| NTSX | 1 |
| NUM | 1 |
| NZMAX | 1 |
| $p$ | NCLX |
| PA | NCLX |
| PDC | 1 |
| PLD | 1 |
| PMASS | 1 |
| PUP | 1 |
| QHSTR | NCLX |
| RHOL | NCLX |
| RHOV | NCLX |
| ROAN | NCLX |
| SOLID | NCLX |
| TCILMF | 1 |
| TCIVMF | 1 |
| TCOLMF | 1 |
| TCORE | 1 |
| TCOVMF | 1 |
| TDC | 1 |

Total number of cells (NASX*NRSK*NTSX) [first edit only].

Number of cells on each level (NRSX*NTSX) [first edit only].
Number of VESSEL source connections (first edit only).
Number of radial heat-transfer nodes in each rod (not defined; first edit only).
Number of radial rings or $x$-direction cells (first edit only).
Number of sources on each level (first edit only).
Number of azimuthal segments or y-direction cells (first edit only).
Component number (first edit only).
Maximum number of rows of nodes in each rod (not defined; first edit on'y).
Cell pressures ( Pa )
Cell noncondensable-gas partial pressures ( Pa ).
Downcomer average pressure ( Pa ) [volume averaged].
Lowar-olenum average pressure ( Pa ) [volume averaged].
Liquid mass below downcomer (kg).
Upper-plenum average pressure $(\mathrm{Pa})$ [volume averaged].
Heat-structure heat transfer (W) to fluid in cell.
Cell liquid densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ).
Ce!l vapor densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ).
Cell noncondensable-gas densities ( $\mathrm{kg} \cdot \mathrm{m}^{-3}$ ).
Cell plated-solute mass/cell fluid volure $\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$.
Integrated core-inlet liquid mass flow ( kg ).
Integrated core-inlet vapor mass flow (kg).
Integrated core-outlet liquid mass flow ( kg ).
Core-region average liquid temperature ( K ) (iiquid-mass averaged)
Integrated core-outlet wapor mass flow (kg).
Downcomer average liquid temperature ( $K$ ) |liquid-mass averaged]

| TL | NCLX | Cell liquid temperatures ( K ). | |
|---|---|---|---|
| TLP | 1 | Lower-plenum average liquid temperature ( $K$ ) \\|liquid-mass averaged]. |
| TSAT | NCLX | Cell saturation temperatures ( $K$ ) based on pressures. |
| TSCORE | 1 | Core-region average saturation temperature ( $K$ ) [based on the core-region average pressure]. |
| TSDC | 1 | Downcomer average saturation temperature ( $K$ ) [based on downcomer average pressure]. |
| TSLF | 1 | Lower-plenum average saturation temperature ( $K$ ) [based on the lower-plenum average pressure]. |
| TSUP | 1 | Upper-plenum average sat-ration temperature ( $K$ ) [baseo on the upper-plenum average pressure]. |
| TUP | 1 | Upper-plenum average liquid temperature ( K ) [liquid-mass averaged]. |
| TV | NCLX | Cell vapor temperatures (K). |
| TYPE | 1 | Component type (first edit only). |
| VLN-R | NCLX | Liquid radial or $x$-direction velocities im $\cdot s^{-1}$ ). |
| VIN-T | NCLX | Liquid azimuthal or y-direction velocities (m $\mathrm{s}^{-1}$ ). |
| VLN-Z | NCLX | Liquid axial velocities ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ). |
| VLPLIQ | 1 | Lower-planum liquid volume fraction. |
| VLPLM | 1 | Lower-plenum liquid mass ( kg ). |
| VMASS | - 1 | VESSEL. liquid mass (kg). |
| VOL | NCLX | Cell fluid volumes ( $\mathrm{m}^{2}$ ) [first edit only]. |
| VSFLOW | 1 | VESSEL mass flow ( $\mathrm{kg} \cdot \mathrm{s}^{-1}$ ) [sums over all VESSEL source connections]. |
| VUPLIQ | 1 | Upper-plenum liquid volurre fraction. |
| VUPLM | 1 | Upper-plenum liquid mass ( kg ) |
| VVN-R | NCLX | Vapor radial or $x$-direction velocities ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ). |
| VVN-T | NCIX | Vapor azimuthal or y -direction velocities ( $\mathrm{m} \cdot \mathrm{s}^{-1}$ ). |
| VVN-Z | NCLX | Vapor axial velocities (m $\mathrm{s}^{-1}$ ). |

## APPENDIX G

## TRAC ERROR MESSAGES

Subroutine ERROR handles errors diagnosed by TRAC. The subroutine uses the 'vel number associated with each error listed beiow to determine its course of action.

## Level Actions

1,3 Fatal error, stop problem.
2 Nonfatal error, continue problem.
4 Fat-l error, add dump to the TREDMP file, then stop problem.
-2 Sieady-state nonconvergence warning
-4 Problem stopped by user.
The error messages are written to the TRCOUT and TRCMSG files and to the lerminal. The message begins with the name of the subroutine, bounded by asterisks (*‥*), which detected the error. Because of this format and because implementation of TRAC on various computers differs, we have used the subroutine name to alphabetize the following list of error messages. If an error message occurs that is not found in the following list, we suggest that you inspect the coding in the subroutine listed in the message for more detail.

| Subroutine | Level | Message |
| :--- | :---: | :--- |
| BFIN | 1 | DATA SET EOF ERROR |
| BFIN | 1 | DATA SET TYPE ERROR |
| BFOUT | 1 | DATA SET TYPE ERROR |
| BITS | 1 | ILLEGAL BIT SPECIFIED |
| BITS | 1 | ILLEGAL INDEX IN COM- <br> PUTED GO TO STATE- <br> MENT |
| BREAKX | 1 | BK TABLE LOOK'IP ER- <br> ROR <br> CBSET |
| CBLOCK ID NOT FOUND |  |  |
| TOSET NFLG |  |  |

## Explanation

An illegal end-of-file was found when the data were read.
An error occurred when the data were read in the binary format
An error occurred when the data were written in a binary format.
An attempt was made to set bit beyond the word length.
Variable ITYPE was not equal to 1. 2 , or 3 . This will only occur if there is a coding error.
An error exists in interpolating a break table.
The first input parameter ID number for the control block could not be found in the list on control blocks so that it could be flagged with this control block's new flag

[^3]| CBSET | 1 | C.BLOCK ID NOT FOUND TO SET OFLG | The first input parameter ID number for this control block could not be found in the list of control blocks so that it could be flagged with this control block's old flag. |
| :---: | :---: | :---: | :---: |
| CBSET | 1 | CNTL.BLK. ID NOT FOUND | One of the control-block input parameters has a negative ID number that could not be found in the list of control blocks. |
| CBSET | 1 | ERROR IN TABLE LOOKUP | An error was detected by subroutirLININT while it was linearly interpolating in the contiol-block FNG1 table. |
| CBSET | 1 | SIG. VAR. ID NOT FOUND | One of the control biock input parameters has a positive ID number that couid not be found in the list of signal variables. |
| CHBD | 2 | 8OUNDARY ERROR DETECTED | Adjacent components have mismatched geometry. |
| CHF | 1 | TCHF FAILED TO CONVERGE | The calculation failed to converge on a unique critical heat-flux (CHF) wall temperature. |
| CHKSR | 2 | VESSEL SOURCE IOCA- <br> TION ERROR | A vessel to one-dimensional source connection was either specified on a cell that dues not exist or on a face that does not exist. |
| CHOKE | 1 | CHARACTERISTIC SOLUTION DID NOT CON. VERGE | The two-phase characteristic solution using a quick-solution search was bounded, but complete convergence could not be obtained within allowed iterations. |
| CHOKE | 1 | CONVERGENCE FAILED IN GREV | The system's routine GREV has trouble calculating zli the eigenvalves of the two-phase characteristic solution. |
| CHOKE | 2 | LARGEST CHARACTER ISTIC ROOT WAS COMPLEX | An informative message is printed under debug mode only. |
| CHOKE | 2 | NEGATIVE DFLDP CALCUI ATED, ASSUMED ZERO | The calculated derivative $\partial V_{t} / \partial \rho$ was negative because the roundoff errors should always be $>0.0$. Therefore, the derivative was set to 0.0 . |


| CHOKE | 2 | NEGATIVE DFVDP CAL. CULATED, ASSUMED ZERO | The calculated derivative $\partial V_{Q} / \partial \rho$ was negative because the round-off errors should be $>0.0$. Therefore, the derivative was set to 0.0 . |
| :---: | :---: | :---: | :---: |
| CHOKE | 2 | ONLY AFPROXIMATE SOLUTION OBTAINED | The normal two-phase choking solution mainkains constant phasic slip. However, because of convergence problems, this condition could not be atisfied, but rather the relative velocity betwee.. the phases was approximately mairtained. |
| CHOKE | 2 | QUICK SOLUTION SEARCH FAILED | An informative message is printed under debug mode only. |
| CIVSSL | 1 | CONNECTIONS COMPUTED AFTER VESSEL | The component calculational sequence must compute the connections before the vessel. |
| CIVSSL | 1 | IORDER PROBLEM | The calculational sequence murt compute the component cons ad to the vessel before it calculate. vessel. |
| CIVSSL | 1 | JUNCTION PROBLEM | A component adjosent to the VESSEL cannor be found. |
| CIVSSL | 1 | VESSEL CONNECTED TO A FILL | A VESSEL cannot be connected to a FILL. |
| CIVSSL | 1 | VESSEL CONNECTED TO BREAK | A VESSEL cannot ts connected to a BREAK. |
| CONBLK | 1 | BAD CNTL-BLOCK OPERATION NUMBER | A control-block operation number does not lie between 1 and 61. |
| CONBLK | 1 | ILLEGAL INDEX IN COMPUTED GO TO STATEMENT | Variable ICBN was inurrectly defined. This will only occur if there is a coding error. |
| CONBLK | 1 | IMPROPER LLAG BLOCK CONSTANTS | The lead-lag transfer function control block 30 has a first constant that is negative or a second constant that is zero or negative. |
| CONBLK | 1 | IMPROPER SOTF BLOCK CONSTANTS | The second-order transfer function control block 51 has a first constant that is negative or a secend constant that is zero or negative. |
| CONBLK | 1 | INVALID CNTL-BLOCK INPUT VALUES | A control block is defined with in valid input parameter values. |


| CONBLK 1 | INVALID DFAL- <br> FUNCTION CONSTANTS |
| :--- | :--- |
| CONBLK |  |


| ENDDMP 2 | DUMP FILE NOT CLOSED | | |
|---|---|---|---|
| ENDNMP |  | | An e ror occurred during the closing |
| :--- |
| of the TRCDMP file. |


| FBRCSS | 1 | TOO MANY BREAKS | The number of BREAK components connected to the secondary side of a steam-generator component exceads the dimension of 20 for temporary IA-array storage required by subroutine FBRCSS. |
| :---: | :---: | :---: | :---: |
| FILLX | 1 | GENSTATE FILL TABLE LOOKUP ERROR | There are zero entries in the FILL table. |
| GETBIT | 1 | ILLEGAL BIT SPECIFIED | The specified bit position is either too small or too large. |
| GETCRV | 1 | ILLEGAL INDEX IN COMPUTED GO TO STATEMENT | An undefined pump curve index was passed to subroutine GETCRV. |
| GRAF | 1 | DATA TYPE ERROR | There is an invalid data type in the graphics catalog. |
| GRAF | 1 | SCM OVERFLOW | There is insufficient SCM for packing graphics data. |
| GRFPUT | 2 | ERROR IN GRAPHICS OUTPUT | Integer is too large to be packed into a 15 -bit word |
| GRFPUT | 1 | ERROR: GRAPHICS EDIT TOO LARGE | The graphics edit is too large and cannot be written. A FORTRAN modification is required. |
| HOUT | 4 | OUTER ITERATION DID NOT CONVERGE | The outer-iteration procedure failed three consecutive times. |
| HTSTR3 | 1 | NODES .GT. NRFMX | Maximum number of radial heat conduction nodes has been exceeded. Either the TRAC parameter NRFMY. must be increased or NODES must be decre-sed |
| HTSTR3 | 1 | NZMAX GT. NZFMX | Maximum number of axial heat conduction nodes has been exceeded. Either the TRAC parameter NZFMX must be increased or NZMAX must be decreased. |
| HVWEBB | 1 | FAILURE TO CONVERGE IN WEBB-CHEN | The iteration to solve for the twophase friction factor in the WebbChen correlation failed. |
| ICOMP | 1 | FATAL INPUT ERROR(\$) | An error was encountered during component data initialization causing JFLAG. NE. $O$ at the end of subroutine ICOMP. |


| ICOMP | 1 | FRICTION LOSS HIGHER <br> THAN TURBINE OUTPU |
| :--- | :--- | :--- |
| ICOMP | 1 | INCONSISIENT JUNC <br> TION NUMBERS |
| ICOMP | 1 | JUNCTION COUNT ER <br> ROR |
| ICOMP | 1 | JUNCTION NUMBERS <br> WRONG <br> IOOP SOURCE CONN. |
| ICOMP | 2 | LOOP DIRECTIONS <br> DIFF. DIRECII |

ICOMP

ICOMP

ICOMP
ICOMP

IGRAF

IGRAF

IGRAF
IGRAF

1 SCM OVERFLOW

1 TURBINE STAGES INCON. SISTENT WITH INPUT

1 UNRECOGNIZED COMPO. NENT

1 WRONG TURB COMPONENT NUMBER ON VALVE

1 COMPONENT TYPE NOT RECOGNIZED
1 GRAPHICS FILE ALLOCATION FAILURE

1 NO LCM SPACE FOR GRAPH CATALOG
1 NO SCM SPACE FOR GRAPH CATALOGUE

The friction torque coefficients specified for the turbine are so large that the friction loss exceeds the normal design power from all stages. Inconsistent specification of junction numbers was made.
The number of junctions specified is inconsistent with the number found. The junctions are assigned incorrectly.
The vessel source connections of a component loop have cell-face connections to different directions. To eveluate this model, NAMELIST variable NOSETS must be set to 1 which results in the time step being constrained by the material-courant limit in the VESSEL components.
Insufficient SCM is available to load problem.
The user specified component numbers of the associated turbine stages under stage 1 . This specification is not consistent with the other TURB components input.
The component type was not recog. nized
The VALVE component for IVTY option of 5 or 6 requires a TURB component number. This number is inconsistent with the TURB components input.
An invalid component type was encountered.
An 1/O error occurred while allocated space was sought for graphics file.
Insufficient LCM is available

Problem too large to run with current code. User must reduce nodes or alter code

| IGRAF | 1 | SCM OVERFLOW | Insufficient SCM is available. |
| :---: | :---: | :---: | :---: |
| INIT | 1 | FAVOL \& FA TOO LARGE | For a large change in volumeaveraged flow areas across two acijacent cells, flow loss must also be input for the involved junction. This can be accomplished by either inputting a form loss or setting NFF to less than zero for a one-dimensional component or CFZL to less than zero for a three-dimensional component. |
| INIT | 1 | FAVOL CHANGE TOO LARGE | For a large change in volumeaveraged flow areas across two adjacent cells, a flow loss must also be input for the involved junction. This can be accomplished by either inputting a form loss or setting NFF to less than zero for a one-dimensional component or CFZL to less than zero for a three-dimensional component. |
| INIT | 1 | INTERFACE FA TOO LARGE | The flow area of a particular cell face cannot be larger than either of the two adjoining volume-averaged flow areas. |
| INPUT | 2 | CBETA MUST BE BETWEEN -1 \& 1 | The Bankoff interpolation constant ( $\beta$ ) for interpolati.g between Wa!lis characteristic lengit dimension and Kutalatze characteristic length dimension must be between -1 and 1 in value. |
| INPUT | 2 | CCFLC IS LE. ZERO | The intercept for the CCFL correlation must be greater than zero. |
| INPUT | 2 | CCFLM IS LE. ZERO | The slope for the CCFL corselation must be greater than zero. |
| INPUT | 2 | DIAH MUST BE GT 0.0 | The diameter of a single hole in the perforated f'ate of the CCFL model must be greater than 0.0 m . |
| INPUT | 2 | DUPLICATE COMP NUMBERS IN IORDER | Two components with the same number were found in the TRACIN file. |


| INPITT | 1 | FATAL INPUT ERROR(S) | A fatal input error was found when an input or restart file was read. |
| :---: | :---: | :---: | :---: |
| INPUT | 1 | FILE TRACIN DOES NOT EXIST | The input deck does not exist. |
| INPUT | 2 | GAMMA MUST BE GT 0.0 | The ratio of open-plate flow area to total-plate flow area in the CCFL model must be greater than 0.0 . |
| INPUT | 2 | HYDRO CMP NUM GE. HT-ST CMP NUM | The component numbers for all heat structures must be larger than the largest hydro component number. |
| INPUT | 1 | INOPTS NAMELIST DATA NOT FOUND | The NAMELIST option was specified; however, the NAMELIST data for group INOPTS are not in the TRACIN file. |
| INPUT | 1 | INSUFFICIENT MEMORY TO PROCEED PAST IN. PUT PROCESSING | Insufficient memory exists to proceed pest the input processing stage. |
| INPUT | 2 | NCCFL IS OUT OF BOUNDS | The number of CCFL parameter sets being input must be between zero and ten. |
| INPUT | 2 | NHOLES MUST BE GT O | The number of holes in the perforated plate of the CCFL model must be greater than zero. |
| INPUT | 1 | NO LCM SPACE FOR CPD | Insufficient memory exists to store the trip and control block data. |
| INPUT | 1 | NO SPACE FOR BUFFERS | Insufficient LCM is available for 1/0 buffers. |
| INPUT | 2 | SCM OVERFLOW | Insufficient SCM is available for this problem. The user must reduce the number of nodes or redo the INPUT overlay. |
| INPUT | 2 | SOLUBILITY PARAMETERS NOT REASONABLE | The solubility parameters entered for option ISOLCN do not define a reasonable linear relationship between solubility and temperature or may generate negative solubilities. |
| INPUT | 2 | STDYST $=2$ AND NCONTR LT. 1 | The constrained steady-state option requires at least one steady-state controller to be specified. |
| INPUT | 2 | TP MUST BE GT 0.0 | The thickness of the perforated plate in the CCFL model must be greater than 0.0 m . |

APPENDIX G

| IOVLY | 1 | A-ARRAY OVERFLOW | The main SCM deta array is too small. This message occurs only for the CDC 7600 version with a fixed A-dimension ( $\sim 25000$ words). Routine IOVLY directly issues diagnostic statistics. The global problem data are started at the high end of $A$, and the available space is smaller than the total dimension of $A$. |
| :---: | :---: | :---: | :---: |
| 10VLY | 1 | ERROR INITIALIZING SCM | Subroutine SETSCM found an error. |
| IOVLY | 1 | SCM SPACE TOO SMALL FOR OVERLAY | Insufficient SCM is available for this overlay. |
| IROD | 2 | BAD AXIAL-POWER SHAPE | Linear interpolation of the axial-power-shape table by subroutine LIN. INT failed. |
| IROD | 1 | BAD FUEL-ROD POWER SUM | Evaluating the heat-structure component volume-integrated power gave a negative value. |
| IRODL | 1 | HS NOT ALLOW IN PLENUM | A heat-structure component cannot be connected to a plenum component. |
| ISTGEN | 1 | 2 JNCTS OF 1 CELL COMP. EXT. | Code cannot find two internal secondary junction numbers that have the same value. |
| ISTGEN | 2 | JUNCTION ERROR | Error in the specification of the secondary internal junction numbers of the steam generator. |
| ITEE | 1 | INVALID GEOMETRY FOR O-'FTAKE MODEL | The geometry specified for the TEE component offtake model is invalid |
| INLVE | 1 | INVALID VALVE LOCA. TION | The valve interface where the flow area is adjustable does not lie between two cells within the VALVE component. |
| JFIND | 1 | JUNCTION PROBLEM | A junction number could not be located in the junction sequence array |
| LCMTRN | 2 | SCM OVERFLOW | A small core memory overflow can occur when the NOLCM option is not defined and the amount of data which must be kept within the field length has exceeded the capacity of the executing computer. |

APPENDIX G

| LOAD | 2 | ARRAY FILLED- OPERA. <br> TION END NOT <br> FCUND ON ARRAY CARD <br> NO. XXXXX OR NEXT <br> CARD | Subroutine LOAD has filled up an array, but the letter " $e$ " was not found at the end of the array input. |
| :---: | :---: | :---: | :---: |
| LOAD | 2 | ARRAY FILLED BUT OF. ERATION END NOT FOUND ON ARRAY CARD NO. XXXXX | Subroutine LOAD has filled up an array, but the letter " $e$ " was not found at the end of the array input. |
| LOAD | 2 | ARRAY FILLED $\because I T$ OP. ERATION END NOT FOUND- SEE INPUT CARDS XXXX THRU XXXX | Subroutine LOAD has filled up an array, but the letter " $e$ " was not found at the end of the array input. |
| LOAD | 2 | DATA OVERFLOWED ARRAY ON INPUT CARD NO. XXXX - REPEAT COUNT RESET TO ONE | When the array data were read, a repeat uperation overfilled the array. |
| LOAD | 2 | ERROR-UNEXPECTED NAMELIST DATA ENCOUNTERED | When the array data were loaded, NAMELIST data were found |
| LOAD | 2 | INPUT ERROR ENCOUN. TERED ON CARD NO. XXXX - REST OE COMPONENT SKIPPED | The array-reading routine found an error flag on a card set by the freeformat input-option preprocessor routine. E. zcution of TRAC stops after the entire input deck is processed. |
| LOAD | 2 | INPUT ERROR ON CARD NO. XXXX - REAL DATA ENCOUNTERED IN $\mathbb{I N}^{+}$EGER ARRAY | Real data were found in an integer array. |
| LOAD | 2 | INPUT ERROR - NEW COMPONENT WAS ENCOUNTERED UNEXPECT. EDLY ON CARD NO. XXXX | When the array data for a component wert loaded, data for an additional component or an "END" card was specified. |
| LOAD | 2 | INTFGER INTERPOLA. TION NOT ALLOWED SEE INPUT CARD NO. XXXX | When an integer array was read, an interpolation operation was specified. |
| LOAD | 2 | NOT ENOUGH DATA TO FILL ARRAY. SEE INPUT CARDS XXXX THRU XXXX | Subroltine LOAD encountered an "e" end of operation before the array was filled. |


| LOAD | 2 | OPERATION E ENCOUN- <br> TERED BUT INTERPOLA. <br> TION INCCMPLETE-SEE <br> INPUT CARD XXXX | When the array data were read, an end flag ( $E$ ) was specified before both endpoints of an interval to be interpolated were read. |
| :---: | :---: | :---: | :---: |
| LOAD | 2 | REPEAT COUNT LESS THAN ONE - INPUT CARD NO XXXX COUNT RESET TO ONE | When the array data were read, a repeat count of less than one was found. |
| IOAD | 2 | REPEAT LEV'EL CARD MISPLACED | When the array data were read, a repeat-level card was found. |
| LOAD | 2 | UNDEFINED OPERATION"XXXX" ON ARRAY CARD NO. XXXX - REPEAT COUNT SET TO ONE | When the array data were read, an unde red load operation was specified. |
| LOAD | 1 | UNEXPECTED ENVD-OFFILE REACHED | When the array data were read, an unexpected end-of-file was found. |
| LOAD | 2 | - ERO OR FEWER INTER. rULATIONS-INPUT CARD NO XXXX -OPERATION TREATED AS BLANK | When the array data were read, an interpolation count of less than one was specified. |
| LOCPMP | 1 | VARIABLE NAME NOT RECOGNIZED | A programming error occurred when the user tried to locate the position of a TURBINE variable in its common block. |
| LOCTEE | 1 | VARIABLE NAME NOT RECOGNIZED | A programming error occurred when the user tried to locate the position of a TURBINE variable in its common block. |
| LOCTRB | 1 | VARIABLE NAME NOT RECOGNIZED | A programming error occurred when the user tried to locate the position of a TURBINE variable in its common block. |
| LOCVLV | 1 | VARIABLE NAME NOT RECOGNIZED | A programming error occurred when the user tried to locate the position of a VALVE variable in its common block. |
| MAIN | 1 | NO SPACE FOR VERSION INFORMATION | Insufficient LCM is available for version information. |
| MANAGE | 1 | BAD LEVEL/ROD NUMBER | The requested vessel level or rod number does not exist. |


| MANAGE | 1 | ILLEGAL INDEX IN COM- <br> PUTED GO TO |
| :--- | :--- | :--- |
| MANAGE |  |  |


| NAMLST | 2 | ALP HAS OUT-OF-RANGE VALUE | When specifying a default value for void fractions using the NAMELIST data, the allowable input range is such that $0.0<A L P<1.0$. |
| :---: | :---: | :---: | :---: |
| NAMLST | 2 | CCIF HAS OUT-OF. RANGE VALUE | When specifying a constant twophase flow interfacial drag coefficient (when NIFSH $=1$ ) using NAMELIST data, the allowable input range is such that CCIF $>0.0$. |
| NAMLST | 2 | CFZ 2 HAS OUT-OF. RANGE VALUE | When specifying a default value for three-dimensional loss coefficients using the NAMELIST data, the allowable input range is such that $C F Z 3 \geq 0.0$. |
| NAMLST | 2 | CHM1\# HAS OUT.OF. RANGE VALUE | When specifying subcooled multipliers for the choked-flow model using NAMELIST data, the allowable input range is such that $\mathrm{CHM1} \mathrm{\#}>0.0$. |
| NAMLST | 2 | CHM2\# HAS OUT-OFRANGE VALUE | When specifying two-phase multipliers for the choked-flow model using NAMELIST data, the allowable input range is such that $\mathrm{CHM} 2 \#>0.0$. |
| NAMLST | 2 | DTSTRT HAS OUT-OFRANGE VALUE | When specifying an initial time-step size using the NAMELIST data, the allowable input range is such that DTSTRT $>0.0$ or $=-1.0$. |
| NAMLST | 2 | HD3 HAS OUT-OF-RANGE VALUE | When specifying a default value for three-dimensional hydraulic diameters using the NAMELIST data, the allowable input range is such that $H D 3 \geq 0.0$. |
| NAMLST | 2 | HETIN HAS OUT-OFRANGE VALUE | When specifying a default value for heat-structure temperatures in threedimensional components using the NAMELIST data, the allowable input range is such that HSTN $\geq 0.0$. |
| NAMLST | 2 | HTCWL HAS OUT-OF. RANGE VALUE | When specifying a constant wall to liquid heat-irarisfer coefficient (when ICONHT =1) using NAMELIST data, the allowable input range is such that $\mathrm{H}_{\mathrm{T}} \mathrm{CWL}>0.0$. |

NAMLST

NAMLST

NAMLST

NAMLST

NAMLST

NAMLST

NAMLST

NAMLST

NAMLST

NAMIST

NAMLST

NAMLST

NAMLST

2 HTCWV HAS OUT-OF. RANGE VALUE

2 IADLED HAS OUT.OF. RANGE VALUE

2 ICDELT HAS OUT.OFRANGE VALUE

2 ICFLOW HAS OIIT-OF. RANGE VALUE

2 ICONKT HAS OUT.OF. RANGE VALUE

2 IDIAG HAS OUT. OF. RANGE VALUE

2 IELV HAS OUT-OF-RANGE VALUE

2 IGAS HAS OUT.OFRANGE VALUE

2 IGEOM3 HAS OUT.OF. RANGE VALUE

2 IHOR HAS OUT-OF. RANGE VALUE

2 IHORG HAS OUT-OFRANGE VALUE

IKFAC HAS OUT-OF. RANGE VALUE

2 IMFR HAS OUT.OF. RANGE VALUE

When specifying a constant wall to vapor heat-transfer coefficient (when ICONHT $=1$ ) using NAMELIST data, the allowable input tange is such that HTCWV $>0.0$.
When adding the numerical-solution status-parameter message to the TRCMSG and TTY files using NAME. LIST data, the allowable input range is such that IADDED $\geq 0$.
The allowiable input values for the NAMELIST variable ICDELT are 0 and 1.
The allowable input values for the NAMELIST variable ICFLCW are 0 , 1, and 2.
The Illowable input values for the NAMFLIST, wiable ICONHT are 0 and 1.
The allowabis input values for the NAMELIST INOPTS vanable IDIAG are $0,1,2,3$, and 4 .

The allowable inpui values for the NAMELIST variable :ELV are 0 and 1.

The allowable input values for the NAIAELIST variable IGAS are 1.2 , and 3.
The allowable input values for the NAMELIST variz ble IGEOM are 0 and 1.
The allowable input values for the NAMELIST variable IHOR are 0,1. and 2.
The allowable input values for the NAMELIST variable IHORG are 0,1. and 2 .
The allowable input values for the NAMELIST variable IKFAC are 0 and 1 .
The allowable input values for the NAMELI: T variable IMFR are 1 and 3.

| NAMLST | 2 | INLAB HAS OUT-OF <br> RANGE VALUE |
| :--- | :--- | :--- |
| NAMLST |  |  |

The allowable input values for the 1. AMELIET variable INLAB are 0 and 3
The allowable input values for the NAMELIST variable INVAN are 0 and 3
The allowable input values for the NAMELIST variable IOFFTK are 0 and 1
The allowable input values for the NAMELIST variable IPOWR are -1 0 , and 1
The allowable input velues for the NAMELIST variable IPRCPV are 0 and 1
The allowable input values for the NAMELIST vo ble ISOLCN are 0 and :
The alionable input values for the NAMELIST variable ISTOPT are 0 1. and 2

The allowable input value for the NAMEL.IST variable ITHD are 0 and 1.

The allowable input values ior the NAMELST variable LEVSTG ars 0 and 1
The allowable input values for the NAMELIST variable NDIA1 are 1 and -
The allowable input values for the NAMELIST variable NEWRFD are 0 and I
The allowable input values for the NhinELIST variable NFRC1 are 1 and 2
The allowable input values for the NAMELIST variable NFRC3 are 1 and 2
When specifying the number of heatstructure components using NAMELISt data, the allowable input range is such that NHTSTR $\geq 0$.

| NAMLST | 2 | NIFSH HAS OUT.OF. RANGE VALUE | The allowable input values for the NAMELIST variable NIFSH are 0 and 1. |
| :---: | :---: | :---: | :---: |
| NAMLST | 2 | NLT HAS OUT-OF-RANGE VALUE | When specifying a number of hydrocomponent loops using the NAME. LIST data, the allowable input range is such that NLT $\geq 1$. |
| NAMLST | 2 | NOAIR.NE. 1 WHEN IEOS.EQ. 1 | The NAMELIST variable NOAIR must equal 1 when the IEOS $=1$ option (gas phase trected as noncondensable gas throughout the system) is selected. |
| NAMLST | 2 | NOAIR HAS OUT.OF. RANGE VALUE | The allowable input values fo: , e NAMELIST variable NOAIR are 0 and 1. |
| NAMLST | 2 | NORMDP HAS OUT-OF. RANGE VALUE | The aliowable input values for the NAMELIST variable NORMDP are 0 and 1. |
| NAMLST | 2 | NORMRS HAS OUT.OF. RANGE VALUE | The allowable input values for the NAMELIST variable NORMARS are 0 and 1. |
| NAMLST | 2 | NOSETS HAS OUT.OF. RANGE VALUE | The allowable input values for the NAMELIST variable NOSETS are 0 , 1, and 2. |
| NAMLST | 2 | NRSLV HAS OUT-OF. RANGE VALUE | The allowable input values for the NAMELIST variable NRSLV are 0 and 1. |
| NAMLST | 2 | NSEND HAS OUT.OF. <br> RANGE "ALUE | When specifying a calculation stop time using the NAMELIST data, the allowable input range is such that NSEND $\geq 0.0$ or $=-1$. |
| NAMLST | 2 | NSDL \& NSDJ OUT-OF. RANGE VALUES | When specifying the first time step at which a short edit is to be printed to the TRCOUT file with additional diagnostics using the NAMELIST data, the allorable input range is such that NSDL $\geq 0.0$ or $=-1$. |
| NAMLST | 2 | NSPL \& NSPU HAVE OUT-OF-RANGE VALUES | When specifying the last time step at which a short edit is to be printed to the TRCOUT file with additional diagnostics using the NAMELIST data, the allowable input range is such that $\mathrm{NSPL} \geq 0.0$ or $=-1$. |


| NAMLST | 2 | NVGRAV HAS OUT-OF. RANGE VALUE | The allowable input values for the NAMELIST variable NVGRAV are 0 and 1. |
| :---: | :---: | :---: | :---: |
| NAMLST | 2 | P HAS OUT-OF.RANGE VALUE | When specifying a default value for initial pressures using the NAMELIST data, the allowable input range is such that $1.0 \leq P \leq 4.5 \times 10^{7}$. |
| NAMLST | 2 | PA HAS OUT-OF-RANGE VALUE | When specifying a default value for initial noncondensable-gas partial pressures using the NAMELIST data, the allowable input range is such that $0.0 \leq \mathrm{P} \leq 4.5 \times 10^{7}$. |
| NAMLST | 2 | QPPP HAS OUT.OF. RANGE VALUE | When specifying a default value for volumetric heat distribution in the walls of one-dimensional components using the NAMELIST data, the allowable input range is such that QPPP $\geq 0.0$. |
| NAMLST | 2 | TIMDL\&TIMDU HAVE OUT-OF-RANGE VALUES | When specifying the times to begin and end a debug print using NAMELIST data, the silowable in put ranges are such that TIMDL and TIMDU $\geq 0.0$ or $=-1$. |
| NAN.:CT | ? | TL HAS OUT-OF-RANGE Value | When specifying a default value tor initial liquid temperatures using the NAMELIST data, the allowable input range is such that $273.15 \leq T L \leq$ 713.95. |
| NAMLST | 2 | TPOV.R HAS OUT-OF. RANGE VALUE | When specifying the time at which the core-power initialization at its steady-state level is activated using NAMELIST data, the allowable input range is such that TPOWR $\geq 0.0$. |
| NAMLST | 2 | TV HAS OUT-OF-RANGE VALUE | When specifying a default value for initial vapor temperatures using the NAMELIST data, the allowable input range is such that $273.15 \leq T V \leq$ 3000.0 . |
| NAMLST | 2 | TW HAS OUT.OF-RANGE VALUE | When specifying a default value for initial wall temperatures using the NAMELIST data, the allowable input range is such that $T W>0.0$. |


| NAIMLST 2 | VL h/AS OUT-OF-RANGE <br> VALUE |
| :--- | :--- |
| NAMLST |  |


| PRCINT | 2 | ABORTED BY CONTROL. LER | The user aborted this ryn (interactive mode only). No cleanup is done. |
| :---: | :---: | :---: | :---: |
| PRCINT | 2 | INTERRUPTED CONTINUED | The user continued the program affer an interruption (interactive mode only). |
| PRCINT | -4 | STOPPED BY REQUEST | The user stopped the run (interactive mode only). Run terminates normally. |
| PREFWD | 1 | SCM TO SMALL. FOR SCRATCH ARRAYS | Insufficient memory exists for the temporary vectors used by subroutine PREFWD. |
| PREITD | 1 | INSUFFICIENT SCM FOR SCRATCH VECTORS | Insufficient memory exists for the temporary vectors used by subroutine PREFWD. |
| PREINP | 1.2 | INPUT ERROR DETEC. TED IN TRACIN. CARD NUMBER $X X X X$ | The free-format input-option preprocessor routine found an input error. Possible causes include a missing positive character (for example, 1.O.E.07), the omission of the first (format-option switch) card, or a simple typographical error. Ar immediate fatal error occurs if the first card is incorrect. In all other cases, a flag is set that stops execution after the entire deck is processed. |
| PREP1D | 1 | COMPONENT TYPE NOT RECOCNIZED | Invalid component type was encountered. |
| PREP3D | 1 | COMPONENT TYPE NOT RECOGNIZED | Invalid component type was encountered. |
| PREP3D | 1 | EXTRA ELEMENTS OJT. SIDE BANDWIDTH | The number of matrix rows having nonzero elements outside the vesselmatrix bandwidth - seeds LDIM, the maximum dimensio. 'or the order of the capacitance matrix. |
| PTRSPL | 1 | INSUFFICIENT MEMORY FOR PLENUM FOINTERS | Insufficient memory exists for the initializing the plenum pointers. |
| PUMPD | 1 | CANNOT LOCATE HEAD CUPVE | The PUMP regime is outside the database. |
| PUMPD | 1 | CANNOT LOCATE TORQL'ご CURVE | The FJMP regime is outside the database. |
| PUMPSR | 1 | ERROR IN ROUTINE PUMPX | An error was encountered when a pump head or torque was evaluated. |

PUMPSR | INSUFFICIENT SCM |
| :--- |
| PUMPSR |

| RCNTL | \# OF T.S.E. ORT.C.T. <br> GT. 25 DIM. |
| :--- | :--- |
| The number of trip-signal expres- |  |
| sions or trip-controlled trips is |  |
| greater than the local dimension |  |
| of array ISEN $(25)$ or ITCN (25) |  |
| These arrays are used to store the |  |
| signal ID numbers that are compared |  |
| to the signal ID numbers in the in- |  |
| put. |  |

RCNTL

RCNTL

RCNTL


RCOMP

RCOMP

RCOMP

RCOMP

RCOMP

RCOMP $\quad$ GRAV IS OUTSIDE RANGE
2 TRIPS DOING DUMPS DIM. TOO SMALL

2 TRIP SIGNAL EXP. DIM TOO SMALL ( $-1.0,1.0$ )

ICFIG MUST BE LE. 5

2 ICONC \& ISOLUT ARE INCONSISTENT

2 INCONSISTENT VALUES FORICFLG

2 LCCFL MUST BE GE 0 AND LE NCCFL

2 NEGATIVE FRIC. GE. $-1 . A E+20$ NOT ALLOWED

2 NFF MUST BE 0, 1, -1. OR - 100
2 PA MUST EQUAL O IF NOAIR $=1$

2 PA MUST NOT BE GREATER THAN P

The number of trip-conitolled tripsignol parameters is less than the storage allocated for such parameters by variable NTCT.

The number of trip IDs that produce restart dumps is greater than the storage allocated for such parameters by variable NTDF,
The number of trip signal-expression parameters is greater than the storage allocated for such parameters by variable NTSE.
When specifying a gravity term, the allowable irput range is such that $-1 \leq$ GRAV $\leq 1$.
Only five sets of multipliers are allowed in the choked-flow model.
Solute concentrations were entered before the ISOLUT optio was selected.
All nonzero values of ICFL.G must the the same in a given component.
When specifying the CCFL calculation for a component, the allowable input range is such that $0 \leq L C C F L$ $\leq$ NCCFL.
An additive friction-factor of less than $-10^{20}$ can be used to select the liquid-separator model. In all other cases, the additive friction factor must be positive.
The only NFF options in TRAC are $0,1,-1$, or -100 .
H the NOAIR $=1$ NAMELIST option was selected, then all noncondensablegas partial pressures must be input as zeros.
The noncondensable-gas partial pressure may not exceed the total pressure f: a hydrodynamic cell.

| RCPVEC | 2 | BAD LOOP COUNT GIVEN FOR CONTROL PANEL VECTOR | An incorrect number of reactor coolant loops was specified. The number must be 1, 2, 3, or 4. |
| :---: | :---: | :---: | :---: |
| RCPVEC | 2 | BAD LOOP NUNIBER ( $X X X X$ ), ASSUMED YYYY | The interactive-edit input specifies a loop that does not exist. |
| RDCOMP | 1 | COMPONENT TYPE NOT RECOGNIZED | An invalid component type was specified. |
| RDDIM | 2 | ILLEGAL PUMP CURVE OPTION | An illegal PUMP option was specified on PUMP Card Number 9. |
| RDREST | 1 | COMPONENT DATA NOT FOUND | Data for a specific component were not found in the input or the restart file. |
| RDREST | 1 | DUMP NOT FOUND ON RESTART FILE | The restart dump at the time specified in the input file is not in the restart file. |
| RDREST | 1 | FILE TRCRST DOES NOT EXIST | Component data were omitted from the input deck, and a restart dump file to initialize the missing components cannot be found. |
| RDREST | 1 | IELV FROM TRCRST AND TRACIN DIFFER | The cell-centered evelation options in the input and the restart-file data differ The IELV parameter must be set either to ON or to OFF in both files. |
| RDREST | 1 | IKFAC FROM TRCRST AND TRACIN DIFFER | The K-factor options in the input and the restart-file data differ. The IKFAC parameter must be set either to ON or to OFF in both files. |
| RDREST | 1 | ISOLUT FI.JM TRCRST AND TRACIN DIFFER | The solute-tracking options in the input and the restart-file data differ. The ISOLUT parameter must be set either to ON or to OFF in both files. |
| RDREST | 1 | ITHD FROM TRCRST AND TRACIN DIFFER | The heat-structure heat-transfer dismeter options in the input and the restart-file data differ. The ITHD parameter must be set either to ON or to OFF in both files. |
| RDREST | 1 | NDIAI FROM TRCRST AND TRACIN DIFFER | The one-dimensional component heat-transfer diameter options in the input and the restart-file data differ. The NDIA1 parameter must be set either to ON or to OFF in both files. |


| RDREST 1 | NEWRFD FROM TRCRST <br> AND TRACIN DIFFER |
| :--- | :--- |
| RDREST |  |


| READI | 2 | INPUT ERROR - UNEX. <br> PECTED NAMELIST DATA <br> ENCOUNTERED | When integer data in 114 format were read, NAMELIST data were found. |
| :---: | :---: | :---: | :---: |
| READI | 2 | REPEAT LEVEL CARD MISPLACED | A repeat-level card was found when integer data in 114 format were read. |
| READI | 1 | UNEXPECTED END-OFFILE REACHED | An end-of-file was found when integer data in 114 format were read. |
| READR | 1 | ILLEGAL INDEX IN COM. FUTED GO TO STATE. MENT | The number of real variables spacified on an input card must not exceed 5. |
| READR | 2 | INPUT ERROR- NEW COMPONENT OR END ENCOUNTERED UNEX. PECTEDLY CARD NO. XXXX | Data for a new component were found before sll of tis data for the current component wert read |
| READR | 2 | INPUT ERROR ON CARD NO. XXXX - ENCOUN. TERED UNEXPECTED LOAD DATA | A load operation wea fouch when reading nonarray real data : Ki4.6 format. |
| READR | 2 | INPUT ERROR - UNEX. PECTED NAMELIST DATA ENCOUNTERED | When reading real dati in Ela fi format, NAMEI.IST dita were found. |
| READR | 2 | REPEAT LEVEL CARD MISPLACED | A REPLAT LEVEL card was found when reading real data in E14.6 format. |
| READR | 1 | UNEXPECTED END-OFFILE REACHED | An end-of-file was found when reading real data in E14.6 format. |
| REBRK | 1 | FATAL ERROR | An error stopped the processing of the input data. |
| REBRK | 2 | LCM OVERFLOW | Insufficient LCM is availabie for the BREAK data from the restart file. |
| REBRK | 2 | POINTER TABI.E MIS. MATCH | The BREAK pointer table does not match the restari-file data. |
| REBRK | 2 | SCM OVERFLOW | Insufficient SCM is available for the BREAK data from the restart file. |
| RECNTL | 2 | CONTROL BLOCKS EX. CEED DIMENSION | The amount of control-block data in the input and the restart files exceeds its storage allocation on MainControl Card 5 . |


| RECNTL | 1 | CONTROL PARA. STOR. AGE TOO SMALL | The variable storage that was allocated by the input data for the signal variables, cortrol blocks, and trips is tes small to contain the remaining data from the restart file. |
| :---: | :---: | :---: | :---: |
| RECNTL | 1 | NUMBER TRIPS EXCEEDS DIMENSION | The number of trips with different ID numbers from the input and the restart files exceeds the input datastorage dimension. |
| RECNTL | 1 | SET-FT-FACTOR TABLES EXCEED DIM | The number of different setpoint point factor-table ID numbers in the input and the restart files exceeds the input data-storage dimension. |
| RECNTL | 1 | SIG. VARIABLES EXCEED DIMENSION | The number of signal variables with different ID numbers in the input and the restart files exceeds the input data-storage dimension. |
| RECNTL. | 1 | TIME STEP DATA EX. CEED DIMENSION | The number of trip-controlled timestep data sets with different ID numbers in the input and the restart files exceeds the input data-storage dimension. |
| RECNTL | 1 | TOO MANY DMP TRIPS FROM RESTART | The number of trip ID numbers in the input and the restart files $x$ ceeds tive input data-storag: aimension. These trip ID numbers when set to ON generate restart dumps. |
| RECNTL | 1 | TOO MANY SETPOINT. FACTOR TABLES | The number of set-point factor tables in the restart file exceeds the input data-storage dimension. |
| RECNTL | 1 | TOO MANY SP. TIME. STEP DATA SETS | The number of trip-controlled timestep data sets in the restart file exceeds the input data-storage dimension. |
| RECNTL | 1 | TOO ' ANY TRIPS GEN. ERATING DUMPS | The number of trip ID numbers in the restart file exceeds the input data-storage dimiension. These trip ID numbers when set to ON generate restart dumps. |
| RECNTL | 1 | TRIP.SIGNAL EXPS. EX. CEED DIMEN | The number of signal-expression ID numbers in the input and the restart files exceeds the input data-storage dimension. |


| RECNTL | TRP.CONT-TRP SIGNALS <br> EXCEED DIM. |
| :--- | :--- |
| REFILL |  |


| RFILL | 2 | BAD FILL TYPE OPTION | An illegal FILL option was specified on FILL Card Number 2. |
| :---: | :---: | :---: | :---: |
| RFILL | 2 | BAD TRIP ID DEFINITION | An incorrect trip ID of -1 . $<-9999$, or > .999 was specified. |
| RFILL | 2 | $\begin{aligned} & \text { IFSV }=0 \text { WHEN } \\ & \text { IFTY.GT. } 3 \end{aligned}$ | A F'LL table, based on IFTY $>4$, cannot be defined because no table independent-variable ID number was specified. |
| RFILL | 2 | INCONSISTENT INIT AND TABLE FLOW | The initial values for the FILL table and for the FILL initial state are not equa! |
| RFILL | 2 | PAIN MUST NOT BE GREATER THAN PIN | The noncondensable-gas partial pressure is sreater than the total pressure in 9 FILL. |
| RFILL | 2 | SCM OVERFLOW | Insufficient SCM is available for the FILL deta from the input file. |
| RFILL | 2 | VLT EXCEEDS ITS LIMIT. SEE TRCOUT | Instructions were given in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENJVLT. |
| RHTSTR | 2 | D'MENSION NhFMX .LT. NODES | Maximum number of radial heat conduction nodes has been exceeded Either the TRAC parameter NRFMX must be increased or NODES must be decreased. |
| RHTSTR | 2 | DIMENSION NZFMX LT. NC.RZ +1 | Maximum number of axial heat conduction nodes has been exceeded. Either the TRAC parameter NZFMX must be increased or NCRZ and/or NZMAX must be decreased. |
| RHTSTR | 2 | EITHER IDBCI OR IDBCO MUST BE 2 | Either the inner surface or the outer surface of the heat structure must have a boundary condition coupled to specified calls in one or more hydro components. |
| RHTSTR | 2 | FISPHI CANNOT BE LT. ZERO | The number of fissions per initial fissile atom must be positive in value. |
| RHTSTR | 2 | GRAV IS OUTSIDE RANGE (-1.0. 1.0) | When spec 'ying a b dvity term, the allowable input range is such that $-1 \leq G R A V \leq 1$. |


| RHTSTR | 2 | HDRI MUST BE GREATER <br> THAN ZERO |
| :--- | :--- | :--- |
| RHTSTR |  |  |

The thermal diameter for the inner surface of the heat-structure rod or slab must be greater than 0.0 m .
The thermal diameter for the outer surface of the heal-structure tod or slab must be greater than 0.0 m .
Hot patch modelling is allowed in only one slab at this time.
Insufficiens memory exists to continue input processing.

Hot patch modelling requires the axial fine-mesh option to be selected.

Hot patch modelling requires the new reflood model option to be selecied.

The hydro cell numbers to which a her*-structure node is connected must be incre.sing in value.
The hydro cell numbers to which a heat-structure node is connected must be increasing in value.

Insufficient memory exists to bad the heat-structure temperature arroy

The maximum number of rows of nodes in the axial direction must be greater than the sum of all the finemesh and coarse-mesh nodes.
The energy pet fission from $U^{233}$ must be positive.
The energy per fission from $U^{238}$ must be positive.
The energy per fission from $\mathrm{Pu}^{239}$ must be positive.
The average energy per fission must be positive.
The atoms of $U^{239}$ produced per fission must be positive.
The multiplier applied to the ANS79 decay heat must be positive.

| RHTSTR | 2 | ROD RADII NOT MONO. INCREASING | Indicates input values for which $\operatorname{RADRD}(1+1)<\operatorname{RADRD}(1)$ |
| :---: | :---: | :---: | :---: |
| RHTSTR | 2 | VLT SIZE EXCEEDS ITS <br> LIMIT | Instructions were given in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT. |
| RHTSTR | $n$ | Z(K) NOT MONOTONIC | The axial location of heat-transfer nodes must be monotonically increasing in value along the length of the heat structure. |
| RKIN | 1 | ILLEGAL INDEX IN COM. PUTED GO TO STATE. MENT | An invalid value for IRPWTY has occurred. |
| RODHT | 1 | SINGULAR MATRIX IN BANSOL | An error has occurred within subroutine BANSOL during the solut $\cdots$ for the new heat-structure temperatuies. |
| RPIPE | 2 | INCONSISTENT INIT \& TABLE POWER | The initial values for the PIPE power-to-fluid table POWTB and for the PIPE power-to-fluid variable POWIN are not equal. |
| RPIPE | 2 | INCL:ISISTENT INIT \& TABLE QPPPF | The initial values for the PIPE power-to-wall table QP3TB and for the PIPE power-to-wall variable QP3IN are not equal. |
| RPIPE | 2 | VLT EXCEEDS ITS LIMIT. SEE TRCOUT | Instructions were given in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT |
| RPLEN | 2 | ICONC \& ISOLUT ARE INCONSISTENT | Solute concentrations were entered before the ISOLUT option was selected. |
| RPLEN | 1 | JUNS1 AND JUNS2 IN. COMPATIBLE | The number of junctions on each side of the piesum ce:? should be either C or positive in value. |
| RPLEN | 1 | NPLJN LE JUNS1 | The number of side 1 junctions must be less tnan the total number of plenum-component junctions. |
| RPLEN | 1 | NPLJN.LE. JUNS2 | The number of side 2 junctions must be less than the total number of plenum-component junctions. |


| RPLEN | 2 | PA MUST NOT BE GREATER THAN P | The noncondensable-gas partial pressure may not exceed the total pressure for a hydrodynamic cell. |
| :---: | :---: | :---: | :---: |
| RPLEN | $?$ | VLT EXCEEDS ITS LIMIT. SEE TRCOUT | Instructions were given in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT. |
| RPRIZR | 2 | VLT EXCEEDS ITS LIMIT. SEE TRCOUT | Instructions were given in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT. |
| RPUMP | 2 | BAD TRIP ID DEFINITION | An incorrect trip ID of -1 . $<-9999$, or >9999 was specified. |
| RPUMP | 2 | FRIC(2) NE. 0. | The value for $\operatorname{FRIC}(2)$ must be 0.0 in the PUMP. |
| RPUMP | 2 | INCONSISTENT INIT \& TABLE QPPPF | The initial values for the power-towall table QP3TB and for the power-to-wall variable QP 3 IN are not equal. |
| RPUMP | 2 | INCONSISTENT INIT \& TABIE SPEED | The initial values for the PUMP. speed table and for the PUMP speed are not equal. |
| RPUMP | 2 | IPMPSV.NE. 0 | The independent-variable ID number for the PUMP-speed table should not be defined for PUMP-type 2. |
| RPUMP | 2 | NCELLS.LT. 2 | An incorrect number of PIPE fluid cells was specified. The PIPE must have at least two fluid cells. |
| RPUMP | 2 | NPMPRF NE. 0 | The number of the rate-factor table's entry pairs should be zero for PUMP-type 2. |
| RPUMP | 2 | NPMPSV.NE.O | The independent-variable ID number for the rate-factor table assigned to the PUMP-speed table should not be defined for PUMP-type 2. |
| RPUMP | 2 | NPMPTB.NE. | The number of the PUMP-speed table's entry pairs should be zero for PUMP-type 2. |
| RPUMP | 2 | PUMP TYPE NOT REC. OGNIZED | An incorrect PUMP type was specified. |
| RPUMP | 2 | QPPP.F TABLE PARA:A. $B A D$ | The power-to-wall table QP3TB is defined but its independent-variable ID number is zero |


| RPUMP | 2 | SPEED TABIE PARAM. $B A D$ | The signal-variable ID number for the rotational-speed-table's independent variable for PUMP-type 1 is invalid. The PUMP-type variable IPMPTY must be either 1 or 2 . |
| :---: | :---: | :---: | :---: |
| RPUMP | 2 | TYPE 0 PUMP MUST HAVE A SPEED CON. TROLER | The ID number of the signal-variable parameter or control-block parameter (NPMPSD) that defines the pump-impeller rotational speed initially when the controlling trip is OFF is invalid for a type 0 pump (IMPMTY $=0$ ). |
| RPUMP | 2 | VIT EXCEEDS ITS LIMIT. SEE TRCOUT | Instructions were given in the TKCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT. |
| RROD1 | 2 | BAD TRIP ID DEFINITION | The trip ID number must be greater than zero but less than 10,000 . |
| RROD1 | 2 | INCONSISTENT REACT. POWER TABLE | The independent variable for the reactivity-power table (IRPWSV) must be specified when IRPWTY $=$ $3,4,7,13,14$, or 17. |
| RROD1 | 2 | INCONSISTENT REACT. POWER TRIP | The trip ID number that controls the evaluation of the reactivity-power table (IRPWTR) must be specified when $\operatorname{IRPWTY}=3,4,7,13,14$, or 17. |
| RROD1 | 2 | INVALID REACT-POWER TYPE OPTION | When specifying the neutronic pointkinetics or reactor-power option, the allowable input range for IRPWTY is such that $1 \leq$ IRPWTY $\leq 8$ or $11 \leq$ IRPWTY $\leq 18$. |
| RROD 1 | 2 | NOT ENOUGH FUEL RODS | The total number of rods or slabs defined by NRODS cannot be less than the num' y of different average (power) resis or slabs defined by NCRX |


| RROD2 | 2 | BAD ENTRY IN FP235/ FP239 TABLE | When specifying the fractions of fission power associated with $U^{235}$ and $U^{239}$ fission, the allowable input range for FP23E and FP239 is sich that $0.0 \leq$ FP235 $\leq 1.0$ and $0.0 \leq F P 239 \leq 1.0$. In adcition, is is assumed that FP235 + !P239 + FP238 $=10$. |
| :---: | :---: | :---: | :---: |
| RROD2 | 2 | FTD MUST BE GT. 0.00 BUT LE. 1.00 | When specifying the fraction of theoretical fuel density, the allowable input range is such that $0.0<$ FTD $\leq 1.0$. |
| RROD2 | 2 | INCONSISTENT HEATED LENGTHS | The total length for the independent variable for the axial power profile must equal the length of the heat structure. |
| RROD2 | 2 | INIT \& TABLE REACT. POWER UNEQUAL | The in itial value of power/reactivity must be the same as the interpolated table value. |
| RROD2 | 2 | NOT ENOUGH TEMPO. RARY STORAGE TO LOAD FP239 ARRAY. DECREASE NHIST. | Insufficient temporary storage exists to load the FP239 data. NHIST must be decreased. |
| RROD2 | 2 | NOT ENOUGH TEMPO. RARY STORAGE TO LOAD PHIST ARRAY. DECREASE NHIST. | Insufficient temporary storage exis's to load the PHIST data. NHIST must be decreased. |
| RROD2 | 2 | ZPWZT (K) NOT MONO. TONIC | The axial locations along the heat structure at which axial-power shape relative power densitites are defined must increase monotonically. |
| RSTGFN | 2 | GEN. H.T. IDI EQ. IDO | The same fluid volume was specified for both sides of the same heattransfer surface in the steam generator. |
| RSTGEN | 2 | H.T. I.D. ERRDR | The component number (ICMP or OCMF) for a heat-transfer surface in the steam generator is incorrect. |
| RSTGEN | 1 | ILLEGAL INDEX IN COM. PUTED GO TO STATE. MENT | The computed GO TO index does not have a valid value of 1,2 , or 3 . |
| RSTGEN | 2 | INCONSISTENT VALUES FOR ICFLG | All nonzero values of ICFLG must the the same in a given component. |


| RSTGEN | 1 | INT. JUNCTION ERROR | The number of secondary-side connections was found to be greater than NSJUN |
| :---: | :---: | :---: | :---: |
| RSTGEN | 2 | NODES LT. 1 NOT AL. LOWED | A STGEN (steam generator) must have at least one radial heat-transfer node in the tube walls. |
| RSTGEN | 2 | 1/ODES NE. NDHT | The number of nodes in the steamgenerator tubes and in the additional heat-transfer surfaces must be equal. |
| RSTGEN | 1 | NO, EXT, JUN. LT. 2 | The number of external junctions on the steam-generator secondary side is incorrect. The number must be two or more. |
| RSTGEN | 2 | NSCMP ERROR | The number of secondary internal components is incorrect; the limits are $1 \leq$ NSCMP $\leq 10$. |
| RSTGEN | 2 | TYPE ERROR | The secondary component is not a PIPE or TEE. |
| RSTGEN | 2 | VLT EXCEEDS ITS LIMIT. SEE TREOUT | Instructions were giver in the TRCOUT file to increase LENDIM in BLKDAT and to change the dimension in GENVLT. |
| RSTGEN | 2 | WALL AREA, WALL RA. DIUS ERROR | Either the steam-generator tube primary-side inner and/or secondaryside outer wall surface area is neg. ative or the tube inner radius is not positive in value. |
| RSTGEN | 2 | WALL AREAS INCONSISTENT | The internal and external wall areas for generalized heat transfer are inconsistent with cylindrical geometry; thus, the energy will be calculated incorrectly in the wall-conduction calculation. |
| RTEE | 1 | ICBS1 \& ICBS2 MUST BE $<0$ | When modelling a separator component (SEPD), the control-block ID numbers that define carryover and carryunder must be neagative. |
| RTEE | 2 | IENTRN MUST BE 1 TO INVOKF DFFTAKE MODEL | When specifying the offtake model option, the allowable input values for IENTRN are 0 and 1. |


| RTEE 2 |  <br> TABLE POWER1 | | |
|---|---|---|---|
| RTEE |  | | The TEE primary-side initial values |
| :--- |
| for the power-to-fluid table POWTB |
| and for the power-to-fluid variable |
| PWIN1 are not equal. |



| RTURB | VLT EXCEEDS ITS LIMIT- <br> SEE TRCOUT |
| :--- | :--- |
| RVLVE |  |


| RVLVE | 2 |  <br> FIRST TABLE |
| :--- | :--- | :--- |
| RVLVE |  |  |


| RVSSL | 1 | INSUFFICIENT MEMORY T'J LSNTINUE INPUT PROCESSING | Insufficient memory exists to load the VESSEL input data. |
| :---: | :---: | :---: | :---: |
| RVSSL | 2 | LAST THETA ANGLE IS INCORRECT | When specifying the last $\theta$ angle, the allowable input values for TH (NTSX) are $30,45,60,90,120,180$, or 360 degrees. |
| RVSSL | 2 | NEWRFD MUST $=1$ TO MODEL SPACER GRIDS | In order to model spacer grids within the VESSEL core region, the new reflood model must also be selected. |
| RVSSL | 2 | NSGRID MUST BE . GE. 0 | The number of spacer grids in the VESSEL core region cannot be negative. |
| RVSSL | 2 | PAN MUST EQUAL O IF NOAIR $=1$ | If the NOAIR $=1$ NAMELIST option was selected, then all noncondensablegas partial pressures must be input as zeros. |
| RVSSL | 2 | PAN MUST NOT BE GREATER THAN PN | The noncondensable-gas partial pressure is greater than the total pressure in a cell of a VESSEL level. |
| RVSSL | 2 | PRUBLEM TOO LARGE | The VESSEL dimensions are larger than the maximum allowed by the TRAC parameters NXRMX, NYTMX, and NZMX. These parameters must be increased of the VESSEL size reduced. |
| RVSSL | 1 | UNEXPECTED END-OFFILE REACHED WHILE READING VESSEL LEVEL DATA | An end-of-file was encountered while reading VESSEL level data. |
| RVSSL | 2 | VLT EXCEEDS ITS LIMIT. SEE TRCOUT | In the TRCOUT file, instructions are given to increase LENDIM in BLKDAT and change the dimension in GENVLT. |
| SCLMOM | 2 | INCONSISTENT BD FLW. ARE.I RATIOS | The ratic of the interface flow area 'o its adjacent internal mesh-cell For. area at the VESSEL-component outer-wall boundary does not have its value defined the same as the ratio for the interface one mesh-cell distance outside the wall boundary. These values must be equal and posive when an internal boundary condition is defined. |


| SCMLCM | 2 | SCM OVERFLOW | Insufficient SCM is available for reading in component array data. |
| :---: | :---: | :---: | :---: |
| SETCMP | 2 | CONTAINMENT MODULE NOT IMPLEMENTED | A control-panel vector input record has specified a CTAIN (containment) component. |
| SETCMP | 2 | INVALID COMPONENT TYPE - AAAA | The component type selected as part of the control-panei vector could not be found. |
| SETCMP | 2 | PARAMETER $X X X X$ IS INVALID FOR AAAA | The parameter selected as part of the control-panel vector is not valid. |
| SETCMP | 2 | TURBINE MODULE NOT IMPLEMENTED | This version of the interactive facility does allow use of the TURB (turbine) component in control-panel vector input. |
| SETCPV | 1 | SPECIFICATION ERRORS FORCE TERMINATION | An error has been discerned while control-panel vector input records were processed. A flag is set so TRAC will halt after all input-data records have been processed. |
| SETLCM | 1.2 | A-ARRAY OVERFLOW (CALLED BY SUBPROGRAM AAAA) | A subroutine of TRAC has requested more memory than is available. |
| SETLCM | 1.2 | CANNOT EXPAND MEMORY (CALLED BY SUBPROGRAM AAAA) | A subroutine of TRAC has requested more memory than is available. |
| SGEEV | 1 | JOB NE O, AND N GT. LDV | The user has requested eigenvector calculation in addition to the eigenvalues. However, the leading dimension of the array V , where eigenvectors are stored, is less than the order of the input matrix $A$. |
| SCEEV | 2 | LDA GT.LDV, ELEMENTS OF A OTHER THAN N BY N INPUT ELEMENTS HAVE BEEN CHANGED. | The leading dimension of array V . where eigenvectors are stored, should be equal the order of the input matrix $A$. If this i: the case, the elements of $A$ are rearranged. |
| SGEEV | 2 | LDA LT.LDV, ELEMENTS OF $V$ OTHER THAN THE THE N BY N OUTPUT ELEMENTS HAVE BEEN CHANGED. | The leading $d$ iension of array $V$, where eigenve "rs are stored, should be equal to the order of the input matrix $A$. It this is not the case, the plements of $A$ are rearranged. |


| SGEEV | 1 | N GT. LDA | The order of the input matrix $A$ exceeds the leading dimension of $A$. |
| :---: | :---: | :---: | :---: |
| SGEEV | 1 | N LT. 1 | The order of the input matrix $A$ is less than 1. |
| SOUND | 2 | CANNOT CONVERGE FOR MAXIMUM VAPOR FLOW | The iterative solution, for determining the choking point by iterating on the cell-edge pressure while maximizing the mass flux, did not converge. |
| SOUND | 2 | CANNOT CONVERGE ON PAIR AT THE CELL EDGE | Cannot converge on the non-condensable condensable gas partial pressure while the condition it the cell edge are estimated from the cell. center values. |
| SOUND | 2 | CANNOT FIND POSITIVE FLOW PRESSURE | When the flow is maximized by iteration of the cell-edge pressure, no physically realistic pressure value gives positive flow. This should never happen except under some extreme nonequilibrium conditions. |
| SOUND | 2 | CANNOT FIND THE EQUILIBRIUM CONDITION | Calculating the thermodynamic equilibrium condition in the presence of a noncondensable requires an iterative type solution, which did not converge. |
| SOUND | 2 | CANNOT FIND THE MAXIMUM FLOW POINT | When the flow is maximized by iteration of the cell-edge pressure, the decrease in pressure (down to physically realistic values) always keeps increasing the flow. Thus, the choking condition is never determined. |
| SOUND | 2 | CANNOT LOCATE SATU. RATION LINE | Saturation conditions could not be found corresponding to an isentropic expansion from the cell center to the choking plane. |
| SOUND | 2 | SOUND SPEED SOLU. TION DID NOT CONVERGE | The iterative solution, for determining the choking point by iterating on the cell-edge pressure while maximizing the mass flux, did not converge. |
| SRCHCL | 2 | COMPONENT $X X X X$ NOT IN COMPONENT LIST | The component number XXXX specified on a central panel vector input card is not in the component list (interactive only). |


| SRCHMDT 2 | CATEGORY AAAA NOT <br> FOUND | The requested component sype was <br> not found in the NPA Master Dictio- <br> nary. |
| :--- | :--- | :--- |
| SRTLP |  |  |


| SVSET? | 1 | TOO FEW LEVELS DI- <br> MENSIONED FOR |
| :--- | :--- | :--- |
| 3VSLTH |  |  |

A vessel component has more than 50 levels and arrays VOLLEV and DZLEV are dimensioned in subroutine SVSET3 for a maximum of 50 The computed GO TO index based on the signal-variable p ameter ISVN does not have a valid value. The signal-varia' 'e number IS: . V does not have a - lid value based on definable parc.neters for a heatstrusture component.
The signal variable parameier reactor power ( $15 \mathrm{VN}=18$ ) or , eacior period (ISVN = 19) cannot be defred for a nonpowered ( $N O P W R=1$ ) heatstructure compenent.
The control block specified as part of the separator mosiel could not be found
At least two control blocks are needed for the separator model.
The number nf source connections to a single three-dimensional vessel cell has exceeded 10 . The parameter iNMS must be increased.
The liquid temperature in some cell has fallen below 273.15 K or has risen above 713.94 K
The pressure in some cell has fallen below i. 0 Pa or risen abjue $45 \times$ $10^{6} \mathrm{Fa}$
The vapor temperature in some cell has fallen below 273.15 K or risen above 3000 K

- ie CPU time limit was reach ?d befoe the end of the problem.

The time step was reduced to the minimum allowed, and the outer iteration failed tc converge.
Los Alamos recommends that memory be preset to negative indefinite.

| TRANS | FAVGL CHANGE TOO <br> LARGE |
| :--- | :--- |
| TRIP |  |


| TRPSET 2 | TOO MANY PENDING <br> ISET CHANGES |
| :--- | :--- |
| TRPSET |  |

## APPENDIX H <br> UPDATE/HISTORIAN DEFINABLE NAMES IN TRAC

| Name | Description |
| :---: | :---: |
| ASIZE | Sets the $A$ array (container array) to a fixed size. |
| CRAY | Coding is unique to CRAY computers. |
| CYB205 | Coding is unique to Cyber 205 computer (not tested ir the released version). |
| EIGHTB | Coding is unique to a machine with light 8 -bit bytes in a word. |
| FOURB | Coding is unique to a machine with four 8 -bit bytes in a word. |
| HEX | Uses hexadecimal rather than octal. |
| IBM | Uses coding unique to IBM computers. |
| INEL | Uses coding to write graphics output in INEL format. |
| INTERACT | Interactive version (not supported). |
| 17600 | Coding is unique to CDC 7600 LTSS operatir.g system (not supported). |
| LANL | Coding uses local LANL routines (on CTSS) or is unique to LANL computing environment. |
| MEL | Coding needed for link to MELPROG to generate MELPROG/TRAC severe core darnage code. |
| MVS | Cocing for IBM MVS operating system. |
| NOLCM | Coding for current machines with contiguous memory rather than small sore/large core split as on a CDC 7600. |
| NPA | Additional coding for LANL Nuclear Plant Analyzer (NPA) link. |
| OVLAY | Code is overiaid. |
| \$7600 | Coding is unique to $C D C 7600$ Scope operating system (not supported). |
| SRPNPA | Special logic for SRP NPA link. |
| TENB | Coding is unique to a machine with ten 6-bit bytes in a word. |
| UNICNS | Coding needed for UNICOS operating system. |
| VAX | Coding for VAX (not supporsed). |
| VDM | Coding to use variable-dimension memory by expanding blank common dynamically during execution. |
| VECTOR | Selects special rectorized local LANL soutines (on CT55). |



## 10. SUP PEMENTARY NOTES

Science Applications International Corporation, 2109 Air Park Rd., SE, Albuquerque, NM 87106
ABSTRKCT (20 ment of nem)
The Translent Reacior Analysis Code (TRAC) was devaloped to provide best astimate predictions of postulated accide ats of light-water reactors. The TRAC-PF1/MOD2 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilitios. The code features either a one- or a three-dimensional treatment of the pressu*? vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncond3nsable gas field and solute tracking, flow-regime-dependent constitutive equation treaiment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entirg accident sequences, including the generation of consistent initial cunditions.

This manual is the third volume of a four-volume set of documentation on TRAC-PF1/MOD2. This guide was developed to assist the TRAC programmer and contains information on the TRAC code and data structure, the TRAC calculational sequence, memory management, and various machine configurations supported by TRAC.

TRAC, reactor, hydrodynamics, modeling

## 13 AVAICRITTY STATEMEN Un'imited <br> Ta SECURITY CLASSFFICATION <br> $5 \mathrm{H}^{\mathrm{Mm}}$ <br> Unclassified

(The Abourt)
Unclassified
15. NUABER OF PAGES


[^0]:    *Science Applications International Corporation
    2109 Air Park Road, SE
    Atbuquerguce NM 87 $\mathrm{Na}_{6}$

[^1]:    *These variables are used to implement an ad hoc "triple-time" capability for the void fraction introduction of additional old-old-time variables should use this coding as a model

[^2]:    F.3.7. PRIZER Component Graphics

    In addition to a call to IGCOMP, subroutine IGPRZR writes to the graphics catalog variables specific to the PRIZER comoonent

[^3]:    APPENDIX G

