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TIME- AND VOLUME-AVERAGED CONSERVATION EQUATIONS
FOR MULTIPHASE FLOW

PART ONE: SYSTEM WITHOUT INTERNAL SOLID STRUCTURES
by

W. T. Sha, B, T. Chao, and S. L. Soo

ABSTRACT

Lecal volume averaging of phasic conservation equations of mass, momentum, and
energy for a multiphase system yields equations in terms of local volume
averaged products of density, velocity, energy, stresses, etc., together with
intsrface transfer integrals. These averaging relations are subject to the
fc.lowing length scale restrictions:

d < KL,

where d is a characteristic length of the pores or dispersed phases, % is a

characteristic length of the averaging volume, and L is a characteristic
length of the physical system.

Solutions of local-volume-averaged conservation equations call for expressing
these local volume-averaged products in terms of products of averages. In
nonturbulent flows, this can be achieved by expressing the "point” variable as
the sum of its intrinsic volume average and a spatial deviation. In turbulent

flows, such a determination can be made via time averaging over a duration T
such that

T gF K T LKL LR

where Typ 1s a characteristic time of high-frequency fluctuation and TgF is a
characteristic time of low-frequency fluctuation. In this case, the "point”
variable is decomposed into a low-frequency component of the iuntrinsic volume
average and the associated spatial deviation and a high-frequency component.
This procedure reduces the volume-averaged products to products of averages
plus terms representing eddy and dispersive diffusivities of mass, Reynolds
and dispersive stresses, eddy and dispersive conductivities of heat, etc.
These terms arise from both local spatial deviations and high-frequency
fluctuating components. Time averaging after local volume averaging preserves
the identity of dynamic phases. The resulting conservation equations are in
the form of differential-integral equations of transport with probability
integrals depending on phase configurations, interfacial velocities, and other
factors. When the flow conditions are such that the local averaging volume
can be male sufficiently small that the effect of spatial deviations can be
ignored, and in addition, the contributions due to high-frequency fluctuations
in local volume fraction and fluid density are also negligible, then the
proposed set of rigorously derived conservation equations reduces closely to
various forms that are currently “accept2d” for thermal hydraulic analysis of
nuclear reactors as well as systems irvolving two-phase flows in general.

ii



In Part One of this study, a rigorous derivation of a set or conservation
equations of mass, momentum, and energy for a multiphase system without
internal solid structures via time-volume averaging is presented. Similar
derivation is presented in Part Two of this study (a separate publication)
with consideration of the presence of stationary internal solid structures,
for which the concepts of volume porosity, directional surface porosities,
distributed resistance and distributed heat source or sink are introduced.
The concept of directional surface porosities is new and it greatly facili-
tates modeling anisotropic flow and temperature field for such systems.
Specific attention is given to the numerical computation of flow and

temperature fields.
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Heat flux vector
Characteristic length of local averaging volume v
Characteristic length of physical system

Interfacial momentum source per unit volume, t§!k> is defined by Eq.
6.5.22

Unit outward normal vector of interface as illustrated in Fig. 2
Static pressure

Interfacial heat transfer rate per unit volume

Time

Temperature; also averaging time interval

Internal energy per unit mass

31<2I> is the volume-averaged turbulent internal energy flux of

phase k, defined by Eq. 6.9.4

1<§k> is the volume-averaged dispersive internal energy flux of
phase k, defined by Eq. 6.9.7

31<§:> is the volume-averaged turbulent, dispersive internal energy

flux of phase k, defined by Eq. 6.9.8

3

Velocity

Local averaging volume; also volume in general
Interface velocity

Cartesian coordinates; z is also elevation
Local volume fraction

Surface porosity

Volume porosity

Interfacial mass source per unit volume due to phase change, t<l‘k>
is defined by Eq. 6.3.10

Interfacial total energy source per unit volume, tﬁf&) is defined by
m. 6.7032

Interfacial enthalpy source per unit volume, t<'&> is defined by Eq.
6.11.16
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NOMENCLATURE

Area: A, 1is the free flow area of enveloping surface of local

averaging volume v; A, is the total interfacial area associated with
phase k inside v

Specific heat at constant volume

Characteristic length of a dispersed phase

Diffusivity

D:k is the eddy diffusivity for mass transfer of phase k, defined
by Eq. 6.3.3

~T

an is the dispersive diffusivity for mass transfer of phase k,
defined by Eq. 6.3.4

Dy is the molecular thermal diffusivity of phase k, defined by Eq.
6.9.20

k is the turbulent diffusivity for internal energy transfer of
phase k, defined by Eq. 6.9.5a

DT

Total energy per unit mass, = u + (1/2) U+ U

31<§:) is the volume-averaged turbulent total energy flux vector of

phase k, defined by Eq. 6.7.5

1<§k> is the volume-averaged dispersive total energy flux vector of
phase k, defined by Eq. 6.7.6
31<§:> is the volume-averaged turbulent, dispersive total energy

flux vector of phase k, defined by Eq. 6.7.7

3

Field force per unit mass
Gravitational acceleration

Enthalpy per unit mass

3‘(35) is the volume-averaged turbulent enthalpy flux vector of
phase k, defined by Eq. 6.11.4

i(Ek> is the volume-averaged dispersive enthalpy flux vector of
phase k, defined by Eq. 6.11.5

31(&1) is the volume-averaged turbulent dispersive enthalpy flux

vector of phase k, defined by Eq. 6.11.6

3

Mean curvature of interface between phases k and f
Unitary tensor

Internal heat source per unit volume
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Vfr'ann',unt properties sociated with high-frequency fluctuation
Refers to the case of constant density
'he following superscripts appear in Section 8 only:
Same as | 1{}
Mass weighted mean defined in Ref. 13
Refers to Ishii
Further simplification of
Refers to zero spatial deviation

Subscripts

Capillarity; also characteristic quantity

High frequency

Interface

Interface of fluid phases k and f{; \k = \w'I ,\r'\ = \t
Low frequency

Mass: also mixture

Components in the x-, y=-, and 2 -direction

Symbols
o

Vector
lensor, second order

Area average, local
denotes average over free flow area for the fluid mixture

notes intrinsic average over free flow area for a phase

Volume average, local
— denotes volume average over fluid mixture

denotes intrinsic volume average of a phaue

lime average







Interfacial internal energy source per unit volume t€9k> is defined
by Eq. 6.9.18

Thermal conductivity
Bulk viscosity
Dynamic viscosity
Density

Surface tension
Characteristic time
Viscous stress

31(;:> is the volume-averaged Reynolds stress of phase k, defined by

Eq. 6.5.3

3i<ik> is the volume-averaged dispersive stress of phase k, defined

by mo 6.5.4
34 ~T

<Lk> is the volume-averaged turbulent, dispersive stress of phase
k, defined by Ea. 6.5.5

Dissipation function
Scalar total energy function defined by Eq. 6.7.3
Scalar enthalpy function defined by Eq. 6.11.2
Scalar pressure work function defined by Eq. 5.9.10
Scalar internal energy function defined by Eq. 6.9.2
Scalar viscous dissipation function defined by Eq. 6.9.13
Intensive property
Vector mass flux function defined by Eq. 6.3.5
Vector pressure work function defined by Eq. 6.7.9

Vector viscous stress work function defined by Eq. 6.7.11

Superscripts

Local spatial deviation

High-frequency fluctuation

( )t
°C)

()
™)

&
( )ld

kf

LF

"y'z

()
Q)

2






Qzeutou

v Gradient
Ve Divergence
3 Dyad

(v, )c Conjugate of dyad

Vs Surface gradient along interface between phases k and f
d a . u
dtk Substantive time derivative, 5 + (yk)L? « v

Acronyms
(EPYTL) Interfacial enthalpy transfer integral, defined by Eq. 6.11.15

(HTIL) Interfacial heat transfer integral, defined by Eq. 6.7.20
(IETI) Interfacial internal energy transfer iategral, defined by Eq. 6.9.17
(MTI) Interfacial mass transfer integral, defined by Eq. 6.3.11

(MMTT) Interfacial momentum transfer integral, defined by Eq. 6.5.21

(PTIL) Interfacial pressure transfer integral, defined by Eq. 6.5.15
(PWT) Interfacial pressure work integral, defined by Eq. 6.7.25
(PHI)(h). defined by Eq. 6.11.12, 1is associated with enthalpy
product ion
(PUI)(“). defined by Eq. 6.9.11, Is associated with internal energy
production

(TETIL) Interfacial total energy transfer integral, defined by Eq. 6.7.31
(vb1) Interfacial viscous dissipation integral, defined by Eq. 6.9.14
(VSTIL) Interfacial viscous stress transfer integral, defined by Eq. 6.5.16
(WI1) Interfacial viscous stress work integral, defined by Eq. 6.7.26

All equations referred to ia the above list are written for phase k. For

phase f, it 1is necessary only to change subscript k to f for the entries that
appear in the equations.
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TIME- AND VOLUME-AVERAGED CONSERVATION EQUATIONS
FOR MULTIPHASE FLOW

PART ONE: SYSTEM WITHOUT INTERNAL SOLID STRUCTURES

by
W. T. Sha, B. T. Ql.o. and S. L. Soo

EXECUTIVE SUMMARY

Multiphase flows consist of interacting phases that are dispersed randomly in
space and in time. An additional complication arises from the fact that the
flow regica of interest often contains irregularly shaped structures. While,
in principle, the intraphase conservation equations for mass, momentum, and
energy, and their initial and boundary conditions can be written, the cost of
detailed fluid flow and heat transfer analysis with explicit treatment of
these internal structures often is prohibitive, if not impossible. In most
engineering applications, all that 1is required is to capture the essential
features of the system and to express the flow and temperature field in terms
of local, global quantities while sacrificing some of the detalls. The
present study is an attempt to achieve this goal by applying time averaging
after local volume averaging.

Local volume averaging of conservation equations of mass, momentum, and energy
for a multiphase system yields equations in terms of local-volume-averaged
products of density, velocity, energy, stresses, and field forces, together
with interface transfer integrals. These averaging relations are subject to
the following length scale restrictions:

d <<t KL,

where d is a characteristic length of the pores or dispersed phases, L is a
characteristic length of the averaging volume, and L 1s a characteristic
length of the physical system,

Solutions of local-volume-averaged conservation equations call for expressing
these local volumé-averaged products in terms of products of averages. In
nonturbulent flows, this can be achieved by expressing the "“point” variable as
the sum of its intrinsic volume average and a spatial deviation. In turbulent
flows, the same can be achieved via subsequent time averaging over a duration

T such that

T << T < 1pp,

where Typ 18 a characteristic time of high-frequency fluctuation, and Typ 18 a
characteristic time of low-frequency fluctuation, In this case, an instanta~
neous “point” variable ¢, of phase k 1is decomposed into a low-frequency
component ¢, p and a high-frequency component ¥+ similar to Reynolds analysis
of turbulent flow. The lu-fnquncy component consists of the sum Qf the
local intrinsic volume average (0.) and its local spatial deviation ¢ . ..
Time averaging then reduces the volume averaged products to products of



averages plus terms representing eddy and dispersive diffusivities of mass,
Reynolds and dispersive stresses, and eddy and dispersive conductivities of
heat, etc. These terms arise from both high-frequency fluctuations and local
spatial deviations. This procedure of time averaging after local volume aver-
aging leads to a set of differential-integral equations of conservation for
multiphase flow. If the flow conditions are such that the local averaging
volume can be made sufficiently small that ¢ . can be ignored, and in addi-
tion, the contributions due to high-frequency fluctuations of local volume
fraction and fluid density are also negligible, then the rigorously derived
set of equations presented in this report reduces, as approximations, to the
various forms that are currently “accepted” for thermal hydraulic analysis of
nuclear reactors and systems involving two-phase flow in general.

The sequence of performing local volume averaging and time averaging cannot be
chosen arbitrarily. Local volume averaging should first be performed in order
to preserve the different dynamic phases such as bubbles or drops of different
sizes. Time averaging of the phasic conservation tequations from the very
beginning will remove the distinction of dynamic phases, unless suitable
conditional averaging is used. Time averaging leads to fraction of residence
time of a phase rather than volume fraction of a phase.

Part One of this study presents the detalled derivation of a set of conserva-
tion equations of mass, momentum, and energy for a multiphase system without
internal solid structures via time and volume averaging. Similar derivation
will be presented in Part Two (a separate publication), which treats systems
having stationary internal solid structures, for which use 1is made of the
concepts of volume and directional surface porosities, distributed resistance,
and distributed heat source or sink, The concept of directional surface
porosities, which 18 new, greatly facilitates modeling anisotropic flow and
temperature field 1in such systems. Specific attention {s given to the
numerical computation of flow and temperature fields.

l. INTRODUCTION

Multiphase flows consist of interacting phases that are dispersed
randomly in space and Iin time., Additional complications arise from the fact
that the flow system of interest often contains irregularly shaped structures.
While, in principle, the intraphase conservation equations for mass, momentum,
and energy, and their associated initial and boundary conditions can be writ-
ten, the problem is far too complicated to permit detailed solutions., In fact,
they are seldom needed in engineering applications. A more realistic approach
is to express the essential dynamics and thermodynamics of such a system in
terms of local, global quantities. This may be achieved by applying some sort
of averaging process, such as time averaging, space averaging, statistical
averaging, etc, The present work begins with local volume averaging to be

followed by time averaging. In this way, the identity of dynamic phases 1is
preserved.

In an earlier report|l], the loca! volume-averaged transport equations
for miltiphase flow In regions containing stationary, distributed solid struc-
tures are derived. PFurther time averaging of these equations is presented in
Ref, 2. A significant step in the development of these averaged equations is
the int r‘udu«tlun of the concept of volume porosity and directional surface
porosity assoclated with {immersed stationary solid structures. This concept

< . .
Referred to as directional surface permeadility in Refs. | and 2.




greatly facilitates the treatment of flow and temperature fields in aniso-
tropic media, and significant savings in computational effort are realized in
many cases. However, recently we noted that certain assumptions introduced in
Ref. 2 regarding the decomposition of the point values of the dependent
variables, such as density, velocity, total energy, internal emergy, etc.,
could be improved. Furthermore, the approximations introduced in evaluating
the time averages of the interfacial integrals are not entirely consistent
with the inclusion of the high-frequency fluctuating component of the local
volume fraction in the analysis. To present a consistent set of time-volume-
averaged equations, we begin by considering in Part One of this report a
system that 1is without stationary internal structures. The governing
conservation equations for multiphase flow derived here via time-volume
averaging are subject only to the length scale restrictions inherent in the
local volume averaging theorems used[3], and the time scale restrictions

prescribed in Ref. 2.

In Fart Two of this report, which will be issued as a separate document,
the conservation equations of mass, momentum, and energy for multiphase
systems with stationary internal solid structures via time-volume averaging
will be presented. Advantage 1is taken of the use of volume porosity,
directional surface porosity, distributed resistance, and distributed heat
source or sink. The concept of directional surface porosity is new and has
significant practical utility in modeling flow and temperature flelds in
anisotropic media.

This report--Parts One and Two--supercedes all our previous work reported
in Refs. 1 and 2.

2., SIGNIFICANCE OF PHASE CONFIGURATIONS IN MULTIPHASE FLOW

The configuration of phases plays a major role in determining the
dynamics of multiphase flows and the concomitant heat and mass transport
processes when they occur. This is illustrated in Fig. | for the two extreame
cases of the highly dispersed flow and the ideally stratified flow which, by
definition, has a plane interface. The figure is, to a large extent, self-
explanatory. It may be noted that the mixture velocity U, 1s based on the
barycentric frame of reference. Only simple arithmetic is required to demon-
strate that if the Bernoulli relationship for the ideal mixture in highuiy
dispersed flow is written as Eq. 2.1, then that for the individual phase must
be given by Eq. 2.2. For the ideally stratified flow, the Bernoulli relation~
ship for the individual phase is given by Eq. 2.3. It follows then, that for
the mixture is given by Eq. 2.4. The corresponding Bernoulll equations for
other systems, such as bubbly flow, annular wavy flow with dispersed liquid,
intermittent flow, stratified wavy {low, etc., are far more complex.

3. AVERAGING RELATIONS

3.1 Preliminaries

For convenience of the discussion to be presented in Part Two, we
consider a general flow system occupying a region as illustrated in Fig. 2.
The flow system coincides with the constant local averaging volume v, which is



Highly Dispersed Flow Ideally Stratified Flow

z
.. ® M
T —_—
e*e* o . ‘-"1_;:-'L132}d R

- ;-

Gradient of volume fraction

Va « V(conc.) Va 1is of no significance
D
e ’ Concept of diffusivity is
Diffusion velocity, DVa irrelevant
Wave propagation
Existence of speed of sound No common speed of sound
in the mixture
Common characteristics Individual characteristics of
phases
Transfer of inertia force Plane interface; no inertia
across interface force transferred across
interface

Bernoulli relationships for steady, incompressible, inviscid, one-
dimensional flow

e ® i P S P is density of phase k based on mixture volume

Pa'n * { O U | eglg ¥ E LA

P- - {'ck?h
Ideal Mixture Individual Phase
(l/2)p-lﬂ. + P- + LI (1/2)»k lﬂk + Pk N ? 82
= Constant (2.1) = Constant (2.3)
Individual Phase Mixture
(1/2)9.‘0; = (/2 (v, = v )? (1/2)p U2 + (1/2){ ckpk(uh - )"
+ P +o,82 = Constant (2.2) + Py + a8z = Constant  (2.4)

Fig. 1. Significance of Phase Configurations in Multiphase Flows
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invariant in both space and time, and its orientation relative to some iner-
tial frame of referewce is fixed. It has an enveloping surface of area A with
unit outward normal n. The region consists of a partially and/or totally
immersed, fixed solid phacc w and a fluid mixture with phase k and other phase
or phases f flowing through the region. Phase k has a variable volume v with
total interfacial area A, in v. A portion of A  is made of fluid-fluid

interface ¢ and the remainder is fluid-solid interface Ay . The unit normal
vector n, of A, 1s always drawn outwardly from phase k, regardless whecher it
is assoclated with Ay or A . The local velocity of phase k is Uy and that
of the iaterface Wy. On A, W, vanishes except when there is a chemical
reaction or if the solid is porous and fluid is passing through the pores. It
is seen that the following relations hold:

a. Volume of fluid mixture:

'I v . (3.1.‘)
o T k

b. Local averaging volume:

Ve, v, (3.1.2)

where v, 1is the total volume of the dispersed, stationary solid
structures in v,

¢, Volume porosity:
Yo = Va/V =1 = (v,/v), (3.1.3)
which is a constant for a given v.

d. Volume fract'on of phase k in fluid mixture:
ag = vk/V-, (3.1.4)
which is a dependent variable.

3.2 Local Volume Average and Intrinsic Volume Average

For any intensive property ¥y @ssoclated with phase k of the fluid

mixture m, be it a scalar, vector, or ton-or. the local volume average of Vi
is defined by

‘e et v v ey ) oy av. (3.2.1)
v

K "
The volume average over the fluid mixture is

m 1
%, -{-—[ Vedvma - v dv, (3.2.2)

m 'k k vk



which has often been referred to as the phase average, and the intrinsic
volume average for phase k is

Hap =] v av. (3.2.3)

kvk

These averages are related according to

3 3m 31
Qk> -Yv Qk> - Yvak <'k> - (3.2.‘)

In the absence of immersed solids, v, = v, v, = 1, and hence,

‘wp = P ma e (3.2.5)

The conservation equations presented in Part Ome pertain to this special case.

3 It should be noted that the volume averages, 3<¢k>, hak), and
1<¢k>, are defined everywhere in the space under consideration, not just in
the space occupied by phase k. They are wathematically well behaved
functions. It is easy to demonstrate that the following relations are valid:

3<3Qk>) i 3<‘k>' h<3l<*k>> " 3I<*k>. 31<3i<‘k>> g 31<*k> .

B =a, P, W) =ve, tap . (3.2.6)

An example of the physical meanings of the three volume averages
defined in Egqs. 3.2.1 through 3.2.3 can be obtained by applying them to a
scalar such as fluid density p, . Thus,

31 1 -
@ "] opdvep,, (3.2.7a)
k e

where Sk is the mean density of the m.terial constituting phase k in v,

Im 3 -
@k) -a, (pk> e, Py (3.2.7b)

and

3 -
Qk> "V 2Pk (3.2.7¢)



e =1, 3> =gy, and > =y gy

If we set y, = 1, then

“imilarly, for any property ¢ associated with the fluid mixture, be
it a sca' ., vector, or tensor, the local volume average of y is defined by

> el vavey, L) yav. (3.2.8)
v

m v
m m

The volume average based on v, 1is clearly the intrinsic average for the
mixture; hence,

B> =l yoav = Mg, (3.2.9)
V- v
m
ead
3> -y, 3> -y, Hea> (3.2.10)

When vy, = 1, the three averages 3<0>. 3'(0), and 31(&) are identical.

3.3 Local Area Average and Intrinsic Area Average

The various area averages of ¢, are defined in a manner similar to
the volume averages. The local area average of §, is defined by

2 1 1
Ack . Abk
in which A, 1s the total free flow area avalilable for the fluid mixture to

enter or to exit from the averaging volume v, and A,  1is that allotted to
phase k. The surface porosity Ys 18 defined by

>

-t
Yo" 2 (3.3.2)

i.e., the fraction of the enveloping surface A through which the fluid mixture
flows.

The area average of y, over the total free flow area A, 1s

A

Byo =t [ v =Sl 1y oa, (3.3.9)
e Aok e ek A‘k
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and its intrinsic area average is

21(* > .L—'I ] dA . (303.‘)

k A k
ek A
ek

Clearly,

2 2m Aek 21

in which Aek/Ac is the fraction of the free flow area allotted to phase k.

Similar expressions can be written for any property ¢y associated
with the fluid mixture. The results are:

2 1
@G> 'K{ ¢ dA , (3.3.6)
e
My> mde |y oan = Hg (3.3.7)
e A
e
and
24> -, o> -7, B> . (3.3.8)

The meaning of A.k/A' in Eq. 3.3.5 can be seen by examining the mass flux at a
bounding surface of a local averaging volume in the form of a rectangular
parallelopiped AxAyAz. Consider, for example, the mass flow rate of a mixture
of two phases k and f through area AA, which may be a portion of AAx(-
AyAz). Thus, we write AA.., = Yax 0Ay- early,

p.UJA..‘ o pk“bﬁ‘“ck,x * pf"fx“of.x » (3.3.9)

where U ., Up,, etc. denote velocity components along the x-axis.
Since

p.U-x -akpkun +atpfuh p (3.3.10)

it follows that

ek, x ef ,x
p—L.5 E. - p—.L 1% =
A A GI ’ and A A ‘f . (303011.)
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Using the same reasoning, one may show that for flow in the y direction and
through AA,’,.

AA . AACf
—A—:—lx - uk' and -—ATJ = °f - (3o3ollb)
e,y e,y

and for filow through AA, ,,

Aef: & ef,z

—l o ——. - 5

AI‘ g Ao and AAe . af . (3.3.11¢)
’ A

The foregoing results are valid for approximating a homogeneous nonstructural
medium, as has been pointed out by Whitaker[3]. Strictly speaking, they are
applicable only to a highly dispersed system. The length scale restrictions

of the local volume-average theorems developed by Whitaker[3] are consistent
with these approximations.

3.4 Local Volume Averaging Theorems and their Length Scale Restrictions

The local volume averages of the spatial and time derivatives of a
fluid property §,, which may be a scalar, vector, or tensor, have been given
by Whitaker[3,4], Slatiery[5], Anderson and Jackson[6], Gray and Lee[7], and
others. They are related to the corresponding derivatives of the averages aad
an interfacial area integral according to the following relations:

3 3 -
44 tk) =V Qk> +v v, B da , (3.4.1a)

Ly
A

<v-gk>-v- 3<‘t>+"-l£k!t"2k“’ (3.4.1b)

3

and

3{“" 33(‘&) -1
gt /" "3c "V [ w4 cn 4. (3.4.2)

A

In the foregoing equations, Ay denotes the sum of all interfacial areas asso-
ciated with phase k inside the local averaging volume v. Thus, referring to
Fig. 2, consists of the fluid-fluid interface Ayg and the iluid-solid
int.rfucchxn. For a stationary, nonporous and nonreacting solid, !* vanisl.es

on A’kw‘

It 1is important to note that these averaging relations are subject
to the following length scale restrictions, first given by Whitaker[3]:

d <<t «L (3.4.3)
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where d is a characteristic length of the dispersed phase, t 1s a character-
istic length of v, and L is that of the physical system. Therefore, the
averaging volume cannot be made arbicrarily small.

Whitaker[3], Slattery[4], Gray and Lee[7] also showed that
3 -1
V- %)'V I lt'&dA. (3.‘.‘)
A
ek
In the Zartesian coordinate system, §, = 1 ¢, + ] ¥, *+ kK Yy, where 1, j§,

and k are unit vectors ir the positive x, y, and z difections, respectively.
For v = AxAyAz centered at the point (x,y,z), Eq. 3.4.4 can be written as

Vo 3&)

- AAe,rt-(AxIZ) AAeklxﬂ'Ax/Z) 1 f oo dA
ax Ays AAe,x*"(Ax/Z) AAek,x-k(Ax/Z) AA “_(A‘/z)u "
x AAct,x-(A x/2) AAck,x-(AxIZ) 1 v, dA

ke Mo x-ax/2) ek, x-(ax/2) BAgk x-(ax/2) -
o L [2e,yray/2) Yok, yocay/2) 1 oy
oy duix Mo, yray/2) ek yH(ay/2) sA #(A’,z‘)" y
“e,z-(u/Z) AAcka-(Aylz) 1 ! v, dA
bax  BAg y-ay/2)  Dex,y-(ay/2) Y S ®
1
'0'Az (analogous terms)
~ 3 21 3 21
"5 ‘afx "’ Y 5% Yy
3 21
+ -a—; YA‘ak qk‘> R (3.‘-5)
in which y“; YAy and Yz 8T€ directional surface porosities defined by
AA
- e, x+(Ax/2)
YA,!"‘(A!/Z) AyAz
Yax = { or (3.4.6a)
AA
YA, x-(Ax/2) ":,‘(::/2) ’
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& - e, y+ay/2)
YA,y+(av/2) Azhx

Tay = ﬁ or (3.4.60b)

AAe.z-SAz[Z)
\JA,y-(ay/2) T AzAX .

and similar expressions for y,,. For compactness, we write Eq. 3.4.5 in
vectorial form as

v dg0 v ve, P (3.4.7)

Equation 3.4.7 shall be used for all flux-related quantities in the governing
time and volume-averaged conservation equations presented in Part Two.

Upon setting y, = 1 in Eq. 3.2.1, one obtains 31> = ya, as has
been noted previously; hence, Eq. 3.4.2 gives

ack b
O b R (3.4.8)

A

since vy, is time-independent. Furthermore, Eq. 3.4.la gives

v Yvak - - V-l I 2k dA ’ (306.9)

A

which, upon summing up for all k's, leads to

Vy,=-v'Jf s aa-v'][ n a (3.4.10a)
. Akf " Akv
since | a, = 1. The first term on the right-hand side of Eq. 3.4.10a vanishes
k

since, on Ay ¢--be it a closed surface such as droplets or bubbles in dispersed
flows or an open-ended surface such as that in stratified flows--n, = - ng for

any point on Ap ¢+ Physically, this must be so because Yy 18 totally unrelated

to Ayg. For solids that are completely immersed in the fluids in v, the
second term also vanishes. Accordingly,

vy, =-v ][ o, dA (3.4.10b)

L
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where A‘i," undary denotes fluid-solid interface ftor solids that are cut
through by the nding surface A of the local averaging volume v. It should
be emphasized that the validity of Eqs. 3.4.8, 3.4.9, and 3.4.10b must
necessarily be subject to the length scale resiriction of Eq. 3.4.3. In fact,
all results given in chis report are, strictly speaking, subject to that
restriction,

Equation 3.4.8 can be rearranged to read

da
i s
el |

9 m A

dA , (3.4.11)

L

for which a physical interpretation can be r adily obtained. Consider, for
instance, phase k to be expanding bubbles in a liquid. Then the surface
integral in Eq. 3.4.1] simply means that the time rate of increase of volume
of phase k in the mixture which, upon dividing by the mixture volume v,, gives
the time rate of increase of a,. A physical interpretation of Eq. 5.4.9 for
Yy = 1 is given in Appendix A.

To conclude this section, we reiterate that for flux related to
quantity y,, we have on one hand

V . 3%) =7 o YAGk 21%) » (3.4.12)

as has been demonstrated. On the other hand, for a vector y, that is not flux
related, we have

3 31
V . %) ol V . Yvak <!'k> . (3.4.13)
For any scalar intensive property y,, the corresponding relation is

3 31
v qk> =9 YV Gk (*k> . (3.6.14)

4, PHASIC CONSERVATION EQUATIONS AND INTERFACE BALANCE EQUATIONS

4,1 Phasic Conservation Equations

The equations of conservation for a pure phase are given by con-
tinuum mechanics. While a "pure” phase commonly refers to one physical phase,
such as vapor, liquid, or solid, it also includes certain nonreactive
mixtures, such as room atmosphere or an aqueous solution of glycerine. The
identification of a multiphase system is best made in terms of its dynamic
phases according to their differeat dynamic responses{8], despite the fact
that they may be of the same material. For a pure phase k, the equations of
continuity, momentum, and total energy are, respectively:
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(apk/ac) +9 . (pbgk) =0 (4.1.1)
(3phgk/3t] +V . (p|U|U') =-VP +Ve g +o £ (4.1.2)

(%, E At) +V .+ (p UE) ==-7. Up, +ve (U - g)

+pk_l_1k~£-7-;)_qk+.!gk, (4.1.3)

where p, 1is the density of fluid in pure phase k, Uy is its velocity, Py 1s
the static pressure, f is the field force per unit mass which is taken to be a
constant in the present study, is the viscous stress tensor, E, is the

total energy per unit mass, J., 1s the heat flux vector, and Jgk 1s the heat
source per unit volume inside phase k. By definition, E, = u  + U « U,/2,
with u, being the internal energy per unit mass. Alternatively, the energy
equation may be expressed in terms of u, or enthalpy per unit mass hy:

3p,u
k k r
¥E +V-(phgkuk) P Ve L v-qu+3u+;k.vy_k. (4.1.4)

The double dot in the last term denotes the scalar product of two second-order

tensors and is usually represented as $y» the dissipation rate per unit volume
of phase k.

EEEEEEL +97 ( h ) = SEE -9 e +J.. +9¢ (4.1.5)
3t M) T dae ¥ Jgx * O o wke

in which the substantive derivative
d 3
r It TR - SR (6.1.6)

4.2 Interfacial Balance Equations

The simplest case of the fluid-fluid interface 1is one of zero

thickness. The mass, momentum, and total energy balances at the interface Akf
(between phases k and f, Fig. 2) are given by

Mass Balance:

oYy =¥ e n +o (U -¥ ) n =0. (4.2.1)

Momentum Balance (Effect of changes in mean curvature ignored) :

“Veks t Byt en e 0 (Y -W ) cn -o U (U -W ). n

+(- Ie, 4-2*9 *n + (- Lp.+ If) & 0 . (4.2.2)
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Total Znergy Balance (Capillary energy ignored):

LRSS MRS R F FER RATL RS PR 'R PR 7
-&.(-‘Pkﬁnk)ogk—gfo(-Ipf+1’-f).2f-u, (4.2.3)

where n, i{s the unit normal vector outward frcm phase k and directed along the
mean curvature H, © is the interfacial tension, V £ is the surface
gradient operator, and 1 is the unitary tensor. The 1nter¥acial velocity gkf
= Wge» and Heg 1s positive when the associated radius is pointing outward. In
Eq. 4.2.3, the energy associated with surface tension and the corresponding

dissipation are neglected.

The internal energy and enthalpy balance equations for the interface

A ¢ are
f
oYy ~ By oo + o oom vou (U mHe) e m g0 =0 (402.4)
and
oYy ~ W) » my (0 -W ) e+, e
U *n + J *n = 0 . (‘.2.5)

toghg(Us - Mp) » ng - Pe(Uy - Hp) » np + 1. 8y
It may be noted that only one of Eqs. 4.2.3 through 4.2.5 is independent.
Needles., to say, all variables in Eqs. 4.2.1 through 4.2.5, such as density,
velocity, pressure, viscous stress, total energy, internal energy, enthalpy,
etc., refer to interface Ap¢.

In principle, the coupled phasic equations should be solved for
given initial conditions together with boundary conditions at the phase inter-
faces. Because the configuration and location of the fluid-fluid interfaces
are not generally known, their detailed solutions are next to impossible.
When the length scale over which the point variables undergo significant
changes 1s small compared with that over which the knowledge of these
variables 1is of practical interest, information of their volume-averages is
all that is needed. A similar statement can be made regarding time scale
considerations. To preserve the identity of the dynamic phases, local volume
averaging 1is performed first; this is done in the following section. Time
averaging of the volume-averaged equations is presented in Sec. 6.

5. LOCAL VOLUME-AVERAGED CONSERVATION EQUATIONS AND INTERFACE
CE _EQUATIONS

In Part One, we consider the relatively simple case of a multiphase sys-
tem without internal solid structures; hence, v, = Y, = l. Application of the
local volume averaging theorems (Eqs. 3.4.la and t, and Eq. 3.4.2) to the
phasic conservation equations given in Sec. 4 leads to the following set of
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local volume-averaged conscrvation equations for multiphase flow. These
equations are rigorous and subject only to the length scale restriction, Eq.
3.4.3, which is inherent in the local volume averaging theorems. Since the
details of the derivation of the local volume-averaged equations of conserva-
tion can be found in Ref. 1, only the results are listed here.

5.1 Local Volume Averaged Conservation Equations

Mass Conservation Equation

U>--v-1f

31 31
‘ok> +V . @ <0| N
A

s't-c

The integral on the right-hand side of Eq. 5.1 denotes the rate of total

interfacial mass generation of phase k per unit volume of v. Denoting it by
Fg» we have

fy== ot / pk(!k - g_k) *n dA. (5.1.2)

In the absence of stationary, internal solid structures, the local averaging
volume v and the volume of the fluid mixture v, are identical.

Linear Momentum Conservation Equation

a_ 3 3 2 31 31
3t %k @A) +v a, @kyk_uk> v a, (Pk> +V . ay (T_k)

n(ok)g-#v f(-PIk-ft gde-vlf pk-g'k(

A

%

Y - 8

in which the field force per unit mass f is taken to be constant.

Energy Conservation Equations

(a) In terms of total enmergy, F.k =u, +-;-gk . .l_l,k:

PR Ny - 3 3
TS ATy A YTy ANy A W

PPo 31 3 .
RN %eﬂk( O8> £+ <~'u>)+qk

N,
[ (-Rpu +¢ .+ U)> ndA-v Yook (U dA , (5.1.4)
: x* &) 5 : Bty * By

where 'Q denotes the interfacial heat transfer to phase k per unit volume and
time, {.e.,
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. -1
Q =-v [ J,cmdA. (5.1.5)
A
(b) In terms of internal energy, uy:
3 31 34 31 31
T T R TR % T AR RN Rl L A ©
31 31 . -1
+ak( Ug> + qk>) *y - fAkpkuk(_l_Ji W) nad, (5.1.6)

where ¢, is the dissipation function given by
’k -T-k : v’ Qt ’ (5.1.7)

in which the double dot denotes the scalar product of two second-order tensors
and the comma denotes dyadic operation. ¢, gives the dissipation rate per
unit volume of phase k due to the irreversible conversion of mechanical work
into thermal energy.

(¢) 1In terme of enthalpy, hy:

3 3 3 3 3
o o> +7 . a G un> - T o @y +9. o e >
3 3 3 3 .
-a Mt V. U> -V a (._qu>+uk( > + “k>)"°k
o o (5.1.8
+v [ P(Y -W)e ndA-v o b (U, * ndA . .1.8)

A Ak

We reiterate that A, in all interfacial integrals denotes the sum of all
interfacial areas associated with phase k in the local averaging volume v.

5.2 Local Volume-Averaged Interface Balance Equations

The volume-averaged interfacial balance relations can be readily
obtained from Eqs. 4.2.1 through 4.2.5. They are:

Mass Balance

l
] o (U - %)+ mda =T J pg(Up - W) + n.da = =T, (5.2.1)
Ag
where the interfacial velocity Wy, implies W, ¢ and the interfacial velocity Ve
implies !fk' Since the interface has zero tﬁickncol. = We at any location
of the interface.
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Linear Momeatum Balance

-1 -1
v [ (e I+y ) nd-v [ pu(U -W)e nd
A A
= v (Rpptygd e ngas v o ul(y - W) - geaa
Ag Ag
-f { -V, 0, tW M) d. (5.2.2)

A

For bubbles and droplets, the last integral in Eq. 5.2.2 can be expressed in
terms of capillary pressure difference

/ (PCk - Pcf) nda = (-kaakf - zokfnkfgk) dA . (542.3)

An equivalent expression can be written in terms of Ag, recognizing that for
the interface between phase k and phase f, Ak = Ag, Ny = - ng, and ka = -

Heye

Total Energy Balance (capillary energy ignored)

VUL (Rt ) maA - [ o B (5 - W) - naa

A
' -1 -1
v g man ==V (R b U ¢ ns
A
A £
-1 -1 .
+ v prfEf(gf-!f)-_t_x_fdA+v ngqfcg_fdA. (5.2.4)
f £

Internal Energy Balance (dissipation and reversible work ignored)

v ol - u) ma - e s

A A

-1 -1
=v [ emfU, W) s ndA+v [ Log ° DgdA o (5.2.5)
A A
f f
Enthalpy Balance (capillary energy ignored)

g Iﬁ PGy - 8) -+ maa - v [ ph (U, - 8) ¢ ndA

A
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-1 -1
+v ]Apfhf(_l_l_f-!f)-g_fdA'O-v [gqf-gfd».. (5.2.6)

6. TIME AVERAGING OF LOCAL VOLUME~AVERAGED CONSERVATION EQUATIONS

6.1 Basic Postulate

The local volume-averaged equations given in the preceding section
are differential-integral equations. Before they can be used eirher for
further analysis or for numerical computation, it is necessary (a) to express
the volume averages of the product of the dependent variables in terms of the
product of their volume averages, and (b) to evaluate the interfacial trans-
port integrals which depend on the local values of the dependent variables at
every point on the interface. To this end, we postulate that a point-dependent
variahle ¢, for phase k can be exptessed as the sum of its local intrinsic

vc liuge average vpk> and a deviation 0 + ¥y can be a scalar, a vector, or a
tensor. Both 31<pk> and 0 have a lou-frequency component to be denoted by
the subscript LF and a high-frequency component to be denotea by a prime.
Thus,

3 ~
M T 2 (6.1.1a)

3 3 i =t _ 9% - & "

where

b = e 4, - (6.1.2)

The superscript c¢ is a reminder that *k is a composite of two high-frequency
fluctuations. The low-frequency component refers to one that is a slowly
varying function of time, including the time-independent 1limiting case. The
nigh-frequency component varies rapidly with time.

The time that characterizes the low-frequency component is of the
order of

Tp ™ Lc/(AU)c = (characteristic dimension of the physical system)/
(characteristic low-frequency speed variation at a
typical location). (6.1.3a)

The characteristic time of the high-frequency component is of the
order of
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Tyr = A/(rms U') = (characertistic length ccale of high-frequency
fluctuation)/(root mean square of the fluctuating velocity
or turbulence intensity)

= 1/(characteristic spectral frequency). (6.1.3b)

When time averaging is performed, the duration T over which the
averaging is to be made must satisfy the following inequality:

The spatial decomposition of the form given by Eq. 6.l.la was first
suggested by Gray[9]. When the length scale inequalities (Eq. 3.4.3) are
satisfied, the lengt? scales assog}ated with <¢k> and ; are separable. The
same is true for Yy2Lr and *kLF' When Eq. 6.l.4 for the time scale
inequalities is satisfied, quantities wvitb subscript LF and those denoted by a
prime also are separable in the time or frequency domain. When the two char-
acteristic times T p and Typ Overlap, such separation will not be possible.
However, 1in practical applications, distinctions are usually feasible.
Examples are: duct flow with turbulence, a bubbly liquid in turbulent motion
where the bubble phase configuration responds to low frequency pressure
fluctuation, and the case of impulsive motion produced by sudden break (LOCA)
where high-frequency wave motion might nct be important([10].

If one adopts the Reynolde hypothesis used in elementary turbulence
analysis, the point instantaneous variable y, can he decomposed as

N Te R TR TR (6.1.5)

where t<tk> denotes the temporal mean or a low-frequency component YyLp and Y

denotes the high-frequency fluctuating component., The time average t<vk> is
defined by

T
t 1 ?
T
2
Comparing Eq. 6.1.1b with Eq. 6.1.° leads to the conclusion that
c.i -’i . (6.1.7)

ot
as one would intuitively expect. Hence, while 3i<tk>' and y, are not local

entities, their sum is a point quantity. Substituting Eq. l'6.1.7 into Eq.
6.1.1b gives

31 %
" - <"k>u Vi Yy e (6.1.8)
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We shall soon demonstrate that 31<*k>l.l? closely approximates 31<*k1.l?>° The
nature of the approximation will be made clear in Sec. 6.2.

Taking the intrinsic local volume averages of Eqs. 6.1.5 and 6.1.8,
one obtains:

3 g M, ,
@ Gt WGP (6.1.9a)
and
31 3i 310 3.°
Wb, > qk>u' + qm> + <¢k> . (6.1.9b)
Hence,
<*kLF> =0 . (6.1.10)

While scalars Py F}. Uy and hk’ vectors U and J K* and tensor 1, are to be
decomposed in accordance with Eq. 6.1.8, the local_solune fraction ¢ ay, of phase
k should be represented by

L
Ck - akLF +Gk s (601011)
since a, is 1inherently a volume averaged quantity. Clearly, 31<¢xk> >l and
Moy o
<ak> Gk .

In multiphase flows, the fluid-fluid interfaces would in general not
only translate, but also fluctuate. Hence, the unit no~mal vector to the
interface would also fluctuate. Under normal circumstances, sharp changes in
surface curvature would not occur due to the existence of interfacial tension.
The familiar shapes of oscillating bubbles and droplets are examples[ll].
However, when breakup occurs, high-frequency oscillations[12] of the total
interfacial area may exist. Accordingly, we write

A= Agr *+ A (6.1.12)

and the associated unit outdrawn normal vectors are ny;p and ny, respectively.
Although it is permissible to ignore Ak under certain circumstances, Ak in Eq.
6.1.12 cannot be deleted or retained arbitrarily without simultaneous consi-
deration of the deletion or retentfion of ai. We shall return to this point in

the next section.
For reasons just given, we may also write

Vk - Vm + v;. (601.13)
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It follows then, that
v v
o _KLF Sk s e
®F " v % TV

. (6.1.16‘,b)

It is pertinent to note that v ;p and v are not physically separable regions
in . In the present analysis, both v! and ap are considered small
perturbations. While vi and ag, like other high-frequency fluctuating
quantities, take on positive and negative values, A} is always positive.

The interfacial velocity W, appears only as a point variable in the

interfacial transfer integrals of the governing differential-integral conser-
vation equations. Thus, it needs only to be decomposed as

!* .E-kLP+u . (6.1.15)

It 1is pertinent to note that the unit vector my associated with Ay is not the
sum of n.,p and ng, i.e.,

n "l-‘kl.l? + nte (6.1.16)

6.2 Some Useful Observations

Equation 3.4.9 gives, for vy, = 1,

-]
Va,=-v [ n da,

A

which, upon introducing Eqs. 6.1.11 and 6.1.12, leads to

VckLF-O-V a‘;--v_lf gku,dA—v-l!'E&dA, (6.2.1)
AeLr A

since n.,p 1s coherent only with AgLp 8nd ng 1s coherent only with Ape

By separating the low- and high-frequency components, one obtains

-1
Va,.==-v | n, . . dA (6.2.2a)
kLF —kLF
ALy
and
V Qi - - V-l I' &' dA . (6.2.2b)
A
Thus,

t<I n) dA>- 0, (6.2.3)
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since t@"‘) = 0.

Likewise, wheny = 1 and the low- and high-frequency components are
separated, Eq. 3.4.8 leads to

da
kLF -1
t Af Welr ® Bur da (6.2.4a)
kLF
and
3(IL =3 ' a | ' '
el A{‘ !k.E\&LFdA+v {L(!kL?+!k).2de' (6.2.4b)
LF
Since
t] \ (6.2.5a)
W' » dA\ =0 elsl@
< % Bar ) ’
ALr /
and
t
[ et % dA> -0, (6.2.5b)
k
it follows that
/1
W'e n' dA\ =0 . (6.2.5¢)
LV
(ot %)

Equation 6.2.5b follows from Eq. 6.2.3 since time-averaging is carried out for
the interval during which W,,p changes little. Thus, for any low-frequency

vector ,-kl..l" we have
t<IA;‘ Yr® & dA> = 0 and ZLQ Yo pe B dA> =0, (6.2.6a,b)

where the comma in the integrand denotes the dyadic product.

Likewise, for any low-frequency scalar ¥y p»

<I ¥r % dA> -=0. (6.2.6¢)
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It is interesting to note that if A|" = 0, then V a;, = 0 according to Eq.
6.2.2b. Furthermore, Wi must also vanish since it is physically impossible to
have high-frequency interfacial velocity associated with A, p. Hence, in such
da '
a case, Eq. 6.2.4b gives -a-t—k- = 0. We thus conclude that if Af = 0, a} must
not exist because the only other possibility, ay = constant, is contradictory
to the definition that al" is a fluctuating quantity.
t t
Next, we examine the difference between <3\*f‘>> and <31<0"‘>>. For

t t
convenience, we write t34> for <3<->> , and 36> for <31(->> « By

definition
L}
Hgp =] v av. (6.2.7a)
. kv
'3
vl
Denoting — B by €, and for |e| <1, #e may write Eq. 6.2.7a as
kLF

XLF v

31 ] l ' 1
¢k>-;——(1-e*=2--~)(! wkdv+f'wkdv>
VKLF k

& (vl I *; dV) [l + 0(6) + 0(82) +.oo] s (6.2.7")

Since, by hypothesis, ‘c| << 1, it follows that

PR "R | '
W=/ v dv. (6.2.7¢)
kLF VeLF
Hence,
lyo 0. (6.2.8a)

L]
Likewise, we may demonstrate that for a vector *-k ’

' ~
lgo =0, (642.8b)
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and for a tensor ‘i 5

Hgop=o. (6.2.8¢)
Now, also by definition,
3 1 1 1
q;p-;] .Ldv--;j ﬁdv-r;-{"y;‘dv
Yk VkLF k
VkLF 1 & 1
= - ' i
S~ | ey dv+g -;{{' vy dv . (6.2.9a)
VkLF k
Using Eq. 6.2.7c, we obtain
o sa M D +at L[ v! dv (6.2.9b)
k kLF Vi v k i
Thus,
(6.2.10)

t3<*i) - t<qi (':—.’f ‘?i dV)> ’
k vi

which is geneially nonzerc.

Alternatively, we may evaluate t3<0i> as follows.

We recall that,

for vy, = 1,
3 31 31
> ma, T = (e, +ay) TR . (6.2.11)
Hence,
t3 t31 y O
'y = ' ' '
W “Cgp WPt <°k <’|3>
« %
= <ai ¢i>> » (6.2.12‘)
uince (t') = 0. It is thus seen that ay and Q') are correlated in
time. hcme of the fact that ay = i (ak) Eq. 6.2.12a may be written as
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t3 t3i

(0;) - Qx"‘w"‘) . (6.2.12b)

Comparing Eq. 6.2.9b and Eq. 6.2.11 gives

31«;) - %.—j vy dv . (6.2.13)

kv“‘

Accordingly, we obtain, by using Eq. 6.2.8a,

t
<%.-] v, dv>= 0. (6.2.14)
k vl;

In view of the defining integral for 31(#&) given by Eq. 6.2.7a, we also have
the interesting result

:—f veiol elav. (6.2.15)
v k v
k K

It is also of interest to compare 31<*kLP> and 31<¢|‘>m,. the latter
being the low-frequency component of 31<vk>. Since

KLF v

-..vl (l_e,,,el.....)(f *de"'f *u‘FdV)
kLF k

e (vl I *u.r dV) [l + O(C) + (Xcz) +ooo] ’ (6.2.16)

kLF ViLF ]

and

31 1
Yur '('v"f Yy ""\
kY JLr

= l - 2—000
vu,p(l € +e )([ ’md"*f"md"
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VKLF K
1
- v f ’m dv ’ (6.2.17)
kLF v
kLF

it follows that
3i g ¢ 2 e 2 31
W’ b oLr [1+06) + 0(e2) +ees] W op v (6+2.18)

since |e] <{ l. In the present report, 31<*kLr> and 316*k>LF are considered

identical.

We shall also have occasion to consider integrals of the type

v! / ;kLF o, dA and v ’ / EtLP « o dA.

A "
Since
i o=v3G S>evif § dA (642.19)
KLF KLF kLF & 4 e
A
and 3<;kLr> = (0, one immediately has
vif A =a, @ > (6+2.20a)
KLF 2 k kLF® * O
A
Likewise,
-1 > 31 >
v I *_u"-gde-ak W-M). (6.2.20b)

The left-hand side of Eq. 6.2.20a can be replaced by

v ;nrﬁu.r“""-lf.;nrﬂl':‘"

Aerr A
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because only n., p 1s coherent with , and ng 1is coherent with Ag.
Consequently, time av aging of Eq. 6.2.20a leads to
vip % A=a, o > (6.2.21a)
KLF 2kLF KLF kLF” °* 4
ALy
since
€, . W
' dA\ = 0
<" &l."’u.r-‘lk >
according to Eq. 6.2.6c.
Likewise,
2 GEE TR a=a. _ly.y >, (642.21b)
A KLF Yyrr
kLF
Also,
vip % A= o o ty, 5.0 (6.2.21¢)
YyLp Beur KLF » Y’ - we

ALk

In Eq. 6.2.21lc, the comma denotes dyadic product.

In deriving Eq. 6.2.2la, the approximation was again made that

31 - l ~
kaw) -(E{' v*u‘rdV)[l"'o(t)*qtz)"’ooo]
kLF
= v:uf V Ve 4 (2.2.22)
v
kLF

and similarly for 31<V . ; in Eq. 6.2.21b and for 31<V.; l,) in Eq.
6.2.2lc. It is seen that t approximation is not only con.iote%*. but also

necessary, since the left-hand sides of Eqs. 6.2.2la, b, and ¢ are of low
frequency only.

Finally, we demonstrate that

3
<v 31“’1’> -y 3‘<¢k . (6.2.23a)
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Since

3 3 . '
<v ”qk)} -y <31<¢k>> PR {k 31(“'1:’ n, dA

3i 3i 31
=V ay (&k> = (vk> v a =a, v (‘vk> 5

we have
3i
3i b 3i
ak <v Qk>> -ak v (wk> ’

which is Eq. 6.2.23a upon canceling the a"‘;.
Likewise, it can be shown that

31

<v . 31‘*«’> -V e 31<¢_k> , (6.2.23b)
M, 4 3

<v. ‘h>> -v, ta, (6.2.23¢)
3

(ve M) =ve M. (6.2.23d)

6.3 Time-Volume-averaged Mass Conservation Equation (y, =1y, = 1)

The local volume-averaged mass conservation is given by Eq. S.l.l:

3

31 3i =3
2t %k ‘Dk) +V . oy @A) = -y f pk(gk - !k] 3 dA. (5.1.1)

A

Time averaging requires consideration of:

- t<ak 31¢k>> .

Since

o - 3 T 34
Px A% T T b it e
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and, by using Eq. 6.1.11, one obtains

3 z 3 3, T T
O P mage  Puptogr P Yo O ptep e,

Hence,

t
31, - 3i e, .
<ck “k>> agp OOt el . (6.3.1)

t<°k 31“’#’«»

3 3 34 M. .M =
o’ Pl YOt T Yt Oty

Moo e s 3, .. 3 T M, ...
+ NG > + e M o+ Mol o+ Vo
since
31
3 2 31 3 .
< L Lr -“u.r> A% %
3
T _M, 3
<°k <L’k>u> @ T Yy » otee
Hence,

t<a31<o Newa. Mo > Nwys +a. MG F.>
k ) "%ar Y Bl Y ouar Cunrr

t3i "o

31
Yoaur O Y ek

t
3 t3i < 31~
+ KU Sappy >+ (ap @u,u|'>>

o
t
i« N t/ , 3%’.
+ <¢:"l “’xgu.r)> + <ak’ ) . (6.3.2a)
The last term is a time correlation of the third order. It is presumably

small and will be deleted. We define

(a) Volume-averaged eddy diffusivity for mass transfer, D:, according
to:
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t3l 1<a'U') S DT o

3 31 t3 3i
Sr PR’ YT O UM ak ¥ CkLP PilLr ° (6.3.3)

(b) Volume-averaged dispersive diffusivity for mass transfer, B:k’

according to:

t t
3~ U, - T 3
<"f( <"kLH“'>> » <°f( Gl ) == B Vo, O (6.3.4)

which also reouyiu from high-frequency fluctuations. When p, = constant, ;
= pi = (0, and D vanishes. Lumping the two terms on the left-hand sidekkg

Eq. 6.3.4 is for convenience only. It may t be appropriate to express the
second term in terms of the gradient of ap p ~ opLp.

By introducing Eqs. 6.3.3 and 6.3.4 into Eq. 6.3.2a, one obtains

t
3 3 €34, , .\ 3
<“k “’u—"-k)> = ("kur e t “i’u’) Yorp +Yg » (63.2D)

in which ¥, 1s a mass flux vector defined by

) Mo 2 6. e . B8 €34, ..,
Yok “%kr Lol toar Rl Y 0w Oy
t t
31 o 3i ~
+ <°‘i “‘upui>> . <°i <"\'v.l’m.lr)>
y M 3 A 31

Consideration is now given to the evaluation of the time-average of the total
interfacial mass generation integral for phase k within v.

t

RGOS Rt

-lt
-v [ o (U, ~W) + n! da\, (6.3.6)
<I Wi TE) >

DB~ )> n,p A

since ny;p is coherent with Ay p, and nf 1s coherent with Af. It is straight-
forward to demonstrate that

"oyl - B)> - (u"k)u . su.r)(uq\?u * Dp !u.r)
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+ Sou(uy - w)> .

Consequently, the first integral on the right-hand side of Eq. 6.3.6 is

- <) ~ (31 T )
VoL ear U %00 Ygp ~ Migp) t B W

S el g g e s (6.3.7)

In deriving Eq. 6.3.7, use has been made of Eqs. 6.2.2a and 6.2.4a.
It will be shown in Sec. 6.5 that for Newtonian fluids,

/
AcLr

F‘ Ekl" dA = 0 . (6.3.8)

=

The second integral on the right-hand side of Eq. 6.3.6 is

- t
e s )
- t ~
== <£‘.‘ (31"?1.!*"@!)(!11'!{)' -9\';‘“‘>

Yt B ) 5.9



t
-o <£. ou(yy - W)« al dA> . (6.3.9)

da
KLF , 31 .
<"l|:>1.1~‘( ot T YV °,¢p) +(Mrr), ,  (6.3.10)

in which (MTI), stands for the interfacial mass transfer integral defined by

-1 21 .
(MrD), = - v " e, { Uprr ° Bypp A

kLF

_ o1 ~ (31 e )
vl e U e g W) Bgp dA

AeLr
S IAkLgt:D;‘(!"‘ SH> e by dA
-~ -3 t/ 3 " o wt '
ii( <°k>uf+°u.r) (U -9) - aa
i {\;‘ ok (31“-’&)1.? * e - !u.r) ‘B ‘“‘>
cw? t[ ou(Uy - W)« oy dA> . (6.3.11)
A

We reiterate that for Newtonian fluids the first term on the right-hand side
of ¥q. 6.3.11 vanishes. More work needs to be done to examine the relative
importance of the various terms in Eq. 6.3.11. We further note that the first
term on the right-hand side of Eq. 6.3.10 can be written as

da

3
@ L ac,

where the substantive time derivative 3%— is defined by
k
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d 3 31
e T . 3
Performing the time averaging of Eq. 5.1.1, followed by introducing the
results given in Eqs. 6.3.1, 6.3.2b, and 6.3.10, leads to the desired time-
volume-averaged mass conservation equation:

:_t (“kl.l’ M("k>w * tu‘“ﬂ"\':)) e (“m 31("k>ur
- t31<“£?£>) 3i(g“?w A AR o t<I‘k> . (6.3.13)
p :hen Py = constant, 31<pk> = Py ;kLF = pi = 0, B:k = (0, and D:k
becomes D-k’ which is defined by
- °n:k Vap" ‘31@;‘11&) , (6.3.14)
and Y, becomes 0!-k defined by
U =0y @iy = -0, ODL Vay (6.3.15)

In this case, the time-volume-averaged mass conservation equation simplifies
te

31 o.T
V. °kLF <gk>LF -V . D-k v akLP
31 -1 -
Tt Vogp Y L Uyt mgp A
ALr
__ s o
v {‘Lgk oy dA> . (6.3.16)

for which the relation given in Eq. 6.2.5¢ has been used. Equation 6.3.16 can
be derived directly from

V . p* - 0 ’ (603.17)

which is valid for constant Px* Application of local volume averaging of Eq.
6.3.17 leads to
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V. °k 31<U > = - v-.l

U, i

Y *n da, (6.3.18)

which, upon time averaging, gives

31 e, .,
Veagp UdptVe U

~

3 -1
=T VotV [ Ugpt By A

ALy
-y ’<{‘; U o dA> : (6.3.19)

Clearly, Eqs. 6.3.16 and 6.3.19 are equivalent.

6.4 Time-Volume-averaged Interfacial Mass Balance Equation (Yv o 7 l]

The local volume-averaged mass balarce equation for interface Agg 1s
given by Eq. 5.2.1. Using Eq. 6.3.10, we readily have

t<rk> + t<rf> -0, (6.4.1a)

or, equivalently,

2 a
31 KLF _ 34
“’k’Lr( TR %" vckLF)+(MTI)k

31

2 a
fLF 31
e (

e <y_f>u,-Vuﬂ‘p)4—(m‘1)i

= () . (6.6.1b)

where (MTI)¢ is given by Eq. 6.3.11 with subscript k replaced by f. We note
that in (MTI), and (MTD)¢, Agpp = Agpps Ak = Af, Mxpp = Mepps Mk = Wi, ogp =
“Sne S gy - - 8.

When p, = constant, Eq. 6.4.1b reduces to

KLF | 31 : - mp I,
TR T R T R A B L W

Yeur

da
_ - B £LF | 31 F
. ’<f~; LA “> e T YW Vogy
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= 0 . (6.6.2)

6.5 Time-Volume-averaged Linear Momentum Conservation Equation
[Yv - YA - l)

The local volume-averaged linear momentum conservation equation for
constant field force is given by Eq. 5.1.3:

3 31 3i
3t %k @A) +V . ak <9|U|U|)
31 31 31
--Vok Qk> +7V . a <t_k> +ak <ox>£

1 -1
! (- P = +T. ) » dA - v l 4] U (U - W ) . da . (5.1.3)
A ede Yo B Akk-k—k L

Time averaging of Eq. 5.1.3 requires the comsideration of
t/ 34 t31
" CR ORI wr Ot @) FUOL s (65D
which is qu 6.3.2b.
t
3i
. (o, Mo u0)

J 3 €31, ,.\ 3 31 3
(“ku ot “‘k"k’) U Yt 2% Yy

31 31 ‘l'
( <L > *? ‘h (6.5.2)
in which
(a) The volume-averaged Reynolds stress tensor 31(;{) is defined by
_ 3L o0y o €3 o _31'1'
Q:k)l‘r (ul UI> Qk:.llul U|> (;k s (6.5.3)

(b) The volume-averaged dispersive stress tensor 31(ik> is defined by

M e, = x T
e Yy’ Crptptiar” T T 0 and (6.5.4)
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3i T

(c) The volume-averaged turbulent, dispersive ctress tensor <;k> is
defined by:
34 x 3 7 T
- ' ' - ' '
“wiF  Yar P &7 T2 0w <“k <y-kLP!k>>
t t
i . 31 ~ ~ 4 . < 5 31 . ~ >
2 <"u @ ertirt’ % e
31 ~T
=aF <Lk> . (6.5.5)
. Yo, M) = Hep > o+ Bgpey (6.5.6)
(“k k/ = kLF K LF k Kk -
t
31 = 3i £ .o,
« <§k <Lk€> ar Ll t ayre> (6.5.7)

Equation 6.5.7 is merely the consequence of a mathematical operation
when the point variable Tk (a second-order tensor) is decomposed according to

Eq. 6.1.8. Since Tk is related to fluid viscosity and velocity gradients, the
31

physical meaning of ~ <, > . and T  requires more careful consideration. For
Newtonian fluids
2
PRl TRE TR FL R SRS CAT AR O I I TR R

where A, is the bulk viscosity, V,U, is a dyad, and subscript c denotes conju-

gate. Since A, and p, are independent of velocity gradients, Eq. 6.5.8a
- 31 =

gives, following substituting the relation Up WUporr + !iLF + U,

2 3 3 1
(x-S "k) (v TUOp) Iy [" Qe *+ (7 ‘-’h’u)c]

+ (xk - %uk) (7 Bpp) B+ oy [Dlpp * (7 000p) )

(2 - ) g) 1+ [Py ()] (6.5.8b)
which, upon comparing with
| u‘h’u + im L P (6.5.8¢)

leads to the following defining relations:
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2 3 ‘
>r'(*k'3“k)(v' @k)u)l

*uy [v'u@« LP (V "t Lp)] (6.5.84)
ikLF -(xk -%uk)(v . iﬂ,p) I+, [V’E’.u‘, v.iu‘ ) J (6.5.8e)
(x -3 )(v w) L+w [Ty ()] - (6.5.8£)

By taking the intrinsic volume average of Eq. 6.5.8¢c, followed by multiplying
by ay, one obtains

31 = 31 i 31 . o,
a, <1k> aLLF <Lk>LF *’akL (; > + °k <Lk>Lr + ay <1k> -
which, upon time averaging, leads immediately to Eq. 6.5.7, since t31<;£> =0
31

according to Fq. 6.2.8c. Clearly, in Eq. 6.5.7, <1k>LF is defined by Eq.
6.5.8d and

2 t3i
)'(Xk-'iuk) (aiV- U;)L
t3i ' {54
*u, <?k (v, U+ (V.U;)c]> . (6.5.88)

It is noted that Lk is not related to Reynolds stress which is independent of
viscosity.

31~
Since CLkL?> = (), we obtain from Eq. 6.5.8e

31 ~ ~
@+ U,p> =0, and hence / Uig® Bupda=0, (6.5.9a,b)
AcLr
according to Eq. 6.2.21b. Also,
31 ~ ~
VU =0 and hence | Bupr» DgpdrA=0 (6.5.9¢,d)

and

Me(9,0yy) > =0 and hence [ (Tp s ngp), 9A = 0. (6.5.9,8)

Ay
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It should be emphasized that the group of relations given hy Eqs. 6.5.9a
through f hold not only for Newtonian fluids, but also for others that obey
linear stress-strain rate relations. They will not be valid if the stress-

strain rate relation is nonlinear.

When the viscosities in Eq. 6.5.8a are dependent on strain rates,

t
the resulting expression for <o 31(1' )> is complicated. Details are given
K =k
in Appendix B.

T
31 A 31 t3i, ,
N <ak <pk>> Cur Ot wpd ., (6.5.10)

which is Eq. 6.3.1.

t
-l
+ —P y +- . ’ M » - - l
v <£\2( ik ‘_lk)> (6.5.11)
Now
ol tP.n +1t,.*n.DdA
A KokLF © 5k * Byp
KLF
31 -] -
POV %~V [ P Dap 44
AcLF
Mg > vty d (6.5.12)
k”LF KLF 4 ket Barp ¢ it
KLF
and

1 <f -Pkgki-t_ko Ek) -y <f (.Pkgk"' Ek) dA>.(6513)

for which use has been made of Eqs. 6.2.3 and 6.2.6a, b, and c. Hence,
*/ -1
<' {k (Peny +5,° 2) “>

3 3
POy T W 7 G

in which (PTI), stands for the interfacial pressure transfer integral defined

by

- (1>'r1)‘l - (vs'n)k . (6.5.14)
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(er1), = - v} J:\.u ;u_pgk“ A - v} t<£; Py Dy dA> (6.5.15)

and (VSTI)k stands for the interfacial viscous stress transfer integral
defined by

“'lti‘,"t‘-’t(!u’!u)' 5"‘«>- (6.5.17)

Now

P e Y [ Ggpt ngp A

-1 31
-V

+
(=0

v (%
Yo "u.r( Uorr ¥ Yar - !u.r) * Byp dA

Aeur

- (31 > ) = t
* i [ ©ue * Purr) Gur * <°|'19§>]

Ay

31 A
( <!k>l.l"+2kl.l'-!ﬂ.?) * By A

SV (Meu ) (g ) n,
M



(6.5.18)

34
bl ( Lo EkLF)]

+apt )

Multiplying Eq. 6.3.10 by A <yk>LF , followed by introducing the result into

Eqs. 6.5.17, 6.5.18, and 6.5.19 leads to

(6.5.20)

in which the interfacial momentum transfer integral is defined by

31 b t L
(veer1), = - [( et kLF) Zar * @kgk{l

3 iku—‘) * Byyp A
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-1 31 D
e ( e * "u.r) Wolly = 9)>« nyp da

-V D tep(uy - w)> e my L @A

i t<{\l[(31<"k>x.lr * ot °l") S * p""ﬁ*"’]
(50un * S - ar) 55 )

ok t<{{[(31<"k>u *Bigp) (Bar * %) * oidle ]

(55 - 5) - 5 )

t
- V-l <[A‘ DH\E& - !&) . 2& dA> . (6.5.21)

It is seen from Eq. 6.5.20a that the time and volume-everaged interfacial
momentum transfer rate consists of two parts: (1) transfer that is directly
related to interfacial mass generation, and (2) extraneous transfer due to
spatial deviation of velocity and dve to time-correlations of density,
velocities, and interfacial area fluctuations. The time-averaged momentum
source per unit volume, t§§k>, resulting from interfacial pressure and viscous
stresses and from interfacial momentum transfer is

3 t 31

t o (3 3 !
2 ( @ 1ty ) Vg, +tap Map,
+ ("I)k - (vs'u)k + (mm)k . (6.5.22)

Using the results given in Egs. 6.5.1, 6.5.2, 6.5.6, 6.5.7, 6.5.10, 6.5.14,
and 6.5.20, one obtains the time-volume averaged linear momentum conservation
equation:

3 31 t31, , 3
T (“u.r et ("k"l'n)) Grr

g 31 t3i, , ,) 31 31
v (ukLP ka>L, + anpk> <gk>L, <uU, >



31
Te’LF

i Sk G
r |l Wt Wt K

31 5 R ) t
* (“kLF P op Y e ) i+ (6.5.23a)

Equivalently,

£34. . . 3i
<akpk> <u, >

® S ’LF

+
k’LF

31 €34, , ..\ 31 31
e (“kLF wr t <°kpk>) Yowr Y

b R 31~ 31 ~T )
B +
+v QKLF \ <Lk> <Lk> + <£k>

3 k. . . )
*(“kuv et Gyt

3
O Yot (pTI)

\

- {VSTI,k

+ (MMTI) (6.5.23b)

k k'’

. .. T, 31 ~T
in which Y., is defined in Eq. 6.3.5, <£k>, <1k>, and <Lk> are defined
in Eqs. 6.5.3, 6.5.4, and 6.5.5. respectively. t(I'k> is defined in Eq. 6.3.10
and (MMTI), 1s defined in Eq. 6.5.21.

For Newtonian fluids, 31(1 > is given by Eq. 6.5.8d and t31(0'1')
=k  LF ke
is given by Eq. 6.5.8g.
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Multiplying Eq. 6.3.13 by 31(2,)“ and introducing the result into
Eq. 6.5.23b, one obtains, after combination of certain terms and rearrange-
ment, an alternative form of the time-volume averaged linear momentum
onservation equation:

>
Yop . 3 3
( i S kpk>)( T 7 R <9k>ur>
2y
—mk 3i 3i
*9ct TV ia <!k>LF 'Y Yuw
' 3i _a SM_ 0,
o up ¥ @O - e
31 iy
+ QLLF v <Lk>u? +Vv <nk1;k>

31, T 3~ 31 'r)
+v-am( <;r_k>+ <;k)+ <;k>

+(om 31“’\31. <n"‘p'>)
+ (pr1), - (vsTI), + (1), . (6.5.23¢)

The relative importance of various terms in Eqs. 6.5.23a, b, or ¢ remains to

be assessed. In highly turbulent flows, the Reynolds stress probably domi-
nates all viscosity-related stresses.

For any single-phase system, ay = 1 and A ¢ = 0. Therefore, all
interfacial integrals vanish. If the system is at rest, all quantities
associated with U, also vanish. Accordingly, Eq. 6.5.23a, b, or ¢ reduces to

31 31
-V Qk> + @k> 1 - 0 N (695.26.)

with f = g, g being the gravitational acceleration vector. The subscript LF
for 3"(Pk> and 3"<ok> has been dropped, since the fluid is everywhere at
rest. The characteristic length scale d in Eq. 3.4.3 is zero for a single-
phase system; hence, £ can be made as small as desired. Thus, in the limit,
Hep> » b and M >+ p, and Eq. 6.5.24a becomes

-9 Pt ?Dk‘ = () » (6.502‘b)
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thus satisfying the basic relation of hydrostatics.

When p, = constant, Eq. 6.5.23b simplifies to

E 31 3 31
"k(a_:"'u.r G YV e T Yo <!k>u')
» %
—mk 31
Y e Wy
g 31 e
Spg ¥ O, -~ @/Pl>
31 0 t3i, ,o0 "
o' ‘Wut' MW
34,0 T, , 310 31 _o~T
+V-am( <Lt <tk>+ L) tour e £
3i o o
Y + (P'rx)k - (VSTI)k + (um)k ” (6.5.25a)
in which oi-k is given by Eq. 6.3.15 and
31 0 M, M,
CLow "V [v. UL (v u) ] (6.5.268)
t3i, ,o t31i
@ute> mu @ [ve w +(vy) D>, (6.5.26b)
Moo = -0, g (6.5.27)
31 Lo~ 31 - ~
<L Pr Ul p” (6.5.28)
o, 2= w2 < Ly '>> (6.5.29)
KLF Lk k \k s
0, -1 ’
(vstr), ==v " () g4+ n; da (645.30)
A
g > - (—:-"k'l + N> .y )+ °(wr1) (6.5.31)
K " Pk\ ot “xLF *kLF k'’ i

with



t
%mrr), = - o, <! U+ my dl> (6.5.32)

and

-yh P t<k (i’u.r + g&) (g"‘ - g&) ¢ & dA> . (6.5.33)

The interfacial pressure transfer integral remains unchanged and is defined by
Eq. 6.5.15.

An alternative form of Eq. 6.5.25a is

3
. %
kLF Pk at “x’LF %’ LF

+ g s 9 My )

- -9 v 2.0.0 =" </'P'>

31 0
+ °kLP V. < ‘k>Lr + V.

t3i
0 g

Mo T, , H,or, . 30T
+9 ¢ a G ¢ T ¢ <T-k>)+°kuf°k-f-

s (

+ (p1r), - °(vstr), + °(warr), . (6.5.25b)
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6.6 Time-Volume-averaged Interfacial Linear Momentum Baiance Equation
(vg =¥y = 1)

The local volume-averaged linear momentum balance equation for
interface A ¢ is given by Eq. 5.2.2:

=] (~V o+ 20, B .n)d. (6.6.1)

Using Eqs. 6.5.14, 6.5.20, and 6.5.22, one has

[ - e@ear * Puerr Pnr Bup) 9

AkLF
t
QL i e 2ol e ) )
+ t<!k> + C<!f> =0, (6.6.2)

where Vif is the surface gradient operator associated with Ai.

Equivalently, Eq. 6.6.2 can be written as

3 31
P Vo GO Yoyt (pn)k - (vsn)k
t 31
Q> T, L+ (wTD)
c-Mag> ve . +Ma>_.va - (e11), + (VSTI)
£°LF © “fLF LR fLF £ £
t 3

- T, -(m-rx)f
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. !A (= YePuerr * Pusir Berr Bap B

KLF
4
- <£ (-v;‘fa;‘f + w0 W 3;‘) dA> . (6.6.3)
k

When p, = constant, one needs to replace 31<9k>LF by py» (MTI), by
O(MT1), (which is given by Eq. 6.5.32), and (MMTI), by °(MMTI), (which is

defined in Eq. 6.5.33), ¥, by %,,; and finally 4in Eq. 6.6.3b,

tu@épi) should be set to zero.

6.7 Time-Volume-averaged Total Energy Coaiservation Equation
(Yv = YA b l)

The local volume-averaged total energy conservation equation is
given by Eq. 5.1.4:

Iv

3 3
Ttk OBtV oo O ULED

=%

31<'1’U>+v-a M

*eVeo, A K

<‘;_k - ‘—Jk>

3 3 3 ) .
VN ey qqk>+°k( Gl £ G2) + Y

+v-lf (-Pk_l_J_k+;ko_gk)ogde

A
-vly o B (U - %)+ n d, (5.1.4)
A
in which
o =-v '/ It B A, (5.1.5)
A

denoting the interfacial heat transfer rate per unit volume of the fluid
mixture.

Since By = u, +%_Q_k- !t' and if we write
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o - ,
E, B +E L +E (6.7.1a)
it is easy to demonstrate that
31 3 134 !

<xk>u = (uk)u +3 “—’k’u <9k>uv (6.7.1b)
L. o sk . v"as Kk +% 5... 3 (6.7.1¢)

Eerr = Yk Sore  Yar Y72 Yart Yar ol'e

' ' 34 hd ' L 4 '

By = up + <y'k)l.l?+!k1.?).yt+igt°£k' (6.7.14)

Time averaging of Eqs. 5.1.4 and 5.1.5 requires consideration of

t
31 - 31 . . ) 31
. (ak “’u‘k’) (cm (ok)u . <akpp “\;’Lr + 'zx " (6.7.2)

in which &5, is a scalar total energy function defined by

) Mo x €34, ,.,. . 3 ' PR
ok "%r Cunrfi Tr R Y 0 GOLEY

. t("i 315&1.#?) ¢ t("i 31@'i.¢,>>- (6.7.3)

In Eq. 6.7.3, a term involving triple time correlation is neglected.

t
3 " 3 3., )31 3
’ ("k “’n&‘k’) (‘u.r et ) YW Eow
31 31
P 't ln B
- M 31 T
*‘u.r( B>+ TED+ (&)). (6.7.4)
in which
(a) The volume-averaged turbulent total energy flux vector 3‘(§I> is defined
by
3 t31 t31 ~ Y-
SO GED ¢ TG, JED = TR, (6.7.5)

(b) The volume-averaged dispersive total energy flux vector 3t<ik) is defined
by
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3i 31 N> = 31 >
Cr’Lr p W UR DL, W W € » md  (6.7.6)
(¢) The volume-averaged turbulent, dispersive total energy flux vector 31§§:)
is defined by
t34 ~ , t3i _— )
°|u.r( U kB * By’
t
3 , )
» ‘°k>u(<°k Wy k . < oy u,r>>
& O
ad - N ' ~ e '
- <°|1 “’u.r“u,rzk>> + (o0 T R e”)
t
: 3‘ ~ -~
. <°|; “i"ur’ur;)
(6.7.7)

NED .
In Eq. 6.7.7, terms involving triple and quadruple time correlations have been

neglected.

31
;) L! !9k ’ (6.7.8)

t
31 31
o (o Mom) - (o
where Y5, 1s a vector pressure work function defined by

b M 31, 3 34
Yor "%r Tl toumr B Y P Y

t t
+ (ap M@0 + (of Mgl -

(6.7.9"

*'!tk , (6.7.10)

t
31 = 31
. <"k T -'4\3> ("u.r e * klk)
where Y., 18 a vector viscous stress work function defined by

il 3 - =3 3, . 31
Lok "% S S twmr N R Y Ww

+<k -“R) <u e Byp) -

. Mgy

(6.7.11)*

g M) - e (o Modyp) - Vel

t -
<‘|'; M -“v’» agdgsr B e
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For Newtonian fluids, 31( k

and 1 are given by Egs.

L SLp
and 6.5.8f, respectively.

t .
31 3 t3i
= + i 6.7.12
<Jk <£qk%> O LF <iqk>LF szqu ( )

The Fourier law of isotropic conduction states that

- - 5 (6.7.13
iqk K v Tk a)

[f the thermal conductivity x| is independent of T, , then

3 3
'd - - >
dok’Lr “x ¥ Tlue

B3 2 s _ £34. . ;
mkgq“ " <c:|k v Tk> . (6.7.13¢)

The derivations of Eq. 6.7.13b and ¢ are analogous to those of Eqs. 6.5.8d and
6.5.88.

When expressed in terms of internal energy ug, Eqs. 6.7.13b and c

become for constant specific heat c,:

(6.7.13d)

t3

i

(ﬂ’ v U') . (bu7olje)
c k "
vk

The case of variable conductivity and specific heat 1is treated in
Appendix C.,

- M, . + WP ) 3
>> Cir Yt 9y Yot i (6.7.14)

which is Eq. 6.3.2.b. The vector function Yok 18 defined in Eq. 6.3.5.

t
i i1 t2H
Y ) - ! v. .‘ ! ’ -7-
<ak ‘Jl",k> *kLF (JER)LF ’ {dl(Jl".K) (6 '3)
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t
-1 3
- -y IA (Jkogtu)dA-v <]A;Jk'2k“> (6.7.16)

KLF
Now
-1 t 31
SV gt B W Ty ey,
AvLr
-l ~
-y f J . dA (6.7017)
“qkLF * Zyup ¢
AeLr
and
-v-lt[.lo 'M--v-ltf J' o' dA (6.7.18)
Sk , ok * B O e ol
A
Hence,
t s 3
Q> = qq“)u ¢ Va,,* (un)k : (6.7.19)

where (HTL), is the interfacial heat transfer integral defined by

(wr), = - vl ]Au,:j'“"“'. B p dA - v} Z{k LN u> . (6.7.20)

The interfacial heat transfer rate per unit volume of the mixture, t(bk>. can
be correlated by experimental data.

-1 ¢
. "1<£k("u!u*‘-k'9k)°%“>
S gt B0 ng, 0

Mevr
s '<["' (.'k!t ‘' ’-’u) * B dA> . (6.7.21)
ow

v-l[ t(-fk_ﬂko-ho U2 * B p dA
Meur
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"’-l{\uyinriu.r' By p 9 -v-l{‘u.r Pplly? ¢ By WA

(3 < ) <!k>LP) « v L

-1 3 -
A ( <1k>u°-‘-’k1.r)'5kx.r“
Ar

-1 . 3
te" ] (lu.r R ¢ ur) * Dy A
Ay

& !Au'(iu.r ) iu.r) ¢ By W

+

"3 ' '
v gl u e m A (6.7.22)
AeLr

we note that for Newtonian fluids, the term involving the integral

+

* B dA vanishes. The second term on the right-hand side of Eq.

A&"Jl is

lt<£‘(.pkyk+3_k. l’n)'i‘i“‘>
v {IAQ . (uok’u " Fu.r) L “>
; <’L‘ - Py (nq‘t)u ) iu.r) ‘B “>

+v"tQ‘-r' '.3;44>
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+ t(ﬁ[(”(;g "lu.r)‘ U dA>
v <f Tk * (31“’ e * -tu) >

- <] ey oeon “> . (6.7.23)
A k' o=k

vl t<{.k("*9* tg0 0) Ek“>

3 3 E . (31 Lo ) .
o Yo Vo, T Lr U rr v

Thus,

in which the interfacial pressure work integral (PWI), is defined by:

-1 31

(ow1), = - v @op | Ygp o Bgp A
ArLr

-1 34 -

TV TG L Py A
Ay

T (P ) -

-y P U + <P u'> dA
KLF 2P L
ALy

v {L\.‘ (uqk)u 9 Fu.r) LV ‘">
; <{‘§ Py (”qk)u = ikl.!) "y “>

-1 t
v <[\. PIU! o g&dA) (6.7.25)

and the interfacial viscous stress work integral (WI)y, is defined by
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(W), == v (e D) ¢ nge o

-t {‘u '(gm .31<gt>u,) ¢ Deyp A
- {\m (Tepr * pp * "G * YO) * By aA
oo ) 19
Y e Cave ) 5

-y t_j' (g 9) * my dA> . (6.7.26)
o - w) ¢ n W

N V-l . - . ' . Je
<l.. (Y - 4) - oy ‘“‘> (6.7.27)
Now

-y { “OB(G - ) my, dA
KLF

? a
T 1 KLF . 31 !
O Bow ( be T Wy oV °u.r>

-1 3 LT .
-v OO B | Ugpt D
¥

A

- v Map, {‘u.r P L (u(pe" * D - !n.r) "t By



56

-1 31 s % Ce it
e [( OVur * Puge) By * “’k‘d
Mk

(nqt)u *Op - !u.r) * Dgp WA

-y (3‘@k>u +Em) By (B -W)> e m o dA

AeLr
e (u“’vu " Em,) op(Uy - W)> e n e dA (6.7.28)
Ar
and
t
(L ) - x4
t
o - 3 .
--v <{\k [(”@Qu +Burp * 0k) Ep * 0p (Ptep, + ;ku)]
3 - ,
( Uore * Yyy - !u.r) * B “>
t
"l 31 hood 31 ~ ’
ke <IA;[ © L *’u.r) ( g T L Y ‘k)
+o, (?1<!k)L’ + ikL!)] (g& - !&) * n ¢£>
t
: <[A, 0{‘!;(!; %) el dA> . (6.7.29)
Multiplying Eq. 6.3.10 :k> followed by introducing the result into
Bqs. 6.7.27, 6.7.28, and o - Ylads to

'Zlﬁu&(!ﬁ!ﬂ ' &“)

t £}
- TR, + (), (6.7.30)

in which the interfacial total energy transfer integral (TETI), 1is defined by
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(rern), = - v Lu"[(u“’ﬁu " ;m) Err® t“’l’:‘i’]
(uq!h)u i !ku) -
.o {\ (u“’k)u . su.r) LY N R ST
- B PO - ) ny, o
t

h <IA‘.‘ [(u“’u’u *Biup *ok) B * °iiu.r]
(31(21:)1.! * D - !-u.r) ‘B “>

4 ¥ ¥ - - .
. <l‘|" L(u“z?u . °u.r) ('u.r +E ) “l’z‘u.r]
(5 - %) + 5 )

-l t
-v <{\ o;‘q(y; - !;) o u> . (6.7.31)

The similarity between Eqs. 6.7.30 and 6.5.20 is noted, as 1is that between
!q.o 6.7.31 and 6.5.21,

The time-averaged .nterfacial total energy source per unit ve .
tfk>. is seen to consist of three parts: (1) interfacial heat transfer
(2) interfacial work done by pressure and viscous forces as given by 'q.
6.7.24, and (3) interfacial total energy transfer as given by Eq. 6.7.30.

Thus,
t t i i
§k> - d’u’ ¢ T@D, TWy ¢ Vau,

: (n“-t’ w

s e Map ¢ (1), - (W), + (TETD), . (6.7.32)

i ) 2
(!‘)u v Gl



58

Performing the time averaging of Eq. 5.1.4, followed by introducing the
results given by Eqs. 6.7.2, 6.7.4, 6.7.8, 6.7.10, 6.7.12, 6.7.14, 6.7.15,
6.7.19, 6.7.24, 6.7.30, and 6.7.32, one obtains, after combining and rear-
ranging terms, the time-volume averaged total energy conservation equation:

3 3 31 3
ﬁ(‘m 0w “Q"\?) EoLr

i t3i, , ,) 3 3
N (‘m Wt W) Wu Bow
i o B, o4 Heg >
it Bk YoLr Tk Bue

> ola 3 ) 3 -® o
" (“ku POt O] YotV I

+9v

3 e ) 3
[("kur Wt en’) Qt)uv] M T

., 3 - 3T
(b + 1 D)

|
-3
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ol s M ti )
v (‘u.r Go’ur * Gy’
3 €34 3
e et aeR) TG B, f

3 t34 t
PP T W e R T AL I (6.7.33a)

or, equivalently,
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31 i
<!k)l.l + V. !‘k (lk>u

o COELY (tn“'i'i’ Ny ’!-rk)

®LLF (uq-t)u . 31(-“&’ u‘) uih (tu“\'&ﬂ’ Mg, + !'rk)
A5 (‘u.r i
”q“> -ve Hago

q:> + t“(it) + 3‘(35))

t3l

e3, ., , ) " ].
>LI + @k’k) <!k>l.l + !ﬂ f

<.\>I.l

t i "
+ (qh> * T, Wt Y oy

3
N ur) * Ve

+ (rux)" = (wi), + (n‘n)" . (6.7.33b)

An alternative form o! the time-volume averaged total energy conservation
equation is obtained if

b’ Eq. 6.3.13:

¢t> in Eq. 6.7.33b is replaced by the relation given

3
<e>
i 3 ﬁg i 3
('m w9 ")( MR T A <l\>l.l)

' e
" i
R ave 0y M, Y ey,
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0
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p oy v (e Map, v y,)
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te e’Lr * ke’

kLF

+ t‘bu’ + (pwr), - (wa), + (TeTr), . (6.7.33¢)

When p, = constant, Eq. 6.7.33b reduces to

i i
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BtV oy Yo <‘k>l.!)
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ot 31 t 31
* @D T, ¢ (’Qk> + Or GO Ve,

3i o 3i
( M T <9t’u)' Vo

+ (ewr), - %(wir), + °(mern) (6.7.34a)
in which
o 2 . .
Sp "0, @UED (6.7.35)
eops =, g (6.7.36)
3 Mo x
CR> =0, T U pE (6.7.37)

t t
31 T [} 31 > 1 ' ] 31 '

and

-1 - 1 ~
by | Egp ( Yo * Yur - l‘tu) ¢ Dy p W

Aeur
-1

“vio f Cemr(u -w)>e dA
I Bl = W)7 " By
- Y " .
-5 "k<fl;'i( ‘L’u’”ur’”tu)'ﬁ“)

-y} oy <I\' (ixu + ii) (g - %) a u> . (6.7.39)

o
(TeTI), =~ v

The functions g, n("&) § '“(." °;‘>, and “tar> are given by Eqe.
6.3.15, 6.5.26a, ‘05026'. and 6.5.31, f.".Ct""’o



62

The vector function ¥p, and the interfacial pressure work integral
(PWI), remain unaltered. They are given by Eqs. 6.7.9 and 6.7.25, respec-
tively. The vector function °!,k and the interfacial work integral due to
viscous stress °(VWI), are given by Eqs. 6.7.11 and 6.7.26, but with the
viscous stress tensor simplified for constant density.

An alternative form of Eq. 6.7.34a is

31
2 >
CLE | 3 3 \)
Sy LP "k( 3t Ut VB

o
I )
“+v. 8

3 3
* - Yo Ut Mt Y TR,

& LM i g .(t31,,31 )
®r 2T I %" @R Uy * i

T 3 (3, 0, 3
Sl ¥ TR TG, ¢ @l’pe> ), + °!“)

3 0.T
v oy (HORy ¢ MOl R

3t oy 31 o~'l'>)

Ve, 3‘q“> -9 ‘3‘@;,[;“)

+

3 ). 3 3, ,
("u.r R R T L N R R TR
t ) o
+ d’u’ + (ewr), - "(wir) o+ °(TETI) (6.7.34b)
which can be readily written down from Eq. 6.7.33c.

6.8 Time-Volume-avera

The local volume-averaged interfacial total energy balance equation
is given by Eq. 5.24 when the capiilary energy is ignored. By perforaing time
averaging and making use of Eqs. 6.7.16, 6.7.24, 6.7.30, and 6.7.32, one
obtains the following two alternative forms:

'<’k> + t<"> -0 (6.8.1a)
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or, equivalently,

3 3 _3 L ) . te
( o Y W’Lr Yow) * " op QP

t 3 ~
+ap B + (wx)k - (wu)lt . (um;k

= (31 3 3 3

1 1 ¢
PO Y~ w ‘L’f>u) P Vagyt R

t 31 _ -
* X KB, + (PN (m.u)f + (rs'n)f 0. (6.8.1b)
When p_ = constant, > <z.>. . should be replaced by s W tr> by °t<ry>
k R T Luer Mk Kk
(W1), by “(WI),, (TETI), by °(TETI),, etc. Likewise, the same simplifica-
tions should be introduced for all analogous quantities with subscript f.

6.9 Time-Volume-averaged Internal Energy Conservation Equation
vy "vp= U

The local volume-averaged internal energy counservation equation is
given by Eq. 5.1.6:

? N 3 N 3
% NtV Gl e RVl Ve, T

ik (u“’u) ¥ 31(’\3) +9 =v f pu(l -W) e n 4, (5.1.6)

A

in which

’ -1
Q =-v [ docnd, (5.1.5)

A

and ¢, is the dissipation function given by

.k-tk 3',!... (5.‘07)

The time average of bh is given by

td,> = 3‘(4‘.‘)“ ' Va (W), (6.7.19)
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where the interfacial heat transfer integral (HTI), 1is defined in Eq. 6.7.20.

Also, the time averages of a 31<J k> and of °k31<JBk> have been presented.

They are given by Eqs. 6.7.12 and 6 7.15, respectively. The time averages of
the remaining terms in Eq. 5.1.6 are as follows:

t
o (a0 '0u) (o 00 + Prapp) Map e, . 69D
where &,, 1s a scalar internal energy function defined by

3~ ~ t3i 0os 31 t ot
Yk "% PR T RN YT 0 @R

+ t(‘a; “Gu,up) + < ' 3‘<pk k)} (6.9.2)

in which a term involving triple time correlation has been deleted.

\_( 3 t31 ..)31 i
. < O O T Bar Ot @) T e
3 3
U Ykt ta 0
31 Mty

in which

(a) The volume-averaged turbulent internal energy flux 3‘<g:> is defined by

3 e300, . Lt~ UM, T

3‘§!:> can be expressed in terms of eddy diffusivity for internal energy
transfer D:k accorcing to

‘<5:> .- J‘Qk)u o:h v 3‘<uk>u " (6.9.5a)

i n

Since ¥ Wor " Y T 2up » Svk being the specific heat at
constant volume (assumed constant in the present analysis), Eq. 6.9.5a
can be written as
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3‘(;{) -y ¥ 3‘<'rk>u, , (6.9.5b)

where xI is the turbulent conductivity related to D:k according to

T _ A 4
Kk - @k>u C* D\lk . (6-906)

(b) The volume-averaged dispersive internal energy flux 31<§k> is defined by

3 Mg Moy = v 3~
<pk>Ll ukLI> + <pkLP!kL!ukL!) <2k> . (6.9.7)

(¢) The volume-averaged turbulent, dispersive internal energy flux 31<!k) is
defined by

¢ . t S
" ( 'n“‘u.Hu“k’> <k “’uv!i“ur>> ¢ /\"i”“\':-qu.r“m»

31
kLF

ca <§{> . (6.9.8)

In Eq. 6.9.8, terms involving triple and quadruple time correlations have been
deleted.

. t<uk”(l'k Ve !k?>

e i i e31
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31 . 3 P!

¢34
“u'k’ Ve Tt <‘§ @ 5’-u.1>>

oo Mg (f“mnu' fyp 94 + <f uoeon u)) e (6.9.9)
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Once again, we note that for Newtonian fluids, [ ﬁu"- Do A =0 . In

Aevr

deriving Eq. 6.9.9a, use was made of Egs. 3.4.l1b, 6.2.23b, and that

3/~ 31
t('u.r' N <-“k>ur> 0.

Equation 6.9.9a can be rearranged to read:
t( Nepo. >> - (c Ro >+ ‘3‘«;'9')) ve >
o B B kP Tk’LF Kk Ly

(u)
* 0y (pwr) ™, (6.9.9%).

where ¢, 1s a scalar pressure work function defined by

- 31 ~ . - t;i ' é . " ' |>
o “%mr Tt L’ e R RT VN <v oy
Y, M V! .
Al . . ] ' .
+ <ak Pr’ gk>> + <¢k <PV !ku)> (6.9.10)
and (P )( ) genotes o portion of the interfacial pressure work integral

(PWI), dohmd in Eq. 6.7.25:

N . t
()W = - v M, (I Sevp * Day W <!. LRSS “>)
fr * (6.9.11)

The superscript (u) is a reminder that it is associated with internal energy.

t
I )
. <¢lk Qk>
n i ) i M,y ; > t3 >, | ; )
G LF ( <]_k)u 1 ¥, <!k>l.l + <M' x - !kl.r> + ‘T-u : V.}_'t)
3" Yo u AT
<lk>l.l : (V. @M)) + (c& (w : V,_Q;‘)

3, y o 3

3
* A Y 1‘&1.! " <1k"9uu)>

svi Bg .([ | <! U'.&A} (6.9.12a)
=k LF Amw
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The similarity between Eq. 6.9.9a and 6.9.12a is understandable, if one
recalls that ¢, = Ty ¢ Vv, U . Physically, Eq. 6.9.9a gives the reversible
conversion of mechanical work inio thermal energy, which may be either
positive or negative. Equation 6.Y.l2a gives the irreversible couversion of
mechanical work into thermal energy and it is always positive.

Bquation 6.9.12a can likewise be arranged to read:
t( Na >> E He > o e '>) v, >
% Pk ke “Ek7LF ks’ F T B

+é_, + (vm)k . (6.9.12b)

Tk

where 0t 1s a scalar viscous dissipation function defined by

k
s 3 - . » 34 .., . '
Cx %2 StV Uuy o KV I
PP i<v 31<a'U'>>
Le’Lr ¢ v O
+ . ¢ M ' Y v 34, ., . h (
ap <‘kLF t ¥V, ') # ay <;k ¢ ¥, !kLF> (6.9.13)

and (VDI)k is the interfacial viscous dissipation integral defined by

' L t
(1), =+ v ; 31(1131.? ; (1 Yerp By 9 <£~; e ony dl,b) ;

o (6.9.14)

For Newtonian fluids, the firt term in the parentheses of Eq. 6.9.1% vanishes.

o e w7 G - n) - g
At

A ¥

t
L -l f = & '
v <!Ak'pkukkh !t) Et “> . (609015)
The result can be readily written by using Eqs. 6.7.28 and 6.7.29:

vl ‘(/Ak el - %) * 3 )
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t 31
- Tq> T, + (1E11), , (6.9.16)

in which the interfacial internal energy transfer integral (IETI), is defined
by

(1e1), = - v [ [(n("k)uv *Pe) Ve * t“’ﬁ“\?]
ALr
(3‘<u> +B._ - )-n dA
Se’r ¥ Yar T Yar/ 0 Bar

(31 @ Lr *sm) t<“|':(9|:; '!ﬂ)> * Byp A

Sy U W)+ 2ar

t
et (31 . 2 |) ' e
” L, [ L Y Pur P/ Yk Y PkLr
k

t
- <f opul Uy = W)« ny dA> . (6.9.17)

An examination of the foregoing results shows that the time-averaged inter-
facial internal energy source per unit volume, e k’» consists of: (1) a
portion of the interfacial pressure work (WI)(u) defined by Eq. 6.9.11, (2)
interfacial dissipation (VDI), defined by Eq. 6.9.14, and (3) interfacial heat

transfer t(Qk) and interfacial internal energy transfer given by Eq. 6.9.16.
ml‘c"

‘dﬂk> - ‘(qkzo + t“u’ 3‘<uk>m, + (wx)‘(‘“) + (vor), + (IETI), . (6.9.18)
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It should be noted that the “"extraneous” interfacial thermal energy sources,
(WI)(u) and (VDI),, arise, respectively, from the two volume averages,
31([)k v+ U and 3‘(0“) the latter being the equivalent of M <tk ,gk>. For
Newtonian fluids, both can be neglected since A{ is assumed to be a small

perturbation of A .

By using the foregoing results, the time-volume averaged internal
energy conservation equation can be obtained in a manner similar to that for
the total energy conservation equation. The result is:

3 31 T SR ) 31
ﬁ(“ku Cirt Oe’) WO

: 3 31, , ) 31 31
v (um. Q2+ Tdager>) U L T e

& 31 €. ; ,) , A -
("kur Tt WY Uorr ~ *px
31
+(°kLP W *

3..T 3.~ 3i ~T
V. GKLF ( <9-k) + <gk> + <!k>)

¥ e 3i -
v (GKLF <£qk>l.l' <n J ))

31 t3i = t

We note that the third and fourth terms on the right-hand side, taken collec-
tively, are simply the time-volume averaged dissipation function for the bulk
fluid (see Eq. 6.9.12b). It 1is written in the indicated form in order to
bring out its similarity to the pressure work term.

An alternative form of the time-volume averaged internal energy
conservation equation can be obtained by using Eq. 6.3.13 to eliminate <I'k>
in Eq. 6.9.18 and introducing the result into Eq. 6.9.19a. After combining
and rearranging terms, one obtains

3 (u
31 ) ( + 38 . )
("u.r o + rapp S ' Wy
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e

uk 31 31
reve e, Vap et v tap
. 3 ) %
(“u,v Pt ®ox

31

+

€384 ., : 31
(“m W * “'k'-k’) PV U Y

34, T K} P i ~r)
V. akLP ( <2k) + (gk> + <2k>

L1™ o 31 -)
v (aku, e * Mg >

31 3, .,
G, + T el

te (u)
Q> + (wx)k + (mu)k + (1ETI) . (6.9.19b)
We note that " <J k>LF can be expressed in terms of a molecular thermal
diffusivity D which for constant x, and Cyk+ 1s defined by

“k

Duk - 4 31¢ 3 . (6.9.20)
vk k' LF

It follows then, that

i 31 31
<£qk>LF <°k>Ll Duk v <uk>LP ’ (6.9.21)

which may be compared with

. X 31 ; § 3

When (I constant, V « gk = 0, Eq. 6.9.19a simplifies to

2 31 34 3
Px (ﬁ“nr WOtV e YO <“k)l.l')
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uk ) 31 0, 31
* =3 TV Y WOtV Yo 2w
oy o 3, ,)
Ve ("ku? Yalir * Oy
S 34,0 T, . 31,0~ 31 o~'r)
v akLF ( < 2k> + £ 2k> + < 2k>
3 =31 J
Your Yedw Yt O m’
3i 0 t3i, ,o_, ) 31 )
» ("ku' et S I Yo * %%
+ "> + °(or), + *(1eTI), (6.9.22a)
in which
o N £330 .5
.uk P kauk> (6.9.23)
Mok . Mol o ¥ . %
< !k> Pr <gkuk> L Duk v <uk>LF - (6.9.24)
vhere °p’ = -cT/(c p.), with k! being the turbulent conductivit (6.9.25)
uk  “k/UCaPy) k & - Ys *¥s
31 o~ 31 ~
3i 0o~T
Sur B "0, (( kU pn k>> < oy <“ nv’)) (6.9.27)
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t
°(vor), =+ P 3‘<°;k>:(£ Uy poyp dA + {' y,n u>) (6.9.29)
kLF k
and

o I | - (3 )
(1ETD) = - v "5, Lu. r U Uore * Gep - Bigp) * Dygr
.

t
-1
e "qu <ul't(!!'c 4 !a'g)> 0
KLF
- °k <f Uy ey Uore * Gop -kLF) L dA>

- t ~
- v lpk <£L (up + o) (U - W) - g&dA) . (6.9.30)

The two remaining functions 9!-& and °‘<rk> are given by Egqs. 6.3.15 and

6.5.31, respectively. In many problems of practical interest, the viscous
dissipatlon effect can be ignored.

An alternative form of Eq. 6.9.22a can be deduced frow Eq. 6.9.19b. The
result is

3i £

9" " <u, >
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t o o
+ <.Qk> + °(wo1), + °(1ETI), . (6.9.22b)

6.10 Time-Volume-averaged Interfacial Internal Energy Balance Equation
(Yv it 1

The local volume-averaged internal energy balance relation is given
by Eq. 5.2.5. Upon performing time averaging and making use of Eqs. 6.7.16
and 6.9.16 and, in a?d}tion, taking into account the extraneous interfacial

pressure work PHI) and interfacial dissipation (VDI),, we obtain for
interface Ap;:

td O t<v.9f> -0 (6.10.1a)

or, equivalently,

t 3i t (u) :
> ke > e+ Q> + (ew1) " + (woi), + (1ETI),

t 31 t (u)
+ QX Tt TR+ (wx)f + (vp1), + (IETI), = 0 .  (6.10.1b)

For reasons given previously, both (PHI)(u) and (VDI) can be neglected for
Newtonian fluids.

When P ™ constant, 31<pk>LF =P and ;kLP - pi = 0. Hence,

[PWI)‘(‘U) = 0, t<I‘k) should be replaced by °‘<rk>, (vp1), by °(vpI),, and

(IETL), by °(IETI),; °t<r >, °(vDI),, and °(1IETI), are defined in Eqs. 6.5.31,
6.9.29, and 6.9.30, respectively. Similar reductions should be made for the
corresponding quantities with subscript f.

6.11 Time-Volume-averaged Enthalpy Conservation Equation (y, = v, = 1)

The local volume—-averaged enthalpy conservation equation is given by
qu 501.8:

Pk(gk-g_k)-gde-v-lf o h (U - 8) + m dA. (5.8)
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The time-averaged results of all individual terms in Eq. 5.1.8 have been given
earlier, except the following:

t
31 ) 31 31, , ) 3
. (ak <okhk>> (am, © O * <a ) e te, s (611.1)

where .hk is a scalar enthalpy function defined by

*nk = CkLr 31‘514.9?‘&1.1? tagy o> + . amp
+ t<a;‘ 31<5m,h;‘>> - t(q 31<oéﬁk)> ' (6.11.2)
. t<°k 31“’&“&.’) - ("u.p Mo * tn("n’:"ﬂ’) 31(9&’13 310‘131.1?
+ Yeorr ke * <hk)LF
*aup (nq_{) . 31(51;) . 31<h::>) ; (6.11.3)

in wiiich

(a) The volume-averaged turbulent enthalpy flux 31(hT> is defined by

N
31 B i i t3i ~ s o MuP
Gy G+ G > = T (6.11.4)
(b) The volume-averaged dispersive enthalpy flux 31<Ek) is defined by
Heo> y+ig B R 5 «BE5 | i (6.11.5)
k LF NPT kLP—kLFhkLF o - i

(¢) The volume-averaged turbulent, dispersive enthalpy flux i ':> is defined
by

t31 ' t31 > eyt )
Sy LF ( G T N’

t
31 I > < i - >)
b %m(Z oy ) + (op U 2

’ t(“l'tudkl.l"-ﬁ-kl.l?hl':)) * t(“l'cndnvy-ﬁﬁnv’) 14 t(“i 31“’@&1.?“&11»
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“agp By (6.11.6)
t
31 3 e3i, ,
o <ck “’k>> caie Yoo+ Hans (6e11.7)
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Ay AvLr
_l t
+ v IAipk(!k - !k) * &' d.A> » (6.11.8)
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KLF
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- . A
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Ay
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o A = T Nr) S TR K
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Accordingly,
..l t
T R ) n )
A /
?
31 KLF , 31 (u) (h)
i ¢ % ("'5":‘* By ° Vam,) (ew1) (wr)k » (6.11.11)
where (PUI)( “) s defined in Eq. 6.9.11 and
(Pwl)(h) o ol (3‘<u 5 )
k v/ Ure * Br ~ Yerr) Do A
AkLF
t
e f
*¥ ") (Pk(y-k_!-l't)>' Br A
Awr

L, Pl ) - 5 )

A t<f i (e + B - ar) * 5 )

v} <] P W)+ u> . (6.11.12)

In deriving Eq. 6.11.11, the relationship given by Eq. 6.2.5c has been used.

It is easy to show that

- (pwx)(“) (wr)i“) .= (1), - v {\ (Fu.p!u.r - ‘Q&)) + o, dA
KLF

t
-y ¥ ([' (B gy + Pl¥y o + PLWY)e gde>
* (6.11.13)
where (PWI), is defined by Eq 6.7.25.

. 'V"({_%M&'M'&“)

3
Mo + (1:1»!1*1)k . (6.11.14)
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where the interfacial enthalpy transfer integral (EPYTI)k is defined by

i 31 - - € s
(epyrr), v { [( ot om,) hr * @khk>]
KLF

M ):
( Uorr * Grs = Yigp)® By
34 - '
' T 1 -
( <°k’u?*"kw) <hk(yk "k)> By WA
F

t
= "-lf ?‘kLF <°\'z(91'; - !l';)> * By
AeLr

! (31 .
</ © O * Prwr * "k) hy + oph kLl?]

31 T - ). '
( Gorr * Yar " Yy Ekd‘>

"
P t<£k ouni(Uy - W) * Y a> . (6.11.15)

Hence, the time-averaged interfacial enthalpy source per unit volume is

da t.. t 31
<’{> =T g £ QP T TR,

R

h
)()

+ (pwr) 7 + (vI), + (EFvrI) 6.11.16)

k

in which the substantive time derivative d: is defined in Eq. 6.3.12. It
k

may be noted that the term - (PHI] () 4o Eq. 6.11.11 cancels with + (PHI):“)

arising from the time-average of - 31(’& Vv« Up> and that (VDI)k arises

from the time-average of aL 31<4k>.
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Performing the time averaging of Eq. 5.8, followed by introducing
the results given by Egs. 6.11.1, 6.11.3, 6.11.7, 6.7.8, 6.9.9b, 6.7.12,
6.7.15, 6.9.12b, 6.11.11, and 6.11.14, one obtains, after combinination of
terms and rearrangement, the following time-volume averaged enthalpy equation:

a_( 3 e, , ,) 3
3t Gk %t 9¢’) N

i, , ) 3 3
o (“u.r ot 9 B T M

- :_: (am 31(Pk)u? + ‘3‘@3;‘))

31
. M .
v (akLF QK>LF <n P ) + Vv ¥

K 3 t3i ,,) LM 3
("m %7 M T B Yrr ~ ¥k

t3i

3i " ,) .
+ (aup Wit GRY) sV TA, Y,

o 3 + N 'r)
Voo, ( <gk>+ h, > <>

( KLF qu et ", 'k>)

3 t31 ,
tagy Ypdet ‘e’ e * q‘) " (6.11.17a)

in which @ 1s defined by Eq. 6.11.2, ¥ by Eq. 6.3.5, ¥, by Eq. 6.7.9,

t
®,, by Eq. 6.9.10, ¢ by Eq. 6.9.13, and "Gk> by Eq. 6.11.16.

Alternatively, Eq. 6.11.17a can be rewritten as

g’?("uu 31"&’1} My ')) 31
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h > +

( 3 o > +
*kLF Kk LF

t» t x
Q. >+ &>
<Qk k

[PWIlih) + (votjk + (EpyTI), . (6.11.17b)

Another form of Eq. 6.11.17a can be obtained by using Eq. 6.3.13 to
eliminate [G‘k) in Eq. 6.11.17b. The result is
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*%F Pk LF
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)

+ (am, Mo, + ‘3‘@‘21_;‘)) cv, M e
- . (310_‘:) g 31(5«’ M 31<E:>)
-9 (aku, 31<gﬂk> + ‘;J;k>)
tag 31(.1&)u, % tara >
+ "> + (WI)S‘) + (o}, + (EpyrI),
When Py = constant, Eq. 6.11.17b reduces to
"k(g':"'u.r 31“‘&’1.? YV oy 31<-“k>1.1r 31(“&’13
2 %y, o, 31 o, M
e YT e WtV I M
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t ot 31
+ (Qk>+ T > T

+ () ™ - (pur) M+ °(wor) + °(mevrn), (6.11.18a)

in which
%, =P, @ (6.11.19)
Heonh = o, Payns (6.11.20)
Mo = o, el (6.11.21)

t t
31 0o~T , 31 & . .
and

o -] > 31 ~
(ePYrI), = - v "k{\ PeLr ( Yore ¥ Yorr - !kl.l') * By 9A
KLF

ol i) - nay
v oy t<£; By (31<!k>u i T !u.r) * B dA>

v-l t h < L ' e . - -
" <‘{i (e + ) (g - 8 gidA>. (6.11.23)

Likewise, Eq. 6.11.17¢c reduces to
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4 “<p> +-"—'31<a£1>"‘>+v-v -

310 ,o " ) o
’("u.p u’ 2r ¥ %
3i o 3i o
~¥ s 0p ( <°l_\k> + ,_t> _l'_\k>)

3 ,
V. (am, Ao * @kaqk>)

31 t3i '
Your Yadwr Y G e
+ t4 (h) (u) , o o
Q> + (pwr) " - (ewr) ™" + (vor), + “(EpvrI), . (6.11.18b)

310 t31i o, ot
In Eqs. 6.11.18a and 6.11.18b, %¥qu, ~ <°g > oy Ty 1>, %, %%y, and
°(VDI]k are given by Egqs. 6.3.15, 6.5.26a, 6.5.26b, 6.9.28, 6.5.31, and 6.9.29
respectively. The difference, (PUI)(h) - (Pﬂl)(“), is given by Eq. 6.11.13.

6.12 Time-Volume-averaged Interfacial Enthalpy Balance Equation
(Yv ' St 1}

When the capillary energy 1is ignored, the local volume-averaged
enthalpy balance relation for the interface is given by Eq. 5.2.6. Upon
performing time averaging and making use of Egs. 6.11.11, 6.11.14, and
6.11.16, one obtains

‘q‘> + ‘af) -0 (6.12.1a)
or, equivalently,

da ¢ 3
“k’t.r'i':_: <'Q>+ a> T

3
LF
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“ (wx)ih) + (1), + (EPYTI),

da
- N L Qo + tap M

1 d e, £ LF

- (wx)gh) + (vm)f + (EPYTI)_ =0 . (6.12.1b)

f

When p = constant, t<r,>, (vp1),, and (EPYTI), should be replaced by their

corresponding quantities with superscript °C ). siwilar changes should be

made for the corresponding terms with subscript f. Finally, we note that

el s By 9. (6.12.2)

7. TIME-VOLUME VERSUS VOLUME-TIME AVERAGING

The significance of first performing volume-averaging of the phasic
conservation equations and their associated interfacial balance equations,
followed by time-averaging, has been pointed out earlier. This order of
averaging preserves the distinction of the dynamic phases in a multiphase
system, such as droplets or bubbles of different sizes, or particles of the
same size and material but of different electric charges. Eulerian time
averaging from the very beginning will remove such distinction unless suitable
conditional averaging 1s used. Simple time averaging leads to fractional
residence time of a phase rather than volume fraction of a phase. This frac-
tional residence time of a phase becomes equal to the physical volume fraction
only in the case of one-dimensional uniform motion of incompressible phases.
Volume fraction relates naturally to cumulative thermodynamic relations, while

fractional residence time does not.

The foregoing discussion clearly contradicts the conclusion reached by
Delhaye and Achard [14], who srated that the order of time-volume averaging is
interchangeable and gave a mathematical proof to support their claim. Unfor-
tunately, their proof was in error due to improper application of the Leibnitz
rule for the differentiation of an integral. A brief recapitulation of their

derivation follows.

Consider the variation of any property f, associated with phase k, such
as density, temperature, or velocity, as seen by an observer at a fixed point
in multiphase flows. Since phase k passes through the point intermittently,
f, would have the appearance shown in Fig. 3 [13,14].

.lractlonal residence time was referred to as local time fraction or time
averaged phase density function in Ref. 13.
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Fig. 3. Variation of f, with Time at a Fixed Point

Delhaye and Achard[14] considered the time interval (t -% s £ B '}) centered

at the instant t and denoted the cumulated residence time of phase k in the

interval by [Tk]' The averaging time interval T was taken to be a constant.
Referring to Fig. 3, we may write

ﬂ"tl
[ f =[] _ f0)d+]
(1)

n=t, n=t+T/2
£,n)dn 4o 00 +f £,(n) dn ,
n=t-T/2 n=t, n=t
" (7.1)
where n is the dummy variable of integration. Delhaye and Achard[l14] then

applied the Leibnitz rule for differentiation of an integral and, at the same
time, set

dt‘
-(-l-t—- 0, for i = l, 2, see N o (702)

The result was

T T
fkdt fk t-l-z)-fk (t-z), (7.3)

2
5o/
(T, ]

i.e., the time derivative of the integral defined in Eq. 7.1 depends only on
the values of the integrand f, evaluated at the two end points.

Let us pause and inquire into the physical mean ng of
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lﬂ)

fk dt

Y

/
. l'tkn

under the condition defined in Eq. 7.2. One one hand, we have from elementary

calculus
{ - £ d
(irg ™ ) e Uz %)
k /t+At k t

]
s £ dt = gim - (7.4)
it (T, ] * Ats0 ac

On the other hand, we note that for time averaging to be physically meaningful
in multiphase flows, the averaging duration T must eucompass a sufficiently
lacge number of interfaces, i.e., it must be large relative to the inverse of
the passage frequency of the phase interfaces Vge At the ¢ me time, it must
be small compared with that required for the mixture flowing at a representa-
tive velocity U through the characteristic dimension L of the system. Hence,

(L/u) » T » (mw,) . (7.5)

In other words, At in Eq. 7.4 should never be allowed to approach zero. It
umust be finite. Now for time t, phase k will first leave the observation
point at time t, - (t - T/2) after the initial arrival of phase k. For time
t + At, phase k will, in general, not leave the observation point at the same
time subsequent to 1its initial arrival. The same can be said for the
“"arrival” time ty and "departure” time ty, etc. Hence, ty is not independent
of t, and the use of Eq. 7.2 is not physically realizable in multiphase flows.
Consequent iy, Eqs. 7.2 and 7.3 are invalid; so is the conclusion reached by
Delhaye and Achard.

There 1is an additional difficulty associated with the application of
Eulerian time averaging to the phasic conservation equations from the be-
ginning. This difficulty stems from the fact that the time interval T chosen
for averaging is not intrinsic to the structure of the multiphase medium under
consideration, but depends strongly on the convection velocity. In most
engineering systems, wide ranges of velocities often exist, and hence, they
may not be characterized by a single time scale. This is in contrast to the
length scale associated with local volume averaging, which is independent of
the flow velocity.

8.  SIMPLIFICATIONS AND COMPARISONS WITH CURRENTLY “ACCEPTED" TWO-P HASE
FLOW GOVERNING EJUATIONS

A number of two-phase flow equations are available in the literature. It
should be instructive to compare them with the set of equations given in Sec.
6 of this report. This is particularly appropriate since the procedure and
the results presented herein are new and we are not aware of a comparable
analysis published in the open literature. Ishii's monograph[13] considered
time averaging only; hence, the results may not be compared directly. For
instance, the local volume fraction a, of phase k that appears in the present
set of equations is, in general, not the same as the local time fraction in
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Ishii's equltlon;.* Despite such difficulties, we proceed tc examine in Sec.
8.1 their similarities and differences.

8.1 Comparison with Ishii's Two-Fluid Equations

Since Ishii's analysis was based on time averaging only, comparison
way be made when the local averaging volume v in the present analysis is
sufficiently small such that all spatial deviations * can be neglected. We
are mindful of the fact that such simplification is usually not physically
realizable. Assuming that the said simplification can be made, the decompo-
sition of an instantaneous point variable y,, which may be a scalar, a vector,
or a second-order tensor, becomes:

Y "V YV (8.1.1)

in which ;.‘ denotes the time average, and y; denotes the high-frequency
fluctuation. The duration T over which the averaging is to be made satisfies
the inequality defined by Eq. 6.1.4. Hence, .k is the low-frequency

component of ¢,., including the time-independent case in the limit. Upon
k

comparing Eq. 8.1.1 with Eq. 6.1.8, one sees that 31(0“ * *k' since OkLl?

negligible. Accordingly, all quantities identified by (vk> g in the time-

volume averaged conservation equations and the interfacial balance equations
presented in Sec. 6 will be replaced by 0 « The low-frequency component of
the }gcal vo lume fnctlon Oy LF becomes a Furtherlore. quantities identified
by <f' "P become <fl'z*'>’ With the kfm'ogolug simplifications, the time-
volume averaged conservation equations for mass, momentum, and energy and
their interfacial balance relations reduce to:

. Mass Conservation Equation (from Eq. 6.3.13)

_ . . dz= . )-
T O * “k’k’)*v ("k’k" @) &

T

Ve, Vep, = <rk> . (8.1.2)
where

PE. YV as =~a ‘oru> -5 twrun (8.1.3)

mk 'k Kk Kk k " oo
and

? a

t xd - zd

T ( + gk «Va )+ (mm)k i (8.1.4)
in which

"l'hc equality of local time fraction and local volume fraction is implied in
Ishii's work. See p. 67 of Ref. 13.



87

(gt = - v Ceyy - W) ny,

AvLr
-y} {i[(sk +op)(uy - we) +0)(Y, - ‘-'a)] - 0 49 . (8.1.5)

The superscript zd stands for zero spatial deviation.

If one further stipulates that

' - '
(a) ay 0, and hence, AL = 0 and ) i)
(b) all correlations involving p; are insignificant,
then Eq. 8.1.2 reduces to
S - - = t 8
3t %k Pk +7 . e Py !k <rk> 2 (8.1.7)
where
?a
t s _ = E. .2 -

and superscript s denotes further simplification resulting from assumptions
stated in Eq. 8.1.6 with the consequence that (HTI):d = 0. For a two-fluid
system, k = | or 2, Ishii gave the following equation for void propagation
(Eq. VII 3,15 in Ref. 13):

- = I
p, P 9 a
I B - k 1
rk Iz I ( 3t + & . Vck) » (8.‘09)
a, P
k=1 k "k

in which lupcr.criqf (I) refers to Ishii, and superscript (=) denotes Ishii's
phase average. a  is the local tile__fractton and it relates the phase
average 'k Lo the Eulerian time average 'k according to

c: =V, - (8.1.10)

‘iht. is a weaker restriction than the condition that p, = constant since the
variation of p) with temperature and pressure can still be considered even

tm.h Oi = 0.
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Ei is Ishii's kinematic wave velocity, and rI is the rate of production of
phase k at the interface for which Ishii wtotel(Eq. V 2.1 in Ref, 13)

]

1 1
r, = -“Xj"m o (Y - W)+ n , (8.1.11)

where At is a fixed time interval for averaging, W), 1s the magnitude of the
normal component of the interfacial velocity, and index j refers to the number
of times the interface passes through a fixed observation point during At.
Ishii's time-averaged mass conservation equation (Eq. IX 1.l in Ref. 13) is

i1e =1 I

I = &
a Py +9V . a Py gk Pk " (8.1.12)

@

t

where E: is the mass-weighted mean velocity defined by

-I L -
U -ph_l}"’/ok . (8.1.13)

In Eqs. 8.1.9 and 8.1.12, oI is the local time fraction which is generally not
the same as local volume action. Despite these differences, the similar-

ities between Eqs. 8.1.7 and 8.1.12, and between Eqs. 8.1.8 and 8.1.9 are
apparent,

. Interfacial Mass Balaice Equation (from Eq. 6.4.la)

For a two-fluid system, the interfacial mass balance equation associated
with Eq. 8.1.7 is

: t 5
z q‘k> =0, (8.1.1‘)
k=1
In conjunction with Eq. 8.1.12, TIshii gave
2 1
) re=0. (8.1.15)
k=1

Both Eqs. 8.1.14 and 8.1.15 express the conservation of mass at the
interfaces.

. Linear Momentum Equation (from Eqs. 6.5.22 and 6.5.23a)

!__ . t 't)' s s o t 'l)--
T ("k’k"’ ) RtV (‘k“k* @) L4

: 4 -- - _T - -
t le v ap. 2V . gt le v ak pk
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-- Va P -9V ‘@
x Pk kP k

t

+ Ve.a, (f_k +‘:)+v- ayge>

+(e?ll p’k (akpk>) £
+ta Mg +F Ve, -, *Va,
+ (PTI):d - (vsn) + (mm "' , (8.1.16)
where
T oy t L L]
e " TP QU (8.1.17)
(P‘rl):d oyt {I' Pl oy dA> (8.1,18)
A
zd —h
(vsTD) " = - v <{\1L' 2."‘“> (8.1.19)
d - 5 'y ' rvuis (O g
(MI):--V ]A ["gt<§t(gk‘!k)>*t<ﬂk§t>(p*-!k)-_g‘LFdA

kLF

and ®<r >® 1s defined by Eq. 8.1.4.

If additional simplifications specified in B.q. 8.1.6 are introduced,
Eq. 8.1.16 becomes, for f = g,

a - - - - - - u
e ok BtV o, 0, B0

=-va By (i, )t e, 8 et (8.1.21)

where ‘0-4‘:‘ denotes the interfacial momentum sources under the stated
simplifying conditions:

‘>t =t G +F va, - - Va +(emD)], (8.1.22)
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where '<r >® is defined by Eq. 8.1.8 and

(rerz)} - - v (e - W) e

A

da . (8.1.23)

It is seen that (HHTI): represents a "modified” Reynolds stress due to inter-
facial turbulence.

o Interfacial Momentum Balance Equation

For a two-fluid system, Ea. 6.6.2, when simplified for conditions
consistent with those used in deriving Eq. 8.1.20, becomes

2
t .-v-‘ ;— o H s «l.2l4a
uz-n > {kk(vl unkgk)u (8.1.24a)

where V4 is the interfacial surface gradient operator, o is the temporal mean
interfacial tension, is the temporal mean of the average principal curva-
ture of the interface, and subscript k may be either 1 or 2, referring to
fluids on either side of the interface. It 1is understood that A, and n, are
also temporal means. In writing Eq. 8.1.24a, the effect of deviation of local

curvature from the average curvature change is ignored. It can be added if
desired.

When the averaging volume is sufficiently small, the integral on the
right-hand side of Eq. 8.1.24a may be approximated by

VU (9 i -BRa) ey GemRVE . (8.1.29

A

The first term on the right-hand side accounts for the variation of surface
tension along the interface, which is probably small in dispersed systems due
to the random nature of its distribution over the particles. The second term
accounts for the curvature effect. In many practical syrtems, both contribu-

tions relative to %oftcn are small and can be neglected. If this is indeed
the case, Eq. 8.1.24a reduces to

2
] ‘a0, (8.1.24b)
k=1 e

The time-averaged linear momentum equation given by Ishii (Eq. IX 1.14 in Ref
13) is

e oI i -1t
e ok P G YV o 0 LU

[ = 1 T I = I
-—Vahl'kﬁ' v.ak(xkf;k)fukpkl"!l' (8.1.26)
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T I
in which T and L, are the viscous and turbulent stress tensors and !k is the
inte:xaciur mumen{um source given by

| 1 =1 - ] I d I
- ' v + M -1, o ¥ 8.1.27
- SRS TRA TR Tl 7 % ( )

1

where ﬂﬁ is the total drag force. ,In Eq. 8.1.27, the last term was added 1in
accordance with Refs. |15 and 16. M consists of a tangential component giving
rise to skin friction drag and a normal component, which gives rise to the
form drag.

The associated interfacial transfer condition given by Ishii (Egs.
IX 1.12 and VIII 2.7 in Ref. 13) is

e 1 7 \ = = 1 . =
M, = L B,H21 - HV['OBl + ZoH.ZlVa2 + force due to Vio N (8.1.28a)

L

where L;! denotes the area concentration per unit volume. The first term on
the rig%t~hand side of Eq. 8.1.28a accounts for the effect of the change in
mean curvature, which is not included in Eqs. 8.1.24a and 8.1.25. When the
terms on the right-hand side of Eq. 8.1.28a, taken collectively, are small

compared with terms in ﬁk , One can write

)

R |

M = 0, (8.1.28b)
k=1 .
In two recent papers, Ishii and Mishima[l5), and 1Ishii and

Kocamustafaogullari|[16] gave the following "simplified” form of the time-

averaged momentum equation (Eq. 2 in Refs. 15 and 16):

- . U
ot B k &k k

[ = I - I - = I *
+ ¢ + 1 - « V » + | - P v e1.29)
Py B Fk U g 19 e Mik ‘Pki 1K) a, (8.1.29

intcrlavlae drag. By comparing Eq. 8.1.26 with Eq. 8.1.29, one sees that
Mige The authors of Refs. 15 and 16 suggested that an equation of the
following constituents would be suitable for the dispersed phase:

in which ¢  is the interfacial shear stress, and My 1s the "generalt;gd”

The last term in Eq. 8.1.29 was added per personal communication between Dr.
Ishii and W. T. Sha, December 14, 1984,




j4k = gum of standard drag force, virtual mass force, and Basset e
force, all computed on the basis of a unit volume. (8.1.30)

Equation 8.1.30, which is Eq. 6 in Ref. 15 or Eq. 9 in Ref. 16, is not a
derived result. While it appears to be physically meaningful, there 1is no
assurance that M,, In Eq. 8.1.29 can be expressed as such.

The associated interfacial momentum balauce equation stated by Ishifi
and Kocamustafaogullari for a two-fluid system is

2
«

M (8.1.31)
Lo 24k
k=1
- I
Despite the difference between our ak and Ishii's ak, it is instruc-
tive to compare the simplified momentum equation 8.1.2]1 with Ishii's result,
' t 8 i = =
Eq. 8.1.26, ssume ¢ T,.> = = = P
q 1 " ;t we assume that K’ rk, p P Pk PK,
addition a, =a., then Eq. 3.1.21 becomes formally identical to Eq. 8.1.26,

etc., and in

provided that

or,

(8.1.33)

We reiterate that {MMTI)B represents interfacial momentum transfer due to
turbulence. The two interfacial momentum balance relationships, Eqs. 8.1.24b
and 8.1.28b, are formally identical.

) By using the assmptions just cited, namely, t<leS = FI. 5 = ; 5
a =a , etc., one may readily demonstrate that Egs. Bfl.ZI and 8.1.29 of
Ref. l§ become formally identical if

*

. o .
fhe “"generalized drag force was represented by M4 in Eq. 6 of Ref. 15 and

in Eqe 9 of Ref 16 1instead of EJK' Presumably the subscript d refers to
dispersed phase.
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g g Vet =y, . (8.1.34)

Clearly, Eq. 8.1.34 is equivalent to Eq. 8.1.33 since My, = !:.

An alternative form of the momentum equation is given by Eq.
6.5.23¢c, which, upon simplification under the stated conditioans, becomes (for

£=g):

’Lc:l

'.-- P . o T T 3.0
I B °k(‘-k+’-k)*°k°k1

=L * Va, +(mm)y, ©(8.1.35)

g,

3
TR S

zd

Equation IX 1.15 in Ref. 13 reads:
I, = I/~ ,_T I=
Pk Dt °kvpk+v'°k(t-k+‘-k)+°kpka

= - I I/(:1 = d I
+ (Pki Pk) v a + l‘k (_'Jki - Qk) +H - v a, (8.1.36)

o

R A o d "
where Be “ 3% + gk V and 5‘ is the total drag force.

- I = . = -] = =
If one assumes that @ °k’ pk "k'Hk'!w Pk -Pk' etc., then Eq.

8.1.35 becomes formally identical to Eq. 8.1.36 when
d = = - t 8 (= -
KLe(r, -2)ve + <0 (B, -4)
- - s
= (gy ~gJ * Vo, = () (8.1.37)

which is identical to Eq. 8.1.33, as one would expect.

- Enthalpy Equation (from Eq. 6.11.17b)

(0o, + fapp) B+ v (35, + “app) R,
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? .zd
hk of & ¥ e s ¥a
*3E Tt b V'(Dnr.v"k"k)“k
d P
oL k d ol sas . g2d _ ,2zd
@y zd VT zda OF YV YLt
i 4

- - . 0 5ol 2d
+-(ak Lk + (ng;k?) 3 V,gk + 01k

k
+ (wx)l("‘)"" + (vor) 24 + (eevrr) 2, (8.1.38)
in which

a0
d tzd .5?+'gk. v (801.39)

K
o:: =5, “alno +a, "o (8.1.40)
!;: - B, ‘«"‘g‘p va, ‘o;‘g;‘; (8.1.41)
o;ﬁ - 9. e +a, ey v . g (8.1.42)
o5 = LtV +a, Sqr,up (8.1.43)
.'!: - ;k t(yi':hl? (8.1.44)
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(pu1) Tty - ) my,
AvLr
+ v} / pé[(ﬁk * R - (gt +W)] « oy m> (8.1.45)
A

(voi) 2 = 7! ik;‘<£; Yo a> (8.1.46)

zd . | ® Ellapay | g “ =

(wanyt - - o7 [pk iy - w)> + S (G, - )] - n,, a
-1 ¢ = _

- epmi(E, + 1) -(uus.;n-g;a} (8.1.47)

and t<rk>‘d is defined in Eq. 8.1.4.

If further siwplifications specified in Eq. 8.1.6 are introduced,
and, in addition, correlations between pressure anﬂ velocity fluctuations are
assuwed negligible as well as dissipation due to S A V._k>, then Eq. 8.1.38
becomes for J_, = 0

Ek
ap
s = s - - = = - K - T
T B B A LT dtzd-v'ak(-‘-lqk+£k)
k
8 t E t g r S
to,+ Q%+ T2 h o+ (ERYIT), (8.1.48)

in which 0: is the dissipation function in the bulk fluid. It is
o =0y I V0 (8.1.49)

We recall that t(bk> is the time-averaged interfacial heat transfer rate per
unit volume of the mixture and is defined by Eq. 6.7.16. Under the simpli-
fying conditions used in this section, it becomes
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v Wi (8.1.50)

where the scalar qu is the area-averaged temporal mean interfacial heat flux
into phase k.

The interfacial mass generation rate t<I‘k>’ is given by Eq. 8.1.8
and

(eevrr)f = - v [ 5, "ay(y - W)> e n aA, (8.1.51)

which represents the interfacial enthalpy transfer due to turbulence.

* Interfacial Enthalpy Balance Equation

For a two-fluid system, Eq. 6.12.1b, when simplified for conditions
consietent with those used in deriving Eq. 8.1.48, becomes

2 t s t 8z - 4 ;k s
1 [(Qk> + > b - P i (EpYTI) | =0 . (8.1.52)
k=1 d tk

The enthalpy equation recommended in Refs. 15 and 16 is

l\v

is = % a5
ok P PtV a o U by

: %

=aq, =— P _~-Vea (J +JT)+3—"-1-+rIE +¢ (8.1.53)
k Dt 'k k\Zgk * =qk/ "L L ki R -

in which 2:& is the turbulent heat flux, qii is the interfacial heat flux, and

L. denotes interfacial area per unit volume.

The substantive derivative in Eq. 8.1.53 is defined by

R

a__ -
G v (8.1.54)

and hence is identical to :d defined by Eq. 8.1.39.

d tk
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It is thus seen that Eq. 8.1.48 becomes identical to Eq. 8.1.53 {f

a. ;k - ;k’ Fk -P. t(rk>' = P&. and ¢ = ¢, (all of these are
most likely true),
b. g: = g:k. i.e., the turbulent enthalpy flux is the same as the

turbulent heat flux,
c A
. Gk Gk »

and

¢ a0 (h, -h) - (evrI)} =o.

The interfacial enthalpy balance equation given in Refs. 15 and 16 is

2 /q
ki Iz
2 (ir—-+ rk hk;) 0, (8.1.55)
k=1 s ]
_ d ay
which becomes identical to Eq. 8.1.52 when Pk -~ is negligible.
dt
k

8.2 Comparison with Conservation Equation used in the TRAC Computer Code

The field equations describing the two-phase, two-fluid flow used in
the TRAC code werc based on: (1) mixture mass equation, (2) vapor mass equa-
tion, (3) vapor equation of motion, (4) liquid equation of motion, (5) mixture
energy equation, and (6) vapor energy equation. Since the energy equation is
written in terms of internal energy, it is selected for comparison.

Using the simplifications introduced in the beginning of Sec. 8.1,
including those specified by Eq. 8.1.6, Eq. 6.9.19a reduces to:

3 & - o
ok Pk WtV o o by

- T -
S P Ve g~V ak(‘-’qk+2k)+°k Jex

t E] s 4 B 8
+ (bk) +o+ O u + (IETI) (8.2.1)

in which all contributions due to pressure-velocity correlations and the
interfgcial viscous dissipation are neglected. The turbulent internal energy

f lux u is given by
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g: =5, “Wun> (8.2.2)
and
(1err)? = - v [ 5, Sqwr(w - w)> e n A (8.2.3)

The similarity between Eqs. 8.2.2 and 8.1.44 and thot between Eqs. 8.2.3 and
8.1.51 are readily seen. The dissipation function ‘k is defined by Eq. 8.1.49
and the interfacial mass generation rate per unit volume (I‘k> is defined by
Eq. 8.1.8. The corresponding interfacial internal energy balance equation is

( &t + ta > u (1eT1)? )- % s (8.2.4)
k-l .

Since

k at
P
t s |- k
e u G‘k> hk -;_—
k
3 a )
t B - k - -

Substituting Eq. 8.2.5 into Eq. 8.2.1, followed by combining and rearranging
terms, yields

= - ——k— - . n - . = 3 T 8
BT WY gV (—*!qk*’“k)*’k
t El t g = > » 8
+ Q" + e > o+ a, Jg + (IETY)_ . (8.2.6)

The molecular and turbulent conduction fluxes can be expressed in terms of
molecular and eddy diffusivities D,k and D . Thus,
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- T - - T -
¥ Gk(-‘!'qk.*&t) V. a P (Duk+0uk)v u, . (8.2.7)
The vapor internal energy equation used in the TRAC code (Eq. 65 in Ref. 17),
written in the present notation, is (with subscript g replaced by k):

- = _te .8 _ t s ~ .
e . L B <Qk> - <rk> h, + Qi * (8.2.8)

[
[
o
|
o)
<
-
2

where ( denctes the wall heat transfer rate per unit volume. Equation 8.2.6
becomes *dentical to Eq. 8.2.8 when

a. Molecular and turbulent conduction are absent,
b. Viscous dissipation is negligible,

Ce Gk JEk - ka , and

. ‘apf ('-‘u - '-‘u) - (1eT1); = 0 .

In boiling reactor applications, the first two conditions are probably quite
reasonable. The third is merely a statement that the wall heat transfer (such
as that from fuel rods) is treated as a distributed heat source. The last is
analogous to that of Condition d listed following Eq. 8.1.54 of Sec. 8.1l.

We have demonstrated in this section that when the local averaging
volume is made small and when several additional simplifications are intro-
duced, the set of rigorously derived conservation equations prescribed in Sec.
6 reduces to various forms that compare reasonably well with those given in
Refs. 13, 15, 16, and 17. Perhaps a more important finding from the
comparison stems not so much from their agreement, but rather revealing the
missing terms in the currently "accepted” two-phase flow formulations. It
would be a useful and logical step forward to assess the importance of these
missing terms wunder a range of conditions encountered in practical

applications.

9.0 DISCUSSION AND CONCLUDING REMARKS

This report presents the basic time-volume-averaged conservation
equations for multiphase flow in systems without internal solid structures.
The starting point of the analysis is the well established phasic conservation
equations of mass, momentum, and energy, and their interfacial balance rela-
ions. Within the framework of generalized multiphase mechanics first
suggested by Soo[8], particles of different ranges of sizes, densities, and

shapes are treated as different dynamic phases.

The local volume averaging 1is performed first, followed by time
averaging. In ti.ls way, the identity of the dynamic phases 1is preserved.
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Delhaye and Achard|l4] suggested that interchanging of the order of volume and
time averaging would lead to identical results. The fallacy of this conclu-
sion was the result of improper application of the Leibnitz rule for the
differentiation of an integral as has shown in Sec. 7 of this report.

The local volume-averaged conservation equations were deduced from the
phasic equations by using the theorems of local volume averaging developed by
Slattery, Whitaker, and others [3,5,6,7]. Time-averaging was subsequently
applied to these equations. The analysis 1is rigorous, subject only to the
restrictions on (1) characteristic length scales of the system as prescribed
by the inequalities defined in Eq. 3.4.3, and (2) characteristic time scale
inequalities [ ‘escribed by Eq. 6.l1.4. Because of the length scezle restric-
tions, the resulting equations are strictly valid for highly dispersed
systems. When these equations are applied to systems that are not highly
dispersed, the extent and nature of errors involved remain to be a subject of
further research.

The analysis of multiphase flow calls for the solution of the time-volume
averaged differential-integral equations of conservation with appropriate
initial and boundary conditions. An examination of these equations reveals
immediately that they are incomplete in that constitutive relations for the
diffusive, dispersive, turbulent, and interfacial transport need to be
developed. Collectively, this constitutes the closure problem. It <hould be
noted that the integrand of the interfacial integrals consists of the local
values of the dependent variables. Equivalently, it contains the deviation of
the local value of the variable from its intrinsic local volume average and,
in the presence of high-frequency fluctuations, its turbulent component. The
closure problem is not unlike that in the analysis of turbulent flow, but with
additional complications. In the absence of turbulence, a closure scheme for
the determination of the spatial deviation of the dependent variable for sys-
tems involving diffusion and first-order chemical reaction has been given by
Crapiste, Rotstein, and Whitaker [18]. A rigorous approach to treat the

general closure problem including convective transport and turbulence will, no
doubt, remains a challenge.

If the flow and thermodynamic conditions are such that the spatial devia-
tions of the dependent variables, denoted by (), are small and may be
deleted, and if, in addition, that a' ~ 0 and all time correlations involving
pp and Py are negligible, then the resulting set of simplified equations
reduces to a form closely resembling Ishii's time-averaged equations although
some differences remain., These differences are not unexpected since Ishii's
local time fraction is not identical to the local volume fraction. Strictly
speaking, his mass-weighted mean densities, velocities, etc. are not the same
as the low-frequency component of their intrinsic volume averages, even when
the averaging volume is small. The internal energy equation used in the
development of the TRAC code has also been demonstrated to be in reasonably
close agreement with the more complete internal energy equation obtained from
the present study and simplified for applications to nuclear reactor systems.

At the present time, the evaluation of the interface transfer integrals
in the time-volume-averaged conservation equations is not generally known. An
order-of-magnitude analysis to assess the relative importance of these inter-
face transfer integrals would be helpful. One of the fundamental problems in
understanding multiphase flow is the lack of knowledge of mass, momentum, and
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energy transfer at the interface. In the past, empirical correlations were
developed from experimental data to quantify interfacial mass, momentum, and
energy transfer rates, often withou: sound theoretical basis. These correla-
tions therefore are valid only in the range of operating conditions for which
the experimental data are obtained. Other urgently needed information is the
quantification of transpert properties such as eddy and dispersive diffusiv-
ities of mass, Reynolds and dispersive stresses, and eddy and dispersive
conductivities of heat, etc., by performing planned experiments in conjunction

with analysis.

In summary, a set of rigorously derived conservation equations of mass,
momentum, and energy for multiphase systems without internal solid structures
via time-volume averaging has been presented. Similar derivation will be
presented in Part Two for multiphase systems with stationary internal solid
structures. These equations are in differential-integral form and are not a
set of partial differential equations as currently "appear” in most literature
on multiphase flow. This set of conservation cquations serves as a reference
point for modeling multiphase flow with simplified approximations and provides
theoretical guidance and physical insight that may be useful to develop corre-
lations for quantifying interfacial mass, momentum, and energy transfer

between phases.

Finally, it is important to note that, for the conservation equations
presented in this report, the local averaging volume is unrelated to the
volume of a computational cell used in the numerical computations.
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APPENDIX A. PHYSICAL INTERPRETATION OF V - v.l [ o, da . (A.1)
To provide a physical interpretation of Eq. A.l, which is Eq. 3.4.9 with
Y * 1, we consider a dispersed system and an averagini volume in the shape of

a rectangular parallelopiped AxAyAz with 1its centroid located at (x,y,z), as
illustrated in Fig. A-la. Its top view is shown Fig. A-lb.

AAx-(ox/2)

|

|

|

AL

. —
"- ity “Ox qullad

(a) (b)
Fig. A-1. Physical Interpretation of Eq. 3.4.9 for y,6 = |
Clearly, for those elements of the dispersed phase k that are completely
inside the averaging volume,

dA, =0 , (A.2)

e

k
GAk

where §A, 1s the closed surface of the element. Such an element, labeled GD
in Fig. A-lb, may be a bubble or a droplet, spherical or nonspherical. Next,
we coneider those elements of the dispersed phase that are intersected by the
boundary surface AA . x/2)* One such element is labeled @ in Fig. A-lb.
The unit outdarawn normal vector n, can be represented by

=ie +le, +tke (A.3)

% 3}
where 1, j, and k are unit vectors pointing in che positive directions of x-,
y=-, and z-axis, respectively, and e, e, and €4 are the direction cosines of

« If we denote the portion of the interfacial area of element that is
inside the averaging volume v by GAk [x+(Ax/2) ] and its area of intersection

with the surface AAyy(sy/2) PY 8A¢ x4(ax/2)+ then

/ ¢, dA = 8A, Hax/2)

S, (x+(Ax/2))

(A.3a)
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and

[ e, dA= | e; dA =0 . (A.3b,¢)

SAL. [x+ax/2)] Sk, [x+(ax/2)]

Likewise, for an element of phase k that 1is interesected by the surface
AAK-(A‘IZ)’ we have

N .l dA = dAk,x-(Ax/Z) (A.4a)
A, [x-(ax/2)]

and

/ e, dA = [ e, da =0 . (Aéb,c)
SA, (x-ax/2)]  3Ax, (x-(ax/2))

Following the same procedure, we have for an element of phase k that is inter-
sected by the surface AAyy(yy/p) (labeled (©) in Fig. A-1b)

f c A =8A i) (A.5a)
SA, Ly+(ay/2))
and
/ e, dA= | e; dA =0, (As5b,c)

SA, ly+ay/2))  SAx, (y+ay/2))

where 6&’(”“’/2)] denotes the portion of the interfacial area of the
element @ that i{s inside v, and its intersection by the surface A‘yﬂdy/Z)
is 5‘\1.y+(&y/2)‘ Similar expressions can be written for elements of phase k
that are intersected by the bounding surface ‘Ay-(AyIZ)' AAH-(A:/Z)' and

AA, _(az/2)*

The x-component of the integral on the right-hand side of Fq. A.l is

(' v f'mak ““) R (- oA o) * ! A peaurny) ¢+ MO

where 'he summation is taken for all elements of phare k cut through by the

bounding surfaces ‘*rr(AxIZ) and ‘&-(Axlz)' Using the relationship given by
!q. 3.3.11., one has
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2 sAk.xﬂex[Z) -
Ayhz %k, x+(ax/2)
and
l 6&,:-@:/2) .
Ayhz %k, x-(ax/2) *
Thus,
Aa
(— v-l[ o, dA -—A-%-‘E, (A.7)
A

where Aak.‘ = Ay x+ax/2) T %k,x-(Ax/2)° Similar expressions can be written
for the y- and z-component of the indicated integral. As has been pointed out
in Sec. 3, for highly dispersed systems Aok.‘ - A“k.y - Aak.: = dap. It

follows, then, that

Aa Aa Aa
-vl[ %“'1#*1#*!%' (A.8a)
A
for which we can write
-1
v Gk - -y [ Bk dA (A.Bb)

A

in view of the length scale restrictions of Eq. 3.4.3.
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t
APPENDIX B. EVALUATION OF <°k 31(&)) FOR NON-NEWTONIAN FLUIDS

For a Newtonian fluid, the stress and strain rate of a fluid phase k are
linearly related and are expressible as

| (kk -%uk)v . _'-_’., I+ My [v'!k N (v.g.k)c] i (B.1)

in which all quantities have been defined previously. When the viscosity
coefficients Ay and y, are dependent on the strain rite, they are decomposed
in accordance with Eq. 6.1.8, i.e.,

It ~ !

‘k Qk>l.!' +Am +xk (B.2)
i T S A (B.3)
k KL Y TVt o

R e e o
SR (NEE T W (R TR R (R 1 P R W
e R T PR R
R (C'PRE TLES WO T T0a (S TALERDY
SORE IV IUER N § Te (YRS P LEE W F
i -5ui)v - 5

+ 3“"3’:.! [v.”<y‘>u, + (v.”qt)u)c]

+
wir

+

-~

M

M T ta Gyp + (Vi) 2

" M o
<"h.)l.l a’!t » (v' !‘)c>
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L 316‘-&“ (90 p + (VB > + 31(5&[,; (v.g + (v, g)

3., 3 ( 31 )]
+Tap [v, Lo T

+ v, + (9.5 J )

+ Maglv.g + (9, 50 )

for which the relacions given by Eq. 6.2.21b and ¢ have been used.

time averaging gives

t(“ku(‘-k)) “%uLr 3(‘& . %"n)u (' : 31‘-‘&’;,;)1

3 3
Your Y (M

3 Z o1 ~
Your ‘<*k '5“k>u Ve ol

3 . & .
tour WO ol t (Vg0

3 ~ 2 - ~
*or ‘«*m i"ur) % ‘—’u.r)l

3~ " L
tour  Yr (Dl * (Wl >

vor C0L-3u)ve )1

t3i
tage (v o+ (V) D

3 2 > t3i
+ ﬁ(\k “Jw <ni V. y&> L

s Mo, Play (v ¢ (v D

3
¢ o b3 6 Maow) s

tit £} | i )
e [v, Yo * (" Uoe c]

(B.4)

Subsequent

31 )
Boet (v, Y oLr c]



SCECRMINS Y
ot g g * ) )
ot K - $50s) v+ )

t
s A ' '
" <°k Ve [T + (v'gk)c]>>

+ terms involving triple time correlations. (B.5)
In deriving Eq. B.5, the relation t31(7 * Ug> = 0 has been used.

When A, u:d By are indepcndsnt of velocity gradients, 3;?“)“‘- Ags
31<“k)1.!‘ = ugs “KLF = AL = 0, and Ykip = ug = 0. In addition, < * Yy’

-kLF" *=
0, 310,%)- 0, and 31((7. 0. Consequently, for Newtonian

fluids, Eq. B.5 simplifies to

t<°k3i<‘-k>> " SuLr l(‘k ' 'zi“k) (' : 31@8“) L
*uy [v.3‘<gk>u + (v.3‘<y_k>u)c],
*(‘k '%"u) g ve up 1

t3
13

-qkl.lf)c> -

+u ‘«;‘ (V. + (v.50) 1>, (B.6)

which is precisely the result given in Eqs. 6.5.7, 6.5.84, and 6.5.8g.
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t
APPENDIX C. EVALUATION OF <°k31<'-’qk>> FOR ISOTROPIC CONDUCTION WITH

VARIABLE CONDUCTIVITY

The Fourier law of isotropic conduction for fluid phase k is

iqk- -ka Tk » (Col)
which is valid for variable conductivity, since du, = cvkd‘l' » Eq. C.l can be
written in a form relating the heat flux vector and the gradient of internal

energy. Thus,

;!qk " Bk v U » (C.Z)
where By = "k/cvk' When Kk Or €y, or both, vary with temperature, we write
. 31 ~ 5
Accordingly,
3i - B ( 3 o 31 " )
(;I_q k) Gk)u v <uk)l.! + Q@ uu"> + Q9 uk>

3, - )
L]
BeLr (' Gl t Ve t? “k»

31 3 .
- ‘i (V <Uk>u +V uu" +Vv \lL)) . (C.b)

v i,
In deriving Eq. C.4, the relation ((v <u, > =9 has been used.

Multiplying Eq. C.4 by (au' +a ). followed me avernﬁf}l leads to

3 ~
4 “hl.l’))

) i L
> Gar SV wp

t
i ke 3 ( 3
éh qu)) S Bp \V T

31 e -
Serr Cunr ¥ Yer

t
o t3i 3 M
%" B A <°§ Cprr 7 “i’)
t
(R 31 o N )
@uBe> ¥ Tu - (a) @,V um> (C.5)

When ’k is a constant, 31“&’1.! - ‘k' u\diw -a;‘-o. In addition,

”(V uu"> = 0. Consequently, Eq. C.5 simplifies to

t
3 3 e, , ;
(ok q‘k>) - - cu.'(xk/cw) U (:k/c*) @pVup, (C6)

which is precisely the result given by Eqs. 6.7.12, 6.7.13d, and 6.7.13e.
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7 NUPPLEMENTARY NOTES

[T ARGTRACY (300 warth o ‘wur)

A set of rigorously derived conservation equations of mass, momentum, and energy fo
multiphase systems without internsl solid structures via time-volume averaging of point
instantaneous conservation equations 1is presented, These equations are differential
integral equations in which the area integrals account for the interfacial transport o
mass, momentum, and energy. The equations from volume averaging contailn averages of t
product of the dependent variables which must be expressed in terms of the products o
thelr averages. In nonturbulent flows, this 1is achieved by expressing the “point
variable as the sum of its Intrinsic volume average and a spatial deviation., In turbulen
flows for which further time-averaging is required, the “point” variable is then dec
posed into a low-frequency component and a high-frequency component. Time averagi
following volume averaging preserves the i{dertity of the dynamic phases. Under certal
slmplifying conditions, the proposed set of rigorously derived conservation equati
reduces closely to various forms that are currently “accepted” for two-phase fl
analysis. This set of conservation equations serves as a reference point for modeli
multiphase flow and provides theoretical guildance and physical insight that may be usefu
to develop correlations for quantifying ionterfacial transport of mass, momentum,
energy.
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