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ABSTRACT

Local volume averaging of phasic conservation equations of mass, momentum, and
energy for a multiphase system yields equations in terms of local volume
averaged products of density, velocity, energy, stresses, etc., together with
interface transfer integrals. These averaging relations are subject to the
fc howing length scale restrictions:

d <<.t << L,

where d is a characteristic length of the pores or dispersed phases, i is a
characteristic length of the averaging volume, and L is a characteristic
length of.the physical system.

'
Solutions of local-volume-averaged conservation equations call for expressing
these local volume-averaged products in terms of products of averages. In
nonturbulent flows, this can be achieved by expressing the " point" variable as
the sum of its intrinsic volume average and a spatial deviation. In turbulent

| flows, such a determination can be made via time averaging over a duration T
'

such that

HF << T << TLF'T

where T is a characteristic time of high-frequency fluctuation and tgy is aHF
characteristic time of low-frequency fluctuation. In this case, the point"
variable is decomposed into a low-frequency component of the intrinsic volume
average and the associated spatial deviation and a high-frequency component.
This procedure reduces the volume-averaged products to products of averages
plus terms representing eddy and dispersive diffusivities of mass, Reynolds

i and dispersive stresses, eddy and dispersive conductivities of heat, etc. |

These terms arise from both local spatial deviations and high-frequency
fluctuating components. iTime averad ng after local volume averaging preserves,

l the identity of dynamic phases. The resulting conservation equations are in
the form of differential-integral equations of transport with probability,

[ integrals depending on phase configurations, interfacial velocities, and other

[ factors. When the flow conditions are such that the local averaging volume
j can be made sufficiently small that the effect of spatial deviations can be

ignored, and in addition, the contributions due to high-frequency fluctuations
in local : volume fraction and fluid density are also negligible, then the
proposed set of rigorously derived conservation equations reduces closely to
various forms that are currently " accepted" for thermal hydraulic analysis of
nuclear reactors as well as systems involving two phase flows in general.
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In Part One of this study, a rigorous derivation of a set of conservation
equations of mass, momentum, and energy for a multiphase system without
internal solid structures via time-volume averaging is presented. Similar
derivation is presented in Part Two of this study (a separate publication)
with consideration of the presence of stationary internal solid structures,
for which the concepts of volume porosity, directional surface porosities,
distributed resistance and distributed heat source or sink are introduced.
The concept of directional surface porosities is new and it greatly facili-
tates modeling anisotropic flow and temperature field for such systems.
Specific attention is given to the numerical computation of flow and
temperature fields.
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E

i lient flux vector

Characteristic length of local averaging volume v,

\
Quracteristic length of physical system

i Interfacial momentum source per unit volume, *<M > is defined by Eq.k
6.5.22

Unit outward normal vector of interface as illustrated in Fig. 2
,

Sectic pressure
4

Interfacial heat transfer rate per unit volume

I ' Time

Tarperature; also averaging time interval'

,

'

Internal energy per unit mass
~

< > is the volume-averaged turbulent internal energy flux of

j phase k, defined by Eq. 6.9.4

'<k>is the volume-averaged dispersive - internal energy flux of

phase k, defined by Eq. 6.9.7

j '< > is the volume-averaged turbulent, dispersive internal energy

]
flux of phase k, defined by Eq. 6.9.8

Velocity

| L cal averaging volume; also volume in general

_

Interface velocity
i

Cartesian coordinates; z is also elevation

Local volume fraction

-Surface porosity

Volume porosity

Interfacial mass source per unit volume due to phase change, "<rk)
is defined by Eq. 6.3.10

Interfacialtotalenergysourceperunitvolume,E[k>isdefinedby
'

Eq. 6.7.32

Interf acial enthalpy source per unit volume, E%> is defined by Eq.
~

6.11.16

.
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NOMENCLATURE
i

A Area: A is the free flow area of enveloping surface of local g!e
averaging volume v; Ak is the total interfacial area associated with
phase k inside v 1 '

|c Specific heat at constant volume Ly

1

d Characteristic length of a dispersed phase M

D Diffusivity
"

D is the eddy diffusivity for mass transfer of phase k, defined
by Eq. 6.3.3

p
D is the dispersive diffusivity for mass transfer of phase k,

,

defined by Eq. 6.3.4 Q

D is the molecular thermal diffusivity of phase k, defined by Eq.uk t6.9.20
D is the turbulent diffusivity for internal energy transfer of T |

phase k, defined by Eq. 6.9.5a
u

E Total energy per unit mass, = u + (1/2) S . &
< > is the volume -averaged turbulent total energy flux vector of

phase k, defined by Eq. 6.7.5

'<k>isthevolume-averageddispersivetotalenergyfluxvectorof
phase k, defined by Eq. 6.7.6

'

< > is the volume-averaged turbulent, dispersive total energy

flux vector of phase k, defined by Eq. 6.7.7
U
~

_f, Field force per unit mass
v

g Gravitational acceleration

E
h Enthalpy per unit mass

*' Id< > is the volume-averaged turbulent enthalpy flux vector of

phase k, defined by Eq. 6.11.4 a

<k) is the volume-averaged dispersive enthalpy flux vector of

phase k, defined by Eq. 6.11.5
31< > is the volume-averaged turbulent dispersive enthalpy flux Yy

vector of phase k, defined by Eq. 6.11.6 T

gg Mean curvature of interface between phases k and f
h

-I

| I Unitary tensor

J Internal heat source per unit volume %E

;
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krnsportproperties.sociatedwithhigh-frequencyfluctuation

Refors to the case of constant density

ibo following superscripts appear in Section 8 only:

Same as ( )tp

Mazo weighted mean defined in Ref. 13

Refers to Ishii

Further simplification of ( )zd

Refsrs to zero spatial deviation,

Subscripts

Capi 11arity; also characteristic quantity

Phu.e f

High frequency

Intsrface

Phsce k

Interface of fluid phases k and f; Ak=Akf = Afk = Ag

Low frequency

Mass; also mixture

Corponents in the x , y , and z-direction

_ Symbols

V:ctor

T n or, second order

Arca average, local
2:< 'e denotes average over free flow area for the fluid mixture
21< > denotes intrinsic average over free flow area for a phase

Volume average, local
32< > denotes volume average over fluid mixture
31< > denotes intrinsic volume average of a phat,e

Time average
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f

l'
- d Interfacial internal energy source per unit volume *(M > is defined ( )Tk
| by Eq. 6.9.18

o( )
c Thermal conductivity

i
A Bulk viscosity

(-)
y Dynamic viscosity

(~)
p Density

a Surface tension
( )s

T. Characteristic time

( )zd
1 Viscous stress

,

<g > is the volume-averaged Reynolds stress of phase k, defined by
*Eq. 6.5.3

31< > is the volume-averaged dispersive stress of phase k, defined '

by Eq. 6.5.4 HF

314 T> is the v lume-averaged turbulent, dispersive stress of phase ik
k, defined by Eq. 6.5.5 k

4 Dissipstion function
kf

4 Scalar total energy function defined by Eq. 6.7.3Ek Lp

thk Scalar enthalpy function defined by Eq. 6.11.2 ,

(Pk Scalar pressure work function defined by Eq. 6.9.10
,,y,,

ek Scalar internal energy function defined by Eq. 6.9.2u

e Scalar viscous dissipation function defined by Eq. 6.9.13 -

tk ()

$ Intensive property
(_)

hk Vector mass flux function defined by Eq. 6.3.5 24)

hk Vector pressure work function defined by Eq. 6.7.9

hk Vector viscous stress work function defined by Eq. 6.7.11
3< >

Superscripts

(* ) Local spatial deviation

(') High-frequency fluctuation tg )
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Operators

V Gradient

|7 Divergence J

V, Dyad

(V, je Conjugate of dyad

V Surface gradient along interface between phases k and fkf

" * "" ' '** "I * '' k LF" + *
d

Acronyms

(EPYTI) Interfacial enthalpy transfer integral, defined by Eq. 6.11.15

(ifrI) Interfacial heat transfer integral, defined by Eq. 6.7.20

(IETI) Interfacial internal energy transfer lategral, defined by Eq. 6.9.17

(MTI) Interfacial mass transfer integral, defined by Eq. 6.3.11

(MMTI) Interfacial momentum transfer integral, defined by Eq. 6.5.21

(PTI) Interfacial pressure transfer integral, defined by Eq. 6.5.15

(PWI) Interfacial pressure work integral, defined by Eq. 6.7.25
(PWI)(h) defined by Eq. 6.11.12, is associated with enthalpy,

production

(PWI)("), defined by Eq. 6.9.11, is associated with internal energy
'

production

(TETI) Interfacial total energy transfer integral, defined by Eq. 6.7.31

(VDI) Interfacial viscous dissipation integral, defined by Eq. 6.9.14.

(VSTI) Interfacial viscous stress transfer integral, defined by Eq. 6.5.16

(VWI) Interfacial viscous stress work integral, defined by Eq. 6.7.26

All equations referred to in the above list are written for phase k. For
phase f, it is necessary only to change subscript k to f for the entries that
appear in the equations.
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| TIME- AND VOLUME-AVERAGED CONSERVATION EQUATIONS i

FOR MULTIPHASE FLOW !

1 PART ONE: SYSTEM WITHOUT INTERNAL SOLID STRUCTURES
:

| by j

i W. T. Sha, 8. T. Qiao, and S. L. Soo ;

i ;
i

EXECUTIVE SUMMARY

| Multiphase flows consist of ' interacting phases that are dispersed randomly in
space and in time. An additional complication arises from the fact that the,

] flow region of interest often contains irregularly shaped structures. White,

! in principle, the intraphase conservation equations for mass, momentum, and
i energy, and their initial and boundary conditions can be written, the cost of
| detailed fluid flow and heat transfer analysis with explicit treatment of

these internal structures of ten is prohibitive, if not impossible. In most
engineering applications, all that is required is to capture the essential

j features of the system and to express the flow and temperature field in terms !
of local, global quantities while sacrificing some of the details. He [
present study is an attempt to achieve this goal by applying time averaging !

'

after local volume averaging. {

Local volume averaging of conservation equations of mass, momentum, and energy1

! for a multiphase system yields equations in terms of local-volume-averaged
products of density, velocity, energy, stresses, and field forces, together< *

; with interface transfer integrals. Rose averaging relations are subject to .

the following length scale restrictions:;

1
! d << A << L, i

2

where d is a characteristic length of the pores or dispersed phases, A is a
characteristic length of the averaging volume, and L is a characteristic
length of the physical system.

Solutions of local-volume-averaged conservation equations call for expressing
these local volume-averaged products in terms of products of averages. In

j nonturbulent flows, this can be achieved by expressing the " point" variable as
"

the sum of its intrinsic volume average and a spatial deviation. In turbulent
flows, the same can be achieved via subsequent time averaging over a duration

i T such that
.

| r y << T << i p,
,!

t

| where T y is a characteristic time of high-frequency fluctuation, and tty
'

is a

{ characteristic time of low-frequency fluctuation. In this case, an instanta- i

! neous " point" variable ik of P ase k is decomposed into a low-frequencyh

j component $kLF andahigh-frequencycomponent${,similartoReynoldsanalysis
cf turbulent flow. Se low-fgquency component consists of the sum of the
local intrinsic volume average <$ }U and its local spatial deviation 9 gy.k
Time averaging then ~ reduces the volume averaged products to products of !

i

- _ , - . - - , _ . - . , , , - -. .- . , - - - - - - . - - - .x,. - , -. J
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.

-averages plus terms representing eddy and dispersive diffusivities of mass,
Reynolds and dispersive stresses, and eddy and dispersive conductivities of
heat, etc. These terms arise from both high-frequency fluctuations and local
spatial deviations. This procedure of time averaging after local volume aver-
aging leads to a set of differential-integral equations of conservation for
multiphase flow. If the flow conditions are such that the local averaging

can be ignored, and in addi-
volume can be made suf ficiently small that $g, fluctuations oftion, the contributions due to high-frequency local volume
f rection and fluid density are also negligible, then the rigorously derived
set of equations presented in this report reduces, as approximations, to the
various forms that are currently " accepted" for thermal hydraulic analysis of
nuclear reactors and systems involving two phase flow in general.

The sequence of performing local volume averaging and time averaging cannot be
chosen arbitrarily. Local volume averaging should first be performed in order
to preserve the different dynamic phases such as bubbles or drops of different
sizes. Time averaging of the phasic conservation eequations from the very
beginning will remove the distinction of dynamic phases, unless suitable
conditional averaging is used. Time averaging leads to fraction of residence
time of a phase rather than volume fraction of a phase.

Part One of this study presents the detailed derivation of a set of conserva-
tion equations of mass, momentum, and energy for a multiphase system without
internal solid structures via time and volume averaging. Similar derivation
will be presented in Part Two (a separate publication), which treats systems
having stationary internal solid structures, for which use is made of the
concepts of volume and directional surface porosities, distributed resistance,
and distributed heat source or sink. The concept of directional surface
porosities, which is new, greatly facilitates modeling anisotropic flow and
temperature field in such systems. Specific attention is given to the
numerical computation of flo,w and temperature fields.

.

1. INTRODUCTION
,

Multiphase flows . consist of interacting phases that are dispersed
; randomly in space and in time. Additional complit.ations arise from the fact

that the flow system of interest of ten contains irregularly shaped structures.
White, in principle, the intraphase conservation equations for mass, momentum,
and energy, and their associated initial and boundary conditions can be writ-
ten, the problem is far too complicated to permit detailed solutions. In fact,
they are seldom needed in engineering applications. A more realistic approach
is to express the essential dynamics and thermodynamics of such a system in
terms of local, global quantities. This may be achieved by applying some sort
of averaging process, such as time averaging, space averaging, statistical
averaging, etc. The present work begins with local volume averaging to be
followed by time averaging. In this way, the identity of dynamic phases is
preserved.

In an earlier report [1], the local volume-averaged transport equations
for aniciphase flow in regions containing stationary, distributed solid struc-
tures are derived. Further time averaging of these equations is presented in

,

Ref. 2. A significant step in the development of these averaged equations is'

the intepduction of the concept of volume porosity and directional surface
porosity associated with immersed stationary solid structures. This concept

* Referred'to as directional surface permeability in Refs. 1 and 2.

.

+-
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-greatly facilitates the treatment of flow and temperature fields in aniso-
tropic media, and significant savings in computational effort are realized in
many cases. Ibwever, recently we noted that certain assumptions introduced in
Ref. 2 regarding the decomposition of the point values of the dependent

! variables, such as density, velocity, total energy, internal energy, etc.,
| could be improved. Furthermore, the approximations introduced in evaluating
t

the time averages of the interfacial integrals are not entirely consistent

| with the inclusion of the high-frequency fluctuating component of the local
;

! volume fraction in the analysis. To present a consistent set of time-volume-

| averaged equations, we begin by considering in Part One of this report a '

; system that is without stationary internal structures. he governing
! conservation equations for multiphase flow derived here via time-volume
! averaging are subject only to the length scale restrictions inherent in the
| local volume averaging theorems used[3), and the time scale restrictions
j prescribed in Ref. 2.

i In Part Two of this report, which will be issued as a separate document,
| the conservation equations of mass, momentum, and energy for multiphase
! systems with stationary internal solid structures via time-volume averaging
j will be presented. Advantage is taken of the use of volume porosity,
i directional surface porosity, distributed resistance, and distributed heat
; source or sink. De concept of directional surface porosity is new and has
; significant practical utility in modeling flow and temperature fields in
! anisotropic media.
I.
j This report--Parts One and hro-supercedes all our previous work reported
'

in Refs. I and 2.
1
;

i

2. SIGNIFICANCE OF PHASE CONFIGURATIONS IN MILTIPHASE FLOW |

The configuration of phases plays a major role in determining the
3 dynamics of multiphase flows and the concomitant heat and mass transport
J processes when they occur. his is illustrated in Fig. 1 for the two extreme j

cases of the highly dispersed flow and the ideally stratified flow which, by j
definition, has a plane ' interface. he figure is, to a large extent, self-

'

cxplanatory. It may be noted that the mixture velocity U, is based on the
barycentric frame of reference. Only simple arithmetic is required to demon-
otrate that if the Bernoulli relationship for the ideal mixture in highly
dispersed flow is written as Eq. 2.1, then that for the individual phase musti

j be given by Eq. 2.2. For the ideally stratified flow, the Bernoulli relation-

| chip for the individual phase is given by Eq. 2.3. .It follows then, that for
the mixture is given by Eq. 2.4. The corresponding Bernoulli equations for

| cther systems, such as bubbly flow, annular wavy flow with dispersed liquid,
,

intermittent flow, stratified wavy flow, etc., are far more complex.a

3. AVERAGING RgLATIONS
;

| 3.1 Preliminaries !

i *

j For convenience of the discussion to be presented in Part Wo, we
! consider a general flow system occupying a region as illustrated in Fig. 2.
j The flow system coincides with the constant local averaging volume y, which is
1

- . _ _ - - _ - _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - .



. . .- - . . . - . . -

.

4

Highly Dispersed Flow Ideally Stratified Flow

| z
a

"

N.
'

:e- . ae ,
. e e _ _ _ _ __ ,

* * * - Liquide e, e e p ;
_

o g - -

j
' e Cradient of volume fraction

Va = V(conc.) Va is of no significance

e Finite diffusivity, D
'

;
'

irrelevante Diffusion velocity, DVm
]
i e Wave propagation
i Existence of speed of sound No common speed of sound
! in the mixture
i Common characteristics Individual characteristics of
; phases
'

Transfer of inertia force Plane interface; no inertia
across interface force transferred across

interface ;

,

e Bernoulli relationships for steady, incompressible, inviscid, one-
dimensional flow

p, = [ aEk' "/k is density of phase k based on mixture volume
k

,

i

mm"k " / k k'
8U2OU U 8Ui "kkkmm k

|

|P, = [ a Pkk
k

| Ideal Mixture Individual Phase

(1/2)p,@, + P, + p,gs (1/2)p Uk+Pk 4 # 8'k k
i = Constant (2.1) = Constant (2.3)

Individual Phsso Mixture

(1/2)p d - (1/2)p (U -U,)2 (1/2)p,u2 + (1/2)[ a p (U -U,)2!

gg g g , gg g
k

+Pk+Pg = Constant (2.2) + P, + p,gs = Constant (2.4)k

Fig. 1. Significance of Phase Configurations in Multiphase Flows

|
|
|

. - , , . - - - . - .~n. . - . - . , - - , - - - - , - , , - - - - . . - - . - . - --. . . - - - - - . . - - - - - - -- . . . - , -
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Fig. 2. Multiphase System with Dispersed, Stationary
Solid Structures (Local Averaging Volume v
with Enveloping Surface A)
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invariant in both space and time, and its orientation relative to some iner-
tial frame of reference is fixed. It has an enveloping surface of area A with
unit outward normal n_. The region consists of a partially and/or totally
immersed, fixed solid phase w and a fluid mixture with phase k and other phase
or phases f flowing through the region. Phase k has a variable volume vk with
total interfacial area A in, v. A portion of A is made of fluid fluidk k
interface Akf and the rersainder is fluid-solid interface Akw. The unit normal
vector nk of Ak is always drawn outwardly from phase k, regardless whether it
is associated with Akf kw. The local velocity of phase k is & and thatOf A

of the interface $ . On Akw, h vanishes except when there is 'a chemical
reaction or if the solid is porous and fluid is passing through the pores. It
is seen that the following relations hold:

a. Volume of fluid mixture:

v, = [ yk* (3*1*l)
k

b. Local averaging volume:

v = v ,+ v,, (3.1.2)

where v,is the total volume of the dispersed, stationary solid
structures in v.

c. Volume porosity:

Yy " V,/v " 1 - ( v,/v) , (3.1.3)

which is a canstant for a given v.

d. Volume fraction of phase k in fluid mixture:

ak " Y /V (3.1.4)k a,

which is a dependent variable.

3.2 Local Volume Average and Intrinsic Volume Average

For any intensive property $k associated with phase k of the fluid
mixture a, be it a scalar, vector, or tensor, the local volume average of $k
is defined by

yhf $<$ > " fI dy = y dy (3.2.1).k k ky
k " *k

The volume average over the fluid mixture is

"($ > " f# dy = o ] I dy (3.2.2)k k k k ,

my ky
k k

|
,

__ , . - . - . - . - - . . - _ , . . _ . . _ _ _ - - . . - _ . _ _ _ - _ _ _ . _ _ . ,._ .___ _ _ .-._, -._ _ _ .-. _, -, __- __
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which has often been referred to as the phase average, and the intrinsic

;. volume average for phase k is
1

.

4>" f# dy (3.2.3).
k k

kv
k

These averages are related according to4

1 3 3a 31
N > " Y "k N>. (3.2.4)j S>"Yk v k v k

j

In the absence of immersed solids, y, = v, y, = 1, and hence,

N > " "k N>. (3.2.5)4>"k k k

|
The conservation equations presented in Part One pertain to this special case..+

3It should be noted that the volume averages, 4 k} * '4 > , andk3ij N ), are defined everywhere in the space under consideration, not just ink
j the space occupied by phase k. They are mathematically well behaved

: functions. It is easy to demonstrate that the following relations are valid:
.!

i 3(34 >) 34 >, 3"(3* 4 g>) 3" 4 g>, 31(314g>)=3*4g>,g x
. t

| 3"(314g>)=a 4g>,3(314 >) " Y *k N>. (3.2.6)31
g k v k

! An example of the physical meanings of the three volume averages
I defined in Eqs. 3.2.1 through 3.2.3 can be obtained by applying them to a

f. scalar such as fluid density pk. Thus,

S>" [ Ak k dy = p k , (3.2.7a)
7

kv
; g
;

i where pk is the mean density of the acterial constituting phase k in yk'

; (3.2.7b)4 > " "k k> " " k Pgk ,

I

andj

i
i 34>"Y")k. (3.2.7c)k v

I

1'
._ _ - _ - - . _ . . . _ . . . . _ _ , . _ , _ _ . _ . _ . . _ _ - _ _ _ . , _ _ _ . . - . . . . - _ . _ . _ . _ . _ . . _ . ._
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If we set ik = 1, then 43) , g, 3m<l> " Sk, and 3<1> - Y # k*31

9tailarly, for any property $ associated with the fluid mixture, be
it a scal .., vector, or tensor, the local volume average of $ is defined by

yhf$dyQ> = f f $ dy (3.2.8)=y .

y ay
, ,

The volume average based on v, is clearly the intrinsic average for the
mixture; hence,

Q > = h f $ dy = '<$ > , (3.2.9)
my

,

aad

3<$ > - y 3"Q > - y 31<$ > . (3.2.10) ;y y

i
!

! When y , = 1, the three averages 49), 3m<$>, and 31<$> are identical.3

4

j 3.3 Local Area Average and Intrinsic Area Average

The various area averages of $k are defined in a manner similar to I

| the volume averages. The local area average of $k is defined by

<$ > " f dA = y ! ^' (**k k A k.

A eAek ek

in which A, is the total free flow area available for the fluid mixture to
'

enter or to exit from the averaging volume v, and A is that allotted toek
j phase k. The surface porosity yg is defined by

i A

| y , (3.3.2)=
A

i

!
'

i.e., the fraction of the enveloping surface A through which the fluid mixture
i flows.

[ The area average of $k over the total free flow area A, is
i
! A

ek 1j 2m($ > = f$ dA = f dA , (3.3.3)k
| eA e ek Ask ek

- _ . _ _ _ _ _ _ _ . . - - _ . _ _ - - - - - - _ -__. _ _ . . _ _ _ _ __ _ . . _ _ . _ _ . . . - -- - ___ ._ _.
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! and its intrinsic area average is

Q>~ f # dA . (3.3.4) )k kek A 'ek
.

Clearly,

29>"T k> " TAA k (**}k 'k A
e

.

in which Aek/A, is the fraction of the free flow area allotted to phase k.

Similar expressions can be written for any property $ associated
with the fluid mixture. The results are:

)

Q>=ff$dA, (3.3.6)i

e

"Q > = h / $ dA = Q> , (3.3.7)
I

e A,
'

i

I and

2
9) ,Y 2 9) , Y 9) , (3,3,3)

21
g

The meaning of Aek/A, in Eq. 3.3.5 can be seen by examining the mass flux at a
bounding surface of a local averaging volume in the form of a rectangular
parallelopiped Ady6s. Consider, for example, the mass flow rate of a mixture

' of two phases k and
f through area AA, dearly,which may be a portion of AA,(=

AyAz). Thus, we write A A ,x " T xe A AA,.

8 U / A,,, = p k kxAAU ek,x + # U ,AA,g ,, , (3.3.9)fgmm

where U,,, Ukx, etc. denote velocity components along the x-axis.i'

Since
,

p,U, = a / k g + a g g g, , (3.3.10)U U

: it follows that

* * = a , and I'*
k f. (3.3.11a)=a

: e,x e,x

,

- - . - - , - , .-c. , . - - ,-a - - - - . s- - - - n . - --- ,- r ,w-- , - - - - , - - - - , - - , -,,w -- - .-- -
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Using the same reasoning, one may show that for flow in the y direction and

through A A,,y,

AA AA
*"Y=ak, and 3g g,*'Y=a (3.3.11b)
e,y e,y

and for flow through A A,,,,

AA AA

**=ak' ""d
AA ""f. (3.3.11c)
''

e,z e,z

The foregoing results are valid for approximating a homogeneous nonstructural
medium, as has been pointed out by Whitaker[3). Strictly speaking, they are ,

applicable only to a highly dispersed system. The length scale restrictions
of the local volume-average theorems developed by Whitaker[3] are consistent-
with these approximations.

3.4 Local Volume Averaging 1heorems end their Length Scale Restrictions

The local volume averages of the spatial and time derivatives of a
fluid property $
by Whitaker[3,4]k, which may be a scalar, vector, or tensor, have been givenStattery[5], Anderson and Jackson [6], Gray and Lee [7], and,

others. They are related to the corresponding derivatives of the averages aad
an interfacial area integral according to the following relations:

O$>"V N>+" f *k k A , (3.4.la)dk k
^k'

3 3
G * 1.k> " Y * 9 k> + V-1 [ i-k * "k dA , (3.4.lb);

^k4

| and

; /atk 3 9>k -1
ft w\ gg 3g kd g dA . (3.4.2)

- = -v a

Ak
.

1

I

| In the foregoing equations, Ak denotes the sum of all interfacial areas asso-
|- cisted with phase k inside the , local averaging volume v. Thus, referring to'

Fig. 2, consists of the fluid-fluid interface A and the fluid-solidkf
interface For a stationary, nonporous and nonreacting solid, W.k vanishes- v.
on Akw'*

i

It is important to note that these averaging relations are subject
! to the following length scale restrictions, first given by Whitaker[3]:

! d << 1 << L (3.4.3)
i

_ _ _ , _ _ _ _ _ . . _ _ _ _ , , _ _ . - . . . - - - . - - - - _ - - - - ~ - - - - - - -- --
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where d is a characteristic length of the dispersed phase, A is a character-
istic length of v, and L is that of the physical system. Therefore, the
averaging volume cannot be u de arbitrarily small.

| Whitaker[3], Stattery[4], Gray and Lee [7] also showed that

3 -I- y. g)-y f 4 . [1 dA . (3.4.4)
A

,

ek

In the Cartesian coordinate system, h = _i_ $ x + 1 t y + k $ s, where i,1,k k k
and k are unit vectors ir the positive x, y, and z difections, respectively.

; For 7 = AxA%z centered at the point (x,y,z), Eq. 3.4.4 can be written as

3
V. g>

;L e,x+(Ax/2) ^^ek,x+(Ax/2) I
AA

f $ dA
[ ^* ( e,x+(Ax/2) ^^ k,x+(Ax/2) AA^#8 ^^

e ekg+(Ax/2)
,

AAe,x-(A x/2) AAek,x-(Ax/2) I f $ dA_

Ayaz AA AAe x-(Ax/2) ek,x-(Ax/2) AAek,x-(Ax/2)

, L ^^e,y+(Ay/2) ^^ek,y+(Ay/2) f $ dA
I

^ '6 * ^^ ^^ k,y+(Ay/2) A AAY ( e,y+(Ay/2) e A Ay/2

AA AAe, y-(A y/2 ) ek,y-(Ay/2) 1 [ $ dA_

A a& x AA AAe,y-(Ay/2) ck,y-(Ay/2) AAekJ-(Ay/2) /
+ (analogous terms)

,

21; h y ,a 9kx> + TAy"k <# y>3 g k

hyh"k 'Nh> ' (3.4.5)+
,

'

in which Y x' TAy, and yAs are directional surface porosities defined byA

AAe,x+(Ax/2)
T ,x+(Ax/2) " AyasA

Yx"i or (3.4.6a)A
AA

e,x-(Ax/2)
T ,x-(Ax/2) .A *

3 73 ,,
i

_. -- . _ . , - - , . - - , . , , _ , _ , - , _-,- - _ _ _ . _ _ . - _ _--._y _ . - _, - . . ~ ,
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P e.y+( Ay/2)
TA,y+(Ay/2) " Azax

:

Ay =( or (3.4.6b); Y

e y-(Ay/2)
L A,y-(Ay/2) , Azax 'T

and similar expressions for Y z. For compactness, we write Eq. 3.4.5 inA
vectorial form as,

i

I 3 21
! V= g> = V = Y "k g>. (3.4.7)A

Equation 3.4.7 shall be used for all flux-related quantities in the governing
time and volume-averaged conservation equations presented in Part Two.

1

Upon setting ik= 1 in Eq. 3.2.1, one obtains 3<1) . Tek as hasbeen noted previously; hence, Eq. 3.4.2 gives
I

I "k -1 [ ( * g dA (3.4.8)Y =vy gg
A

i k
1
'

since y is time-independent. Furthermore, Eq. 3.4.la givesy

-1 [! Vya *~V "k dA , (3.4.9)yk -

Ak
i

| which, upon summing up for all k's, leads to
!
!

-1 [ [ g dA - v-1 [ [ g dA (3.4.10a)! VY =-V
y

A A
kf kw

,

since[a = 1. The first term on the right-hand side.of Eq. 3.4.10s vanisheskk
!

since, on Akf-be it a closed surface such as droplets or bubbles in dispersed
flows or an open-ended surface such as that in stratified flows gn = -.gn for
any point on Akf. Physically, this must be so because y is totatty unrelatedy
to Akf. ' For solids that are completely immersed in the fluids in v, the
second term also vanishes. Accordingly,

-1 [ [VY =-V .n.,g dA , (3.4.10b)y
A
kw, boundary

|
;

l

._. , , _ . _ _ . _ ,, . . ~ , _ . , . - _ . . - _ _ . . . - - _ , . . . , , _ . _ . _ , . . _ _ _ , ._ . . _ _ , . . - _ , . . - . . . - - --
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where A denotes fluid-solid interface for solids that are cut
through by.boundarythe bounding surface A of the local averaging volume v. It should

kw

be emphasized that the validity of Eqs. 3.4.8, 3.4.9, and 3.4.10b must
necessarily be subject to the length scale restriction of Eq. 3.4.3. In fact,
all results given in this report are, st rictly speaking, subject to that
restriction.

Equation 3.4.8 can be rearranged to read

Da

= hf (. 4 dA , (3.4.11)gg
" ^k

for which a physical interpretation can be readily obtained. Consider, for

instance, phase k to be expanding bubbles in a liquid. Then the surface
integral in Eq. 3.4.11 simply means that the time rate of increase of volume
of phase k in the mixture which, upon dividing by the mixture volume v,, gives

the time rate of increase of ak. A physical interpretation of Eq. 3.4.9 for
1 is given in Appendix A.y =

y

To conclude this section, we reiterate that for flux related to
quantity h , we have on one hand

V. g> = V . y "k <g> , (3.4.12)A

as has been demonstrated. On the other hand, for a vector h that is not flux,

related, we have'

V. g>=V. yak <4> . (3.4.13)y

|

For any scalar intensive property $k, the corresponding relation is

V Q>"VTv "k Q>. (3.4.14)k k

|
|

4. PHASIC CONSERVATION EQUATIONS AND INTERFACE BALANCE EQUATIONS;

4.1 Phasic Conservation Equations

The equations of conservation for a pure phase are given by con-
tinuum mechanics. While a " pure" phase commonly refers to one physical phase,
such as vapor, liquid, or solid, it also includes certain nonreactive
mixtures, such as room atmosphere or an aqueous solution of glycerine. The
identification of a multiphase system is best - made in terms of its dynamic
phases according to their different dynamic responses [8], despite the fact
that they may be of the same material. For a pure phase k, the equations of
continuity, momentum, and total energy are, respectively:
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(8pk/a t) + V . (pg) = 0 (4.1.1)

(Bok kU /a t) + V + (p g)=-VPk+V*Ik+Ekf (4.1.2); -

(ap E !0 " +Y* (#UE)=-V UPkk+V* (k*I)Ukk kkk k

. (4*l*3)+ pg . f_ - V . kk + JEk '

where ok is the density of fluid in pure phase k, U is its velocity, Pk isk
the static pressure, f is the field force per unit mass which is taken to be a

constant in the present study, I is the viscous stress tensor, Ek is thek
total energy per unit mass, J4 is the heat flux vector, and JEk is the heat
source per unit volume inside phase k. By definition, Ek"Uk+Uk . S /2,
with uk being the internal energy per unit mass. Alternatively, the energy
equation may be expressed in terms of uk or enthalpy per unit mass hk

OP"k+V+ (pk
k k"k) " ~ #UJ V*k~V*h+JEk + 1k* Ek*gg **k

| The double dot in the last term denotes the scalar product of two second-order
tensors and is usually represented as +k, the dissipation rate per unit volume
of phase k.

8(Ph dPkk k
+ v - (a Ah ) de

-V sk+3Ek++k, (4.1.5)at k k

in which the substantive derivative

h=h+Uk.V. (4.1.6)

4.2 Interfacial Balance Equations

The simplest case of the fluid-fluid interface is one of zero
thickness. The mass, momentum, and total energy balances at the interface A

kf(between phases k and f, Fig. 2) are given by

j Mass Balance:

p ( k - k f) * k + # (E ~ E ) * "-f =0. (4.2.1)k f f fk

Momentum Balance (Effect of changes in mean curvature ignored):

~ P E (k ~ kf * "k ~ O E (E ~ Ekf kf + kf kf"k#~

kk - ff f fk *k

+ (- I Pk * 1 ) = 4 + (- 1 Pg+1g) g=0. (4.2.2)k
:
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,

Total Energy Balance (Capillary energy ignored):i

|

a E (k ~ kf * k + kk * k + #ff(E ~kk * % + kf * kkk f
'

i

(- I Pg+Ig)*g=0, (4.2.3)- k * (- { Pk+I4] * k ~ U .

f

where 3 is the unit normal vector outward frca phase k and directed along the
8 is the interfacial tension, V is the surfacemean curvature Hkf' kf kf

gradient operator, and I is the unitary tensor. The interfacial velocity $ g
= hk, and Hkf is positive when the associated radius is pointing outward. In

Eq. 4.2.3, the energy associated with surface tension and the corresponding
dissipation are neglected.;

The internal energy and enthalpy balance equations for the interface

Akf are
!

a u (A - Af) k + 4k k + a "f(E - 4k) 4 + Af 4= o.2.okk f f

and'

p h,(4 - 4,) . g - P,(4 - 4,) . g + 4, . gu: ,

+ p h (Eg - E ) g - P (Eg - j[fk) * "-f + kf "f =0. (4.2.5)*gg fk g

It may be noted that only one of Eqs. 4.2.3 through 4.2.5 is independent.
I Needles', to say, all variables in Eqs. 4.2.1 through 4.2.5, such as density,

velocity, pressure, viscous stress, total energy, internal energy, enthalpy,;

| etc., refer to interface Akf-

In principle, the coupled phasic equations should be solved for
given initial conditions together with boundary conditions at the phase inter- '

faces. Because the configuration and location of the fluid-fluid interfaces
are not generally known, their detailed solutions are next to impossible.
When the length scale over which the point variables undergo significant
changes is small compared with that over which the knowledge of these
variables is of practical interest, information of their volume-averages is
all that is needed. A similar statement - can be made regarding time scale
considerations. To preserve the identity of the dynamic phases, local volume

| cveraging is performed first; this is done in the following section. Time
! . cVeraging of the volume-averaged equations is presented in ' Sec. 6.
|

| 5. LOCAL VOLUME-AVERAGED CONSERVATION EQUATIONS AND INTERFACE
BALANCE EQUATIONS,

|

In Part One, we consider the. relatively simple case of 'a multiphase sys-
ten without internal solid structures; hence, y =YA = 1. Application of they
local volume averaging theorems (Eqs. 3.4.la and b, and Eq. 3.4.2) to the
phasic conservation equations given in .Sec. 4 leads to the following set of

. - _ - - - - - . - _ - - - - - - . . .- - - . - ,



._ _ -._ . _ - - - - .

16

local volume-averaged conservation equations for multiphase flow. These |
equations are rigorous and subject only to the length scale restriction, Eq. i

'

3.4.3, which is inherent in the local volume averaging theorems. Since the
details of the derivation of the local volume-averaged equations of conserva-
tion can be found in Ref. 1, only the results are listed here.

5.1 Local Volume Averaged Conservation Equations

Mass Conservation Equation

k k> + V * " <#N>"~# f P (4 - () 4 dA . (5.1.1)a k
^k

_

The integral on the right-hand side of Eq. 5.1 denotes the rate of total
interfacial mass generation of phase k per unit volume of v. Denoting it by
T , we havek

-1 f P(g - ()= 4 dA . (5.1.2)l ik"~* k
A
k

In the absence of stationary, internal solid structures, the local averaging
volume v and the volume of the fluid mixture v ,are identical.

Linear Momentum Conservation Equation

k <# k> + V * " k <# M> " ~ V "k <P > + V * "k <T4>
a

k

+a 4>f+v [ (-P k + I ) * g dA - v~ [ p
k ' g ( g - g) * gdA ,k - k= k

k
(5.1.3)

in which the field force per unit mass _f_ is taken to be constant.

Energy Conservation Equations

1(a) In terms of total energy, Ek""k+Ik* k*,

k k k> + V * a (p g(> = - V * aE <gP > + V * "k <k*I>a
k k

-V a <J k> + " k <P N> * f + <J +k - Ek k

~

[ (- Pg + L = g) = gdA - v~ [ p E (4 - () = gdA , (5.1.4)+v
k kk

b k
*

where Qg denotes the interfacial heat transfer to phase k per unit volume and
time, i.e.,

, . ._ _ _ ,_ . - , .. . ___
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-1 [ h*% dA . (5.1.5)
.

Q *~#
k

A
k

(b) In terms of internal energy, uk

ha '<# d> + V * "k '<# NS> ~ ~ "k <Pk k V*k>~V** <h>

] # "k(4 - 4) + gdA , (5.1.6)+a <Jg> + <4 > +N ~*k k k k
A
k

where 4k is the dissipation function given by

(k "Ik : V, g , (5.1.7)

in which the double dot denotes the scalar product of two second-order tensors
and the comma denotes dyadic operation. $k gives the dissipation rate per
unit volume of phase k due to the irreversible conversion of mechanical work

; into thermal energy.

(c) In terme of enthalpy, hk

<# h > + Y * " k '<p g h > ~ "k <P > + V + (gP >a
k kk k k k

-a <P V * k> ~ V * "k <h> + "k <Jg> + <$ > +9k k k k

-1 [ P (4 - () gdA - v f pg(g - () * gdA . (5.1.8)
-1+v k

b b
We reiterate that Ak in all interfacial integrals denotes the sum of all
interfacial areas associated with phase k in the local averaging volume v.

5.2 Local Volume-Averaged Interface Balance Equations

The volume-averaged interfacial balance relations can be readily
cbtained from Eqs. 4.2.1 through 4.2.5. They are:

Mass Balance

- / o (4 - 4) + qa - r - v ' / o,(g - 4) . n_,a - - r, ,
-

(3.2.1)-v x u
^k ^f

where the interfacial velocity & implies g f and the interfacial velocity b,

implies U k. Since the interface has rero thickness, g = W_g at any location'

of the interface.

|

i

|

|

, , _ _ _ --
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Linear Momeatum-Balance

~ f (-P I + 1 ) gdA - v [ pg(( - () gdA
~

v
k k

% N

1 (-e, I + t,] gdA + v~ f p g(g - g) . gdA--v g
A Ag g

-f ( - VkO _ + 2a g Q ) dA . (5.2.2)
%

For bubbles and droplets, the last integral in Eq. 5.2.2 can be expressed in
terms of capillary pressure difference

, f (P -P g) gdA = [ (-V kf kg) dA . (5.2.3)kf kf + 2a H#d
]

Ak
An equivalent expression can be written in terms of A , recognizing that forf
the interface between phase k and phase f, Ak .= A , g = - n_g , and gg = -! f
H'
fk'

Total Energy Balance (capillary energy ignored)
i

~ f (-Pg + 1 . g) gdA - v~ f p Egg - () gdAv |k k
k k

[ g.4A=-v- [ (-Pilg+If . g) ed n dA-v g g

!

~

f p E (,U_f - g) . g dA + v~[ n dA . (3.2.4)+v '

agg g g

f f
,

|

Internal Energy dalance (dissipation and reversible work ignored)

- f p "k(g - () gdA - v- [k k gdA-v .

% %'

~

~ [- g g gdA . (5.2.5)f p u [ ,U_g - g ) e n_fdA + v=v a
g

A- A
j g f

Enthalpy Balance (capillary energy ignored)

-1 -1f P (4 - () . gdA - v f p h (g - () = gdA| v k kk
b k

(
,. . _ _ _ _ _ _ - _ - _ _

_. . . - - - . _- --. .. - - - , - --
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~ ~

f g * gdA = - v [ P (U -E)e n dA-v
f f f f

b ^f

~I+v f oh(U - E ) . n dA + v~ f dA . (5.2.6)ff f f f g n_f
a

6. TIME AVERAGING OF LOCAL VOLUME-AVERAGED (X)NSERVATION EQUATIONS

6.1 Basic Postulate

The local volume-averaged equations given in the preceding section
are differential-integral equations. Before they can be used either for
further analysis or for numerical computation, it is necessary (a) to express
the volume averages of the product of the dependent variables in terms of the
product of their volume averages, and (b) to evaluate the interfacial trans-
port integrals which depend on the local values of the dependent variables at
every point on the interface. To this end, we postulate that a point-dependent
variable ik for phase k can be expressed as the sum of its local intrinsic

Q > and a deviation $ *vclutae average i can be a scalar, a vector, or ak k k,

tensor. Both Q k> and have a 1 w-frequency component to be denoted byk
the subscript LF and a high-frequency component to be denoted by a prime.
Thus,

i

*k" 9>+Y (6.1.la)k k
|

'

Q >LF + 'Q > + IkLF + # '<# >LF + EF + (6.1.lb)
l

= "
k k k ,

where
'

'Q > + $ (6.1.2)"t = .
k

The superscript c is a reminder that c$ is a composite of two high-frequency
fluctuations. The low-frequency component refers to one that is a slowly
varying function of time, including the time-independent limiting case. The
high-frequency component varies rapidly with time.

The time that characterizes the low-frequency component is of the
order of

LF " b /(AU)e = (characteristic dimension of the physical system)/ '

T c
(characteristic low-frequency speed variation at a
typical location). (6.1.3a)

The characteristic time of the high-frequency cosponent is of the
erder of
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HF = A/(ras U') = (characertistic length ecale of high-frequencyt

fluctuation)/(root mean square of the fluctuating velocity
or turbulence intensity)
1/(characteristic spectral frequency). (6.1.3b)=

When time averaging is performed, the duration T over which the
averaging is to be made must satisfy the following inequality:

HF << T << i y (6.1.4)T t

The spatial decomposition of the form given by Eq. 6.1.la was first

suggested by Gray [9]. When the length scale inequali, ties (Eq. 3.4.3) are
satisfied,thelengtgscalesassociatedwith 31<tk> and $ are separable. Thek
same is true for Qk}LF and When Eq. 6.1.4 for the time scalekLF.
inequalities is satisfied, quantities vitb subscript LF and those denoted by a

prime also are separable in the time or frequency domain. When the two char-
acteristic times t and i verlap, such separation will not be possible.tp HF
However, in practical applications, distinctions are usually feasible.
Examples are: duct flow with turbulence, a bubbly liquid in turbulent motion '

where the bubble phase configuration responds to low frequency pressure
fluctuation, and the case of impulsive motion produced by sudden break (LOCA)

j where high-frequency wave motion might not be important[10].

If one adopts the Reynolds hypothesis used in elementary turbulence2

analysis, the point instantaneous variable $k can be decomposed as

$k" N>+ "IEF + (6.1.5) ;k ,

where U<$ > den tes the temporal maan or a low-frequency component $ '

k kLF and${
denotes the high-frequency fluctuating component. The time average t<$ ) iskdefined by

T
Y

<$ > " f dt (6.1.6).
k k

T
Y

'

Comparing Eq. 6.1.lb with Eq. 6.1.5 leads to the conclusion that

${ = ${ , (6.1.7)

y' and [k.are notas one would intuitively expect. Hence, while 31< local
entities, their sua is a point quantity. Substituting Eq. 1.7 into Eq.
6.1.lb gives

tk" 'N >LF * F+% (0*l*0)*k

_ _ _ . _ _ _ __ _ _ --
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31<$ >ty closely approximates 31<$ gp>. TheWe shall 'soon demonstrate that
nature of the approximation will be made clear in Sec. 6.2.

Taking the intrinsic local volume averages of Eqs. 6.1.5 and 6.1.8,-

one obtains:

31 ,31 ) , 31<$ > (6.1.9a)
,

and

31 , 31 , 31 ) ,31<$ > . (6.1.9b)

Hence,

31
F> = 0 . (6.1.10)

and h , vectors Uk and k k, and tensor g are to beWhile scalars p k, E ' "k, kk
decomposed in accordance with Eq. 6.1.8, the local volume fraction ok of hP ase
k should be represented by

I

(6.1.11)k " "EF + aa ,

since ak is inherently a volume averaged quantity. Clearly, 31<a > = a and
k

'<a[> = ak*
In multiphase flows, the fluid-fluid interfaces would in general not

only translate, but also fluctuate. Hence, the unit normal vector to the
l interface would also fluctuate. Under normal circumstances, sharp changes in
l surface curvature would not occur due to the existence of interfacial tension.

The familiar shapes of oscillating bubbles and droplets are examples [11].
However, when breakup occurs, high-frequency oscillations [12] of the total
interfacial area may exist. Accordingly, we write

Ak=Agp + A[ (6.1.12)

and the associated unit outdrawn normal vectors are _ngy and f , respectively.
AlthoughitispermissibletoignoreA{undercertaincircumstances,A{inEq.
~6.1.12 cannot be deleted or retained arbitrarily without simultaneous consi-
deration of the deletion or retention of a{. We shall return to this point in
the next section.

For reasons just given, we may also write

yk " VEF+v. (6.1.13)

. -- . . .- . - . - - - _ - = - . _ - .__ _ .
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It follows then, that

a{ = (6.1.14a,b)a = .gy ,

It-is pertinent to note that ykLF and v{ are not physically separable regions
In the present analysis, both v{ and a{ are considered smallin y

k.
perturbations. While v{ and a{, like other high-frequency fluctuating 1

'quantities, take on positive and negative values, A{ is always positive.

The interfacial velocity $ appears only as a point variable in the
interfacial transfer integrals of the governing differential-integral conser-
vation equations. Thus, it needs only to be decomposed as

L = h t y + W_ { . (6.1.15)

It is pertinent to note that the unit vector ny associated with Ak is not the
sum of nkLF and n_{, i.e.,

"k N"kLF*"k* (6.1.16)

! 6.2 Some Useful Observations
1

; Equation 3.4.9 gives, for y,, = 1,
,

i Va =-v
~

f g dA ,k
^k

which, upon introducing Eqs. 6.1.11 and 6.1.12, leads to

~l -1Vagg+Va{=-v f gM-v f dA , (6.2.1),

A AkLF k

since ggy is coherent only with AkLF and g is coherent only with A{.
.

By separating the low- and high-frequency components, one obtains

~ f gp dA (6.2.2a)Va =-vgg
AkLF

and

~

Va{=-v [ g dA . (6.2.2b)
A
k

|
Thus,

*
f _n{ dA =0, (6.2.3)
^5

. . . . -- . _. -_ . - _ _ _ _ _ _ - _
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since E(a [> = 0.
i

Likewise, when y = 1 and the low- and high-frequency components are
y

separated, Eq. 3.4.8 leads to

"kLF -1 dA (6.2.4a)kF * %LF~#
3t AkLF

and

8"k _1 _1 1, (kF + E) as d' . (6.2.4b)I EauF d^ + v-'
at A A

kLF k

: Since
4

t

f $ gp dA =0, (6.2.5a)
AkLF

and

t

-{dA =0, (6.2.5b)f, E n*
EF;

k
'

,

f

it follows that

t

f g . n{ dA =0. (6.2.5c)

^$
_

l
,

Equation 6.2.5b follows from Eq. 6.2.3 since time-averaging is carried out for
the interval during which Egy changes little. Thus, for any low-frequency
vector g g, we have

|
t t'

= 0 and [ Q ,,n{ dA =0, (6.2.6a,b)
/, Q p* _n{ dA
b b

where the comma in the integrand denotes the dyadic product.

Likewise, for any low-frequency scalar $ gy,

t
(6.2.6c)

%, EF n{ dA\ = 0 .[t -

/

. . _ ._ .. _ . -. - ..
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It is interesting to note that if A{ = 0, then V a{ = 0 according to Eq.
6.2.2b. Furthermore, g must also vanish since it is physically impossible to
have high-frequency interfacial velocity associated with Agy. Hence, in such

Ba '
a case, Eq. 6.2.4b gives = 0. We thus conclude that if A{ = 0, a{ mustat

not exist because the only other possibility, a{ = constant, is contradictory

to the definition that a{ is a fluctuating quantity.
t

t(<${>)and (31Next, we examine the difference between y,

t(31. >) . Byconvenience, .we write 0 > for (30 >) , and 0 > fort3 c31 4

definition

*
,

I<${> = h f $ dv . (6.2.7a)
kv

| k
.

Denoting by c , and for |c | < 1, we may write Eq. 6.2.7a as,

kLF -
.

<$>=y (1 - c + c2 _...) [ $ dv+[ $ dv
#( kLF k /

f $ dv ( 1 + 0(c ) + 0(c ) + . . . ) . (6.2.7b)2=

\ kLF )#

Since, by hypothesis, |c | << 1, it follows that

<$ > I f $ dv . (6.2.7c)y
kLF vgp

4

)
Hence, "

'

($>=0. (6.2.8a)

.

Likewise, we may demonstrate that for a vector ,

* ' <t, > 1 0, (6.2.8b)
.

i

._- - -. .-
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andforatensorg{, !

I<g{>=0. (6.2.8c)
|

Now, also by definition,

Q{>=hf${dy =ff ${dy+hf${dv
Y # #
k EF k

f ${dy+ h f ${ dy (6.2.9a)I
= .

kLF v kvgp k

Using Eq. 6.2.7c, we obtain

I

Q {> I a Q {> + a{ ( k vf ${ dv
(6.2.9b).g

k )

Thus,

Q {> I * a{ \ E Yh { dyf$ (6.2.10),

)

which is generally nonzero.

t3Alternatively, we may evaluate Q{> as follows. We recall that,
for y = 1,y

S k> " ("kW + a{} Q {> . (6.2.11)Q{> = ak

Hence,

Q {> = akW Qk> + "k Nk>

(6.2.12a)a{ Q {>
=

,

E 'Q{> I
310. It is thus seen that a{ and Q{> are correlated in: cince

time. Because of the fact that a{ = <a(>,Eq.6.2.12amaybewrittenas

.

- - ., -.e- , , . - -
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|

Q {> = (a {$ {> . (6.2.12b)

Comparing Eq. 6.2.9b and Eq. 6.2.11 gives

Q{>=h/${dy (6.2.13).

kv
k

Accordingly, we obtain, by using Eq. 6.2.8a,

t

hf ${ dy =0. (6.2.14)
kv{

In view of the defining integral for 31<${> given by Eq. 6.2.7a, we also have
the interesting result

hf${dy=hf${dy (6.2.15).

kv ky
k

It is also of interest to compare 31<fkLF) and 9 k>LF, the latter31

31being the low-frequency component of 4 >. Since

Qgp> = f $gy dy

(1 - c + c2 _ . . . ) [[ $ dy+f $ dv}
=

y 7kLF (v p / ;
y

[ $ dy ( 1 + 0(c ) + 0(c ) + . . . ] , (6.2.16)2=

kLPy

(kLFvgp j_
'

'
and

|
,

! i dv\9 >LF
~

k k,

k *k /LF

_

(1 - c + c2_...) [ $ dy+f $ dv=
, 7 7

.
(#kLF *k

|

|

I

|
_.
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.

+f ${ dv + f, t{ dv
# #

kLF k ). LF

[ $gy dy (6.2.17)=
,y

kLF vgp

it follows that

<$ g > = ($ >LF [ 1 + 0(c ) + 0(c ) + . . . ] '. 31(g >LF ,2 (6.2.18)
k k

since |c|<<1. In the present report, 31<$gp> and 31< k>LF are considered
identical.

We shall also have occasion to consider integrals of the type

-1 [ Q, +4A.-1 ~

f$ F4 ddA and vv

k b

Since

G $ g> = V <fgp>+v~ figp g dA , (6.2.19)
Ak

and <$gp> = 0, one innnediately has

~[ F4 kdA = a G#EF> . (6.2.20a)v
Ak

|
,

Likewise,

|

~[ p 4 dA = a G* F> . (6.2.20b)v .

k
^k

The left-hand side of Eq. 6.2.20a can be replaced by

-1 [ $g, ( dh-1 [ '
-

$gp gp dA + vV

kF k

. . - -- __ _
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'l
'

because only gp is coherent with A and f is coherent with A{.gy ,
Consequently, time av. -aging of Eq. 6.2.20a leads to

-I 31f ga=g Gigp> , (6.2.21a)v

^kLF

since

t
~I f i , g dA =0v g

*s

according to Eq. 6.2.6c.

Likewise,

-1 31f (p . g dA = a ~

(6.2.21b)g, G . k F)v .

kLF

Also,

-1 31/ kg, gp dA = a G' F> . (6.2.21c)y
kLF

kF
,

In Eq. 6.2.21c, the comma denotes dyadic product.

In deriving Eq. 6.2.21a, the approximation was again made that

310igp> = [ f Vig, dy [ 1 + 0(c ) + 0(c ) + ,,, ]2

\ *kLF /

I f Vy dv (2.2.22)
'kLF v

kLF

31 31and similarly for G.i in Eq. 6.2.21b and for G .5 in Eq.
tk> approximation is not only consisteNf>but also6.2.21c. It is seen that

necessary, since the left-hand sides of Eqs. 6.2.21a, b, and c are of low
frequency only.

Finally, we demonstrate that

31(V
31 31< >. (6.2.23a)) ,p

- _ _ _ ..___ ._
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Since

3(7
3

Q )) , 9
'31 -1I 31,y 7 4 )k

k

'N > ~ 'N > Y "k " "k 'N > '=Va Vk k k k

we have

'*(v 31319,>)= ,v 9,> ,e,

which is Eq. 6.2.23a upon canceling the a{s.

Likewise, it can be shown that

IV. g> = 7 g>, (6.2.23b)

7, 31g>) = V , <g> , (6.2.23c)

iV. Q>"Y* k>. (6.2.23d)k k

6.3 Time-Volume-averaged Mass Conservation Equation (y =YA " I)y

The local volume-averaged mass conservation is given by Eq. 5.1.1:

ha <# > + V * " k <#N>"~# f E(g-().4 A. (5.1.1)dk k k
k

Time averaging requires consideration of:

k k>O a *

Since

o,- 31<,,>t,+;u,+oi, 31<o ,> 31<o ,>t, + 3*e ;> ,

. _ _ .. . - - . - - -
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l I

and, by using Eq. 6.1.11, one obtains

<#>""EF k>M+"EF <# k> + "k <# >M + "k <0 k> 'o kkk

Hence,

'<#>)""EF <# >M + <a{p {> . (6.3.1)a kk k

*(o, 319,q).

|
'

b k " 31 k>LF k LF + 31 W + 31 ~
31 3131 ~

k k LF kLP M F

Ng> + I<p{> <g>g + <p kp> + <p g>+

since

31 31
31<kLF

-

k>LF LF k LF
~"

'

p{ <g>g <p {> <g> g , etc.=

Hence,

31 31 31 31 ~ ~

k kk " "kLF k LF kLF "kLF kLF % F

*
<p >M <" b>+a <p g> + kgg

<g>g <a{p{ > + a{ <p' g g >+
I.

a{ <p{kL,>) + (a{ h g>) . (6.3.2a)+

The last term is a time correlation of the third order. It is presumably
s w il and will be deleted. We define

(a) Volume-averaged eddy diffusivity for mass transfer, D , according )
to'

I
\ |
|

. - . . . . - - . - -
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'<# >M . (6.3.3)I<p(Uf> + '4 >U (a{U{>=-D Va*a k kugg k

transfer,6(b) Volume-averaged dispersive diffusivity for mass ,

according to: '

31gp f>) + a{ <p{$kU>) " ~ V"EFa{ <d g# > U , (6.3.4)U
k

whichalsoresulgsfromhigh-frequencyfluctuations. Lumping the two terms on the left-hand sideN
! When pk = constant, p

= p{ = 0, and D vanishes.
;

i Eq. 6.3.4 is for convenience only. It may got be appropriate to express the
second term in terms of the gradient of akLF <0k}LF*

By introducing Eqs. 6.3.3 and 6.3.4 into Eq. 6.3.2a, one obtains

'# d>) " "EF '<# >U + '<*k# k> '<k>U + kk ,# (6.3.2b)a k k

in which Yak is a mass flux vector defined by

35
i z,=au, 4 ,n ,> + au,'31<pg>+31<o,>t,'31<ag>uu

.

+ a{ <dgp_{> + a{ <p kg>U

|

i

31=a <# F> - D +5 Va g# }U . (6.3.5)kW E gp k
|

Consideration is now given to the evaluation of the time-average of the total
interfacial mass generation integral for phase k within v.

~

~[ <p (k ~ k)>* k F[p(g-()=4 A '

d =-v dAO -v k k
A Ak kLF

t
~

[ pk(4 - () = g dA (6.3.6)-v ,

A
i k
|

oince g t,is coherent with AkLF, and g is coherent with A{. It is straight-
forward to demonstrate that

<<psw - un = (>s,> + ; ,)(>i<s>t, + t, - xE,)

:

i

,-~~-..a.- - - + -- , -- -- - , , , . - , -e - -- m-- - - - - , - - -- - - - - - . . - , - . _
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+ *<p;(g - g)> .
~

Consequently, the first integral on the right-hand side of Eq. 6.3.6 is

- v" [ (p (k - k)> * MF dA
k

AkLF

k <k>U V"EF<p > M += *

- v" <p >g f kg . gp dA
AkLF

kLF -k>LF + F ~ kF * kF~#

Ag

- v" f <p (( $ - $ ) > * g p dA . (6.3.7)
AkLF

In deriving Eq. 6.3.7, use has been made of Eqs. 6.2.2a and 6.2.4a.
It will be shown in Sec. 6.5 that for Newtonian fluids,

,

l

[ kgp . n dA = 0 . (6.3.8)p
AkLF;

The second integral on the right-hand side of Eq. 6.3.6 is

-*t I, c (4 - 4) 4 dA-v

%x

[ (p>U+"EF ( g - %) * ( dAj =-V ks

31-1
! , "k NLF + LF" k LF *k~*

,

| %

|
. - - - .- -. ... - - . , -
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'

t
-I f p{(g - g) . g dA (6.3.9)- v .

.

Thus, the time average of the interfacial tass generation rate per unit volume
is

t
~

f # (4 - () 4 dA<T > " ~#
kk

k

'<k>U' <pk>U V "EF + (MTI) (6.3.10)+= *
,

in which (MTI)k stands for the interfacial mass transfer integral defined by

( MTI) k " - # '<# > U f
~

dA
k -EF * MF

A
kLF

! -k LF + F ~ kF * kLF~#
kLF

Ag

~

[ @ {( $ - g )> . g p dA-v

kLF

[ (g - g) . g dA<# >LF + #EF|
~V k

ss,

~

s{ <g>g + kg - 4 7 . g dA[ p-v

~ t
[ p (6.3.11)
k {( $ - () . _nf dA

,
-v .

:

We reiterate that for Newtonian fluids the first term on the right-hand side ,

cf Fq. 6.3.11 vanishes. More work needs to be done to examine the relative
importance of the various terms in Eq. 6.3.11. We further note that the first
term on the right-hand side of Eq. 6.3.10 can be written as

31 kLF
'k LF dtk

where the substantive time derivative is defined hd

.

y , , m -- - - - - . --- - n . -
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i

d <k>U .V. (6.3.12)" +

Performing the time averaging of Eq. 5.1.1, followed by introducing the i

results given in Eqs. 6.3.1, 6.3.2b, and 6.3.10, leads to the desired time- |

volume-averaged mass conservation equation:

I

h(a <pk>U + '<"kPk> + V * "EF <#k>Ugg

+* (ap{> '<g>g + V Q = * <r ) (6.3.13).
k

When pk = constant, 31<P > " P kF = p{ = 0, I) = 0, and Dk k'

becomes D , which is defined by {

I
gy (a g> , (6.3.14)D Va =-

and Y becomes %_mk defined byak

k <"N>" Pk- D Va (6.3.15)Y =p g, .
;

In this case, the time-volume-averaged mass conservation equation simplifies
to,

Va <g>g - V . D Vagg g,

,.
.

31<k>g * V a -1 '

f (p . gp dA
'" -vgg.;

~ kF

- v" f g . ( dA (6.3.16),

for which the relation given in Eq. 6.2.5c has been used. Equation 6.3.16 can
be derived directly from

V4=0, (6.3.17)

which is valid for constant pk. Application of local volume averaging of Eq.
6.3.17 leads to

I

1
,.

-_ . . .- .---- -. - .. . . - . .- ... - -..-.-. . - - . . . . -
_

-
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'<g>=-v fg.4A, (6.3.18)V.a dk
^k

which, upon time averaging, gives

-

31<g > g + V . t31<a{U{>V.a gg

-1

31<k>LF "kLF ! F * kLF~#"

A
kLF.

- v"I f g . g dA (6.3.19).

Clearly, Eqs. 6.3.16 and 6.3.19 are equivalent.

6.4 Time-Volume-averaged Interfacial Mass Balance Equation (Yy =YA"I)

The local volume-averaged mass balance equation for interface Akf is
given by Eq. 5.2.1. Using Eq. 6.3.10, we readily have

<r>+ <I>=0, (6.4.la)k f

@r, equivalently,

f "kLF + 3131
4 >LF \ 3t -k LF "kLFj k

*

k

+ 31 i<E >u * Y fu + (MrI)f4 >u ae
+

f f

=0, (6.4.lb)

where (MTI)g is given by Eq. 6.3.11 with subscript k replaced by f. We note

in (MTI)p "and (MTI)f, AkLF = Af ty, A{ = Aj , hp = hp, 3 = WJ , gp =that

g g , and & - d'

When pk = constant, Eq. 6.4.lb reduces to

"kLF_+ 31<E -1 !* ~#
at k LF "kLF * "

F -kLF
kLF

'<E >M * V "fLF
~

f $ . ( dA + +-v
ft

__ _ _ ._ _ _, .
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-v'I i u afu
- ~

[ g 3p dA}dA - v
f ,

^fLF ^f /

-o. (6.4.2)

6.5 Time-Volume-averaged Linear Momentum Conservation Equation
| (Yv"YA " Il

The local volume-averaged linear momentum conservation equation for
! constant field force is given by Eq. 5.1.3:

ha N> + V * " k <# M>k

=-Va <P > + V * " k <1 > + "k <# 1k k k K

~

+v [ (- P Ikk+1) 4 A-v" [pg(g-() 4 A. (5.1.3)d dk
k k'

Time averaging of Eq. 5.1.3 requires the consideration of

*(,'+A>)-(o 3*e,>u+'31<= tai >)31<g>t,+r.,, (6.5.1). u, .

1

| which is Eq. 6.3.2b.

'(o, eAq>)i.
;

- (o 3*e,>u + '31<=;,i>) 31<g>u 31<g>y + 2 r,, 31<g>t,! u,

gg('<[k>* '< k> + '< k> (6.5.2)-a ,

in which

(a) The volume-averaged Reynolds stress tensor <1 ) is defined byk

S >M <M>~ M> " <1 ) (6.5.3)-

k k ,

(b) '1he volume-averaged dispersive stress tensor <{k>isdefinedby

31
4 >M 31< M F> ~ t31<#E k k F> " 31<~ > , and (6.5.4)

~ ~ - - -
-

1kk

|

. - . .. - - - - - - _ . .. - -. . ._- -
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!

I<(> is(c) The volume-averaged turbulent, dispersive ctress tensor
defined by:

*t31 31 31 - \~

kLF "k k ~ k LF "k kLPk/

t
/ */
(af 31(o~gg~ p.![>\U f - (a{ 31<pgg~ p>\/-2

.

kLF < k> . (6.5.5)=a

3i 31 , , t 31<a P > (6.5.6)e a q ""Uk

'<1 ""EF '<1 >U + i<a{I(> (6.5.7)o a k kk

Equation 6.5.7 is merely the consequence of a mathematical operation
'

when the point variable 1k (a see nd- rder tensor) is decomposed according to
Eq. 6.1.8. Since i is related to fluid viscosity and velocity gradients, thek

<1 >LF "" Ik#*S"physical meaning of ** ' ** ###* # "" *#* "* #k
Newtonian fluids

(V.U!)1*"kbY' k * (Y' k)c) , (6.5.8a)Aik" k "k~

k
,

where A is the bulk viscosity, V,Uk is a dyad, and subscript c denotes conju-k

gate. Since Ak and o k are independent of velocity gradients, Eq. 6.5.8a
gives, following substituting the relation U2 = 31g>g + +$

q-(A,- ,,) (v . 32<g>y) 3 + ,, v,31<g>t, + (v '<g>s,),;3

+ (Ak "k (Y * F) b + "k V' F + (V ' W)c
~

,

+(Ak "k (Y * k) I * "k V,Uf+(V,g)c., (6.5.8b)~

which, upon comparing with

Ik" '<h>W + + L{ , (6.5.8c)
.

1 cads to the following defining relations:

. - .- -_- , . - . . , _ - - _ _ _ _ _ . _ - . _ - , _ - . _ _ _ , . . _-
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3'<tet, = (x -i )(v 'i<ygt,) :k

+ ug 9 ,31G >g + (v 31c>g)c, (6.5.8d)4 q

tu, - (x, -i .,)(v 6) 1 + , %m + cv 6)e: ces8>

1{ = (xk "k (Y * k) I * "k v,g + (v ,g) (6.5.8f)- .

By taking the intrinsic volume average of Eq. 6.5.8c, followed by multiplying
by ok, one obtains

o, 31<t ,> = . u , 31<t ,> g + . uy 31<t;>+.;31<tyt,+.;31<t;>,

which, upon time averaging, leads immediately to Eq. 6.5.7, since * i<g{> - O
according to Eq. 6.2.8c. Clearly, in Eq. 6.5.7, 3 igg h defined W 4
6.5.8d and

$31<.;t;> = (x, - u,)$31<.;v.g>t

+ u, * *(.; [v, g + (v g)c)) . (6.5.8g)
,

l

It isnotedthatL{isnotrelatedtoReynoldsstress which is independent of
,

viscosity.i

;

<{gp>=0,weobtainfromEq.6.5.8e; Since

and hence. f kgkp>=0, a n dA = 0 , (6.5.9a,b)Ga g
: AkLF

i according to Eq. 6.2.21b. Also,

and hence f ky,ug ,dA = 0 (6.5.9c d)O,kp>=0,
AkLF

;

and

and hence f (kL, , nkLF}c| <(V .h) e) = 0, * *'**~ *

A
kLF

. . . . - - _ - - _ . -- - -- - . . _ .
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It . should be emphasized that the group of relations given by Eqs. 6.5.9a
through f hold not only for Newtonian fluids, but also for others that obey
_ linear stress-strain rate relations. They will not be valid if the stress-
strain rate relation is nonlinear.

When the viscosities in Eq. 6.5.8a are dependent on strain rates,

' <g> is complicated. Details are giventhe resulting expression for a
in Appendix B.

' <#k>U + '<a{p {> , (6.5.10)e a <# > ""EFk k

which is Eq. 6.3.1.

-I ~ ff (- Phk + 1 ) 4 <-PNF + 1 * kF> dAdA =ve v k k
A A
k kLF ,

' ~ t
[ (-Pg + 1k. () dA (6.5.11)+v .

Ak
,

Now

~ f <-P kLF + =k * kFv k
Agp

'<P >U V"EF
~

f P dA= -v EF MFk
kF

~

-

<!=k>M V " EF + * ] . g dA (6.5.12)*

F
A

kLF

and'

t \ t
~I f (-Pg + T4 . () dA = v" f (-Pg + L{ . () dA (6.5.13)v ,

'h h
for which use has been made of Eqs. 6.2.3 and 6.2.6a, b, and c. Hence,

t

[ (-Pg + 1 4) dAV k
4

<1 >M V "kW + (PTI)k - ( VSTI) k , (6.5.14)<P >M V"W
'= ~ *

k k

in which (PTI)k stands for the interfacial pressure transfer integral defined
by

.. - -- - . . .
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~

(PTI)k dA - v [ P{ ( dA (6.5.15)[ Pggy=-v

bLF

and (VSTI)k stands for the interfacial viscous stress transfer integral
defined by

~

(VSTI)k ] f Q . ( dA (6.5.16)dA - vF * kF*~# .

kLF k
t -

~I

'

f pg(4 - () . g dAe -v

%
- 1

|-* / *<o A(4 - 4)> nu, a--v

^kLF

t
-1 f , pg(g - 4) . 4 di (6.5.17)-v -

%
Now

-v'/ '<o A(4 - 4k g, a
-

AkLF

f"kLF \31 31 31
k LF kLF \ at kLF "kLF /

" *

<

|

-1 31<p >U 31<k>U f kF * MF dA 1-v
k

A
uF :

- 'vtF / u,(3*W1,,+iuF - q ,) nu, a
'

-v

kLF
. .

'

-1 [ k>LF + EkLF
31 kLF+t k,- ~

~*
j A"'-
|

('*W1.F + iuF -kF) AF d^

-1 I 31<o >1F + a t<g(4 - Ek au, a
-

-v
k uFA

kLF

.)

_ - .-.



41

- f ( <4>g + kg *<p{(g - g) > + g dA (6.5.18)-v

kF
and

- v' [ pd(k - () * g dA
'N

-1 * f ' 31<p >U * PEF + Ek k + Ek 31<k>U +
'

=-V k
Q- .

(i<k>u+LF - kW) 4 a^

f 31<p > U + # 31<k>U + F+k
-1 ~

-v k EF

+ p{( <g>g + kg (g - g) . nf dA

~

f pg($ - g) + g dA (6.5.19)-v .

Multiplying Eq. 6.3.10 by 31< > p , followed by introducing the result into
Eqs. 6.5.17, 6.5.18, and 6.5.19 leads to

t
~

f pg(4 - () g dA-v
Ak

C> <k>U + ( MMTI) k , (6.5.20)=
k

in which the interfacial momentum transfer integral is defined by

'

( MMrt), - - v- / '(31<p >,u+iuy)L,+'< pig >"
AkLF

'

.

(3'<g >u + ~q , - g y) g g dA
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|
~

f <k(k ~ k)> * MF<p >U * #EF dA-v k

-* / q, '<pi(4 - gb g, a
~

-v

bLF )

/, (31<p >u + pu,+p[]g+p;u !
-l ~

-v g u,s -

k>LF+ F ~ kF *k
~

31-1 - - ~

f, Nk LF + #kLF kLF EbF,~*

.

(s - 4) 4 a

~ t

A{ g($ - g) - ( dA
[ p (6.5.21)-v .

It is seen from Eq. 6.5.20a that the time and volume-everaged interfacial
momentum transfer rate consists of two parts: (1) transfer that is directly ,

related to interfacial mass generation, and (2) extraneous transfer due to

i spatial deviation of velocity and dee to time-correlations of density,
velocities, and interfacial area fluctuations. The time-averaged momentum
source per unit volume, '<2 >, resulting from interfacial pressure and viscousM
stresses and from interfacial momentum transfer is

<4> = <P >U I~
<*4 > M V "W + k> (q> pU*

k

+ (PTI) - (VSTI)k + (MMTI) (6.5.22).

Using the results given in Eqs. 6.5.1, 6.5.2, 6.5.6, 6.5.7, 6.5.10, 6.5.14,
and 6.5.20, one obtains the time-volume averaged linear momentum conservation
equation:

3 31
5t "kLF k LF + c31 kNk 31<k LF

|

+ v . (n,y 31<,,>y+'31<o;p;>)31<g>y 31<g>y
1

i

- n ,--,
-

.. - - , - . . . - - - , . - , - -- r - - - - , --
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31<q)g+ +2V Y U

<P >U + <a{P{> + V * fa <1 >U + <#k1k>=-V ag k g k

<L > + <{k>+ <>+V. agy

+ (a <#k>U + (a{p{> f + <4> . (6.5.23a)kU

Equivalently,

<p >U + <"kE k> <k>Ugagg k

<p >U + <"kPk> <k>U <k>U+V+ agg k

+ +2V Y k LF3 mk

<P >LF -V <a{P{>=-a Vgp k

<1>U+V* <"kik>+a V-gg k

+7+a <1 > + <{k>+ <>gg

(p > U + <"h k> f+ o, g k

<k >U + (PTI)k -(VSTI)k+(HMTI)k, (6.5.23b)+ <P >
k

is defined in Eq. 6.3.5, 31h 31< >, and 4 T> are defined31
in which Yak k

t<T ) is defined in Eq. 6.3.10in Eqs. 6.5.3, 6.5.4, and 6.5.5, respectively. k
and (MMTI)k is defined in Eq. 6.5.21.

<1 >U is given by Eq. 6.5.8d and * I<ag>For Newtonian fluids, k
is given by Eq. 6.S.8g.

.

- _ _ _ _ _ _
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Multiplying Eq. 6.3.13 by 31<h>tp and introducing the result into
Eq. 6.5.23b, one obtains, after combination of certain terms and rearrange-
ment, an alternative form of the time -volume averaged linear momentum
onservation equation:

(a D >U + t31<#dEk> (-k>LF + 3131 31

kLF)*
kU k 8t -k LF

8 Ink +' I 31<22U + I ' 31Wtr !
+

ae nk nk

31<e,>y - v '31< ;eL>=a vup

<1>U+V* <"k1k>+a V. kp

'<tf> + <{k> ++V+a < >gg

+ (aa,''sgg+''<aloL>)x

+ (PTI) k - (VSTI)k + (MMTI)k . (6.5.23c)

The relative importance of various terms in Eqs. 6.5.23a, b, or e remains to
be assessed. In highly turbulent flowe, the Reynolds stress probably domi-
nates all viscosity-related stresses.

For any single phase system, ak = 1 and Akf = 0. Therefore, all
interfacial integrals vanish. If the system is at rest, all quantities
associated with 3 also vanish. Accordingly, Eq. 6.5.23a, b, or e reduces to

-V <P > + <#>g=0, (6.5.24a)k k

with f = g,1 being the gravitational acceleration vector. The subscript LF
31(pk> and 31<p > has been dropped, since the fluid is everywhere atfor

rest. The characteristic length scale d in Eq. 3.4.3 is zero for a single-
phase system; hence,A can be made as small as desired. Thus, in the limit.

31<p > + P and 31<# > * Pk and Eq. 6.5.24a becomesk k k

-VPk * "k g = 0 , (6.5.24b)
.

. . - . . . _ - _ _ _ , .- - . - .
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thus satisfying the basic relation of hydrostatics.

When pk = constant, Eq. 6.5.23b simplifies to

k(3BT " kLFMLF+ * "kLF MLF kLF
31 31 31

#

+ +2V. % <k>U3 k

'<P >Uk (a{P{>=-a 7 -Vgg

<I>U+Y* <"k 'd>+ag,V= k

g(I<I>+ <{k>++V.a < k> +"W #1

k k

+ O> <U >g + (PTI)k - (VSTI)k + (MMTI)k , (6.5.25a)k

in which Q is given by Eq. 6.3.15 and
!

' < I >U " # G >U + Y ' 'U >U c (6.5.26a)Y'k k 4 d ,

<a{1(>=pk <"$ (V * k + (V'k)c]> , (6.5.26b)

I<1[>= p '<$U{>,k (6.5.27)

< {k> ~ ~ # '< F> , (6.5.28)k

<$ > = - 2 p a{ '< g> (6.5.29)agg k k

t

(VSTI)k " ~ # ]b, I{ . g dA
(6.5.30)

i E <T > ~ # (MTI)k , (6.5.31)k k <k>U * V "EF+ +

| tith

! .

|

- .. - - - -- -
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t
~

( MTI) k " ~ * [ g ( dA (6.5.32)# k
^L

and

(EI)k"~* E ! MLF + LF ~ kF * kLFk LF

- v ' p, / *<g(g - g) > . nu, dA
-

AkLF
,

'
) -1-v a I 31**>tF + b F - 4tF 44"k -

^i,

~

f, ( F + g) (g - g) g dA (6.5.33)-v p .k
!

The interfacial pressure transfer integral remains unchanged and is defined by
Eq. 6.5.15.

An alternative form of Eq. 6.5.25a is

!

MLF 31 31I

k( at kLF MLFj"kLF #
*

a%
+ +V. % 3i 3i

3g 4 g>g + Q=V Qg

t31
<P >M _9

p)=-a Vgp k

< I >LF + V * <"kik>+a V+gg k

<If>+I<{k>+ '< k> + " kW " k I+Ve a gp

+ (PTI) k ( VSTI)k + (HMTI)k . (6.5.25b)-

!
!

. - . - - _ , - _ , . . _ , , _ .- _ . _ . . _ _ _ . . . _ _ , _._.__._m._ ,, .
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6.6 Time-Volume-averaged Interfacial Linear Momenttan Balance Equation

(Y "YA " I)y

|

The local volume-averaged linear momentum balance equation for
interface Akf is given by Eq. 5.2.2:

~ f (- p I + 1 ) . g dA - v~ f pg(4 - 4) . g dAv
k k

A Ak k
|

dA + v~ [ pg(J!g - Eg) n~ f (- P I+g) n_f
dA=v gg g

A Ag g

g g+2okf "M g) dA . (6.6.1)-[ (- V o
A
k

Using Eqs. 6.5.14, 6.5.20, and 6.5.22, one has

! (~ Y kf kfLF + kfLF bfLF "kLF#
-t AkLF

t

+ / (- Vy o{g + 2 og yg ()dA
% -

G > + " <g > = 0 , (6.6.2)M+ q

whereV{g is the surface gradient operator associated with A{.

Equivalently, Eq. 6.6.2 can be written as,

,

'<P >U V "EF <1 >U V "EF + (PTI)k - (VSTI)k
~ *

k k

+ C> <k>U + (MMTI)kj k

- (PTI)g + (VSTI)g<P >g Vafg + (Ig>g . Y afg=-
f

<g >g - ()MTI) g<1' g >
-

g

_- . - - . .- ---_- - - - -- .
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-! (~ k[ kfLF + kfLF kfLF "kLF
A

kLF

t
- f (- V{g{g + 2o{f yg g) dA (6.6.3).

k

When pu = constant, one needs to replace 31<P >LF DYPk, (MTI)k byk
(MTI)k (which is given by Eq. 6.5.32), and (MMTI)k by *(MMTI)k (which is

Odefined in Eq. 6.5.33), hk by _Ymk; and finally in Eq. 6.6.3b,

<a{p{> should be set to zero.
I 6.7 Time-Volume-averaged Total Energy Coaservation Equation

(Y y " YA " Il

The local volume-averaged total energy conservation equation is
given by Eq. 5.1.4:

3
31<# E > + V * "k 31<pgE >gak kk k

| =-V*a <Pg> + V . a <g a g>k

<kk> + " k <# N> * f + <J +-V*a k - Ek k

|-1 f (-P g + g = () * g dA+v
Ak

fpEk k (g - g) = g dA , (5.1.4)-v
Ak

in which

i

' * ~

Qk"~* f kk * "k dA , (5.1.5)
Ak

.

denoting the interfacial heat transfer rate per unit volume of the fluid;

sixture.

1

Since Ek = uk + 1 g . g , and if we write

'

r

!

_- - - . - _ _ _ _ _- .. . - _ ._ . _ _ _ .. -
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'<E >U + EkU + E{ , (6.7.la)E =
kk

it is easy to demonstrate that

'<k>UI<(>g = ' <u >U + '<k>U (6.7.lb)*

k

a, = uu , + 31<% >g L u + 5 u_u , s ,
1 - -- -

(6.7.ne)E a

(U >U + U * y{ + y{ * y[ . (6.7.1d)E{=u{+ -k

Time averaging of Eqs. 5.1.4 and 5.1.5 requires consideration of

<# >U + '<a {p {> <E >U + ' M , (6.7.2)o a <# E > "
; k kk "EF k k

,' in which GEk is a scalar total energy function defined by

i . ,,, = . u, 31<~u,i ,> + .u, '31<p;E;> + 3te ,> y $31<m;E;>u

|

a{ I(dgp {> + a{ I<p 'E p> . (6.7.3)+ E
,

In Eq. 6.7.3, a term involving triple time correlation is neglected.

k (p g E > " " EF <# > U' + <" b> <k>UO' ri (E >Uk k k

+ 31<g > ,e ,,+ 1 ,,31<E,>u

<(> + <k> + '<(> , (6.7.4)+agy
in which

(c) he volume-averaged turbulent total energy flux vector < > is defined
by

4. >g <(E{>+ '<sI g E{> = < >, (6.7.5)g

(b) h e volume-averaged dispersive total energy flux vector I<k>isdefined
by

_ . _ _ _ , _ _ _ _ _ _ _ - . _ . _ . - _, . _ _ . _ _ _ . _ _ . _ _ _ - _ .
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|

i<p >LFk kLF> + <E EF)= < > , and (6.7.6)<

(c) The volume-averaged turbulent, dispersive total energy flux vector <(>
is defined by

<YJgg {E{> + <Eg g>agg

)[ 31 31

+ 319 >LF\ "k kLFk
-

"k N kLF /+
k

t t
/ 31 -3g , -,

"k 9kLP-kLF k + \"k+ kLF kLP

t

p"k SkkLFkLF
3g , ,

+
\

=a < >. (6.7.7)gg

In Eq. 6.7.7, terms involving triple and quadruple time correlations have been
neglected.

<P > U + <a {P[> i(U >M + kk , (6.7.8)e a GU> "EF"
k -kk kk

where b k is a vector pressure work function defined by

kk " "EF E F>+"EF <P g > + <P > M <" N>k
i

gp [>) + a{ 31<P{kg>) . (6.7.9)*+ a{ 3id u

<1 * k> " " EF <l >M + t3i 3i<k> M + k k , (6.7.10)e o *

k kk

'

where M k is a vector viscous stress work function defined by

u, 'i<iu, Au> + a * i<ti g > + i<t > u . * i ;u;>; Ak e- -a u, k
: l

*(a; 31<[u, . g>) + *(a; 31<t; . 4,>) . (6.7.11)*i +

|

| * *(a; 3ta g>) . =3tegug>, *(a; 3tego,>).e3te;,gu,>u

*(a; i<iu,.g>).*31e;iu, . g>, etc.
'

.

1

!
._ _ _ _ _ - . . , _ , . . _ . .-- -. . _ _ __ ._ _ _ . . _ , _ . . _ .
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|

<1>U' F, and I{ are given by Eqs. 6.5.8d, 6.5.8e, |For Newtonian fluids, k
and 6.5.8f, respectively. I

3i 3i

k) % k)U , t31 f# k> (6.7.12)e a "
k

The Fourier law of isotropic conduction states that

VT (6.7.13a)g=-e k.

If the thermal conductivity ek is independent of T , then |k

<T >U ((, .7 .13b)<g>g=-e Vk k

and

E (a g>=-e k (a{ V T{> . (6.7.13c)

The derivations of Eq. 6.7.13b and c are analogous to those of Eqs. 6.5.8d and
6.5.8g.

When expressed in terms of internal energy uk, Eqs. 6.7.13b and c
become for constant specific heat c k:y

<kk>U"~ Y <"k>U (6.7.13d)

and

(a hk> = - <a{ V u{> . (6.7.13e)
vk

The case of variable conductivity and specific heat is treated in
Appendix C.

31 31 ,t31 ) 31< >g + Q , (6.7.14)e ) ),

which is Eq. 6.3.2.b. The vector function h k is defined in Eq. 6.3.5.

3i 31
k k"b ) , t31(a J > (6.7.15)e o

--_- - - - - - - -
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E(*Q > " ~ " kk . g dAe
k

N
~I f *<4k

~

"% F) dA - v f k. ( dA (6.7.16)=-v *

Now

! k* k k LF "kLF~V " *

N

4

~

f 7 . gp dA , (6.7.17)-v

kF
and

t t~I ~

f . ( dA [ k = ( dA (6.7.18)-v =-v .k
N

Hence,

" <*Q > " <J k>LF *V"EF*(IIII)k, (6.7.19)k 7
(

where (HTI)k is the interfacial heat transfer integral defined by

(Iff1) k " ~ # ] f kk . ( dA (6.7.20)kLF * MF dA ~ * .

kLF
*

j The interfacial heat transfer rate per unit volume of the mixture, <Q >' "*"kbe correlated by experimental data.

t~I f (-Pg + 1 * E ) . 4 Ade v k k
;i N

f "<-P g + I
~

k * E > * "-kLF dA=v k
A

kLF

~

f (-Pg + I * E ) e g dA
*

(6.7.21)+v .k k

Now
,

-1 f t<-Pg + 1 * E > * MF dAv k k
A

; kLF

- _ _ . _ . . _ _ .
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31<e ,>t, N y t,. v . ,t, - v4 %,>t, f (, . _n,t, a-

A
kLF

'<g>g
~

f P dA-v EF kFa

kLF
,

!

- v"I f PEkF * MF ~ f <Pg> * MF dAdA -v
A kFkLF

qk>m <k>LF "kLF
* *-

+ v ' ( ,, l' % , A m ) % , a
'

-

+' ! kLF k LF * "kLF*
|

-

Ag

+v'I (tu, Am) u, a
-

^kLF

+v f * Q{e y_{> + gp dA . (6.7.22)
~

Again, we note that for Newtonian fluids, the term involving the integral

f kg gp dA vanishes. The second term on the right-hand side of Eq.a

21 is

~

[ (-Pg + 1 * U ) * ( dAv k k

v" f- '<P >U + P (._n{dA=

k gp

.v>*f-,1(>g,gs,).4dA-

s
f -P g * ( dA+v

k

'
4

-7- , , _ . - . - , . _ - - - , -
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' '

+v* I, ( i<t > u + i ur) vi 4 da
-

k
_ ,

f, t{.(31<4>g+igy) ._n{dA
-l+v

A " "

k

t
-l f , t{. pf . n{ dA (6.7.23)+v .

k

Thus,

-*t I (-P A + t, . u,) . g dAv

^k

u,-(31g,>y 31<g>y).vae ,> y 31<g>yi vo- - . u,

3

+ ( PWI) k ~ ( wI) k , (6.7.24)

in which the interfacial pressure work integral (PWI)k is defined by:

( m), - - v-' 31e,>,,, f Hu, . gy dA

i A
kLF

-131<4>g
-

ggy dAP-y *

kLF

-1 ! kLF k LF + t N * kLF
- -

~*
A

kLF

~I(f(310 )U + g+(h-v
ks

-v*~
I,k P{ (g>g + kg * ( dA

,

t
~

f PQ * ( dA (6.7.25)-v

l
1

and the interfacial viscous stress work integral (WI)k is defined by |e

|'

i

,- - - .. - - -. . - - - . - - - ,
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( WI) k " - * 3i<k)U
-l

*h*

I

i - cl f (juy.31<g>ty).a,au
^ur,

- i' / Ciu, isu + *<ti 4>) a , au.

A
kLF

- i' * / , ( '<tx> u + i u ,) 4 4a

i -c
* ''

^i
; . (31<g>,,, + i,1,y) 4 a/ t .

;

- ct*/,(t;. g). g a (6.7.26).
.

1

f o -71*/4 ,s ,( 4 - g ) . g ai
,

!

|
I

--c'f * + ,s,(4 - g) > . a , au
^kLF

t

-7 / , ,,s,(g - 4) g a (6.7.27).

%

Now

- i' / *+ ,z,( 4 - 4) > . a , au
A

kLF

(o >LF <k>M + '<k>M *V"uF=
k t

-1 31~' 9 31<E ! LF * k LF
*

k LF k LF
^ur '

-72 31<x,>1,, f J , (32<g>,,, + iu, - 41,,) . a , au u
AkLF

_ , _ _ . _ . . . _ . , . , _ . _ . - _ . ___ . .,. . _ . _ . _ . _ _ . _ _ _ . _ _ _ _ _ . , _ .



.- _ .. -
__

56

- i' / (1%>1,, + iuy)E,+*<aisi>: u'

A -

gp

. MLF F ~ kLF - kLF
* "

( i >1,, + iu,) '<zi (g - g)> _nu, a-v'/
-

g
kLF

,

- i' / (i<g>1,,+iu,)'<oi(4 - Ek .au, aA (6.7.28)
^kLF

and

- i* f , a %( A - 4) 4 a) ik

*
--i /, (3*g>1,, + J , + pi) si + oi (31<s,>t, + iuy)u

A
k

!

(31<g>1,,+uu,- gi,,) 4 a
'

.

- i' * I , (31<o>1,, + J ,) (31<s,>1,, + iu,+zi) :'g u

'

| + pi (31<s,>1,, + iu,),(g - g) g a

~

f p{E{(g - g) g dA (6.7.29)-v .

Multiplying Eq. 6.3.10 by (E > , f 11 wed by introducing the result intokEqs.6.7.27,6.7.28,and6.7.29,k5adsto

-i [ p E (k ~ k) * "-k
dAkk

h'

>

" <r > (E >LF + (TETI) k , (6.7.30)' =
k k

in which the interfacial total energy transfer integral (TETI)k is defined by;

!

i
i

__ . _ _ _ . , _ . _ _ _ . _ _ _ . _ _ _ _ , _ . _ _ . _ _ _ _ . . , ,_ _ , _ _ _ _ , _ _ . _ _ _ _ _ _ , _ . , _ _ _
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(TETI)k " ~ f ' <#k>u + E ku + <p{E{>
k,

(''<g >u + L ,- q ,) a , au

- i' /, ('+k>u+Ju r) *<Ei( 4 - g b g u a

.

- i'Ik, Q, *<ollE - Eh ru a

l*/
'

n
-(31<o >u + J , + pi) Ei + o(E ,-i k u u

; (''<x>u + L, - q,) g a.

4[(''<a>u+J,)(E,+Ei)+ois,-i'*/ k u u u
;

| (E-4) 4 a
!

t .

-i / , p{E{( $ - $) * $ dA (6.7.31).

|

The similarity between Eqs. 6.7.30 and 6.5.20 is noted, as is that between
Eqs. 6.7.31 and 6.5.21. -

The time-averaged interfacial total energy source per unit vg me,t g >, is seen to consist of three parts: (1) interfacial heat transfer
k>.,(2) interfacial work done by pressure and viscous forces as given by

6.7.24, and (3) interfacial total energy transfer as given by Eq. 6.7.30.
Thus,

" gg> *(o > + 31<r > g 31<4>g .vag g g,

<q)g <4>{y .Vaa-

gy

'

<K >U + (PWI)k - (WI)k + (TETI)k . (6.7.32)+ @ k> k

-. - - -. - -- ._ ._.-__ - - - -._. , _ . _ . .
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,

Performing the time averaging of Eq. 5.1.4, followed by introducing the
results given by Eqs. 6.7.2, 6.7.4, 6.7.8, 6.7.10, 6.7.12, 6.7.14, 6.7.15,
6.7.19, 6.7.24, 6.7.30, and 6.7.32, one obtains, after combining and rear-
ranging terms, the time-volume averaged total energy conservation equation:

|

g(a 31I

4 >U * #"k"k> <E >Uk kgg

(a
31

4 >U + <"k' k> S >M (E >M; +V. kg, k k

3 ' Ek + V e3g Ek kLF + * kk 31< k>W
31+ #

- - v . (a 31<r,>g + $31< ;e;>) "<g>y - v g,u,
,

<t > + <"kik> * 3ik) .Y* b+Ve agp k
:

-

gp(31((>+3I<k>31<(>-Ve a

- V * (agg (kk>LF+ <#hk>,

+(a
I

M >M + <"k'$> <k>M * I+Y Ik %*kM

g>g + t31 y ),t >, (6.7.33a)+a (Jgg

or, equivalently.

" kLF k LF + {p{ E >LFk

S >M + i<*d'd> <k>U+Ve e
(E >LFgg k k

!

, _ _ . - _ - .-- . _ _ _ -_ _ _ ._ _ -
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3iEk ,9 , ,Ek k)W + .Q 3i(E >g+
g ,

!.

A <P >M '<k>Uk {P{> 31<4 >g + k k
' -V==-?.a gy

u,(31<t,>y.31<g>y)+v.(*31e;t;> . 31<g>y + g)+v.o

- v . (o 31<g>+$31<4>+31<(>)u,

i

O%>~V* hk>-7 a kLF

.I

(a >U + d#$> <k>M + b *I+ a gg k

!

'UEk>W * 0$#b>
i+agg

'
,

+ "C ) (E >M + <9 > * <# >M <k>W * Y "kWk k k k

<t >M * <k>U *Y"EF-

k -

+ (FWI) - ( WI)k + (TETI) (6.7.33b).

! An alternative form of the time-volume averaged total energy conservation '

oquation is obtained if i@ k) in Eq. 6.7.33b is replaced by the relation given'

'

by Eq. 6.3.13:

0 E
31 k LF 31 31

" kLF k LF + t 31 $#k ( 4t kLF * YLF/
' 36 3i'

+ +,. 6 <k>W + k * Y 4E bEk

- - . , , , . St<y, 3'<g>t, - , . (131<.;F;> 31<g>t, + x,,).

1

i

.--____---___ _ ___________ _ --__ _ _ _-__ _ _- - _ _ _ _ _ .



60

|

+au, v - .(31<t,>t,. 31<g>t,) + v . (*31<.;t;> . 31<g>t, + g)
'

,

-V= a <- ) ,31 ) ,31 )ku

<4k>LF hk-V a -Y*gg

<# > M + <" k' k> <k>M + b *f+ a kkU

+a 31<JEk LF + kEkg,

+ (Q > + ( #wI) k ~ ( WI) k + ( TETI) k * (0*7*33")k

When pq = constant, Eq. 6.7.33b reduces to

<E>U+V*"EF <k>M (E >M
p

k "EF k k
,

+ +V* # <k>W + V = Q <E >MEk k

-V*a (P >M <k>M -Y* <"k#k> k>LF +
=

ku k

+7*a < g>g * (g>g +Ve (a{g{>. (4>g + *gy

>+3iok)*3io-Ve a < SEF

- V . m , a g, _ V . < >i<a g,
i

( u, a '<4>M + %) 1 + au, '<a >M +'''<aia6)
+

u
,

_ _ _ _ _ _ . _ _ _, - _ , _ _ - , - - - . - - - - . - - - - - - - - - - - -
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* <r > ' <E >U + <9 > + <# >LF <g>- VoU+ kLFk k k k
,

|

- ( '< 1gik>U * <k>LF *V"EF

+ (PWI)k ( WI)k + (TETI)k , (6.7.34a)~

i in which

th"#k (a{E{> (6.7.35)

i

< >=p <$E{> (6.7.36)k

1

- '<*k> = p k '< U EF)E (6.7.37)
l

i

.;31<y;iu,> )35<T>-,,{*.;31<4t,e;>
*

(6.7.38)+ou,

i

|

| cnd ,

! (TsTI), - - v,,f l,(31<g>t,+4t,.-s,).gt,au u

- v ' ,, I *<s;(g - y;)> nu, a
-

A
kLF

31~*1- "k !, k NLF + LF ~ kLF *k
Ak

~I-v p [ ( EF + {} (g - g) . g dA (6.7.39).k ,

"3I%g , 3I<* % 'Q), aM ** <r k) are given by Eqs.
6.3.15, 6.5.26a, 6.5.26b, g>d 5.,5.31, respectively.
The functions

an

.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . _ . . .
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!

The vector function YPk and the interfacial pressure work integral
I (PWI)k remain unaltered. They are given by Eqs. 6.7.9 and 6.7.25, respec-

Otively. The vector function Y k and the interfacial work integral due to
( WI) k are given by Eqs. 6.7.11 and 6.7.26, but with theviscous stress

viscous stress tensor simplified for constant density.

An alternative form of Eq. 6.7.34a is

!

I \B

<E>"+ '<q>, . V '<E>,j
; k

a ogg gg ,, g

a 6
'

+ +V. 6 k LF + k* k LF3 Ek
4

lt 31<" >31<k>M + kk
;-

kW .7 31<P >M31<k>M~V*| =-a \k

!

< E >M * '<k>M * Y * '<"k 1k) ,31 ,o] +a Y*kM k

I< >g + 3 <*k> < (>-Ve a gg

;

-Ve a <J k> ~ V * <#h>kM 7

! +(a *<k>u + %) t + a '<JEk>M + *<"$dkk>aku k ku

i

NQ ) + (PWI)k (WI)k + (TETI)k , (6.7.34b)j + ~

k

which can be readily written down from Eq. 6.7.33c.

; 6.8 Time-volume-averased Interfacial Total Energy Balance Equation

(Yv"YA*O;

! The local volume-averaged interfacial total energy balance equation
i is given by Eq. 5.24 when the capillary energy is ignored. By performing time
; averaging and making use of Eqs. 6.7.16, 6.7.24, 6.7.30, and 6.7.32, one
'

obtains the following two alternative forms

:

"<[k>+ < f> = 0 (6.8.la)
i

;

e

- . - . , _ , . ._. ~_ _ _ _ _ _ - - _ - _ - _ - - . - - _ _ _ - -. , __. - - - . _ . _ _ - - . - _ - . . ._
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or, equivalently,

(31<P>U 31<E >M
\

31<1 >M 31<E>U)*V"EF+t<.0>
~ *

k k k k k,

t s

'<E >U + (PWI)k - (WI)k + (TETI)k+ O>k k
,

'<P > g '<y >g - <1g>g .
*

<y >g .Vogg + <Q >+
f g g g

I<E >g + ( PWI) g - ( WI) g + ( TETI) g = 0 . (6.8.lb)+ O>g g

i

<t >U should be replaced by '< I >g ' <I > by OC<r }'When p = constant, k kk k
j (WI)k by "(WI)k, (TETI)k by *(TETI)k, etc. Likewise, the same simplifica-

,, tions should be introduced for all analogous quantities with subscript f.

6.9 Time-Volume-averaged Internal Energy Conservation Equation

j (Yv " YA " 1)

The local volume-averaged internal energy conservation equation is
j given by Eq. 5.1.6:
i

h o, 31<o u,> + v . .,31<p,qu,> - - ,31<e,v . g> - v . ., 31g,>g

+ ., @g,> + %,y + *Q, - v / ,,u,(4 - g) . n dA , (5.1.6)4
g

.

in which

* "

Qk"~" ] kk * "k dA , (5.1.5)
'

cnd &k is the dissipation function given by

)

k"Ek : 7, ( . (5.1.7)*

,

The time average of 'Q is given by
k

!

"<*Q> 31<4g>g . Vagg + ( wrt)g , (6.7.19)g
a

l
!

_ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _
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where the interfacial heat transfer integral (HTI)k is defined in Eq. 6.7.20.
Also, the time averages of a <h>andofa <JEk> have been presented.k k
They are given by Eqs. 6.7.12 and 6.7.15, respectively. The time averages of
the remaining terms in Eq. 5.1.6 are as follows:

<# >U * <"kPk) 31<u } U + 'uk ,<8 "k> "kWe a " (6.9.1)k k k k

where e k is a scalar internal energy function defined byu

31 ~ t31 t31
'uk *"kLF kLF"kLN "kLF k"k + 31 k"k

~

k LF

p {>) + a{ <p {uk), (6.9.2)+ a[ u

in which a term involving triple time correlation has been deleted.

k <# b"k> " "kWe a <# >U + <"kD k> <U >U <" k> Uk k

<g>g 4 k+k <"k>U
+

<k>+3i<(>, (6.9.3)+a < >+,

gy

in which

(a) The volume-averaged turbulent internal energy flux 31<[>isdefinedby

I<p >U <U{u{>+t31gkUk"k>" < >* 50*9*0)k

31(uh can be expressed in terms of eddy diffusivity for internal energy!

I transfer D according tok

I<[ > = '<pk> U D Y <"k>U . (6.9.5e)k

'<u >U " "vk 31<T >g * CSince V V k vk being the specific heat atk
constant volume (assumed constant in the present analysis) Eq. 6.9.5a
can be written as

!

%

.

._____e -w. ' " - * " " --
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<(> = - K f V <T >M , (6.9.5b)k

T
where K is the turbulent conductivity related to D k according tok

Kf='4>U"vkk k. (6.9.6)D

(b) ne volume-averaged dispersive internal energy flux 31< > is defined by

31
4 >U 31<~UEF"EF> + 31<#E k F"EF> = 31<g > .

~ ~ ~ ~

(6.9.7)k

31(c) he volume-averaged turbulent, dispersive internal energy flux 4 y 1,,

| defined by

/t31 t31

LP k k + kLFkk"kLF # #

3*e,>y (*(a;31<Uu,9) + (a; 31<g'u,>))
'

j 4

1

* * t

+ (a{31 ~gp kU"k>) + "k <#
31 - 31~

"k b-"EF>)
~

4 EP k"EF>U U +

<(> . (6.9.8)=a gy

I
In Eq. 6.9.8, terms involving triple and quadruple time correlations have been
deleted.

'#k k V * k>O a

gpf3'O>u '<k > u + '<P V * kg> + (P{ V e g>Y*=a k gp
i

#"N>) + "k <p3i
O }W Y* Y*+ k m

t

f + *3I4:{P{> V + (g>g + a{ 'O{ V + k p>

~I
'O >M f F * MF dA + f g + ( dA (6.9.9a)+v .k

(AEF k /A

.. . ._ _ . . .
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Once again, we note that for Newtonian fluids, f kp . gp dA = 0 . In
A

kLF
deriving Eq. 6.9.9a, use was made of Eqs. 3.4.lb, 6.2.23b, and that

i

P V* <k>LF = 0.kLF

Equation 6.9.9a can be rearranged to reads1

<P > LF + <a{P{> V . <(> pa <P V * k> " "EF kk k

+6 - (PWI) (6.9.9b);
,p

where (Pk is a scalar pressure work function defined by

'

-f> + 0'k>LF V* <* b>Pk " "kLF EF LF> + "kLF GkV * UV*G

+ a{ O 7 . ,Uf> + a{ 31<PV. p> (6.9.10)gg

"

and (PWI)kined in Eq. 6.7.25.
denotes a portion of the interfacial pressure work integral

(PWI)k de

(PWI)f"}=-v~ '<P >LF ] dA + [ Uf . ( dAk LF * MF .

kLF ^k I(A
(6.9.11),

| The superscript (u) is a reminder that it is associated with internal energy.

'(.,31<4 g) .j .

! . .E, (>i<tes, . . . >i<S>s,+31<t.,,v.(s,>+=>i<tt...g>)
;

<1 >LF * V' <" N> + "k < E, * V 'k>+ k
|

+ (a(L{> , V , <g> , + "k <1 IV' F>

+ . > 31<t,><,./r s ,.ss,di + 1 a.s d)) .
*

-

ce.e.ua>
\^kt, Ak

|
-

.-
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The similarity between Eq. 6.9.9a and 6.9.12a is understandable, if one

recalls that (k ~Ik: V,g. Physically, Eq. 6.9.9a gives the reversible
conversion of mechanical work into thermal energy, which may be either
positive Or negative. Equation 6.Y.12a gives the irreversible conversion of
mechanj cal work into thermal energy and it is always positive.

Equation 6.9.12a cua likewise be arranged to read:

|

'(a 4x>)-(a 3'<tx>1,y + '3*<ait;>) : v , i<q>ty1
g uy

k + ( VDI) k , (6.9.12b)+4

where 4 is a scalar viscous dissipation function defined by

31 - t31-

' k " "kLF =kLF ' k [ + "kLF Ik *kt,

t

<L >LF V' <" b>+j k

a[ <(gp : V,g> + a{ 1(g{: V ( p> (6.9.13)+

|
;

and (VDI)k is the interfacial viscous dissipation integral defined by

( voi)g - + v ' 31<tg>1,y : [f fuy.nu, a + I,g.ga3
*

-

(6.9.14)
't

For Newtonian fluids, the firt term in the parentheses of Eq. 6.9.14 vanishes.

(f g,u,(4- g) _n, a - - v / '(o,u,(g - 4)) . n-1~

a. -v uy.

*k btF
t

~

f p "k(4 - 4) g dA (6.9.15)-v .k
A:

The result can be readily written by using Eqs. 6.7.28 and 6.7.29:

,

~I f p "k( k ~ k) * "k dA-v
k

i b i

!
.

., _ , . _ - - _ , _ . _
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' <P > <h>LF + (IETI) k , (6.9.16)=
k

in which the interfacial internal energy transfer integral (IETI)k is defined
by

( IETI) k " ~ # f <# >LF + EuF "EF+ <# k"k>k
A ~

kLF

kLF kLF ~ kF * MF

f '<p
> F + E "k(k ~ k] * MF dA-v

.

kF
t

~I f p{(g - g) + gp dA-v ugg
kF

I,k f*%>t.F+ uF + ai) ui + a$uF
~* '

-v
,

'

LF kLF ~ kF *k
~

ktF+u)+au
-1

I , ~ 31%>tF+aktF
- - -

-v u k k ktFj
A-

~k

(E - k) 4 dA

t
~

f p{u[(g - g) e g dA (6.9.17)-v .

A{

An examination of the foregoing results shows that the time-averaged inter-
facial internal energy source per unit volume, C<E >, consists oft (1) ak
portion of the interfacial pressure work (PWI) defined by Eq. 6.9.11, (2)

interfacial dissipation (VDI)k defined by Eq. 6.9.14, and (3) interfacial heat
transfer "<Q > and interfacial internal energy transfer given by Eq. 6.9.16.

*

k
| Hence,

{ ' O > " <9 > + k> "k LF +(PWI) + (VDI)k + (IETI)k * (0*9'IO)k k

!
- .- - _ . - . _ . _ _ _
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,

It should be noted that the " extraneous" interfacial thermal energy sources,

(PNI) and (VDI)k, arise, respectively, from the two volume averages,
31 314p V. U > and 4 >, the latter being the equivalent of <g :V,g >. Fork k k
Newtonian fluids, both can be neglected since A{.is assumed to be a small
perturbation of A *k

By using the foregoing results, the time-volume averaged internal
energy conservation equation can be obtained in a manner similar to that for a

the total energy conservation equation. The result is:

ha <p >U + <"k"k> <"k >Ugy k

+7 a (o > + <"k# k> <k>U <" k> Ugg k

'uk + V * ' 31<k>U + V * kk 31<"k> U+
at uk

=-(a '<P > U + '<a{P{> V = <g>g - 6PkkU k

+(o 31<t,>y + '31< ;t;>) : v, 31<g>y + ., ,u,

u, (31<d> + 31<(> + 31<g>)-v.e

<kk>U + <"hk>-Ve a kU

+u <Jg>g + <a{Jgk> + >* (0*9*l98)gg

We note that the third and fourth terms on ,the right-hand side, taken collec-
tively, are simply the time-volume averaged dissipation function for the bulk
fluid (see Eq. 6.9.12b). It is written in the indicated form in order to
bring out its similarity to the pressure work term.

An alternative form of the time-volume averaged internal energy
conservation equation can be obtained by using Eq. 6.3.13 to eliminate t<rk>
in Eq. 6.9.18 and introducing the result into Eq. 6.9.19a. Af ter combining
cnd rearranging terms, one obtains

- [3 I<u >LF \
(a 31<# >U + t31<#$#k> |(

k + 31 31 i

EF k 8t NLF "k LF)
*

_ - .
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,

'uk + Y * O 31<k>M + k * V 31<"k>M+
at uk

<P >M + (a{P{> V . <g>g - 4Pk= - aku k

<1 >U + <a{;{> <q)p+6 k+ a : V, Ugg k

-V.a <k> + < >+ '< >kU
,

kLF k LF + kk-V. a

+a <Jg>g + (a[J{>gg

<Q > + (PWI) " + ( VDI) +(IETI) (6.9.19b)
*

+ .k

| We note that <g>g can be expressed in terms of a molecular thermal

diffusivity Duk which, for constant Kk and e k, is defined byv

"k
i D (6.9.20)A" 31

.

"vk - k LF

It follows then, that'

'<kk>U"~ ## >W D Y <"k>u , (6.9.21)k uk
_

which may be compared with

I< >=- '<"k>LF . (6.9.5a)<p > W D Yk k
i i

When p = c natant,V = g = 0, Eq. 6.9.19a aimplifies tok
1

k "EF <"k>M +V*"EF <k>U <"k>LF
p

--- .
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I
!

34
+ +V+ e kLF+ k "k LF

*

3 uk
s

I

<h>U + <" b>-V+ a=

kU
1

'<k>+'< >-V+a < >+gg

+a <JEk LF + k Ekgg

+(o 31< t,>ty + %, .;y : v, %pty + . , ,u,

*

( k+ ( IETI) k , (6.9.22a)+ <Q *k

in which

. , . . ,<>1e;.;> ( .. 23>.

'< >=p <k"$> ~ ~ Ek D 7 <u >U , (6.9.24)k k

k ("vk k), with Kf being the turbulent conductivity, (6.9.25)where D ~# / #k

31<o~ > " # 31<U
-

p kU> (6.9.26)_uk k u

U [> + a{ i<U{ugp> (6.9.27)a < >=p "k < ugg k

6 < EF*V' F> + "W < Ik*V 'k>k * " EF .

"k '< EF*V'k>< I >U * V' h'k>+ +k

gg>)a{ 31< I,{:+ V ,U (6.9.28)
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*(vor), - + y-1 31< t,>: / (ynu, a + f, g ,g ai l (6.9.29)
/ *

(AuF u >A

and

u , (31<g >u + L , - E uy) nu, dA( IEn) , - - v o,f E
-

A
kLF

t

- v"
k ]A u{(g - g) = gp dAp

kLF 1

-1 31~* E "k kLFk LF ~ kLF *kA,
k

t

- v" p f , ("EF + u{) (g - g) * nf dA (6.9.30)k .

k

ak and E<r > are given by Eqs. 6.3.15 andThe two remaining functions,Uf k
6.5.31, respectively. In many problems of practical intereet, the viscous
dissipation effect can be ignored.

An alternative form of Eq. 6.9.22a can be deduced from Eq. 6.9.19b. The
result is

/ 313 4 ) ;
31, j<q)g VU 4P +aEF k at

3

3t uk NLF + "k LF
+ + * *

-V+ a O k>U + <"h>
'=

g,

g,(31<(>+31<(>+31<{>)-y.a

+a Og>g + (a{Jpg,

Y >g + (a{1> *V'+ a <4>M + 4Ug kp Tk i

!:

.

r - - , m . _ _ _ _ .
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i

.+ <Q > + ( VDI) k + ( IETI) k . (6.9.22b)*

' 6.10 Time-Volume-averaged Interfacial Internal Energy Balance Equation

-(Yy"YA " 13

The local volume-averaged internal energy balance relation is given
by . Eq. 5.2.5. Upon performing time averaging and making use of Eqs. 6.7.16

in taking into account the extraneous interfacialand 6.9.16 and,
( PWI)gtion,and interfacial dissipation (VDI)k, we obtain forpressure work

k
; interface Akf

"<d > + * <d > = 0 (6.10.la)
f

,

or, equivalently,
i

' <"k> U + <9 > + (PWI) " + (VDI)k + (IETI)k<r >
kk

[Q > + (PWI) " + (VDI)g + (IETI) g = 0 . (6.10.lb)<u >g ++ C> gf g

For reasons given _ previously, both (PWI) and (VDI) can be neglected for
Newtonian fluids.

'

'<p >g = pk, and kg = p{ = - 0. Hence,When p ' = constant,

0, q > should be replaced by otq >, (VDI)k by (VDI)k' ""dtI
(PWI)

=
k k

tU > , "( VDI) k, and (IETI)k are defined in Eqs. 6.5.31,(IETI)k by (IETI)ki k

6.9.29, and-6.9.30, respectively. Similar reductions should be made for the
corresponding quantities with' subscript f.1

6.11 Time-Volume-averaged Enthalpy Conservation Equation (y =YA"I)y

The local volume-averaged enthalpy conservation ~ equation is given by
Eq. 5.1.8:

'

..
.

; ;- n , 3*4 h > ' + 9 * "k <pgh'k>' "k e > + 9 * "k eN>"
kgk

- n, o ,v . 4 >.- v . n ,31g,> + n, (31<a,,> 4 9,>)+a,31 31 -

-1 [ p h ( 4 4) . 4 A .- (5.8)-1['P(g-4)=4 ddA - y+v
k

% %.
.

4

. . ~ , , - . . . - . , - . . - , - - .m - - . . . . - - _.
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The time-averaged results of all individual terms in Eq. 5.1.8 have been given
earlier, except the following:

=hp31 31 ,t31 31<h > M + 'hk , (6.11.1))e h
k

where e is a scalar enthalpy function defined byhk
i1

hk " "EF EF EF> + "EF <p {h{> + <p > U <a {h{>
t

k
<

a{ 14gp {> + a{ <p {h >+ h (0*lI'2)*
k

31 3Ig > g + t31 31 31e a h ) ) )=
k

<g>g thk + Q+ <h >Uk

+a <h > + <5 > + <h > (6.11.3)ku ,

in which
,

(a) The volume-averaged turbulent enthalpy flux 31<h > is defined by
i

'<p
>U <fUh{>+t31<d u h{> 31<h > , (6.11.4)k gp

; (b) The volume-averahed dispersive enthalpy flux 31<k>isdefinedby

< EP EF EF> = '< > , and (6.11.5)<p > U < EF *kU> + Uk

(c) The volume-averaged turbulent, dispersive enthalpy flux <E > is definedkby

t31
LI k k + t31 -"kLF E kLFN

I*/"k <kLF k>/ + k"k*/,31<$~h p>\/31 ~ h, \+ 31b \k LF

* ~

a{ 31<p g g~ g p
31 ~+ khkLFkLFh + - a{31<p g g ~ g

~

h + h

,

.

__ __.
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=a <h > (6.11.6)kLF ,

*(a, 31e,>) - a e ,>y + $31<a;e;> (6.11.7)
31. u,

~

[ Pk (g - g) * g dA ~ f P (g - () * g dAe v =v k
Agp

+v~
t

[ P (g - 4) n{ dA (6.11.8),
k

Ak

in which

-

'(e C 4 - 4))e div ' {'EFk

31 0"kLF- - 31 e,>y 31<4>y vau, - e,>y 3,
-

+ v * 'io,>t,y / iu, s , a
-

u
^kLF

-

uy (31<A >u + i u , - k g) s+v'/ F aur
kLF

t

+v [ P{($ - () * g dA (6.11.9)
kLF

and

t-2
/ , e,(4 - 4) _n; 4Av

%
*

^i (3*e
>1,, + F ,) (g - y;) 3; a

-2 /-v 4 u ,

!

+v' I, ei ( i<A>u + Lu - k,) 4 di
-

%

+v~
t

|f P{(g - g) = g dA (6.11.10).

N '

|.

'
,

--
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Accordingly,

~

f P (g - () . g dAv
k

% '

- (PWI) "} + (PWI) h} , (6.11.11)(q>g k<2 >U + U=- +
k gp

where (PWI) is defined in Eq. 6.9.11 and

<g>g + kg - gg . gg~[ P(PWI) dA=v gp
^kLF

+v~ f P{(g - g) * gp dA

kLF

+ v * (f , Puy(E - g) 4 dA
-

s
+v~ n{ <g>g + kLp - gLp . g dA[ P

+v~
t

[ P (6.11.12)k {(g - $) * nf dA
.

In deriving Eq. 6.11.11, the relationship given by Eq. 6.2.5c has been used.

It is easy to show that

- (PWI) + ( PWI) = - (PWI)k ] Pggy + <P g > * g dA~"
AkLF

~

sA, P( gy$ + P g p + P g )= g dA[-v ,

k,

| (6.11.13)

where (PWI)k is defined by Eq 6.7.25.

-l * f a h (4 - 4) . g dA. -v gg

'<r > 31<h >u + ( EPM) k , (6.11.14)-
g g

.

- - . - ._- - --
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where the interfacial enthalpy transfer integral (EPYTI)k is defined by
- .

( EerrI), - - v- f (31egy+s )say + *e{h{>-uy
A -

gg

kLF + F ~ kF * kF

-v'/ (3*e>y+iuy) '(h{(g - W{)) . Sgp
-

dAx

t(as(4 -4)) s-v'/
- ~

a^huF uF
AkLF

/ '(314gy + JuF + pi) h{ + p{h
- *

-v gp
A{

- _

' 31
NLF + F ~ kF -k"*

-v' f 31~

4 >U + #EF ( EF + h{} + p{E ( $ - () + g dAk gg
*

~ t
f p {h{( g - g ) e g dA (6.11.15)-v .

A
. k

Hence, the time-averaged interfacial enthalpy source per unit volume is

1<P >LF< >=-
k d k> + k> k>LF

+
k

+ (PWI) + ( VDI)k + ( EF YrI) k , . 6.11.16)
'

,

in which the -substantive time derivative is defined in Eq. 6.3.12. Itd

may be noted that the tera - (PWI) in Eq. 6.11.11 cancels with + (PWI) "

crising from the time-average of - sk 31<P V. U > and that (VDI)k arisesk k

from the time-average of ak 31g),

.

,w' y '-m +*-e r --- ? -r -
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Performing the time averaging of Eq. 5.8, followed by introducing
the results given by Eqs. 6.11.1, 6.11.3, 6.11.7, 6.7.8, 6.9.9b, 6.7.12,

6.7.15, 6.9.12b, 6.11.11, and 6.11.14, one obtains, after combinination of
terms and rearrangement, the following time-volume averaged enthalpy equation:

a <#k>U + '<a {p {> <h >UkkW

(a (pk>U + <"k" k> '<E >U <h > U+V- kkgp

' hk + Y *
at 'hk 31<k>U + V * kk 31<h > U+

k

= h (a I<P >U + <a{P{>gg k,

(a G g + '3iyP ,9,,3i 31
+V* gg

!

' <# >U + (a{P{> V + <g>p-ePk- a kku

'<k>U * *t k<1 > U + <"kik> Y'+ aku k

31 ) , 31 ) , 31-Va a gg

I
|

(a <kk>U + <"hk>-V. ku

+a '<#R>U + (a{Jgk>+ < {> , (6.11.17a)ku

in which t is denned by 4 6.11.2, k k by Eq. 6.3.5, Y by Eq. 6.7.9,
hk

'

e by Eq. 6.9.10, 4 by Eq. 6.9.13, and t gk) by Eq. 6.11.16.Pk k

Alternatively, Eq. 6.11.17a can be rewritten as .

31<# >U + t31<a{p{> 31<h >U |
3
gaku k k

1

. . _ , _ _ . _. . _ _ , . - . .
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|

+V- a <p >U + <"k#$> <k>U <h >LFgg k k

'hk + Y * 'hkkLF + * kk k LF |

31 31 |*
3t

|
;

d <P, >

k d <a{P{> + V + g - 4Pk=a +

+ fa <1 >U + <"k1k> * V ' <k>U + 4TkkU k

-V.a I<h > + <k > + <hf>gg

(a <kk>U + <"hk> + "kW
-V.

<#Ek LF + k EkkU

+ E<*Q > + #> <hk k k

+ (PWI) + ( VDI) k + ( EP YTI) k . (6.ll.17b)

Another form of Eq. 6.11.17a can be obtained by using Eq. 6.3.13 to
E

eliminate C > in Eq. 6.11.17b. The result isk

31 t31 NLF 31 31
"kLF k LF k#k ( Bt kLF NLF)*

'hk + 31 31
at * *hk kLF + b * k LF

<P >U + d <a{P{> + V + Q - 4=a kU d k Pk

- _ -- ---
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' <1 >U + <"k1k> * V ' <k>M + 'd+ aku k

-V a <h > + <h > + <h >gg

?, 1

<kk>+ *kJ'k>-V- agg

+a <JEk LF + bkkkU

*

<Q > + ( PWI) + (VDIlk + ( EPYII) k . (6.ll.17c)+
k

When pk = constant, Eq. 6.ll.17b reduces to

<h >U + V * "EF '<k>M <h > gp k E " EF k

hk + V = e
31 o 31

gg hk NLF + kk k LF
+ *

k k + * hkkLF d < k LF d
=a

k

!

+ (a < E >M + <"k Td> V' <k}U + 'dkU k

-V+a 4 , 31 o ) ,31 o31 o
4 4EF

|

/

31<h>U+t31## h >)\-V= (aku ,

+a <Jg>g + (a{Jgk>kW

|

|
1

-- , .
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+ E k> + <r > <h >gk

+ (PWI) - ( PWI) (VDI) (EPYTI)k , (6.ll.18a)+ +

in which

4 =p 4x{h{> (6.11.19)k

< >=p <gh{> (6.11.20)

31< (> = o 31<(Ingp> (6.11.21)g

U {> + a{ < g> (6.11.22)a < >"# "k < hEF k

and

( EP YTI) k " ~ # E f <k>U + F ~ kF * MF dA
k EF

~
t

-v p [ (g - g) . gp dA

kLF

f,h{ '<4>g+ kg- (p . g dA~

-v p
k

t
~

-v p (hkW + h{) (U{ - W{} . g dA (6.11.23).
k A,

k

Likewise, Eq. 6.ll.17c reduces to

k>LF + 31<k LF * ' 31|
8

"kLF # k at k LF)

'hk + 7 31<k>LF+
31

k>LFG+ *gg hk
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.

<P >M + d (a{P{> + V = Y -e=a EF d k p p

< E > M+ '<"k *d> * V' 3iNU * oh+ aEF k

-V a < >+ '< >+ < >EF

(agg <a{J'k><J >+-V.
.

;

g>g + * (a{J{> i+a <Jku
.

!

(Q > + (PWI)fh) - (PWI) + (VDI)k+ ( EPYTI)k . (6.11.18b)+ k
.

! g, 31 o t31 o
Y 4 y y , o, , ocq, >, andIn Eqs. 6.11.18a and 6.11.18b,

*(VDI)k are given by Eqs. 6.3.15, 6.5.26a, 6.5.26b, 6.9.28, 6.5.31, and 6.9.29
respectively. The difference, (PWI) - (PWI) " , is given by Eq. 6.11.13.

I 6.12 Time-Volume-averaged Interfacial Enthalpy Balance Equation
(Y y " YA " 13

When the capillary energy is ignored, the local volume-averaged
enthalpy balance relation for the interface Akf is given by Eq. 5.2.6. Upon
performing time averaging and making use of Eqs. 6.11.11, 6.11.14, and
6.11.16, one obtains

.

|

%>+ O>=0 (6.12.la)g

i

or, equivalently,

O'k LF d k k ~ k LF
+ O +-

k

!

_ _ ., .-. - . - .. . . _ _ .__
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+ (PWI) } + ( VDI) k + ( EP YII) k
'

<P >LF dt f f f LF
+ +-

f
f

-+ (PWI) + ( VDI) f + ( EPYTI)f =0. (6.12.lb)
!

When o = constant, E <T > , ( VDI) k, and (EPYTI)k should be replaced by theirk k

corresponding quantities with superscript ( ). Sicilar changes should be

made for the corresponding terms with subscript f. Finally, we note that

<E >LF
V. (6.12.2)+" .

d f

i 7. TIME-VOLUME VERSUS VOLUME-TIME AVERAGING

i The significance of first performing volume-averaging of the phasic
conservation equations and their associated interlacial balance equations,
followed by time-averaging, has been pointed out earlier. This order of

; averaging preserves the distinction of the dynamic phases in a multiphase

| system, such as droplets or bubbles of different sizes, or particles of the

I same size and material but of different electric charges. Eulerian time
averaging from the very beginning will remove such distinction unless suitable

conditional avpraging is used. Simple time averaging leads to fractional
residence time of a phase rather than volume fraction of a phase. This frac-
tional residence time of a phase becomea equal to the physical volume fraction
only in the case of one-dimensional uniform motion of incompressible phases.
Volume fraction relates naturally to cumulative thermodynamic relations, while
fractional residence-time does not.

The foregoing discussion clearly contradicts the conclusion reached by
Delhaye and Achard [14], who stated that the order of time-volume averaging is
interchangeable and gave a mathematical proof to support their claim. Unfor- ,

tunately, their proof was in error due to improper application of the Leibnitz
rule for the differentiation of an integral. ' A brief recapitulation of their
derivation follows.

Consider the variation of any property fk associated with phase k, such
cs density, temperature, or velocity, as seen by an observer at a fixed point
-in maltiphase flows. Since phase k passes through the point intermittently,
fk would have the appearance shown in Fig. 3 [13,14]. ;

" Fractional residence time was referred to as local time fraction or time
cveraged phase density function in Ref. 13.

._. _ - _ . - - . _ _ _ _ _ _ _ _ _ _ .. _ . . _ _ - _ . _ . _ _ _ . __ ___ -
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3
_

= T z
'

;

1

Fig. 3. Variation of fk with Time at a Fixed Point

Delhaye and Achard[14] considered the time interval t- ,t+ centered

at the instant t and denoted the cumulated residence time of phase k in the
interval by [T ]. The averaging time interval T was taken to be a constant.k
Referring to Fig. 3, we may write

,

: n -c n-e n-t+f/2
i [ f dt -[ f f (U ) +] f (n ) dn + . . . + f f (n) dn ,k k k[T ] n=t-T/2 n=t U "Uk 2 U (7.1)

where n is the dummy variable of integration. Delhaye and Achard[14] then
applied the leibnitz rule for differentiation of an integral and, at the same'

time, set
;

Ii

!
dt g

- e, ,or i - 1, 2, ... n . (7.2>d,

The result was .

[ f dc = f E+ ~I t- (7.3)k k k ,

1.e. , 'the time derivative of the integral defined in Eq. 7.1 depends only on
the values of the integrand fk evaluated at the two end points.

Let us pause and inquire into the physical mean.ing of

1

._, _ _ _ - . . . . .. . _ . - .. _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _|
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L

hf f dek[T )k
i

under the condition defined in Eq. 7.2. One one hand, we have from elementary
' calculus

(f
f dt - f f dtk

hf E E ,t'

f dt = tim (7.4)..k[T ] A t+ 0k
!

On the other hand, we note that for time averaging to be physically meaningful
j in multiphase flows, the averaging duration T must encompass a sufficiently ,

; large number of interfaces, i.e., it must be large relative to the inverse of
the passage frequency of the phase interfaces v,. At the u me time, it must
be small compared with that required for the mixture flowing at a representa-
tive velocity U through the characteristic dimension L of the system. Hence,

(L/U) >> I >> ( 1/v,) . (7.5)i
i

j In other words, A t in Eq. 7.4 should never be allowed to approach zero. It
,

uust be finite. Now for time t, phase k will first leave the observation !

j point at time t - ( t - 5/2) after the initial arrival of phase k. For timeg
' t + At , phase k will, in general, not leave the observation point at the same
, time subsequent to its initial arrival. The same can be said for the
| " arrival" time t2 and " departure" time t3, etc. Hence, tg is not independent
| of t, and the use of Eq. 7.2 is not physically realizable in multiphase flows.
'

Consequently, Eqs. 7.2 and 7.3 are invalid; so is the conclusion reached by
Delhaye and Achard.

There is an additional difficulty associated with the application of
j Eulerian time averaging to the phasic conservation equations from the be-
i ginning. This difficulty stems from the fact that the time interval T chosen

for averaging is not intrinsic to the structure of the multiphase medium under
censideration, but depends strongly on the convection velocity. In most
angineering systems, wide ranges of velocities - of ten exist, and hence, they
may not be -characterized by a single time scale. This is in contrast to the
isngth scale associated with local volume averaging, which is independent of

I the flow velocity.

: 8. SIMPLIFICATIONS AND QMPARISONS WITH QJRRENTLY " ACCEPTED" TWO-PIRSE
FLOW GOVERNING EQUATIONS

A number of two phase flow equations are available in the literature. It
chould be instructive to compare them with the set of equations given in Sec.

.

6 of this report. . This is particularly appropriate since the procedure and I

i the results presented herein are new and we are not aware of a comparable
cualysis published in the open literature. Ishii's monograph [13] considered

i time averaging only; hence, the results may not be compared directly. For
instance, the local volume fraction ok of hP ase k that appears in the present
c:t of equations is, in ' general, not the same as the local time fraction in

i i

. . - -
.
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*
Ishii's equations. Despite such difficulties, we proceed tc examine in Sec.
8.1 their similarities and differences.

8.1 Comparison with Ishii's Wo-Fluid Equations

Since Ishii's analysis was based on time averaging only, comparison
may be made - when the local averaging volume v in ,the present analysis is

,

sufficiently small such that all spatial deviations $ can be neglected. We ik
are mindful of the fact that such simplification is usually not physically
realizable. Assuming that the said simplification can be made, the decompo-
sition of an instantaneous point variable ik, which may be a scalar, a vector,
or a second-order tensor, becomes:

k" EF + {, (8.1.1)
.

_

in which denotes the time average, and ${ denotes the high-frequencyk
fluctuation. The duration T over which the averaging is to be made satisfies

j the inequality defined by Eq. 6.1.4. Hence,f is the low-frequency
1 component of $ , including the time-independent case in the limit. Uponk

'<k>g*#,since$g,is| comparing Eq. 8.1.1 with Eq. 6.1.8, one sees that k
] negligible. Accordingly, all quantities identified by <$ >LF in the time-k
'

volume averaged conservation equations and, the interfacial balance equations
presented in Sec. 6 will be replaced by The low-frequency component of

becomes a . k.| thegcal volume frag < tion agg
Furthermore, quantities identifiedk

by <f{${>become f{${>. With the foregoing simplifications, the time-
volume averaged conservation equations for mass, somentum, and energy and
their interfacial balance relations reduce to:

e Mass Conservation Equation (f rom Eq. 6.3.13)
|

3
- x x + t<spp)' + v - ('ox x + t<=pp) s,g (e p
--

p

1

V a[k "-V. D #> (8.1.2),k

where

T
V "k k " ~ "k t <p {U{> - p t <ag> , (8.1.3)

-- - -

D #d k
i

! and

E

k k 8 -k* V + (MTI)*k (0*I'0)C> "# +
'

i

!

in which

|

*The equality of local time fraction and local volume fraction is implied in
Ishii's work. See p. 67 of Ref.13. !.

,_. _ _ _ _ . . _ _ __ _ _ _ . _ _ _ _ _ _ _ _ .. . _ . ._ .__ _
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(MTI) *
~

f <p {( Q - g ) > g p dA=-v

EF
3

!

~~

\ q
-(pk + #k](k ~ k) + Ek( ~ )f -{dA . (8.1.5)| -v n*

>

.

The superscript zd stands for zero spatial deviation.

If one further stipulates that

(a) a{ = 0, and hence, A{ = 0 and
(8.1.6)J -

,

(b) all correlations involving p{ are insignificant,
then Eq. 8.1.2 reduces to

hE#
~

<I > (8.1.7)+V* ~
,k k k k

where

E \
k (3 +k.V (8.1.8)

-

tzp > "# ,k 8t

| and superscript s denotes further simplification resulting from assumptions

stated in Eq. 8.1.6 with the consequence that (MTI) * = 0. For a two-fluid

: system, k=1 or 2, Ishii gave the following equation for void propagation

(Eq. VII 3.15 in Ref. 13):

I

I

I){= =

# 8
"k + k * ' ,"k / '

I 1 2
Tk" 2 3t

**

I=
Ek k

k=1

inwhichsuperscrigt (I) refers to Ishii, and superscript (=) denotes Ishii's
phase av,e rage. a is the local time, f raction and it relates the phasek

| cverage Y t the Eulerian time average Yk **" #di"E tk
|

I= -

k*k"'k. (8.1.10)a ,

i

*This is a weaker restriction than the condition that p = constant since the
variation of pk with temperature and pressure can stil be considered even
though pi = 0.

,

. , , -- - c , -. ,. ., - - . , , - , e ,
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& is Ishii's kinematic wave velocity, and T is the rate of production of
phase k at the interface for which Ishii wrote (Eq. V 2.1 in Ref. 13)

I 1 1

# (k - k * g , (8.1.11)I ~~l Wk A kj kn

where at is a fixed _ time interval for averaging, Wkn is the magnitude of the
normal component of the interfacial velocity, and index j refers to the number
of times the interface passes through a fixed observation point during At.
Ishii's time-averaged mass conservation equation (Eq. IX 1.1 in Ref. 13) is

haf pk+Y** P =r (8.1.12),k

where is the mass-weighted mean velocity defined by

-I (8.1.13)k "P k .k

In Eqs. 8.1.9 and 8.1.12, a is the local time fraction which is generally not
the same as local volume braction. Despite these differences, the similar-
ities between Eqs. 8.1.7 and 8.1.12, and between Eqs. 8.1.8 and 8.1.9 are
apparent.

e Interfacial Mass Balance Equation (from Eq. 6.4.la)

For a two-fluid system, the interfacial mass balance equation associated
with Eq. 8.1.7 is

2

[ U <r > 8 =0. (8.1.14)k
k=1

In conjunction with Eq. 8.1.12, Ishii gave

2

{ Tf=0. (8.1.15)
k=1

Both Eqs. 8.1.14 and 8.1.15 express the conservation of mass at the
interfaces.

e Linear Momentum Equation (from Eqs. 6.5.22 and 6.5.23a)

3
3 ;- a o, + t< ;o; 4+v- e o, + t< ;o; gk

-- - -- --

g x

-hD Va/k -2V=kD
~~

Va Ek k

..
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I

| = - v s F - v '<a;P[>g g

+ v . s ({g + t ) + v . t<a;;{>
T

g

+(es+*qgdIg u

zd+egy ,pyg_g ,yg
g g g g g

+ (PTI) - ( VSTI) * + (MMTI) * (8.1.16),k

where

If = p~k <U{U{> (8.1.17)
,

I (PTI) = - v" [ P{ ( dA (8.1.18)
^k

-l
( VSTI) * f I{ . ( dA (8.1.19)=-v

(MMTI)zd , _ y-1 7 ,k <k(k - k)> + <PN> (k ~ k) * MF dA

t .

~l .

[(pk * #k) k ,k + k ~ ( k + k ), . ( dA (8.1.20)-v

k

Ecnd C) is defined by Eq. 8.1.4.k

Ifadditionalsimplificationsspecifiedink.8.1.6areintroduced,
Eq. 8.1.16 becomes, for f = 1,

k k + V * "k"k P k

=-Vs k+V* k k+1 +kkg+ <g> , (8.1.21)8k

where"<4)* denotes the interfacial momentum sources under the stated
simplifying conditions:

* <(>*= @ k> k+P * V "k + (MNTI) * , (8.1.22)V ~

kk k k

.

-
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where t <T > is defined by Eq. 8.1.8 andk

-1(MMTI) s , _ y y t< ( - )>+ dA . (8.1.23)
A
k

is seen that (MMTI)*k represents a " modified" Reynolds stress due to inter-
'

It

facial turbulence.

* Interf acial Momentum Balance Equation

For a two-fluid system, Eq. 6.6.2, when simplified for conditions
consistent with those used in deriving Eq. 8.1.20, becomes

.

2
-i

<4>s ,y f (V d - 25 ii g) dA , (8.1.24a){ M
k

k=1 A
k

where V is the interfacial surface gradient operator, d is the temporal mean
i

interfacial tension, H is the temporal mean of the average principal curva-
k

ture of the interface, and subscript k may be either 1 or 2, referring to
fluids on either side of the interface. It is understood that Ak and g are
also temporal means. In writing Eq. 8.1.24a, the effect of deviation of local
curvature from the average curvature change is ignored It can be added if.

desired.

When the averaging volume is sufficiently small, the integral on the
), right-hand side of Eq. 8.1.24a may be approximated by

f (V d - 5 "H A" + (8.1.25)v g k "k i k k.
^k

The first term on the right-hand side accounts for the variation of surface
tension along the interface, which is probably small in dispersed systems due

,

to the random nature of its distribution over the particles. The second term
] accounts for the curvature effect. In many practical syrtens, both contribu-

tions relative to g often are small and can be neglected. - If this is indeed
the case, Eq. 8.1.24a reduces to,

2'

<4>"i [ M =0. (8.1.24b)
k=1

The time-averaged linear momentum equation given by Ishii (Eq. IX 1.14 in Ref
13) is

3 I= -I I= -I I
a t "k Pk k * Y * "k 'k

=-7afE+V*" (8.1.26)k - Ik ,+ 1 +" kg+ ,

!

.

,, w,,c., - .- - - - - r-
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>

if are the viscous and turbulent stress tensors andin which 5 and is the
k

interfaciat momentum source given by

=r h+P Va + Va (8.1.27)g It k

where d is the total drag force. din Eq. 8.1.27, the last term was added in
accordance with Refs. 15 and 16. 4 consists of a tangential component giving
rise to skin friction drag and a normal component, which gives rise to the
form drag.

The associated interfacial transfer condition given by Ishii (Eqs.
IX 1.12 and VIII 2.7 in Ref. 13) is

k=1(=[j h2(g-g)5 1 + 25(Vaf + force due to V E , (8.1.28a)
"

31 g
j

where 1-1 denotes the area concentration per unit volume. The first term on
the rig t-hand side of Eq. 8.1.28a accounts for the effect of the change in
mean curvature, which is not included in Eqs. 8.1.24a and 8.1.25. When the
terms on the right-hand side of Eq. 8.1.28a, taken collectively, are small
compared with terms in _Mk , one can write

2

k=1 ( = 0 .[ (8.1.28b)

In two recent papers, Ishii and Mishima[15], and Ishii and
Kocamustafaogu11ari[16] gave the following " simplified" form of the time-
averaged momentum equation (Eq. 2 in Refs. 15 and 16):

$T d I i + v a[ ak%%k

= - o ' v F, + v . at (t, + t )T

+ af p A+I ki "li * Y " k+ kk + ( P -E)Va (8.1.29)*k g k

in which g, is the interfacial shear stress, and H is the "generalizgd"Jk
interfaciar drag. By comparing Eq. 8.1.26 with Eq. 8.1.29, one sees that $ =
fjik. The authors of Refs. 15 and 16 suggested that an equation of the
following constituents would be suitable for the dispersed phase:

*Ibe last term in Eq. 8.1.29 was added per personal communication between Dr.
Ishii and W. T. Sha, December 14, 1984.

_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _
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M-ik = sua of standard drag force, virtual mass force, and Basset
force, all computed on the basis of a unit volume. (8.1.30),,

Equation 8.1.30, which is Eq. 6 in Ref. 15 or Eq. 9 in Ref. 16, is not a
' derived result. While it appears to be physically meaningful, there is no
assurance that U k in Eq. 8.1.29 can be expressed as such.

He associated interfacial momentum balance equation stated by Ishii
and Kocamustafaogullari for a two-fluid system is

'

2

{ gg=0. (8.1.31)
k=1

Despite the difference between our a and Ishii's af, it is instruc-k
tive to compare the simplified somentum equation 8.1.21 with Ishii's result,

Eq. 8.1.26. If we assume that <r > "Ik' Pk"Pk, P = Pk, etc., and ink k
addition a =a , then Eq. 3.1.21 becomes formally identical to Eq. 8.1.26,k
provided that

<4>"= (8.1.32),

or, equivalently,

+ (P (ki - kki k "k+ k
~

,- (Lg - [k "k =(10frI)". (8.1.33)*

We reiterate that (MMTI)k represents interfacial momentum transfer due to
turbulence. he two interfacial momentum balance relationships, Eqs. 8.1.24b
and 8.1.28b, are formally identical.

By using the assaptions just cited, namely, <r > "I' P P '
8.1.21 and 8.b."29 of

_ 7 k
k " "k , etc., one may readily demonstrate that Eqs.a

Ref. 15 become formally identical if

.

k> (ki- ~ ~ ~

ki k k

**The " generalized" drag force was represented by _Mid in Eq. 6 of Ref. 15 and
in Eq. 9 of Ref 16 .instead of S k. Presumably the subscript d refers to
dispersed phase.

.

_ _ _ _ _ . . _ . . _ _ _ _ _ B
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+ (1 - T[k) * V k + ( MMTI) " = 4k . (8.1.34)
1

d
Clearly, Eq. 8.1.34 is equivalent to Eq. 8.1.33 since _Mik " k'

An alternative form of the momentum equation is given by Eq.
6.5.23c, which, upon simplification under the stated conditions, becomes (for
_f_ = 1):

_

~ ~

kk k k+V* k 'k + 1 + P AV# "~
kk=

k

-k*V k + (HMTI)*k , (8.1.35)*-T

where' V*+ *zd "
k.

i Equation IX-1.15 in Ref. 13 reads:

I= I

k + v . k (tk + 1 )+ ek
I - T I==-

eek n =-k vP -

k 1

+ (6 - O v e' + r' (& - C + .4 1 v; <8.1.36)1

=h+(.vi where and is the total drag force.

that E " "k' Pk" k, etc.,'If one assumes'

then Eq.=P"
' 'k k

8.1.35 becomes formally identical to Eq. 8.1.36 when

d
.k + (P - P ] V "k + t<I >s (U, ~ k)

- - - - -

ki k k d;

.

- (1 - {g) . Y s = (terrI)* (8.1.37)1 g k

which is identical to Eq. 8.1.33, as one would expect.

e Enthalpy Equation (from Eq. 6.11.17b)
.

~

"kk+ <ap{> k hkk+ (ap {> hk+V*# P k

.

4

, . - - - - - - . - , - - %- -
. _ _ _ _
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34*
+ +

3t **k -V+ D 7a
, k k k

dP

" "k *
dt d

k k

^

+ (E ix + *<=;t;>) : v,( + e,|*

x

] - V (Ek k+ <"kk> +V* kk
i

+EJEk + kkk>k
;

*
+ <Q > + #> i

k k k

+ ( PWI) h) , zd + ( VDI) zd + ( EPYTI) * (8.1.38),

in which

+ *V (0*I'39)zd "dt k
|

4:{h{>+E4 k"Ek k <p {h{> (8.1.40)

'
zd - t(a g) + a- t<Pg> (8.1.41)IPk =P

,/

4 *k
'

P k * " b> + k . (P{V= g> (8.1.42)=P

i
.

4 *k " k* G '" b > + k (1{:7 ,$> (8.1.43)-

T-
t<gh{> (8.1.44)

-

g=pk

_ _ _ _ _ . . -_ _ _ . - -- -. ._. . . . -
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(PWI)(h)'*d
~l CGQ - p . g M=v

+v~
t

f, P{((k + g) - (W + g)] . g dA (8.1.45)
Ak

(VDI)*
~

{k f , g,g dA (8.1.46)
'

=v

(EPYTI) ~ [ p
~

<h{(g - Q)> + <p{h{> (k - k) . gp dA=-v k
kLF

[ p{h{((k + g) - (k + g)] ( dA (8.1.47)-V
,

and C<rk)zd is defined in Eq. 8.1.4.

If further simplifications specified in Eq. 8.1.6 are introduced,
and, in addition, correlations between pressure and velocity fluctuations are
assumed negligible as well as dissipation due to '<I{:V ,g>, then Eq. 8.1.38
becomes for J *

Ek

. . _ _ _ _ _ _
dP

-

kk + k
3 k T
ST "k #kk+ "k Ek k k " "k zd * "k

* ~

dt
k

+$8+ (Q + *I*k k k *

in which $s is the dissipation function in the bulk fluid. It is

$ s , ,- k: V, (8.1.49).k

*

We recall that <Q > is the time-averaged interfacial heat transfer rate perk
unit volume of the mixture and is defined by Eq. 6.7.16. Under the simpli-

| fying conditions used in this section, it becomes

*

]<Q > "~# <Jqk> . g dAk
%,

1

A
k1 ! t<kk g dA*

v
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k
=qi (8.1.50)g

*

where the scalar qki is the area-averaged temporal mean interfacial heat flux
into phase k.

The interfacial mass generation rate E<T ys is given by Eq. 8.1.8k

i

( EP YTI) * = - v fp (g - g)> . g dA , (8.1.51)
~

k

i

1

which represents the interfacial enthalpy transfer due to turbulence.

* Interfacial Enthalpy Balance Equation

! For a two-fluid system, Eq. 6.12.lb, when simplified for conditions
consistent with those used in deriving Eq. 8.1.48, becomes

2 dd l
~

[ * <*Q > d+(EPYTI)s =0. (8.1.52)* <I > I -Pk k k k
k.=1 (

dt
k .

The enthalpy equation recommended in Refs. 15 and 16 is

3 I= -g+V+akI=
-

P h Pk(h-gak k k

+ +I (8.1.53)"k k+ k k ki + ik*,~"k k ~ *

in which is the turbulent heat flux, q"i is the interfacial heat, flux, andk
L, denotes interfacial area per unit volume.

f The substantive derivative in Eq. 8.1.53 is defined by
|

+ =V (8.1.54)=

-D

d
and hence is identical t defined by Eq. 8.1.39.zd

dt
k

!

,

9

, , , _ . _ , _ . , m _ _ _ _ _ . _ _ . . . _ ____. _ . _ _ _
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It is thus seen that Eq. 8.1.48 becomes identical to Eq. 8.1.53 if

a. p = p" , ( = P ' tg ys = r , and ([ = Ik (all of these
-

arek
most likely true),

k,
i.e., the turbulent enthalpy flux is the same as theb. =

turbulent heat flux,

I-

c. ak""k*
and

d. C >s ( , - ) - ( EP YTI) s =0.
k

.

The interfacial enthalpy balance equation given in Refs. 15 and 16 is

+ Pf h =0, (8.1.55)
k=1 ( s / _

da
which becomes identical to Eq. 8.1.52 when P is negligible.

k zd
dt k

8.2 Comparison with Conservation Equation used in the TRAC Computer Code

The field. equations describing the two phase, two-fluid flow used in
the TRAC code were based on: (1) mixture mass equation, (2) vapor mass equa-
tion, (3) vapor equation of motion, (4) liquid equation of motion, (5) mixture
energy equation, and (6) vapor energy equation. Since the energy equation is
written in terms of internal energy, it is selected for comparison.

Using the simplifications introduced in the beginning of Sec. 8.1,,

| including those specified by Eq. 8.1.6, Eq. 6.9.19a reduces to:
|

. 3 _

_k\+ * "k #
_ _ _ _ _

5T "k E k k "k

_ _ _ _ r _ _

=-a P V * k ~ V * "k h + k + "k Jk k g

k - k> "k + (IETI)" . . (8.2.1)+ (Q > +4 +

in which all contributions ~ due to pressure-velocity correlations and the
'

interfgeial viscous . dissipation are neglected. The turbulent internal energy
flux 4 s given byi

.

, , a ,---
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)

I
i

T
t<fUu{> (8.2.2)

-

4=pk

and
.

( IETI)' " " * fE <u{( g - g )> . 4 A . (8.2.3)dk '

k
b

The similarity between Eqs. 8.2.2 and 8.1.44 and that between Eqs. 8.2.3 and
8.1.51 are readily seen. The dissipation function (s is defined by Eq. 8.1.49k
and the interfacial mass generation rate per unit volume C> is defined byk
Eq. 8.1.8. The corresponding interfacial internal energy balance equation is,

2
*

[ <Q > + k> "k + (IETI) =0. (8.2.4)k
k=1

Since

O> ~E + * Vk k a k '

]

t

O>
k "k " k>

-

N k)E

e,>= g - 9, (*,!' + L . v a,).t
(8.2.3)=

Substituting Eq. 8.2.5 into Eq. 8.2.1, followed by combining and rearranging
terms, yields

3 - - _ _ _ __

gak k "k + V * "k k k "kE E

Ba~k - - - - - T s-

=-P -P * "k k ~ * "k k + "k +ik at k k

Ek + (IETY)s (8.2.6)+ 4>+ k> hk+ k J k.k

The molecular and turbulent conduction f}uxes can be expressed in terms of
molecular and eddy diffusivities Duk and Duk. Thus,

I
|

|

. . . . . - , . . . -
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/ T\ -T\ - -

-7+a- kk + k ) ~ V * "k k (D +D kl V "k . (8.2.7) |#k

The vapor internal energy equation used in the TRAC code (Eq. 65 in Ref. 17),
written in the present notation, is (with subscript g replaced by k):

|

3 _
_k "k + V * " k _k k "k

_ _ _ _

# #gak

3a~
=-P ~ k k k k ki + wk ' ' * **

k at

where I) kdentical to Eq. 8.2.8 when
denctes the wall heat transfer rate per unit volume. Equation 8.2.6

becomes

a. Molecular and turbulent conduction are absent,

b. Viscous dissipation is negligible,

~

c. a JEk " wk ' "k

d. C >s - (IETI) s =0.-

In boiling reactor applications, the first two conditions are probably quite
reasonable. The third is merely a statement that the wall heat transfer (such
as that from fuel rods) is treated as a distributed heat source. The last is
analogous to that of Condition d listed following Eq. 8.1.54 of Sec. 8.1.

We have demonstrated in this section that when the local averaging
volume is made small and when several additional simplifications are intro-
duced, the set of rigorously derived conservation equations prescribed in Sec.
6 reduces to various~ forms that compare reasonably well with those given in
Refs. 13, 15, 16, and 17. Perhaps a more important finding from the
comparison stems not so much from their agreement, but rather revealing the

| tissing terms in the currently " accepted" two phase flow formulations. It

would be a useful and logical step forward to assess the importance of these
tissing terms under a range of conditions encountered in practical
'spplications.

| 9.0 DISCUSSION AND CONCLUDING REMARKS
i

This report presents the basic time-volume-averaged conscevation
cquations for multiphase flow in systems without internal solid structures.
The starting point of the analysis is the well established phasic conservation
cquations of mass, momentum, and energy, and their interfacial balance rela-
ions. Within the framework of generalized asitiphase mechanics first
cuggested by Soo[8] , particles of . dif ferent ranges of sizes, densities, and
chapes are treated as different dynamic phases.

The local volume averaging is performed first, followed by time
cveraging. In this way, the identity of the dynamic phases is preserved.
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Delhaye and Achard[14] suggested that interchanging of the order of volume and
time averaging would lead to identical results. The fallacy of this conclu-

,

sion was the result of improper application of the Leibnitz rule for the
differentiation of an integral as has shown in Sec. 7 of this report.

The local volume-averaged conservation equations were deduced from the i
,

phasic equations by using the theorems of local volume averaging developed by
,

Sisttery, Whitaker, and others [3,5,6,7]. Time-averaging was subsequently
,,

i
' '

applied to these equations. The analysis is rigorous, subject only to the
restrictions on (1) characteristic length scales of the system as prescribed

; by the inequalities defined in Eq. 3.4.3, and (2) characteristic time scale
I inequalities p escribed by Eq. 6.1.4. Because of the length sc' le restric-e
I tions, the resulting equations are strictly valid for highly dispersed

systems. When these equations are applied to systems that are not highly
,_

dispersed, the extent and nature of errors involved remain to be a subject of'

b further research.

| The analysis of multiphase flow calls for the solution of the time-volume ]
1 averaged differential-integral equations of conservation with appropriate ,

j initial and boundary conditions. An examination of these equations reveals !

| immediately that they are incomplete in that constitutive relations for the
; diffusive, dispersive, turbulent, and interfacial transport need to be
i developed. Collectively, this constitutes the closure problem. It should be

noted that the integrand of the interfacial integrals consists of the local ;
'

values of the dependent variables. Equivalently, it contains the deviation of I
,

i the local value of the variable from its intrinsic local volume average and, |
in the presence'of high-frequency fluctuations, its turbulent component. The ;

| closure problem is not unlike that in the analysis of turbulent flow, but with !
additional complications. In the absence of turbulence, a closure scheme for
the determination of the spatial deviation of the dependent variable for sys-

| tems involving diffusion and first-order chemical reaction has been given by
i Crapiste, Rotstein, and Whitaker [18]. A rigorous approach to treat the
| general closure problem including convective transport and turbulence will, no
i doubt, remains a challenge.
!

| If the flow and thermodynamic conditions are such that the spatial devia-
i tions of the dependent variables, denoted by (~ ) , are small and may be

deleted, ' and if, in addition, that a{ ~ 0 and all time correlations involving
! p{ and . P{ are negligible, then the resulting set of simplified equations
i reduces to a form closely resembling Ishii's time-averaged equations although

~

some differences remain. These differences are not unexpected since Ishii's
,

local time fraction is not identical to the local volume fraction. Strictly l
speaking, his asss-weighted mean densities,' velocities, etc. are not the same
as the low-frequency component of their intrinsic ' volume averages, even when |

the - averaging volume is small. The internal energy equation used in the |
development of the TRAC code has also been demonstrated to be in reasonably-
close agreement with the more complete internal energy equation obtained from
the present study and simplified for applications to nuclear reactor systems.-

At the present time, the evaluation of the -interface transfer integrals !
in the time-volume-averaged conservation equations is not generally known. An
order-of-magnitude analysis to assess the relative importance of these inter- ),

I face transfer integrals would be helpful. One of the fundamental problems in I

| understanding multiphase flow is the lack of knowledge of mass, momentum, and

'
_ _ _ _ _ _ _ _ _.,_,
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energy transfer at the interface. In the past, empirical correlations were
developed from experimental data to quantify interfacial, mass, momentum, and
energy transfer rates, often without sound theoretical basis. These correla-
tions therefore are valid only in the range of operating conditions for which

!' the experimental data are obtained. Other urgently needed information is the
quantification of transport properties such as eddy and dispersive diffusiv-
ities of mass, Reynolds and dispersive stresses, and eddy and dispersive
conductivities of heat, etc. , by performing planned experiments in conjunction
with analysis.

:

; In summary, a set _ of rigorously derived conservation equations of mass,
; momentum, and energy for multiphase systems without internal solid structures

via time-volume averaging has been presented. Similar derivation will be
presented in Part Two for multiphase systems with stationary internal solid
structures. These equations are in differential-integral form and are not a
set of partial differential equations as currently " appear" in most literature
on multiphase flow. This set of conservation equations serves as a reference
point for modeling multiphase flow with simplified approximations and provides
theoretical guidance and physical insight that may be useful to develop corre-'

lations for quantifying interfacial mass, momentum, and energy transfer
between phases.

Finally, it is important to note that, for the conservation equations
presented in this - report, the local averaging volume is unrelated .to the
volume of a computational cell used in the numerical computations.

4

)

I

I

;

;
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f g dA . (A.1)APPENDIX A. PHYSICAL INTERPRETATION OF V a =-v

^k

To provide a physical interpretation of Eq. A.1,- which is Eq. 3.4.9 with

y , = 1, we consider a dispersed system and an averaging volume in the shape of
a rectangular parallelopiped AxAyaz with its centroid located at (x,y,z), as
illustrated in Fig. A-la. Its top view is shcwn Fig. A-lb.

A A .(ox/2)xz Ay =/---

;

..s..
v v

L i

f. ) O g y+(Ay/2)I '

kO,, 7
1 I O

Ax ) O ryi a < - -

p *#'@O()--,b35 ] OngO
*N

# Ax 9 nl 0,,f

/ / N Dispersedy

jf phase k
x+(6 x/2) X

x

(a) (b)

Fig. A-1. Physical Interpretation of Eq. 3.4.9 for y =1y

Clearly, for those elements of the dispersed phase k that are completely
inside the averaging volume,

i

[ n dA =0, (A.2)k k
6A

k

where 6 A is the closed surface of the element. Such an element, labeled @k
in Fig. A-lb, may be a bubble or a droplet, spherical or nonspherical. Next,
we coneider those elements of the dispersed phase that are intersected by the

| boundary surface A A +(Ax/2). One such element is labeled @ in Fig. A-lb.x
The unit outdrawn normat vector g can be represented by

(A.3)-k " i *1 + 1 *2 + k e3,n

where i, 1, and k are unit vectors pointing in the positive directions of x ,
y , and z-axis, respectively, and eg, e2, and e3 are the direction cosines of

],anditsareaofi@ntersection3 If we denote the portion of the interfacial area of element that is

inside the averaging volume v by 6 Ak
with the surface A A +(Ax/2) by 6 A ,x+,([x+(Ax/2{I'*x k Ax/2)' *

! ~ ^k,x+(Ax/2) (A.3a)I6A
k,[x+(Ax/2)]

. . _ . - _ - - -
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and

f e da " l '3 dA = 0 . (A.3b,c)2
A 6Ak,[x+(A x/2)] k,[x+(Ax/2)]

Likewise, for an element of phase k that is interesected by the surface
AA -(Ax/2), we havej x

~

f e dA = 6 A (A.4a)
t k,x-(Ax/2)

6Ak,[x-(A x/2)]

and

e d' " I '3f dA = 0 . (A.% ,c)
26A 6Ak, [x-(A x/2)] k,[x-(Ax/2)]

.

I Following the same procedure, we have for an element of phase k that is inter-
j sected by the surface AA +(Ay/2) (labeled @ in Fig. A-lb)y
;

f dA = 6 A (A.Sa)2 k,y+(Ay/2)6A,

| k,[y+(A y/2)]
,

and I

; f e dA = f e dA = 0 , (A.5b,c)g 3 ;

I 8*k,ly+(Ay/2)] k,[y+(Ay/2)]6A

<

! where 6A denotes the portion of the interfacial area of thek, [y+(Ay/ 2)]

element @ that is inside v, and its intersection by the surface AA +(Ay/2)y

is 6 A ,y+(Ay/2)* S1'11** "XPressions can be written for elements of phase kk
that are intersected by the bounding surface AA -(Ay/2), A A +(Az/2), andy z
AAs-(Az/2)*,

i

| The x-component of the integral on the right-hand side of Fq. A.1 is
.

! k. 6A (A.Ok,x+(Ax/2) + k,x-(Ax/2)' "~
,Ana z

i ( k /x

:

where the summation is taken for all elements of phaea k cut through by the
bounding surfaces AA +(Ax/2) *"d ^^x-(Ax/2)* U*ing the relationship given by; x
Eq. 3.3.11a, one hai

!

!

.

J
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6A
k,x+(Ax/2) " "k,x+(Ax/2)AAz[

I

andj

A

k,x-(A x/2) " "k,x-(Ax/2) *A%z

; Thus,

[-v~I f4 ** (A.7)'

dA =
,

( A /

where Aak,x " " k, x+(A x/2) ~ " k,x-(A x/2) . Similar expressions can be written

for the y- and z-component of the indicated integral. As has been pointed out
I in Sec. 3, for highly disperased systems Aak,x = Aak,y = Aak,z = Aak* It

follows, then, that

ha Aa ha
~

f4 dA = 1 +1 +k (A.8a)-v ,gg A 3,

h'

for which we can write

~ [ g dA (A.8b)Va =-vk
Ak

in view of the length scale restrictions of Eq. 3.4.3. *

,

,

- 3 -.- . . _ . , _ . ,
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<1 ) FOR NON-NEWTONIAN FLUIDSAPPENDIK B. EVALUATION OF a k k

For a Newtonian' fluid, the stress and strain rate of a fluid phase k are
linearly related and are expressible as

ik" A "k V * k 1 + "k V'k *(V'k) (8'l) l~
'k

in which all quantities have been defined previously. When the viscosity

coefficients Ak and uk are dependent on the strain rr.te, they are decomposed
in accordance with Eq. 6.1.8, i.e.,

Ak" < k>U + EF + A { (B.2)
,

pk" <" k>U + + p{ . (B.3)

It is straightforward to demonstrate that

k k k F <k>U I+ A~ U G* F> 1<1 > " A U V*~

k k F

+ A Uk F G * k> b-

k

+ '*(A, -i @ LF) 1 + '*((r, -i @ sc) 1 |

.

+ 3'(xi - u;)(v - *<4>u) i + 3*((xi - vi)v-(,)i

+ >i((it -i.t) st> >
|

+ 31<u s [v,''<g>u + (v, i<g>u)c}xu

+ 31<u > u o , q , + (v,.q ,)c>31 - -

x

+ 3 '<. ,>u o ,g + (v , g)c> ;i
,

|

f
*

i

- --. - --e.--- - , - - , - - , , , , , , _ , , , - - , - , , - , - < ,e. ,.-
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+ 314 , (v ,(, + (v ,(,)c]> + 316 , (v,q + (v, g)c]>u u

| + 31+;> }v,31<g>y + (v 31<g>y),}

+ 31<u;(v ,(, + (v ,(,)c]>

+ 31<u;[v,U; + (7, g;)c]> , (B.O

for which the relacions given by Eq. 6.2.21b and c have been used. Subsequent
time averaging gives

"k <I=k " " kL, k "k , k L, b
~ *

i

31<u >u [v 31<g >u + (v,31<g>y)c[+au, g

3
31<v . U >y I+a A u-

u, g g

gt , N >t , N ,( ,+ (v, U c>> +a x

+ =u, '% - i t,) L,) :
ut, N , P,b, + (v ,(,) cP+a

at

'"((xt - t ut)v s):+au,

*3'<u; [v,g + (v,g)c]>+a u,

+ 32(x, - j u,1, *31<a; v . g> 1

+31<u >y *31<a; [v,g + (v.g)c]>x

**(a; (xi - ui)) (v . 31<g>y) 1+

'

+'31<;y;> v ,31<g>u + (v,31<g>y),[
'

,

- .
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@ ''(k -i + - Q i,

a{ I<p{ (V,(p + (7,kg) ] >+

'

+ ( c '% -16,) v 4))

+ a { '<pgp [V,g + (V ,Q) ]>
1

+ terms involving triple time correlations. (B.5)

t31In deriving Eq. B.5, the relation G . Ui> = 0 has been used.,

I<A }LF, " A 'When A k and u k are independent of velocity gradients, k k

<pk}LF " Uk, kLF = A E = 0, and "kLF = p{ = 0. In addition, O * kLF
'

"

I<(V , ) > = 0. Consequently, for Newtonian0, G,kgp>= 0, and

| fluids, Eq. B.5 simplifies to

"k Ek " "kLF k - Yk k>LF b*

~ ~'

+ " k Y ' 31<k>U + 31<k >LF o ;' '

+ A "k <"k Y * k> 1
~

k

+y <"k (Y'k + (V'k )c]> , (B.6)k

l

which is precisely the result given in Eqs. 6.5.7, 6.5.8d, and 6.5.8g.

:

._ - _-_ -_
_ . _ - - -
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APPENDIX C. EVALUATION OF a
<kk> FOR ISOTROPIC CONDUCTION WITH

VARIABLE CONDUCTIVITY,
.

The Fourier law of isotropic conduction for fluid phase k is

kk " ~ "k VT (C.1)k,

which is valid for variable conductivity, since duk = c kdT , Eq. C.1 can bey k
written in a form relating the heat flux vector and the gradient of internal
energy. Thus,

Jqk"~0 k Y "k , ( C.2)

/v When ek or c k, or both, vary with temperature, we writewhere Sk " "k c k. y

Sk" 4>+0 EF + S { . (C.3)k

Accordingly,

j k k LF "k LF + kLF "k
"~

Igp (V I<u > M + Y " E F + V "k
-

k

I S{ V <u >M + Y " E F + 7 u{ ( C.4)-
.k

the relation V I<u ) = V.
IIn deriving Eq. C.4,

kU + a[], f 11 wed b>y noe aver <ag nY, has been used.
u

Multiplying Eq. C.4 by (a leads to.

' <" k> M +'G EF><kk> "~"EF <0 > M Va k k

3ig 9;kU>~"EF <0kV"k>-a gg gy

(S >M '<*k Y "k> ~ "k ' EF V"k>-

k,

(a{S {> V i<u >M "k '<0 k Y EF) (C.5)- ~
.k

31<S } UWhen Sk is a constant, O' ""d =S{=0. In addition,"
k k W310 p> = 0. Consequently, Eq. C.5 simplifies to,

<:!qk> ~~"EF("k"vk)V ' <"k>M ~ ("k "vk) '<a{ V u{> , ( C.6)/ /o k

which is precisely the result given by Eqs. 6.7.12, 6.7.13d, and 6.7.13e.

.
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A set of rigorously derived conservation equations of mass, momentum, and energy foi
multiphase systems without internal solid structures via time-volume averaging of point,
instantaneous conservation equations is presented. Rese equations are dif f erent ial-
integral equations in which the area integrals account for the interfacial transport of
mass, momentum, and energy. De equations from volume averaging contain averages of the
product of the dependent variables which must be expressed in terms of the products of
their averages. In nonturbulent flows, this is achieved by expressing the " point'
variable as the sure of its intrinsic volume average and a spatial deviation. In turbulent
flows for which further time-averaging is required, the " point" variable is then decom-
posed into a low-frequency component and a high-frequency component. Time averagin>
following volume averaging preserves the identity of the dynamic phases. Under certair
simplifying conditions, the proposed set of rigorously derived conservation equatione
reduces closely to various forms that are current ly " accepted" for two phase flot
analysis. This set of conservation equations serves as a reference point for modelin)
multiphase flow and provides theoretical guidance and physical insight that may be useful
to develop correlations for quantifying interfacial transport of mass, momentum, anc
energy.
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multiphase flow system
local volume averaging tlnlimited
time averaging
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