oml

NUREG/CR-3978 ORNL/TM-9516

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

Tensile Properties of Irradiated Nuclear Grade Pressure Vessel Plate and Welds for the Fourth HSST Irradiation Series

J. J. McGowan

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreement DOE 40-551-75

8503110098 850131 PDR NUREG CR-3978 R PDR

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

NOTICE

Availability of Reference Materials Cited in NRC Publications

100

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W., Washington, DC 20555

- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the *Code of Federal Regulations*, and *Nuclear Regulatory Commission Issuances*.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

Notice

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-3978 ORNL/TM-9516 Distribution Category RF

METALS AND CERAMICS DIVISION

TENSILE PROPERTIES OF IRRADIATED NUCLEAR GRADE PRESSURE VESSEL PLATE AND WELDS FOR THE FOURTH HSST IRRADIATION SERIES

J. J. McGowan

Manuscript Completed - January 1985

Date Published - January 1985

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555 Under Interagency Agreement DOE-40-551-75

NRC FIN. No. B0119

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400

FOREWORD

The work prepared here was performed at Oak Ridge National Laboratory (ORNL) under sponsorship of the U.S. Nuclear Regulatory Commission's (NRC) Heavy-Section Steel Technology Program, which is directed by ORNL. The program is conducted as part of the ORNL Pressure Vessel Technology Program, of which C. E. Pugh is manager. The manager for the NRC is Milton Vagins.

This report is designated Heavy-Section Steel Technology Program Technical or Programmatic Manuscript 37. Prior reports in this series are listed below:

1. A Guide for Material Control and Data Control for the Heavy-Section Steel Technology Program (prepared by the ORNL Inspection Engineering Department), Oak Ridge National Laboratory, June 15, 1968.

2. C. L. Segaser, System Design Description of the Intermediate Vessel Tests for the Heavy-Section Steel Technology Program, ORNL/TM-2849, revised, July 1973.

3. HSST Intermediate Vessel Closure Analysis, Technical Report E-1253(b), Teledyne Materials Research Company, Waltham, Mass., Mar. 25, 1970.

4. C. L. Segaser, Fecsibility Study, Irradiation of Heavy-Section Steel Specimens in the South Test Facility of the Oak Ridge Research Reactor, ORNL/TM-3234, May 1971.

5. D. A. Canonico, Transition Temperature Considerations for Thick-Wall Nuclear Pressure Vessels, ORNL/TM-3114, October 1970.

6. F. J. Witt and R. G. Berggren, Size Effects and Energy Disposition in Impact Specimen Testing of ASTM A533 Grade B Steel, ORNL/TM-3030, August 1970.

7. G. D. Whitman and F. J. Witt, Heavy-Section Steel Technology Program, ORNL/TM-3055, November 1970.

8. D. A. Canonico and R. G. Berggren, Tensile and Impact Properties of Thick-Section Plate and Weldments, ORNL/TM-3211, January 1971.

9. J. G. Merkle, L. F. Kooistra, and R. W. Derby, Interpretations of the Drop Weight Test in Terms of Strain Tolerance (Gross Strain) and Fracture Mechanics, ORNL/TM-3247, June 1971.

10. J. G. Merkle, A Review of Some of the Existing Stress Intensity Factor Solutions for Part-Through Surface Cracks, ORNL/TM-3983, January 1973.

11. N. Krishnamurthy, Three-Dimensional Finite Element Analysis of Thick-Walled Vessel-Nozzle Junctions with Curved Transitions, ORNL/TM-3315, July 1971.

12. C. E. Childress, Manual for ASTM A533 Grade B Class 1 Steel (HSST Plate 03) Provided to the International Atomic Energy Agency, ORNL/TM-3193, March 1971.

13. G. C. Robinson, Discussion of SwRI Model Parametric Tests, ORNL/TM-3313, June 1971.

14. F. J. Witt, The Equivalent Energy Method for Calculating Elastic-Plastic Fracture (cancelled).

15. R. W. Derby and C. L. Segaser, Quality Assurance Program Plan, Intermediate Vessel Test Facility (HSST Program), ORNL/TM-3373, May 1971. 16. C. W. Hunter and J. A. Williams, Fracture and Tensile Behavior of Neutron-Irradiated A533-B Pressure Vessel Steel, HEDL-TME-71-76, Hanford Engineering Development Laboratory, Richland, Wash., Feb. 6, 1971.

17. A. A. Abbatiello and R. W. Derby, Notch Sharpening in a Large Tensile Specimen by Local Fatigue, ORNL/TM-3925, November 1972.

18. S. A. Legge, Effects on Fracture Mechanics Parameters of Displacement Measurement Geometry for Varying Specimen Sizes, WCAP-7926, Westinghouse Electric Corp., Pittsburgh, June 1972.

19. F. J. Witt and T. R. Mager, A Procedure for Determining Bounding Values on Fracture Toughness K_{IC} at Any Temperature, ORNL/TM-3894, October 1972.

20. J. G. Merkle, An Elastic-Plastic Thick-Walled Hollow Cylinder Analogy for Analyzing the Strains in the Plastic Zone Just Ahead of a Notch Tip, ORNL/TM-4071, January 1973.

21. K. K. Klindt and D. A. Canonico, Evaluation of Discontinuities in HSST Twelve-Inch-Thick Plate, ORNL/TM-4155, June 1973.

22. S. A. Legge, Analysis and Experimental Verification of the Thermal Behavior of a Four Inch Steel Section Undergoing Heating, WCAP-8022, Westinghouse Electric Corp., Pittsburgh, December 1972.

23. R. W. McClung, K. K. Klindt, and K. V. Cook, "An Evaluation of the PVRC and EEI-TVA Programs for Pre- and In-Service Nondestructive Examination of Nuclear Pressure Vessels" (draft, June 1973), transmitted with cover letter from G. D. Whitman to Director, RRD, USAEC, July 1973.

24. G. C. Robinson, J. G. Merkle, and R. W. Derby, "Fracture Initiation Aspects of the Loss of Coolant Accident for Water Cooled Nuclear Reactor Pressure Vessels" (draft), transmitted from D. B. Trauger to H. J. C. Kouts, USAEC, Subject: Thermal Shock Report - HSST Program, September 1973.

25. W. K. Wilson and J. A. Bogley, Variable Thickness Study of the Edge Cracked Bend Specimen, WCAP-8237, Westinghouse Electric Corp., Pittsburgh, November 1973.

26. J. A. Williams, Some Comments Related to the Effect of Rate on the Fracture Toughness of Irradiated ASTM A553-B Steel Based on Yield Strength Behavior, HEDL-SA 797, Hanford Engineering Development Laboratory, Richland, Wash., December 1974.

27. S. C. Grigory, Heavy Section Steel Program Tests of 6-Inch-Thick Tensile Specimens, Sixth Technical Summary Report, SwRI Project 03-2520, Apr. 19, 1974.

28. H. H. Bellucci, Three-Dimensional Elastic-Plastic Stress and Strain Analyses for Fracture Mechanics: Complex Geometries, Report 09177 (TR 75), MARC Analysis Research Corp., Palo Alto, Calif., November 1975.

29. Richard Smith, Weld Repair of Heavy Section Steel Technology Program Vessel V-7, EPRI NP-179, Electric Power Research Institute, Palo Alto, Calif.; ORNL/Sub/88242-76-1, prepared by W. D. Goins and D. L. Butler, Combustion Engineering, Inc., Chattanooga, Tenn., August 1976. 30. C. W. Smith, M. Jolles, and W. H. Peters, *Stress Intensities* for Nozzle Cracks in Reactor Vessels, VPI-E-76-26, Virginia Polytechnic Institute and State University, Blacksburg, Va.; OKNL/Sub/7015-1, November 1976.

31. C. W. Smith, W. H. Peters, W. T. Hardrath, and T. S. Fleischman, Stress Intensity Distributions in Nozzle Corner Cracks of Complex Geometry, VPI-E-79-2, Virginia Polytechnic Institute and State University, Blacksburg, Va.; ORNL/Sub/7015-2, NUREG/CR-0640, January 1979.

32. G. A. Clarke, An Evaluation of the Unloading Compliance Procedure for J-Integral Testing in the Hot Cell, Final Report, Westinghouse Electric Corp., Pittsburgh, ORNL/Sub-7394/1, NUREG/CR-1070, October 1979.

33. W. R. Corwin, Assessment of Radiation Effects Relating to Reactor Pressure Vessel Cladding, ORNL-6047, NUREC/CR-3671, July 1984.

34. H. A. Domian, Vessel V-8 Repair and Proparation of Low Upper-Shelf Weldment, ORNL/Sub/81-85813/1, NUREG/CR-2676, prepared by Babcock and Wilcox Company, Alliance, Ohio 44601, June 1982.

35. H. A. Domian, Vessel V-7 and V-8 Repair Characterization of Insert Material, ORNL/Sub/82-52845/1, NUREG/CR-3771, prepared by Babcock and Wilcox Company, Alliance Ohio 44601, May 1984.

36. J. J. McGowan, Tensile Properties of Irradiated Nuclear Grade Pressure Vessel Welds for the Third HSST Irradiation Series, ORNL/TM-9477, NUREG/CR-4086, in preparation.

CONTENTS

FORE	ORD																								iii
ABSTI	RACT																								1
INTRO	DUCT	TIC	N																						1
EXPER	RIMEN	NT/	I.																						1
	MATH	ERI	AI	S	Al	D	SI	PE	CI	ME	NS														1
	TEST	C /	PI	PAR	RAT	ru.	5 1	ANI))	DA	ΓA	Al	IAN	LYS	SIS	5									3
RESUI	LTS /	INI) [DIS	SCI	JS	SI	ON																	3
CONCI	LUSI	ONS	5																						13
ACKNO	OWLEI	OGN	ŒN	IT:	5																				14
REFE	RENCH	S																							14

TENSILE PROPERTIES OF IRRADIATED NUCLEAR GRADE PRESSURE VESSEL PLATE AND WELDS FOR THE FOURTH HSST IRRADIATION SERIES

J. J. McGowan

ABSTRACT

The Heavy Section Steel Technology (HSST) program office is conducting a number of experimental series to determine the effect of neutron irradiation on the fracture toughness of nuclear pressure vessel materials. One plate (HSST plate 02) and four welds of A 533 grade B class 1 steel were examined here as part of the Fourth Irradiation Series. The welds were made by current (about 1979) practices.

As part of this study, tensile properties were measured after irradiation to 2×10^{23} neutrons/m² (>1 MeV) at 288°C. The strength of all four welds increased with irradiation. Yield strength was about 10% more sensitive to irradiation than was ultimate strength. Tensile ductility was not affected significantly by irradiation.

INTRODUCTION

The Heavy Section Steel Technology (HSST) program is sponsored by the U.S. Nuclear Regulatory Commission. One of its objectives is better insight into the mechanisms that could embrittle reactor pressure vessels during neutron irradiation. To assess material behavior, the HSST program office at ORNL irradiated specimens to produce a variety of conditions representing those in reactor environments.

The HSST Fourth Irradiation Experiment was conducted to examine the effects of neutron irradiation on the fracture toughness of nuclear pressure vessel welds made by current (about 1979) practice. Tensile, fracture, and impact specimens were irradiated in ORNL's Bulk Shielding Reactor at 288°C to a target fast-neutron fluence (>1 MeV) of 2×10^{23} neutrons/m². The objective of the work reported here was to assess the tensile properties of a plate and four welds irradiated in the HSST Fourth Irradiation Experiment.

EXPERIMENTAL

MATERIALS AND SPECIMENS

Four submerged-arc welds were made in A 533 grade B class 1 base material by current (about 1979) practice. They are hereinafter referred to as 68W, 69W, 70W, and 71W. The weld parameters are summarized in Table 1 (refs. 1 and 2). One plate of A 533 grade B class 1 steel, hereinafter referred to as plate 02, also was studied. The chemical compositions of the materials in this study are given in Table 2.

HSST weld code 68W ^a 69W ^a		Manufac-	Thick-	Linde	Postweld treatmo	heat ent	
	Manufac- turer	turer's code	ness (m)	flux	Tempera- ture (°C)	Time (h)	Comments
68Wa	CE for EPRI	CGS	0.178	91	621	25	Straight- wall groove
69Wa	CE for EPRI	CHS	0.300	91	621	25	Double-U groove, cylindrical constraint
70W ^b	3&W	MK-W-124	0.175	124	607	48	Double-V groove
71W ^b	B&W	MK-W-80	0.175	80	607	48	Double-V groove

Table 1. Weld parameter summary

^aSource: T. V. Marston et al., Fracture Toughness of Ferritic Materials in Light-Water Nuclear Reactor Vessels, MML-75-152, pp. 47-48, Combustion Engineering, Inc., Chattanooga, Tenn., October 13, 1975.

bSource: A. L. Lowe, Jr., and J. I. Qureshi, Fabrication of Weldments Using Linde 80 and Linde 124 Weld Fluxes for HSST Irradiation Program, BAW-1537, Babcock and Wilcox Nuclear Power Group, Lynchburg, Va., June 1981.

Table 2. Chemical composition of plate 02 and submerged-arc welds

Material					Average	compos: (wt %)	ition			
	С	Mn	Р	S	Si	Cr	Ni	Мо	Cu	v
Plate 02	0,23	1.55	0.009	0.014	0.20	0.04	0.67	0.53	0.14	0.003
Weld 68W	0.15	1.38	0.008	0.009	0.16	0.04	0.13	0.60	0.04	0.007
Weld 69W	0.14	1.19	0.010	0.009	0.19	0.09	0.10	0.54	0.12	0.005
Weld 70W	0.10	1.48	0,011	0.011	0.44	0.13	0.63	0.47	0.056	0.004
Weld 71W	0.124	1.58	0.011	0.011	0.54	0.12	0.63	0.45	0.046	0.005

The orientation of all tensile specimens was weld transverse. Miniature tensile specimens were used (Fig. 1). The specimen size and design were dictated primarily by the physical space available for irradiation.

DIMENSIONS IN MILLIMETERS

Fig. 1. Tensile specimen configuration.

TEST APPARATUS AND DATA ANALYSIS

Three testing machines were used: two 45-kN Instrons and one 490-kN MTS. All unirradiated testing was performed with the Instron systems, and the irradiated testing was performed with the MTS system. The unirradiated specimens were heated for testing at elevated temperature by a bath of water-soluble oil and were cooled for testing at low temperature by a bath of isopentane and dry ice. All the irradiated specimens were tested at room temperature or above in an air furnace. All testing was performed at a crosshead rate of 0.5 mm/min. Crosshead displacement versus load was recorded during each test, and the 0.2% offset yield strength was measured from that trace. Errors in yield strength determined from crosshead displacement (instead of extensometer movement) were established at less than 3% by use of an extensometer at room temperature. Upon completion of the test, neck diameter and final length were measured on each specimen. Unirradiated specimens were measured with vernier calipers; irradiated specimens were measured with a digital toolmaker's microscope. The uniform strain was determined from the plastic displacement to maximum load on the trace of load versus crosshead motion.

RESULTS AND DISCUSSION

The tensile properties for unirradiated and irradiated materials are summarized in Tables 3 and 4, respectively. Preirradiation strength and ductility values are similar for the five materials, with weld 69W 20 to 30% stronger than the other welds.

Specimen	Test tempera- ture (°C)	Yield strength (MPa)	Ultimate strength (MPa)	Uniform strain (%)	Reduction of area (%)	Total elonga- tion ^a (%)
68W1	-140	772	821	9.3	69.0	18.9
4	-140	816	847	11.6	67.0	20.3
8	-40	588	693	9.7	72.7	20.5
12	124	519	599	5.5	72.1	13.6
13	287	497	624	7.4	73.1	15.9
14	287	493	618	6.9	72.8	15.2
69W1	-140	873	927	12.4	65.8	21.5
2	-90	737	838	10.1	66.2	20.8
3	-40	678	780	9.2	69.9	17.3
4	27	642	723	7.6	68.3	16.2
5	123	600	688	6.5	68.0	13.9
7	204	571	696	7.3	67.4	14.8
8	287	572	714	9.1	59.2	16.3
10	-140	849	920	9.8	67.2	18.3
11	-40	679	779	8.4	67.9	16.8
16	27	635	721	6.8	71.1	15.4
19	122	601	681	5.9	70.5	13.6
20	287	582	708	6.8	60.5	13.4
70W1	-140	686	809	18.4	57.1	26.0
2	-90	574	715	11.8	64.2	23.3
3	-40	524	658	11.5	68.0	22.4
4	27	480	593	10.3	68.1	19.8
5	122	453	558	8.3	68.8	16.1
6	203	436	561	7.3	66.7	15.8
9	287	436	578	8.1	65.5	15.4
11	-140	664	784	12.7	62.7	22.9
12	-40	525	655	12.0	67.2	21.2
15	27	476	594	9.1	69.4	18.2
17	124	452	556	8.3	67.8	16.9
18	288	429	573	8.4	64.1	16.3
71W1	-140	669	795	13.7	60.8	21.9
2	-91	566	718	13.4	62.1	22.2
4	-40	506	659	12.5	64.2	20.9
5	27	469	600	9.3	67.3	18.2
7	122	447	557	8.7	66.1	16.0
8	203	429	557	8.3	64.2	15.9
10	289	430	581	8.2	59.6	14.6
12	-140	681	806	13.9	58.7	23.5
13	-40	511	658	12.4	65.2	20.5
14	27	469	598	10.0	68.3	19.4
16	122	442	558	8.7	64.9	16.0
18	289	428	568	8.7	60.9	15.1

Table 3. Tensile properties of unirradiated weld and plate specimens

Specimen	Test tempera- ture (°C)	Yield strength (MPa)	Ultimate strength (MPa)	Uniform strain (%)	Reduction of area (%)	Total elonga- tion ^a (%)
02GA510	28	466	621	9.1	68.2	17.8
511	28	468	623	9.1	69.4	18.9
514	-40	517	687	12.2	67.2	20.0
515	-40	505	683	11.1	68.1	19.9
516	-90	559	746	11.8	62.6	20.7
517	-90	569	755	12.2	55.8	18.8
518	122	448	569	7.5	68.1	15.2
519	123	441	584	7.3	65.7	15.2
520	203	426	586	7.9	66.9	15.5
521	203	423	582	7.7	65.5	15.3
523	289	433	622	9.6	56.8	18.0
524	-140	684	836	12.9	58.3	23.4
525	-140	678	846	12.8	55.4	20.1
532	289	432	621	9.0	59.5	16.5

Table 3. (continued)

aLength-to-diameter ratio was 7.

Irradiation to a fluence of 7×10^{22} to 20×10^{22} neutrons/m² (>1 MeV) at 288°C had a pronounced effect on the strength of all the materials (Figs. 2 through 6). Second degree curves in those figures for the unirradiated and irradiated strengths were determined by a least squares

Specimen	Fluence (neutrons/m ²)	Test tempera- ture (°C)	Yield strength (MPa)	Ultimate strength (MPa)	Uniform strain (%)	Reduction of area (%)	Total elonga- tion ^a (%)
68W2	7.5 × 10 ²²	36	555	634	6.1	72.5	15.0
6	13.0	122	537	612	5.7	77.0	14.0
7	14.6	36	573	656	6.9	69.6	16.0
9	16.9	287	575	641	6.3	76.9	16.1
15	12.8	289	521	633	6.8	70.2	15.3
69W6	8.0	35	704	776	8.4	65.0	17.4
12	13.6	121	674	747	7.0	66.8	14.4
14	16.6	288	652	755	7.4	59.2	14.2
15	15.8	122	675	749	6.5	68.9	14.1
17	13.8	34	717	792	7.1	65.7	15.3
18	10.5	287	653	756	6.8	59.5	14.0
70W7	10.4	288	467	615	9.1	62.0	16.9
8	16.5	28	534	649	10.3	64.6	19.0
10	19.8	121	499	607	9.1	60.8	17.1
13	21.1	288	472	615	9.2	48.8	15.7
16	14.0	122	495	597	10.1	68.7	18.0
71W3	10.2	288	461	592	7.9	60.1	14.5
9	19.5	122	498	604	10.1	60.3	18.0
11	20.8	288	470	608	8.3	48.5	13.6
15	18.6	29	539	649	10.3	62.2	18.8
17	13.7	121	487	592	9.2	63.8	17.0
02GA503	17.6	34	609	749	10.4	61.1	18.1
504	22.5	288	533	706	8.5	50.3	14.7
505	22.0	121	581	712	8.2	54.4	14.4
506	21.4	31	617	753	9.4	52.9	16.8
508	13.9	121	566	699	9.5	62.5	16.1
509	13.6	288	519	696	9.3	61.3	15.3

Table 4. Tensile properties of weld and plate specimens irradiated at 288°C

^aLength-to-diameter ratio was 7.

6

Fig. 4. Tensile strength of irradiated and unirradiated weld 69W.

Fig. 6. Tensile strength of irradiated and unirradiated weld 71W.

procedure, and the coefficients for each material are listed in Table 5. Those curve fits were used to average the yield and ultimate strengths over the temperature range of 22 to 288°C. The averages, listed in Table 6, show that irradiation affected the yield strength more than it did the ultimate strength. Table 6 also shows that the strength of plate 02 was more sensitive to irradiation than were the strengths of the welds. That behavior was expected because plate 02 contained more copper and nickel than did the welds.

Irradiation to a fluence of 7×10^{22} to 20×10^{22} neutrons/m² (>1 MeV) at 288°C did not affect the tensile ductility significantly (Figs. 7 through 11). First degree curves are shown in those figures for ductility in the irradiated condition and second degree curves for ductility in the unirradiated condition. They were determined by a least squares procedure, and the coefficients for each material are listed in Table 7. Those curve fits were used to average the total elongation values over the temperature range 22 to 288°C. The averages, listed in Table 8, reflect the small effect of irradiation on the ductility of all four materials.

Matorial	Y	ield stre	ngtha	U1	timate st	rengtha
Material	c ₀	01	c2	c ₀	01	c2
1		Unirrad	diated spec	cimens		
68W	580	-1.075	0.00277	662	-0.864	0,00253
69W	660	-0.949	0.00239	746	-0.856	0.00262
7 OW	504	-0.816	0.00208	621	-0.868	0.00253
71W	493	-0,841	0.00226	624	-0.879	0.00250
Plate 02	492	-0.842	0.00234	646	-0.939	0.00300
		Irrad	lated spect	imens		
68W	581	-0.525	0.00143	668	-0.714	0.00211
69W	730	-0.589	0.00112	806	-0.699	0.00182
7 OW	548	-0.529	0.00089	671	-0.837	0.00224
71W	558	-0.700	0.00131	673	-0.878	0.00217
Plate 02	630	-0.547	0.00064	775	-0.808	0.00191

Table 5. Curve fit coefficients for yield and ultimate strengths

accoefficients of $\sigma = c_0 + c_1 T + c_2 T^2$.

Material	σy,U (MPa)	σy,I (MPa)	$\frac{\sigma_{Y,I} - \sigma_{Y,U}}{\sigma_{Y,U}}$ (%)	ou u (MPa)	συ,Ι (MPa)	<u>~U,I ~ ~U,U</u> ~U,U (%)
Plate 02	432	564	31	590	707	20
Weld 68W	496	590	19	604	620	3
Weld 69W	584	672	15	692	752	9
Weld 70W	440	493	12	562	608	8
Weld 71W	430	489	14	563	602	7

Table 6. Average tensile strengtha

^aWhere $\sigma_{Y,U}$ = average unirradiated yield strength from 22 to 288°C, $\sigma_{Y,I}$ = average irradiated yield strength from 22 to 288°C, $\sigma_{U,U}$ = average unirradiated ultimate strength from 22 to 288°C, and $\sigma_{U,I}$ = average irradiated ultimate strength from 22 to 288°C.

Fig. 7. Total elongation of irradiated and unirradiated plate 02.

Fig. 8. Total elongation of irradiated and unirradiated weld 68W.

Fig. 11. Total elongation of irradiated and unirradiated weld 71W.

	Unirra	diated; $\epsilon_{\rm T}$,U (%)a	Irradiated; $\varepsilon_{T,I}$ (%)					
Material	c ₀	c_1	c2	<i>c</i> 0	σ_1				
68W	17.14	-0.0170	3.604E-5	15.04	+0.0016				
69W	16.23	-0.0224	6.106E-5	16.06	-0.0078				
70W	19.83	-0.0293	5.119E-5	18.95	-0.0095				
71W	19.24	-0.0239	2.861E-5	19.61	-0.0191				
Plate 02	17.33	-0.0279	6.922E-5	17.15	-0.0085				

Table 7. Curve fit coefficients for total elongation values

awhere $\epsilon_T = c_0 + c_1T + c_2T$ with ϵ_T^2 in percent and T in degrees C.

Material	^е т, U (%)	^е т, і (%)	ε _T , I – ε _T , U (%)
Plate 02	15	16	+1
Weld 68W	16	15	-1
Weld 69W	15	15	0
Weld 70W	17	17	0
Weld 71W	16	17	+1

Table 8. Average total elongation^a

^QWhere $\varepsilon_{T,U}$ = average unirradiated total elongation from 22 to 288°C and $\varepsilon_{T,I}$ = average irradiated total elongation from 22 to 288°C.

In a previous experiment, irradiation of welds with high copper content (0.2-0.35 wt %) increased the yield strength 2C to 30% over that of unirradiated welds.³ The relatively low-copper (0.04-0.12 wt %) welds in the experiment reported here increased 10 to 20% in yield strength with respect to the unirradiated condition. In both studies irradiation did not affect the tensile ductility significantly.

CONCLUSIONS

Irradiation at fluences in the range 7×10^{22} to 20×10^{22} neutrons/m² (>1 MeV) strengthened all four weld materials, with the yield strength increases (12 to 19%) being greater than the ultimate strength increases (3 to 9%). The plate studied was strengthened more than the welds were, probably because of higher copper and nickel contents.

Irradiation did not significantly affect the tensile elongation of any of the materials.

ACKNOWLEDGMENTS

The author thanks M. Vagins of the U.3. Nuclear Regulatory Commission for supporting this study. The assistance of the Electric Power Research Institute and Babcock and Wilcox Company in providing the weldments is appreciated. The author also thanks F. B. Kam and his co-workers for the dosimetry analyses, J. W. Woods and D. Heatherly for construction and operation of the irradiation capsules, and T. N. Jones for assisting in the tests at ORNL. The author thanks B. D. Kerk for typing the draft, O. A. Nelson and Sigfred Peterson for editing, and D. L. LeComte for preparation of the final manuscript.

REFERENCES

1. T. V. Marston et al., Fracture Toughness of Ferritic Materials in Light-Water Nuclear Reactor Vessels, MML-75-152, pp. 47-48, Combustion Engineering, Inc., Chattanooga, Tenn., October 13, 1975.

2. A. L. Lowe, Jr., and J. I. Qureshi, Fabrication of Weldments Using Linde 80 and Linde 124 Weld Fluxes for HSST Irradiation Program, BAW-1537, Babcock and Wilcox Nuclear Power Group, Lynchburg, Va., June 1981.

3. J. J. McGowan, Tensile Properties of Irradiated Nuclear Grade Pressure Vessel Welds for the Third HSST Irradiation Series, NUREG/CR-4086 (ORNL/TM-9477).

NUREG/CR-3978 ORNL/TM-9516 Distribution Category RF

INTERNAL DESTRIBUTION

1-2.	Central Research Library	20.	R.	L.	Klueh
3.	Document Reference Section	21.	Ε.	н.	Krieg, Jr.
4-5.	Laboratory Records Department	22-26.	J.	J.	McGowan
6.	Laboratory Records, ORNL RC	27.	Α.	Ρ.	Malinauskas
7.	ORNL Patent Section	28.	М.	к.	Miller
8.	B. R. Bass	29.	J.	G.	Merkle
9.	R. G. Berggren	30.	R.	к.	Nanstad
10.	R. H. Bryan	31.	с.	Ε.	Pugh
11.	J. W. Bryson	32.	G.	с.	Robinson
12.	R. D. Cheverton	33.	G.	м.	Slaughter
13.	J. M. Corum	34.	R.	W.	Swindeman
14.	W. R. Corwin	35.	к.	R.	Thoms
15.	D. M. Eissenberg	36-38.	Ρ.	т.	Thornton
16.	I. F. Federer	39.	н.	Ε.	Trammel1
17.	G. M. Goodwin	40.	G.	D.	Whitman
18.	H. W. Hoffman	41.	F.	W.	Wiffen
19.	S. K. Iskander				

EXTERNAL DISTRIBUTION

42-43. NUCLEAR REGULATORY COMMISSION, Division of Engineering Technology, Washington, DC 20555

> C. Z. Serpan M. Vagins

• •

44. DOE, OAK RIDGE OPERATIONS OFFICE, P.O. Box E, Oak Ridge, TN 37831 Office of Assistant Manager for Energy Research and Development

45-46. DOE, TECHNICAL INFORMATION CENTER, Office of Information Services, P.O. Box 62, Oak Ridge, TN 37831

47-321. For Distribution Category RF (10-NTIS)

1000		
U.S. NUCLEAR REGULATORY COMMISSION	1. REPORT NUMPER (Assigned by DDC)	
BIBLIOGRAPHIC DATA SHEET	NUREG/CR-3978	
A TITLE AND CURTITIE AND CONTRACTOR	ORNL/TM-9516	
The and Subilitie Add Volume No, if appropriate)	2. (Leave Dlank)	
Pressure Vessel Plate and Welds for the Fourth HSST Irradiation Series	3. REOPIENT'S ACCESSION NO.	
7. AUTHORISI	5. DATE REPORT COMPLETED	
J. J. McGowan	January 1985	
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS linelude Zip	Code) DATE REPORT ISSUED	
Oak Ridge National Laboratory	MONTH YEAR	
P.O. Box X Oak Ridge, Tennessee 37831	6 (Leave blank)	
	8. (Leave blank)	
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Division of Metals and Ceramics	Code) 10. PROJECT/TASK/WORK UNIT NO.	
Office of Nuclear Regulatory Research U.S. Nu lear Regulatory Commission	11. FIN NO.	
Washington, D.C. 20555	B0119	
13. TYPE OF REPORT	RIOD COVERED (Inclusive dates)	
Topical		
15. SUPPLEMENTARY NOTES	14. (Leave plank)	
16 ABSTRACT (200 words or law)		
As part of this study, tensile properties were neutrons/m ² (>1 MeV) at 288°C. The strength of al Yield strength was about 10% more sensitive to irre Tensile ductility was not affected significantly by	e measured after irradiation to 2 × l four welds increased with irradiat adiation than was ultimate strength. y irradiation.	10 ²³ ion.
17. KEY WORDS AND DOCUMENT ANALYSIS	DESCRIPTORS	
17b IDENTIFIERS OPEN ENDED TERMS		
18 AVAILABILITY STATEMENT	19 SECURITY CLASS (This report) 21 NO OF PACES	
	Unclassified	
Unlimited	Unclassified 20 SECURITY CLASS (This page) 22 PRICE	

120555078877 1 IANIRF US NRC ADM-DIV.OF TIDC POLICY & PUB MGT BR-PDR NUREG W-501 WASHINGTON DC 20555 14

-

.