NUREG 149.

Performance-Based Containment Leak-Test Program

Final Report

S. Nuclear Regulatory Commission

ice of Nuclear Regulatory Research

Dey/NRC oblar, P. Chen, D. Goldin/SC&A bulskis, L. Minton, S. Rose/Battelle oman/SPC

9510200161 950930 PDR NUREG 1493 R PDR

AVAILABILITY NOTICE

Availability of Reference Materials Lited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources.

- The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001
- 2 The Superintendent of Documents, U.S. Government Printing Office, P. G. Box 37082, Washington, DC 20402-9328
- 3 The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memorarida; NRC builletins, c roulars, information notices, inspection and investigation notices, licensee event reports; idor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. Federal Register notices. Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. Two Write Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018-3308.

NUREG-1493

Performance-Based Containment Leak-Test Program

Final Report

Manuscript Completed: July 1995 Date Published: September 1995

M. Dey/NRC L. Skoblar, P. Chen, D. Goldin/SC&A¹ P. Cybulskis, L. Minton, S. Rose/Battelle² W. Roman/SPC³

Division of Regulatory Applications Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

S. Cohen & Associates, Inc., 1355 Beverly Road, Suite 250, McLean, VA 22101
²Battelle, 505 King Avenue, Columbus, OH 43201
³Southwest Power Consultants, Inc., 4935 E. Rancho Del Oro Drive, Cave Creek, AZ 85331

ABSTRACT

This technical support document (TSD) describes the NRC's current regulatory requirements and the experiences of utilities (foreign and domestic) in conducting tests for identifying leakage in nuclear reactor containment structures. The risk impacts of nuclear reactor containment leak-tightness are analyzed, as are the cost and risk of the current requirements (base case) and the alternatives considered, including longer intervals between containment leak tests, and an increase in the allowable leakage rate from the containment. In addition, an alternative requiring continuous on-line monitoring of containment integrity is considered. Analytical uncertainties are addressed.

The present study makes the following findings:

Leakage Rates - Confirms previous observations of insensitivity of population risks from severe reactor accidents to containment leakage rates at low levels; the allowable leakage rate can be increased by one to two orders of magnitude without significantly impacting the estimates of population dose risk in the event of an accident; and, an increase in the allowable leakage rate reduces the remaining costs of leak testing by about 10 percent.

<u>Type A Tests</u> - A reduction in the frequency of tests from the current three per 10 years to one per 10 years leads to an imperceptible increase in risk and would eliminate about 83 percent of remaining costs.

- <u>Types B and C Tests</u> A reduction in the frequency of Type B testing of electrical penetrations should be possible with no adverse impact on risk; the vast majority of leakage paths are identified by LLRTs of containment isolation valves (Type C tests) and, based on the model of component failure with time, performance-based alternatives to current local leakage-testing requirements are feasible without significant risk impacts; and, about 58 percent of the costs of LLRTs could be eliminated by a performance-based method.
- On-Line Monitoring Continuous monitoring methods exist that appear technically capable of detecting leaks in reactor containments within one day to several weeks, but cannot be considered as a complete replacement for Type A tests and cannot be justified solely on risk considerations.

Contents

ļ

Page

1.	Introd	uction																	• •	•••	•	1-1
	1.1	Statem	ent of	the P	roble	m																1-1
	1.2	Backg	round																		•	1-1
	1.3	Object	tives a	nd Scr	ODE												•					1-4
					-r-			•••			•••	•••		• ·		•						
2.	Curre	nt Regu	latory	Requi	ireme	nts .			• • •			•••	••	• •		• •			• •		•	2-1
	2.1	Lcak-	Tightn	css Re	equire	ment	s .							• •		• •	•					2-1
	2.2	Test F	reque	acy R	equire	ment	s .										•					2-2
	2.3	Docur	nentati	ion .	•	• • • •		• •	• •					••	• •		• •	••	• •	•••	• •	2-3
•	C	•	Taslas	D	•• T ••			_														2_1
3.		inment	LCaka	ge-Ka		si mç	unoa	.	••	• •	• •	• •	•••	••	••	• •	• •	• •	• •	•••	••	3-1
	3.1				logs	• • •	• • •	• •	• • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• • •	• •	3_1
		3.1.1	Type	Ale	ists .	• • •	•••	• •	• •	• • •	• •	• •	• •	• •	• •	• •	••	• •	• •	• •	••	2-1
		3.1.2	Туре	Ble	sts .		• • •	• •	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	• •	• • •	•	3-3
		3.1.3	Type	C Te	sts .	• • •	• • •	• •	• •	• •	• •	••	•••	• •	• •	•	• •	• •	• •	• • •	••	3-3
		3.1.4	Test	Instru	ments	S	• • •	• •	• •	• •		• •	••	• •	• •	• •	• •	• •	•		•••	3-3
	3.2	Altern	lative.	Appro	aches	•••	• • •	• •	• •	• •	• •	• •	• •	• •	• •	•	•••	•••	•			3-5
		3.2.1	The	Belgia	in Ap	proac	b.	• •	• •	• •			• •		• •	•	• •		•		• •	3-8
		3.2.2	The	Frencl	h Apr	proacl	h,	••	• •	• •		••	• •		• •	•	• •		•	•••	• •	3-9
		3.2.3	The	Canad	lian A	ppro	ach	• •	• •	• •		••		• •		•	••		•			3-11
		3.2.4	Disc	ussion													•••			• •		3-12
				•••	•	•	-	-														
4.	Leaks	ge-Rate	e Test	Exper	ience	• •	•••				• >	• -•	• •			•	•••	• •	•		••	4-1
	4.1	Type	AILR	T .		• • •	, • • •	. . .				• •	• •		• •	•	••	• •	•	• •		4-1
	4.2	Type	BLL	TS				•••	• •	• •	• •	• •						• •	•	•••		4-4
	4.3	Type	CLU	RT .			• • •		÷.•.	• •						•		• •	•			4-7
	4.4	Perfo	rmance	: Trer	ıds .			 . .	• •	• •		••	• •			•		• •	•		. •	4-10
		-	· · · · ·				್ರಿ ಕ್ಷಾಂಗ	 		: '- 		:			•		-					
5.	Risk	Impacts	of Co	ntainr	ment	l cak -	tight	ncs.	5	l.	: . : بې د : بې د :	ربي. • رقب	• •			i- 4	• •	• •	۱	• •	• •	5-1
	5.1	Revie	w of I	arlier	Wor	k on	Risk	In	pac	8-0	f-C	on	tain	me	nt i	·						_
		Lcaka	ige Ra	le - N	URE	G/CR	433	0.			C X		•	- <u>-</u>				• •	٠	••	• •	5-1
		5.1.1	Exis	ling P	RAS.											i i i i i i i i i i i i i i i i i i i		•	•.		÷ •	5-1
	-	5.1.2	Sele	ted A	ccide	nt Sc	cnar	ios -										• •	•.	• •	• >.	5-3
		5.1.3	TMI	Relat	ied Sc	enari	0									•	• •	÷	:•	. .	• •	5-4
		5.1.4	Con	chusio	ns Re	ached	lini	NU	E	}/C	R-	133	Ô.				••••	• •		• •		- 5-4
	5:2	Risk	Impac	8													•		-	• •		5-4
	••••	5.2.1	ADD	roach.						e Fei						er. Histori	••		•			5-4
		522	Res	16						(-5.) - (=1.)			<u> </u>				<u> </u>			•••		5-6
			57	71.5	hirry										Έ. Έ							5-6
		-	5.2	7-7 - D)eenh	Rotto	m	.ere. ∴				· .			7		•••	•		•••		5-8
		-	5.2 5.2).2 E	Amin's	rah	7688		: :=:	• .• .		• 4	•••	•••	•	• •	• •	• •	•	••	• •	5-8
			マルム・ ちつ・	13 3 2 8 8	Zugadi Magazi	بيور 14 (14	internet Pr	·. • • -		••	• <u>.</u>]•	••••	• •	• •	•	• •	•••	• •	• •	••	•••	5_0
			- J.4. - 5 7 -	647 (U 2 5 7	JIAINI Zion	Jul		° 1 4	•	• •	• •	•••	· • •	• •	•	••	•••	•	• •	•••	•••	5_0
			J.4.	2.J L		•••		• •	• •	• •	• •	• •	•••	•	•	• •	• •	•	•••		• •	J-9
								-														

NUREG-1493

.

Contents (Continued)

		Pas	<u>ze</u>
	5.2 5.2.3 Co 5.2.4 Di	2.2.6 Discussion 5-1 omparison with Earlier Results 5-1 scussion of Uncertainties 5-1	.9 1 2
6.	Alternatives6.1Integrated6.2Local Lea6.3On-line M6.4Performant	Leakage-Rate (Type A) Tests 6- kage-Rate (Type B & C) Tests 6- Ionitoring 6- ice-Based Alternatives 6-	-1 -2 -4
7.	Risk Impacts of A 7.1 Qualitativ 7.2 Quantitati 7.2.1 Ri 7.2.2 Ri	Alternative Appendix J Requirements 7- e Considerations 7- ve Impacts 7- sk Impacts on the Public 7- sk Impacts on Occupational Exposure 7-1	1 -1 -2 -6 1
8.	Cost Incurred in 8.1 Summary 8.2 Current S 8.2.1 Co Ar 8.2.2 Co Ar 8.2.3 Ef on 8.2.4 Ef LI	Meeting Appendix J Requirements 8- of Data Reported in Earlier Studies and by Industry 8- tudy Cost Analysis 8- st of Type B & C Tests (LLRTs) - Current 8- opendix J Requirements 8- sts of Type A Tests (ILRTs) - Current 8- opendix J Requirements 8- fects of Relaxing the Acceptance Criteria 8- ILRT and LLRT Costs 8- fects of Reducing the Frequency of ILRTs and 8- RTs on Utility Costs 8-	-1 -1 -2 -2 -3 -3
9.	8.2.5 Es Uncertainties 9.1 Uncertain	timates of Baseline and Alternative Costs	-4 -1 -1
10.	9.2 Uncertain Summary of Tec. 10.1 Risk 10.1.1 S 10.1.2 L 10.1.3 A 10.1.4 O	ties in Cost Perspective 9 hnical Findings 10 ignificance of Containment Leak Rates 10 eak-Testing Intervals 10 llowable Leak Rate 10 n-Line Monitoring Systems 10	-2 -1 -1 -1 -1 -3
Refere	10.2 Cost		-4 -1
Glossa	ry	G	-1

NUREG-1493

Contents (Continued)

E

Appendix A - Analysis of Type B/C Leak-Rate History
Appendix B - Approach to Assessing Risk Impacts
Appendix C - Canadian and European OLM and Type A Tests
Appendix D - Detailed Cost Estimates for 20- and 40-Year Baselines and Alternatives
Appendix E - Dependence of Environmental Source Terms on Containment Leakage E-1
Appendix F - Grand Gulf Nuclear Station - Local Leakage-Rate Test Program F-1

Tables

Num	<u>Page</u>
3-1	Characteristics of On-line Monitoring Methods
4-1	Examples of Failed ILRTs
4-2	Type A Performance Test Data
4-3	Grand Gulf Type B Performance Test Data
4-4	NUMARC Type B Performance Test Data
4-5	Grand Gulf Type C Performance Data 4-10
4-6	Type C Valves Exceeding Administrative Limits
4-7	NUMARC Type C Performance Data 4-12
5-1	Risk Information Summary 5-2
5-2	Dependence of Risk on Containment Leakage Rate 5-3
5-3	Definitions of Consequence Analysis Results
5-4	Summary of Risk Analysis Results
5-5	Comparison of Source Terms
5-6	Comparison of Results
6-1	Alternatives
8-1	Baseline: 20-Year Test Cycle - No License Extensions Current Appendix J Requirements
8-2	Baseline: 40-Year Test Cycle - 20-Year License Extensions Current Appendix J Requirements 8-8
8-3	Summary of Industry-Wide Costs - 20-Year Baseline and Alternatives, 5-percent Discount
8-4	Summary of Industry-Wide Costs - 20-Year Haseline and Alternatives, 10-percent Discount

,

_

_

Tables (Continued)

Numb		Page
8-5	Summary of Industry-Wide Costs - 40-Year Baseline and Alternatives, 5-percent Discount	8-11
8-6	Summary of Industry-Wide Costs - 40-Year Baseline and Alternatives, 10-percen Discount	t 8-12
10-1	Summary of Risk Impacts of Alternatives	10-2
10-2	Summary of Industry-Wide Cost Savings	10-6

Figures

Numb		Page
5-1	Sensitivity of Risk to Containment Leakage Rate	5-14
5-2	Population Exposure as Function of Containment Leakage Rate for Surry	5-15
5-3	Total Latent Cancer Risk as Function of Containment Leakage Rate for Surry	5-16
5-4	Individual Latent Cancer Risk as Function of Containment Leakage Rate for Surry	5-17
5-5	Comparison of Individual Latent Cancer Risk for Surry with NRC Safety Goal.	5-18
5-6	Population Exposure as Function of Containment Leakage Rate for Peach Bottom	5-19
5-7	Total Latent Cancer Risk as Function of Containment Leakage Rate for Peach Bottom	5-20
5-8	Individual Latent Cancer Risk as Function of Containment Leakage Rate for Peac Bottom	h 5-21
5-9	Comparison of Individual Latent Cancer Risk for Peach Bottom with NRC Safety Goal	5-22
5-10	Population Exposure as Function of Containment Leakage Rate for Sequoyah	5-23
5-11	Total Latent Cancer Risk as Function of Containment Leakage Rate for Sequoyah	5-24
5-12	Individual Latent Cancer Risk as Function of Containment Leakage Rate for Sequoyah	5-25
5-13	Comparison of Individual Latent Cancer Risk for Sequoyah with NRC Safety Goal	5-26
5-14	Population Exposure as Function of Containment Leakage Rate for Grand Gulf	5-27
5-15	Total Latent Cancer Risk as Function of Containment Leakage Rate for Grand Gulf	5-28
5-16	Individual Latent Cancer Risk as Function of Containment Leakage Rate for Gran Gulf	nd 5-29
5-17	Comparison of Individual Latent Cancer Risk for Grand Gulf with NRC Safety Goal	5-30

.

Figures (Continued)

Numbe		Page
5-18	Population Exposure as Function of Containment Leakage Rate for Zion	5-3 1
5-19	Total Latent Cancer Risk as Function of Containment Leakage Rate for Zion	5-32
5-20	Individual Latent Cancer Risk as Function of Containment Leakage Rate for Zion	5-3 3
5-21	Comparison of Individual Latent Cancer Risk for Zion with NRC Safety Goal .	5-34
5-22	Uncertainties Associated with Latent Cancer Risks in NUREG-1150 and WASH-1400	5-35
7-1	Sensitivity of Risk to Containment Leakage	7-13
7-2	Comparison of Individual Latent Cancer Risks with NRC Safety Goal	7-14

Υ.

-. .

-

PREFACE

The Nuclear Regulatory Commission (NRC) is implementing an initiative to eliminate requirements that are marginal to safety and yet impose a significant regulatory burden on licensees. The containment leakage-testing requirements for power reactors have been identified as one area where performance-based requirements could replace the current prescriptive requirements with only a marginal impact on safety. This technical support document (TSD) provides the technical bases for the NRC's rulemaking to revise leakage-testing requirements for nuclear power reactors in 10 CFR Part 50, Appendix J.

This report identifies alternatives to current containment testing requirements which would meet the NRC's Safety Goals and achieve greater efficiency in the use of resources. Changes in the allowable leakage rate for containment and the testing frequencies for both integrated and local leakage-rate tests are evaluated in terms of both risk and cost impacts. The feasibility of applying statistically-based sampling techniques to local leakage-rate testing, and the use of on-line monitoring systems to continuously monitor containment integrity are also evaluated.

Public comments on draft NUREG-1493, which was published in January 1995, were received and have been addressed. The comment analysis and resolution is included in a Public Comment Resolution Document for the rulemaking which is available for inspection and/or copying in the NRC Public Document Room, located at 2120 L Street, NW. (lower level), Washington, DC.

Moni Dey

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555

ACKNOWLEDGEMENTS

The Nuclear Regulatory Commission has received information and data from a number of sources for the conduct of this study. This information has been very useful to provide a broad coverage of testing methods and practices, and allowed detailed analysis of data. The NRC is grateful to personnel from the Nuclear Energy Institute and its members, Virginia Electric Power Company and Entergy Operations, for providing data used for the analyses presented in this study. The NRC is also grateful to personnel from the Institute of Protection and Nuclear Safety of the Atomic Energy Commission, Electricite de France, and the Directorate for the Safety of Nuclear Installations in the Ministry of Industry and Commerce in France; the Swedish Nuclear Inspectorate (SKI) and Vattenfall AB in Sweden; AlB Vincotte Nuclear and Tractabel in Belgium; and Hydro Quebec in Canada for providing information on their containment leakage testing practices and methods which are summarized in this study.

1. Introduction

This technical support document (TSD) provides the technical bases for the Nuclear Regulatory Commission's (NRC) rulemaking to revise leakage-testing requirements in 10 CFR Part 50, Appendix J.

The TSD has 10 chapters. Chapter 2 describes the current regulatory requirements for leakage testing of nuclear reactor containment structure. Chapter 3 describes the leakage tests conducted by utilities to demonstrate compliance with Appendix J. Chapter 4 describes experiences utilities have had in complying with Appendix J requirements since they were first enacted in The risk impacts of nuclear reactor 1973. containment leak-tightness are analyzed in Chapter 5. Potential alternatives to the current NRC requirements are introduced in Chapter 6. Chapters 7 and 8 present the analyses of cost and risk, respectively, of the current requirements (base case) and the alternatives Analytical uncertainties are considered. addressed in Chapter 9. Chapter 10 summarizes the technical findings. A glossary, a list of references, and five appendices are provided at the end of the TSD.

1.1 STATEMENT OF THE PROBLEM

The NRC is in the process of reviewing current regulatory requirements in an effort to relax or eliminate requirements that are marginal to safety and yet impose a significant regulatory burden on licensees. Reactor containment leakage testing has been identified as an area where the NRC is proposing a change in regulations.

Technical studies have consistently shown that design basis containment leakage is a relatively minor contributor to reactor accident risk. Reactor accident risk is dominated by accidents in which the containment fails or is bypassed (NRC75, NRC86, NRC90). Therefore, modifying the containment leakage rate and/or test frequency is not expected to have a significant impact on reactor accident risk.

1.2 BACKGROUND

General

The NRC published a notice in the Federal Register on February 4, 1992, (57 FR 4166), presenting its planned initiative to begin eliminating requirements that are marginal to safety and yet impose significant regulatory burdens on licensees. In this continuing effort, the NRC will analyze existing regulations to eliminate or relax burdens on licensees when the burdens are not commensurate with the safety significance of the regulations.

In the February 1992 Federal Register notice, the NRC concluded that decreasing the prescriptiveness of some regulations could increase their effectiveness by giving the licensees the flexibility to implement more costeffective safety measures. The regulatory process could also be made more efficient.

To increase flexibility, the detailed and prescriptive technical requirements contained in some regulations could be improved and replaced with performance-based requirements and supporting regulatory guides. The regulatory guides would allow alternative approaches, although compliance with current detailed regulatory requirements would still be acceptable. The performance-based requirements would reward superior operating practices.

In eliminating requirements marginal to safety, the NRC plans to utilize its safety goals and probabilistic risk assessment (PRA) tools (51 FR 28044), to the extent deemed appropriate, in the development of performance-based regulations, and in the review and development of regulations.

The NRC also plans to evaluate and assess the usefulness of alternative containment testing approaches to minimize the probability of undetected gross openings in the containment structure.

Introduction

In the near-term, the NRC is considering amending its requirements in three specific areas. 1) containment leakage testing, 2) fire prevention, and 3) quality assurance. This report addresses the first of these areas, containment leakage testing. Specifically, the NRC proposes to amend Appendix J of 10 CFR Part 50, "Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors," as its first effort to decrease unnecessary regulatory burdens on licensees.

Appendix J

Containment leakage testing has been identified as an area in which regulations could be made more performance oriented. The primary safety objective in this area has been, and continues to containment integrity. However. be. information on reactor accident risks derived from probabilistic risk assessments indicates that the currently allowable containment leakage rates can be increased without significantly affecting accident risk. While availability and reliability of containment integrity are important, the extremely low leakage rates prescribed by current regulations and the testing measures taken to assure these extremely low leakage rates may not be warranted. Reactor accident risk is dominated by low-probability, high-consequence scenarios in which the containment is failed or bypassed. In these types of accidents, there is little benefit derived from a high degree of containment leak-tightness.

Economic and occupational exposure costs are directly related to the frequency of containment testing. Containment integrated leakage-rate tests (Type A) by their nature preclude any other reactor maintenance activities and thus are on the critical path for return to service from reactor outages. In addition to the costs of the tests themselves, integrated leakage tests impose the added burden of the cost of replacement power. Containment penetration leakage tests (Type B and C) can be conducted during reactor shutdowns without interfering with other activities and thus tend to be less onerous, however, the typically large number of penetrations impose a substantial burden on the utilities (NRC93B).

In the Federal Register published on January 27, 1993 (58 FR 6196), the NRC listed the following potential modifications to Appendix J of 10 CFR Part 50:

- Increase allowable containment leakage rates based on safety goals and PRA technology (i.e., define a new performance standard).
- Modify Appendix J to be a performancebased regulation:
 - Limit the revised rule to a new regulatory objective: In order to ensure the availability of the containment during postulated accidents, licensees should either:
 - test overall containment leakage at intervals not longer than every 10 years, and test pressure-containing or leakage-limiting boundaries and containment isolation valves on an interval based on the performance history of the equipment; or
 - continuous) monitoring capability of containment isolation status.
 - Move details of the tests and reporting in Appendix J to a NRC regulatory guide as guidance.
 - Endorse industry standards on:
 - Guidance for calculating unitspecific allowable leakage rates based on the new NRC performance standard;

- Guidance on the conduct of containment tests; and
- Guidance for on-line monitoring of containment isolation status.
- Continue to accept compliance with the current detailed requirements in Appendix J (i.e., licensees presently in compliance with Appendix J will not need to do anything if they do not wish to change their practice).

The NRC held a public workshop on the subject on April 27, 1993 (NRC93B). As a starting point for discussions at the workshop, the NRC suggested the following preliminary criteria:

Revised rules will focus on establishing the regulatory/safety objective in an objective manner The main objective of a performance-based regulatory approach is to permit licensees the flexibility to use costeffective methods for achieving the regulatory objectives.

The regulatory objective will be derived, to the extent feasible, from risk considerations and within the framework of the NRC's safety goals.

Detailed technical methods for measuring or judging the acceptability of a licensee's performance relative to the regulatory objectives will be provided in NRCregulatory guides. To the extent possible, approved industry standards and guidance will be endorsed in this regard.

The new rules will be optional for current ... licensees and thus licensees can decide to remain in compliance with current regulations.

• A performance-based regulatory approach should provide incentives for innovation and improvements in safety.

- The following issues with regard to the proposed rulemaking activities need to be addressed in the process:
 - Can the new rule and its implementation yield an equivalent level of, or only have a marginal impact on, safety?
 - Can the regulatory/safety objective (qualitative or quantitative) be established in an objective manner to allow a common understanding between licensees and the NRC on how the performance or results will be measured or judged?
 - Can the regulation and implementation documents be developed in such a manner that they can be objectively and consistently inspected and enforced against?

NRC Safety Goals

In its response to the recommendations of the President's Commission on the Accident at Three Mile Island, the NRC stated that it was prepared to move forward with an explicit policy statement on safety philosophy and the role of safety-cost tradeoffs in its safety decisions. The NRC published its policy statement on "Safety Goals for the Operation of Nuclear Power Plants" on August 4, 1986 (51 FR 28044) (NRC86C).

The NRC's program to eliminate requirements that are marginal to safety derives from the NRC's desire to assess the consistency of the present regulations with the Commission's safety goals.

The NRC established two qualitative goals supported by two quantitative objectives based on the principle that nuclear risks should not be a significant addition to other societal risks. The qualitative goals are as follows:

Individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health.

Societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risk.

The following quantitative goals are used in determining achievement of the qualitative safety goals:

The risk to an average individual in the vicinity of a nuclear power plant of prompt fatalities that might result from reactor accidents should not exceed one-tenth of one percent (0.1 percent) of the sum of prompt fatality risks resulting from other accidents to which members of the U.S. population are generally exposed.

The risk to the population in the area near a nuclear power plant of cancer fatalities that might result from nuclear power plant operation should not exceed one-tenth of onepercent (0.1 percent) of the sum of cancer fatality risks resulting from all other causes.

The NRC uses its safety goals as a means to gauge the adequacy of regulatory decisions regarding changes to current regulations.

On-Line Monitoring (OLM)

In its TMI Action Plan (NUREG-0660), the NRC raised the safety issue of there being unknown gross openings in the containment structure. This issue stems from a 1979 discovery that two 3-inch containment exhaust bypass valves at one nuclear unit had been unknowingly locked at the open position while the reactor was operated. This situation persisted for about 1.5 years. Because of this and other similar incidents, the NRC undertook a series of studies of containment isolation history to evaluate alternate leakage-detection methods. The results of these studies are provided in NUREG-1273 (NRC88). The following summarizes the technical findings from NUREG-1273:

- Methods exist that appear practical and sufficiently sensitive to be of use for continuous leakage monitoring.
- OLMs do not have the accuracy of Type A testing but seem to offer enough accuracy and speed of detection to justify their use.
- The current program of Type A, B and C tests can detect all UBCIs (undetected breaches of containment isolation which may occur in the interval between Type A tests).
 Supplemental use of OLM will not detect additional UBCIs.
- OLM should not be considered as a complete replacement for Type A tests.
- There is no risk justification for imposing OLM. The estimated contribution of undetected leaks to the total risk associated
 with other containment failure modes in a severe accident is in the range of less than 0.5 percent to 3 percent.

1.3 OBJECTIVES AND SCOPE

This report identifies alternatives to current containment testing requirements which would meet the NRC's safety goals and achieve greater efficiency in the use of resources. For each alternative, risk and cost impact analyses are performed and the results documented. Thus, this report provides the technical bases for defining new containment leakage-testing requirements that would provide a balanced consideration of the following characteristics. The new regulation should:

- provide comparable assurance that containment integrity will be maintained without significantly affecting public risk;
- give flexibility to the licensees in implementing cost-effective safety measures;

be performance-based, i.e., provide balance and should reward good performers; and

• utilize safety goals and PRA tools to the extent possible.

To accomplish its objectives, this work evaluates changes in the allowable leakage rate for containment and the testing frequencies of both integrated and local leakage tests, application of statistically- based sampling techniques to local leakage-rate tests, and the use of systems that continuously monitor containment integrity (referred to as on-line monitoring).

The scope of the present study includes considerations of the effect of containment leakage on reactor accident risk, economic and occupational exposure costs of existing and alternate containment leakage-testing requirements, the historical experience with containment performance, and the use of on-line monitoring of containment isolation as an alternative or supplement to periodic containment leakage testing. The effects of containment leakage on reactor accident risk have been previously examined; the present study reviews earlier efforts and updates them based on more recent probabilistic risk results. notably those developed in NUREG-1150 (NRC90). The details of these analyses are presented in Chapter 5.

The ability of the several kinds of tests (Types A, B and C) to assure containment integrity is assessed, and the historical experience with containment performance is examined. This provides a data base for extrapolating the possible impacts of revised regulations.

On-line monitoring of containment isolation performance has been suggested as a means of providing continuous indication of containment integrity. Earlier studies of on-line monitoring proposals are reviewed in light of the current effort, and potential benefits are assessed.

2. Current Regulatory Requirements

The regulatory objective of reactor containment design is stated in 10 CFR Part 50, Appendix A, "General Design Criteria for Nuclear Power Plants," Criterion No. 16, "Containment Design." Criterion 16 mandates "an essentially leak-tight barrier against the uncontrolled release of radioactivity to the environment ..." for postulated accidents.

Appendix J to 10 CFR Part 50 implements, in part, General Design Criterion No. 16 and specifies containment leakage-testing requirements, including the types of tests required. For each type of test required, Appendix J specifies the leakage-rate acceptance criteria, how such tests should be conducted, the frequency of testing, and reporting requirements. Appendix J requires the following types of containment leakage tests:

Measurement of the containment integrated leakage rate (Type A tests, often referred to as ILRTs)

Measurement of the leakage rate across each pressure-containing or leakage-limiting boundary for various primary reactor containment penetrations (Type B tests)

Measurement of containment isolation valve leakage rates (Type C tests)

Type B and C tests are referred to as local leakage- rate tests (LLRTs).

2.1 LEAK-TIGHTNESS REQUIREMENTS

Compliance with 10 CFR Part 50, Appendix J, requirements is determined by comparing the measured containment leakage rate with the maximum allowable leakage rate. Appendix J does not specify how to quantify the maximum allowable leakage rate; instead, it refers to a unit's technical specifications or its operating license. Maximum allowable leakage rates are calculated in accordance with 10 CFR Part 100, "Reactor Site Criteria," and are incorporated into the technical specifications. Paragraph 100.11 requires the calculation of the exclusion area, low population zone, and population center distance. The maximum allowable containment leakage rate is derived from such calculations, an assumed fission product release from the reactor core, and the meteorological conditions of the site, to satisfy the following criteria:

- An exclusion area of such size that an individual located at any point on its boundary for two hours immediately following onset of the postulated fission product release would not receive a total radiation dose to the whole body in excess of 25 rem or a total radiation dose in excess of 300 rem to the thyroid from iodine exposure.
- A low population zone of such size that an individual located at any point on its outer boundary who is exposed to the radioactive cloud resulting from the postulated fission product release (during the entire period of its passage) would not receive a total radiation dose to the whole body in excess of 25 rem or a total of 300 rem to the thyroid from iodine exposure.

A population center distance of at least one and one-third times the distance from the reactor so the outer boundary of the low population zone. In applying this guide, the boundary of the population center shall be determined upon consideration of population distribution.

For those sites with r altiple reactor facilities, additional requiremer s are specified in 10 CFR Part 100.

The fission pratect release assumed for the above calculations is based upon a major

accident, hypothesized for purposes of site analysis or postulated from consideration of possible accidental events, that would result in potential hazards not exceeded by those from any accident considered credible. Such accidents have generally been assumed to result in substantial meltdown of the core with subsequent release of appreciable quantities of fission products (AEC62).

The "expected demonstrable leakage rate from containment" from the above analysis becomes the upper limit on the allowable containment leakage rate for the unit. In practice, a value lower than that required to meet the 10 CFR Part 100 limits is written into the unit's technical specifications. Typical allowable leakage rates are 0.1 percent of containment volume per day for pressurized water reactors (PWRs) and 1 volume percent per day for boiling water reactors (BWRs).

2.2 TEST FREQUENCY REQUIREMENTS

A schedule for conducting containment leakagerate tests (both preoperational and periodic) is specified in Appendix J to 10 CFR Part 50.

The preoperational leakage-rate tests are conducted when construction of the reactor containment structure is complete and all parts of the mechanical, fluid, electrical, and instrumentation systems penetrating the containment structure have been installed.

Periodic leakage-rate tests schedules are as follows:

Type A Test

After the preoperational leakage-rate test, a set of three Type A tests shall be performed at approximately equal intervals during each 10year service period. The third test of each set shall be conducted when the unit is shut down for the 10-year in-service inspection. Type A tests shall be performed only during periods when the unit is nonoperational and secured in the shutdown condition under the administrative control and in accordance with the safety procedures defined in the license.

If any periodic Type A test fails to meet the applicable acceptance criteria, the test schedule applicable to subsequent Type A tests will be reviewed and approved by the Commission. If two consecutive periodic Type A tests fail to meet the applicable acceptance criteria, a Type A test shall be performed at each shutdown for refueling or approximately every 18 months, whichever occurs first, until two consecutive Type A tests meet the acceptance criteria, after which time the regular retest schedule may be resumed.

Type B Test

Except for air-locks, Type B tests shall be performed during reactor shutdown for refueling, or at other convenient intervals, but in no case at intervals greater than 2 years. If opened following a Type A or B test, containment penetrations subject to Type B testing shall be tested prior to returning the reactor to an operating mode requiring containment integrity. For primary reactor containment penetrations employing a continuous leakage-monitoring system, Type B tests, except for tests of air-locks, may be performed during every other reactor shutdown for refueling but in no case at intervals greater than 3 years.

Air-locks shall be tested prior to initial fuel loading and at 6-month intervals thereafter. Airlocks opened during periods when containment integrity is not required by the unit's technical specifications shall be tested at the end of such periods. Air-locks opened during periods when containment integrity is required by the unit's technical specifications shall be tested within 3 days after being opened. For air-lock doors opened more frequently than once every 3 days. the air-lock shall be tested at least once every 3

Requirements

days during the period of frequent openings. For air-lock doors having testable seals, testing the seals fulfills the 3-day test requirement. Airlock door seal testing shall not be substituted for the 6-month test of the entire air-lock at not less than P_a , the calculated peak containment pressure related to the design basis accident.

Type C Test

Type C tests shall be performed during each reactor shutdown for refueling but in no case at intervals greater than 2 years.

2.3 DOCUMENTATION

Allowable leakages are calculated in accordance with 10 CFR 100 and are incorporated into teached specifications. The results of ILRTs are documented in Reactor Containment Building Leakage-Rate Test reports submitted to the Commission. These reports also contain summaries of any Type B and C tests performed since the last Type A test. Excessive leakages are reported through licensee event reports (LERs).

3. Containment Leakage-Rate Test Methods

Containment structure testing is intended to assure the leak-tight integrity of the containment structure under all design basis conditions. Containment leakage-test methods include integrated leakage-rate tests (ILRTs or Type A 'ests) and local leakage-rate tests (LLRTs or Type B and Type C tests). Recently, additional methods (referred to as on-line monitoring, or OLM) have been adopted by some countries in the international community to monitor containment integrity continuously during power operation. This chapter describes these test inethods.

3.1 TYPICAL TEST METHODS

3.1.1 Type A Tests

What Tests Aim to Achieve

The sole purpose of the reactor containment system is to mitigate the consequences of potential accidents (e.g., loss-of-coolant accident [LOCA]) by minimizing the release of radionuclides to the environment and, thus, help assure the health and safety of the public. ILRTs are performed to verify the integrity of the containment system in its LOCA configuration such that the release of fission products to the environment under these postulated accident conditions does not exceed the limits established by the NRC in-10 CFR 100, "Reactor Site Criteria."

How Tests Are Conducted

Type A tests are performed by pressurizing the primary reactor containment to the calculated peak containment internal pressure (P.) derived from the leakage design basis accident (LDBA) and specified in the unit technical specifications or associated bases. The primary reactor containment system is aligned, as closely as practical, to the configuration that would exist following an LDBA (e.g., systems are vented, flooded, or in operation, as drained. At pressure P₁, the actual appropriate). containment leakage rate (L) is derived from The derived leakage rate, measurements.

referred to as the measured leakage rate (L_{am}) , is expressed in percent per 24 hours by weight of the containment normal air inventory, with the leakage taking place at P_a . The parameters actually measured are pressure, temperature, and humidity. Utilizing the Ideal Gas Law and placing a statistical boundary on the leakage rate calculated at a 95 percent probability or upper confidence limit, a true leakage rate is calculated.

The theory underlying the Type A tests is the determination of the containment air mass and the use of air mass versus time data during the duration of the test. Type A testing techniques can be divided into two categories, the reference vessel method and the absolute method.

Reference Vessel Method

The reference vessel method uses a sealed vessel (usually a tube that runs throughout the containment) assumed to have the same average temperature as the containment. The density of the gas in the tube is constant regardless of pressure. The change in differential pressure between the tube and the containment is a direct measure of the change in contained atmospheric mass. The reference vessel method is no longer used due to difficulties in maintaining a leaktight reference vessel.

Absolute Method

In the absolute method, dry air mass is determined by accurately measuring the containment pressure at a single location, measuring the air temperature in 18-24 locations, and measuring the dew point in several locations. The average temperature of the atmosphere is determined by weightaveraging the volume of the various temperatures read. Using the Ideal Gas Law, the temperature and pressure readings are used to determine the total mass of the enclosed atmosphere. Dew-point readings are used to determine the amount of contained water vapor, which is subtracted from the total contained mass.

Test Methods

The leakage rate can be calculated from the measured mass versus time values via two methods. The first method is the total time method. This technique uses a set of leakage rates determined by the slope of the lines connecting the initial contained mass reading to each subsequent reading. The second method is the mass plot method in which the mass values determined are plotted versus time, with the slope of a linear least-squares-fit to the data being the mass leakage rate.

After the leakage rate has been measured, a verification test is conducted to confirm the reliability of the instrument readings. During this test, a known flow rate or step mass change is introduced into the containment, and the leakage rate or mass change measured by the instrumentation is determined and compared to the known value.

Specifics of the test and required instrumentation are provided in the American National Standard Institute (ANSI) standard N45.4-1972, "Leakage Rate Testing of Containment Structures for Nuclear Reactors," and ANSI/ANS standard 56.8-1987, "Containment System Leakage Testing Requirements."

Since very small leakage rates are being measured (as low as 0.1 percent per day maximum allowable leakage), accurate and sensitive instrumentation is required. In additionto instrument errors, errors in estimating average containment temperature may be caused by errors in weight-averaging the temperatures read.

Since Type A tests are on the critical path timebefore resuming power production, most of the constraints on Type A testing stem from the urgency to conduct the test quickly. Because the time available for the test is limited, optimum conditions are needed for testing. Tests are conducted at postulated accident pressure and during unit shutdown with isolation valves positioned so that they may be tested The actual leakage test usually does not last more than 24 hours, but other operations associated with the test (i.e., instrument set-up, pressurization, stabilization, verification, and depressurization) usually cause the test to span several days. During conduct of the test, access to the containment is not allowed, so little work can be done in parallel with a Type A test. As a result, the test is usually on the critical path during shutdown.

In the interest of reducing utilities' costs, efforts have been made to justify containment structure leakage tests of shorter duration and to analyze procedures for such tests to ensure sufficient accuracy of the measurements. Two documents supporting shorter duration tests are "Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants" from Bechtel (BN72), and "Criteria for Determining the Duration of Integrated Leakage Rate Tests of Reactor Containments" by the Electric Power Research Institute (EPRI83). The Bechtel report lays out guidelines and techniques for conducting Type A tests in as little as 6 hours. Statistical techniques are used to assign appropriate confidence limits to the measured leakage rate. The EPRI report contains an analysis and case study of 53 ILRTs and provides a technical basis for deciding when a test has produced accurate results such that the test may be terminated.

Since a Type A test relies upon the measurement of contained air mass and calculates the leakage from the change in mass over time, reduced duration tests would require much higher sensitivity in the instrumentation and weightaveraging schemes to yield data of acceptable accuracy. Increasing the acceptable leakage rate would reduce or eliminate the need for these higher sensitivities.

3.1.2 Type B Tests

What Tests Aim to Achieve

The Type B test verifies that the leakage rate of an individual containment penetration component is acceptable. Any Type B component that could affect containment system integrity must be Type B tested when it is modified or replaced to demonstrate that the component meets the applicable leakage-rate requirements. This allows testing individual components rather than retesting the entire containment system as in a Type A test.

How Tests Are Conducted

Type B tests are pneumatic tests conducted to detect and measure component leakage rates across pressure-retaining. leakage-limiting boundaries (other than valves and welds) on systems penetrating the containment vessel. This includes penetrations that incorporate resilient seals, gaskets, expansion bellows, etc., including the containment air-locks. These tests are typically conducted by pressurizing the test volume or inner space to P, and measuring the rate of pressure loss utilizing air, nitrogen, or other suitable pneumatic fluid. The volumes tested are generally small, with the exception of the overall containment air-lock tests, and tests usually require less than I hour. Typically, a rotameter or mass flow meter is utilized to measure the actual leakage rate once test pressure is achieved.

3.1.3 Type C Tests

What Tests Aim to Achieve

The Type C test verifies that the leakage rate of ... the individual containment isolation valve (CIV) is acceptable. Any Type C component that could affect containment system integrity must be Type C tested when it is modified to demonstrate that the component meets the applicable leakage-rate standard. This allows individual testing of a CIV rather than retesting the entire containment system (Type A test)

How Tests Are Conducted

Type C tests are pneumatic tests conducted to detect and measure component leakage rates across containment isolation valves. These tests are typically conducted by closing the CIVs, pressurizing the test volume to P., and measuring the rate of pressure loss utilizing air, nitrogen, or other suitable pneumatic fluid. The test volumes pressurized can vary from small to quite large depending upon line size and valve configuration. As a result, Type C LLRTs can last from 1 hour or less to 8 to 16 hours or more once test pressure is achieved. CIVs are tested at P, such that the leakage through the valve is in the same direction that would occur subsequent to a design basis LOCA unless it can be demonstrated that testing in the reverse direction is conservative or equivalent. Typically, a rotameter or mass flow meter is utilized to measure the actual leakage rate once pressure is achieved.

3.1.4 Test Instruments

This section provides information on the accuracy and range of instrumentation used and/or available to measure containment leakage.

LERI Test Instrument Accuracy

The two most common test methods used to conduct Types B and C LLRTs are (1) the pressure-decay method, and (2) the make-up flow-rate method. In either case, the test volume is pressurized to P_{sc} (or greater) and a temperature stabilization period of approximately 15 minutes is imposed prior to actual data acquisition. Typically, the test duration is also 15 minutes. However, this can vary due to volume considerations since more time would be required for a 36-inch purge valve versus a 3inch instrument air valve. Leakage-test instrumentation is typically calibrated on-site to the following specifications (FS = full scale):

Pressure-Decay Method

- Temperature: Accuracy ± 1°F Resolution - ± 0.5°F Repeatability - ± 0.5°F
- Pressure: Accuracy \pm 1% of P_{ac} Resolution - \pm 0.1% FS Repeatability - \pm 0.1% FS

Make-up Flow-Rate Method

- Temperature Accuracy ± 2°F Resolution - ± 1°F Repeatability - ± 1°F
- Pressure: Accuracy \pm 2% of P_{ac} Resolution - \pm 1% FS Repeatability - \pm 1% FS
- Flow: Accuracy ± 2% FS
- NOTE: These are minimum values; higher accuracies are available.

Typically, utilities favor the make-up flow-rate method by a large majority, although certain tests may require the pressure-decay method (e.g., accumulator tests). The make-up flowrate method is insensitive to specific volume or temperature corrections (if mass flow). Makeup flow is typically performed by utilizing massflow measuring devices or rotometers. Both are available to satisfy the test specifications. The mass-flow method requires an AC power supply or can be battery operated; rotometers do not require a power source. Both methods, like pressure decay, require an air or N, source. These instruments and the instruments used in the pressure-decay method are calibrated typically every six months.

In the examples stated above, the devices are readily available and affordable, can typically be calibrated at the site or returned to the vendor, and have been accepted by the industry for use in Type B/C testing.

Flow-Measuring Devices

Type B and C tests are generally performed utilizing one of two flow-test devices. This includes either the mechanical rotometer or the electronic mass-flow meter. Although either instrument is acceptable for this application, each has its own advantages and disadvantages, and each requires an external pressure source.

Mechanical Rotometer

Rotometers require no electrical power source or internal stabilization time and are generally less expensive than mass flow meters. Typically, three rotometers with overlapping ranges would be installed in a lightweight panel, along with associated regulators, valves, gauges and tubing. This panel could be hand carried throughout the plant or mounted on a portable hand dolly. It is not uncommon to have two panels, one for lowand one for high-range measurements.

One panel would cover 0-2000 scc/m (0-0.7 scf/m or 0-4.2 scf/h)(3 rotometers) and one would cover 2000-20,000 scc/m (0-7 scf/m or 0-42 scf/h)(3 rotometers)(28,317 sccm = 1.0The limiting factor would be scf/m). size/weight considerations which are a function of the flow. Generally, the higher the flow to be measured, the larger the measuring device. Since measured flow rates rarely exceed 20,000 to 25,000 scc/m, this system is adequate for routine testing. Caution has to be utilized during actual test performance to prevent water contamination of the instruments. This would typically result from improper draining of a system to be tested and/or pressure within the system. These instruments have an accuracy of \pm 1 percent with traceability certification Calibration of these instruments can be

performed on-site depending upon the sophistication of the on-site calibration lab.

Mass-Flow Meter

Thermal mass-flow meters are portable, require an external power source (plug in) and internal stabilization time, and are more "delicate" to transport. A three scale unit is generally the size of a bread box. Thermal mass-flow meters have an accuracy of ± 1 percent with certification. Liquid contamination is a major concern since these devices generally require recalibration by the vendor (off-site shipping). The physical size of the devices (small) makes them ideal for measuring large flow rates. This becomes even more evident when considering that a 0-25 scf/m (0-1500 scf/h) mass-flow meter (single scale) is approximately the size of a coffee cup (excluding inlet and outlet straightening elements).

Generally, L, equates to approximately 8 scf/m or less for the typical commercial LWR. Therefore, a 25 scf/m device above would be capable of measuring $> 3 \times L_{a}$. Aside from the outliers during the as-found LLRT, measured leakage rates are generally 5,000 sccm or less (0.18 scf/m or 10.6 scf/h), with the majority less than 1,000 sccm (0,035 scf/m or 2,1 scf/h) or less. By utilizing an instrument with this range, the existing non-quantitative reporting ("indeterminate", "> 0.6 L.", "unquantified", etc.) can be reduced considerably, and quantitative data provided for evaluation at minimal cost. To measure the outliers (> 25 scf/m flow), other instrumentation can be added to the panel. However, the larger the flow to be measured, the greater the lengths of piping needed to act as stabilizers to achieve laminar flow.

3.2 ALTERNATIVE APPROACHES

Type A and most leakage tests on valves and penetrations can be conducted only during a unit shutdown. The integrity or leak-tightness of the containment is not normally tested during reactor operation. A potential alternative or adjunct to Type A tests is on-line containment leakage monitoring.

A combination of Type A tests and an on-line monitoring capability is being actively pursued in Canada and in Europe, notably in France and Belgium, and is currently being considered in Sweden. This Section reviews different methods of on-line monitoring, and the modified Type A tests being conducted in these countries. The review is based on information provided by the European and Canadian nuclear regulatory authorities and industry, and meetings between the NRC staff and these organizations (NRC93C, NRC94A). OLM is used to identify a "normal" containment pressurization pattern and to detect deviations from that pattern. The underlying physical principles for on-line monitoring are summarized below. Details are provided in NUREG-1273 (NRC88).

Ideal Gas Mass Determination

The use of ideal gas relationships to determine the contained air mass through measurement of air temperature, humidity, and pressure is the basis of current leakage testing. While there is no question as to the ability of the method to determine leakage rates accurately under relatively stable shutdown conditions, it is probable that the larger thermal gradients and air velocities in an operating containment affect the accuracy of the technique. More important, while Type A tests are conducted at full accident pressure, OLM is performed at very small pressure differentials; thus, the accuracy of OLM is expected to be lower.

Tracer Gas Detection

This method uses the measurement of a natural or introduced gaseous tracer to detect containment leakage. One tracer method uses the detection of a tracer gas

outside of the containment which has a known concentration within containment. A tracer of interest for this method is ozone, since it is generated within containment and detection techniques are extremely sensitive. In the case of BWR Mark I and Mark II containments and possibly dual- wall PWR containments, the leakage through all possible leakage paths is drawn through a single duct, making tracer detection relatively straightforward.

Another tracer method technique uses a concentration monitor within containment to record dilution of the tracer caused by inleakage. This method is applicable only to containments normally operating at negative gauge pressure.

Bulk Temperature Measurements

Bulk temperature measuring techniques are related to the ideal gas mass determination method but use global methods of determining a properly weight-averaged temperature of the atmosphere. Acoustic velocity and refractive index measurement techniques can also be used. Both these techniques require a relatively uncluttered, open containment geometry.

Mass Change Input/Exhaust Monitoring

This method introduces or removes a quantity of air in a continuous or discrete manner. Primary considerations are the existence of equipment on site capable of producing the desired mass change; the capability of measuring small pressure changes produced by the mass change, and the allowable limits for containment pressure during operation.

Reference Vessel Method

This method uses a device similar to the reference vessel for Type A tests. Support of these techniques requires information

concerning pressures, temperatures, and temperature gradients existing in operating containments.

Direct Air Weighing

This method uses the vertical differential atmospheric pressure in containment to determine directly the enclosed air mass. The method is extremely sensitive to local stagnation pressures and somewhat dependent on containment internal geometry and variations in temperature profile.

NUREG-1273 (NRC88) discusses 11 methods utilizing the physical principles stated above. The characteristics of the 11 on-line monitoring methods are summarized in Table 3-1. Three methods (Type A test instrumentation, reference vessel, and differential trace gas concentration) are generally applicable to all reactor units. The estimates of equipment cost shown in the table are based only on the required equipment.

Capabilities of On-Line Monitoring Systems

The following technical findings are taken from NUREG-1273:

- Methods exist which appear practical and sufficiently sensitive to be of use for continuous leakage monitoring.
- OLM does not have the accuracy of Type A testing but seems to offer enough accuracy and speed of detection to justify its use for detecting gross leakage.
- OLM is capable of detecting leaks within 1 day to several weeks, versus an average of 6-12 months for Type A, B and C tests.
- The current program of Type A, B, and C tests is capable of detecting all reported events documented in the Licensee Event Reports (LERs). Supplemental use of OLM will not detect additional breaches of containment integrity.

On Line	-					
Monitoring Methoda	Conseinment Type	Bundity Temp		inicalage	Equipment Costs	
External detection	BWRs	No	No	No	L	
Tracer gas dilution	Subatm	No	No	Yes	L	
Continuous injection	PWRs	Yes	Yes	Yes	Н	
Direct weighing	Large, dry subatm	Yes	No	Yes	М	
Acoustic velocity	Large, dry subatm	Yes	No	Yes	Н	
Reference vessel	All	Yes	No	Yes	Н	
Type A test instrument	All	No	No	Yas	Н	
Trace gas mass concentration	Subatm	No	No	Yes	М	
Differential trace gas concentration	All .	No	No	No	М	
Periodic air mass injection	PWRs	Yes	Yes	Yes	Н	
Nitrogen usage monitoring	BWRs .	Yes	Yes	Yes	L	

Table 3-1. Characteristics of On-line Monitoring Methods

Note: L - low, M - moderate, H - high, Subatm - subatmospheric

- Type B and C tests together are capable of detecting 99.4 percent of documented breaches; only the remaining 0.6 percent of breaches requires some tests other than Type B and C.
- For the remaining 0.6 percent of breaches, OLM is estimated to be capable of detecting five out of six breaches. In other words, OLM would improve detection of documented breaches by 0.5 percent.

OLM cannot detect leaks in a double barrier. Thus, the estimated unavailability of containment isolation for the small $(1 L_a - 10 L_a)$ and large (> 10 L_a) leakage categories would not be improved significantly if an OLM were adopted, since leakages of these sizes generally occur in paths with double barriers. For the very large leakage category (e.g., open air-locks or the failure of other containment openings, open purge/vent pathways, or similar direct air path system valves or penetrations), the unavailability might be improved by as much as an order of magnitude.

 OLM should not be considered as a complete replacement for Type A tests because OLM operates at reduced pressure. Prediction of leakage and structural integrity at accident pressure based on low pressure tests is not accurate because there is no correlation between the two. Current Type B and C tests identify nearly all potential leakages. Prudence dictates maintaining the current refueling-cycle time period for conducting Type B and C tests.

Type A, B, and C tests required by Appendix J should be continued to provide assurance of continued high containment availability. OLM might improve containment unavailability due to very large leakages by less than an order of magnitude.

There is no risk justification for imposing OLM. Estimated contribution of undetected leakages to the total risk associated with other containment failure modes in a severe accident is less than 0.5 - 3 percent.

An estimate of installation and operational OLM costs is on the order of \$0.5 million -\$1.0 million.

3.2.1 The Belgian Approach

On-line Monitoring

During reactor operation, the pressure in the containment tends to increase due to compressed air leaks from pneumatically operated equipment. By monitoring the compressed air make-up to the containment, it is possible to calculate the containment leakage rate from the discrepancies between the theoretical increase in containment pressure and the measured pressure increase. The calculation takes into account the temperature and moisture variations during the tests.

The test is conducted during reactor operation after each cold shutdown longer than 15 days. It is performed after the startup of the unit when steady state conditions (e.g., temperature, moisture) have been reached inside the containment atmosphere. If, after two months of maintaining the primary system temperature above 260 °C, it has not been shown that the leakage rate of the containment is below 17Nm³/h, the unit shall be brought to cold shutdown. Such a test can be completed in less than 72 hours.

After the completion of the leakage test, a nonmandatory verification test may be performed by superimposition of a leak through a calibrated orifice. For these tests, either the absolute or reference vessel is acceptable.

The objective of the test is to detect gross localized leakages such as misaligned valves or left-open valves and faulty flanges or instrument connections.

The test acceptance criteria are as follows:

Action
Action
None (considered
normal condition)
Search for leakage
locations
Cold shutdown it
leakages cannot be
located and
isolated within a
monu

For Belgian PWRs, a leakage rate of 17 Nm³/h (600 scf/h) at 60 mbars (0.88 psig) and containment temperature corresponds to about ten times L_a at accident pressure, P_a. Physically, 17 Nm³/h (600 scf/h) also corresponds to the flow rate through a hole of 1 cm (about 3/8 inch) diameter in a thin plate at an effective pressure of 60 mbars (0.88 psig).

Modified Type A Testing

The objective of the Belgian approach to Type A testing is to reduce the frequency and duration of the tests. The Type A test is conducted at a containment pressure (P₂) not less than half of the peak pressure $(0.5 P_a)$. It is performed once every 10 years. The test acceptance criterion is:

$L_{mn} \leq 0.75 (P_r/P_s) L_s$

where L_{bn} is the measured leakage at P_t and L_s is the maximum allowable leakage rate at P_a . The rationale for testing at P_t instead of P_s and the use of a new test acceptance criterion are discussed in Appendix C.

Type A tests are performed using both the absolute method and the reference vessel method. These two methods are totally independent, and their results can be used for mutual validation. If, over a period of at least 8 hours and with at least 30 consecutive measurement points, both of the methods provide a leakage rate meeting the above test can be acceptance criterion. the discontinued. A verification test (i.e., calibrated leakage test) may or may not be required at the end of the test period depending upon the difference between the measured leakage rates derived from the two methods. Further discussion is provided in Appendix C.

3.2.2 The French Approach

On-line Monitoring

Containment leak-tightness is being continuously monitored during reactor operation in all of the French PWR units using the SEXTEN OLM system. The French safety authorities and EDF decided to equip their PWRs with OLMs "Even if the potential risk associated with such risks is low...." SEXTEN is also being evaluated by the Swedes for their PWR units. On-line leakage detection is based on the fact that the pressure inside the containment is successively below and above atmospheric pressure. The containment pressure goes up due to leakage of the air from the instrument compressed air distribution system. When the pressure reaches a set limit, the operator quickly depressurizes the containment and a new pressurization cycle begins. A typical cycle is about 20 days for a 900 MW PWR unit.

Leakages may be detected during the positive or negative pressure periods in the containment by evaluating the air mass balance in the containment. The air mass is measured by the absolute method.

The test a ceptance criteria adopted by the French (SEPRI94) are:

For 900 MWe PWRs:

Leakages at 60 mbar (0.88 psig) differential pressure	Action
Not greater than 5 Nm ³ /h (177 scf/h)	None (considered normal condition)
Greater than 5 Nm ³ /h (177 scf/h) but less than 1 ⁽¹⁾ Nm ³ /h (354 scf/h)	Search for leakage locations
Greater than 10 Nm ³ /h (354 scf/h)	Cold shutdown if leakages cannot be located and isolated within 10 days Cold shutdown in 20 days if leakages can be isolated by containment isolation

For 1300 MWe PWRs:

Leakages at 60 mbar (0.88 psig)		
annerennal pressure	Action	
Not greater than 5 Nm ³ /h	None (considered	
(177 scf/h)	normal condition)	
Greater than 8 Nm ³ /h	Search for leakage	
(283 scf/h) but less than	location and begin	
16 Nm ³ /h (566 scf/h)	procedure for cold	
	shutdown within	
	14 days	
Greater than 16 Nm ³ /h	Cold shutdown if	
(566 scf/h)	leakages cannot be	
·	located and	
	isolated within	
	3 days	
	Cold shutdown in	
	14 days if	
	leakages can be	
	isolated by	
	containment	
	isolation	

For a 900-MW unit containment (free volume of about 50,000 m³ or 1,766,000 ft³), the average uncertainties with the SEXTEN system for a containment leakage rate at 60 mbars (0.88 psig) effective pressure differential are:

 1.3 Nm³/h (46 scf/h) over a 24-hour measurement period; and

0.8 Nm³/h (28 scf/h) over a pressurization cycle in the containment.

It takes approximately 4 hours of measurements to confirm the development or elimination of a $5 \text{ Nm}^3/h$ (177 scf/h) leakage. This corresponds to a leakage rate of about 0.25 volume percent per day. The French believe SEXTEN is able to detect a leak corresponding to a less than $3 \text{ mm} (7/64^{\circ})$ diameter pipe in a 24-hour test period. The method can be used not only to detect a leakage problem, but also as an aid in identifying the leakage paths or the defective components. The system operates continuously and provides measurements daily or at the end of each pressurization cycle. At the operator's command, the evolution of the air mass inside the containment can be plotted in real time when leakage paths are sought. Appendix C describes the SEXTEN system in more detail.

The Swedes are currently evaluating the SEXTEN system. They are considering the following test acceptance criteria:

Leakages at 60 mbar (0.88 psig)	
differential pressure	Action
Not greater than 5 Nm ³ /h (177 scf/h)	None (considered normal condition)
Greater than 5 Nm ³ /h leakages	Identify the
(177 scf/h) but less than	and take corrective
$15 \text{ Nm}^{3}/\text{h}$ (530 scf/h)	actions within a
	limited time
Greater than 15 Nm ³ /h	Inform SK1
(530 scf/h)	(Swedish Nuclear
	Inspectorate) and
	provide an action
	plan

Type A Testing

Type A tests are conducted at containment peak pressure (loss-of-coolant accident [LOCA] pressure) before initial unit startup, during the first refueling, and thereafter every 10 years unless a degradation in containment leaktightness is detected. If the margin between the allowable limit and the measured value decreases by more than 75% between two consecutive tenyearly tests and if the cause of this leakage cannot be identified and corrected, the next Type A test must be performed within five years (SEPRI94).

3.2.3 The Canadian Approach

As summarized below, Canada's Hydro-Quebec uses the Temperature Compensation Method (TCM) for on-line, low-pressure testing for containment integrity at the Gentilly-2 Nuclear Power Station. The TCM uses a reference volume with an extensive tubular network of different diameters, and a second independent tubular network with numerous humidity sampling points (CAN94).

The reference volume is composed of a leaktight network of copper tubing throughout the significant volumes of the reactor building. The tubing is sized and routed in such a way that the reference volume fraction contained within each room is proportional to the volume of the room. This arrangement enables the determination of the "equivalent" or "weighted" reactor building temperature and eliminates the need to track numerous temperature points. The reference volume simulates the overall reactor building behavior and allows the leakage-rate determination to be independent of reactor temperature fluctuation. building The differential pressure between the tubular network reference volume and the reactor building constitutes the critical process variable.

A major difficulty of a low-pressure test is the measurement of an extremely small pressure drop. During an 8-hour test at 2.75 kPa(g), a typical pressure drop could be 0.043 kPa(g), where Pa(g) is relative pressure measured in units of Pascal. This is compared to a pressure drop of 0.376 kPa(g) during an 8-hour test at containment peak pressure of 124 kPa(g). These figures presume a 0.5% of reactor building volume per day leakage rate and 100% turbulent flow. The meaningful interpretation on the minute pressure drop imposes a stringent precision requirement on the TCM system.

The reactor building humidity plays a major role in on-line, low-pressure testing. Under typical conditions, the dew point in the reactor building may increase from $4.5 \,^{\circ}$ C ($40 \,^{\circ}$ F) to $5.0 \,^{\circ}$ C ($41 \,^{\circ}$ F) during the test. The increase in vapor partial pressure is a factor of three over the test pressure drop. Hence, a precise determination of average reactor building humidity and its variation in time and space is critical.

The tubular network of numerous humidity sampling points installed inside the reactor building enables the measurement of minute pressure variations inside the reactor building, independent of the spatial and temporal humidity behaviors. The humidity and temperature mapping exercise conducted during an annual shutdown has confirmed the ability of the humidity sampling tubular network layout to adequately track reactor building humidity. An error of 3.2% on the pressure drop was indicated from a detailed error analysis.

It is not possible to fully isolate several process gas systems inside the reactor building at power. Gas leakage from the various reactor auxiliary systems during normal operation contributes to the existing water vapor partial pressure. These gases include helium, carbon dioxide, and nitrogen. The contribution from these leakages has been shown to be minor (less than 2% of the leakage rate).

The atmospheric pressure may vary dramatically during the test period. An increase in the atmospheric pressure during a test is reflected by a decrease in the test differential pressure. It is possible that the positive differential pressure of the reactor building with respect to the atmosphere may be reduced by as much as 50% during the test as a result of a weather perturbation.

A post-test validation procedure is required to verify the TCM test result. A "known" leakage rate, of magnitude comparable to the "unknown" leakage rate, is superimposed upon the latter directly upon conclusion of the "unknown" leakage-rate measurement. The TCM system can be used at any test pressure. However, the Gentilly-2 TCM system is limited to a maximum test pressure of 3.4 kPa, which correspond to the reactor trip set point of the safety shutdown systems on high reactor building pressure. The test at a nominal 3 kPa(g) test pressure can be completed during a 12-hour period (28 hours total with alignment time) with the reactor at full power. This is compared to the required 5-day critical path window (7 days total with alignment time) during an annual shutdown for the traditional reactor building pressure test (Type A test) performed at 124 kPa(g).

The Gentilly-2 TCM system is able to detect a leak corresponding to a 2 mm (5/64") diameter pipe, with high precision in an 8-hour test period. The error associated with the measurement at a nominal test pressure of 3 kPa(g) was $\pm 10\%$ based on theoretical analysis under typical test conditions. The available data from the "known leakage-rate" test validation procedure suggests that the actual error band is less than 15%.

With on-line, low-pressure testing, Hydro-Quebec is able to detect and monitor the change in containment leak-tightness between Type A tests. Available test results indicate that it is possible to extrapolate the on-line, low-pressure leakage rate to the equivalent Type A test leakage rate at high pressure. Confirmation of this capability, however, will require a larger data base of low-pressure test and Type A test results.

Hydro-Quebec has indicated that their system is new and evolving, and that they are currently pursuing various applications of the system.

Further discussion of the Gentilly-2 TCM system is provided in Appendix C.

3.2.4 Discussion

The primary limitation of OLM is that it is conducted while a unit is operating when control over many parameters is not practical. The containment atmosphere tends to be much more erratic during operation because of operating fan coolers and large and fluctuating heat sources.

The large amounts of heat released into containment produce large thermal gradients and contribute to less stable conditions. Thermal gradients complicate calculation of an average containment temperature which is done by weight-averaging the temperature with volume.

Other conditions in operating containments that could obscure results from on-line leakage-rate monitoring systems are the usage of instrument air, continuous sample lines, containment access, vent and purge operations, and gas releases into containment from coolant systems.

Despite the potential operating challenges, the Canadian and the European communities have had successful experiences. OLM systems have been installed in all of the French reactors since 1985 and have accumulated 250 reactor-years of experience. The capability of measuring 1 Nm³/h (35 scf/h) leakage, as claimed by the French and Belgium on-line monitoring systems, and the capability of measuring leakage through a 2mm (5/64") hole, as claimed by the Canadian OLM, exceed the expectation of past studies (i.e., NUREG-1273).

OLM systems can only detect those leaks located in systems that provide a connection between the containment air and the outside atmosphere. Based on data collected at North Anna Power Station, listed below are penetrations exposed to the containment atmosphere.

		Number of
		Penetrations
		Exposed to
Type of	Size of	Containment
Penetrations	Penetrations	Atmosphere
Mechanical	3/8"	3
(total 92	2-	2
penetrations)	4"	1
	6*	1
	8"	1
	36"	_2
		10 (~11%)
Electrical		129 (100%)
(total 129		
penetrations)		

In summary, on-line monitoring systems can be useful in detecting and locating certain containment leaks during reactor operation. However, the usefulness of an on-line monitoring system depends upon the utility's ability to:

- account for the effects of temperature and moisture gradients and variations on the test results;
- preclude the possibility of an actual leak being masked by containment air/gas inleakage;
- account for leaks in closed pressurized systems that would probably not be measured during on-line monitoring;
- guard against "false alarms" from on-line monitoring; and,
- schieve stabilized conditions within the containment during reactor operation.

4. Leakage-Rate Test Experience

Because of concerns about undetected loss of containment isolation capability, an early NRC study (NUREG/CR-4220)(NRC85) undertook the compilation of an historical data base related to possible violations of containment isolation. The data in this compilation were derived primarily from Licensee Event Reports (LERs) submitted to the NRC between 1965 and 1983. Although this compilation included more than 3400 suspected containment isolation failures, it did very little evaluation of the nature and potential significance of the reported technical specification violations and, thus, was not very useful for the purposes of the present effort.

ı

A subsequent study (NUREG-1273)(NRC88) undertook a more extensive evaluation of the same data base: Some of the findings of the latter study included:

About one-third of the reported events dealt with leakages that were immediately detected and corrected, thus posing minimal threat to containment integrity.

• Events related to components located in direct containment-to-atmosphere paths were a small fraction (about 1/6) of the total.

The great majority of reportable events were detected by Type B and Type C leakage testing; only 25 of 2192 events were detectable only by Type A integrated containment leakage testing.

In addition to these studies, the present study analyzed a data base compiled by the NRC, the results of Appendix J testing at the two-unit North Anna station, and an Appendix J exemption request submitted by the Grand Gulf station. In February 1994, the NRC received for analysis a letter (NUM94) from the Nuclear Management and Resources Council (NUMARC) transmitting containment testing data representative of a broad spectrum of units.

4.1 TYPE A ILRT

To verify the validity of the suggestions that local leakage-rate testing can detect essentially all potential degradations of containment integrity. more recent experience with containment leakage rates has been evaluated. For this purpose, a data base compiled by NRC staff was used as a point of departure (NRC93A)¹. This data base is a compilation of FSAR revisions. ILRT LERs. reports. exemption requests, technical specification changes, etc., from June 1987 through April 1993. Of specific interest are the 166 ILRT reports included in this compilation covering 97 individual units at 68 sites. Of the ILRT reports in the data base, 42 have been identified in the data base as failed. Details of the failures or how they were detected are not always included in this compilation. Nevertheless, it is noted that, of the identified failures, approximately 25 percent exhibited "as-found" leakage rates greater than 0.75 L_a, but less than 1.0 L_a. Another 20 percent of the identified failures were characterized by "as-found" leakages less than 5 L. For the remaining 55 percent of the identified failures, the leakage rates were not quantified, typically because the leakages exceeded the range of the measurement instrumentation. For local leakage- rate testing, the range of the instrumentation used is comparable to the allowable leakage rates; thus, even marginal violations of allowable leakage rates cannot be quantified.

In order to assess the causes of the reported ILRT failures, the test reports identified as failures have been reviewed in detail. Table 4-1 summarizes a number of reported ILRT failures in most of the reported ILRT failures, the integrated leakage-rate test itself met the 0.75 L, criterion; the reported "as-found" leakages were detected by Type B and C testing and corrected prior to the ILRT. This is typical of current ILRT practice, i.e., Type B and C testing is performed prior to the ILRT and the as-found

U.S. Nuclear Regulatory Commission, "The 'Gamer Arade' Appendix J Data Base," kept correct

Table 4-1. Examples of Falled II.	JR I S
-----------------------------------	--------

Unit	Description
ANO 1	5/92 ILRT, 75 $L_x = .150\%$ per day; As-Found > L_x . As-Left = .125% per day Leakage found by LLRT
Beaver V 1	12/89 ILRT; 75 L = .075% per day As-Found = excessive; As-Left = 031672% per day Two penetration leaks discovered during ILRT.
Braidwood 1	2/91 ILRT, 75 L = .075% per day; As-Found = .0557% per day; As-Left = .05286% per day. TYPE B failure found during ILRT, after earlier successful TYPE B test. ILRT performed with outer air-lock door open; leak in hatch shaft seal
Braidwood 2	9/91 ILRT; .075 L = .075% per day; As-Found = .0554% per day; As-Left = .05359% per day Several local leaks found during ILRT, after having passed Type B, ILRT done with outer doors open.
Brunswick 1	2/91 ILRT; .75 $L_a = .375\%$ per day, As-Found = .4956% per day, As-Left = .3408% per day Leakage found by LLRT.
Brunswick 2	2/90 ILRT; .75 L _a = .375% per day, As-Found = .47% per day. As-Left (MP) = 317% per day; As-Left (TT) = .344% per day. Leakage found by LLRT
Brunswick 2	12/91 ILRT, .75 $L_n = .375\%$ per day; As-Found = .3975% per day; As-Left = .3545% per day. Leakage found by LLRT.
Callaway 1	10/90 ILRT; .75 $L_n = .150\%$ per day; As-Found > .150% per day; As-Left = .0446% per day. Penetration leakage.
Cooper	12/10/91 ILRT; As-Found = 1.38 L. Leakages found by LLRT.
Dresden 2	12/90 ILRT; 75 L = 1.2% per day; As-Found = 24 5% per day, As-Left = 0.7428% per day. Vacuum breaker valve leakage found by ILRT
Dresden 3	2/90 HLRT; .75 L = 1.2% per day, As-Found = 1.25% per day, As-Left = 1.0075% per day Leakage found by LLRT.
Dresden 3	3'92 ILRT; .75 L ₀ = 1.2% per day; As-Found > L ₀ ; As-Left = .6706% per day. Leakage found by LLRT.
bermi 2	11/89 ILRT; .75 L = .375% per day; As-Found = .958% per day; As-Left = .318% per day Leakage found by LLRT.
Ferm 2	10/92 ILRT; .75 L = .375% per day; As-Found < 2L; As-Left = 2434% per day Leakage found by LLRT.
Harms 1	10:89 ILRT; ILRT without prior LLRT. As-Found not quantified
Hatch 2	11'89 ILRT; 75% L = 90% per day; As-Found = 1 03% per day. As-Lef: = 80% per day. Leakage found by LLRT
Hauh 2	11.92 ILRT 75 L = 9% per day. As-Found = 1.3357% per day. As Left = 8858% per day. Leakage found by LLRT
Unit	Description
---------------	---
LaSalle 2	6/90 ILRT; .75 L, = .476% per day; As-Found > .476% per day; As-Left = .427% per day.
LaSalle 2	3/92 ILRT; .75 L = .476% per day; As-Found = .3523% per day; As-Left = .0155% per day. Leakage found by LLRT.
Millstone 1	6/91 ILRT; .75 L. = .90% per day; As-Found > .90% per day; As-Left = .4077% per day. Leakage found by LLRT.
Palo Verde 2	12/91 ILRT; .75 L = .075% per day; As-Found = .083% per day; As-Left = .031% per day. Leakage found by LLRT.
Pilgrim 1	7/91 ILRT; .75 L. = .75% per day; As-Found = 1.2% per day; As-Left = ?. Failed ILRT, drywell head bolts loose.
Quad Cities 2	11/86 ILRT; .75 L _a = .75% per day; As-Found = .882% per day. Failed ILRT, faulty drywell head gasket.
Quad Cities 1	9/14/87 ILRT; ILRT prior to LLRT, failed. Cause unknown.
River Bend	8/92 LLRT; .75 L = .195% per day; As-Found = Failed; As-Left = .141% per day. Type B & C exceeded .6 L.
Sequoyah 1	5/90 ILRT; .75 L = .1875% per day; As-Found = .7% per day; As-Left = .148% per day. Leakage found by LLRT.
Sequoyah 2	5/90 ILRT; .75 L _a < As-Found < 1.0 L _a . ILRT found penetration leakage missed by faulty LLRT.
Sequoyah 2	4/92 ILRT; .75 L _s = .1875% per day; As-Found = .42122% per day; As-Left = .15154% per day. Leakage found by LLRT.
Susquehanna 2	6/86 ILRT; $L_{z} = .75\%$ per day; As-Found = 2.6% per day; As-Left = .59% per day. ILRT prior to LLRT.
TMI-1	11/86 ILRT; .75 $L_a = .075\%$ per day; As-Found ~ .1% per day. ILRT prior to LLRT.
Trojan	5/29-6/2/90 ILRTs; .75 L _a = .1% per day; Az-Found = ?%; As-Left = .00616% per day. Instrumentation problems during LLRT.
Vogtle 2	4/92 ILRT; .75 L _a = .150% per day; As-Found = .1507% per day; As-Left = .1410% per day. Leakage found by LLRT.
Vt Yankee	.75 L = .6% per day; As-Found = .8% per day. Drywell manway penetration leakage

Table 4-1 (Continued)

leakage rate is determined by adding the leakage savings resulting from the repair of local leakages to the measured ILRT leakage. In a number of the other reported failures, local leakages were actually detected by the ILRT. In almost all these cases. the ILRTs were performed without a preceding Type B and C test. In one case, a faulty LLRT failed to identify a local leakage which was found by the subsequent ILRT. Local leakage-rate testing did not and could not detect excessive leakage in three of the cases identified as failures in the above data base. One of the ILRT failures was associated with Mark I BWR head closure leakage and one with a steam generator manway; the root cause of the third was not resolved.

In addition to the NRC data base, LERs related to containment leakage-rate testing compiled by Oak Ridge National Laboratory (ORNL) have also been examined. Most of the possible ILRT failures identified by this search were duplicates of the reports included in the NRC data base. Only one additional ILRT failure was found in the Oak Ridge compilation. In this case, the excessive leakage was due to a faulty gasket on a Mark I BWR head. The "as-found" measured leakage was 0.84 L_a.

In the approximately 180 ILRT reports considered in this study, covering 110 individual reactors and approximately 770 years of operating history, only 5 ILRT failures were found which local leakage-rate testing could not and did not detect. These results indicate that Type A testing detected failures to meet current leak-tightness requirements in approximately 3 percent of all tests. These findings clearly support earlier indications that Type B and C testing can detect a very large percentage of containment leakages. The percentage of containment leakages that can be detected only by integrated containment leakage testing is very small. Of note in the ILRT failures observed that were not detected by Type B and C testing, the actual leakage rates were very small, only marginally in excess of the current leak-tightness requirements.

NUMARC

The Nuclear Management and Resources Council (NUMARC) conducted a survey of utilities to study containment testing performance and cost data (NUM94). The utilities chosen represent a broad spectrum of reactor designs (29 units in all) and encompass a total of 144 ILRTs. Performance data studied include test results of ILRTs since pre-operation tests, and cause(s) of failure by valves type, size, and service.

NUMARC has provided a summary of their analysis of 144 ILRT results. Type A performance test data is shown in Table 4-2. Of the total, 23 of the ILRT results exceeded 1.0 L_{n} . The reasons for exceeding allowable leakage are stated as follows:

- 14 due to addition of Type B & C leakage penalties
- 4 due to PWR steam generator in-leakage
- 2 due to failures that should have been indicated by the Type B & C testing
- 2 due to ILRT line up errors
- 1 test repeated due to unacceptable verification test.

Examination of the quantitative leakage data provided in the NUMARC summary indicates that in about one-third of the cases exceeding allowable leakage, the as-found leakage was less than $2L_a$; in one case the as-found leakage was less than $3L_a$; one case approached $10L_a$; and in one case the leakage was found to be approximately $21L_a$. For about half of the failed ILRTs the as-found leakages were not quantified.

Overall the results of the NUMARC analysis of ILRT experience are consistent with the results found in the NRC data base (NRC93A).

4.2 TYPE B LLRT

Type B tests are performed at power or shutdown on two types of equipment: electrical

Line Item No.	Unit No.	ILRT Mo/Yr	.75 L, sccm	As-Found Leakage Rate sccm	As-Found Leakage Rate W/B&C Delta, sccm	Code
1	1	Apr-92	270,000	224,640	> 270,000	D
2	2	Apr-91	:22,250	76,121	136,431	A2
3	3	Nov-85	158,700	76,098	399,223	С
4	3	Nov-93	158,700	42,732	283,320	LUE
5	4	Mar-78	259,000	304,480	UNAVAIL	A3
6	4	Jun-82	259,000	148,780	264,690	LUE
7	19	Aug-83	62,400	107,355	-	С
8	20	Oct-90	141,709	321,314	321,314	A2
9	21	Feb-81	141,709	120,023	N/A	E
10	21	Sep-92	331,894	564,662	N/A	A3
11	23	May-86	101,940	37,926	134,042	D
12	24	Apr-77	131,000	175,000+	175,000+	A3
13	24	Nov-86	131,000	175,000	175,000	A3
14	25	Jun-80	398,500	38,736	uncertain	С
15	25	Apr-84	398,500	16,678	uncertain	С
16	26	Jun-85	646,730	166,139	17,954,023	D
17	27	Aug-87	177,152	64,415	581,441	С
18	27	Jun-91	177,152	68,343	-	С
19	28	Aug-84	71,498	67,588	1,421,687	С
20	28	Apr-86	71,498	<4,699	<910,914	С
21	28	Sep-87	215,556	123,591	-	ס
22	30	Sep-88	163,878	infinite	infinite	С
23	31	Sep-90	163,878	infinite	infinite	С

Table 4-2. Type A Performance Test Data

CODE DESCRIPTION

The state of the s

ş

*

FREQUENCY

A1	Containment Liner Breach	0
A2	B&C Leakage Identified by ILRT, Not B&C LLRT	2
A3	PWR Steam Generator Secondary Manway Gasket Leakage	4
В	ILRT L, Exceedance Due To B Leakage Penalty Identified By LLRT	0
С	ILRT L. Exceedance Due To C Leakage Penalty Identified By LLRT	10
D	ILRT L, Exceedance Due To B&C Leakage Penalty Identified By LLRT	4
E	ILRT L, Exceedance Due To Instrument Verification By Test Discrepancy	1
LUE	ILRT L, Exceedance Due To Line-Up Error	2

penetrations and air-locks (and other doublegasketed and double O-ring seals).

North Anna

Appendix A, "Analysis of Type B/C Leakage-Rate History," discusses the results of Type B testing of penetrations at North Anna Units 1 and 2.

Each North Anna unit contains approximately 130 electrical penetrations. Based on the data discussed in the appendix, North Anna has experienced no significant electrical penetration leakage in approximately 27 unit-years of operation.

Based on the above information, performancebased Type B testing would result in a significant reduction in tests of the electrical penetrations. If the leakage pattern of these penetrations do not deviate from the historical leakage pattern, an insignificant increase in risk would result from performance-based testing of these penetrations.

Type B testing is performed on all air-locks, i.e., the fuel transfer tube, the personnel airlock, the emergency escape air-lock, and the equipment hatch at North Anna. The fuel transfer tube is tested approximately every 18 months. The personnel air lock, emergency escape air-lock, and equipment hatch are tested at 6-month intervals.

No "as-found" leakage rate is determined for the equipment hatch during Type B tests unless the test coincides with an ILRT. Since June 1987, a seal has been replaced on the Unit 1 equipment hatch five times. Since April 1989, a seal has been replaced on the Unit 2 equipment hatch two times.

The door seals for the fuel transfer tubes in Unit 1 and Unit 2 were replaced in December 1985 and August 1984, respectively. There has been zero leakage through these seals since that time. Since January 1986, either a personnel air-lock seal has been replaced or a door adjusted 13 times for Unit 1. Since August 1986, either a personnel air-lock seal has been replaced or a door adjusted 12 times for Unit 2. Maximum path leakage rates for both Unit 1 and Unit 2 personnel air-locks have ranged from zero to 22 scf/h.

Since June 1987, either an emergency air-lock seal has been replaced or a door adjusted five times for Unit 1 and five times for Unit 2. Maximum path leakage rates for both Unit 1 and Unit 2 emergency air-locks have ranged from 0 to 9 scf/h.

Based on the above information, performancebased Type B testing would not result in a significant reduction in tests of the air-locks. In all cases except for the fuel transfer tubes, repairs have been performed on the air-lock seals often enough that they would not meet the performance requirements necessary to reduce their test intervals.

Grand Gulf

At NRC's April 1993 workshop (NRC93B), the operators (Entergy) of Grand Gulf Nuclear Station (GGNS) presented data on its experiences with Type B testing. GGNS has experienced 25 failures of Type B tests since 1986, with 17 of the failures occurring at the first refueling outage. This corresponds with a success rate of 95 percent since 1986, and 98 percent after the first refueling outage.

Subsequently, Entergy/Grand Gulf has submitted an application for exemption from 10 CFR 50 Appendix J requirements and proposed amendments to the operating license to implement a performance based containment leakage-testing program (GG93). Included in the application is the history of leakage-rate testing experience covering five refueling outages. This history includes v total of 482 Type B electrical penetration texts involving 92-100 components per outage, with 25 of the tests exceeding administrative limits. Of the 18 Type B tested components that have failed at least once, 16 were guard pipe inspection ports. Table 4-3 presents the Grand Gulf Type B test data.

Grand Gulf also reports 2 air-lock test failures in 32 total tests. Additionally, no failures have been observed in a total of 489 air-lock seal tests. However, since the service life of air-lock door seals is five years, these components are not included in the performance-based testing program.

NUMARC

The previously cited NUMARC analysis includes 5008 Type B tests on a total of 1252 components, with 121 tests, 2.5% of the total, exceeding administrative limits. These data are presented in Table 4-4. Most of the tests exceeding administrative limits were on electrical penetrations; however, the leakages in all cases appear to be small and well below levels that could be considered potentially risk significant. Air-locks are reported to have exceeded administrative limits 26 times, with ten of these cases reported to have component leakages that approach or exceed the overall allowable leakage for the containment. Quantification of leakages by individual test arnot provided in the NUMARC summary. The observed leakages are said to be associated with seal degradation.

Again, the NUMARC results appear to be consistent with those based on the NRC data base (NRC93A). Electrical penetration leakages, when they occur, appear to be small and not risk significant; air-lock seal leakages apparently can be larger and may warrant more attention.

4.3 TYPE C LLRT

North Anna

Appendix A discusses the results of Type C testing of penetrations at North Anna Units 1 and 2.

Refueling Outage No.	Total Components Tentod	Total Failures	Percent Passes (Percent)
RF01	96	17	82
RF02	%	· 0	100
RF03	100	2	98
RF04	98	6	94
RF05	92	0	100
Total	482	25	95

Table 4-3. G	Grand Gulf	Type B	Performance	Test Data
--------------	------------	--------	-------------	-----------

Based on the above information, performance-based Type B testing could result in a significant reduction in the extent of electrical penetration testing.

	Leakage-Rate Test Results Frequency					
Component Test Type	1-99 sccm	100-999 sccm	1,000- 9,999 sccm	10,000- 49,000 sccm	Over 50,000 sccm	
Electrical Penetration	58	7	4	1*	-	
Air-lock	-	-	5	11	10	
Inspection Port	0	2	3	l	3	
Equipment Hatch	0	3	1	[*	-	
Blind Hange	3	2	I	0	0	
Gibs	-	-	-	2*	-	
Closed Loop	-	2	0	0	0	
Bellows	0	1	0	0	0	
Totals	61	17	14	16	13	
Percentage (%)	50.4	14.0	11.7	13.2	10 7	

Table 4-4. NUMARC Type B Performance Test Data

* Test over 10,000 sccm, actual amount not reported or known.

Analysis of Data

Number of components in sample data base	1252
Number of tests in sample data base	5008
Number of tests exceeding administrative limits	121
Percentage of tests within administrative limits	97.5%
Percentage of tests exceeding administrative limits	2.5%

Tests Exceeding Administrative Limits By Type

Electrical Penetration Tests	70
Air-lock Tests	26
Inspection Port Tests	9
Equipment Hatch Tests	5
Blind Flar ge Tests	6
Gibs Tests	2
Closed Loop Tests	3
Bellows Tests	T
Total Number of Tests	و الا و 1 مور فر

North Anna Unit 1 and Unit 2 contain 91 penetrations and 92 penetrations, respectively, that are Type C tested. Based on the data in the appendix, approximately 17 percent of the valves tested had maintenance performed on them after testing. Of the valves maintained, approximately 20 percent had an indeterminable leakage rate during Type C leakage testing. The leakage-test equipment used during Type C testing can measure leakage rates up to approximately 257 scf/h. The overall containment leakage rate was indeterminable three times since 1986 due to all valves in a series path having an indeterminable leakage rate.

Although the minimum path leakage rates for the two units have not been larger than L_{\bullet} (304 scf/h) since mid-1988, individual components have been found with leakage rates of 257 scf/h or more at all refueling outages except one. The number of such components found by Type C testing during refueling outages have ranged from 0 to 10. In several cases, additional such components were found during tests between refueling outages. In all cases since mid-1988, the containment minimum path leakage rate has not been affected because another component in series with the failed component has experienced no, or a small, leakage rate.

A statistical analysis was performed to determine if the time before maintenance for Type C tested valves could be predicted based on component and system data. This analysis, documented in Appendix A, concluded that no strong correlation could be found.

An analysis of the frequency of valve maintenance due to unacceptable leakage rates showed a frequency of approximately 2E-2 maintenance events per year per valve. Considering only those valves leaking 250 scf/h or more, the frequency is approximately 7.6E-3 maintenance events per year per valve. These failure rates assume that failure of a component is independent of previous failures of the component. The use of these failure rates overestimates the probability of single valve failures. and under-estimates the probability of multiple valve failures. This indicates that once a valve fails, it is more likely to fail again Based on the valve configurations associated with each unit's penetrations. an indeterminable containment leakage rate is expected approximately once every 26 unit-years of Historically, three cases of operation. indeterminable containment leakage rate have occurred in 27 unit-years of operation.

A detailed analysis of the North Anna data is presented in Appendix A.

Grand Gulf

At the NRC's April 1993 workshop, Entergy/Grand Gulf presented data on its experiences with Type C testing. GGNS has experienced 52 failures of Type C tests since 1986 from a population of 389 valves. This corresponds to a success rate for Type C components of 97 percent, with 86 percent of Type C components experiencing no failures.

The Grand Gulf Appendix J exemption request also includes a history of Type C leakage-test experience. A total of 1566 tests on 297 Type C components have been performed, with 52 failures observed. 255 of the Type C components have never failed. Most of the Type C test failures have been associated with the 14 main steam and feedwater isolation valves; these are 28 and 24 inches in diameter, respectively. The leakage rates for the later components have apparently often exceeded the measuring capacity of the test equipment. These data are presented in Table 4-5.

It is noteworthy that for Type B & C testing at GGNS, failure is defined as exceeding the owner's allowable leakage for a particular component. Each component is assigned an allowable leakage rate based on the diameter of the component. Thus, components can be considered failed even though the overall containment leakage rate is within acceptable limits.

Refueling Outage No.	Total Components Tested	Total Failures	Percent Passes (Percent)
RF01	301	13	96
RF02	326	8	98
RF03	316	16	95
RF04	326	ý	97
RF05	297	6	98
Total	1,566	52	97

Table 4-5. Grand Gulf Type C Performance Data

An analysis of the Grand Gulf data is presented in Appendix A – A summary of Grand Gulf's performance-based leakage-testing program for Type B and C components, which is based on the data discussed above and the NRC's review of its exemption request, is provided in Appendix F

NUMARC

The NUMARC summary of Type C test experience indicates that 90% of valves tested in the sample set of units surveyed (29 units) did not exceed established administrative limits for leakage. Of the 10% of valves that exceeded these limits, 63% did so only once, with 37% of the valves tested exceeding administrative limits more than once. Approximately 14% of the tests exceeding administrative limits had unquantified leakages. The range and frequency of valves exceeding administrative limits are presented in Table 4-6.

NUMARC states that valve performance did not indicate significant variance among sizes, types, or design services. The same conclusion was reached from the analysis of North Anna valve performance in the present study. The NUMARC data are presented in Table 4-7.

4.4 **PERFORMANCE TRENDS**

An extensive analysis of available Type C and Type B data at two nuclear power plants is documented in Appendix A. One of the early objectives of the component performance history analysis described in Appendix A was the development of correlations of component performance characteristics with time. Such correlations would permit the projection of individual component and overall containment performance for longer testing intervals than those used in the past. The sections to follow summarize the findings on why failures occur, including the effects of aging

Random and Dependent Failures

The detailed analysis of the Type C component performance history at two-unit PWR and a single-unit BWR led to the following findings

 Variations in the random failure rates of components cannot be predicted a priori based on system and component physical data such as differences in size, type, environment or design services

Leakage-Rate Range in Thousands of sccm	Number of Tests
0.49 or less	84
0.50 to 0.99	105
1.00 to 2.49	205
2.50 to 4.99	114
5.00 to 9.99	102
10.00 to 24.99	104
25.00 to 49.99	36
50.00 to 99.99	37
100.00 to 499.00	30
500.00 or more	18
Undetermined	136
Total	971

Table 4-6. Type C Valves Exceeding Administrative Limits

When a component failure does occur, there is a high probability that the component will fail again within the next two operating cycles.

If a component does not fail within two operating cycles of a previous failure, further failures appear to be governed by the random-failure rate of the component.

Any performance-based leakage-testing alternative considered should require that a failed component pass at least two consecutive tests before allowing an extended test interval.

The observed tendency for some components to experience successive failures could be due to a variety of reasons. Among these would be the selection of a wrong component for the particular service; an initially defective component; deficiencies in component design; and, defective installation, maintenance, or

ĺ

repair procedures. Components that experience repeated failures will generally receive special attention and the foregoing deficiencies would be eliminated with time. For example, a number of the early unquantified leakages observed at North Anna were due to machining errors that led to excessive valve seat wear. Once the problem was recognized, it was readily Similarly, most of the Type B corrected. failures observed at Grand Gulf were associated with the design of the guard pipe inspection These are corrected, as excessive ports. leakages are experienced, and subsequent performance is improved. After such deficiencies are corrected, subsequent failures are governed by random failure rates until the component reaches the wear-out portion of its life.

Performance-based testing alternatives, that are predicated on components passing two successive tests before extending the testing interval, will minimize testing of good performers and will thus focus on those

VALVE TYPE	NUMBER AND FREQUENCY OF VALVES/TESTS EXCEEDING ADMINISTRATIVE LIMITS				
	1 Time	2 Times	3 Times	4 Times	5 Times
BUTTERFLY	36	14	7	2	0
	992 Butterfly	y Valve Tests			
	93 Tests of S	59 Valves Exc	eeded Admini	strative Limit	S
CHECK	87	35	16	3	i
	1360 Check Valve Tests				
	222 Tests of 142 Check Valves Exceeded Administrative Limits				
<i>.</i>					
GATE	50 24 8 3 0				
	1672 Gate V	alve Tests			
	134 Tests of 85 Valves Exceeded Administrative Limits				
GLOBE	131	34	24	7	7
	3760 Globe Valve Tests				
	309 Tests of 198 Valves Exceeded Administrative Limits				

Table 4-7. NUMARC Type C Performance Data

components that suffer some kind of deficiency or reach wear-out. If all component failures were truly random, for a given performancebased testing scheme, the minimum amount of additional testing would be required to verify such random behavior.

Aging

The analyses described in Appendix A found a correlation which showed a higher failure rate "immediately after component repair or replacement, i.e., during the "burn-in" period of the component. The fact that containment penetration components have been tested, maintained, repaired, and replaced at regular

intervals accounts at least in part for the difficulty in projecting long-term performance Since the condition of many of the components is reset to their initial state (or better), there is no information of what their long term performance might be. The statistical projections of component performance for various testing alternatives were made on the basis of constant failure rates after the initial burn-in period

The Appendix A examination of Type B and C component performance clearly indicates that excessive containment penetration leakages are more frequent early in plant life and decrease with time. The reason for the observed penavore

is generally understood. When repeated failures of certain components are observed, the problems are remedied by changing design, materials, or replacing the troublesome component with a different design, or improved repair procedures. This is known as the burn-in portion of plant life.

With the possibility of longer type B and C component testing intervals the question arises whether any containment penetration components may be nearing the "wear-out" portion of their life. The Appendix A analyses do not show any increases in component failure rates with time. To shed light on this issue, GGNS has performed a Weibull analysis of Type C component test data (GG94). The data show 41 initial failures in 134 components over a period of 109 months, or 30.6% cumulative failures. The data presented also show that 17 of these 41

components have experienced at least one additional failure. The correlation by the Weibull analysis of the observed data by a beta less than one does suggest that the failure rate is decreasing over the time interval. The data are limited and show some scatter, however Examination of the North Anna Type C component failure data lead to a similar conclusion. Again, the data are relatively sparse and exhibit considerable scatter.

The experiences at North Anna and Grand Gulf, as well as the NEI data summary, indicate that a majority of Type C components have never failed. This and the results of the Weibull analysis indicate that the wear-out portion of the component life has not been reached, and may not be reached provided good maintenance practices continue to be followed.

5. Risk Impacts of Containment Leak-tightness

5.1 REVIEW OF EARLIER WORK ON RISK IMPACTS OF CONTAINMENT LEAKAGE RATE -NUREG/CR-4330

NUREG/CR-4330 (NRC86) examined the risk impacts associated with increasing the allowable containment leakage rate using two different methods The first method used several existing PRAs and calculated the incremental risk due to increasing the allowable containment leakage The risk measure used in this first rate. approach is "expected person-rem per year" (i.e., the probability of an accident multiplied by its consequences in terms of person-rem to the surrounding population). The second approach examined selected accident sequences and considered several additional measures including individual radiation exposures and early health effects.

The purpose of these studies was to provide information on the possible risks, costs, and barefits that would result if the requirements for testing containment leakage rates were modified. The following summarizes the results presented in NUREG/CR-4330, Volume 2

5.1.1 Existing PRAs

Risk results were examined for four different reactors: Surry 1, Peach Bottom 2, Oconee 3, and Grand Gulf 1. The applicable release categories and their associated frequencies determined the impact of increasing the containment leakage rate. Appendix A of NUREG/CR-4330, Volume 2 briefly describes each release category. Calculations were based on the following information and assumptions:

 Accident frequencies were obtained from the Reactor Safety Study (Surry 1 and Peach Bottom 2) (NRC75) and two probabilistic risk assessments (Oconee 3 and Grand Gulf 1) performed as part of the Reactor Safety Study Methodology Applications Program (RSSMAP) (NRC81).

- Dose consequences were represented by the whole body population dose commitment (person-rem/reactor-year) received within 50 miles of the site.
- A generic site with an exclusion area of 1/2 mile was assumed with uniform population density of 340 persons per square mile beyond 1/2 mile.
- Meteorological data ware taken from the U.S. National Weather Service station at Moline, Illinois. The CRAC2 computer code was used (NRC83, NRC84). CRAC2 uses weighted values of wind speed and direction, stability class, precipitation, etc., pertaining to the selected weather station. There may be a large stochastic variation in results associated with the actual meteorology at the time of a radiological release.
- The core inventory at the time of the accident was assumed to be represented by a 3412 MWt (1120 MWe) PWR.
- Risk sensitivity values were obtained from a study by Oak Ridge National Laboratory (NRC84A). The ORNL analysis of containment leakage-rate sensitivity used a set of generic source terms and frequencies of occurrence developed as representative of the range of LWR accidents.

The release category, frequency, population dose, and expected population dose (risk) information for the four units described are summarized in Table 5-1.

To estimate the risk associated with an increased leakage rate, a fractional increase in risk per percent per day containment leakage rate was obtained from an earlier study (NRC84A). The analysis, based on a study of LWR accidents as a function of containment leakage rates, used the set of generic source terms and frequencies of occurrence developed as representative of the

Release Categories	Frequency per year	Population Dose, (person-rem/year)	Expected Dose (Risk), (person-rem/year)				
	SURRY 1						
PWR-1	9E-7	5.4E6	4,86				
PWR-2	8E-6	4.8E6	38 40				
PWm 3	4E-6	5.4E6	21.60				
PRW-4	5E-7	2.7E6	1 35				
PRW-5	7E-7	1.0E6	0.70				
PWR-6	7E-6	1.5E5	0.90				
PWR-7	4E-5	2.3E3	0.09				
PWR-8	4E-5	7.5E4	3.00				
PWR-9'	4E-4	1.2E2	0.05				
			71 Total				
	PEACH	ВОТТОМ 2					
BWR-1	1E-6	5.4E6	5 40				
BWR-2	6E-6	7.1E6	42.60				
BWR-3	2E-5	5.1E6	102.00				
BWR-4'	2E-6	6.1E5	1.22				
BWR-5	1E-4	2.0E1	0.002				
			151 Total				
	OC	ONEE 3					
PWR-1	1.1E-7	5.4E6	0.59				
PWR-2	1.0E-5	4.8E6	48.0				
PWR-3	2.9E-5	5.4E6	156.6				
PWR-4	9.7E-8	2.7E6	0.26				
PWR-5	4.6E-7	1.0E6	0.46				
PWR-6	7.3E-6	1.5E5	1.1				
PWR-7*	3.5E-5	2.3E3	0.08				
			207 Total				
	GRAN	ID GULF 1					
BWR-1	1.1E-7	5.4E6	0.59				
BWR-2	3.4E-5	7.1E6	241.4				
BWR-3	1.4 E- 6	6.1E5	7.14				
BWR-4"	1.6E-6	6.1E5	0.98				
			250 Total				

Table 5-1. Risk Information Summary

* Containment leakage release category

ł

1

range of postulated types of accidents currently applied in reactor safety research. The calculated result was the variable M_{μ} , defined as the accident-spectrum-weighted impact fraction rate from containment building leakage. Explicitly, M_{μ} was formulated as the sum of fractional increases in consequences, due to containment building leakage, for each type of accident weighted by its frequency of occurrence. The base case common to similar types of analyses was applied. The computed result was $M_{\mu} \leq 1.5E-3$ fractional increase in the accident spectrum risk per percent/day containment building leakage rate.

Table 5-2 shows the estimated dependence of risk (population dose in person-rem per unit year) to leakage rate based on the four units considered.

This information, graphically presented in Figure 5-1, shows that the overall unit risk is not very sensitive to changes in containment leakage rates. A key assumption was that preexisting leakage does not influence the accident sequence propagation (e.g., it does not significantly influence the containment pressure/temperature conditions or result in equipment failures). While the validity of this assumption has not been exhaustively evaluated, it is consistent with the findings in WASH-1400. WASH-1400 (NRC75) examined this issue for the Surry unit with the conclusion that preexisting leakage rates of up to 200 percent per day would not preclude containment failure by slow overpressurization.

Further, sensitivity analyses in NUREG CR 4330 (NRC86) showed that LWR accident risk is relatively insensitive to the containment leakage rate because the risk is dominated by accident sequences that result in failure or bypass of containment. The incremental risk from leakage in the range of 1 to 10 percent per day is small. The current leakage-rate requirements of many units are 0.1 percent per day.

5.1.2 Selected Accident Scenarios

The second approach used in NUREG/CR-4330 analyzed two specific PWR and two specific BWR accident scenarios from WASH-1400, and a hypothetical scenario related to the Three Mile Island (TMI) accident to indicate the impacts of various assumed containment leakage rates for the selected accident scenarios.

The two PWR scenarios fell under release categories PWR-6 and PWR-7 in Table 5-1. The reference consequences were based on a leakage rate of 1 percent of containment volume per day; the WASH-1400 fission product releases for these were linearly scaled to obtain values for 10 and 100 percent per day leakage rates. The consequences were then reassessed with CRAC2. Not surprisingly, the consequences were found to vary essentially linearly with leakage rate. Whereas the previous analyses noted no early health effects, the assumed 100 percent per day leakage rate led to the calculation of some early injuries and However, the particular scenario fatalities. considered had a very low probability and would

PWR Laskage Rate	(Copected Persidentes Dave (person-transformetice-year)		BWR Leeksge Rate	Expected Population Dose (person-rum/reactor-year)	
(%/day)	y) Surry 1 Ocouse 3		(%/day)	Peach Bottom 2	Grand Gulf 1
1.0	71	207	0.5	151	250
10.0	72	210	5.0	153	254
100.0	82	238	50.0	174	288

Table 5-2. Dependence of Risk on Containment Leakage Rate

not be risk significant even at the assumed 100 percent per day leakage rate. The results for the two BWR scenarios considered were substantially similar to the observations for the PWR cases.

5.1.3 TMI-Related Scenario

A sequence similar to the Three Mile Island 2 accident was examined to provide some additional insight into the effects of changes in containment leakage rates. An arbitrary source term of all noble gases and 1 percent of the iodine in the core were assumed to be released to the containment atmosphere 2 hours after shutdown. The probability of such a release is assumed to be 1E-3 per year. The computer program CRAC2 (NRC84) was used to calculate the consequences for leakage rates of 9.1.1.10. and 100 percent of containment volume per day for release periods of 2 and 10 hours. Since no decay is assumed, the results are proportional to the length of the release period. The risk is xpressed in terms of expected person-rem, expected early fatalities, and expected early injuries. Consistent with the other analyses, the risk impact of a 1 or 10 percent per day leakage rate is not large. Also, no early fatalities result from leakage rates up to 100 percent per day, and the risk of early injuries is small.

5.1.4 <u>Conclusions Reached in NUREG/CR-</u> 4330

The results from NUREG/CR-4330 reinforced the conclusion of earlier studies: the effect of containment leakage on overall accident risk is small since risk is dominated by accident sequences that result in failure or bypass of containment. For accidents in which the containment integrity remains intact, the effect of containment leakage on risk is small and approximately linear. On an expected individual dose basis, the effect of containment leakage is small.

Given these findings, and considering the costs associated with leakage testing, NUREG/CR-

4330 concluded that incentives exist to reevaluate the risk significance of Appendix Jrequirements.

5.2 RISK IMPACTS

5.2.1 Approach

Appendix B, "Approach to Assessing Risk Impacts," provides a more detailed explanation of the risk assessment methodology used in NUREG-1150 (NRC90) and the approach taken in the present study to update the NUREG/CR-4330 (NRC86) results based on NUREG-1150 A summary is provided below.

The NUREG/CR-4330 insights were based on the results of the Reactor Safety Study (RSS) and the Reactor Safety Study Method, Application Program (RSSMAP). The purpose of this update is to incorporate the latest PRA results, notably those in NUREG-1150 and related supporting documentation, namely the NUREG/CR-4550 (NRC90A) and -4551 (NRC90B-F) series of reports.

In the Reactor Safety Study, source terms were developed for nine release categories for the Surry unit. Each of these release categories could be characterized by a particular containment failure mode. Point estimates for release fractions for seven elemental fission product groups were then used to characterize each category. Specific consequence calculations were then performed for each of the release categories. This approach made it easy to evaluate the relative contributions to the consequences of the different containment failure modes, as was done in NUREG/CR-4330 Volume 2.

In NUREG-1150, a number of unit damage states, related to the initiating accident events, were developed for each of the five units considered. Each of these unit damage states could lead to a variety of accident progression bins, depending on the phenomenological assumptions used in the statistical treatment of uncertainties. For example, the Surry unit analyses for NUREG-1150 considered 7 unit damage states, 1906 accident progression bins, and 200 statistical samples for each combination. A source term consisting of nine elemental groups was developed for each non-zero probability combination of unit damage state and accident progression bin, leading to approximately 32,000 combinations. Since it was impractical to perform consequence analyses for each of the source terms, they were allocated to a smaller number of source term groups, 52 in the case of Surry. Specific consequence analyses were then performed for each of these source term groups.

Original computer files generated in the preparation of NUREG-1150 were accessed. Four files for each unit were found to be required: (1) the definition of the accident progression bins, (2) the frequencies of each of the unit damage states and their relationship to the relevant accident progression bin as well as bin probabilities, (3) the expected consequences for each of the 52 source term groups, and (4) the relationship between each unit damage state and accident progression bin to its appropriate source term group.

The information extracted from each set of the above files included the frequencies and expected consequences of each of the source term groups for the base case which included all unit damage states and accident progression bins, the combinations with no containment failure of bypass, and the combinations with containment isolation failure, i.e., pre-existing leakage.

The off-site consequence analyses for NUREG-1150 were performed with MACCS (MELCOR Accident Consequence Code System). MACCS calculates a variety of early, as well as chronic, offsite consequence measures. Latent effects are of primary interest for the present study; the consequence measures used are defined in Table 5-3.

Variable	Definition			
Total latent cancer fatalities	Number of latent cancer fatalities due to both early and chronic exposure.			
Population dose within 50 miles	Population dose, expressed in effective dose equivalent for whole body exposure (person-rem, 1 Sv $=$ 100 Rem), due to early and chronic exposure pathways within 50 miles of the reactor. Due to the nature of the chronic pathways models, the actual exposure due to food and water consumption may take place beyond 50 miles.			
Population dose within entire region	Population dose, expressed in effective dose equivalents for whole body exposure (person-rem), due to early and chronic exposure pathways within the entire region.			
Individual latent cancer risk within 10 miles	The probability of dying from cancer due to the accident for an individual within 10 miles of the unit (i.e., Σ (cf/pop)p, where cf is the number of cancer fatalities due to direct exposure in the resident population, pop is the population size, p is the weather condition probability, and the summation is over all weather conditions; chronic exposure does not include ingestion but does include integrated groundshine and inhalation exposure from $t = 0$ to $t = \infty$).			

Table 5-3. Definitions of Consequence Analysis Results

The base case results, representing total accident risk, repeated what had originally been done and were checked against the published results to verify the correct usage of the data files. The combinations with no containment failure or bypass were used to characterize the risk contribution of the assumed normal (1% per day) containment leakage rate. Subtracting the contribution of the no containment failure cases from the base case gave the results for zero containment leakage. The results for isolation failure were used to derive the expected consequences of a pre-existing large leakage. Using the expected consequences for a large leak together with the probability of no containment failure yielded the potential risk contribution of a large pre-existing leak. These three points were plotted as leakage rate or leakage area versus expected risk and a curve was fitted through the points. It was found that a second order polynomial would accurately reproduce the three points. This polynomial fit was then used to estimate risk impacts of leakage rates above the nominal that had been used in the original analyses.

5.2.2 Results

This section presents the results of a study of the dependence of reactor accident risks on containment leak-tightness for each of the five reactor/containment types analyzed in NUREG-1150. These include:

Unit 1 of the Surry Power Station, a Westinghouse-designed, three-loop, pressurized water reactor in a subatmospheric containment building

 Unit 2 of the Peach Bottom Atomic Power Station, a General Electric-designed, boiling water (BWR-4) reactor in a Mark I containment building

Unit I of the Sequoyah Nuclear Power Plant, a Westinghouse-designed, four-loop, pressurized water reactor in an ice condenser containment building

- Unit 1 of the Grand Gulf Nuclear Station, a General Electric-designed, boiling water (BWR-6) reactor in a Mark III containment building
- Unit 1 of the Zion Nuclear Plant, a Westinghouse-designed, four-loop, pressurized water reactor in a large, dry containment building

A summary of the information extracted from the detailed NUREG-1150 results for each of the five units and the consequence results is presented in Table 5-4. The results for each of the units are discussed below

5.2.2.1 Surry

Figures 5-2 through 5-4 present the curves relating the risk measures as a function of containment leakage rate and effective leakage area for the Surry unit; the risk measures considered are total population exposure per year, total latent cancer fatalities per year, and individual latent cancer risk per year. Increasing the containment leakage rate from the nominal 1 percent per day to 10 percent per day leads to about 1 percent increase in total population exposure; increasing the leakage rate to 100 percent per day leads to a 56 percent increase in total population exposure.

As reported in NUREG-1150 (NRC90), the expected population dose from potential accidents at the Surry unit was calculated as 31 person-rem/year, with a corresponding latent cancer expectation of 5.2E-3 per year. The individual latent cancer risk was found to be 1.7E-9 per year. Containment leakage, at an assumed rate of 1 percent per day, was found to contribute approximately 0.05 percent to these totals.

The design basis leakage rate for the Surry unit is nominally 0.1 percent per day. However, the technical specifications for the unit allow limited time operation with up to 1 percent per day containment leakage rate Also, as noted

Unit	Case	Totai late caucer fatalities (/yr)	nt Population dose within entire region (person- rem/yr)	Individual latent cancer risk < 10 miles/yr
Surry	1 No containmen with leakage ra 1%/day	t failure te at 1 89E-06	5 1 79E 412	6 97E 13
(Subatmospheric, PWR)	2 Early contair m of 0.1 sq ft are	ent leakage 4.20E-06	5 2 48E-02	1-35E-12
	3 Base Case	5 18E-03	3 3 10E + 01	1 74E-09
	1 No containmen with leakage ra 0.5%/day	t failure ile at 6.66E-07	7 4 85E-03	6-49E-13
Peach Bottom	2 Early containing with drywell h	ent failure cad leakage 1 89E-00	9 1 29E-05	3-46E-16
(Mark I, BWR)	3 Early containing with drywell le	ent failure akage 1 08E-01	8 6 79E-05	1 46E-15
	4 Early containm with wetwell le	ent failure 3.99E-08 akage	8 2 56E-04	1 22E-14
	5. Base Case	4.60E-02	3 2.83E+01	4 29E-10
Sequoyah	I No containmen with leakage ra per day	it failure lite at 1% 3.83E-00	6 3.93E-02	1 69E-12
Containment, PWR)	2 Early containing of 0.1 sq ft are	ent leakage 1.15E-0	4 6. 59E- 01	8.35E-11
	3. Base Case	1.36E-0	2 7.97E+01	1.00E-08
	1. No containmen with leakage ra .5%/day	nt failure nte at 1.55E-0	7 I.53E-03	1.01E-13
Grand Gulf (Mark III BWR)	2. Early containm of 0.1 sq ft are	ent leakage 4.18E-0.	5 2.56E-01	1.71E-11
	3. Early containm	ent vent 5.51E-0	6 3.33E-02	1.14E-12
	4. Base Case	9.24E-0	4 5.66E+00	3.29E-10
Zion	 No containment with leakage rational states of the second s	at failure- ate at 1.87E-0	5 0.156	9.96E-12
(Large Dry Containment, PWR)	2 Early contains of 0.1 sq ft an	nent leakage 5.60E-0 ca	4 7.07	4 67E-10
	3 Base Case	2.44E-0	135 6	1 09E-08

Table 5-4. Summary of Risk Analysis Results

_ _ _

-

· The management of the second of

;

else where in this report, in the risk assessment smult deviations from the nominal leakage rate while treated as nominal. For these reasons, both the Reactor Safety Study as well as the more recent NUREG-1150 analyses assumed a leakage rate of 1 percent per day in the accident progression and source term analyses. Thus, the calculated risk contribution already incorporates a significant allowance for greater than nominal leakage rate.

Figure 5-5 compares of the calculated individual latent cancer fatality risk for Surry as a function of containment leakage rate with the NRC's safety goal. The risk is well below the safety goal for the entire range of leakage rates considered.

The NUREG-1150 analyses for Surry considered explicitly early (pre-existing) leakage paths of 0.1 ft² in area; assuming critical flow through an orifice, this would imply an orifice about 4.3 inches in diameter with a corresponding leakage rate at design pressure of about 280 percent per day. The probability of containment isolation failure for Surry was assessed in NUREG-1150 as 2E-4 per year (NRC90B). Contai ment isolation failure contributes less than 0.1 percent of the latent risks from reactor accidents. This low level of risk contribution is due to the low predicted probability of isolation failure; the consequences of containment isolation failure in the event of a severe accident can be substantial.

5.2.2.2 Peach Bottom

Figures 5-6 through 5-8 present the curves relating the risk measures as a function of containment leakage rate and effective leakage area for Peach Bottom; the risk measures considered are total population exposure per year, total latent cancer fatalities per year, and individual latent cancer risk per year. Increasing the containment leakage rate from the nominal 0.5 percent per day to 5 percent per day leads to a barely perceptible increase in total population exposure; increasing the leakage rate to 50 percent per day increases the total population exposure by less than 1 percent 11.2 significantly lower sensitivity of the calculated Peach Bottom risk as compared to Surry is due to the higher containment failure probability for Peach Bottom; since the containment is predicted to fail in a large fraction of core melt scenarios. leakage becomes a lesser consideration Also, in BWRs, the fission product releases undergoscrubbing by the suppression pool even in many scenarios in which the containment may not be isolated. The expected population dose from potential accidents at Peach Bottom was calculated as 28 person-rem/year, with a corresponding latent cancer expectation of 4.6E-3 per year. The individual Intent cancer risk was found to be 4 3E-10 per year. Containment leakage rate, at an assumed rate of 0.5 percent per day, was found to contribute approximately 0.02 percent to these totals

Figure 5-9 compares the individual latent cancer fatality risk for Peach Bottom as a function of containment leakage rate with the NRC's safety goal. The risk is well below the safety goal for the entire range of leakage rates considered.

5.1.2.3 Sequoyah

Figures 5-10 through 5-12 present the curves relating the several risk measures as a function of containment leakage rate and effective leakage area for Sequoyah. Increasing the containment leakage rate from the nominal 1 percent per day to 10 percent per day leads to a less than 1 percent increase in total population exposure; increasing the leakage rate to 100 percent per day leads to an 8 percent increase in total population exposure. The Sequoyah results show a lower sensitivity to containment ieakage rate compared with the Surry results because of a higher predicted early containment failure probability for Sequoyah.

As reported in NUREG-1150, the expected population dose from potential accidents at Sequoyah was calculated as 80 person-rem/year, with a corresponding latent cancer expectation of 1.4E-2 per year. The individual latent cancer risk was found to be 10E-8 per year. Containment leakage, at an assumed rate of 1 percent per day, was found to contribute approximately 0.05 percent to these totals.

Figure 5-13 compares the individual latent cancer fatality risk as a function of containment leakage rate with the NRC's safety goal. The risk is well below the safety goal for the entire range of leakage rates considered.

5.2 2.4 Grand Gulf

Figures 5-14 through 5-16 present the curves relating the several risk measures as a function of containment leakage rate and effective leakage area for Grand Gulf. Increasing the containment leakage rate from the nominal 0.5 percent per day to 5 percent per day leads to less than 1 percent increase in total population exposure; increasing the leakage rate to 50 percent per day increases the total population exposure by about 3 percent. The calculated Grand Gulf risk shows significantly lower sensitivity than the Surry risk because of the higher containment failure probability for Grand Gulf; since the containment is predicted to fail in a large fraction of core melt scenarios, leakage rate becomes a less important consideration. Also, in BWRs, the fission product releases undergo scrubbing by the suppression pool even in many scenarios in which the containment may not be isolated.

The expected population dose from potential accidents at Grand Gulf was calculated as 5.7 person-rem/year, with a corresponding latent cancer expectation of 9.2E-4 per year. The individual latent cancer risk was found to be 3.3E-10 per year. Containment leakage, at an assumed rate of 0.5 percent per day, was found to contribute approximately 0.02 percent to these totals. Figure 5-17 shows the comparison of individual latent cancer fatality risk for Grand Gulf as a function of containment leakage rate with the NRC's safety goal. The risk is well below the safety goal for the entire range of leakage rates considered.

5.2.2.5 Zion

Figures 5-18 through 5-20 present the curves relating the several risk measures as a function of containment leakage r_{12} e and effective leakage area for the Zion 1. Increasing the containment leakage . te from the nominal 1 percent per day to 10 percent per day leads to about a 3 percent increase in total population exposure; increasing the leakage rate to 100 percent per day leads to an approximately 250 percent increase in total population exposure. These results are similar to Surry's.

As reported in NUREG-1150, the expected population dose from potential accidents at the Zion unit was calculated as 136 personrem/year, with a corresponding latent cancer expectation of 2.4E-2 per year. The individual latent cancer risk was found to be 1E-8 per year. Containment leakage, at an assumed rate of 1 percent per day, was found to contribute approximately 0.1 percent to these totals.

Figure 5-21 compares the individual latent cancer fatality risk as a function of containment leakage rate with the NRC's safety goal. The risk is well below the safety goal for the entire range of leakage rates considered.

5.2.2.6 Discussion

Table 5-5 compares the fission product source terms associated with a normal leakage rate with those resulting from an early large leak (isolation failure) for Surry. Normal leakage rate was taken to be nominally 1 percent per day at the design pressure. The early leakage was characterized by a 0.1 ft² opening. The source terms presented have been probability weighted over all the source term groups associated with them. The fission product source terms are given as fractions of the core inventory released from the containment.

Recalling that the 0.1 ft² opening corresponds to a leakage rate of about 280 percent per day, it

	Fission Product Group								
Ng	I	Cs	Tc	Sr	Ru	La	Ce	Ba	
	No Containment Failure, 1%/day Leakage Rate								
.011	1.1E-4	2.1E-8	1.8 E-8	4.2E-9	3.4E-10	4.6E-11	5.2E-10	3.5E-9	
	Early Containment Leakage, 0.1 ft ²								
.44	.075	.064	.036	.0037	8.6E-4	3.1E-4	9.5E-4	.0038	

Table 5-5. Comparison of Source Terms

can be seen that the fission product source terms are not directly proportional to the leakage rate. Among the factors that would influence the magnitude of the releases are: availability of driving forces for leakage, timing of releases relative to the timing of driving forces, fission product removal by sprays, water pools, etc.

At small leakage rates, the loss from the containment atmosphere of gases and vapors, as well as airborne fission products, will have very little influence on accident progression or the inventory available for leakage. Thus, at small leakage rates, one would expect the releases to be proportional to the leakage rate. As the leakage rate increases, the losses from the containment atmosphere may begin to affect the accident progression. For example, containment pressure-time history and magnitude of fission product release could decrease the residence time of airborne species in the containment atmosphere. If leakage is sufficient to compete with other fission product removal processes, the magnitude of the leakage may increase disproportionately with the leakage rate. This is reflected in the results presented here for Surry. The magnitude of the release to the environment cannot increase indefinitely with assumed leakage rate since the inventory available for leakage is limited. For an infinitely large leakage rate, everything released to the containment atmosphere would also be released to the environment. Further discussion of the dependence of fission product releases to the environment on containment leakage rate is provided in Appendix E.

It is instructive to consider some specific items from Table 5-5. The noble gases are not subject to removal by deposition or engineered safety features; thus, their radioactive decay is not considered in the containment response analysis but is included in the off-site consequence calculations. The release of the noble gases (Xe, Kr) increases by a factor of 40 between the nominal leakage and containment isolation failure cases. The relative increases in the releases for the other species are substantially larger; the fractional releases of the other species are, of course, much smaller due to the influence of various deposition mechanisms. The relative increases in the releases of iodine and the other species in comparison with the noble gases indicates clearly that the large leakage is dominating the other fission product removal mechanisms. The increases in releases vary with the fission product group. This is due to differences in the relative timing of the releases as well as to differences in chemical behavior among the groups.

In considering the effects of containment isolation failure on reactor accident progression for the Surry unit, the RSS examined a range of leakage rates with the conclusion that preexisting leakage rates of less than about 200 percent per day would have little effect on the containment response. For critical flow through an orifice, a leakage rate of 200 percent per day corresponds to a 3.6-inch diameter opening in the containment shell. Under the assumption of critical flow, leakage rates would scale directly with leakage area. Pre-existing leakage rates

Risk Impact

greater than this value would affect containment response by precluding other failure modes such as long-term over-pressurization. Thus, leakage rates of this magnitude and smaller were grouped with intact containment. Pre-existing leakage paths of greater than 200 percent per day were considered to constitute containment isolation failure. The probability of containment isolation failure for Surry was assessed by the RSS to be 2E-3. For purposes of fission product source term evaluation, the range of all possible isolation failure sizes was characterized by a leakage rate of 1000 percent per day, corresponding to an opening 8 to 10 inches in diameter.

Using assumptions similar to those of the RSS, the early (pre-existing) leakage path of 0.1 ft² in area explicitly addressed by NUREG-1150 corresponds to an orifice about 4.3 inches in diameter with an associated leakage rate at design pressure of about 280 percent per day. The probability of containment isolation failure for Surry was assessed in NUREG-1150 as 2E-4.

These observations are quite consistent with earlier studies on source term predictions for various containment failure assumptions. In this study (BMI86), the effects of various accidentinduced containment leakage paths on accident progression and fission product source terms were addressed. It was found that accidentinduced leakages equivalent to 0.6 to 1.8 in² in area had little effect on accident progression and that the fission products released to the environment were proportional to the size of opening. In contrast, pre-existing the containment isolation failures 6 inches in diameter were seen to have a significant effect on containment pressure-time history and could lead to disproportionately large releases.

5.2.3 Comparison with Earlier Results

Table 5-6 compares the results of the present work with those given in NUREG/CR-4330, Vol. 2, for Surry, Peach Bottom, and Grand Gulf, the three units common to both studies. The measure of risk employed for this comparison is total population exposure in person-rem per reactor year.

Leakage Rate, %/day	Population Comp Property and Provide Front						
	Surry				Grand Gulf		
	NUREG/ CR-4330	Present	NORBO/		NUREG/ CR-4330	Present Work	
0.5	•	-	151	28.3	250	5.66	
1	71	31.0		-	-	÷	
5	-	-	153	28.3	254	5.67	
10	72	31,3	*	. -	-	_	
50	-	-	174	28.4	288	5.81	
100	82	48.4	-	-	-	-	

Table 5-6. Comparison of Results

Risk Impact

Several notable points arise from this comparison. First, the overall levels of risk in the present study are lower than those previously calculated; this is quite consistent with the NUREG-1150 conclusion that risk estimates should be lower than those in WASH-1400. Second, the present work shows more sensitivity of risk to containment leakage rate for Surry, but less for Peach Bottom and Grand Gulf. This difference is due in part to the earlier study's use of a constant risk dependence on leakage for all the units. The present effort derived separate factors for each unit from the NUREG-1150 results. The difference between Surry and the two BWRs is also attributable to the fact that, for Surry, the containment does not fail in 81 percent of core melt scenarios, whereas the BWRs have a higher probability of containment failure; only when the containment stays intact is leakage potentially significant.

Among the many other reasons for the differences in the quantitative results of the two studies are:

- Accident sequence frequency. The median core damage frequency for Surry in NUREG-1150 is somewhat lower than the corresponding result in the RSS; however, the uncertainty bands on core damage frequency overlap. These differences are explained by differences in the unit systems over the time period between the two studies and significant advances in the state of the art in probabilistic analyses for nuclear power units.
- Source term characterization. The Reactor Safety Study developed source terms for nine release categories for the Surry unit. These release categories are directly analogous to the accident progression bins in NUREG-1150. A point estimate for release fractions for seven elemental fission product groups was then used to characterize each category. In NUREG-1150, source terms were developed for a much larger number of

accident progression bins. A distribution of release fractions was developed for each of the nine elemental groups corresponding to the individual statistical sample members of the uncertainty analysis. For these and other reasons, it is difficult to draw broad inferences about the source terms of the two studies. However, for the early containment failure bins that have the greatest impact on risk, the RSS source terms appear to be larger than the mean values of NUREG-1150 and are typically near the upper bound of the uncertainty range.

- <u>Site-specific consequence analyses</u>. NUREG-1150 performed site-specific analyses instead of adopting the generic site characteristics used in the earlier studies. This will directly affect the quantitative results, all other differences aside.
- <u>Health effects models</u>. The current models have been substantially upgraded from earlier versions.
- Evacuation and protective action models. These factors have a greater effect on acute effects than on overall population exposure. Latent cancer risks are sensitive to the assumed levels of interdiction of land and crops.
- <u>Risk Characterization</u>. The earlier study assumed a linear dependence of risk on containment leakage rate based on the analysis of Hermann et. al.; the present study derived a non-linear dependence based on NUREG-1150 results.

In spite of the differences in the bases of the two studies, the qualitative results are quite similar.

5.2.4 Discussion of Uncertainties

Figure 5-22 (taken directly from NUREG-1150) illustrates the uncertainty range associated with the predicted total latent cancer fatalities per

reactor year. For Surry, for example, the 5 to 95 percent confidence interval is seen to span approximately two orders of magnitude, i.e., from about 3E-4 to about 2E-2 latent cancer fatalities per year. Comparable ranges of uncertainty are found for the other units considered. Containment leakage, at an assumed rate of 1 percent per day, contributes about 0.05 percent to the total risk at Surry; comparable or even smaller contributions were found for the other units. Since the design basis leakage rate for Surry is 0.1 percent per day, the reference risk results already include an order of magnitude "allowance" for increased leakage rate; comparable increases above the design basis leakage rates were incorporated into the assessments for the other units.

Since containment leakage is such a small contributor to overall accident risk, it is clear that at the lower end of the leakage rate ranges considered in this study, any uncertainties associated with the calculated leakage contribution are minuscule in comparison with other uncertainties and therefore uncertainties associated with containment leakage are insignificant.

The NUREG-1150 results for PWRs predict significant probabilities of no containment failure even in the event of core melt accidents. With the containments predicted to remain intact, at the upper end of the leakage rate ranges considered (i.e., 200 - 400 percent per day), containment leakage could lead to several-fold increases in the predicted risk. Since the expected fission product source terms associated with the large leakage cases were substantially lower than those resulting from containment failure or bypass, the uncertainties associated with assessing the leakage contribution at the upper ends of the ranges considered would be lower than those associated with other containment failure modes.

For BWRs, the calculated risks were found to be very insensitive to the assumed containment leakage rates, even at the upper end of the ranges considered. This is a direct consequence of predicted high probabilities of early containment failure for the BWRs, i.e., since containments are predicted to fail a large fraction of the time, the assumed containment leakage rate is not significant. Also, the scrubbing of the fission products by suppression pools even in many scenarios involving large leakages contributes to the observed lack of risk sensitivity to containment leakage rate. Thus, for BWRs, the uncertainties associated with assessing the contribution of containment leakage are small compared with other uncertainties in the quantification of accident risks.

Figure 5-1. Sensitivity of Risk to Containment Leakag Rate

Figure 5-2. Population Exposure as Function of Containment Leakage Rate for Surry

Figure S-3. Total Latent Cancer Risk as Function of Containment Leakage Rate for Surry

.

The second se

5-17

Figure 5-5. Comparison of Individual Latent Cancer Risk for Surry with NRC Safety Goal

1

\$

۰,

Figure 5-7. Total Latent Cancer Risk as Function of Containment Leakage Rate for Peach Bottom

Leak Area, sq in

Figure 5-9. Comparison of Individual Latent Cancer Risk for Peach Bottom with NRC Safety Goal

Figure 5-10. Population Exposure as Function of Containment Leakage Rate for Sequoyah

Containment Leakage Rate, % per day

9445, 749-14 147-1, -8, -4

....

Figure 5-13. Comparison of Individual Latent Cancer Risk for Sequoyah with NRC Safety Goal

1

Containment Leakage Rate, % per day

Figure 5-14. Population Exposure as Function of Containment Leakage Rate for Grand Gulf

Figure 5-15. Total Latent Cancer Risk as Punction of Containment Leakage Rate for Grand Gulf

ł,

Figure S-16. Individual Latent Cancer Risk as Punction of Containment Leakage Rate for Grand Gulf

o

Containment Leakage Rate, % per day

Figure 5-18. Population Exposure as Function of Containment Leakage Rate for Zion

Containment Leakage Rate, % per day

,

c

Figure 5-21. Comparison of Individual Latent Cancer Risk for Zion with NRC Safety Goal

6. Alternatives

The NRC considers the existing 10 CFR Part 50, Appendix J to be a prescriptive regulation. Prescriptive regulations are written with a high degree of specificity, leaving proportionately less flexibility and discretion to the licensee. To e'minate requirements that are marginal to safety, the NRC is adopting a performance-based approach to developing regulatory requirements. Performance-based regulations will include goals and limits based upon the operating history of equipment and components, i.e., an inherently more risk-based approach. Performance-based regulations also afford more flexibility and discretion to licensees, especially those whose performance is superior.

In adopting a performance-based regulatory approach, the NRC has adopted the following criteria to guide its decision-making:

Performance-based regulation allows the licensee flexibility to adopt cost-effective methods for implementing the regulatory/safety goals of the original rule. Regulatory/safety objectives should be established in as objective a manner as practical.

The regulatory/safety objectives are derived, to the extent feasible, from risk considerations and their relationship to the NRC's safety goals.

Detailed technical methods for measuring or judging the acceptability of a licensee's performance in achieving the regulatory/ safety objectives are, to the extent practicable, provided in industry standards and guidance documents which could be endorsed in the NRC's regulatory guides.

The new regulation is optional for current licensees so that licensees can decide to remain in compliance with current regulations.

• The regulation is supported by necessary modifications to or development of the full

body of regulatory practice including, for example: standard review plans, inspection procedures, regulatory guides, and other regulatory documents.

• The new regulation is formulated to provide incentives for innovations leading to improvements in safety through better design, construction, operating, and maintenance practices.

As demonstrated in Chapter 5, the insensitivity of calculated reactor accident risks to containment leakage rate suggests existing leaktightness requirements could be relaxed without significantly affecting potential impacts on the health and safety of the public. The present study identifies alternatives to the existing containment leakage-testing requirements including: (1) relaxation of the allowable leakage rates, (2) reduction in the frequency of leakagerate testing, and (3) use of on-line monitoring Additionally, Entergy Operations, systems. Inc., the operator of the Grand Gulf Nuclear Station (GGNS), has applied for an exemption from Appendix J requirements and has proposed an alternative testing program.

6.1 INTEGRATED LEAKAGE-RATE (TYPE A) TESTS

Of the Appendix J test methods, integrated leakage-rate testing is the only method capable of detecting all existing leaks in the reactor containment system. However, Type A testing can be performed only during shutdowns, precluding other activities while such testing is in progress. For these reasons, integrated leakage-rate testing is performed infrequently. Further, as discussed in Chapter 4, local leakage-rate tests (LLRTs) can find a very high percentage of leaks in containment.

Alternatives to current integrated leakage-rate testing that have been considered include relaxation in allowable leakage rates as well as a decrease in the frequency of such tests.

Regulatory/Safety Objective

To allow the licensees more flexibility in the allocation of resources while maintaining a high degree of assurance of containment integrity. Risk impact, as measured by expected population exposure derived from probabilistic risk assessments, is the yardstick by which various alternatives are measured.

As discussed in Chapter 5, past and current probabilistic risk assessments demonstrate that population risk is quite insensitive to containment leakage rate. The risk assessment for the Surry unit assumes a leakage rate 10 times higher than the design level. Even with a conservative leakage rate, the incremental risk due to containment leakage is only about 0.05 percent of the total. Considering the NRC's salety goals, the individual latent fatality risk for Surry is assessed to be about three orders of magnitude below the goal. Even for assumed containment leakage rates of several hundred percent per day, the calculated increase in risk is still orders of magnitude below the goal. mparable results are found for the other units considered in this study. Also, the incremental contribution of containment leakage is well within the overall uncertainty bounds of the risk assessments for a very broad range of assumed containment leakage rates.

Leakage Rate

As indicated in the discussion of leakage-rate test experience in Chapter 4, the leakage rates observed in a significant fraction of "failed" leakage-rate tests are only marginally above the specifications. Thus, a relaxation of leaktightness requirements would reduce the number of failed tests and minimize the potential need for retesting. Relaxation of leak-tightness requirements could also facilitate shorter test periods, thus permitting more of the tests to be conducted at a fraction of the nominal 24-hour duration. A range of modified leak-tightness requirements was considered.

Frequency

As noted in Chapter 2, current regulations require the performance of three integrated containment leakage-rate tests over a 10-year interval. If a facility has poor experience with these tests, the frequency could concervably be increased to every shutdown for refueling. In practice and with proper justification, the NRC permits increased LLRTs in lieu of increased ILRTs. Due to the insensitivity of reactor accident risk to leakage rate, and because under current practice only a small fraction of excessive leakages is being detected by integrated leakage-rate testing, it is appropriate to consider alternatives extending the interval between such tests. Accordingly, testing intervals of two times in 10 years, one in 10 years, and one in 20 years were identified for analysis.

GGNS is proposing to establish a 10-year interval for Type A testing. GGNS has performed a preservice Type A test and two periodic Type A tests. The first periodic type A test was unacceptable due to four Type C penetration leakages for which corrective action has been implemented. The other two Type A tests were successful.

Potential Issues

Under current regulations, reactor siting is dependent upon the containment leak-tightness specifications. Thus, relaxation in leak-tightness requirements would require analysis to assess compatibility with the siting requirements in 10 CFR Part 100.

6.2 LOCAL LEAKAGE-RATE (TYPE B & C) TESTS

As with the ILRT, possible alternatives to current Type B and C tests include relaxation in allowable leakage rates as well as a decrease in frequency of testing.

Regulatory/Safety Objective

Same as stated for Type A tests.

Leakage Rate

Under current practice, local leakage-rate testing is performed on all containment penetrations and containment isolation valves during each refueling shutdown. Any significant leakages that are detected are repaired (either because a regulatory limit may be exceeded or because of good practice), even if they do not greatly affect the overall containment minimum path leakage rate. Thus, while the number of repairs performed to correct component leakage might decrease slightly, it is not clear that any significant benefit would be derived from a relaxation of total allowable leakage rate as applied to local leakage-rate testing.

Frequency

Under current requirements, local leakage-rate testing is conducted at every refueling shutdown, but no longer than at 2-year intervals. Under current practice, testing is performed prior to the integrated containment leakage-rate test, and any local leakages that are found are repaired before the integrated test. The leakage reductions from any such repairs are added to the actual leakage measured during the integrated test to determine the "as-found" containment leakage rate. Historically, local leakage-rate testing is conducted simultaneously with other shutdown activities, thus, they have relatively less impact on operations than ILRTs, and the costs associated with the tests are limited to the expense of conducting the test itself. Recent information supplied by NUMARC indicates that system out-of-service-time can affect the outage critical path (NUM94). Consequently, the alternative of decreasing the frequency of local leakage-rate testing has been considered.

A specific proposal for lessening the frequency of local leakage-rate testing has been advanced by the Grand Gulf Nuclear Station. GGNS reports that its Type B & C testing indicates about a 95 percent success rate. GGNS also indicates that most of the observed leakages are limited to selected components that experience repeated failures. Based on this experience, GGNS proposes a revised approach to local leakage-rate testing in which any penetration that successfully passes two successive tests need not be tested until the time of the next 10-year integrated leakage-rate test. Any penetration that fails a test would have to be retested each shutdown until two consecutive successes are observed. Such an approach is an example of a performance-based regulation that offers the promise of reducing the amount of local leakagerate testing that would be required.

Specifically, GGNS proposes to establish Type B & C test intervals based on the performance history of components.

- Components that are known to have a history of excessive leakage, such as the main steam and feedwater isolation valves, will remain on the current test interval of 2 years.
- The test intervals for the remaining components will be as follows:
 - 2 years for components that have passed only one test or failed the previous test,
 - 5 years for components that have passed 2 consecutive tests,
 - 10 years for components that have passed 3 consecutive tests.

It has also been proposed that statistical sampling techniques be employed in lieu of testing all valves and penetrations during each test. In principle, if enough valves and penetrations in the sample pass the initial prescribed tests, no further testing would be required until the next scheduled test period. If the sample doesn't pass, a greater sample size would be selected for testing, up to and including all components, until a successful result is obtained. Such an approach is similar to the GGNS proposal discussed above.

Another approach is to limit frequent testing to only those leakage paths that have a potential risk significance. Such an approach eliminates small penetrations from consideration and limits testing to only the larger penetrations. Examination of typical distributions of penetration size versus number suggest that only a small number of penetrations would be excluded by this approach.

Appendix A presents an in-depth evaluation of leakage-rate experience for a two-reactor nuclear power station.

Potential Issues

As discussed in Chapter 4, local leakage-rate testing experience indicates that some isolation valves have exhibited leakage rates greater than the test equipment can quantify. However, the overall leakage rate has generally remained within acceptable limits because penetrations are normally redundant. This lack of quantification of individual leakage paths precludes the development of models that correlate containment leakage rate with time between tests. This lack of quantification also makes it difficult to assess the potential risk impacts of alternate local leakage-testing schedules.

6.3 ON-LINE MONITORING

On-line monitoring has been considered as a possible alternative and/or a supplement to existing containment leakage-testing methods. On-line monitoring would have the advantage of providing a continuous indication of certain aspects of containment integrity. OLM appears to be well suited to detecting possible "gross" containment isolation failures in systems directly connected to the containment atmosphere; however, OLM would not detect isolation valve leakages in systems closed to the containment atmosphere during normal operation.

Regulatory/Safety Objective

Same as stated for Type A tests. Additionally, to detect certain unintentional breaches of containment integrity on a continuous basis.

As noted earlier, past and current probabilistic risk assessments demonstrate that population risks are quite insensitive to containment leakage rate. Since on-line monitoring appears to be well suited to detecting unintentional breaches of containment integrity such as containment isolation failure, it is instructive to consider the risk impact of this containment failure mode. In NUREG-1150, the PRA model results for the Surry unit found the probability of containment isolation failure to be 2E-4. The expected population risk contribution of containment isolation was found to be approximately 0.1 percent of the total of 31 person-rem/yr.

Potential Issues

Since the various on-line monitoring concepts operate at or near normal containment pressure, their sensitivities may be limited and may thus require finite time periods for performing the required leakage-rate measurements. Thus, in practice, on-line monitoring may provide frequent periodic status of containment integrity. On-line monitoring would have the disadvantage of being able to detect leakages only through direct air paths. Also, since the containment leakage rates at normal conditions cannot be extrapolated to those at accident temperatures and pressures with any degree of accuracy, OLM does not accomplish the same objectives as the integrated containment leakage test.

6.4 PERFORMANCE-BASED ALTERNATIVES

Performance-based alternatives are defined as variations in current Appendix J leak-tightness.

La 11, 12, 255 3

and testing frequency requirements. On-line monitoring is considered separately.

Leakage Rate

For both ILRTs and LLRTs, relaxing the acceptance criteria is considered in combination with changes in testing frequency as defined below.

Frequency

For ILRTs, alternatives considered to the baseline of three ILRTs every 10 years are testing intervals of two times in 10 years, one in 10, and one in 20 years.

For LLRTs, which involve individual testing of multiple penetrations and valves, variation of the frequency is more complicated. The baseline requirement (in the current Appendix J) is basically 100 percent testing at least every 2 Extensive data from previous tests vears. indicate that virtually all failures are associated with Type C valves, and it has been postulated that these failures are largely repetitive (i.e., "leakers" are known) (NRC93B). Thus, testing only lower-reliability isolation valves on the current at-least-once-every-2-year schedule is one alternative. However, a large data base will be necessary to support the assertion that the "leakers" are known.

Alternatives

To estimate the potential cost savings, a testing schedule consistent with the current requirements must be defined; then, alternative testing schedules can be compared to it. Most reactors are licensed for 40 years and operate on an 18-month refueling cycle. With consideration of outage times, this results in 24 power cycles over the lifetime of the reactor. Without license extension, the average reactor has about 20 years of operations remaining. Therefore, the baseline costs of remaining Appendix J testing are those associated with Power Cycles 13 through 24. An idealized 20-year test schedule, consistent with Appendix J and the 10-year in-service inspection requirement, is used to estimate the present worth of the remaining costs of complying with the current Appendix J requirements. The schedule assumes that LLRTs (Type B & C tests) are conducted every refueling outage and that ILRTs (Type A test) are conducted every other refueling outage.

To evaluate the impact of license extension, the assumed testing schedule was extended to cover an additional 20 years of operation (Power Cycles 25 through 36).

Costs of the alternatives are estimated by making appropriate modifications (cost per test and/or frequency of tests) to the 20-year and 40-year baseline estimates.

An additional alternative would impose a requirement to design, install, and operate an on-line monitoring system.

<u>Alternative 1</u> maintains the current Appendix J frequency requirements but relaxes the acceptance criteria.

<u>Alternative 2</u> maintains the current Appendix J acceptance criteria but relaxes the ILRT frequency from three per 10 years to two per 10 years.

<u>Alternative 3</u> relaxes the current Appendix J acceptance criteria and relaxes the ILRT frequency from three per 10 years to two per 10 years.

Alternative 4 maintains the current Appendix J acceptance criteria but relaxes the ILRT frequency from three per 10 years to one per 10 years.

<u>Alternative 5</u> relaxes the current Appendix J acceptance criteria and relaxes the ILRT frequency from three per ten years to one per 10 years.

<u>Alternative 6</u> maintains the current Appendix J acceptance criteria but relaxes the ILRT frequency from three per 10 years to one per 20 years.

<u>Alternative 7</u> relaxes the current Appendix J acceptance criteria and relaxes the ILRT frequency from three per 10 years to one per 20 years.

<u>Alternative 8</u> maintains the current Appendix J acceptance criteria and the ILRT frequency of three per 10 years but relaxes LLRTs to allow testing of only the "lower-reliability" penetrations during refueling outages.

<u>Alternative 9</u> relaxes the current Appendix J acceptance criteria and maintains the ILRT frequency at three per 10 years, but relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

Alternative 10 maintains the current Appendix J acceptance criteria, relaxes the ILRT frequency to two per 10 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

Alternative 11 relaxes the current Appendix J acceptance criteria, relaxes the ILRT frequency to two per 10 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages. Alternative 12 maintains the current Appendix J acceptance criteria, relaxes the ILRT frequency to one per 10 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

<u>Alternative 13</u> relaxes the current Appendix J acceptance criteria, relaxes the ILRT frequency to one per 10 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

Alternative 14 maintains the current Appendix J acceptance criteria, relaxes the ILRT frequency to one per 20 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

<u>Alternative 15</u> relaxes the current Appendix J acceptance criteria, relaxes the ILRT frequency to one per 20 years, and relaxes LLRTs to only "lower-reliability" penetrations during refueling outages.

The alternatives defined above are summarized in Table 6-1. The risk impacts of each of these alternatives are evaluated in Chapter 7.

ALTERNATIVE	FREQUENCY				LEAKAGE RATE	
	NO CHANGE		RELAX		NO	DELAY
	٨	18/C	A (Tests per X Yeans)	B/C	CHANGE	RELAX
1	X	x				x
2		x	2/10		x	
3		x	2/10			x
4		x	1/10		x	
5		x	1/10			x
6		x	1/20		x	
7		x	1/20			x
. 8	x			x	x	
9	x			x		x
10			2/10	x	x	
11			2/10	x		x
12			1/10	x	x	
13			1/10	X		x
14		3	1/20	X	x	
15			1/20	X		x

Table 6-1. Alternatives

7. Risk Impacts of Alternative Appendix J Requirements

This chapter presents qualitative and quantitative assessments of the consequences of alternatives to the current Appendix J rule. While the quantitative evaluation presents numerical results useful for comparison and for an understanding of the magnitude of the changes under consideration, the qualitative discussion sets the context and lends perspective to the quantitative results. The qualitative discussion addresses items such as the "importance" of containment leakage rate, the relationship between the Appendix J analysis and the NRC's Safety Goal Program, and the uncertainties which are part of this study.

7.1 QUALITATIVE CONSIDERATIONS

Risk Sensitivity of Containment Leakage

Past studies show that overall reactor accident risks are not sensitive to variations in containment leakage rate (NRC86, NRC90). This is because reactor accident risks are dominated by accident scenarios in which the containment fails or is bypassed. Such scenarios, even though they are of very low probability, dominate the predicted accident risks due to their high consequences.

The assessment of the effect of containment leak-tightness on reactor accident risks, described in Chapter 5, confirms the earlier conclusions. The results show that increasing the containment leakage rate several orders of magnitude (100 to 200 fold) over the design basis would have a minimal impact on population risk (ranging from 0.2 to 1 percent for the reactors considered).

Additionally, studies (NRC75) have shown that pre-existing leakage rates of up to 200 containment volume percent per day would have little effect on the containment response. A 200 percent per day leakage rate corresponds to approximately a 3.6-inch diameter opening in the Surry containment shell. The current Appendix J requirements consider the Surry containment to have failed its leakage test if a leakage rate corresponding to less than the area of a pencil point (0.08-inch diameter opening) is found to exist. The disparity between what current state-of-the-art analyses identify as risksignificant and what the current Appendix J regulation requires provides the perspective for the NRC's marginal-to-safety effort.

NRC Safety Goals

The NRC has adopted the principle that nuclear risks should not be a significant addition to other societal risks. They have developed two qualitative goals supported by two quantitative objectives as a means to gauge the adequacy of regulatory decisions regarding changes to current regulations (NRC86C).

The qualitative goals are:

- Individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health.
- Societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risk.

The following quantitative goals are used in determining achievement of the qualitative goals:

• The risk to an average individual in the vicinity of a nuclear power plant of prompt fatalities that might result from reactor accidents should not exceed one-tenth of one percent (0.1 percent) of the sum of prompt fatality risks resulting from other accidents to which members of the U.S. population are generally exposed.

The risk to the population in the area near a nuclear power plant of cancer fatalities that might result from nuclear power plant operation should not exceed one-tenth of one percent (0.1 percent) of the sum of cancer fatality risks resulting from all other causes.

Chapter 5 compares the individual latent cancer fatality risks as a function of containment leakage rate for the reactors assessed in NUREG-1150 (NRC90) and finds that the calculated risks for all the reactors are well below the safety goal (by factors of from 100 to 5000) over the entire range of leakage rates considered.

Uncertainty

1

Ì,

Ì

Chapter 5 also illustrates the uncertainty range associated with the predicted total latent cancer fatalities per reactor year. For Surry, the 5 - 95 percent confidence interval spans approximately two orders of magnitude (from about 3E-4 to about 2E-2 latent cancer fatalities per year). Comparable ranges of uncertainty are found for the other units considered.

Containment leakage, at an assumed rate of 1 percent per day, contributes about 0.05 percent to the total accident risk at Surry; comparable or even smaller leakage contributions to risk were found for the other units. Since the design basis leakage rate for Surry is 0.1 percent per day, the reference risk results already include a 10-fold "allowance" for increased leakage; comparable increases above the design basis leak rates were incorporated into the assessments for the other units.

Since containment leakage is such a small contributor to overall accident risk, it is clear that at the lower end of the leakage rate ranges considered in this study, any uncertainties associated with the leakage contribution are minuscule in comparison with other uncertainties, e.g., prediction of containment

failure mode probabilities and magnitudes of fission product source terms. The NUREG-1150 results for PWRs predict significant probabilities of no containment failure even in the event of core melt accidents. With the containments predicted to remain intact, at the upper end of the leakage-rate ranges considered, i.e., 200 - 400 percent containment volume per day, containment leakage could lead to severalfold increases in the predicted risk. The expected fission product source terms associated with the large leakage cases, considering all possible unit damage states and accident progression bins, were substantially lower than those resulting from containment failure or bypass. Thus, the uncertainties associated with assessing the leakage contribution at the upper ends of the ranges considered would be lower than those associated with other containment failure modes.

For BWRs the calculated accident risks were found to be very insensitive to the assumed containment leakage rates, even at the upper end of the ranges considered. This is a direct consequence of predicted higher probabilities of early containment failure for the BWRs, i.e., since containments are predicted to fail in a large fraction of the postulated core melt accidents, the assumed containment leakage rate does not contribute significantly to the calculated risk. Also, the scrubbing of the fission products by BWR suppression pools, even in many scenarios involving large leakage rates, contributes to the predicted lack of risk sensitivity to containment leakage rate. Thus, for BWRs the uncertainties associated with assessing the contribution of containment leakage are small compared with other uncertainties in the quantification of accident risks.

7.2 QUANTITATIVE IMPACTS

The risk impacts of alternative Appendix J testing requirements include the potential increased doses to members of the public in the event of severe reactor accidents, potential decreased doses to members of the public due to reductions in shutdown risks and valve restoration errors, and decreases in occupational exposure resulting from less frequent or different approaches to containment leakage-rate testing. In this study only the potential increased risks to the public and the decreases in occupational exposure are quantitatively addressed. Others, however, have studied the impacts of less frequent testing on shutdown risk, and a summary of their findings is presented later in this section.

As noted earlier, the current study also found that containment isolation failure is a small contributor to reactor accident risk. For the Surry unit, containment isolation failure contributes less than 0.1 percent of the latent risk from reactor accidents; for Sequoyah and Zion, this contribution is less than 1 percent. It has not been possible to quantify the risk contributions of containment isolation failure for the BWRs, since in the NUREG-1150 accident sequence binning procedure, containment isolation failures have been combined with other accident-induced containment failure modes. Containment isolation failures were not assessed explicitly due to their acknowledged low risk significance. This low level of risk contribution is due at least in part to the low predicted probabilities (2E-4 to 7E-3) of isolation failures. The consequences of containment isolation failure in the event of a severe accident can be substantial.

Shutdown Risk

A study of the shutdown risk implications of implementing performance-based changes to 10CFR50 Appendix J has been performed by EPRI, the Electric Power Research Institute (EPRI94). Their study included:

 A review of shutdown operating experience to identify specific initiating events that have occurred as the result of ILRT and LLRT activities.

- A qualitative evaluation of the potential risk implications of ILRT/LLRT test interval extension, including the identification of impacts on initiating event probabilities, mitigation system unavailabilities, containment performance and operator response
- A quantitative assessment of the risk impact of extending ILRT and LLRT test intervals on the basis of the impact on core damage probability for one BWR and one PWR.

Of the 436 shutdown events that were reviewed only 7 were found to be related to ILRT/LLRT testing activities. This experience was used to guide the subsequent assessment of risk implications. The quantified risk benefit was found to be on the order of 10^4 to 10^7 per year reduction in predicted core damage frequency. The estimated risk benefit for the BWR was found to be larger than for the PWR. The shutdown risk benefit is due to the reduced opportunity for RCS drain-down events and a reduction in the time spent in configurations where the performance of mitigation systems may be impaired.

The authors of the study conclude that the estimated risk benefit of extended leakage-testing intervals to be measurable. They do not expressly specify the baseline core damage frequencies for the two units considered. Assuming a core damage frequency on the order of 10⁻⁵ per year, the calculated benefit is of the order of one percent or less. Thus, the calculated risk benefit would appear to be in the same range as the calculated risk impacts.

Type A ILRT

Review of leakage-rate testing experience, described in Chapter 4, indicates that only a small percentage (3 percent) of leakages that exceed current requirements (referred to as Type A test failures) are actually detectable only by Type A testing. Further, the leakage rates observed in these few Type A test failures were only marginally above currently prescribed limits. These observations, together with the insensitivity of reactor accident risk to the containment leakage rate, suggest that reducing Type A leakage-test frequency would have a minimal impact on public risk.

Type B & C LLRT

North Anna

The discussion of leakage-rate experience in Chapter 4 indicates that frequent Type B leakage-rate testing of electrical penetrations is of limited use. In approximately 27 unit-years of operation at North Anna, no significant leakage has been found for electrical penetrations. Other units report similar experiences.

North Anna routinely tests and frequently replaces seals on air-locks and other inflatable seals. Thus, there appears to be little basis for trying to characterize the time-dependent performance of such components.

Leakage-rate experience at North Anna and other sites indicates that Type C leakage-rate testing detects the vast majority of leakages that exceed current acceptance criteria. It has been asserted (NRC93B) that isolation valve (Type C) leakages are generally associated with problem components whose identity is known. Thus, by concentrating testing on such "leakers," the required extent of testing would be minimized while assuring a high degree of containment integrity. From the detailed examination of Type C local leakage-rate testing results in this study, it has not been possible to correlate the likelihood of leakage with time based on component parameters. A statistical analysis was performed to determine the correlation of component parameters (type of component and operator, type of service, number of operations per operating cycle, number of operating hours per operating cycle, manufacturer, type, and flow rate, temperature and pressure seen by component during operation) with the time between maintenance events for similar components. At best, approximately 26 percent of the variability in time between maintenance events could be explained using the above component parameters. A correlation exists between the likelihood of leakage and time since last maintenance considering all components. There is a failure rate per unit time and, if a component leaks at outage n, a nigher probability that the same component will leak at outage n+1 or n+2. (The failure rate, lambda, equals 1.3 x $10^{-2}/yr$ per component, and the conditional probability of failure for components which have previously failed, beta, equals 0.34. Failure is defined as a maintenance event.)

In addition, the leakage rate of a component when it does leak cannot be quantified. This is because the equipment used for local leakagerate testing can quantify leaks only up to a certain size (e.g., approximately 257 scf/h at North Anna). The range of equipment used for local leakage-rate testing is comparable to the maximum acceptable leakage rate. Since the sum of all local leakages must be below 0.6 L., any individual penetration or value that approaches such a level of leakage obviously requires repair: thus, under current regulations, there is no need or incentive to quantify leakage rates above these levels. Given these limitations, it is not now possible to quantify precisely the risk impacts of reduced frequency of Type C testing. Nevertheless, estimates of such risk impacts have been made using simplifying assumptions.

A statistical model based on the North Anna Type C test experience was developed which can be used to assess changes in risk based on the expected probability of leakage for various alternative testing schemes. Since it has not been possible to correlate the probability of leakage with component parameters, this model assumes a constant failure rate for all components. This failure rate, along with a conditional probability of failure given a failure of the component during the prior two tests, was derived from the North Anna Type C test experience. In this model, component failure is defined as leakage of the component at a rate of 250 scf/h or greater.

Grand Gulf

The GGNS proposal includes an analysis of the expected containment performance under the proposed program. This analysis concluded that the risk impacts of the proposed leakage-testing program are small and within the uncertainties associated with the PRA. Thus, the proposed performance based approach to containment leakage testing is projected to lead to considerable savings in resources with minimal impact on public risk.

Conceptually, the GGNS proposal for Type B & C testing is very similar to test scheme option 3 addressed in Appendix A of this report. An evaluation of the Grand Gulf containment penetration performance history (refer to Appendix A) indicates a component dependent failure factor lower than that derived from the North Anna data and a penetration common mode failure probability comparable to that of Applying these factors to the North Anna. several leakage-testing options indicates that the change in incremental risk due to containment leakage rate relative to the current approach would be smaller based on the Grand Gulf data in comparison with North Anna. However, the difference in results based on the two sets of data is not significant.

Comparison of Risk Assessment Methods Used to Analyze North Anna and Grand Gulf Type B/C Performance-Based Leakage-Test Options

Factors used to analyze Type B/C performancebased test options include leakage-rate and failure-rate data, and the mathematical risk models developed to simulate performance.

Leakage-Rate Data

The GGNS method does not explicitly consider component leakage rates to project the expected containment performance under the proposed program. It is limited to potential increases in containment isolation failure probability. Each penetration component is assigned an allowable leakage rate based on its nominal line size. Considering a penetration consisting of two valves in series, the GGNS method assumes that if both valves leak at a rate greater than their allowed leakage rate, containment leakage rate is greater than allowed. This may be conservative as many individual penetrations may have assigned allowable leakage rates that are less than the allowable containment leakage rate.

The analysis of North Anna leakage rates presented in Appendix A is based on historical data from North Anna. While the North Anna history shows small (measurable) as well as unmeasurable leakages, the analysis of the risk impacts of alternative testing schemes is based only on leakage rates of 250 scf/h or greater. The latter represents the limitation of the testing equipment and corresponds approximately to the allowable containment leakage rate. As discussed previously, small leakage rates would have little or no risk impact

Failure-Rate Data

In the GGNS analysis, generic failure rates based on component type are used. Penetration failure rates are calculated based on independent failures of the components comprising a penetration without considering common mode failures. Also, there seems to be the implication that the probabilities of containment isolation failure and excessive leakage rate are the same. Failure to isolate would typically require the failure to close of two valves in series within a penetration. Excessive leakage can take place even if such valves close, but fail to seal tightly. The latter occurrence could be much more probable than the former. Both these considerations introduce nonconservatisms into the analysis; however, in light of the small contribution of containment leakage rate to aucident risk, these nonconservatisms may not be significant

The analysis of the North Anna data did not show a high degree of correlation in component failure rates due to component type. An average failure rate was assigned to all components based on the actual number of component failures observed at North Anna. Common mode factors for both multiple failures of single components and failures of multiple components in a penetration were derived from the analysis of the data.

Mathematical Risk Models

GGNS uses a Bayesian analysis to assess the impact of increases in Type B/C test intervals, and uses the Individual Plant Examination (IPE) results to set limits on the allowable probability of penetration failure.

The GGNS analysis used the results of their IPE to assess both positive and negative risk impacts for the proposed program. The areas of risk impact investigated were:

valve performance initiating event frequencies mitigation system availability shutdown risk containment isolation failure containment bypass

Valve failure modes investigated were:

internal valve leakage failure to open/close on demand valve restoration errors

 unavailability due to test and maintenance The analysis of North Anna presented us Appendix A investigated only the risk impact of valve leakage

On-Line Monitoring (OLM)

A previous study of OLM (NRC88) concluded that such methods would be best suited to detecting gross leakage through direct air paths, i.e., containment isolation failures. As noted earlier for the Surry and Sequoyah units, containment isolation failure has been found to contribute from 0.1 percent to less than 1 percent of the total latent accident risk. Further, containment penetrations exposed to the containment atmosphere may represent only on the order of 10 percent of the total potential leak paths. Given the low risk attributed to isolation failures and the apparently limited capabilities of OLM systems, the potential risk benefit of OLM appears to be limited.

More recent studies, as discussed in Chapter 4, indicate that OLM systems may be capable of detecting leakage rates of the order of a few percent per day. While this level of leakage is above the current technical specification limits in U.S. units, it is still so low as to be essentially inconsequential in terms of its potential risk contribution. Also, OLM would be limited to detecting leak paths directly connected to the containment atmosphere; it would not detect valve leakages in systems closed to containment atmosphere during normal operation. Thus, OLM does not accomplish the same objectives as integrated leakage-rate testing.

7.2.1 <u>Risk Impacts on the Public</u>

Evaluation of the risk impacts for each of the alternatives requires establishing the baseline risks associated with the current Appendix J acceptance criteria and testing frequencies Total reactor accident risk can be represented as the sum of the contributions of various leakage paths: Risk (BL) = \triangle Risk (NL) + \triangle Risk (CF) + \triangle Risk (CB) + \triangle Risk (IF)

where:

BL = Baseline NL = Nominal Leakage CF = Containment Failure CB = Bypass Containment IF = Isolation Failure

Changes in containment leakage rate will not affect the risk contributions due to containment failure, bypass, or failure to isolate. Changes in leakage rate will only affect the risk contribution of those accident scenarios in which the containment remains intact. Thus, the risk impacts of changes in containment leakage rate due to various testing alternatives can be represented as:

> Risk (Alternative) = [Risk (BL) - \triangle Risk (NL)] + \triangle Risk (Alt)

The foregoing expression simply substitutes the incremental risk contribution of leakage associated with alternate testing approaches for the risk contribution associated with nominal leakage under current Appendix J requirements, and the terms in the square brackets represent the risk with zero leakage. Since risk is the product of probability and consequence,

Risk (Alt) = [Risk (BL) - \triangle Risk (NL)] + \triangle Probability (Alt) x Consequence (Alt)

For the evaluation of the risk impacts of the various testing alternatives considered, the last term in the foregoing equation was quantified.

Increasing the allowable leakage rate would not affect the probability of leakage. Thus, for alternatives which include increased leakage rate (identified in Table 6-1 as Alternatives 1, 3, 5, 7, 9, 11, 13, and 15), only the consequences of increased leakage need to be considered. Using the PRA for Surry as an example (NRC90), the base case risk is determined to be 0.31 person-Sievert (31 person-rem) per reactor The contribution to this total risk year. attributed to accident scenarios that do not involve the bypass or failure of containment (i.e., the "leakage" scenarios) is very small, on the order of 0.00018 person-Sievert (0.018 person-rem) per reactor year for an assumed leakage rate of 1 percent per day (the design leakage rate for Surry is 0.1 percent per day). The relative contributions of containment leakage rate to reactor accident risk for the other units considered in Chapter 5 are comparable or lower than those for Surry. Since the relative contribution of leakage to reactor accident risk for Surry envelopes those for the other units, the following discussion is based on the Surry The essential insights would be results. unchanged if the actual numerical results for other units were utilized. Where somewhat different insights are derived from the results for other units, they are noted.

For the alternatives involving increases in the ILRT testing intervals (identified in Table 6-1 as Alternatives 2 through 7 and 10 through 15), it was assumed that the characteristic magnitude of leakages detectable only by ILRTs would not change, but the probability of leakage would change due to the longer intervals between tests. As stated in Chapter 4, ILRTs detected leakages in only about 3 percent of all tests, and these leakages were characterized by a leakage rate of about two times the allowable. For the existing ILRT frequency of three tests every ten years, the average time that a leak could be undetected is 1.5 years (3yrs/2). If the frequency is changed to two tests every ten years, the average time that a leak could exist without detection would be 2.5 years (5yrs/2). This change would lead to a factor of 1.67 increase (2.5/1.5) in the likelihood of a leak that is detectable only by ILRT testing. However, since ILRTs detect leaks in only about three percent of all tests, this change would result in about a five percent (1.67 x 3 percent) increase in the probability of an undetected leak.

is or alternatives involving increases in the LLRT testing intervals tidentified in Table 6-1 as Alternatives 8 through 15), small deviations from the allowable leakage were demonstrated to have minimal impact on risk. Thus, only unquantified leakages were considered in the risk impact analysis since they had the potential of being risk significant. The analyses in Appendix A found that the various performance-based alternatives considered were bounded by a factor of three increase in the likelihood of an unquantified leakage. Since the differences in the increase in leakage probability among the various alternatives were not large, it was decided to assess only the factor of three increase in the probability of an unquantified leakage, rather than considering all the cases individually. This defined the likelihood of increased leakage due to decreases in the LLRT The Appendix A analysis also frequency indicated that under the existing leakage-test requirements, unquantified leakages could be expected approximately 15 percent of the time. To assess incremental risk due to unquantified leakage, a characteristic leakage rate is necessary

NUREG-1150 provided a characterization of the consequences of containment isolation failure; these are large leakages resulting from the failure of containment penetration isolation valves to close. Since the types of leakages found by LLRT are due to failure to seal rather than the failure to close, the leakages and consequences of the former are smaller than those of the latter. Thus, the consequences of the types of failures detected by LLRTs were taken to be the median of the isolation failures and nominal leakage. This approach recognized that the unquantified leakages could substantially exceed nominal levels without using overly conservative characterizations such as containment failure. For Surry, NUREG-1150 calculated an average consequence for core melts with containment isolation failure of 3.874E6 person-rem; for an average core melt with nominal leakage the corresponding consequence is 526.9 person-rem. The median of these values is 45,180 person-rem, this is the value

used to characterize the potential consequences of unquantified leakages

Alternative 1 Alternative 1 simply relaxes the acceptable leakage rate criteria, testing frequencies are unchanged. As the PRA results for Surry are based on a 1 percent/day leakage rate and as the actual design basis leakage rate for Surry as well as many other PWRs is currently 0.1 percent/ day, the conclusion is that a relaxation of the leakage rate within a factor of 10 will not have a distinguishable impact on the population risk. Embedded in the 0.018 personrem/year leakage contribution is an average consequence of about 530 person-rem and a frequency of about 3.39E-5 of core melt with no containment failure. Increasing the allowable leakage by a factor of ten will have no effect on accident risk, since a leakage rate of that magnitude has already been assumed in the risk assessment. Increasing the leakage rate by a factor of one hundred over the design basis value, to 10 percent per day, would increase the containment leakage contribution to risk from 0.00018 to 0.0018 person-Sievert (0.018 to 0.18 person-rem) per year. Thus, the overall risk of this alternative will be (for convenience, the units will not be repeated in the following):

> Risk (Alt 1) = (31.0 - 0.018) + 0.18 =31.162 person-rem/year

The percent increase in risk of Alternative 1 over the base case is:

 $[31.162 - 31.0] \times 100 \% = 0.52 \%$

Thus, the increases in risk contribution due to leakage, assuming a factor of 100 increase in the allowable leakage rate and rounding off, range from about 0.2 to 1 percent for the five reactors considered.

<u>Alternative 2</u>: Alternative 2 retains the current leakage rate criteria and LLRT frequencies and reduces the frequency of ILRTs from three per 10 years to two per 10 years. As indicated earlier, ILRTs detect about 3 percent of leaks that are otherwise undetectable. As no data are available to establish the time-dependency of failures, it is reasonable to assume that failures occur randomly over time. Relaxing the ILRT frequency from 3 in 10 years to 2 in 10 years will increase the average time that a leak-that is detectable only by ILRTs-goes undetected, from 18 to 30 months, a factor of 1.67. Since ILRTs detect only about 3 percent of leaks, this results in only about a 5 percent increase in the overall probability of leakage. The small number of leaks detectable on'y by ILRTs were characterized by only marginal deviations from existing requirements $(-2 L_{1})$. Combining these factors, i.e., increasing the probability of leakage by 5 percent and doubling the incremental risk contribution of leakage, yields a risk associated with this alternative of:

> Risk (Alt 2) = (31.0 - 0.018) +(1.05 x 2 x 0.018) = 31 0198 personrem/year

The percent increase in risk of Alternative 2 over the base case is:

$$[(31.0198-31.0)/31.0] \times [00\% = 0.064\%$$

Thus, the increase in risk contribution due to a relaxed ILRT test frequency from three in ten to two in ten years and rounding off, is about a 0.06 percent for Surry; the corresponding results for the other units ranged from 0.02 to 0.13 percent. The incremental risk impact of other ILRT test frequencies is calculated similarly.

Alternative 3: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the two in 10 years ILRT frequency of Alternative 2, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., an incremental risk of about 0.0022 person-Sievert (0.22 person-rem) per year. This incremental increase is barely perceptible within the total calculated accident risk of 0 31 person-Sievert (31 person-rem) per year. For the five reactors considered, the calculated risk increases range from 0.2 to 1.3 percent Alternative 4: Alternative 4 is identical to Alternative 2, except the ILRT frequency is reduced to one in 10 years. Relaxing the ILRT frequency from 3 in 10 years to 1 in 10 years will increase the average time that a leak that is detectable only by ILPTs goes undetected from 18 to 60 months, a _tor of 3 33 increase. Since ILRTs detect only about 3 percent of leaks, this results in about a 10 percent increase in the overall probability of leakage. The small number of leaks detectable only by ILRTs were characterized by only marginal deviations from existing requirements $(-2 L_{1})$. Combining these factors, i.e., increasing leakage probability by 10 percent and doubling the incremental risk contribution of leakage, yields a 0.07 percent risk increase for Surry; the corresponding results for the other units ranged from 0.02 to 0.14 percent.

Alternative 5: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the one in 10 years ILRT frequency of Alternative 4, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., an incremental risk for Surry of about 0.0022 person-Sievert (0.22 personrem) per year. This incremental risk is imperceptible within the total calculated accident risk of 0.31 person-Sievert (31 person-rem) per year. The increases range from 0.2 to 1.3 percent for the five reactors.

Alternative 6: Alternative 6 is identical to Alternative 2, except the ILRT frequency is reduced to one in 20 years. Relaxing the ILRT frequency from 3 in 10 years to 1 in 20 years will increase the average time that a leak-that is detectable only by ILRTs-goes undetected from 18 to 120 months, a factor of 6.67. Since ILRTs detect only about 3 percent of leaks, this results in about a 20 percent increase in the overall probability of leakage. The small number of leaks detectable only by ILRTs were characterized by only marginal deviations from existing requirements $(-2 L_{a})$ Combining these factors, i.e., increasing leakage probability by 20 percent and doubling the incremental risk contribution of leakage, yields a 0.13 percent risk increase for Surry; the corresponding results for the other units ranged from 0.02 to 0.16 percent.

<u>Alternative 7</u>: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the one in 20 years ILRT frequency of Alternative 6, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., an incremental risk for Surry of about 0.0023 person-Sv (0.23 person-rem) per year. This incremental risk is barely perceptible within the total calculated accident risk of 0.31 person-Sv (31 person-rem) per year. The increases range from 0.2 to 1.3 percent for the five reactors.

Alternative 8: Alternative 8 maintains the current Appendix J leakage-rate criteria and ILRT frequency, but reduces LLRTs to only "lower reliability" penetrations during refueling outages. The risk impacts of this change can be estimated in a manner similar to that used for changes in the ILRT frequency if the impact of such reduced testing on leak probability can be assessed. The ILRT data base as well as the detailed examination of the North Anna leakagetesting experience indicate about a 15 percent chance that the allowable leakage rate will be exceeded at any point in time. The alternate Type C testing schemes discussed in Chapter 6 and Appendix A appear to be capable of reducing the amount of testing without dramatically increasing the probability of risksignificant containment leakage. A factor of three increase in the probability of exceeding allowable leakage rate appears to envelope the results for the various performance-based alternatives considered in Appendix A. The incremental risk increase of performance-based LLRT testing is the product of a factor of three increase in the likelihood of such leakage, times the fraction of time that such leakages existed under the current requirements, times the consequences of such leakages, times the frequency per year of core melts with no containment failure. Using Surry as the example, the risk of changing LLRT testing intervals is:

Risk (Alt 8) = $(31.0 - 0.018) + (3 \times 0.15 \times 45,180 \times 3.3922E-5) = 31.6717$ person-rem/year

The percent increase in risk of Alternative 8 over the base case is:

$$[(31.6717 - 31.0)/31.0] \times 100\% = 2.2\%$$

Thus, the incremental risk impact for Surry of reduced type C testing corresponds to a 16.8 percent per day leakage rate 45 percent of the time, with an increase in population exposure of 2.2 percent; the range for the other units is 0.2 to 4.4 percent.

<u>Alternative 9</u>: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the lower-reliability-penetration-only LLRT testing of Alternative 8, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., 0.0087 person-Sievert (0.87 person-rem) per year for Surry, corresponding to a 2.8 percent increase. For the other units the increases range from 0.4 to 5.6 percent.

Alternative 10: Alternative 10 maintains the current leakage-rate criteria but relaxes the ILRT frequency to two in 10 years and LLRTs to "lower-reliability" penetrations only during refueling outages. As previously noted, the change in ILRT frequency results in an imperceptible increase in accident risk. The change in LLRT testing combined with the ILRT change had a 0.3 percent risk increment for Surry. The increases for the other units range up to 4.6 percent.

<u>Alternative 11</u>: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the reduced ILRT and LLRT frequencies of Alternative 10, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., 0.0091 person-Sievert (0.91 person-rem) per year for Surry, a 2.9 percent increase. For the other units the increases range from 0.4 to 5.8 percent.

Alternative 12: Alternative 12 maintains the current leakage-rate criteria but relaxes the ILRT frequency to one in 10 years and LLRTs to "lower-reliability" penetrations only during refueling outages. The change in ILRT frequency together with reduced LLRTs were assessed to lead to increases of 0.2 to 4.7 porcent in overall accident risk.

<u>Alternative 13:</u> Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the reduced ILRT and LLRT frequencies of Alternative 10, the risk impact is simply the sum of the risk impacts calculated for those two alternatives, i.e., 0.0091 person-Sievert (0.91 person-rem) per year in the case of Surry, a 2.9 percent increase. The results for the five units range from 0.4 to 5.8 percent increases in calculated risk.

<u>Alternative 14</u>: Alternative 14 maintains the current leakage-rate criteria but relaxes the ILRT frequency to one in 20 years and LLRTs to "lower-reliability" penetrations only during refueling outages. These changes in testing frequency are estimated to increase overall risk. from 0.2 to 4.7 percent.

Alternative 15: Since this alternative combines the relaxed leakage-rate criteria of Alternative 1 with the reduced ILRT and LLRT frequencies of Alternative 14, the risk impact is simply the sum of the risk impacts calculated for those two alternatives. The resulting increases for the five units range from 0.4 to 5.8 percent.

7.2.2 <u>Risk Impacts on Occupational</u> <u>Exposure</u>

1

Changes in the Appendix J requirements would result in lower routine occupational exposures of the workers involved in conducting the ILRTs and LLRTs. Based on data from a single utility. ILRTs result in approximately 0.004 person-Sievert (0.4 person-rem) per test and LLRTs result in approximately 0.024 person-Sievert (2.4 person-rem) per test. For alternatives that alter the ILRT frequency, the unated occupational exposure for ILRTs would be eliminated for each test that is eliminated. For alternatives that provide for "lower reliability" LLRTs, the LLRT exposure would be reduced in proportion to the number of penetrations not tested. No change in exposures is expected for occupational alternatives that simply relax the leakage-rate criteria.

For the 20-year baseline, all remaining testing (ILRTs and LLRTs) is estimated to result, on a per reactor basis, in 0.284 person-Sievert (28.4 person-rem) of occupational exposure. For the 40-year baseline, the estimate is 0.596 person-Sievert (59.6 person-rem) of exposure. The reduction in occupational exposure for each of the alternatives is presented below.

<u>Alternative 1</u>: no change for either the 20-year or 40-year baseline.

<u>Alternatives 2 and 3</u>: occupational exposures would be reduced by 0.008 person-Sievert (0.8 person-rem) for the 20-year baseline and 0.016 person-Sievert (1.6 person-rem) for the 40-year baseline.

Alternatives 4 and 5: occupational exposures would be reduced by 0.016 person-Sievert (1.6 person-rem) for the 20-year baseline and 0 032 person-Sievert (3.2 person-rem) for the 40-year baseline.

<u>Alternatives 6 and 7</u>: occupational exposures would be reduced by 0.020 person-Sievert (2.0 person-rem) for the 20-year baseline and 0.040 person-Sievert (4.0 person-rem) for the 40-year baseline.

Risk Impact of Alternatives

<u>Alternatives 8 and 9</u>: occupational exposures would be reduced by 0.072 person-Sievert (7.2 person-rem) for the 20-year baseline and 0.144 person-Sievert (14.4 person-rem) for the 40-year baseline.

<u>Alternatives 10 and 11</u>: occupational exposures would be reduced by 0.104 person-Sievert (10.4 person-rem) for the 20-year baseline and 0.208 person-Sievert (20.8 person-rem) for the 40-year baseline. <u>Alternatives 12 and 13</u>: occupational exposures would be reduced by 0.136 person-Sievert (13 6 person-rem) for the 20-year baseline and 0 272 person-Sievert (27.2 person-rem) for the 40-year baseline.

<u>Alternatives 14 and 15</u>: occupational exposures would be reduced by 0.152 person-Sievert (15.2 person-rem) for the 20-year baseline and 0 304 person-Sievert (30.4 person-rem) for the 40-year baseline.

· · · ·

Figure 7-1. Sensitivity of Risk to Containment Leakage Rate

Figure 7-2. Comparison of Individual Latent Cancer Risks with NRC Safety Goal

7 F.A

8. Cost Incurred in Meeting Appendix J Requirements

The significant costs incurred in meeting the testing requirements set forth in 10 CFR 50, Appendix J include labor, equipment, and replacement power. For the purpose of evaluating the impacts of alternative testing requirements, costs of conducting ILRTs and LLRTs are developed for a generic light-water reactor (LWR) on a per test basis. The estimates are based on limited data provided to the NRC by the industry and an evaluation of the labor, equipment, and critical path time needed to perform the tests. For comparison, data reported in early studies are also presented.

8.1 SUMMARY OF DATA REPORTED IN EARLIER STUDIES AND BY INDUSTRY

Review of Industry Cost Information

Information on labor hours, testing procedures, and test summaries for performing ILRTs and LLRTs were provided by Virginia Power's North Anna Station. For ILRTs, the information provided indicates that approximately 3,500 person-hours are required to perform the system alignments, drainings, rigging of containment. inspections and walkdowns, and the post-test restoration of the containment. Additionally, the rental of the air compressors and air dryers, and the services of a test coordinator are estimated at \$100 thousand per test. ILRTs have required approximately five days of critical path time per test.

For LLRTs, which are performed using utility personnel and equipment, the labor estimate is approximately 2,500 hours for a complete battery of Type B and C tests. Type B testing of electrical penetrations accounts for only about 15 percent of the estimated labor hours. Type C tests, which involve testing the valves on epproximately 90 penetrations, are more complicated and time-consuming and account for about 85 percent of the total labor hours. A breakdown of labor hours by craft was not provided for either ILRT of LLRT testing.

Grand Gulf Nuclear Station and Calvert Cliffs also provided some cost information to the NRC The information provided by (NRC93B). Calvert Cliffs simply states that the cost of performing an ILRT is \$1.8 million. While no basis for this cost is given, it is consistent with the value used in this report. Grand Gulf states that LLRTs, which are performed by contract personnel, cost \$0.53 million per outage. As the costs cited by Grand Gulf for LLRTs are far greater than those estimated for North Anna. additional information was requested and obtained from Grand Gulf (GG93). This additional information indicates that there are approximately 140 Type C penetrations and that the estimate of LLRT costs includes time for training personnel, non-productive time for the contract personnel, quality assurance oversight by utility personnel, and clerical support to record and archive the test results.

Review of NUREG/CR-4330 Cost Data

The basic data presented in NUREG/CR-4330 (NRC86) for the costs of ILRTs and LLRTs is taken from SEA85. The cost of an ILRT is cited as \$1.3 to \$2.6 million, and considers replacement power, the costs of equipment rental, and a consultant to oversee the test. However, the estimate does not include the labor costs associated with rigging the containment for testing and restoring system alignments at the conclusion of the test.

The cost of LLRTs is cited as \$15,400, based on 367 labor hours for mechanics and engineers and a nominal 10 hours of top-level supervision. No replacement power costs are estimated as LLRTs are not conducted on the critical path. The estimate in SEA85 of 367 labor hours is based on a very rough task analysis for a generic LWR, prepared primarily to estimate potential occupational radiation exposures. As the critical factor for the analysis was time spent in radiation fields, no effort was made to account for time spent in planning, setup, data analysis, etc. NUREG/CR-4330 also presents estimates of the costs to industry for implementation of the current requirements, and for the NRC for implementation and operations. These costs, on the order of tens to thousands of dollars per reactor, are insignificant in comparison with the cost savings estimated for any of the alternatives.

In addition to the estimates of the costs for leakage-rate testing, NUREG/CR-4330 estimates the cost savings to industry that would result from reduced failure rates associated with a higher allowable leakage rate. The estimate is based on savings for ILRTs only. As NUREG/CR-4330 was published in June of 1986, it relied on industry practice and experience from the 1970s and early 1980s. During that time frame, "as-found" leakage rates were seldom established by utilities on the basis of LLRTs preceding the ILRT. As a result, when the ILRT identified a leakage path, repairs or isolation were affected, and the test was extended until a "successful" result was obtained. In the mid-1980s, the NRC clarified its interpretation of the "as-found" requirement, with the result that utilities changed their procedures to assure that LLRTs were completed and necessary component repairs made prior to the commencement of the ILRT. This change in industry practice makes it questionable whether or not the reductions in critical path time estimated in NUREG/CR-4330 would actually be achieved by industry.

8.2 CURRENT STUDY COST ANALYSIS

8.2.1 Cost of Type B & C Tests (LLRTs) -Current Appendix J Requirements

Local leakage-rate tests of containment penetrations must be performed at intervals that do not exceed two years, with the exception of air-lock testing which must be performed at least every six months. As the Type B and C tests need not be performed on the critical path, and as the tests are usually performed by utility personnel using equipment already owned by the utility, costs of LLRTs are estimated simply on the basis of the required labor hours.

Only limited data for Type B and C testing are available from industry. Virginia Power provided an estimate, derived from its North Anna PWRs, of 2,500 labor hours for a complete battery of tests, equating to \$87,500 at a \$35/hr labor rate. Grand Gulf Nuclear Station (GGNS), a BWR, provided an estimate of approximately 20,000 labor hours for a complete battery of tests, equating to \$700,000 at the same labor rate. A careful review of the two estimates indicates that neither can be used directly for the purpose of estimating the costs for a generic LWR. The Virginia Power estimate does not include support personnel, and PWRs have significantly fewer penetrations to test than BWRs (approximately 90 versus approximately 175). The GGNS estimate reflects both the greater number of penetrations at a BWR and the cost of having the tests performed by contractor rather than utility personnel. The GGNS costs also reflect having the entire contractor crew available for the duration of the outage, even when LLRTs are not being conducted for various reasons, such as system availability and maintenance.

In attempting to reconcile these disparate data, the basis for each estimate resulted in the following insights:

- 1. the North Anna data do not fully reflect all support personnel involved in the testing;
- 2. the number of Type C penetrations at a BWR is far greater than at a PWR; ar.d,
- 3. the contractual arrangement under which Grand Gulf performs its LLRTs results in attributing additional costs to LLRTs.

Given these insights, the cost for 3 full battery of Type B & C tests for a typical LWR was reestimated to be about \$165,000, on the following basis:

- a test of a typical Type C penetration lasts about 8 hours and is performed by a 3-person crew consisting of a LLRT operator and pipefitters;
- the battery of Type B & C tests requires support from scheduling, surveillance, engineering, and operations - on a per Type C test basis, this support is estimated to be 12 hours;
- 3. a typical LWR has 110 Type C penetrations that require LLRTs based on a weighted average of PWRs and BWRs;
- 4. the average labor cost is \$35/hour; and
- 5. the cost for Type B testing is about 15% of total LLRT costs.

Individual utilities may experience higher costs based upon regional labor rates, specific contractual arrangements and their specific refueling cycle.

8.2.2 <u>Costs of Type A Tests (ILRTs) -</u> Current Appendix J Requirements

Integrated leakage-rate tests of containment integrity must be performed at least three times in a 10-year period, with the third test coinciding with the 10-year in-service inspection (ISI). Unlike LLRTs, which are typically performed entirely by utility personnel using test equipment owned by the utility, utilities frequently contract for consultants to supervise the ILRTs and rent the air compressors and air handling systems needed for the tests. Thus, equipment rental costs need to be considered as well as labor costs. Moreover, ILRTs, which require specifically rigging the containment for the test, are always conducted on critical path time. Therefore, replacement power costs must also be included in estimating the costs of conducting ILRTs

Based on data provided by Virginia Power, equipment rental and the services of the test coordinator are given as \$100,000 per test. The labor-hours needed to establish the requisite system alignments, drainings, fillings, and surveillance are estimated to be 3,500 per test. Using \$35 per labor-hour results in a labor cost estimate of \$122,500. As Type B and C testing must be performed as a prerequisite to the ILRT, an additional labor cost of \$165,000 is incurred. Finally, the costs of replacement power must be added to these costs. An ILRT can take from 3 to 5 days, depending upon such factors as test pressure, time required to achieve stabilization of pressure and temperature, duration of the test portion, duration of the verification test, and, of course, ability to achieve suitable test conditions. For the utility that provided data for two of its units, ILRTs require about 5 days. As the average replacement energy cost is \$300,000 per day (NRC91A), total replacement energy costs are estimated to be \$1.5 million per test. Using these estimates, the total cost for an ILRT is estimated to be \$1.89 million.

8.2.3 Effects of Relaxing the Acceptance Criteria on ILRT and LLRT Costs

ILRT Costs

Relaxing the acceptance criteria for ILRTs should result in shorter duration tests. Relaxing the acceptance criteria would have no effect on the time necessary to bring the containment into the proper configuration for performing the test, the time to pressurize the containment, the minimum 4-hour stabilization period, the time for depressurization, or the time to re-establish system configurations for power operations at the conclusion of the test. However, relaxing the acceptance criteria should make it much easter to e tablish that containment integrity is verified with a short duration (6-8 hour) test rather than the more usual 24-hour test. The extension of the test period to assure a successful verification test should also be less. A rough estimate is that relaxing the acceptance criteria would result in a savings of 16 hours of critical path time. As replacement power costs are \$300,000 per day (NRC91A), this savings would reduce the cost of an ILRT (Type A test) by \$200,000 from \$1.89 million to \$1.69 million.

LLRT Costs

Relaxing the acceptance criteria for LLRTs (Type B & C tests) will not have any significant cost implications. This conclusion is based on the small number of penetrations that currently fail, and the even smaller number of penetrations that marginally fail. Costs of rework and retesting would be avoided in only a few percent of the tests. For the purposes of this study, we estimate that 5 percent of the total costs of Type B & C testing could be saved if the acceptance criteria are relaxed.

8.2.4 Effects of Reducing the Frequency of ILRTs and LLRTs on Utility Costs

As discussed above, the costs of meeting the current Appendix J requirements are estimated to be \$1.89 million for each ILRT and \$165 thousand for each LLRT. Reducing the frequency with which ILRTs and LLRTs must be performed will, obviously, reduce the number of tests that will have to be performed over the operating life of the reactor. For ILRTs, this is a simple yes/no decision: either the test will be conducted or it will not be conducted.

For LLRTs, changing to a performance-based standard which requires testing of "lowerreliability penetrations" only on the current at-least-once-every-two-year schedule is estimated to reduce the number of components tested by at least 50 percent. The exact percentage will depend upon the specific frequency criteria adopted (see Appendix A) and, more importantly, the actual performance histories of the components. To illustrate the potential cost savings, we have assumed that no Type B electrical penetrations and 50 percent of Type C valves would be classified as "lower reliability penetrations."

Elimination of Type B electrical penetrations from the current 2-year frequency requirement is estimated to eliminate \$25,000 (15 percent) of the current costs (\$165,000) for a complete battery of Type B/C tests. The relatively small cost reduction is because Type B penetrations, while numerous, are comparatively easy to test. Elimination of 50 percent of the Type C tests is estimated to reduce costs by an additional \$70,000. Thus, adoption of performance-based test frequencies is estimated to reduce the costs of Type B/C testing by about 58 percent.

8.2.5 <u>Estimates of Baseline and Alternative</u> <u>Costs</u>

Types A and B/C Tests

The alternatives considered in this analysis are defined in Section 6.4. Table 8-1 presents the estimates of remaining Appendix J costs per reactor for both 5 percent and 10 percent discount rates. Total costs for the industry are estimated to be \$724 million at a 5 percent discount rate and \$494 million at a 10 percent discount rate.

To evaluate the impact of license extension, the assumed testing schedule was extended to cover an additional 20 years of operation (Power Cycles 25 through 36). Table 8-2 presents the estimates of remaining Appendix J costs per reactor of the current Appendix J frequency and acceptance criteria assuming a 20-year license extension. Total costs, assuming all licensees seek and are granted a 20-year license extension, are estimated to be \$1,075 million at a 5 percent discount rate and \$599 million at a 10 percent discount rate.

Costs of the alternatives are estimated by making appropriate modifications (cost per test and/or frequency of tests) to the 20-year and 40-year raschine estimates Details of each estimate are presented in Appendix D, and the results on an industry wide basis are summarized in Tables \times 3 through 8.6

Alternative 1. Alternative 1, which maintains the urrent Appendix J frequency requirements but relaxes the acceptance criteria, is estimated to reduce the industry's 20-year baseline costs by \$73 million (10 percent) at a 5 percent discount rate and \$49 million (10 percent) at a) percent discount rate. For the 40-year oaseline, this alternative reduces costs by \$108 million (10 1 percent) at a 5 percent discount rate and \$60 million (10 percent) at a 10 percent discount rate.

Alternative 2. This alternative which maintains the current Appendix J acceptance criteria but reduces the HLRT frequency from three per 10 years to two per 10 years, is estimated to reduce the industry's 20-year baseline costs by \$241 nullion (33.3 percent) at a 5 percent discount rate and \$168 million (34.1 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$332 million (30.9 percent) at a 5 percent discount rate and \$194 million (32.3 percent) at a 10 percent discount rate

Alternative 3 Alternative 3, which relaxes the current Appendix J acceptance criteria and reduces the ILRT frequency from three per 10 years to two per 10 years, is estimated to reduce the industry's 20-year baseline costs by \$287 million (39.7 percent) at a 5 percent discount rate and \$199 million (40.3 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$404 million (37.5 percent) at a 5 percent discount rate and \$232 million (38.8 percent) at a 10 percent discount rate.

Alternative 4: Alternative 4, which maintains the current Appendix J acceptance criteria but reduces the ILRT frequency from three per 10 years to one per 10 years, is estimated to reduce the industry's 20-year baseline costs by \$481 malhon (ob 4 percent) at a 5 percent discount rate and \$333 million (67.4 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$662 million (61.6 percent) at a 5 percent discount rate and \$383 million (63.9 percent) at a 10 percent discount rate.

<u>Alternative 5:</u> This alternative, which relaxes the current Appendix J acceptance criteria and reduces the ILRT frequency from three per 10 years to one per 10 years, is estimated to reduce the industry's 20-year baseline costs by \$500 million (69.1 percent) at a 5 percent discount rate and \$345 million (69.9 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$697 million (64.8 percent) at a 5 percent discount rate and \$400 million (66.8 percent) at a 10 percent discount rate.

<u>Alternative 6:</u> Alternative 6, which maintains the current Appendix J acceptance criteria but reduces the ILRT frequency from three per 10 years to one per 20 years, is estimated to reduce the industry's 20-year baseline costs by \$597 million (82.5 percent) at a 5 percent discount rate and \$406 million (82.3 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$823 million (76.5 percent) at a 5 percent discount rate and \$467 million (78 percent) at a 10 percent discount rate.

Alternative 7: Alternative 7, which relaxes the current Appendix J acceptance criteria and reduces the ILRT frequency from three per 10 years to one per 20 years, is estimated to reduce the industry's 20-year baseline costs by \$604 million (83.4 percent) at a 5 percent discount rate and \$411 million (83.1 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$839 million (78.1 percent) at a 5 percent discount rate and \$475 million (79.4 percent) at a 10 percent discount rate.

<u>Alternative 8:</u> Alternative 8, which maintains the current Appendix J acceptance criteria and the ILRT frequency of three per 10 years but
relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$40 million (5.5 percent) at a 5 percent discount rate and \$28 million (5.7 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$55 million (5.1 percent) at a 5 percent discount rate and \$33 million (5.4 percent) at a 10 percent discount rate.

<u>Alternative 9:</u> Alternative 9, which relaxes the current Appendix J acceptance criteria, maintains the ILRT frequency at three per 10 years, but relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$111 million (15.3 percent) at a 5 percent discount rate and \$76 million (15.4 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$161 million (14.9 percent) at a 5 percent discount rate and \$91 million (15.1 percent) at a 10 percent discount rate.

Alternative 10: Alternative 10 which maintains the current Appendix J acceptance criteria, reduces the ILRT frequency to two per 10 years, and relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$295 million (40.7 percent) at a 5 percent discount rate and \$206 million (41.7 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$406 million (37.7 percent) at a 5 percent discount rate and \$237 million (39.5 percent) at a 10 percent discount rate.

Alternative 11: Alternative 11, which relaxes the current Appendix J acceptance criteria, reduces the ILRT frequency to two per 10 years, and reduces LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$338 million (46.6 percent) at a 5 percent discount rate and \$235 million (47.5 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$473 million (44 percent) at a 5 percent discount rate and \$273 million (45.6 percent) at a 10 percent discount rate.

Alternative 12: Alternative 12, which maintains the current Appendix J acceptance criteria, reduces the ILRT frequency to one per 10 years, and relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$548 million (75.6 percent) at a 5 percent discount rate and \$379 million (76.8 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$754 million (70.1 percent) at a 5 percent discount rate and \$436 million (72.8 percent) at a 10 percent discount rate.

Alternative 13: Alternative 13, which relaxes the current Appendix J acceptance criteria, reduces the ILRT frequency to one per 10 years, and reduces LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$563 million (77.8 percent) at a 5 percent discount rate and \$389 million (78.8 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$784 million (72.9 percent) at a 5 percent discount rate and \$451 million (75.2 percent) at a 10 percent discount rate.

Alternative 14: Alternative 14, which maintains the current Appendix J acceptance criteria, reduces the ILRT frequency to one per 20 years, and relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$670 million (92.6 percent) at a 5 percent discount rate and \$457 million (92.5 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs by \$923 million (85.8 percent) at a 5 percent discount rate and \$525 million (87.7 percent) at a 10 percent discount rate.

Alternative 15: Alternative 15, which relaxes the current Appendix J acceptance criteria, reduces the ILRT frequency to one per 20 years, and relaxes LLRTs to "lower-reliability" penetrations only during refueling outages, is estimated to reduce the industry's 20-year baseline costs by \$673 million (92.9 percent) at a 5 percent discount rate and \$458 million (92.8 percent) at a 10 percent discount rate. For the 40-year baseline, this alternative reduces costs 'y \$934 million (86.9 percent) at a 5 percent discount rate and discount rate.

On-Line Monitoring

١

Ì

Information provided by the Swedes and the French indicate that the OLM systems that they are familiar with or in the case of the French using, cost about \$240 to \$400 thousand. These estimates are for an installed system, and no breakdown of costs (e.g., engineering, instrumentation, installation) is available Operating costs are considered to be insignificant, and the equipment is expected to have an operating life equal to that of the reactor itself.

As there do not appear to be any significant annual costs for operating or maintaining OLM systems, and because the service life of such systems are essentially the same as for the reactor itself, there is no need to perform a present worth evaluation of OLM costs. The cost of an OLM system is simply the initial installed cost, or approximately \$240 to \$400 thousand.

Type B & C Tests Type A Tests (ILR)	(LLRTS) = Ts) =		\$165,000 \$1,890,000	per test per test	
Period	Durat:	ton	Tests Required	Costs 5% Discount	Costs 10% Discount
13th Power Cycle	0 - 18	months			
13th Outage	18 - 20	months	B&C	153,353	143,017
14th Power Cycle	20 - 38	months			
14th Outage	38 - 40	months	A + B & C	1,619,377	1,397,561
15th Power Cycle	40 - 58	months			
15th Outage	58 - 60	months	B&C	130,331	104,087
16th Power Cycle	60 - 78	months	•		
16th Outage	78 - 80	months	A + B & C	1,376,264	1,017,139
17th Power Cycle	80 - 98	months			
17th Outage	98 - 100	months	B&C	110,765	75,754
18th Power Cycle	100 - 118	months		•	
18th Outage	118 - 120	months	A + B & C	1,169,649	740,270
19th Power Cycle	120 - 138	months	· · · ·		
19th Outage	138 - 140	months	B & C	94,136	55,134
20th Power Cycle	140 - 159	months			
20th Outage	158 - 160	months -	A + B & C	994,053	538,765
21st Power Cycle	160 - 178	months	·		
21st Outage	178 - 180	months	B&C	80,003	40,126
22nd Power Cycle	180 - 198	months			
22nd Outage	198 - 200	months	A + B & C	844,818	392,111
23rd Power Cycle	200 - 218	months -			
23rd Outage	218 - 220	months	₿₠С°	67,993	29,204
24th Power Cycle	218 - 238	months			
Shutdown	238 - 240	months	none	0	0
Total Net Pres nt	Values			6,640,742	4,533,168

Table 8-1. Baseline (Per Reactor): 20-Year Test Cycle No License Extensions, Current Appendix J Requirements Table 8-2. Baseline (Per Reactor): 40-Year Test Cycle 20-Year License Extensions, Current Appendix J Requirements

Туре Туре	8 & C Tests A Tests (ILR	(LLRTS) = TS) =		\$2	\$165,000 L,890,000	per test per test	
Perio	vri	Durat	ion	Te Requ	ests uired	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 - 18	months				
13th	Outage	18 - 20	months	В	٤C	153,353	143,017
14th	Power Cycle	20 - 38	months			1 610 227	1 207 501
19UN	Power Cvcle	40 - 58	months	A +		1,019,377	T'221'20T
15th	Outage	58 - 60	months	В	& C	130,331	104,087
16th	Power Cycle	60 - 78	months				
lGth	Outage	78 - 80	months	A +	BEC	1,376,264	1,017,139
17th	Power Cycle	80 - 98	months	_			
17th	Outage	98 - 100	months	В	ξĊ	110,765	75,754
1860	Power Cycle	100 - 118	months	N 4	R C C	1 169 649	740 370
1946	Dower Cycle	120 - 120	months	A +	Dat	1,103,043	/40,2/0
19th	Outage	138 - 140	months	в	٤C	94,136	55,134
20th	Power Cycle	140 - 158	months	-			
20th	Outage	158 - 160	months	A +	B&C	994,053	538,765
21st	Power Cycle	160 - 178	months				
21st	Outage	178 - 180	months	В	εC	80,003	40,126
22nd	Power Cycle	180 - 198	months	• .		044 010	202 111
22nd	Outage	198 - 200	months	A +	B&C	844,818	392,111
2310 23rd	Power Cycle	200 - 218	months	a a	£ C	67 993	29.204
231u 24th	Power Cycle	218 - 238	months	4		01,000	4.7,201
24th	Outage	238 - 240	months	A +	B&C	717,988	285, 277
25th	Power Cycle	240 - 258	months				
25th	Outage	258 - 260	months	В	£ C	57,785	21,254
26th	Power Cycle	260 - 278	months	_			
26th	Outage	278 - 280	months	A +	B&C	610,198	207,696
2765	Power Cycle	280 - 298	months	10	6.0	40 110	15 460
2764	Durage Bower Cucle	290 - 300	months	٩	e L	49,110	10,403
28th	Outage	318 - 320	months	A +	B&C	518.591	151,160
29th	Powe · Cycle	320 - 338	months				,
29th	Outage	338 - 340	months	В	& C	<1,737	11,258
30th	Power Cycle	340 - 358	months	-	* •		
30th	Outage	358 - 360	months	A ⁼+.	BEC	440,736	110,014
31st	Power Cycle	360 - 370	months	,		15 435	0.104
Jist	Outage	378 - 380	months	15	ke.C	35,4/1	8,194
3200	Power Cycle	300 - 350	monthe		BEC	374 570	80.068
33rd	Power Cycle	400 - 418	monthe	: ••••		314,310	50,000
33rd	Outage	418 - 420	months	В	& C	30,146	5,963
34th	Power Cycle	420 - 438	months	•	-	· · · · ·	
34th	Outage	438 - 440	months	A +	BEC	318,336	58,273
35th	Power Cycle	440 - 458	months	· _			
35th	Outage	458 - 460	months	В	ΨC	25,620	4,340
36th	Power Cycle	460 - 478	months	-	0704	•	^
	Shucdown	4/0 - 480	NOLICIIS	n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U	U

Total Net Present Values

- -

9,861,030 5,492,234

P. Frantage		Cost	
Alternative	Costs	Savings	Savings
Baseline - Current Leakage Criteria and Test L'requencies	724,000,000	0	0.0%
Alternative 1 - Relax Leakage Criteria Only	651,000,000	73,000,000	10.0%
Alternative 2 - Curr nt Leakage Criteria, Change ILRT Frequency Only to 2 per 10 Years	483,000,000	241,000,000	33.34
Alternative 3 - Relax Leakage Criteria, Change Frequency per Alternative 2	437,000,000	287,000,000	39.7%
Alternative 4 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 10 Years	243,000,000	481,000,000	66.4%
Alternative 5 - Relax Leakage Criteria, Change Prequency per Alternative 4	224,000,000	500,000,000	59.1 %
Alt rnative 6 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 20 Years	127,000,000	597,000,000	82.5%
Alternative 7 - R lax Leakage Criteria, Change Frequency per Alternative 6	120,000,000	604,000,000	83.41
Alternative 8 - Curr nt Leakage Criteria, "Lower-Re- liability" LLRTS Only During Refueling	684,000,000	40,000,000	5.5%
Alternative 9 - Relaxed Leakage Criteria, "Lower-Re- liability" LLRTS Only During Refueling	613,000,000	111,000,000	15.3%
Alt rnative 10 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 2 in 10 Years, "Lower- Reliability" LLRTs Only During_Refueling	429,000,000	295,000,000	40.7%
Alternative 11 - Relaxed Leakage Criteria, Change Fre- quency per Alcernative 10	386,000,000	338,000,000	46.6*
Alternative 12 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 10 Years, "Lower- R liability" LLRTS Only During Refueling	176,000,000	548,000,000	75.61
Alt rnative 13 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 12	161,000,000	563,000,000	77.8%
Alternative 14 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 20 Years, "Lower- Reliability" LLRTs Only During Refueling	54,000,000	670,000,000	92.6%
Alternative 15 - Relax d Leakage Criteria, Change Fr - quency per Alternative 14	51,000,000	673,000,000	92.9*

Table 8-3. Summary of Industry-Wide Costs - 20-Year Baseline and Alternatives, 5-percent Discount

Table 8-4. Summary of Industry-Wide Costs - 20-y ar Baseline and Alt rnativ s, 10-percent Discount

Alternative	Costs	Cost Savings	Percentage Savings
Baseline - Current Leakage Criteria and Test Frequencies	494,000,000	0	0.0%
Alternative 1 - R lax Leakage Criteria Only	445,000,000	49 ,000,000	10.0%
Alternative 2 - Current Leakage Criteria, Change ILRT Frequency Only to 2 per 10 Years	326,000,000	168,000,000	34.1*
Alternative 3 - R lax Leakage Criteria, Change Fr quency per Alternative 2	295 ,000,000	199,000,000	40.3%
Alternative 4 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 10 Years	161,000,000	333,000,000	67.4%
Alternative 5 - Relax Leakage Criteria, Change Frequency per Alternative 4	149,000,000	345,000,000	69.9%
Alt rnative 6 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 20 Years	88,000,000	406,000,000	82.3*
Alternative 7 - R lax Leakage Criteria, Change Frequency per Alternative 6	83,000,000	411,000,000	83.1*
Alternative 8 - Current Leakage Criteria, "Lower-Re- liability" LLRTs Only During Refueling	466,000,000	28 ,000,000	5.7%
Alternative 9 - Relaxed Leakage Criteria, "Lower-Re- liability" LLRTs Only During Refueling	418,000,000	76,000,000	15.4*
Alternative 10 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 2 in 10 Years, "Lower- Reliability" LLRTs Only During Refueling	-288,000,000	206,000,000	41.78
Alt rnative 11 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 10	259,000,000	235,000,000	47.58
Alternative 12 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 10 Years, "Lower- Reliability" LLRTs Only During Refueling	115,000,000	379,000,000	76.8
Alt rnative 13 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 12	105,000,000	389,000,000	78.8%
Alt rnative 14 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 20 Years, "Lower- Reliability" LLRTs Only During Refueling	37,000,000	457,000,000	92.5%
Alternative 15 - Relax d Leakag Criteria, Change Fre- quency per Alternative 14	36,000,000	458,000,000	92.8%

Table 8-5. Summary of Industry-Wide Costs - 40-year Baseline and Alternatives, 5-percent Discount

......

Deverynes		Cost	
Alternative	Costs	Savings	Savings
Baseline - Current Leakage Criteria and Test Frequencies	L,075,000,000	0	0.0%
Alternative 1 - Relax Leakage Criteria Only	967,000,000	108,000,000	10,1%
Alternative 2 - Current Leakage Criteria, Change ILRT Frequency Only to 2 per 10 Years	743,000,000	332,000,000	30.9%
Alternative 3 - Relax Leakage Criteria, Change Frequency per Alternative 2	671,000,000	404,000,000	37.5%
Alternative 4 - Curr nt Leakage Criteria, Change ILRT Frequency Only to 1 per 10 Years	413,000,000	662,000,000	61.6%
Alternative 5 - Relax Leakage Criteria, Change Frequency per Alternative 4	378,0 00,000	697,000,000	64.8%
Alternative 5 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 20 Years	252,000,000	823,000,000	76.5%
Alt rnative 7 - R lax Leakage Criteria, Change Frequency per Alternative 6	236,000,000	839,000,000	. 78.1%
Alternative 8 - Current Leakage Criteria, "Lower-Re- liability" LLRTs Only During Refueling 1	L,020,000,000	55,000,000	5.1*
Alt rnative 9 - Relaxed Leakage Criteria, "Lower-Re- liability" LLRTS Only During Refueling	914,000,000	161,000,000	14.9%
Alternative 10 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 2 in 10 Years, "Lower- Reliability" LLRTs Only During Refueling	3 669,00 0,000	406,000,000	37.7%
Alternative 11 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 10	602,000,000	473,000,000	44.0%
Alternative 12 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 10 Years, "Lower- Reliability" LLRTs Only During Refueling	g 321,000,000	754,000,000	70.1%
Alternative 13 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 12	291,000,000	784,000,000	72.91
Alternative 14 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 20 Years, "Lower- Reliability" LLRTs Only During Refueling	g 152,000,000	923,000,000	85.8%
Alternative 15 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 14	141,000,000	934,000,00 0	86.9%

· ,

Table	8-6.	Summary of Industry-Wide Costs - 40-year Baseline
		and Alternatives, 10-perc nt Discourt

Alt rnative	Costs	Cost Savings	Percentage Savings
Baseline - Current Leakage Criteria and Test Frequencies	599,000,000	0	0.0%
Alternative 1 - Relax Leakage Criteria Only	539,000,000	0,000,000	10.0%
Alternative 2 - Current Leakage Criteria, Change ILRT Frequency Only to 2 per 10 Years	405,000,000	194,000,000	32.34
Alternative 3 - Relax Leakage Criteria, Change Frequency per Alternative 2	367,000,000	232,000,000	38.B t
Alternative 4 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 10 Years	216,000,000	383,000,000	63.9 %
Alternative 5 - Relax Leakage Criteria, Change Frequency per Alternative 4	199,000,000	400,000,000	66.8%
Alternative 6 - Current Leakage Criteria, Change ILRT Frequency Only to 1 per 20 Years	132,000,000	467,000,000	78.0%
Alternative 7 - Relax Leakage Criteria, Change Frequency per Alternative 6	124,000,000	475,000 ,000	79.41
Alternative 8 - Current Leakage Criteria, "Lower-Re- liability" LLRTs Only During Refueling	566,000,000	33,000,000	5.41
Alternative 9 - Relaxed Leakage Criteria, "Lower-Re- liability" LLRTs Only During Refueling	508,000,000	91,000,000	15.1%
Alternative 10 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 2 in 10 Years, "Lower- Reliability" LLRTs Only During Refuelin	ng 362,000,000	237,000,000	39.5%
Alternative 11 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 10	326,000,000	273,000,000	45.6*
Alternative 12 - Current Leakage Criteria, Change Freque ency of ILRTs to 1 in 10 Years, "Lover Reliability" LLRTs Only During Refuelin	ng 163,000,000	436,000,000	72.8*
Alternative 13 - Relaxed Leakage Criteria, Change Fre- quency per Alternative 12	148,000,000	451,000,000	75.2*
Alternative 14 - Current Leakage Criteria, Change Frequ- ency of ILRTs to 1 in 20 Years, "Lower- Reliability" LLRTs Only During Refuelin	ng 74,000,000	525,000,000	87.7%
Alternative 15 - Relaxed Leakage Criteria, Change Fr - quency p r Alternative 14	69,000,000	530,000,000	88.5%

9.1 UNCERTAINTIES IN RISK PERSPECTIVE

Figure 5-22 (taken directly from NUREG-1150 [NRC90]) illustrates the uncertainty range associated with the predicted total latent cancer fatalities per reactor year. For Surry, the 5 - 95 percent confidence interval spans approximately two orders of magnitude (from about 3E-4 to about 2E-2 latent cancer fatalities per year). Comparable ranges of uncertainty are found for the other units considered.

Containment leakage, at an assumed rate of 1 percent per day, contributes about 0.05 percent to the total risk at Surry; comparable or even smaller leakage contributions to risk were found for the other units. Since the design basis leakage rate for Surry is 0.1 percent per day, the reference risk results already include an order of magnitude "allowance" for increased leakage; comparable increases above the design basis leakage rates were incorporated into the assessments for the other units.

Since containment leakage is such a small contributor to overall accident risk, it is clear that at the lower end of the leakage-rate ranges considered in this study, any uncertainties associated with the leakage contribution are minuscule in comparison with other uncertainties, e.g., prediction of containment failure mode probabilities and magnitudes of fission product source terms. The NUREG-1150 results for PWRs predict significant probabilities of no containment failure even in the event of core melt accidents. With the containments predicted to remain intact, at the upper end of the leakage-rate ranges considered, i.e., 200 - 400 percent containment volume per day, containment leakage could lead to severalfold increases in the predicted risk. The expected fission product source terms associated with the large leakage-rate cases, considering all possible unit damage states and accident progression bins, were substantially lower than those resulting from containment failure or bypass. Thus, the uncertainties associated with

assessing the leakage contribution at the upper ends of the ranges considered would be lower than those associated with other containment failure modes.

For BWRs, the calculated risks were found to be very insensitive to the assumed containment leakage rates, even at the upper end of the ranges considered. This is a direct consequence of predicted higher probabilities of early containment failure for the BWRs, i.e., since containments are predicted to fail in a large fraction of the postulated core melt accidents. the assumed containment leakage rate does not contribute significantly to the calculated risk. Also, the scrubbing of the fission products by BWR suppression pools, even in many scenarios involving large leakages, contributes to the predicted lack of risk sensitivity to containment leakage rate. Thus, for BWRs, the uncertainties associated with assessing the contribution of containment leakage are small compared with other uncertainties in the quantification of accident risks.

The estimate of the fraction of containment leaks that can be found only by integrated leakage-rate testing is uncertain due to the small number of such occurrences. The rarity of such events demonstrates that reactor containments do in fact achieve a high degree of reliability and leaktightness. The present study found that about 3 percent of observed containment leaks could be found only by integrated leakage-rate testing. In the few such occurrences identified in this study, the – associated leakage rates were only marginally above existing requirements, ranging from only slightly above 0.75 L, to about three L_a.

At such low levels, the containment leakage rates are clearly not significant contributors to reactor accident risks, as demonstrated in Chapter 5. However, since containment penetrations may range in size from a diameter of about 0.25 inches for sampling lines to over 10 feet for the equipment hatch, leakage through the latter cannot be ignored. The simultaneous

Uncertainties

failure of redundant 36-inch purge valves, for example, would be functionally equivalent to contamment failure Of course. the simultaneous failure of two valves in a large containment penetration would be of much lower probability than a random combination of coincident smaller leakage paths. The experience-based best estimate of the magnitude of undetected containment leakages indicates that they would not be risk significant. However, because not all leakage-test failures are fully quantified and because there have been a few prolonged containment isolation failures. considerable uncertainty must be acknowledged in the possible magnitude of undetected containment leakages.

While the consequences of large leakage paths existing at the time of a core melt accident may be functionally equivalent to containment failure, such large leakages are very unlikely. Thus, the risk impact would be limited.

Assigning an average core melt consequence to the fraction of the time that the magnitude of the containment leakage rate may be uncertain led to an insignificant impact (~ 0.1 percent) on the nominal risk. The use of an average consequence takes into account the possibility that the unquantified leakages could range from leakage rates just exceeding the allowable to very large openings. This is preferable to alternatives such as assuming that all unquantified leakages are equivalent to gross containment failure. Applying the average-consequence approach to the various testing alternatives considered in Chapter 7 resulted in maximum risk increases of about 26 percent over the base cases calculated in NUREG-1150 As indicated in Chapter 7, for the nominal case, a maximum risk impact of about 6 percent was calculated

9.2 UNCERTAINTIES IN COST PERSPECTIVE

The results presented are derived from limited cost data provided by industry and an evaluation of the activities required to conduct the various types of leakage testing. The value of \$1.89 million per ILRT given for the current leakagerate criteria is, due to the dominance of replacement power costs, the most certain of the estimates presented. NUMARC found the total cost per ILRT to be in the range of \$0.68 to \$9.9 million, with an average of \$1.8 million As in the present study, NUMARC estimated costs are dominated by critical path energy replacement cost. The value of \$165 thousand for a fully battery of Type B & C tests is based on limited data from two utilities and an analysis of the labor costs associated with testing a typical Type C penetration. The value used is bounded by the estimates provided by industry The value of \$70 thousand used only for "lower reliability" LLRTs illustrate the cost savings that might be achievable under a performance based rule. As noted in Chapter 8, the actual cost savings will depend upon the criteria imposed and each unit's specific performance history.

10. Summary of Technical Findings

This section summarizes the technical work in support of the information needs of the NRC's rulemaking. The NRC's Regulatory Analysis will consider other non-technical factors and perform the cost-benefit analyses necessary prior to decision making.

This TSD contributes to the technical bases for revising the NRC's 10 CFR Part 50, Appendix J, requirements considered by the NRC to be marginal to safety. Specifically, this TSD evaluates risks and costs associated with alternative performance-based containment leakage-testing requirements. Performancebased requirements are those whose limits are based upon consideration of operating history and risk insights.

Alternatives considered in this TSD are longer intervals between containment leak tests, and an increase in the allowable leakage rate from the containment structure. In addition, an alternative requiring continuous on-line monitoring of containment integrity is considered.

10.1 **RISK**

With respect to public and worker risk, the key technical issue a revised Appendix J regulation must address is "Can revised containment leakage-testing requirements have only a marginal impact on safety comparable to the level of safety achieved by current 10 CFR Part 50, Appendix J requirements?"

The following paragraphs summarize the findings of the technical analysis under the headings Significance of Containment Leakage Rates, Leakage-Test Intervals, Allowable Leakage Rate, and On-Line Monitoring Systems. Table 10-1 provides a summary of the risk impact for the various alternatives considered.

10.1.1 Significance of Containment Leakage Rates

Past studies, such as those summarized in Figure 5-1, have shown that overall population risks from severe reactor accidents are not very sensitive to the assumed containment leakage rates. This is because predicted reactor risks are dominated by accident scenarios in which the containments are predicted to fail or in which the containments are bypassed. The earlier studies were based on the risk insights from WASH-1400 (NRC75) and related studies.

The results of the present effort, which are based on NUREG-1150 (NRC90), while quantitatively different from earlier studies, confirm the previous observations of insensitivity of population risks from severe reactor accidents to containment leakage rates. The differences between the earlier results and those of this study are due to different approaches, increased understanding of severe accident phenomenology, and significant advances in the state-of-the-art in probabilistic risk assessment

The present effort includes comparisons of the predicted reactor accident risks as a function of containment leakage rate with the NRC's safety goals. As shown in Figure 7-2, the calculated risks are well below the safety goal for all of the reactors considered even at assumed containment leakage rates several orders of magnitude above current requirements.

10.1.2 Leakage-Testing Intervals

Type A (ILRT) Test Interval

CS-75, CS-76, CS-86, CS-87

1. Reducing the frequency of Type A tests (ILRTs) from the current three per 10 years to one per 20 years was found to lead to an imperceptible increase in risk. The estimated increase in risk is very small

	Frequency		Leakage Rate		Change in Risk [*] (Person-Rem)			
Alt	No (hange	Rela	ι	No			
	٨	B/C	A (Tests per X Years)	B/C	Change	Relax	Public	Worker
1	x	х				x	0.18	•
2		Х	2/10		х		0.04	(0.8)
3		X	2/10			x	0.22	(0.8)
4		x	1/10		x		0.04	(1.6)
5		x	1/10			x	0.22	(1.6)
6		x	1/20		x		0.05	(2.0)
7		x	1/20			x	0.23	(2.0)
8	X			X	x		0.69	(7.2)
9	x			Х.		x	0.87	(7.2)
10			2/10	х	x		0.73	(10.4)
11			2/10	X		x	0.91	(10.4)
12			1/10	x	x		0.73	(13.6)
13			1/10	X		x	0.91	(13.6)
14			1/20	X	x		0.73	(15.2)
15			1/20	X		x	0.91	(15.2)

Table 10-1. Summary of Risk Impacts of Alternatives

* Based on the Surry unit; 20-year remaining life. Numbers in parenthesis indicate a risk reduction.

because ILRTs identify only a few potential containment leakage paths that cannot be identified by Type B and C testing, and the leaks that have been found by Type A tests have been only marginally above existing requirements.

2. Given the insensitivity of risk to containment leakage rate (Chapter 5) and the small fraction of leakage paths detected solely by Type A testing, increasing the interval between integrated leakage-rate tests is possible with minimal impact on public risk. The impact of relaxing the ILRT frequency beyond one in 20 years has not been evaluated. Beyond testing the performance of containment penetrations, ILRTs also test the integrity of the containment structure.

Type B & C (LLRT) Test Intervals

1. Type B and C tests can identify the vast majority (greater than 95 percent) of all potential leakage paths.

1

- 2. Reducing the frequency of Type B testing of electrical penetrations should be possible with no adverse impact on risk. An assessment of Type B testing of electrical penetrations at a single station (two operating units) indicates that leaks through these penetrations are both infrequent and small (on the order of 1 percent of the total allowable leakage rate). Similar experience is reported in the Grand Gulf Appendix J exemption request as well as in the NUMARC survey of containment leakagetesting experience.
- 3. The vast majority of leakage paths are identified by LLRTs of containment isolation valves (Type C tests). Based on the detailed evaluation of the experience of a single two-unit station, almost no correlation of failures with type of valve or unit service could be found; however, it has been possible to correlate failures both with time and repeated failures of individual components. The results of the NUMARC survey of leakage-testing experience are consistent with these observations.
- 4. Based on the model of component failure with time, it has been found that performance-based alternatives to current local leakage-testing requirements are feasible without significant risk impacts. For example, the model suggests that the number of components tested could be reduced by about 60 percent with less than a three-fold increase in the incremental risk due to containment leakage. Since under existing requirements, leakage contributes less than 0.1 percent of overall accident risk, the overall impact is very small.

The findings to date strongly support earlier indications that Type B and C testing can detect a very large fraction of containment leaks. The fraction of leaks that can be detected only by integrated containment leakage tests is small, on the order of a few percent. The discussion of leakage rate experience in Chapter 4 indicates that frequent Type B leakage-rate testing of electrical penetrations is of limited use. In approximately 27 unityears of operation at one two-unit nuclear station, no significant leakage has been found for electrical penetrations.

10.1.3 Allowable Leakage Rate

- 1. The allowable leakage rate can be increased by one to two orders of magnitude without significantly impacting the estimates of population dose in the event of an accident. The PRA for Surry Unit 1, which was performed assuming a containment leakage rate a factor of 10 greater than the nominal 0.1 percent per day established in the unit's technical specifications, indicates that accident scenarios where containment does not fail and is not bypassed contribute only about 0.05 percent of the population risk from all core-melt accidents. Comparable or even lower risk contributions due to leakage were found for the other units.
- 2. The significance of any change in the risk to the nearby individuals, who would receive the highest doses from an accidental release, have not been evaluated explicitly. Within the ranges considered for relaxing the containment leakage rate, the increase in postulated accident consequences due to leakage would be proportional to the increase in the containment leakage rate.
- 3. The impact of increased leakage rates on routine airborne effluent releases has not been quantitatively assessed. Doses from current airborne releases have been evaluated by the EPA as resulting in doses of less than a few mrem per year (EPA91). As only about 10 percent of containment penetrations constitute a potential direct pathway to the environment during the normal operating mode, impacts, if any, are likely to be small.

10 1 4 On-Line Monitoring Systems

Ability to Detect Leaks

Continuous monitoring methods exist that appear technically capable of detecting leaks in reactor containments. While OLM does not have the accuracy of Type A testing, it does seem to offer enough accuracy and speed to detect gross leakage. OLM is capable of detecting leaks within one day to several weeks.

OLM can detect only gross containment leakage (NRC88). It cannot detect leaks through systems that do not normally communicate with the containment atmosphere. Gross leakages are most likely to occur from systems left open, such as air locks, purge/vent pathways, or similar direct air path system valves or penetrations, or from failures in isolation mechanisms in such systems.

OLM cannot be considered as a complete replacement for Type A tests since it cannot challenge the structural and leak-tight integrity of the containment system at elevated pressures.

Risk Considerations

OLM does not significantly reduce the risk to the public from nuclear unit operation and, thus, cannot be justified solely on risk considerations. As noted for the Surry unit, containment isolation failure has been found to contribute approximately 0.05 percent of the total latent accident risk. Given this low contribution and the limitations of on-line monitoring systems noted above, the potential risk benefit of on-line monitoring appears to be quite limited.

International Experience

Canadian, French and Belgian utilities have installed OLMs on their PWR units and monitored containment leakage during power operations. They reported that OLMs are capable of detecting leaks in the radiation monitoring system, nuclear island vent and drain system, containment purge system, and containment atmosphere monitoring system.

Open Issues

The usefulness of OLM systems depends on the resolution of several issues requiring further research. Specifically, the following limitations are noted:

- 1. difficulty in accounting for the effect of temperature and moisture gradients and variations on the test results,
- 2. the possibility of an actual leak being masked by containment air/gas inleakage,
- inability to account for leaks in closed pressurized systems inside containment that would probably not be measured during online monitoring,
- 4. potential "false alarms" from on-line monitoring, and
- 5. the need for stabilized conditions within the containment during reactor operation.

10.2 COST

With respect to cost, the key issue is "Can a revised containment testing rule, which has a marginal impact on safety, also significantly reduce the financial burden on utilities?"

The findings of the cost analysis are provided in the following paragraphs, and the industry-wide cost savings of the various alternatives are summarized in Table 10-2.

1. Costs of performing Type B and C tests are relatively insensitive to the allowable leakage rate. Only a small number of penetrations fail any given battery of tests, and the percentage of penetrations that marginally fail is even smaller. Thus, it is unlikely that any significant amount of repairs would be avoided regardless of the allowable leakage rate.

- 2. Costs of Type B and C tests are considerably less than those of Type A tests because they are not performed on the critical path.
- 3. Costs of Type A tests, which are performed on the critical path, are dominated by the cost of replacement power. Replacement power is estimated to account for almost 80 percent of the total costs of Type A testing. Increasing the allowable leakage rate is estimated to reduce the critical-path time required to conduct an ILRT by 16 hours and decrease the cost of an ILRT by about 10 percent.
- 4. Based on 20 years of operational life remaining for the average reactor and an 18-month refueling schedule, current test frequencies are estimated to have a net present cost of \$6.6 million per reactor at a 5 percent discount rate, and \$4.5 million per reactor at a 10 percent discount rate.
- 5. Assuming the same 20-year period and test frequencies as above, increasing the

allowable leakage rate is estimated to reduce the remaining costs of leak testing by 10 percent.

- 6. Reducing the number of ILRTs from three per 10 years to one per 10 years is estimated to eliminate more that 66 percent of the remaining costs of leak testing. Testing on a one in 20-year interval would eliminate about 83 percent of remaining costs.
- For illustrative purposes, it was assumed that 58 percent of the costs of LLRTs could be eliminated by a performance-based rule. Such a reduction would result in about a 6 percent reduction in the remaining costs of leak testing.
- 8. A rough estimate for OLM systems indicates that costs would be on the order of one-quarter of a million dollars. If OLM were an addition to existing requirements, this would represent approximately a 4 percent increase in testing costs.

	Cost Savings (Millions of Dollars)						
Alternative	20-Year	Test Cycle	40-Year Test Cycle				
	5% Discount	10% Discount	5% Discount	10% Discount			
1	73	49	108	60			
2	241	168	332	194			
3	287	199	404	232			
4	481	33	662	383			
5	500	345	697	400			
6	597	406	823	467			
7	601	411	839	475			
8	40	28	55	33			
ý	111	76	161	91			
10	295	206	406	237			
11	338	235	473	273			
12	548	379	754	436			
13	563	389	784	451			
14	670	457	923	525			
15	673	458	934	530			

Table 10-2. Summary of Industry-Wide Cost Savings

- -

v

- -- -- -

v

. .

References

AEC'62	Dilvunno, et al., "Calculations and Distance Factors for Power and Test Reactor Sites," TID-14844, U.S. Atomic Energy Commission, Washington, D.C., 1962
BEL86	"Report of the Working Group on Containment Leakage Testing," Belgium, April 15, 1986.
BEL86A	"De Boeck, B., "New Belgian Position on Containment Leakage Testing," Association Vincotte, Belgium, 1986. [Published in NUREG/CP-0076, "Proceedings of the Third Workshop on Containment Integrity," August 1986.]
BMI86	Gieseke, J. A., Cybulskis, P., Denning, R. S., Kuhlman, M. R., Lee, K. W., Chen, H., Freeman-Kelly, R., Jordan, H., Curtis, L. A., Kogan, V., Schumacher, P. M., and Carlton, H. E., "Radionuclide Release Under Specific LWR Accident Conditions, Volume VIII, Additional Information," BMI-2104, July 1986.
BN72	Bechtel National, Inc., BN-TOP-1, Revision 1, November 1972.
BOE90	De Boeck, B., "Severe Accident Risk Reduction by Containment Leakage Testing during Operation," Nuclear Engineering and Design 120 (1990) 87-91, North- Holland.
CAN94	Collins, N. and P. Lafreniere, "On-Line Reactor Building Integrity Testing at Gentilly-2 (Summary of Results 1987-1994)", Hydro-Quebec Gentilly-2 Nuclear Power Station, Canada, October 1994.
EDF89	Germain, J.L. and Janneteau, "Continuous Monitoring of Containment Leaktightness - The SEXTEN System," EDF, Direction des Etudes et Recherches, France, March 1989.
EDF93	Pollier, R., "The SEXTEN System - Continuous Monitoring of Containment Leaktightness," EDF, Energy and Mechanics Department, France, September 1993.
EPA91	U.S. Environmental Protection Agency, "Background Information Document to Support NESHAPS Rulemaking On Nuclear Power Reactors," EPA520/1-91-019, Draft, August 1991.
EPRI83	Electric Power Research Institute, Project 1393-5, EPRI NP-3400, Final Report, December 1983.
EPRI94	Erin Engineering and Research, Inc. for Electric Power Research Institute."Shutdown Risk Impact Assessment for Extended Containment Leakage Testing Interval Utilizing ORAM TM ", TR-105189, April 1994.
GG93	Grand Gulf Nuclear Station, Docket No. 50-416, License No. NPF-29, "Application for Exemption from 10CFR50 Appendix J and Proposed Amendment to Operating License (PCOL-93/010)," August 13, 1993.

References

GGD4	Grand Gulf Nuclear Station, Docket No. 50-416, License No. NPF-29, "Weibull Analysis of Type C Test Data in Support of the GGNS Appendix J Submittal," June 1994.
GIE90	Gieseke, J. A., Cybulskis, P., Jordan, H., Lee, K. W., Kuhlman, M. R., Wooton, R. O., Kogan, V., and Freeman-Kelly, R., "Source Term Code Package: A User's Guide (Mod 2)," February 28, 1990.
N. '75	U.S. Nuclear Regulatory Commission, "Reactor Safety Study," WASH-1400, NUREG/75/014, Washington, D.C., 1975.
NRC81	Kolb, G. J., Hatch, S. W., Cybulskis, P., and Wooton, R. O., "Reactor Safety Study Methodology Applications Program: Oconee #3 PWR Power Plant," NUREG/CR- 1659/2 of 4, January 1981.
NRC81A	Hatch, S. W., Cybulskis, P., and Wooton, R. O., "Reactor Safety Study Methodology Applications Program: Grand Gulf #1 BWR Power Plant," NUREG/CR-1659/4 of 4, October 1981.
NRC83	Ritchie, L.T., et al., "Calculations of Reactor Accident Consequences Version 2, CRAC2: Computer Code User's Guide," NUREG/CR-2326, 1983.
NRC83A	U.S. Nuclear Regulatory Commission, "Regulatory Analysis Guidelines of the U.S. Nuclear Regulatory Commission," NUREG/CR-0058, January 1983.
NRC84	Ritchie, L.T., et al., "CRAC2 Model Description," NUREG/CR-2552, 1984.
NRC84A	Hermann, O.W. and T.J. Burns, "Impact of Containment Building Leakage on LWR Accident Risk," NUREG/CR-3539, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1984.
NRC85	U.S. Nuclear Regulatory Commission, "Reliability Analysis of Containment Isolation Systems," NUREG/CR-4220, June 1985.
NRC85A	Bergeron, K. D., et al., "User's Manual for CONTAIN 1.0, A Computer Code for Severe Reactor Accident Containment Analysis," NUREG/CR-4085, July 1985.
NRC86	Mullen, M. F., et al., "Review of Light Water Reactor Regulatory Requirements," Pacific Northwest Laboratory, NUREG/CR-4330, PNL-5809, Vol. 2, June 1986.
NRC86A	Code of Federal Regulations, Title 10, Part 100 (10CFR 100), "Reactor Site Criteria," Government Printing Office, Washington, D.C., 1986.
NRC86B	Code of Federal Regulations, Title 10, Part 50 (10CFR 50), "Domestic Licensing of Production and Utilization Facilities," Appendices: A, I, J, and K, 1986.

NRC86C	U.S. Nuclear Regulatory Commission, "Safety Goals for the Operations of Nuclear Power Plants; Policy Statement, Federal Register, Volume 51, No. 149, August 1986.
NRC88	U.S. Nuclear Regulatory Commission, "Technical Findings and Regulatory Analysis for Generic Safety Issue II.E.4.3 - Containment Integrity Check," NUREG-1273, April 1988.
NRC89	U.S. Nuclear Regulatory Commission, "Implementation of Safety Goal Policy," SECY-89-102, March 1989.
NRC89A	U.S. Nuclear Regulatory Commission, Commissioner Rogers, "Safety Goals - Where Do We Go From Here?," ANS Workshop on Reactor Safety Objectives and Criteria, Idaho Falls, Idaho, August 1989.
NRC90	"Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants, Final Summary Report," NUREG-1150, December 1990.
NRC90A	Ericson, D. M., Jr., et al., "Analysis of Core Damage Frequency: Internal Events Methodology," Sandia National Laboratories, NUREG/CR-4550, Vol. 1, Revision 1, SAND86-2084, January 1990.
NRC90B	Breeding, R.J., et al., "Evaluation of Severe Accident Risks: Surry Unit 1, Main Report," NUREG/CR-4551, SAND86-1309, Vol. 3, Rev. 1, Part 1, October 1990.
NRC90C	Payne, A.C., et al., "Evaluation of Severe Accident Risks: Peach Bottom, Unit 2, Main Report," NUREG/CR-4551, SAND86-1309, Vol. 4, Rev. 1, Part 1, December 1990.
NRC90D	Brown, T.D., et al., "Evaluation of Severe Accident Risks: Grand Gulf, Main Report," NUREG/CR-4551, SAND86-1309, Vol. 6, Rev. 1, Part 1, December 1990.
NRC90E	Gregory, J.J., et al., "Evaluation of Severe Accident Risks: Sequoyah Unit 1, Main Report," NUREG/CR-4551, SAND86-1309, Vol. 5, Rev. 1, Part 1, December 1990.
NRC90F	Park, C.K., et al., "Evaluation of Severe Accident Risks: Zion, Unit 1, Main Report," NUREG/CR-4551, BNL-NUREG-52029, Vol. 7, Rev. 1, Part 1, March 1993.
NRC90G	U.S. Nuclear Regulatory Commission, Memo Chilk to Taylor, "SECY-89-102 - Implementation of the Safety Goals," June 1990.
NRC91	U.S. Nuclear Regulatory Commission, "Interim Guidance on Staff Implementation of the Commission's Safety Goal Policy," SECY-91-270, August 1991.
NRC91A	VanKuiken, J.C., et al., "Replacement Energy Costs for Nuclear Electricity- Generating Units in the United States: 1992 - 1996," NUREG/CR-4012, ANL-AA-30. Vol. 3.

ŧ

References

- NRC92 U.S. Nuclear Regulatory Commission, 'Elimination of Requirements Marginal to Safety," SECY-92-263, July 24, 1992.
- NRC93 U.S. Nuclear Regulatory Commission, Memo Helternes to Larkins, "Staff Approach for Assessing the Consistency of the Present Regulations with respect to the Commission's Safety Goals," April 1993.
- NRC93B U.S. Nuclear Regulatory Commission, "Workshop on Program for Elimination of Requirements Marginal to Safety," NUREG/CP-0129, Bethesda, lyaryland, April 1993.
- NRC93C U.S. Nuclear Regulatory Commission, "Trip Report for Meetings with Swedish Nuclear Power Inspectorate and Vattenfall Energisystem (Utility) to Discuss Approaches to Containment Testing," Memorandum to Distribution, M. Dev, September 23, 1993
- NRC94 U.S. Nuclear Regulatory Commission, "Codes and Standards for Nuclear Power Plants; Subsection IWE and Subsection IWL," Federal Register, Volume 59, No. 5, January 7, 1994.
- NRC94A U.S. Nuclear Regulatory Commission, "Trip Report for Meetings with Electricite de France, and Nuclear Industry Representatives in Belgium to Discuss Approaches to Containment Testing," Memorandum to Distribution, M. Dey, January 11, 1994
- NUM94 Letter from W. J. Hall, NUMARC, to M. Dey, NRC, dated February 18, 1994.
- PNL83 Battelle Pacific Northwest Laboratories, "Handbook for Value-Impact Assessment," NUREG/CR-3568, December 1983.
- SEA85 Science and Engineering Associates, Mathtech, S. Cohen & Associates, "Cost Analysis of Revisions to 10 CFR Part 50, Appendix J, Leak Tests for Primary and Secondary Containments of Light-Water-Cooled Nuclear Power Plants," NRC Contract 33-84-407, April 1985.
- SEPR194 Seveon, J.J., "PWR's Containment Leaktightness A Comparison of the French and American Approaches," SEPRI Report No. 18, September 1994.
- SNL91 Sandia National Laboratories, "MELCOR 1.8.1 Computer Code Manual," June 1991.

- -

Glossary

Acceptance criteria - standards against which test results are to be compared for establishing the functional acceptability of the containment as a leakage-limiting boundary.¹

As found - leakage measured during an integrated leakage-rate test before any remediation is performed; if maintenance is performed on penetrations and isolation valves prior to the integrated test, the as-measured leakage rate plus the leakage savings resulting from such maintenance.

As left - leakage measured during an integrated leakage-rate test after remediation, if necessary, has been performed.

Containment isolation valve - any valve that is relied on to seal off the primary reactor containment from the outside atmosphere. Containment isolation valves are those that: (1) provide a direct connection between the inside and outside atmospheres of the primary reactor containment under normal operation, such as purge and ventilation, vacuum relief, and instrument valves, (2) are required to close automatically upon receipt of a containment isolation signal, (3) are required to operate intermittently under post-accident conditions, and (4) are in main steam and feedwater piping and other systems that penetrate containment of direct-cycle boiling water power reactors.¹

Containment penetrations - components designed to provide a pressure-containing or leakagelimiting boundary for piping and electrical systems penetrating the primary reactor containment. Included are containment penetrations whose design incorporates resilient seals, gaskets, or sealant compounds, piping penetrations fitted with expansion bellows, and electrical penetrations fitted with flexible metal seal assemblies; airlock door seals; and doors with resilient seals or gaskets except for seal-welded doors.¹

EPRI - acronym for the Electric Power Research Institute.

Exclusion area - area surrounding the reactor, in which the reactor licensee has the authority to determine all activities including exclusion or removal of personnel and property from the area.²

FSAR - Final Safety Analysis Report, document a utility submits to NRC in support of its request for an operating license.

ILRT - Integrated Leakage-Rate Test, test conducted to determine the leakage rate obtained from measurement of leakage through all potential leakage paths including containment welds, valves, fittings, components that penetrate containment, as well as the containment structure.

Individual latent cancer risk - calculated probability of dying from cancer due to an accident for an individual located within 10 miles of the unit; i.e., <u>a</u> (cf/pop)p, where cf is the total number of latent cancer fatalities due to the direct exposure in the resident population, pop is the affected population size, p is the weather condition probability, and the summation is over all weather conditions.

L_a (percent/24 hours) - maximum allowable leakage rate at pressure P_a.¹

L₄ (percent/24 hours) - design leakage rate at pressure P₄.¹

L (percent/24 hours) - maximum allowable leakage rate at pressure P_{t}^{-1}

Glossary

 L_{sm} , L_{tm} (percent/24 hours) - total measured containment leakage rates at pressures P_s and P_t , respectively, obtained from testing the containment with components and systems in the state as close as practical to that which would exist under design basis accident conditions (e.g., vented, drained, flooded, or pressurized).¹

Leakage rate - for test purposes, leakage which occurs in a unit of time, stated as a percentage of weight of the original content of containment air at the leakage-rate test pressure that escapes to the outside atmosphere during a 24-hour test period.¹

LER - Licensee Event Report, reporting mechanism required of licensees by the NRC to inform it of any nuclear unit condition potentially adverse to safety.

LLRT - Local Leakage-Rate Test, another name for Type B and Type C tests.

Low population zone - area immediately surrounding the exclusion area which contains residents, the total number and density of which are such that there is a reasonable probability that appropriate protective measures could be taken in their behalf in the event of a serious accident.²

Minimum path - for a penetration, leakage through the penetration accounting for the fact that there are multiple components in series providing isolation. If the penetration consists of two valves in series, and the first valve leaked 1 SCF/H and the second 10 SCF/H, the penetration minimum leakage path is 1 SCF/H. For containment as a whole, the minimum path leakage is the cumulative leakages summed across all penetrations.

Overall integrated leakage rate - leakage rate which is obtained from a summation of leakage through all potential leakage paths including containment welds, valves, fittings, and components that penetrate containment.¹

P_• (psig, pounds per square inch gauge) - calculated peak containment internal pressure related to the design basis accident and specified either in the technical specifications or associated licensing bases.¹

 $P_t(psig)$ - containment vessel reduced test pressure selected to measure the integrated leakage rate during periodic Type A tests.¹

Population center distance - distance from the reactor to the nearest boundary of a densely populated center containing more than about 25,000 residents.²

Population dose within entire region - exposure, expressed in effective dose equivalents (person-rem), due to early and chronic exposure pathways for the population within the entire affected region.

Population dose within 50 miles - exposure, expressed in effective dose equivalents (person-rem), due to early and chronic exposure pathways for the population within 50 miles of the reactor.

Primary reactor containment - structure or vessel that encloses the components of the reactor coolant pressure boundary (i.e., basically the reactor and its connected piping, pumps, hardware, etc.). The containment serves as an essentially leakage-tight barrier against the uncontrolled release of radioactivity to the environment.¹

Reactor containment leakage-test program - includes the performance of Type A, Type B, and Type C tests.¹

Technical specifications - with respect to nuclear power units, 4 document specifying the limiting conditions for continued operation which are consistent with the design basis of the unit.

Total latent cancer fatalities - total number of predicted latent cancer fatalities due to both early and chronic exposure.

Type A Tests - tests intended to measure the primary reactor containment overall integrated leakage rate (1) after the containment has been completed and is ready for operation, and (2) at periodic intervals thereafter.¹

Type B Tests - tests intended to detect local leaks in systems penetrating containment and to measure leakage across each pressure-containing or leakage-limiting boundary.¹

Type C Tests - tests intended to measure containment isolation valve leakage rates.⁴

2. 10 CFR Part 100.3, "Definitions"

^{1. 10} CFR Part 50, Appendix J, Section II, "Explanation of Terms"

APPENDIX A

ANALYSIS OF TYPE B/C LEAKAGE-RATE HISTORY

.

Contents

	Page
A.1	Introduction
A.2	North Anna Analyses A-1
	A.2.1 Type B LLRT A-2
	A.2.2 Type C LLRT A-3
	A.2.2.1 Historical Performance
	A.2.2.2 Analysis of Historical Leakage-Rate Data A-9
	A.2.2.3 Statistical Analysis of Component Data
	A.2.2.4 Test Options Analysis A-26
A.3	Grand Gulf Analysis
A.4	Comparison of Results
A.5	Findings
Endnot	es

Tables

.

And the second state of th

Numbe		Page
A-1	Probability of Exceeding L _a at any Random Point in Time	A-6
A-2	Penetration Data	A-16
A-3	Class Variable Data Codes	A-24
A-4	Actual Versus Expected Number of Multiple Valve Failures Assuming Independent Failures	A-27
A-5	Actual Versus Expected Number of Multiple Valve Failures Assuming Dependent Failures	A-27
A-6	Probability of Indeterminate Containment Leakage Paths for Test Scheme Options	A-28
A-7	Change in Incremental Risk Due to Containment Leakage Relative to Current Test Scheme for Test Scheme Options	A-30
A-8	Probability of Indeterminate Containment Leakage Paths for Test Scheme Options - Data from 1990 to Present	A-31
A-9	Change in Incremental Risk Due to Containment Leakage Relative to Current Test Scheme for Test Scheme Options - Data from 1990 to Present	A-32
A-10	Containment Penetration Component Failures	A-32

Tables (Continued)

Numbe	1	Page
A-11	Component Statistics	A-33
A-12	Valve Failure Rates	A-33
A-13	Actual Versus Expected Number of Multiple Valve Failures Assuming Independent Failures	A-34
A-14	Actual Versus Expected Number of Multiple Valve Failures Assuming Independent Failures	A-3 4
A-15	Probability of Indeterminable Containment Leakage Paths for Test Scheme Options	A-37
A-16	Change in Incremental Risk Due to Containment Leakage Rate Relative to Current Test Scheme for Test Scheme Options	A-38
A-17	Comparison of Containment Isolation Valve Leakage Failure Rates	A-38
A-18	Comparison of Changes in Incremental Risk Due to Containment Leakage Rate Relative to Current Test Scheme for Test Scheme Options	A-38

Figures

Numbe	E · ·	<u>Page</u>
A-1	Minimum Path Leakage Rate Versus Time - Linear Change in Leakage Rate Over Time (Max Component Flow 257 scf/h)	A-4
A-2	Minimum Path Leakage Rate Versus Time - Leakage Rate Maximum of Start and End Leakage Rates Over Time (Max Component flow 257 scf/h)	A-5
A-3	Minimum Path Leakage Rate Versus Time - Linear Change in Leakage Rate Over Time (Max Component Flow 500 scf/h)	A- 7
A-4	Minimum Path Leakage Rate Versus Time - Leakage Rate Maximum of Start and End Leakage Rates Over Time (Max Component Flow 500 scf/h)	A-8
A-5	Number of Component Leakage Rates > 257 scf/h Versus Time	A- 10
A-6	Component Leakage Rate Versus Time Since Maintenance	A-11
A-7	Number Component Leakage Rates > 257 scf/h Versus Time Since Maintenance	A-12
A-8	Leakage Rate at Maintenance Versus Leakage Rate at Last Test	A-13
A-9	Leakage Rate at Maintenance Versus Leakage Rate at Last Test - Magnified View	A-14

APPENDIX A

ANALYSIS OF TYPE B/C LEAKAGE-RATE HISTORY

A 1 INTRODUCTION

This appendix describes the analyses which were performed to determine the effect on nuclear unit risk resulting from changes in the testing schemes and testing intervals of components undergoing Type B and C tests. Extensive test result data and component data were collected at the North Anna Power Station through the cooperation of its owner and operator, Virginia Electric Power Company.¹ In addition. extensive test result data and component data were collected at the Grand Gulf Nuclear Station through the cooperation of its owner and operator, Entergy Operations.² In February, the Nuclear Management and Resources Council (NUMARC) submitted a letter (NUM94) summarizing data representative of a wide spectrum of nuclear power unit designs.

This data collection effort was performed to provide sufficient information for calculating the costs and man-rem exposure associated with local leakage-rate testing, and to identify and quantify the effect of component and system parameters on component leakage rates and component leakage-rate frequencies. This information was also used to develop models for evaluating the impact of alternative local leakage-rate testing schemes on the probability and magnitude of containment leakage rates.

The data collected for North Anna was evaluated to determine the historical containment leakage ates over time and the corresponding component leakage rates. This analysis was performed to identify any trends in these leakage rates, to provide a baseline against which changes in testing schemes or intervals are compared against, and to validate the containment penetration model used in these analy s. Next, data collected concerning individu metration components (component characteristics and component service data) were analyzed to determine if component failure rates could be predicted as a function of this data. Based on this analysis, no statistically significant differentiation in component failure rates could be found based on the component data. It was found, however, there was an increased probability of component failure if that component had previously failed. In addition, there is evidence of component common mode failures at the penetration level. Based on the above analyses, a Monte Carlo simulation model of the North Anna containment penetrations was constructed. This model was used to determine the risk impact of various component testing schemes and testing intervals.

Based on the insights gained from the North Anna analyses, a more restricted set of analyses was performed on the data gathered from Grand Gulf. The results of these analyses were in general agreement with the results of the North Anna analyses.

A.2 NORTH ANNA ANALYSES

The North Anna Power Station comprises two pressurized water reactors.³ Data collected at the power station consisted of the following:

- reactor containment building Integrated Leakage-Rate Test (ILRT) reports
- penetration leakage logs for 1985 through 1993 for Unit 1, and 1986 through 1993 for Unit 2
- time estimates for conducting Type A, B, and C tests
- estimated man-rem exposures for conducting Type A, B, and C tests
- dates of seal replacement or door adjustment for personnel air-lock, emergency escape air-lock, equipment hatch, and fuel transfer tube

 "as-found" leakage rates from component maintenance records

containment penetration component configurations

 manufacturer, type, operator type, type of service (i.e., chromated water, compressed air, etc.), number of operations per operating cycle (18 months), hours of flow per operation, and flow rate, temperature, and pressure seen by the valve during operation for each containment isolation valve tested during the Type C tests

A.2.1 Type B LLRT

Type B tests are performed on two types of equipment: electrical penetrations and air-locks (and other double-gasketed and double O-ring seals). Due to the vast differences in these two types of equipment leakage tests, they are described separately below.

Each unit contains approximately 130 electrical penetrations. Type B tests are performed on each of these penetrations approximately every 18 months. Between tests, each penetration is left pressurized and attached to a pressure gauge which is checked monthly. If a pressure gauge shows a low, but non-zero pressure, the penetration is repressurized using a portable compressed air source. If a pressure gauge shows zero pressure, a Type B leakage test is performed on the penetration. In all such cases but one, the cause of the leakage was found to. be the connection to the pressure gauge, rather than leakage of the penetration itself. In the one case where the electrical penetration was leaking, the leakage rate was too small to measure using standard leakage-test equipment. The specific location of the leakage had to be determined by pressurizing the penetration with helium and using a helium leakage-detector probe. The leakage on the bundle was corrected by tightening the nut on the bundle by a quarter turn. Based on this information. North Anna has experienced no significant electrical

penetration leakage in approximately 27 unityears of operation.

Based on the above information, performancebased Type B testing would result in a significant reduction in tests of the electrical penetrations. If the leakage pattern of these penetrations do not deviate from the historical leakage pattern, an insignificant increase in risk would result from performance-based testing of these penetrations.

Type B testing is performed on all air-locks, i.e., the fuel transfer tube, the personnel airlock, the emergency escape air-lock, and the equipment hatch. The fuel transfer tube is tested approximately every 18 months. The personnel air-lock, emergency escape air-lock, and equipment hatch are tested on a 6-month test interval and can be tested during power operation. North Anna maintains an aggressive maintenance program for these penetrations.

North Anna maintains a policy of zero allowed leakage on the equipment hatch. If any leakage is detected through the equipment hatch door seals, the leakage test is terminated and the leakage corrected. No "as-found" leakage rate is determined for the equipment hatch during Type B tests unless the test coincides with an integrated leakage-rate test. Since June 1987, a seal has been replaced on the Unit 1 equipment hatch five times. Since April 1989, a seal has been replaced on the Unit 2 equipment hatch two times.

The door seals for the fuel transfer tubes in Unit 1 and Unit 2 were replaced in December 1985 and August 1984, respectively. There has been zero leakage through these seals since that time.

Since January 1986, either a personnel air-lock seal has been replaced or a door adjusted 13 times for Unit 1. Since August 1986, either a personnel air-lock seal has been replaced or a door adjusted 12 times for Unit 2. Maximum path leakage rates for both Unit 1 and Unit 2 personnel air-locks have ranged from zero to 22 scf/h. Since June 1987, either an emergency air-lock s is has been replaced or a door adjusted five times for Unit 1 and five times for Unit 2. Maximum path leakage rates for both Unit 1 and Unit 2 emergency air-locks have ranged from zero to 9 scf/h.

Based on the above information, performancebased Type B testing would not result in a significant reduction in tests of the air-locks. In all cases except for the fuel transfer tubes, repairs have been performed on the air-lock seals often enough that the seals would not meet the performance requirements necessary to reduce their test intervals.

A.2.2 Type C LLRT

A.2.2.1 Historical Performance

Prior to the data collection effort at North Anna. a group of system and component parameters were identified that might have an impact on the frequency of containment isolation valve leakage and the distribution of leakage rate over time once the valve started to leak. The parameters identified were: manufacturer, type, operator type, type of service (i.e., chromated water, compressed air, etc.), number of operations per operating cycle (18 months), average hours with flow per operation, and the flow rate, temperature, and pressure seen by the valve during operation. These data, along with the asfound and as-left leakage rates for each containment isolation valve tested during the Type C tests and the component configuration for each containment penetration, were collected for both units at North Anna.

The first step in the analysis was to establish the historical performance of the containment isolation components. This provides a baseline against which performance-based alternatives to the current leakage-rate testing scheme can be measured.

Based on the as-found and as-left leakage rates, a master time-line matrix was built showing component leakage rates over time and when each component was placed in maintenance to correct leakage. Based on the containment penetration component configuration information, a computer model was built to calculate the minimum path leakage rate for each penetration and, by summing the penetration minimum path leakage rates, the overall containment minimum path leakage rate. The penetration minimum path leakage rate was calculated by taking the minimum of the leakage rates for components or component trains in series, and the maximum of the leakage rates for components or component trains in parallel for all flow paths through the penetration.

Based on the time-versus-component-leakage-rate matrix and the containment penetration leakage model, the overall containment leakage rate versus time was determined for each unit. The minimum path containment leakage rate versus time since January 1985 for each unit is shown in Figure A-1. Two assumptions were made in calculating the unit leakage rates. The first assumption was that the component leakage rate for a component varied linearly over time between the time-points where component leakage rate was measured. For example, if the component leakage rate was measured at zero scf/h at time 100, and 10 scf/h at time 110, the component leakage rate at time 105 was estimated to be 5 scf/h. The second assumption regards component leakage rates that were indeterminable during Type C leakage testing. The leakage-test equipment used during Type C testing can measure leakage rates up to approximately 257 scf/h. If a component had a leakage rate greater than this amount, the component leakage rate was recorded as ">257." In this figure, a leakage rate of 257 scf/h was assumed when the component leakage rate was indeterminable. Due to these assumptions, this figure can be interpreted as the expected value of the containment leakage rate versus time. In order to determine the sensitivity of the minimum path leakage rate to the first assumption (linear change in leakage rate over time). Figure A-2 was created. This figure assumes that the component leakage rate between time-points where the component leakage rate was measured is the maximum of the two leakage rates. This figure can be interpreted as the worst-case containment leakage rate versus time assuming no component leaks more than 257 scf/h.

Min Path Leak Rate Versus Time (Linear Change in Leak Rate Over Time)

Figure A-1. Minimum Path Leakage Rate Versus Time - Linear Change in Leakage Rate Over Time (Max Component Figure 257 scf/h) assuming no component leaks more than 257 scf/h.

Min Path Leak Rate Versus Time (Max of Start and End Leak Rates)

Figure A-2. Minimum Path Leakage Rate Versus Time - Leakage Rate Maximum of Start and End Leakage Rates Over Time (Max Component Flow 257 scf/h)

he ender to determine the sensitivity of the manuform path leakage rate to the second assumption (maximum component leakage rate of 257 sef/h), Figure A-3 was created. In this figure a leakage rate of 500 scf/h was assumed when the component leakage rate was indeterminable and the leakage rate for a component is linear over time. Figure A-4 assumes that the component leakage rate between time-points where the component leakage rate was measured is the maximum of the two leakage rates, and a leakage rate of 500 scf/h was assumed when the component leakage rate was indeterminable. A leakage rate of 500 scf/h in Figures A-3 and A-4 was selected when the component leakage rate was indeterminable simply because it was higher than L, (304 scf/h), but less than twice the maximum measurable component leakage rate (2*257=514 scf/h). Assigning a leakage rate of 500 scf/h forces the containment minimum path leakage rate above L, in these two figures if all components in a series pathway for a penetration are leaking at an indeterminable rate at the same time (i.e., the penetration minimum path leakage rate was indeterminable). As there is no way to know what the actual component leakage rate was in these cases, the actual leakage rate could have been less than 500 scf/h (but higher than 257 scf/h) or significantly higher than 500 scf/h. Based on a review of LER summaries regards : failures of containment (solat) = detected by Type C testing, leakage rates in the thousands = sof/h have been measured for (solation valves) The assumptions used for Figure A-4 (500 sof) maximum component leakage rate, component leakage rate the maximum of the as-left and asfound leakage rates between time points) are referred to as the worst-case assumptions in the remainder of this appendix.

By sampling the containment leakage rates shown in Figures A-1 to A-4, the probability of North Anna Units 1 and 2 having historically exceeded L, at any random point in time can be determined for each set of assumptions. Table A-1 shows the probability of having exceeded I. at any random point in time for the cases described above. From this table, it can be seen that having a containment leakage rate greater than L, ranges from zero percent of the time (Unit 2, most optimistic conditions) to 22.6 percent of the time (Unit 1, worst-case assumptions.) As can be seen from Figure A-4, even under worst-case assumptions (component leakage rate above L, when indeterminable, component leakage rate between test points the maximum of the start and end leakage rates), no containment minimum path leakage rates approaching L, have occurred since mid-1988

Table A-1.	Probability	of E	Exceeding	L, at	any	Random	Point	in	Time
------------	-------------	------	-----------	-------	-----	--------	-------	----	------

Maximum Component	Calculation Method for Leakage Rates	Probability of Having Minimum Path Leakage Rate Greater Than L, at Random Point in Time			
Leakage Rate (scf/h)	Between Measured Time-points	Unit 1	Unit 2		
257	Linear change over time	0.004	0.000		
500	Linear change over time	0.127	0.022		
257	Maximum of start and end leakage rates	0.104	0.089		
500	Maximum of start and end leakage rates	. 0.226	0 209		

ł

Min Path Leak Rate Versus Time (Linear Change in Leak Rate Over Time)

Figure A-3. Minimum Path Leakage Rate Versus Time - Linear Change in Leakage Rate Over Time (Max Component Flow 500 scf/h)

Min Path Leak Rate Versus Time (Max of Start and End Leak Rates)

Figure A-4. Minimum Path Leakage Rate Versus Time - Leakage Rate Maximum of Start and End Leakage Rates Over Time (Max Component Flow 500 scf/h)

for either Unit 1 or Unit 2. Since mid-1989, the containment minimum path leakage rate for each unit has been less than 15 scf/h.

Figure A-5 shows the number of times a component with a leakage rate of 257 scf/h or more was found versus time since January 1985. From this figure, it can be seen that there have been occurrences of components leaking at an indeterminable rate since mid-1988, but there has not been a simultaneous indeterminable leakage rate for all components constituting a series containment leakage-rate path. The number of such components found during each refueling outage has ranged from zero to ten. In several cases, additional such components were found during tests between refueling outages.

A.2.2.2 Analysis of Historical Leakage-Rate Data

The historical component leakage-rate data collected from North Anna covered approximately 7 years of experience for each unit. This amount of data is insufficient for directly evaluating the impact of performancebased testing schemes, some of which relax the testing interval for selected components to one test in ten years. In order to evaluate the impact of altering the Type C testing scheme, a means of probabilistically estimating component performance over a longer period of time is required. The data collected from North Anna were examined several different ways in order to attempt to build a component model to predict future component performance.

Figure A-6 shows a scatter plot of individual component leakage rates versus time since last maintenance on the component. In creating this figure, it was assumed that all components had undergone maintenance 18 months prior to the first leakage-rate test recorded in the data collected from North Anna. The leakage rates presented in this figure are the measured asfound leakage rates of the components. Spikes in the figure can be seen at 18, 36, 54, and 72 months, which correspond to the normal 18 month testing interval. In this figure, if a component had a leakage rate greater than 257 scf/h (the maximum measurable leakage rate), the component leakage rate was recorded as 257. Since Figure A-6 is a scatter plot, the number of occurrences of a given leakage rate at a given time since maintenance is not shown. Figure A-7 shows the number of times a component with a leakage rate of 257 scf/h or more was found versus time since last maintenance on the component.

These figures show that many of the component failures occur relatively soon (within 36 months) after the previous maintenance event. This suggests that the component failure rate decreases versus the time since last maintenance. Based on Figure A-7, approximately 66 percent of the failures occurred within 36 months of the previous maintenance event.

Figure A-8 shows a scatter plot of component leakage rate at maintenance versus the as-left leakage rate from the last test performed on the Figure A-9 is the same as component. Figure A-8, except only as-found leakage rates up to 30 scf/h are shown. For reference, there were 57 cases where the as-found leakage rate was 250 scf/h or greater, 40 cases where the asfound leakage rate was between 25 and 249 scf/h. and 181 cases where the as-found leakage rate was between zero and 24 scf/h. From these two figures, several observations can be made. First, in all cases where the component as-found leakage rate was greater than 25 scf/h, the asleft leakage rate at the last test was less than 2 scf/h. Second. combined with the number of components where the as-found leakage rate was 250 scf/h or greater, this figure shows that when a component fails with a high leakage rate, the degradation from a small leakage rate to a high leakage rate occurs rapidly. This is not to say that all leakage rates increase rapidly. Figure A-9 shows that in many cases the component leakage rate increases slowly.

Estimation of the future performance of containment isolation components based on the above figures is restricted by the unavailability of a leakage rate versus time history of components once they begin to leak. The reason for this is that North Anna performs maintenance on the components once they begin to leak at a rate

Component Leak Rate >257 vs Time

NUREG-1493

1

A-10

Leak Rate vs. Time Since Maintenance

Figure A-7. Number Component Leakage Rates > 257 scf/h Versus Time Since Maintenance

Leak Rate at Maintenance vs. Leak Rate at Last Test

Figure A-8. Leakage Rate at Maintenance Versus Leakage Rate at Last Test

Leak Rate at Maintenance vs. Leak Rate at Last Test

Figure A-9. Leakage Rate at Maintenance Versus Leakage Rate at Last Test - Magnified View

A-14

above the normal expected leakage rate for the component. This is perfectly understandable for unit operations, but prevents determining the rate at which the leakage rate for components increase once they begin to leak. Because of this, it is uncertain whether the components with leakage rates between 25 scf/h and 250 scf/h were: caught on a rapid increase to above 257 scf/h, increasing slowly, or had plateaued at the measured leakage rates.

From the data described above, an estimate of four component failures (leakage rate > 250 scf/h) per year per unit was made for time independent failures of components. Since each unit has an average of 196 components, if we assume no difference in failure rate due to component or system parameters, the component failure rate per year is approximately 1.8E-2. If we assume perfect repairs, a containment leakage rate failure rate of 7E-2 per year was calculated based on penetration configurations across both units.⁵ This corresponds to one containment leakage-rate failure every ten refueling outages for each unit. At each refueling outage, an average of five components would have failed. Comparing this number to the number of component failures show in Figure A-5, it can be seen that this calculated failure rate is about double the failure rate that has been experienced at North Anna since April The calculated number of failures 1989. expected per outage is higher due to the large number of component failures that occurred earlier in the unit lives.

A.2.2.3 Statistical Analysis of Component Data

As previously described, the data gathered from North Anna was insufficient to directly evaluate the impact of performance-based testing schemes. In order to evaluate these testing schemes, a model was constructed to predict containment leakage based on the component configuration for each containment penetration. In order to make the containment leakage model as accurate as possible, a series of analyses were performed to determine how the individual components should be modeled. The first analysis was a statistical data analysis which was performed to investigate the effect of component and system parameters on the The intent of this component failure rate. analysis was to determine whether component leakage failure rates should be assigned based on these parameters, or whether a generic failure rate could be assigned to all components. Table A-2 lists the data collected for each component. For class-variable data (data with qualitative values), Table A-3 lists the meaning for each qualitative value. Based on this information and the time between maintenance events for each component, a statistical analysis of variance (ANOVA) was performed.

The statistical analysis considered the length of time a particular component was in service before requiring maintenance. Each component was categorized using nine variables: operator type, valve type, type of service, size, operations per operating cycle, hours of flow per operating cycle, flow, temperature, and pressure. The analysis sought to assess which of the nine variables were most predictive of the time until maintenance was required. Each component's time to maintenance was either interval or right censored. Components that required maintenance following inspection were interval censored since the component had degraded sufficiently to require service sometime between the inspection that identified the problem and the previous inspection. The specific time point at which the component required maintenance was unknown. Components that never requir maintenance following inspection were right censored since maintenance would not be required until sometime after the data collection period ended. A data set was created containing the nine descriptive variables, the number of hours the component was in service before maintenance was required, and whether the component maintenance time was interval or right censored.

A forward step-wise regression procedure was utilized to determine which variables were most

PEN	Unit 1		Unit 2			Ор				Op#/	Hours	Flow	Temp	Ртеня
	Comp 1D	Manuf	Comp ID	Manuf	Function	Туре	Туре	Size	Service	Cycle	Plow/ Op	(gpm/ acfm)	(**)	(berf)
1	1-CC-TV-103B	F130	2-CC-TV-203B	F130	CC FM B RHR HX	Н	В	18	С	6	120	10500	107	35
2	1-CC-193	P340	2-CC-194	M360	CC TO A RHR HX	J	С	18	С	1	720	10500	105	85
4	1-CC-198	M360	2-CC-199	M360	CC TO B RHR HX	F	С	18	С	1	720	10500	105	85
5	1-CC-TV-103A	F130	2-CC-TV-203A	F130	CC FM A RHR HX	Н	В	18	С	6	120	10500	105	80
7	1-SI-79	VO85	2-\$1-93	V085	HHSI (BIT)	Н	С	3	В	1	8	600	160	0
7	1- SI-7 7	R340	2-51-83	V085	Ţ	٨	F	2	B	0	0	0	160	0
7	1-SI-MOV-1867C	V085	2-SI-MOV-2867C	V085		B	E	3	B	6	1.3	300	160	0
1	1-SI-MOV-1867D	V085	2-SI-MOV-2867D	V085		В	E	3	B	6	1.3	300	160	0
8	1-CC-TV-101B	F130	2-CC-TV-201B	F130	CC FM RCP THERM BARRIERS	D	F	4	с	1	13140	120	130	40
8	1-CC-TV-101A	F130	2-CC-TV-201A	F130	· · · · · · · · · · · · · · · · · · ·	Н	F	4	С	1	13140	120	130	60
9	1-CC-572	M360	2-CC-302	M360	CC TO C RACC	Н	С	6	D	1	13140	400	70	50
10	1-CC-559	M360	2-CC-289	M360	CC TO B RACC	J	С	6	D	1	13140	400	70	90
11	1-CC-546	M360	2-CC-276	M360	CC TO A RACC	Н	С	6	D	1	13140	400	70	90
12	1-CC-TV-105B	F130	2-CC-TV-205B	F130	CC FM B RACC	D	B	6	D	6	2190	400	77	40
12	1-CC-TV-100B	F130	2-CC-TV-200B	F130		D	B	6	D	6	2190	400	77	40
13	1-CC-TV-105C	F130	2-CC-TV-205C	F130	CC FM C RACC	D	B	6	D	6	2190	400	77	40
13	1-CC-TV-100C	F130	2-CC-TV-200C	F130		D	B	6	D	6	2190	400	77	40
14	1-CC-TV-105A	F130	2-CC-TV-205A	F130	CC FM A RACC	D	B	6	D	6	2190	400	77	40
14	1-CC-TV-100A	F130	2-CC-TV-200A	F130		D	В	6	D	6	2190	400	77	40
15	1-CH-322	V085	2-CH-335	V085	CHARGING	F	С	3	В	1	13140	65	130	2500
15	1-CH-MOV-1289	V085	2-CH-MOV-2289 A	V085		В	E	3	B	1	13140	65	130	2500
16	1-CC-154	M360	2-CC-152	M360	CC TO C RCP AND SHROUD	F	С	8	С	1	13140	715	105	80
16	1-CC-TV-104C	F130	2-CC-TV-204C	F130		Н	В	8	С	1	13140	715	105	85

Table A-2. Penetration Data

Table	ΑŻ	(Continu	ued)
-------	----	----------	------

·

PEN	Unit 1		Unit 2			Ор				Ops!	Hours	Flow	Tent	Press
	Comp ID	Manuf	Comp 1D	Manuf	Function	Туре	Туре	Size	Service	Cycle	Flow/ Op	(gpm/ scfm)	(*)	(Leik)
17	1-CC-119	M360	2-CC-115	M360	CC TO B RCP AND SHROUD	F	с	8	Ċ	1	13140	715	105	80
17	1-CC-TV-104B	F130	2-CC-TV-2048	F130		Н	В	8	С	1	13140	715	105	85
18	1-CC-84	M360	2-CC-78	M360	CC TO A RCP	F	С	8	С	t	13140	715	105	80
18	1-CC-TV-104A	F130	2-CC-TV-204A	F130		Н	В	8	С	1	13140	715	105	85
19	1-CH-402	K085	2-CH-331	K085	SEAL WTR FM RCP'S	H	С	.75	B	0	0	0	166	0
19	1-CH-MOV-1380	A200	2-CH-MOV-2380	A200		B	E	3	В	1	13140	10	166	100
19	1-CH-MOV-1381	A200	2-CH-MOV-2381	A200	¢ E	B	Е	3	В	1	13140	10	166	100
20	1-SI-110	R340	2-SI-136	K085	SI ACCUM MAKEUP	н	С	1	B	3	8	15	105	650
20	1-51-58	R340	2-S1-47	R340		A	F	1	B	3	8	15	105	650
22	1-SI-185	V085	2-51-85	V085	HHSI (ALT CH) TO COLD LEGS	н	С	3	В	0	0	0	160	0
22	1-SI-MOV-1836	V085	2-SI-MOV-2836	V085		В	E	3	B	0	0	0	180	0
24	1-RH-36	A200	2-RH-37	A200	RHR TO RWST	A	E	6	B	1	8	2500	123	100
24	1-RH-37	P032	2-RH-38	C684		•	Ε	6	В	1	8	2500	123	100
25	1-CC-TV-102F	F130	2-CC-TV-202F	F130	CC FM A RCP AND SHROUD	н	В	8	С	1	13140	675	116	40
25	1-CC-TV-102E	F130	2-CC-TV-202E	F130		н	В	8	С	1	13140	675	116	35
26	1-CC-TV-102B	F130	2-CC-TV-2028	F130	CC FM C RCP AND SHROUD	н	В	8	С	l	13140	675	116	45
26	1-CC-TV-102A	F130	2-CC-TV-202A	F130		Н	В	8	С	1	13140	675	116	35
27	1-CC-TV-102D	F130	2-CC-TV-202D	F130	CC FM B RCP AND SHROUD	н	B	8	С	1	13140	675	:16	40
27	1-CC-TV-102C	F130	2-CC-TV-202C	F130		н	В	B	С	1	13140	675	116	35
28	1-CH-TV-1204A	M120	2-CH-TV-2204A	M120	LETDOWN	Н	D	2	В	1	13140	80	275	300
28	1-CH-TV-1204B	M120	2-CH-TV-2204B	M120		н	D	3	B	1	13140	80	275	300
31	1-HC-14	V135	2-HC-15	V135	HC SYSTEM	1	С	2	A	0	0	0	120	5

1
- ě
¥
۰ ۱
- 3
- E
1
1
•
- 5
ŝ
- 1
÷.
3
÷
2
2
1

(Continued)
A-2
Table

Unit 1		Unit 2		ţ	۴ م	ŧ	()ido (Hour	Flow	Temp	Press
٩	Manuf	Comp ID	Menuf	rucaoa	1 ype	l ype	31ZC	Service	- you	ð	scfm)	È.	1 M reach
105A	M120	2-HC-TV-205A	C635		Ĥ	ч	2.5	۲	0	0	0	120	۷.
105B	C635	2-HC-TV-205B	C635		۵	ц	2.5	<	0	0	0	120	5
-101A	M120	2-HC-TV-201A	V030		Н	L L	375	۲	0	0	Ö	120	5
-101B	V030	2-HC-TV-201B	V030		Э	4	375	<	0	0	0	120	2
5	C684	2-WT-437	V135	WET LAYUP A SG	<	ш	£	ш	-	*	150	8	100
88	C684	2-WT-446	V135		۷	ы	3	ш	-		150	8	100
V-100B	F130	2-DG-TV-200B	F130	PRI DR XFER PMP DISCH	۵	ц	2	83	-	13140	8	120	55
V-100A	F130	2-DG-TV-200A	F130		۵	ц	2	B	1	13140	8	120	55
2	M360	2-FP-79	M360	FIRE PROT	LL.	υ	4	ט	-		50	300 700	8
74	C630	2-FP-81	C630		۷	۷	4	υ	-		50	<u>8</u>	200
N-100B	F130	2-DA-TV-200B	F130	SUMP PMP DISCH	Н	u.	2	Ľ	18	-	z	ĩ	2
TV-100A	F130	2-DA-TV-200A	F130		н	ц	2	۴.,	18	1	25	8	15
TV-100B	F130	2-BD-TV-200B	F130	A SG BLOWDOWN	н	۳	c	-	۷	2190	96	521	\$18
V-100A	F130	2-BD-TV-200A	F130		۵	Ľ.		-	9	2190	06	521	818
rv-100F	F130	2-BD-TV-200F	F130	C SG BLOWDOWN	Η	۴L	E	5	9	2190	8	521	\$18
TV-100E	F130	2-BD-TV-200E	F130		۵	ц	3	-	9	2190	06	521	818
D001-V	F130	2-BD-TV-200D	F130	B SC BLOWDOWN	н	۳.	3	-	v	2190	8	521	818
V-100C	F130	2-BD-TV-200C	F130		۵	ш	3	1	0	2190	06	521	8:8
	V085	2-SA-123	V085	SERVICE AIR	¥	ш	2	۲		2160	120	110	110
6	P305	2-SA-65	P305		۲	۱L	2	<		2160	120	011	110
49	V080	2-IA-428	V085	AIR MONITOR SAMPLE	щ	c	-	<	1	13140	10	<u>301</u>	5
TV-100A	F130	2-RM-TV-200A	F130		¥	ĻL,	-	٨		13140	10	105	~
TV-100C	F130	2-RM-TV-200C	F130	AIR MONITOR SAMPLE	۲	ц	1	۷	-	13140	10	105	~
TV-100B	F130	2-RM-TV-200B	F130		<	ц.		۲		13140	10	105	~
49	M360	2-RC-162	M360	PRI GR WATER	-	υ	C	۵	2	90	20	120	110
V-1519A	1207	2-RC-TV-2519A	1207		۵	D	3	٥	11	4	20	120	011

PEN	Unit 1		Unit 2			Ор				Ops/	Hours	Flow	Temp	Ртеля
	Comp ID	Manuf	Comp ID	Manuf	Function	Туре	Туре	Size	Service	Cycle	Flow/ Op	(gpm/ scfm)	(*F)	(beig)
46	1-CH-330	K085	2-CH-332	K085	LOOP FILL	·H	С	2	B	1	8	100	130	2500
46	1-CH-FCV-1160	M120	2-CH-FCV-2160	M120		A	F	2	B	1	8	100	130	2500
47	1-1A-55	V080	2-1A-250	V085	INSTRUMENT AIR	F	С	2	A	1	13140	50	110	110
47	1-IA-TV-1028	F130	2-IA-TV-202A	F130		D	F	2	A	1	13140	50	105	5
48	1-VG-TV-100B	F130	2-VG-TV-200B	F130	PRI VENT HEADER	Н	F	1.5	A	1	13140	1	120	5
48	1-VG-TV-100A	F130	2-VG-TV-200A	F130		н	F	1.5	A	1	13140	1	120	5
50	1-81-HCV-1936	M120	2-\$I-HCV-2936	M120	N2 TO PRT	D	Ą	1	A	56	8	30	105	660
50	1-51-TV-101	F130	2-51-TV-201	F130		D	F	i	Á _	50	8	30	100	150
53	1-51-106	R340	2-51-132	R340		н	С	1	•	50	8	30	150	2200
53	1-51-TV-100	F130	2-\$I-TV-200	F130		D	F	1	•	50	8	30	100	2000
54	1-DA-39	1207	2-DA-7	1207	PRI VENT POT VENT	D	D	2	•	1	8	5	100	2
54	1-DA-41	1207	2-DA-9	1207		D	D	2	•	1	8	5	100	2
55D	1-LM-TV-100F	M120	2-LM-TV-200F	M120	LEAKAGE MONIT	D	7	.375	A	0	0	0	105	6
55D	1-LM-TV-100E	M120	2-LM-TV-200E	M120		D	F	.375	A	0	0	0	105	6
56A	1-85-TV-100A	M120	2-SS-TV-200A	M120	PZR LIQ SPACE SAMPLE	Н	F	.375	В	15	1	2	653	2235
56A	1-SS-TV-100B	M120	2-\$\$-TV-200B	M120		н	F	.375	В	15	1	2	653	2235
56B	1-SS-TV-106A	M120	2-\$\$-TV-206A	M120	HOT LEG SAMPLE	<u> </u>	F	.375	B	700	1	1	631	2485
568	1-SS-TV-106B	M120	2-\$\$-TV-2068	M120		н	F	.375	8	700	1	1	631	2485
56C	1-\$5-TV-102A	M120	2-SS-TV-202A	M120	COLD LEG SAMPLE	H	F	.375	B	350	1	1	547	2235
56C	1-SS-TV-1028	M120	2-SS-TV-202B	M120		н	F	.375	B	350	1	1	547	2235
56D	1-SS-TV-112A	M120	2-SS-TV-212A	M120	SG BLOWDOWN SAMPLE	н	F	.375	1	15	1	5	521	880
56D	1-SS-TV-1128	M120	2-SS-TV-212B	M120		Н	F	.375	t	15	1	5	521	880
57A	1-LM-TV-100H	M120	2-LM-TV-200H	M120	LEAKAGE MONIT	D	F	.375	A	0	0	0	105	6
57A	1-LM-TV-100G	M120	2-LM-TV-200G	M120		D	F	.375	A	0	0	0	105	6
57B	1-SS-TV-104A	M120	2-SS-TV-204A	M120	PRT GAS SPACE SAMPLE	н	F	.375	A	30	1	.2	200	50
57B	1-SS-TV-104B	M120	2-\$3-TV-204B	M120		н	F	.375	٨	30	1	.2	200	50

Table A-2 (Continued)

Table A-2 (Continued)

				-		_				_				-										
RAC 1	د دالا ا	5535	2235	0	0	0	0	0	0	0	0	0	Ċ	0	0	0	65	95	65	65	0	C	0	Q
É.	-	EV Q	653	9 5 1	195	160	195	160	i 60	991	561	195	45	45	45	45	45	45	52	s:t	05.	150	150	150
Low	sc fm)	Ċ	0	0	0	0	0	1100	1100	0011	1700	1700	0	0	0	0	0	0	0	0	0	0	0	0
Houra	P op	0	0	0	0	0	0	4	4	4	4	4	0	6	0	6	0	0	0	0	0	0	0	0
Ē,	Lysie Lysie	¢	0	0	0	0	0			-	-	-	0	0	0	0	0	0	0	0	0	0	0	0
	Service	¥	۷	B	B	В	ß	B	В	B	ß	8	۷	×	۲	¥	B	B	£	в	۲	4	۷	۲
	Size	375.	375	9	10	9	10	6	6	9	10	10	8	8	90	8	¥	6	80	8	07	10	10	10
i	i ype	Ľ	ц.	c	Е	ပ	ш	υ	υ	ပ	ш	B	υ	ш	с	Е	ш	ш	ш	ш	c	ப	υ	ш
δ,	l ype	Ŧ	Н	Н	в	н	en	Н	H	н	8	8	-	B	ſ	8	B	B	£	B	-	æ	-	æ
L	Function	PZR VAPOR SPACE SAMPLE		LHSI TO HOT LEGS				LHSI TO COLD LEGS					QS PUMP B DISCH		QS PUMP A DISCH		CASING COOLING TO RS		CASING COOLING TO RS		B RS PUMP DISCH		A RS PUMP DISCH	
	Manuf	M120	M120	V085	A391	V085	19EA	V085	V085	V085	A391	A391	S075	C684	G075	C684	V085	C684	V085	A200	S075	A200	S075	A200
Unit 2	Comp ID	2-SS-TV-201A	2-SS-TV-201B	2-SI-126	2-SI-MOV-2890A	2-SI-128	2-SI-MOV-2890B	2-SI-91	2-SI-105	2-SI-99	2-SI-MOV-2890C	2-SI-MOV-2890D	2-QS-22	2-QS-MOV-201B	2-QS-11	2-QS-MOV-201A	2-RS-MOV-200A	2-RS-MOV-201A	2-RS-MOV-200B	2-RS-MOV-201B	2-RS-30	2-RS-MOV-256B	2-RS-20	2-RS-MOV-256A
	Manuf	M120	M120	V085	19EA	V085	A391	V085	V.085	V085	19U	A391	S075	C684	S075	C684	A200	A200	V085	A200	C684	A200	C684	C684
Unit 1	Comp ID	1-SS-TV-101A	1-SS-TV-101B	1-SI-207	1-SI-MOV-1890B	1-SI-206	1-SI-MOV-1890A	1-51-195	1-SI-197	1-SI-199	1-SI-MOV-1890C	1-SI-MOV-1890D	1-QS-19	1-QS-MOV-101B	11-SQ-1	A101-VOM-20-1	1-RS-MOV-100A	I-RS-MOV-101A	1-RS-MOV-100B	I-RS-MOV-101B	I-RS-27	1-RS-MOV-156B	1-RS-18	1-RS-MOV-156A
PEN	k	57C	57C	8	8	61	61	62	62	62	62	62	63	53	2	2	8	8	67	67	10	10	11	11

PEN	Unut 1		Unit 2			8				Ĕ	Hours	Flow	Lever	Press	17 12
*	Comp ID	Manuf	Comp ID	Manuf	Function	Type	Type	Size	Service	ر، ڊ اد	Or Or	igp m	La .	362	
62	DE01-VOM-W2-1	A180	2-SW-MOV-203D	A180	SW TO (103'S) AND SW FROM (104'S) RSHX'S	m .	m	16	υ	0	0	د:	5		
80	1-SW-MOV-103C	A180	2-SW-MOV-203C	A180		•	8	16	0	0	0	C.,	1	· .	
81	801-VOM-W2-1	A180	2-SW-MOV-203B	A180		æ	2	16	υ	C	0	0	55	C	
82	1-SW-MOV-103A	A180	2-SW-MOV-203A	A180		8	æ	16	υ	Ö	0	0	56	0	
83	1-SW-MOV-104D	A180	2-SW-MOV-204A	A180		æ	B	16	σ	0	0	Û	07:	0	
84	1-SW-MOV-104C	A180	2-SW-MOV-204B	A180		8	ß	10	υ	0	0	C	071	C	
85	I-SW-MOV-104B	A180	2-SW-MOV-204C	A180		8	æ	10	υ	0	0	0	140	a	
86	1-SW-MOV-104A	A180	2-SW-MOV-204D	A180		æ	æ	16	υ	0	0	0	140	C	
89	1-VP-12	P032	2-VP-24	M360	AIR EJECTOR VENT	u.	υ	v	H	4	•	4	8	0:	
89	1-SV-TV-103	F130	2-SV-TV-203	F130		н	щ	v	H	4	•	4	8	-	
6	1-HV-MOV-100C	F130	2-HV-MOV-200C	F130	CONTAINMENT PURGE VENTILATION EXHAUST	æ	B	36	*		2160	110000	100	ø	
96	0001-VOM-VH-1	F130	2-HV-MOV-200D	F130		m	æ	36	<	-	2160	11000		0	
6	101-VOM-VH-1	F130	2-HV-MOV-201	F130		æ	B	••	<	0	0	0	8	0	
16	1;HV-MOV-100A	F130	2-HV-MOV-200A	F130	CONTAINMENT PURGE VENTILATION SUPPLY	æ	ß	36	<	-	2160	11000	8	0	
16	1-HV-MOV-100B	F130	2-HV-MOV-200B	F130		æ	в	36	<	-	2160	11000	<u>1</u> 8	0	
16	1-HV-MOV-102	F130	2-HV-MOV-202	F130	USED TO BREAK VACUUM	ŝ	B	30	<	-	90	2500	8	5	
56	1-HC-TV-104A	C635	2-HC-TV-204A	C635	CV PUMP SUCT	н	u	2.5	<	с	0	0	07.	0	
92	I-HC-TV-104B	C635	2-HC-TV-204B	C635		D	ц	2.5	<	0	0	0	120	C	
92	1-CV-TV-150C	F130	2-CV-TV-250C	F130		н	ш	7	<	006	-	53	105	.c	
92	1-CV-TV-150D	F130	2-CV-TV-250D	F130		D	ш	2	<	006	-	62	\$0:	c	
93	1-HC-TV-106A	C635	2-HC-TV-206A	C635	CV PUMP SUCT	н	ц	2.5	<	-	×	05	120	-	
93	1-HC-TV-106B	C635	2-HC-TV-206B	C635		٩	ш	2.5	<	-	90	50	120	1	
66	1-CV-TV-150A	F130	2-CV-TV-250A	F130		Ħ	ц.	7	<	006		62	105	c	

Table A-2 (Continued)

Table A-2 (Continued)

PEN	Unit 1		Unit 2			Op				Ops/	Hours	Flow	Temp	Press
*	Comp ID	Manuf	Comp ID	Manuf	Function	Туре	Туре	Size	Service	Cycle	Flow Op	(gpm/ ecfm)	(*F)	(Park)
93	1-CV-TV-150B	F130	2-CV-TV-250B	F130		D	F	2	A	900	1	62	105	6
94	1-CV-TV-100	E130	2-CV-TV-200	F130	CONT VAC EJECTOR SUCTION	н	B	8	A	2	8	2500	105	6
94	1-CV-4	P032	2-CV-4	P032		A	E	8	A	2	8	2500	105	6
97A	1-SS-TV-103A	M120	2-\$\$-TV-203A	M120	RHR LIQUID SAMPLE	н	F	.375	B	0	1	1	350	350
97A	1- \$\$-TV- 103B	M120	2-SS-TV-203B	M120		н	F	.375	B	6	1	1	350	350
97B	1-LM-TV-100B	M120	2-LM-TV-200B	M120	L'EAKAGE MONIT	D	F	.375	A	2	0	0	105	0
97B	1-LM-TV-100A	M120	2-LM-TV-200A	M120		D	F	.375	A	2	0	0	105	0
97C	1-RC-176	K085	2-RC-143	K085	PZR DEAD WT CALIBRATOR	^	G	.13	Á	0	0	0	150	2235
97C	1-RC-178	K085	2-RC-145	K085	·	A	G	.13	A	0	0	0	150	2235
98A	1-HC-TV-100A	V030	2-HC-TV-200A	V030	HC SYSTEM	E	F	.375	A	0	0	C	120	5
98A	1-HC-TV-100B	V030	2-HC-TV-200B	V030		E	F	.375	A	0	0	0	120	5
98B	1-HC-TV-108A	V030	2-HC-TV-208A	V030	HC SYSTEM	E	F	.375	A	0	0	0	120	5
98B	1-HC-TV-108B	V030	2-HC-TV-208B	V030		E	F	.375	A	0	0	0	120	5
100	1-WT-488	C684	2-WT-438	V135	WET LAYUP B SG	A	E	3	E	1	8	150	100	100
100	1-WT-491	C684	2-WT-447	V135		A	E	3	E	1	8	150	100	100
103	1-RP-28	1207	2-RP-7	1207	REFUEL PURIF INLET	D	D	6	B	4	8	400	140	50
103	1-RP-26	1207	2-RP-84	1207		D	D	6	B	4	8	400	140	.50
104	1-RP-6	1207	2-RP-6	1207	REFUEL PURIF OUTLET	D	D	6	B	4	8	400	30	25
104	1-RP-8	1207	2-RP-50	1207		D	D	6	B	4	8	400	30	25
105A	I-LM-TV-100D	M120	2-LM-TV-200D	M120	LEAKAGE MONIT	D	F	.375	A	2	0	0	105	0
105A	1-LM-TV-100C	M120	2-LM-TV-200C	M120		D	F	.375	A	2	0	0	105	0
105B	I-HC-TV-102A	V030	2-HC-TV-202A	V030	HC SYSTEM	D	F	.375	*	0	0	0	120	5
105B	I-HC-TV-102B	V030	2-HC-TV-202B	V030		ε	F	.375	A	0	0	0	120	5

-

Table A-2	(Continued)
-----------	-------------

- * + **h**

PEN	Unit 1		L'nit 2			Op			_	Opu	Hours	Flow	Temp	Press
	Comp ID	Manuf	Comp ID	Manuí	Function	Туре	Туре	Size	Service	Cycle	Flow/ Op	(gpm/ scfm)	(*F)	(Peig)
105C	1-LM-TV-101D	M120	2-LM-TV-201D	M120	LEAKAGE MONIT SEALED REF	D,	F	.375	A	1	0	0	105	0
105C	1-LM-TV-101A	M120	2-LM-TV-201A	M120		D	F	.375	A	1	0	0	105	e
105D	1-LM-TV-101B	M120	2-LM-TV-2018	M120	LEAKAGE MONIT SEALED REF	D	F	.375	۸	1	0	0	105	0
105D	1-LM-TV-101C	M120	2-LM-TV-201C	M120		D	F	.375	A	1	0	0	105	0
106	1-SI-TV-1842	M120	2-SI-TV-2842	M120	SI TEST LINF	D	F	.75	В	42	7	15	120	660
106	1-51-TV-1859	M120	2-SI-TV-2859	M120	E	D	F	.75	B	42	7	15	120	660
108	1-WT-511	C684	2-WT-439	V135	WET LAYUP C SG	٨	Ē	Ĵ	E	1	8	150	100	100
108	1-WT-514	C684	2-WT-448	V135		A	E	3	E	1	8	150	100	100
109	1-HC-18	V135	2-HC-20	V135	HC SYSTEM	J	С	2	A	1	8	50	120	5
109	1-HC-TV-103A	V030	2-HC-TV-203A	V030		E	F	.375	•	0	0	0	120	5
109	1-HC-TV-103B	V030	2-HC-TV-203B	V030		Е	F	.375	A	0	0	0	120	5
109	1-HC-TV-107A	C635	2-HC-TV-207A	C635		H	F	2.5	A	1	8	50	120	5
109	1-HC-TV-1078	C635	2-HC-TV-207B	C635		D	F	2.5	A	1	8	50	120	5
111D	1-DA-TV-103A	F130	2-DA-TV-203A	C635	POST ACCIDENT SAMPLE RETURN	H	F	2	B	24	1	5	100	15
111D	1-DA-TV-103B	F130	2-DA-TV-2038	C635		D	F	2	B	24	1	5	120	5
112	NOT USED	F130	2-1A-TV-201A	F130	INSTRUMENT AIR	D	F	3	٨	0	0	0	110	0
112	NOT USED	F130	2-1A-TV-201B	F130		D	F	3	A	0	0	0	110	0
113	1-SI-90	V085	2-SI-119	V085	HHSI (NORMAL AND ALTERNATE CHG) TO HOT LEGS	н	С	3	B	1	8	600	160	2235
113	1-SI-MOV-1869B	V085	2-SI-MOV-2869B	V085		B	E	3	В	t	8	600	160	2235
114	1-51-201	V085	2-\$1-107	V085		н	С	3	В	1	8	600	160	2234
114	1-SI-MOV-1869A	V085	2-SI-MOV-2869A	V085		B	E	3	B	1	8	600	180	2235

•

	Table A-3.	Class	Variable	Data Codes
--	------------	-------	----------	------------

MANUF CODE	MANUFACTURER NAME
A180	Allis Chalmers
A200	Aloyco Liv / Walworth Co
A391	Anchor / Darling Valve Co
C630	Contromatics Div / Litton Inds
C635	Copes - Vulcan Inc
C684	Crane Valve Products / Crane Co
F130	Fisher Controls Co Inc
G075	General Dynamics
1207	ITT Grinnell
K085	Kerotest Mfg Corp
M120	Masoneilan International Inc
M360	Mission Drilling Prod Div / TRW Inc
P032	Pacific Valves / Mark Controls Corp
P305	William Powell Co
P340	Henry Pratt Co
S075	Schutte and Koerting Co (Ametek Inc)
V030	Valcor Engineering Corp
VOBO	Velan Engineering Corp
V085	Velan Valve Corp
V135	Henry Vogt Machine Co
W030	Walworth Co

E.

OP TYPE CODE	VALVE OPEPATOP TYPE
A	Manual
В	Electric Motor/Servo
D	Pneumatic
E	Solenoid
F	Float
н	Mechanical - AP to Open
J	None (heck valves)

TYPE CODE	VALVE TYPE
A	Ball
В	Butterfly
С	Check
D	Diaphragm
Е	Gäte
F	Globe
G	Needle

SERVICE CODE	SERVICE
A	Air/Gas
8	Borated Water
с	Chromated Water
D	Clean Water
Ε	Condensate
F	Dirty Water
G	Service Water
н	Steam
I	Lake/Piver Water
З	Steam Generator Water/Chemicals

predictive of time between maintenance events. In this procedure, the emphasis was on continuous measures of valve performance: size, operations per operating cycle, hours of flow per operating cycle, flow, temperature, and pressure. In step-wise procedures, variables are included in the model one at a time. At each step, the variable which maximized the r^2 value of the model was retained, and the model's ability to fit the dependent data was assessed The procedure moves forward step-wise in that the initial model utilizes only one independent variable and additional variables are added at each step. Since the step-wise procedure could not utilize censored data, the right censored components were excluded and the interval censored components were assigned a particular maintenance time. Specifically, the interval censored components were assumed to have required maintenance exactly halfway between the inspection which identified a problem and the prior inspection which found no problems. The variables corresponding to hours flow per operating cycle and flow were selected as a result of the step-wise regression. This equation, however, explained only 10.2% of the variability in the maintenance times ($r^2 = 0.102$). Incorporating additional variables such as size. operations per operating cycle, temperature, and pressure increased the r^2 only marginally (<1%).

The final statistical procedure was a regression analysis which utilized censored data. It was decided to utilize a model with five independent variables: operator type, valve type, type of service, hours flow per operating cycle, and flow. The three descriptive variables were included in the hope of enhancing the model's ability to describe the censored maintenance times. The procedure was performed on the original censored data-set using the five identified variables as independent predictors of maintenance time. The results of this analysis suggested that only operator type and type of service were statistically significant predictors of censored maintenance time (p < 0.05). Valve type was marginally significant (p < 0.10). Coefficient estimates for hours flow per

operating cycle and flow were not significantly different from zero (p > 0.10).

The maximum correlation between the five variables and time until maintenance rate was 26 percent. It appeared that random matches provided a large portion of this correlation. If quantitative values were handled as class variables, no significant change in results occurred. Based on these results, variations in valve performance cannot be predicted based on system and valve physical characteristics. Thus, a generic failure rate could be used in the containment leakage model for the individual component leakage failure rates.

As previously discussed, Figures A-6 and A-7 suggest that the component failure rate decreases versus the time since last maintenance. In the next series of analyses, the North Anna data were analyzed to determine if the failures of components should be modeled as dependent or independent. The two types of dependent failures which were investigated were common mode failures of the same component, and common mode failures of components in the same penetration.⁶

There are 392 components at North Anna that are Type C tested. Of these components, 168 have undergone maintenance to correct leakage problems, with a total of 278 maintenance events, since 1986. Of the 168, 91 components have failed one time, 51 components have failed twice, 21 components have failed three times, 3 components have failed four times, and 2 components have failed five times.

If multiple failures of a component are independent, the probability of two failures of a component is the square of the probability of a single failure of the component. Table A-4 shows the actual and expected number of component failures (assuming independent failures of the components) for two failure cases. These failure cases are defined as (1) any leakage rate causing a maintenance event and (2) component failure rates per year were calculated by dividing the total number of component failures by the total number of outages multiplied by 1.5 (assuming an 18month interval between outages). Numeric simulations were then run using these failure rates to determine the average expected number of failed components given the number of outages at each unit. This table shows that the failures of a component are not independent, i e, once a component has failed, it is more likely to fail again.

Table A-5 shows the actual and expected number of component failures (assuming dependent failures of the components) for the same two cases as Table A-4. The component failure rates per year were determined by running the numeric simulation model described above and adjusting the component failure rates until the expected number of zero failures equaled the actual number. A component beta value was then introduced into the numeric simulation such that if a component failed, the component would fail again with a probability equal to the beta value (i.e., a common mode failure between successive failures of a component). This failure was in addition to any random failures of the component. The component beta value was determined by running the numeric simulation model and adjusting the beta value until the total expected number of failures equaled the actual number. Table A-5 shows that there is a good match between the actual and expected number of failures if a component beta value of approximately 0.34 is used.

Based on a review of the North Anna data, in 29 cases a valve had two or more tests where the us-found leakage rate was 25 scf/h or larger. In 18 of these cases, the tests with these leakage rates were 18 months apart. In 10 cases, the tests were 36 months apart. In one case, the tests were 72 months apart. From these data, it is estimated that if a common mode failure of the component occurs at outage N, 64.3 percent of the time the second failure will be detected at outage N+1, and 35.7 percent of the time, the second failure will be detected at outage N+2. An evaluation of the penetration common mode failure probability required the use of containment leakage model, and is described in the next section.

A.2.2.4 Test Options Analysis

Because only 6 to 7 years of component leakage rate versus time data (five to six refueling outages) were available for each unit, only limited analysis of Type C test options can be performed directly using historical unit data.

The only testing scheme for which sufficient data exist to permit even limited evaluation is the testing of all components every 36 monus unless a component fails a test, in which case it is tested every 18 months until it passes two successive tests. The component maintenances that would not have been performed under this testing scheme were identified and removed from the leakage-rate data-base, and this database was evaluated to determine the new North Anna unit containment leakage rates over time. While several valves that were leaking at an indeterminable rate would not have been detected for an additional 18 months, there was no significant change in the overall containment leakage rates, and no change in the historical probability of exceeding L.

Based on the penetration configuration data and the data in Table A-5, a containment leakagerate model was created to evaluate selected test scheme options.⁷ This model assumes that all components have a constant failure frequency of 1.3E-2 per year and a probability (component beta value) of 0.34—such that if the component fails at outage N, the component will fail again at outage N+1 or N+2. Based on the North Anna data, 64.3 percent of these second failures will occur at outage N+1 and 35.7 percent will occur at outage N+2. Failure of a component is defined as the component leaking at a rate of 250 scf/h or greater.

TableA-6showstheprobabilitiesofindeterminable containment leakage paths for the

ĺ

	Failure = Any Lea Requiring N	kage of Component Asintenance	Failure = Leakage Rate of Component > = 250 scf/h					
# Failures of Component	Actual	Expected*	Actual	Expected				
0	224	184	352	338				
1	91	149	26	50				
2	51	50	11	3				
3	21	9	3	0.1				
4	3	0.8	0	0				
5	2	0.05	0	0				
6	0	0	0	0				

Table A.4 Actual Versus Expected Number of Multiple Valve Failures Assuming Independent Failures

* Assuming independent failures of components, failure rate = 8.60E-2/yr per component.

"Assuming independent failures of components, failure rate = 1.76E-2/yr per component.

Table A-5. Actual Versus Expected Number of Multiple Valve Failures Assuming Dependent Failures

	Failure = Any Leal Requiring M	tage of Component laintenance	Failure = Leakage Rate of Component $> = 250$ scf/h					
# Failures of Component	Actual	Expected*	Actual	Expected"				
0	224	224	352	352				
1	91	95	26	28				
2	51	46	11	9				
3	21	19	3	2.7				
4	3	6	0	0.7				
5	2	1.6	0	0.2				
6	0	0.2	0	0				

Assuming dependent failures of components, failure rate = 6.46E-2/yr per component, component beta value = 0.34.

"Assuming dependent failures of components, failure rate = 1.29E-2/yr per component, component beta value = 0.34.

						Probe	bility of H	ving N Int	icterminabl	e Containt	oent Leakage	e Paths		
THET SCIENCE OPTION	PRESILATION CONSILIEN MODE PAILURE PROBAILLITY	AVERACE SCHEME OF COMPONENTS IN FAMILE STATE FOR OUTAGE	PEACTION OF COMPONENTS THETHO PER OUTAGE	N=0	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9	N=10+
1	0	5.66	1.00	0.9183	7.81E-2	3.49E-3	1.01E-4	2.00E-6	0	0	0	0	0	0
1	5.5E-2	6.08	1.00	0.7319	2.23E-1	3.94E-2	4.95E-3	4.98E-4	3.66E-5	3.12E-6	0	0	0	0
2	0	8.06	0.51	0.8413	1.45E-1	1.295-2	8.13E-4	4.00E-5	3.33E-7	0	0	0	0	0
2	5.5E-2.	8.65	0.52	0.6220	2.89E-1	7.34E-2	1.31E-2	1.79E-3	2.16E-4	2.50E-5	1.17E-6	0	0	0
3	Ū	9.11	• 0.37	0.8019	1.765-1	2.00E-2	1.53E-3	9.27E-5	4.00E-6	0	0	0	0	0
3	5.5B-2	9.77 The p	0.37	0.5587	3.18E-1	9.78E-2	2.11E-2	3.52E-3	4.83E-4	5.50E-5	6.63E-6	3.90E-7	0	0
4	0	7.39	0.53	0.8645	1,25E-I	9.56E-3	5.16E-4	2.37B-5	0	0	0	0	0	0
4	5.5E-2	7.93	0.53	0.6441	2.77E-1	6.58B-2	1.12B-2	1.50E-3	1.668-4	1.60E-5	1.17E-6	0	0	0
5	0	7.39	0.53	0.8646	1.25E-1	9.58E-3	4.85E-4	2.13E-5	0	0	0	0	0	0
5	5.5E-2	7.94	0.53	0.6441	2.77E-1	6.60B-2	1.12E-2	1.50E-3	1.63E-4	1.48E-5	1.565-6	3.90E-7	0	0
6	0 .	12.13	0.33	0.6702	2.50E-1	6.44E-2	1.31 B -2	2.13E-3	2.86E-4	3.13E-5	3.67E-6	0	C	0
б.	5.5E-2	13.01	0.33	0.4431	3.18E-1	1.54E-1	5.88E-2	1.90E-2	5.03E-3	1.20E-3	2.42E-4	4.52E-5	8.97E-6	2.34E-6
7	0	21.92	0.17	0.3232	2.88E-1	1.95E-1	1.09E-1	5.18E-2	2.14E-2	7.76E-3	2.48E-3	7.10E-4	1.93E-4	5.67E-5
7	5.5E-2	23.43	0,17	0.1880	2.27B-1	2.03E-1	1.57E-1	1.05E-1	6.21E-2	3.26E-2	1.55E-2	6.62E-3	2.63E-3	1.37E-3

Table A-6. Probability of Indeterminate Containment Leakage Paths for Test Scheme Options

.

selected test scheme options. The test scheme options evaluated are:

- 1. Test all components every outage.
- 2. Skip next test of component if test passed.
- Skip no tests if pass one test or failed previous test.
 Skip two tests if pass two tests.
 Skip six tests if pass three tests.
- Skip no tests if pass one test or failed previous test.
 Skip one test if pass two tests.
 Skip two tests if pass three tests.
- Skip no tests if pass one test or failed previous test.
 Skip one test if pass two tests.
- 6. Test every 3rd outage (one test approximately every five years).
- 7. Lest every 7th outage (one test approximately every 10 years).

In Table A-6, two values (0 and 5.5E-2) were used as common mode failure (CMF) probabilities for each penetration. The CMF probabilities were applied such that if one or more components associated with a penetration failed, the penetration would fail.

The CMF probability of 5.5E-2 was selected to result in a probability of approximately 0.73 for zero indeterminable containment leakage paths. The value of 0.73 is based on North Anna's experience of 3 occurrences of indeterminable containment leakage paths in 11 unit outages.

Table A-7 shows the change in incremental risk due to containment leakage⁸ relative to the current test scheme (test scheme option 1) for the selected test scheme options. The values in this table were calculated as:

$$IR(S,p) = \frac{\sum_{N=1}^{n} P(S,p,N) \cdot N}{\sum_{N=1}^{n} P(1,p,N) \cdot N}$$

where:

- IR(S,p) = incremental risk for test scheme option S, penetration common mode failure probability p
- P(S,p,N) = probability of having N indeterminable containment leakage pathways for test scheme option S, penetration common mode failure probability p

This equation assumes a linear relationship between risk due to containment leakage and containment leakage rate.

Tables A-8 and A-9 are similar to Tables A-6 and A-7, respectively. In these tables, the component failure rate was reduced by 54 percent to reflect the lower probability of failure seen at North Anna since 1990. This value is based on 14 indeterminable valve leakage failures in the last 5 outages, as opposed to 57 indeterminable valve leakage failures in the 11 outages in the complete data-base. The component beta value and the penetration common mode failure probability are assumed to remain the same as previously determined. As can be seen from Table A-9, there is no significant change in incremental risk compared to Table A-7. This implies that the impact of performance-based testing on incremental risk is driven by the component beta factor rather than the independent component failure rate.

A.3 GRAND GULF ANALYSIS

The Grand Gulf Power Station is comprised of a single boiling water reactor.⁹ Data collected at the power station was similar to that collected at North Anna.

	Test Scheme (ion									
Failure Probability	I	2	3	4	5	6	7			
0	1 00	2.03	2.59	1.71	1.71	5.00	16 25			
5 5E-2	1 00	1.52	1.86	1.41	1.41	2.86	6 97			

Table A.7. Change in Incremental Risk Due to Containment Leakage Relative to Current Test Scheme for Test Scheme Options

Based on the insights gained from the North Anna analyses, a more restricted set of analyses was performed on the data gathered from Grand Gulf. No statistical analysis was performed to investigate whether component failure rates could be predicted in terms of the components' physical and usage data. The analyses performed using the Grand Gulf data consisted of the calculation of a valve generic failure rate, the common mode failure probability for the valves, and the penetration common mode failure probability. Using the results of these analyses, the effect on incremental risk due to containment leakage was calculated for the seven test schemes analyzed in the North Anna data analysis

Table A-10 shows the number of component failures observed at Grand Gulf binned by the types of component failures observed. The types of failures considered were those with an immeasurable leakage rate, failures with a measurable leakage rate, as well as those cases where a component didn't undergo a leakage test before maintenance on that component was performed. Leakage is classified as "immeasurable" when the component leakage rate exceeded the range of the testing equipment. As an example, the first line of Table A-10 shows that two valves had both two measurable leakage failures and two immeasurable leakage failures, and the valves underwent maintenance twice prior to being leakage tested.

Table A-11 presents various statistics related to containment penetration component performance. Based on the information in Tables A-10 and A-11, estimates of the valve independent failure rates were computed and are shown in Table A-12. The first set of calculations in Table A-12 assumes that all valves which underwent maintenance prior to being leakage tested would not have failed such a test if it had been performed. The second calculation corrects the failure rate for these cases by assuming no knowledge of the state of the valve prior to the maintenance. For the remaining analysis, the latter failure rates were used.

Table A-13 shows the actual versus expected number of valve failures assuming independent valve failures due to measurable as well as immeasurable leakage rate. Two different expected number of valve failures are presented for each case. The first value accounts for tests which were not performed prior to maintenance. The second value is the expected number of failures which would have been expected if all tests had been performed. As can be seen from this table, the expected number of multiple valve failures is lower than the actual number experienced. The latter is due to the assumed independence of failures up to this point.

Table A-14 shows the actual versus expected number of valve failures assuming dependent valve failures for both measurable and immeasurable valve leakage rates. In preparing this table, a component beta factor was introduced such that there was an increase probability of a component failing if it had failed previously. The value of this beta factor was derived in the same manner as performed in the analysis of the North Anna data.

Based on the penetration configuration data and the data in Table A-14, a containment leakagerate model was created to evaluate selected test

ļ

ţ

i

							Probabilit	y of Havis	g N Indete	rminable Co	ntainment f		hs		
Test Scheme Option	Penetration Common Mode Failure Probability	Average Number of Components in Failed State per Outage	Fraction of Components Tested per Outage	N=0	N=1	N=2	N=3	N=4	N=5	N=6	N=7	N-8	N=9	N= 10	N=11+
1	Ô	3.07	1.00	0.9748	2.48E-2	3.54E-4	2.92E-6	0	0	0	0	0	0	0	0
1	5.5E-2	3.30	1.00	0.8597	1.27E-1	1.24E-2	9.04E-4	5.31E-5	2.08E-6	4.95E-8	9.90E-8	0	0	0	0
2	0	4.41	0.51	0.9487	4.99E-2	1.40E-3	2.92E-5	5.45E-7	0	0	0	0	0	0	0
2	5.5E-2	4.74	0.51	0.8007	1.74E-1	2.27E-2	2.17E-3	1.64E-4	9.06E-6	2.48E-7	1.49E-7	0	0	0	0
3	0.	5.01	0.36	0.9343	6.34E-2	2.29E-3	5.97E-5	1.04E-6	4.95E-8	0	0	0	0	0	0
3	5.5E-2	5,39	0.36	0.7600	2.04E-1	3.19E-2	3.63E-3	3.30E-4	2.26E-5	1.24E-6	1.98E-7	0	0	0	э
4	.0	. 4.04	0.52	0.9566	4.24E-2	1,02E-3	1.87E-5	1.49E-7	0	0	0	Û	0	0	0
4	5.5E-2	4.35	0.52	0.\$100	1.67E-1	2.11E-2	1.98E-3	1.52E-4	8.32E-6	3.47E-7	9.90E-8	0	0	0	0
5	Ø	4.04	0.52	0.9565	4.24E-2	1.02E-3	1.72E-5	4.95E-8	0	0	0	0	0	0	0
5	5.5E-2	4.35	0.52	0.8100	1.67E-1	2.11E-2	1.97E-3	1.50E-4	8.07E-6	3.96E-7	9.90E-a	0	0	0	0
6	0	6.68	0.34	0.8787	1.11E-1	9.58E-3	6.35E-4	J.51E-5	1.73E-6	0	0	0	0	0	0
6	5.5E-2	7.15	0.34	0.6824	2.45E-1	5.90E-2	1.12E-2	1.74E-3	2.20E-4	2.36E-5	2.57E-6	2.97E-7	0	0	0
7	0	12.34	0.18	0.6575	2.56E-1	6.91E-2	1.46E-2	2.48E-3	3.646-4	4.58E-5	5.10E-6	1.49E-7	4.95E-8	0	0
7	5.5E-2	13,24 :	0.18	0.4385	3.16E-1	1.57E-1	6.17E-2	2.02E-2	5.69E-3	1.37E-3	2.99E-4	5.69E-5	9.31E-6	8.91E-7	1.97E-7

Table A-8.	Probabilit	y of Indeterminate	Containment Leak	Paths for	Test Scheme	Options -	Data from	1990 to Present
------------	------------	--------------------	------------------	-----------	-------------	------------------	-----------	-----------------

Test Scheme Options:

- 1: Test all components every outage
- 2: Skip next test of component if test passed
- 3: Skip no tests if pass I test or failed previous test Skip 2 tests if pass 2 tests (test approximately every 5 years) Skip 5 tests if pass 3 tests (test approximately every 10 years)
- 4: Skip no tests if pass 1 test or failed previous test Skip 1 test if pass 2 tests Skip 2 tests if pass 3 tests (test approximately every 5 years)

- 5: Skip no tests if pass 1 test or failed previous test Skip 1 test if pass 2 tests
- 6: Test every 3rd outage (1 test approximately every 5 years)
- 7: Test every 6th outage (1 test approximately every 10 years)

Lable A-9Change in Incremental Risk Due to Containment Leakage Relative to CurrentTest Scheme for Test Scheme Options - Data from 1990 to Present

Densimian Common Mode			Test	Scheme	Option								
Failure Probability	1	2	3	4	5	6	7						
0	1.00	2.07	2.67	1.74	1.74	5.18	17.61						
5.5E-2	1.00	1.47	1.81	1.39	1.39	2.62	6.04						

Table A-10. Containment Penetration Component Failures

VALVES								
# Tests After Maintenance w/o Test Before Maintenance	# Failures with Immeasurable Leakage Rate	# Maintenances Due to Measurable Leakage Ra.c	# Valve Occurrences					
2	2	2	2					
	0	0	50					
2	0	0	20					
2	1	2]					
1	0	2	5					
0	2	3	1					
0	0	0	59					
3	0	0	4					
0	<u> </u>	2	3					
3	1	1	2					
0	0	1	11					
0	0	2	2					
0	1	3	1					
1	0 -	1	2					
0	1 1	1	2					
1	1	1	2					
2	1	. 1	1					
2	0	1	2					
	COMPONENT TY	(PE D						
0	0	0	2					
0	0	1	1					
0	0	2	1					
1	0	0	1					
	GASKETS	<u> </u>						
0	0	0	2					

Table A-11. Component Statistics

Parameter	Value
Time between immeasurable failures	18, 30, 15 months
Total number of valves	170
Total number if immeasurable failures of valves	18
Total number of measurable failures of valves	36
Total number of failures of valves	54
Total number of valves where test was performed after maintenance w/o a test before maintenance	129
Total time period (including 18 months prior to first refueling outage)	86 months
Average time between refueling outages	17.2 months

Table A-12. Valve Failure Rates

Independent Failure Rates		
	170 valves * 86 month	s = 14620 valve-months
Exposure	170 valves • 5 outages	= 850 valve-outages
	18/14260	= 1.2E-3 per valve-month
inineasurable railures	18/850	= 2.1E-2 per valve-outage
Maamaabla Esiluma	36/14620	= 2.5E-3 per valve-month
Measurable Failures	36/850	= 4.2E-2 per valve-outage
nin 1 101 - 11	54/14620	= 3.7E-3 per valve-month
Iotal Pallures	54/850	= 6.4E-2 per valve-outage
Corrected Failure Rates Accor Test Prior To Maintenance	unting For Cases Where Te	ssts Were Performed After Maintenance Without A
Ethomite	14620 - 129*17.2	= 12400 valve-months
Exposure	850 - 129	= 721 valve-outages
	18/12400	= 1.5E-3 per valve-month
Immeasurable Failures		
immeasurable ranures	18/721	= 2.5E-2 per valve-outage
Immeasurable Failures	18/721 36/12400	 = 2.5E-2 per valve-outage = 2.9E-3 per valve-month
Measurable Failures	18/721 36/12400 36/721	 = 2.5E-2 per valve-outage = 2.9E-3 per valve-month = 5.0E-2 per valve-outage
Measurable Failures	18/721 36/12400 36/721 54/12400	 = 2.5E-2 per valve-outage = 2.9E-3 per valve-month = 5.0E-2 per valve-outage = 4.4E-3 per valve-month

Lahle A 13	Actua)	Versus	Expected	Number	of	Multiple	Valve	Failures	Assuming
	Indepen	ident Fai	lures						

# Failures of	Failure = Any Lea Requiring	akage of Component Maintenance	Failure = Leakage Rate of Component > = 250 acf/h			
Component	Actual" Expected"		Actual*	Expected		
()	133	122.3/115.0***	155	152.8/149.8		
1	2.2	41.6/46.7	12	16.5/19.2		
2	13	5.7/7.0	3	0.7/1.0		
3	2	0.4/0.6	0	0.0/0.0		
4	0	00.0/0.0	0	0.0/0.0		

Ignores all cases where a valve didn't undergo a leakage test before maintenance.

Assuming independent failures of components, failure rate = 5.0E-2/yr per component.

Assuming independent failures of components, failure rate = 1.7E-2/yr per component

First value is expected number of valve failures accounting for the times where a valve didn't undergo a leakage test before maintenance. The second value is the expected number of valve failures assuming all leakage tests were performed prior to valve maintenance.

Table A-14.	Actual Versus Expected Number of Multiple Valve Failures Assuming Dependent
	Failures

# Failures of	Failure = Any Les Requiring	akage of Component Maintenance	Failure = Leakage Rate of Component $> = 250$ scf/h			
Component	Actual [®] Expected [®]		Actual"	Expected		
ŋ	133	133.1/127.1****	155	155.1/152.5		
1	22	24.1/28.6	12	12.2/14.5		
2	13	9.3/10.2	3	2.3/2.6		
3	2	2.8/3.1	0	0.3/0.4		
4	0	0.7/0.8	0	0.0/0.0		

fignores all cases where a valve didn't undergo a leakage test before maintenance.

Assuming independent failures of components, failure rate = 3.8E-2/yr per component, component beta factor = 0.31.

•••

Assuming independent failures of components, failure rate = 1.4E-2/yr per component, component beta factor = 0.17.

First value is expected number of valve failures accounting for the times where a valve didn't undergo a leakage test before maintenance. The second value is the expected number of valve failures assuming all leakage tests were performed prior to valve maintenance.

scheme options. This model assumes that all components have a constant failure frequency of 1 4E-2 per year and a probability (component beta value) of 0.17; such that if the component fails at outage N, the component will fail again at outage N+1 or N+2. Based on the North Anna data, 64.3 percent of these second failures will occur at outage N+1, and 35.7 percent will occur at outage N+2. These values are consistent with the Grand Gulf data. Failure of a component is defined as the component leaking at an immeasurable rate.

Table A-15 shows the probabilities of indeterminable containment leakage paths for the selected test scheme options. In this table, two values (0 and 6.0E-2) were used as common mode failure (CMF) probabilities on each penetration. These penetration CMF probabilities were applied such that if one or more components associated with a penetration failed, the penetration would fail with this probability. The CMF probability of 6.0E-2 was selected to result in a probability of approximately 0.80 for having zero indeterminable containment leakage paths. The value of 0.80 is based on Grand Gulf's experience of 1 occurrence of indeterminable containment leakage paths in 5 unit outages.

Table A-16 shows the change in incremental risk due to containment leakage rate¹⁰ relative to the current test scheme (test scheme option 1) for the selected test scheme options. The values in this table were calculated in the same manner as in the North Anna analysis.

A.4 COMPARISON OF RESULTS

Table A-17 shows a comparison between the containment isolation valve leakage failure rates calculated for North Anna and for Grand Gulf. As can be seen from this table, the independent and the dependent failure rates are comparable between the plants, with Grand Gulf's failure rates being slightly lower. The component beta factors for valve failure with any leakage rates are also comparable. The component beta factor for valve failure with immeasurable leakage rates for Grand Gulf is about half the corresponding beta factor for North Anna Whether this is due to an actual difference in the valves between the two plants, or is due to the fact that some of the Grand Gulf components with the worst performance history are also the valves which are being maintained before being leakage-tested (and potentially underrepresenting the number of multiple valve failures) is unknown.

Table A-18 shows a comparison of changes in incremental risk due to containment leakage rate relative to current test scheme for test scheme options for North Anna and for Grand Gulf. The analysis of alternate testing schemes performed based on the North Anna data showed a strong dependence between the incremental risk impact of the various testing schemes and the component beta factor. While the Grand Gulf component beta factor, for those valves with an immeasurable leakage rate, is lower than that for North Anna, no significant difference in the results was found. For all perform nce based testing schemes (schemes 2 throu, 15), the maximum increase in incremental risk was approximately a factor of 3.

A.5 Findings

The following findings regarding Type C testing are made based on the analysis of the North Anna and Grand Gulf data:

- The random failure rates of components cannot be predicted based on system and component physical data. Because of this, the component beta factor (a measure of common mode failure) becomes relatively more important and drives the above results.
 - Given a component failure, there is a high probability that the component will fail again in the next two operating cycles. If the component does not fail within two operating cycles, further failures appear to be governed by the random failure rate of the component.

Of the performance-based testing schemes evaluated, none increase the

probability of containment leakage by more than a factor of approximately 3, and none increase the containment leakage or inbut on to overall unit risk by more than a few percent.

Any test scheme considered should require a failed component pass at least two consecutive tests before allowing an extended test interval. The NUMARC summary did not provide sufficient detail to perform independent quantitative assessment of the leakage-rate experience or to derive component failure beta factors as was done for the North Anna and Grand Gulf data. Qualitatively the NUMARC observations appear to be consistent with the insights derived from the other analyses.

				Probability of Having N Indeterminable Containment Leakage Faths										
TEST SCHEME OPTION	PENETRATION COMMON MODE FAILURE PROBABILITY	AVERAGE NUMBER OF COMPONENTS IN FAILED STATE PER OUTAGE	FRACTION OF COMPONENTS TESTED TOTA OUTAGE	N=0	N=1	N=2	N=3	N=4	N=5	N≖6	N=7	N '78	N=9	N=10+
1	0	4.24	1.00	0.9523	4.66E-2	1.11E-3	2.11E-5	0	0	0	0	0	0	0
1	6.0E-2	4.69	1.00	0.8044	1.75E-1	1.88E-2	1.26E-3	7.61E-5	2.19E-6	3.64E-7	0	0	0	0
2	0	6.15	0.51	0.9026	9.26E-2	4.64E-3	1.60E-4	3.28E-6	0	0	0	0	0	0
2	6.0E-2	6.80	0.51	0.7187	2.38E-1	3.87E-2	4.00E-3	3.23E-4	1.97E-5	1.46E-6	0	0	0	0
3	0	7,49	0.37	0.8594	1.30E-1	9.59E-3	4.79E-4	2.08E-5	0	0	0	0	0	0
3	6.0E-2	8.26	0.37	0.6498	2.81E-1	5.97E-2	8.22E-3	8.38E-4	6.52E-5	5.46E-6	0	0	0	0
4	0	5.88	0.52	0.9103	8.55E-2	4.06E-3	1.32E-4	5.10E-6	0	0	0	0	0	0
4	6.0E-2	6.49	0.53	0.7271	2.32E-1	3.67E-2	3.70E-3	2.99E-4	1.86E-5	2.91B-6	3.64E-7	0	0	0
5	0	5,87	0.52	0.9102	8.57E-2	4.02E-3	1.36E-4	2.91E-6	0	0	0	0	0	0
5	6.0E-2	6.49	0.53	0.7268	2.32E-1	3.67E-2	3.77E-3	2.85E-4	2.00E-5	2.55E-6	0	0	0	0
6	O	8.72	0.33	0.8042	1.68E-1	2.46E-2	2.70E-3	2.42E-4	1.24E-5	1.095-6	0	0	0	0
6	6.0E-2	9.64	0.33	0.5887	2.94E-1	9.15E-2	2.16E-2	3.99E-3	6.19E-4	7.76E-5	9.11E-6	7.29E-7	0	0
7	0	. 15.40	0.17	0.5437	2.86E-1	1.17E-1	3.95E-2	1.08E-2	2.45E-3	4.72E-4	8.01E-5	9.11E-6	7.29E-7	7.29E-7
7 •	6.0E-2	16.94	0.17	0.3484	3.00E-1	1.89E-1	9.80E-2	4.26E-2	1.54E-2	4.87E-3	1.31E-3	2.92E-4	5.61E-5	1.35E-5

Table A-15. Probability of Indeterminable Containment Leakage Paths for Test Scheme Options

 Table A-16
 Change in Incremental Risk Due to Containment Leakage Rate Relative to Current Test Scheme for Test Scheme Options

Penetration Common	Test Scheme Option									
Mode Failure Probability	1	2	3	4	5	6	7			
0	1.00	2.09	3.08	1.92	1.93	4.63	14.27			
6.0E-2	1.00	1.52	1.98	1.47	1.47	2.59	5.82			

Table A-17. Comparison of Containment Isolation Valve Leakage Failure Rates

Failure	Any L	cakage	Immeasurable Leakage Rate			
Rate	Grand Gulf	North Anna	Grand Gulf	North Anna		
Independent Rate:	5,.0E-2/yr	8.6E-2/yr	1.7E-2/yr	1.8E-2/yr		
Dependent Rate:	3.8E-2/yr	6.5-2/yr	1.4E-2/yr	1.3E-2/yr		
Component Beta Factor:	0.31	0.34	0.17	0.34		

 Table A-18.
 Comparison of Changes in Incremental Risk Due to Containment Leakage Rate Relative to Current Test Scheme for Test Scheme Options

Plant	Penetration	Test Scheme Option								
	Common Mode Failure Probability	- 1	2	3	. 4 .	5	6	7		
North Anna	0	1.00	2.03	2.59	1.71	1.71	5.00	16.25		
Grand Gulf	0	1.00	2.09	3.08	1.92	1.93	4.63	14.27		
North Anna	5.5E-2	1.00	1.52	1.86	1.41	1.41	2.86	6.97		
Grand Gulf	6.0E-2	1.00	1.52	1.98	1.47	1.47	2.59	5.82		

Endnotes

1. The NRC gratefully acknowledges the assistance provided by VEPCO staff, especially Mr. David Heacock and Mr. Marvin Tower.

2. The NRC gratefully acknowledges the assistance provided by Entergy staff, especially Mr. Michael J. Meisner and Mr. Kevin Christian.

3. Each reactor is a Westinghouse 3 loop Pressurized Water Reactor (PWR) rated at 934 MWe, net. The containment for each reactor is a conventionally reinforced concrete structure with a flat base mat and cylindrical walls topped with a hemispheric dome. The inside concrete surfaces are covered with steel liner plates for leakagetightness. Containment design pressure is 45 psig. The containment is designed for operation at subatmospheric pressure and is maintained at about 10 psia when the unit is in service. Free air volume is 1,825,000 cubic feet. Unit 1 was placed in operation in 1978; Unit 2 in 1980. The technical specification L_a for each reactor is 304.4 standard cubic feet per hour (scf/h) (0.10% volume/day).

4. St. Lucie 1, DCS number 8704130251, 3/7/87; penetration leakage rate of 3435 scf/h. St. Lucie 2, DCS number 8907120017, 6/5/89; valve leakage rate of 6710 scf/h. St. Lucie 2, DCS number 9012260091, 11/28/89; valve leakage rate of 1923 scf/h. Dresden 3, DCS number 8512100206, 11/7/85; valve leakage rate of 3026 scf/h. Dresden 3, DCS number 9209240032, 12/7/89; valve leakage rate of 1062 scf/h. Browns Ferry 2, DCS number 8501290100, 9/22/84; valve leakage rate of 1117 scf/h, valve leakage rate of 2687 scf/h. La Saile 1, DCS number 8701070483, 11/5/85; valve leakage rate of 1892 scf/h.

5. Frequency of containment leakage at either Unit 1 or Unit $2 = 211^{\circ}p^{2} + 8^{\circ}p^{3}$, where p is frequency of individual component leakage. This equation was derived as follows:

4 @ $p^{*}((p^{*}p)+(p^{*}p)) = 4^{*}2p^{3}$ 2 @ $(p+p)^{*}(p+p+p) = 2^{*}6p^{2}$ 165 @ $p^{*}p = 165^{*}1p^{2}$ 2 @ $p^{*}(p+p+p) = 2^{*}3p^{3}$ 14 @ $p^{*}(p+p) = 14^{*}2p^{2}$ 211 $p^{2}+8p^{3}$

where p*p means two valves in series, and p+p means two valves in parallel

6. To limit confusion, the common mode failure probability related to multiple failures of a single component is called the "component beta value," The common mode failure probability related to multiple failures of components in a penetration is called the "penetration common mode failure (CMF) probability."

- 7. The basic logic of the model is as follows:
 - a. Create a time line covering 1000 outages for each component.
 - b. Based on failure frequency, flag outages where component fails.
 - c. Select penetration CMF probability, apply to time line. If one or more components in a penetration are failed, all components in penetration fail with probability of penetration common mode failure probability.
 - d. Select and apply test scheme. If component is failed at test, set component failed at one of next two outages with probability of component beta value.
 - e. Count total number of component failures in time line.
 - f. For each time point calculate containment leakage rate.
 - g. Cycle through above steps N times. N > 5000 (gives sample size of 5E6 outages for each test scheme and penetration common mode failure probability value combination).
 - h. Adjust results for number of outages and number of cycles. Print results.

- 8. See Section 7.1 for a description of risk due to containment leakage rate versus total unit risk.
- 9. Grand Gulf is a 1142 net MWe BWR which utilizes a Mark III containment.

d

· .

10. See Section 7.1 for a description of risk due to containment leakage rate versus total unit risk.

APPENDIX B

APPROACH TO ASSESSING RISK IMPACTS

.

Contents

-- -----

		Page
Ь.1 В.2	NUREG-1150 Approach	B-1 B-4

Figures

Numbe	I	Page
B-L	NUREG-1150 Risk Analysis Process	B-2

J.

p

ł

¢

APPENDIX B

APPROACH TO ASSESSING RISK IMPACTS

This appendix provides a more detailed explanation of the risk assessment methodology used in NUREG-1150 (NRC90) and the approach taken in the present study to update the NUREG/CR-4330 (NRC86) results based on NUREG-1150.

B.1 NUREG-1150 APPROACH

The main objective of NUREG-1150 was to provide a current state-of-the-art assessment of severe accident risks for five U.S. nuclear power units with different designs. The five commercial nuclear power units include:

 Surry Power Station, Unit 1: a Westinghouse-designed three-loop pressurized water reactor in a subatmospheric containment building, located near Williamsburg, Virginia

> Peach Bottom Atomic Power Station, Unit 2: a General Electric-designed boiling water (BWR-4) reactor in a Mark I pressure suppression containment, located near Lancaster, Pennsylvania

> Sequoyah Nuclear Power Plant, Unit 1: a Westinghouse-designed four-loop pressurized water reactor in an ice condenser containment building, located near Chattanooga, Tennessee

> Grand Gulf Nuclear Station, Unit 1: a General Electric-designed boiling water (BWR-6) reactor in a Mark III pressure suppression containment, located near Vicksburg, Mississippi

Zion Nuclear Plant, Unit 1: a Westinghouse-designed four-loop pressurized water reactor in a large, dry containment building, located near Chicago, Illinois.

. . .

The study can generally be characterized as consisting of four major analysis steps and an integration step as described below and in Figure B-1.

- 1. <u>Systems analysis</u>: the determination of the likelihood and nature of accidents that result in the onset of core damage.
- 2. <u>Accident progression analysis</u>: an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.
- 3. <u>Source term analysis</u>: the estimation of the radionuclide transport within the reactor coolant system (RCS) and the containment, and the nature and magnitude of the subsequent releases to the environment.
- 4. <u>Consequence analysis</u>: the calculation of the off-site consequences, primarily in terms of health effects to the general population.
- 5. <u>Risk integration</u>: the assembly of the outputs of the previous tasks into an overall expression of risk.

Systems Analysis

The first step is the systems (frequency) analyses. This step identifies the combination of events that can lead to core damage and estimates their frequency of occurrence. Potential accident-initiating events (including

đ

- --

Key:

B-2

external events for two units) were examined and grouped according to the required subsequent system response. Once these groups were established, accident sequence event trees were developed to detail the relationships among systems required to respond to the initiating event in terms of potential system successes and failures. The front-line systems in the event trees, and the related support systems, were modeled with fault trees or Boolean logic expressions as required. The core damage sequence analysis was accomplished by appropriate Boolean reduction of the fault trees in the system combinations specified by the event trees. Once the important failure events were identified, probabilities were assigned to each basic event and the accident sequence frequencies were quantified. The accident sequence cut sets were then regrouped into unit damage states (UDS) in which all cut sets were expected to result in a similar accident progression.

Accident Progression Analysis

The second step, the accident progression and containment response analysis, investigated the physical processes affecting the core after an initiating event occurs. In addition, this part of the analysis tracked the impact of the accident progression on the containment building. The principal tool used was the accident progression The output of the accident event tree. progression event tree (APET) was a listing of numerous different outcomes of the accident progression. As illustrated in Figure B-1, these outcomes were grouped into accident progression bins (APBs) that allow the collection of outcomes into groups that are similar in terms of the characteristics that are important to the next stage of the analysis, the source term estimation.

Once the APET was constructed, the probabilities of the paths through the APET were evaluated by EVENTRE. EVENTRE performs the function of grouping similar outcomes into bins. The accidents that are grouped in a single bin are similar enough in terms of timing, energy, and other characteristics that a single source term estimate suffices for estimating the radiological impact of any of the individual accidents within that bin

The qualitative product of this step is a set of accident progression bins. Each bin consists of a set of event tree outcomes (with associated probabilities) that have a similar effect on the subsequent portion of the risk analysis, analysis of radioactive material transport. Quantitatively, the product consists of a matrix of conditional failure probabilities, with one probability for each combination of unit damage state and accident progression bin. These probabilities are in the form of probability distributions, reflecting the uncertainties in accident processes.

Source Term Analysis

The next step was the source term analysis. A unit-specific model was developed for each of the five units, with the suffix SOR built into the code name. For example, SURSOR was the source term model for the Surry unit. The results of the source term analysis were release fractions for nine groups of chemically similar radionuclides for each accident progression bin. As with the previous analyses, many results were generated, too many for direct transfer to the next step. The interface in this case was accomplished through the calculation of "partitioned" source term groups. The large number of unit-specific XSOR results (where ***X*** represents the prefix for the individual unit) were assessed and grouped in terms of early health threat potential and latent health threat potential and by similarity of accident progression as it affects warning times to the surrounding population. The product of this step was the estimate of the radioactive release of a set of source term groups, each with an associated energy content, timing of the release, and duration of release.

Off-site Consequence Analysis

The fourth step was the off-site consequence analysis which was performed with the MACCS (MELCOR Accident Consequence Code System) computer code. The MACCS calculations were performed for each of the partitioned source terms defined in the previous step. The product of this step of the analysis was a set of off-site consequence measures for each source term group. For NUREG-1150, the specific consequence measures include early fatalities, latent cancer fatalities, population dose (within 50 miles and total), and early as well as latent individual cancer risk for comparison with NRC's safety goals.

Risk Integration

The final stage of the risk analysis assembles the output of the first four steps into an expression of risk:

$$Risk_{in} = \Sigma_{h} \Sigma_{i} \Sigma_{j} \Sigma_{k} f_{n}(IE_{h}) P_{n}(IE_{h} \rightarrow UDS_{i})$$
$$P_{n}(UDS_{i} \rightarrow APB_{i}) P_{n}(APB_{i} \rightarrow STG_{i}) C_{h}$$

where the total risk is represented by summing the product of the probability that the initiating event leads to a unit damage state, given: 1) the frequency of the initiating event 2) the probability that the unit damage state leads to an accident progression bin 3) the probability that the accident progression bin produces a given source term group, and 4) the consequence of the source term group.

B.2 NUREG/CR-4330 UPDATE

The purpose of the NUREG/CR-4330 update is to incorporate the latest PRA results, notably those in NUREG-1150 (NRC90) and related supporting documentation. However, not all of the interim results needed to evaluate the risk were reported in NUREG-1150. Instead, the update presented only a summary of the results. Thus, in order to extract the desired information on the risk contribution of containment leakage, some of the original computer files generated in the preparation of NUREG-1150 were obtained for each of the five units. The following describes the general contents of each file.

Master Bin File: Definitions of the accident progression bins

Frequency File:	Frequencies of each of the unit damage states relating to relevant accident progression bins and associated bin probabilities
Consequence File:	Expected consequences for each of the source term groups
Pointer File:	Relationship between each unit damage state and accident progression bin to its appropriate source term group.

The information extracted from each set of the above files includes the frequencies and expected consequences of each of the source term groups for the following three cases:

- 1. The base case included all possible combinations of unit damage states, accident progression bins, and source term groups. This case is identical to the results presented in NUREG-1150 and comparison of the present result was used to verify the correct usage of the data files.
- 2. Combinations with no containment failure or bypass which were used to characterize the risk contribution of the assumed normal containment leakage.
- 3. The results for isolation failure were used to derive the expected consequences of a pre-existing large leak (0.1 ft²).

Subtracting the contribution of the no containment failure cases (Case 2) from the base case (Case 1) gave the results for zero

containment leakage (Point 1) Case 2 resulted in the risk contribution of normal containment leakage (Point 2). Using the expected consequences for a large leak (Case 3) together with the probability of no containment failure (Case 2) yielded the potential risk contribution of a large pre-existing leak (Point 3). These three points were plotted as leak rate orleak area versus expected risk and a curve wasfitted through them. It was found that a second order polynomial would accurately reproduce the three points. These polynomial fits were therused to interpolate risk impacts of leakages above the nominal values that had been used in the original NUREG-1150 analyses
APPENDIX C

CANADIAN AND EUROPEAN OLM AND TYPE A TESTS

.

.

Contents

Page

Page

Ċ.1	The French On-line Monitoring System (The SEXTEN System)	C-1
C.2	The Belgian On-line Monitoring System	C-2
C.3	Type A Tests in Belgium	C-3
C.4	The Canadian On-line Monitoring System (The TCM System)	C-4

Figures

Number

\$

C-1 Typical Containment Air Pressure Cycle C-6 C-2 Containment Leak Rate C-7 C-3 Diagram of the SEXTEN System C-8 C-4 Leakage-Rate Test Results C-9 C-5 Temperature Compensation Method (TCM) System C-10 C-6 Gentilly II Pressure Test for Various Pressure Hold Points C-11

APPENDIX C

CANADIAN AND EUROPEAN OLM AND TYPE A TESTS

C.1 THE FRENCH ON-LINE MONITORING SYSTEM (THE SEXTEN SYSTEM)

Containment leak-tightness is continuously monitored during reactor operations in all of the French PWR plants using the SEXTEN system. The SEXTEN system is also being evaluated by the Swedes for their PWR units.

On-line leakage detection is based on the fact that the containment air pressure goes up and down in a cycle. Air pressure builds up as air from the instrument compressed air distribution system (ICADS) leaks through the air-operated valves inside the containment. When the pressure reaches a set limit, the operator quickly depressurizes the containment and, after that, a new pressurization cycle begins. A typical containment air pressure cycle is shown in Figure C-1. The pressure cycle is about 20 days for a 900MW PWR unit. The amplitude of the cycle is about 100 mbar (1.5 psi).

Leakage from the containment can be calculated by air mass balance. Air mass is found by measuring the average containment partial steam pressure and the absolute air pressures (absolute method). The dry air content of the containment can then be calculated. The leakage rate is calculated by subtracting the ICADS air flow rate from the total dry air content. The average gauge pressure in the containment can be measured every day. Curves such as that shown in Figure C-2 can be obtained. By analyzing these curves, a diagnosis of the containment leak-tightness can be made.

Instrumentation capable of accurately measuring the average temperature and the average partial steam pressure is required as these parameters exhibit large fluctuations during reactor operations. Location of sensors and their weighting for the computation of average values is essential to obtaining accurate results. SEXTEN system instrumentation is shown in Figure C-3. The following equipment is installed for each containment:

- 10 temperature sensors
- 2 dew point sensors
- 1 absolute pressure transducer
- 1 atmospheric pressure transducer
- 1 flowmeter in the ICAD system

A data acquisition and processing system, which consists of the following components, is shared by two containments:

- 1 data logger (HP 75000 B)
- 1 computer (HP VECTRA 386/25)
- Software
- 1 printer
- 1 plotter

The system operates continuously and provides measurements daily or at the end of each pressurization cycle in the containment. At the operator's request, the air mass inside the containment can be plotted in real time when leaks are being sought. Once it has detected a leakage problem, SEXTEN can be used as an aid to identifying the defective systems or components. The effects on containment leakage rate from closing a particular system or the repair of a particular component can be seen from the real time plotting of containment air mass. The first containment leakage-rate tests in an operating unit performed in 1980 provides a good example. The results of these tests are shown in Figure C-4. The solid line (dM/M) describes the change of air mass in the containment versus time, The slope of this curve represents the containment leakage rate. The curves dT/T_o, dP/(P-H)_o, and dH/(P-H)_o respectively describe the changes of absolute temperature, absolute pressure, and water vapor pressure inside the containment during the test.

During the first phase, the system recorded a decrease in the air mass corresponding to a leakage rate of 21 Nm³/h (742 scf/h) at 52 mbars (0.76 psig) positive pressure. An effort was made to locate the leakage path by closing valves on different penetrations. During Phase 2, with the plant radiation monitoring system closed, the SEXTEN system measured an air ingress into the containment of about 6 Nm³/h (212 scf/h). During Phase 3, the plant radiation monitoring system was back in operation and the SEXTEN system measured a leakage rate of 13 m³/h (459 scf/h) at 37 mbar (0.5 psig) positive pressure. During Phase 4, the service compressed air distribution system (SCADS) was isolated and a change of the dM/M curve was noticeable. During Phase 5, with both the plant radiation monitoring system and the SCADS closed, there was no measurable leakage at 33 mbars (0.49 psig) positive pressure.

In conclusion, the SEXTEN system detected a leakage through the plant radiation monitoring system and an undesirable air in-leakage into the containment from the SCADS. This first test, therefore, demonstrated that integrated containment leakage rate could be measured during reactor operation with an accuracy sufficient to detect leakage problems that may occur.

The SEXTEN system has been installed in all of the French reactors since 1985 and has accumulated 250 reactor-years of experience. The system has detected and located containment leaks during reactor operation. These leaks are generally located in the systems that provide a connection between the containment air and the outside atmosphere. Examples of such systems are plant radiation monitoring system, nuclear island vent and drain system, containment purge system, and containment atmosphere monitoring system.

Detailed descriptions of the SEXTEN system are provided in EDF93 and EDF89.

C.2 THE BELGIAN ON-LINE MONITORING SYSTEM

The operation of the Belgian On-Line Monitoring System described below is summarized from details provided in reference BOE90.

In normal operation, the pressure in the containment tends to increase due to leakage from the compressed air system. If the flow of incoming air, the pressure, the temperature, and the humidity in the building are measured, the leakage rate can be calculated.

For a typical test, the pressure is allowed to go from -20 to +60 mbar (-0.52 to +0.88 psi). The minimum pressure range should be between 0 and +50 mbar (0 to +0.74 psi) if reasonable accuracy is to be achieved. The pressure increase rate is normally in the range of 0.5 to 1 mbar/h (0.075 to 0.015 psi/h) and, therefore, a test would last several days. A minimum test duration of 56 hours is needed to obtain sufficient data points. If during the test, the atmospheric pressure drops suddenly and the maximum differential pressure is reached before 50 h, the test should be performed again.

All parameters are measured every 30 seconds. The values are averaged over 15 minutes to give one data point. A typical test gathers 200 to 400 data points. The data points are plotted in a graph showing the leakage rate as a function of the square root of the differential pressure between the reactor building and the auxiliary building.

During the test, care should be taken not to disturb the conditions in the containment. Airlock movements should be avoided as much as possible. The ventilation and cooling of the containment should be very stable. Any disturbances in the temperature distribution in the containment will lead to a greater spreading of the data points.

The tests are conducted using the same instrumentation as the Type A tests, with the addition of the flow meters on the compressed

air system. To save a penetration, the pressure difference between the containment and the auxiliary building is not measured directly, but is computed from absolute pressure measurements.

The temperature is measured using 30 sensors to provide a more reliable average temperature. The humidity is measured by 5 to 10 probes. In the absolute method, the air mass change in the containment is computed from the absolute pressure, the temperature, and the humidity. In the reference method, the air mass change is computed from the absolute pressure, the pressure difference between the reference vessel and the containment, and the humidity. For both methods, the free volume of the containment must be known.

The difference between the air mass change computed from the parameters in the containment, and the air mass change measured by the flow meters on the compressed air system, is the leakage flow of the containment. This leakage is then plotted versus the square root of the differential preasure between the containment and the auxiliary building.

A straight line is then computed by the least squares method. Conventionally, the leakage rate is expressed as the difference between the value at 60 mbar (0.88 psi) and the value at 0 mbar, and is noted as Qf60. The value at 0 mbar (Qf0) should theoretically be zero, but is nearly never so for two reasons:

• Errors in the instrumentation and errors in estimating the free volume of the containment

> An unaccounted inflow or outflow of gas, which is independent of the pressure in the containment

The standard deviation is also computed and is a measure of the spreading of the data points. This spreading comes from instrumentation errors and from errors in weighing temperature and humidity measurements. For these reasons, it is important to maintain the temperature and humidity in the containment as stable as possible.

The standard deviation typically lies between 0 and 2 Nm³/h (0 and 71 scf/h). One should not place too much emphasis on the value of the leakage rate because the error is of the same magnitude as the value measured.

C.3 TYPE A TESTS IN BELGIUM

In conjunction with on-line monitoring of containment leakage during reactor operations, Type A tests are conducted once in 10 years at reduced pressure (P_i) of not less than half of the peak accident pressure (0.5 P_i) (BEL86, BEL86A). According to the Belgians, the disadvantages of testing at P_a are:

- The P_a pressure is not representative of the real pressure in the containment after an accident because of the margins of conservative assumptions and the depressurization effects of the containment cooling systems
- The duration of testing at P_a is considerably longer than testing at lower pressure--more time for preparation, pressurization, and depressurization
- Testing at higher pressure increases the risk of fires, plus difficulty of fighting the fire should it occur, and the potential for damaging equipment in the containment

Test Acceptance Criterion

To conduct the tests, the Belgians use the following criterion:

$$L_{\perp} \leq 0.75 L_{\lambda} (P/P_{\star})$$

where,

- L is the measured containment leakage rate at P.
- L_a (percent/24 hours) is the maximum allowable leakage rate

at pressure P_a as specified in the technical specifications or associated bases, and as specified for periodic tests in the operating license

This test acceptance criterion is different tha... the one specified by Appendix J to 10 CFR Part 50. According to Appendix J, the acceptance criterion for reduced pressure tests conducted at pressure P_i , which is not less than 0.5 P_{a} , is:

$$L_{tm} < 0.75 L_{t}$$

where,

L_t (percent/24 hours) is the maximum allowable leakage rate at pressure P_t and is derived from the <u>pre-operational test</u> data as follows:

$$\begin{array}{rcl} L_{1} < L_{s} \left(L_{tm}/L_{am} \right) \\ \text{if } L_{tm}/L_{am} \leq 0.7 \\ L_{t} = L_{s} \text{ SQRT}(P_{t}/P_{s}) \\ \text{if } L_{tm}/L_{am} > 0.7 \end{array}$$

where,

L_{am} is the total measured containment leakage rate at pressure P_a

The Belgian criterion is independent of the leakage rates measured during the preoperational leakage test. Errors in the measured values of L_{m} and L_{an} would become greater as the actual leakage rate becomes smaller. The Belgian criterion is more conservative for laminar flow along the leakage paths as the use of SQRT(P_t/P_a) is less conservative than (P_t/P_a) in laminar flow.

Duration Criterion

In Belgium, Type A tests are performed using both the absolute method and the reference vessel method. These two methods are totally independent, and their results can be used for mutual validation. The advantages of using two independent methods are that the duration of leakage tests may be shortened and the calibrated leakage test to verify the accuracy of the leakage-rate measurement may not be necessary.

The Belgians have adopted the following test duration criterion: The test can be discontinued if, over a period of at least 8 hours and with at least 30 consecutive measurement points, both measurement techniques find a leakage rate that meets the test acceptance criterion.

Concordance Criterion

It is not necessary to perform a verification test (i.e., calibrated leakage test) if, at the end of the test period, the difference between the measured leakage rates derived from each method over the last 8 hours is:

where.

,

 $L_{t'} = L_{a} (P_{t}/P_{a})$ and $L_{m'}$ is the mean value of the two leakage rates.

 $< 0.25 L_{t'} - 0.1 L_{m'}$

Calibrated Leakage Test

If the above concordance criterion is not met or if only one method is used, a calibrated leakage test is mandatory. In a calibrated leakage test, a known flow rate or step mass change is introduced to the containment and the leakage rate or mass change measured by the instrumentation is determined and compared with the known value.

C.4 THE CANADIAN ON-LINE MONITORING SYSTEM (THE TCM SYSTEM)

Canada's Hydro-Quebec began the development of an OLM system in 1987. The Canadian OLM system uses the Temperature Compensation Method (TCM). The TCM uses an extensive network of tubing as a reference volume and a second independent tubular network for humidity sampling (CAN94). The system is shown in Figure C-5.

The appropriate reference volume was obtained by installing a leak-tight network of copper tubing, about 0.75 km (0.47 mile), throughout all significant volumes of the reactor building The jubing is sized and routed in such a way that the reference volume fraction contained within each room is proportional to the volume of the room.

The differential pressure between the reference volume and the reactor building is a critical parameter. The test procedure requires that the leak-tightness of the tubular network reference volume be verified. After the leak-tightness verification, the reference volume and the reactor building internal pressures are equilibrated and then isolated from each other. A decrease in the differential pressure can be directly related to the reactor building leakage, as the reference volume continuously replicates the overall reactor building temperature.

The tubular network for humidity sampling includes two hygrometers to obtain the "weighted" reactor building dew point measurements, and a suction pump and flowmeters for verification of the loop calibration. The tubular network is sized, routed, and designed with orifice flow control to ensure the intake of the correct amount of air from each of the 11 reactor building zones defined for "weighting" purposes.

In October 1992, containment integrity testing at low pressure (3 kPa(g) nominal) and at 100% full power was performed at Gentilly-2 Nuclear Power Station. The test methodology and precision were confirmed and the system was declared in-service for on-line containment integrity verification.

The 1992 test and the following test in June 1993 indicated higher than the expected reactor building leakage rate. A containment bypass to the spent fuel discharge bay due to a valve alignment problem was subsequently discovered. Four additional tests performed in 1993 and 1994 have demonstrated consistent leakage-rate results. Thus, the usefulness of the system to detect a degradation of containment leaktightness was demonstrated. The outstanding feature of the system is the accuracy of better than 5% of the measured leakage rate under typical conditions.

The secondary goal of the Gentilly-2 testing program was to correlate leakage measurements

from the on-line, low-pressure test results as the containment leakage criteria at high pressure (124 kPa(g)), i.e., 0.5% of reactor building volume per day (% V/D). A complex nonlinear extrapolation equation is required to transform a low-pressure test leakage rate to the equivalent high-pressure leakage rate. This equation is heavily dependent on the "R₁" factor which represents the ratio of laminar to turbulent flow. Reactor building leakage is characterized by a combination of turbulent and laminar gas flow. The leakage-rate (% V/D) extrapolation ratio between the 3 kPa and 124 kPa nominal test conditions varies from 3.7 for purely turbulent flow to 30.8 for purely laminar flow. The extrapolated leakage-rate error depends heavily on the uncertainty of the "R₁" factor

In order to quantify precisely the turbulent component of R₁ and to identify its time dependent nature, a series of leakage-rate measurements at various pressure hold points were incorporated into the 1990 and 1993 reactor building pressure tests. Figure C-6 represents leakage-rate data collected at the pressure hold points during these tests. This preliminary information supports the premise that the reactor building leakage characteristic is stable over a period of many years and permits extrapolation of low-pressure test results to highpressure leakage rates. However, the leakage rate measured during any given test will decrease over time during the test, with the rate of change decreasing with time. This phenomenon must be examined further. The low-pressure test and high-pressure test data base must be expanded to demonstrate the correlation conclusively.

The Gentilly-2 TCM system was developed with the primary goal of demonstrating "overall" containment availability. Specifically it was designed to detect a 25 mm (1") diameter leak or hole in the reactor building. However the remarkable sensitivity of the test allows reliable detection of a 2 mm (5/64") hole. Because of the rapidity and high precision of the TCM system, it is possible to use the TCM system instead of the traditional method as the primary measurement system employed during Type A test.

Figure C-1. Typical Containment Air Pressure Cycle

Containment Leak Rate

Figure C-3. Diagram of the SEXTEN System

the second se

C-8

1

1

Figure C-4. Leakage-Rate Test Results

Figure C-6. Gentilly II Pressure T st For Various Pressur Hold Points

C-11

.

NUREG-1493

APPENDIX D

DETAILED COST ESTIMATES FOR 20- AND 40-YEAR BASELINES AND ALTERNATIVES

Appendix D

Basel Curre	Baseline: 20-Year Test Cycle - No License Extensions Current Appendix J Requirements												
Туре Туре	Type B & C Tosts (LLRTs) = Type A Tests (ILRTs) =							\$165,000 per test \$1,890,000 per test					
Peric	ođ			Dı	irati	Lon	R	T eqi	esi u1:	ts rec	1	Costs 5% Discount	Costs 10% Discount
13th	Power Cy	ycle	0	-	18	months							
13th	Outage	_	18	-	20	months		B	£	Ç		153,353	143,017
14th	Power C	ycle	20	-	38	months							
14th	Outage	_	38	-	40	months	A	+	в	Æ	С	1,619,377	1,397,561
15th	Powar C	ycle	40	-	58	months							
15th	Outrge	•	58	-	60	months		В	7	С		130,331	104,087
16th	Power C	ycie	60	-	78	months	_		_	_	_		
16CD	Oucage		78	-	80	months	A	+	В	5	С	1,376,264	1,017,139
1/00	Power C	Acte	80	-	98	monche		-	-	~			
10+5	Outage		38	-	110	months		B	ξ.	C		110,755	75,754
1047	PUWUI (;	Acte T	10	-	170	monthe			n		~	1 160 640	740 270
10th	Bower C	vola 1	20	-	120	monthe	A	+	Þ	- #4	C	1,103,043	740,270
19th	Outage	yore 1 1	20	_	140	monthe		5	c.	c		94 176	EE 124
20th	Dower C	vrle 1	40	_	159	monthe		0	•	6		34,130	22,134
20th	Outage	1	58	-	260	months	A	+	в	L	C	994.053	538.765
21st	Power C	vcle 1	60	-	178	months		•	-	-	•		
21st	Outage	ī	78		180	months		в	2	С		80,003	40,126
22nd	Power C	ycle 1	80	-	198	months							
22nd	Outage	- 1	.98	-	200	months	A	+	В	£	С	844,818	392,111
23rd	Power C	ycle 2	00	-	218	months							
23rd	Outage	2	18	-	220	months		B	£	C		67,993	29,204
24th	Power C	ycle 2	18	-	238	months							
	Shutdow	n 2	38	-	240	months		n	on	Ü		0	0

Total Net Present Values

1

, ,

NUREG-1493

6,640,742 4,533,168

D-1

Alternative 1: 20-Year Test Cycle - No Lic ns Extensions Current Appendix J Test Frequencies with Higher Acceptable Leakage stes

e مونز: Type	B & C Tests A Tests (ILR	(LLRT3) = T8) =	\$157,000 \$1,690,000		
Perio	ođ	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 - 18 months			
13th	Outage	18 - 20 months	B&C	145,918	136,083
14th	Power Cycle	20 - 38 months			
14th	Cutage	38 - 40 months	A + B & C	1,448,014	1,249,671
15th	ower Cycle	40 - 58 months			
15tr	Outage	58 - 60 monthe	B & C	124,012	99,041
16'.0	Pok 2 Cycle	60 - 78 months			
Loth	Outaga	78 - 80 months	A + B & C	1,230,628	909,506
17th	Power Cycle	80 - 98 months			
17th	Outage	98 - 100 months	B&C	105,394	72,081
18th	Power Cycle	100 - 118 months			
18th	Outage	118 - 120 months	A + B & C	1,045,877	661,934
19th	Power Cycle	120 - 138 months			
19th	Outage	138 - 140 months	B & C	89,572	52,461
20th	Power Cycle	140 - 158 months			
20th	Outage	158 - 160 months	A + B £ C	888,862	481,753
218t	Power Cycle	160 - 178 months	D <i>c a</i>	76 104	30 101
2180	Outage	178 - 180 months	b & C	/0,124	36,181
2200	Power Cycle	180 - 198 WOULUS		365 400	750 610
22nd	Outage Deven Grole	198 - 200 months	A + B & C	133,420	350,610
2310	Power Cycle	210 - 210 months	R C C	£4 606	27 700
2310	Dower Cycle	210 - 230 months		04,030	21,100
44 L N	Shutdown	$\frac{610}{238} = \frac{230}{240} = \frac{340}{1001000}$	000e	0	n
	GHULUOWII	230 - 240 monting	none	v	Ŭ

Total Net Present Values

5,974,517 4,079,117

Alternative 2: 20-Year Test Cycle - No License Extensions Appendix J Leakage Criteria, Frequency of ILRTs Reduced to 2/10 Years

Туре Туре	B & C Tests A Tests (ILR	(LLRTS) TS) =	-	\$165,000 \$1,890,000	per test per test	
Perio	od	Du	ration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 -	18 months			
13th	Outage	18 -	20 months	B&C	153,353	143,017
14th	Power Cycle	20 -	38 months			
14th	Outage	38 -	40 months	B & C	141,374	122,009
15th	Power Cycle	40 -	58 months			
15th	Outage	58 -	60 months	A + B & C	1,492,880	1,192,273
16th	Power Cycle	60 -	78 months			
16th	Outage	78 -	80 months	B & C	120,150	98,798
17th	Power Cycle	80 -	98 months			
17th	Outage	98 -	100 months	B&C	110,765	75,754
18th	Power Cycle	100 -	118 months			
18th	Outage	118 -	120 months	A + B & C	1,169,649	740,270
19th	Power Cycle	120 -	138 months			
19th	Outage	138 -	140 months	B&C	94,136	55,134
20th	Power Cycle	140 -	158 months			
20th	Outage	158 -	160 months	B&C	86,782	47,035
21st	Power Cycle	160 -	178 months			
21st	Outage '	178 -	180 months	A + B & C	916,403	459,626
22nd	Power Cycle	180 -	198 months			
22nd	Outage	198 -	200 months	B&C	73,754	34,232
23rd	Power Cycle	200 -	218 months			
23rd	Outage	218 -	220 months	BEC	67,993	29,204
24th	Power Cycle	218 -	238 months		-	-
	Shutdown	238 -	240 months	none	0	0

.

Total Net Present Values

4,427,239 2,987,352

-

Alternative 3: 20-Year Test Cycl - No Licens Extensions Relaxed Leakage Criteria, Frequency of ILRTs Reduced to 2/10 Years

Type A Teach (IL	<18/ ·	\$1,690,00 Tests	Costa	Costs
Period	Duration	Required	5% Discount	10% Discount

- --

Perio	od		Dı	irati	on	R
13th	Power Cycle	0	-	18	months	
13th	Outage	18	-	20	months	
14th	Power Cycle	20	-	38	months	
14th	Outage	38	-	40	months	
15th	Power Cycle	40	-	58	months	
15th	Outage	58	~	60	months	A
16th	Power Cycle	60	-	78	months	
16th	Outage	78	-	80	months	
17th	Power Cycle	80	-	98	months	
17th	Outage	98	-	100	months	
18th	Power Cycle	100	-	118	months	
18th	Outage	118	-	120	months	A
19th	Power Cycle	120	-	138	months	
19th	Outage	138	-	140	months	
20th	Power Cycle	140	-	158	months	
20th	Outage	158	-	160	months	
21st	Power Cycle	160	-	178	months	
21st	Outage	178	-	180	months	A
22nd	Power Cycle	180	-	198	months	
22nd	Outage	198	-	200	months	
23rd	Power Cycle	200	-	218	months	
23rd	Outage	218	-	220	months	
24th	Power Cycle	218	-	238	months	
	Shutdown	238	-	240	months	

3

.

. . .

B	£	Ċ		145,918	136,083
B	6	C		134,520	116,094
+	B	£	¢	1,334,903	1,066,106
B	£	с		114,325	84,493
B	6	C		105,394	72,081
+	B	۶.	С	1,045,877	661,934
B	£	С		89,572	52,461
в	6	C		82,575	44,755
+	B	£	С	819,429	410,988
B	ĥ	C		70,178	32,572
B	£	C		64,696	27,788
n	none			0	0

Total Net Present Values

4,007,387 2,705,355

;

\$ 5 1 U

. . .

- 7

Alternative 4: 20-Year Test Cycle - No License Extensions Appendix J Leakage Criteria, Frequency of ILRTs Reduced to 1/10 Years

Type B & C Tests (LLRTs) = \$165,000 per test Type A Tests (ILRTs) -\$1,890,000 per test Costs Tests Costs Period Duration Required 5% Discount 10% Discount 13th Power Cycle ΰ-18 months 18 -B&C 153,353 143,017 13th Outage 20 months 20 - 38 months 14th Power Cycle 14th Outage 38 - 40 months B&C 141,374 122,009 15th Power Cycle 40 . 58 months 15th Outage 58 - 60 months B&C 130,331 104,087 16th Power Cycle 60 - 78 months 16th Outage 78 - 80 months B&C 120,150 88,798 80 - 98 months 17th Power Cycle 110,765 75,754 17th Outage 98 - 100 months B&C 18th Power Cycle 100 - 118 months 1,169,649 740,270 120 months A + B & C 18th Outage 118 138 months 19th Power Cycle 120 138 - 140 months B&C 94,136 55,134 19th Outage 20th Power Cycle 140 - 158 months

158 - 160 months

178 - 180 months

198 - 200 months

218 - 220 months

238 - 240 months

B&C

B&C

B&C

B≨C

none

86,782

80,003

73,754

67,993

2,228,290

0

Total Net Present Values

Shutdown

21st Power Cycle 160 - 178 months

22nd Power Cycle 180 - 198 months

23rd Power Cycle 200 - 218 months

24th Power Cycle 218 - 238 months

20th Outage

21st Outage

22nd Outage

23rd Outage

NUREG-1493

47,035

40,126

34,232

29,204

1,479,666

0

Alternative 5: 20-Year Test Cycle - No License Extensions Relaxed Leakage Criteria, Frequency of ILRTs Reduced to 1/10 Years

Туре	B & C Tests	(LLRTS) =	\$157,000 per test						
Туре	A Tests (ILR	Te) =	\$1,690,000 per test						
				_					
n	L.	man and t	Tests	Costs	Costs				
Perio	a	Duration	Required	5 Discount	10% Discount				
13th	Power Cvcle	0 - 18 months							
13th	Outage	18 - 20 months	B&C	145,918	136.083				
14th	Power Cycle	20 - 38 months	•		,				
14th	Outage	38 40 months	B&C	134,520	116,094				
15th	Power Cycle	40 - 58 months		• • •	••				
15th	Outage	58 - 60 months	B & C	124,012	99,041				
16th	Power Cycle	60 - 78 months							
16th	Outage	78 - 80 months	B&C	114,325	84,493				
17th	Power Cycle	80 - 98 months							
17th	Outage	98 - 100 months	B&C	105,394	72,081				
l8th	Fower Cycle	100 - 118 months							
18th	Outage	118 - 120 months	A + B & C	1,045,877	661,934				
19th	Power Cycle	120 - 138 months							
19th	Outage	138 - 140 months	B&C	89,572	52,461				
20th	Power Cycle	140 - 158 months							
20th	Outage	158 - 160 months	B & C	82,575	44,755				
21st	Power Cycle	160 - 178 months		— • • • •					
21st	Outage	178 - 180 months	B&C	76,124	38,181				
22nd	Power Cycle	180 - 198 months							
22nd	Outage	198 - 200 months	B&C	70,178	32,572				
2310	. ver cycle	200 ~ 218 months	B (C	CA COC	77 700				
2310	Douor Curlo	216 - 220 months		09,070	21,100				
24 L N	chutdown	210 - 238 MONUNS		0	٥				
	SHULUOWH	250 ~ 240 months	none	U	U				

Total Net Present Values

: 1

2,053,191 1,365,483

-

-

Alternative 6: 20-Year Test Cycle - No License Extensions Appendix J Leakage Criteria, Frequency of ILFTs Reduced to 1/20 Years

Туре Туре	B & C Tests A Tests (ILR	(LLRTS TS) =) =		\$165,000 \$1,890,000	per t st per test	
Perio	od	מ	urat:	ion	Tests Required	Costs 5% Discount	Costs 10% Discount
	. . 1	-			-		
1300	Power Cycle	0 -	10	months			
1350	Outage	18 -	20	months	8 & C	153,353	143,017
1400	Power Cycle	20 -	38	monthe			
1461	Dutage	- 86	40	months	BEC	141,374	122,009
1566	Power Cycle	40 - ra	58	months			104 007
1646	Dower Cycle	50 -	20	months	8 & C	130,331	104,087
1001	Power Cycle	79.	10	months	D C C	100 150	00 700
17th	Dower Cucle	PO -	90	months		140,150	86,796
1756	Dutage	90 -	100	monthe	9 C C	110 765	75 754
19+5	Dower Cucle	100 -	110	months		110,101	
18rh	Outage	118 -	120	monthe	8 6 0	102 112	64 627
19rh	Power Cycle	120 -	119	monthe			04,027
19rh	Outage	138 -	140	months	BLC	94 136	55 134
201 h	Power Cycle	140 -	158	months		24,430	
20th	Outage	158 -	160	months	8 & C	86.782	47 035
21st	Power Cycle	160 -	178	months			.,
21st	Outage	178 -	180	months	BEC	80,003	40.126
22nd	Power Cycle	180 -	198	months	•		
22nd	Outage	198 -	200	months	8 & C	73,754	34,232
23rd	Power Cycle	200 -	218	months		•	-
23rd	Outage	218 -	220	months	B&C	67,993	29,204
24th	Power Cycle	218 -	238	months		-	
	Shutdown	238 -	240	months	none	0	0

Total Net Present Values

u

.

1,160,753 804,023

_

.. -

.

ç

Alternative 7: 20-Year Test Cycle - No License Extensions Relaxed Leakage Criteria, Frequency of ILRTs Reduced to 1/20 Years

туре Туре	B & C Tests A Tests (ILR	(LLRTS) TS) =	-		\$1	\$1 ., e	157,000 590,000) per) per	test test	
		_			Te	est	8	(Costs	Costs
Perio	d	Dı	irati	ion	Requ	112	red	51	Discount	10% Discount
13th	Power Cycle	0 -	18	months						
13th	Outage	18 -	20	months	В	£	С		145,918	136.083
14th	Power Cvcle	20 -	38	months	-	-	•		,	
14th	Outage	38 -	40	months	В	£	С		134,520	116,094
15th	Power Cycle	40 -	58	months	-	_	-			
15th	Outage	58 -	60	months	В	£	С		124,012	99,041
16th	Power Cycle	60 -	78	months						
16th	Outage	78 -	80	months	В	£	С		114,325	84,493
17th	Power Cycle	80 -	98	months						
17th	Outage	98 -	100	months	В	&	С		105,394	72,081
18th	Power Cycle	100 -	118	months						
18th	Outage	118 -	120	months	В	Ŀ.	С		97,161	61,493
19th	Power Cycle	120 -	138	months						
19th	Outage	138 -	140	months	В	£	С		89,572	52,461
20th	Power Cycle	140 -	158	months						
20th	Outage	158 -	160	months	В	£	С		82,575	44,755
21 s t	Power Cycle	160 -	178	months						
21st	Outage	178 -	190	months	В	£	C		76,124	38,181
22nd	Power Cycle	180 -	19B	months						
22nd	Outage	198 -	200	months	В	2	C		70,178	32,572
23rd	Power Cycle	200 -	218	months						
23rd	Outage	218 -	220	months	В	6	C		64,696	27,788
24th	Power Cycle	218 -	238	months						
	Shutdown	238 -	240	months	no	DIL (9		0	0
		-								

Total Net Present Values

1,104,475 765,042

۰

Alternative 8: 20-Year T st Cycle - No License Extensions Current Leakage Criteria and ILRT Frequency, Reduced LLRTs

Туре	B & C Tests	(LLRT#) =				5	370	0,000	0 per test	
Туре	A Tests (IL)	RTS) -			\$1	.,ε	99	,000	0 per test	
Perio	bd	Durati	on	Re	Te	est 111	:8 :8(1	Costs 5¶ Discount	Costs 105 Discount
13th	Power Cycle	0 - 18	months							
13th	Outage	18 - 20	months		В	5	С		65,059	60,674
14th	Power Cycle	20 - 38	months							
14th	Outage	38 - 40	months	A	+	В	£	С	1,619,377	1,397,561
15th	Power Cycle	40 - 58	months							
15th	Outage	58 - 60	months		В	£	С		55,292	44,158
16th	Power Cycle	60 - 78	months							
16th	Outage	78 - 80	months	A	+	B	6	С	1,376,264	1,017,139
17th	Power Cycle	80 - 98	months				_			
17th	Outage	98 - 100	months		B	2	С		46,991	32,138
18th	Power Cycle	100 - 118	months	-		_				
18th	Outage	118 - 120	months	A	+	B	6	C	1,169,649	740,270
19ch	Power Cycle	120 - 138	months							
19th	Outage	138 - 140	months		В	6	С		39,936	23,390
20th	Power Cycle	140 - 158	months	_		_	_	-		
20th	Outage	158 - 160	months	A	+	B	\$	С	994,053	538,765
2150	Power Cycle	160 - 178	months		-		_			
2180	Outage	178 - 180	months		B	6	С		33,941	17,023
22na	Power Cycle	180 - 198	months	-		~	_	~		
22na	Outage	198 - 200	months	A	+	R	δi,	Ç	844,818	392,111
2310	Power Cycle	200 ~ 218	monthe		•		~		00 04F	10 200
2310	Down Guele	TR - 730	months		в	ěc.	C		28,845	12,389
44 L N	POWER CYCLE	410 - 430	BUJUON						•	^
	Shucdown	438 - 44V	nonchi		цс	nue	3		0	U
			•							

Total Net Present Values

.

.

6,274,225 4,275,618

___

Alternative 9: 20-Year T st Cycl - No License Extensions Relaxed Le xage Criteria, & duc d LLRTs

Type B & C Tesus	(LLRTB) =	\$67,000 per test						
Type A Tests (ILR	Ts) =	\$1,690,000						
Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount				
13th Power Cycle	0 - 18 months							
13th Outage	18 - 20 months	B&C	62,271	58,074				
14th Power Cycle	20 - 38 months							
14th Outage	38 - 40 months	A + B & C	1,448,014	1,249,671				
15th Power Cycle	40 - 58 months			10.000				
15th Outage	58 - 60 months	BEC	52,922	42,265				
16th Power Cycle	60 - 78 months			000 506				
16th Outage	78 - 80 months	A + B G C	1,230,628	909,506				
17th Power Cycle	80 - 98 months	D ()	44 077	20 761				
17th Outage	98 - 100 months	BAC	44,377	30,701				
18th Power Cycle	100 - 118 months		1 045 077	661 034				
18th Outage	118 - 120 months	A + B & C	1,045,877	201,234				
19th Power Cycle	120 - 138 months	n <i>c</i> 0	20 225	22 209				
19th Outage	138 - 140 monens	D & C	30,247	22,500				
20th Power Cycle	140 - 158 months		000 057	481 753				
20th Outage	150 - 170 months	A + D & C	000,002	1021123				
218L POWER CYCLE	179 - 180 months	BLC	37 486	16.294				
22nd Bower Cycle	180 - 198 months		54,400	20,200				
22nd Outage	198 - 200 months	A + B & C	755.420	350,618				
23rd Power Cycle	200 - 218 months		,					
23rd Outage	218 - 220 months	BEC	27,609	11,858				
24th Power Cycle	218 - 238 months		·					
Shutdown	238 - 240 months	none	0	0				

Total Net Present Values

.

5,627,291 3,835,123

-

.

; ;

v

· .

Alternative 10: 10-Year T st Cycle - No Licens Ext nsions Chrrent Leakage Criteria, 2 ILRTs/10 Years, Reduced LLRTs

Туре Туре	B & C Tests A Tests (ILR	(LLRTS) TS) =	-	\$70,000 \$1,890,000	per test per test	
Perio	bđ	Du	ration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 -	18 months			
13th	Outage	18 -	20 months	B&C	65,059	60,674
14th	Power Cycle	20 -	38 months			-
14th	Outage	38 -	40 months	B & C	59,977	51,762
15th	Power Cycle	40 -	58 months			
15th	Outage	58 -	60 months	A + B & C	1,492,880	1,192,273
16th	Power Cycle	60 -	78 months			
16th	Outage	78 -	80 months	B 🖬 C	50,973	37,672
17th	Power Cycle	80 -	98 months			
17th	Outage	98 -	100 months	B&C	46,991	32,138
18th	Power Cycle	100 -	118 months			
18th	Outage	118 -	120 months	A + B & C	1,169,649	740,270
19th	Power Cycle	120 -	138 months			
19th	Outage	138 -	140 months	BEC	39,936	23,390
20th	Power Cycle	140 -	158 months			
20th	Out age	158 -	160 months	B & C	36,817	19,954
21 s t	Power Cycle	160 -	178 months			
218t	Outage	178 -	180 months	A + B & C	916,403	459,626
22nd	Power Cycle	180 -	198 months			
22nd	Outage	198 -	200 months	B&C	31,290	14,523
23rd	Power Cycle	200 -	218 months			
23rd	Outage	218 -	220 months	B&C	28,845	12,389
24th	Power Cycle	218 -	238 months			_
	Shutdown	238 -	240 months	none	0	0

Total Net Present Values

3,938,820 2,644,671

.

e

· .

Alternative 11: 20-Year Test Cycl - No Licens Extensions Relaxed Leakag Criteria, 2 ILRTs/10 Years, Reduced LLRTs

Туре Туре	B & C Testa A Testa (ILR	(LLRTS) TS) =	-	\$67,000 \$1,690,000	per test per test	
Perio	od	Dur	ation	Tests Required	Costs 5% Discount	Costs 101 Discount
13th	Power Cycle	0 -	18 months			
13th	Outage	18 -	20 months	B & C	62,271	58,074
14th	Power Cycle	20 -	3B months			
14th	Outage	38 -	40 months	B & C	57,406	49,543
15th	Power Cycle	40 -	58 months			
15th	Outage	58 -	60 months	A + B & C	1,334,903	1,056,106
16th	Power Cycle	60 -	78 months			
16th	Outage	78 -	80 months	P C	48,788	36,057
17th	Power Cycle	80 -	98 months		-	
17th	Outage	98 - 1	.00 months	e C	44,977	30,761
18th	Power Cycle	100 - 1	18 months			
18th	Outage	118 - 1	20 months	A + B & C	1,045,877	661,934
19th	Power Cycle	120 - 1	.38 months			
19th	Outage	138 - 1	40 months	B&C	38,225	22,388
20th	Power Cycle	140 - 1	.58 months			
20th	Outage	158 - 1	60 months	B&C	35,239	19,099
21st	Power Cycle	160 - 1	.78 months			
21st	Outage	178 - 1	.80 months	A + B & C	819,429	410,988
22nd	Power Cycle	180 - 1	.98 months	"		
22nd	Outage	198 - 2	00 months	B & C	29,949	13,900
23rd	Power Cycle	200 - 2	18 months			
23rd	Outage	218 - 2	20 months	B&C	27,609	11,858
24th	Power Cycle	218 - 2	38 months		•	0
	Shutdown	238 - 2	40 months	none	D	0

Total Net Present Values

.

ş

3,544,673 2,380,708

v

. ⁻ . Alternative 12: 20-Year Test Cycle - No License Extensions Current Leakage Criteria, 1 ILRT/10 Years, Reduced LLRTs

Туре Туре	B & C Tests A Tests (ILR	(LLRTS) TS) =	-	\$70,000 \$1,890,000	per test per test	
Perio	bd	Di	ration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 -	18 month	5		
13th	Outage	18 -	20 month	B & C	65,059	60,674
14th	Fower Cycle	20 -	38 month	3	•	
14th	Outage	38 -	40 month	B B & C	59,977	51,762
15th	Power Cycle	40 -	58 month	3		
15th	Outage	58 -	60 month	B B E C	55,292	44,158
16th	Power Cycle	60 -	78 month	5		
16th	Outage	78 -	80 month	8 B&C	50,973	37,672
17th	Power Cycle	80 -	98 month	9		
17th	Outage	98 -	100 month	5 B&C	46,991	32,138
18th	Power Cycle	100 -	118 month	5		
18th	Outage	118 -	120 month	B A + B & C	1,169,649	740,270
19th	Power Cycle	120 -	138 months	8		
19th	Outage	138 -	140 month	B B & C	39,936	23,390
20th	Power Cycle	140 -	158 month	8		
20th	Outage	158 -	160 month	B B & C	36,817	19,954
21st	Power Cycle	160 -	178 month			
21st	Outage	178 -	180 month	8 8 E C	33,941	17,023
22na	Power Cycle	180 -	198 MORICH		21 200	14 693
22nd	Outage	198 -	200 month	8 8 E C	31,290	14,523
23rd	Power Cycle	200 -	218 month		20 045	12 200
2310	Vutage	410 -	220 month	B 23 44 G	20,040	12,389
24 C N	Power Cycle	410 -	230 MONICAL		~	n
	Snutdown	238 -		a vove	U	U

Total Net Present Values

.

1,618,770 1,053,953

.

ú

Alternative 13: 20-Year Test Cycle - No Licens Extensions Relaxed Leakage Criteria, 1 ILRT/10 Years, Reduced LLRTs

Туре	B & C Tests	(LLRTs)) 🖬	\$67,00	00 per test	
Туре	A Tests (ILR)	Cs) =		\$1,690,0	00 per test	
Perio	od	Di	uration	Tests	Costs	Costs
				Required	5% Discount	10% Discount
13th	Power Cycle	0 -	18 mont	hs		
13th	Outage	18 -	20 mont	he B&C	62,271	58,074
14th	Power Cycle	20 -	38 mont	hs		
14th	Outage	38 -	40 mont	hs B C	57,406	49,543
15th	Power Cycle	40 -	58 mont	hs		
15th	Outage	58 -	60 mont	hs B&C	52,922	42,265
16th	Power Cycle	60 -	78 mont	hs		
16th	Outage	78 -	80 mont	hs B&C	48,788	36,057
17th	Power Cycle	80 -	98 mont	hs		
17th	Outage	- 86	100 mont	hs B&C	44,977	30,761
18th	Power Cycle	100 -	118 mont	hs		
18th	Outage	118 -	120 mont	hs A + B & C	1,045,877	661,934
19th	Power Cycle	120 -	138 mont	ha		
19th	Outage	138 -	140 mont	hs B&C	38,225	22,388
20th	Power Cycle	140 -	158 mont	hs		
20th	Outage	158 -	160 mont	hs B&C	35,239	19,099
21st	Power Cycle	160 -	178 mont	hs		
21 s t	Outage	178 -	180 mont	hs B£C	32,486	16,294
22nd	Power Cycle	180 -	198 mont	hs		
22nd	Outage	198 -	200 mont	hs B&C	29,949	13,900
23rd	Power Cycle	200 ~	218 mont	hs		
23rd	Outage	218 -	220 mont	hs B&C	27,609	11,858
24th	Power Cycle	218 -	238 mont	hs		
	Shutdown	238 ~	240 mont	hs none	0	0
Tota	l Net Present	Value	6		1,475,749	962,174

Total Net Present Values

.

۰

-· · Alternative 14: 20-Year Test Cycle - No License Extensions Current Leakage Criteria, 1 ILRT/20 Years, Reduced LLRTs

Туре Туре	B & C Tests A Tests (ILR)	(LLRTS) = TS) =		\$70,000 \$1,890,000	per test per test	
Perio	d	Durat	ion	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 - 18	months			
13th	Outage	18 - 20	months	B&C	65,059	60,674
14th	Power Cycle	20 - 38	months			
14th	Outage	38 - 40	months	B&C	59,977	51,762
15th	Power Cycle	40 - 58	months			• • •
15th	Outage	58 - 60	months	B&C	55,292	44,158
16th	Power Cycle	60 - 78	months		•	
16th	Outage	78 - 80	months	B&C	50,973	37,672
17th	Power Cycle	80 - 98	months			
17th	Outage	98 - 100	months	B&C	46,991	32,138
18th	Power Cycle	100 - 118	months			
18th	Outage	118 - 120	months	B&C	43,320	27,417
19th	Power Cycle	120 - 138	months			
19th	Outage	138 - 140	months	B&C	39,936	23,390
20th	Power Cycle	140 - 158	months			
20th	Outage	158 - 160	months	B&C	36,817	19,954
21st	Power Cycle	160 - 178	months			
21st	Outage	178 - 180	months	B&C	33,941	17,023
22nd	Power Cycle	180 - 198	months			
22nd	Outage	198 - 200	months	B&C	31,290	14,523
23rd	Power Cycle	200 - 218	months			
23rd	Outage	218 - 220	months	B&C	28,845	12,389
24th	Power Cycle	218 - 238	months		-	_
	Shutdown	238 - 240	months	none	Ç	0
(D -) -)					400 441	243.200

- - - -

Total Net Present Values .

492,441 341,100

a

- · ·

Alternative 15: 20-Year Test Cycle - No Licens Extensions Relaxed Leakage Criteria, 1 ILRT/20 Years, Reduced LLRTs

Тур В а Туре А 1	L C Tests Fests (ILR	(LLRTS Te) =	} =		\$1	\$67,000 ,690,000	0 per test 0 per test	
					Те	ste	Costs	Costa
Period		Ľ	urat	lon	Requ	ired	5% Discount	10% Discount
13th Por	ver Cycle	0 -	18	months				
13th Out	Lage	18 -	20	months	в	δC	62,271	58,074
14th Pov	ver Cycle	20 -	38	months	-	- •	• • • • • •	
14th Oul	Lage	38 -	40	months	В	e C	57,406	49,543
15th Por	wer Cycle	40 -	58	months			• •	•
15th Out	tage	58 -	60	months	В	٤C	52,922	42,266
16th Por	wer Cycle	60 -	78	months				
16th Out	cage	78 -	80	months	В	۴C	48,788	36,057
17th Pow	er Cycle	80 -	98	months				
17th Out	tage	- 98	100	months	B	E C	44,977	30,761
18th Por	wer Cycle	100 -	118	months				
18th Out	cage	118 -	120	months	B	εC	41,464	26,242
19th Por	war Cycle	120 -	138	months				
19th Out	tage	138 -	140	months	В	£ C	30,225	22,388
20th Por	wer Cycle	140 -	158	months				
20th Out	tage	158 -	160	months	В	& C	35,239	19,099
21st Po	wer Cycle	160 -	178	months				
21st Out	tage	178 -	180	months	B	£ C	32,486	16,294
22nd Por	wer Cycle	180 -	198	months				
22nd Ou	tage	198 -	200	months	B	£ C	29,949	13,900
23rd Po	wer Cycle	200 -	218	months				
23rd Out	tage	218 -	220	months	В	έC	27,609	11,858
24th Po	wer Cycle	210 -	238	months				
Sh	utdown	238 -	240	months	no	ne	0	0
Total N	et Present	Value	8				471,336	326,482

Total Net Present Values

v

.

. .

Easeline 40-Year Test Cycle - 20-Year License Extens ins formant Appendix J Requir ments

 Type B & C Tests (LLRTs) =
 \$165,000 p.1 test

 Type A Tests (ILRTs) =
 \$1,890,000 per test

Peric	ođ	Durat	ion	Tests Required	Costs 5% Discount	Costs 10% Discount
13th	Power Cycle	0 - 18	months			
13th	Outage	18 - 20	months	B&C	153,353	143,017
14th	Power Cycle	20 - 38	months		•	
14th	Outage	38 - 40	months	A + B & C	1,619,377	1,397,561
15th	Power Cycle	40 - 58	months			
15th	Outage	58 - 60	months	B&C	130,331	104,087
16th	Power Cycle	60 - 78	months			
16th	Outage	78 - 80	months	A + B & C	1,376,264	1,017,139
17ch	Power Cycle	80 - 98	months			
17 th	Outage	98 - 100	months	B & C	110,765	75,754
18th	Power Cycle	100 - 118	months			
18th	Outage	118 - 120	months	A + B & C	1,169,649	740,270
19th	Power Cycle	120 - 138	months			
19th	Outage	138 - 140	months	B&C	94,136	55,134
20th	Power Cycle	140 - 158	months			
20th	Outage -	158 - 160	months	A + B & C	994,053	538,765
21st	Power Cycle	160 - 178	months			
21st	Outage	178 - 180	months	B&C	80,003	40,126
22nd	Power Cycle	180 - 198	months			
22nd	Outage	198 - 200	months	A + B & C	844,818	392,111
23rd	Power Cycle	200 - 218	monthe		67 000	20.204
23rd	Cutage	218 - 220	months	BAC	61,923	29,204
2410	Power Cycle	510 - 739	months		717 000	705 777
2400	Deves Criste	238 - 240	months	A + B & C	111,300	203,311
2361	Power Cycle	250 - 540	monthe	9 L C	57 785	21 254
2301	Dower Curle	250 - 200	montha		57,705	41/404
2001	Power cycle	200 - 270		7 3 4 4 6	610 198	207 696
20011 27th	Dower Cycle	280 - 298	monthe		010/150	20,,050
27th	Outage	298 - 300	monthe	BAC	49.110	15.469
28th	Power Cycle	300 - 318	months			
28th	Outage	318 - 320	months	A + B & C	518.591	151,160
29th	Power Cycle	320 - 338	months			
29th	Outage	338 - 340	months	B & C	41,737	11,258
30th	Power Cycle	340 - 358	months			
30th	Outage	358 - 360	months	A + B E C	440,736	110,014
31st	Power Cycle	360 - 378	months			
31st	Outage	378 - 380	months	_ B & C	35,471	8,194
32nd	Power Cycle	380 - 398	months			
32nd	Outage	398 - 400	months	A + B E C	374,570	80,068
33rd	Power Cycle	400 - 418	months .	. •		•
33rd	Outage	418 - 420	months	-Bi∉ C	30,146	5,963
34th	Power Cycle	420 - 438	months			
34th	Outage	438 - 440	months	A + B & C	318,336	58,273
35th	Power Cycle	440 - 458	montha			
35th	Outage	458 - 460	monthe	3 & C	25,620	4,340
36th	Fower Cycle	450 - 478	monthe	2024	^	^
	Shucdown	4/8 480	montne	none	U	U
Tota	l Net Present	Values			9,861,030	5,492,234

•

Alternative 1: 40-Year Test Cycle - 20-Y ar License Extensions Current Appendix J Test Frequencies with Higher Acceptable Leakage Rates

_ _

Type B & C Tests (Type A Tests (ILR)	(LLRT8) = Fs) =	\$157,000 \$1,690,000	per test per test	
Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B & C	145,918	136,083
14th Power Cycle	20 - 38 months		1 440 014	1 340 531
14th Outage 15th Power Cycle	40 = 58 months	A + B & C	1,448,014	1,249,0/1
15th Outage	58 - 60 months	B&C	124.012	99.041
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	A + B & C	1,230,628	909,506
17th Power Cycle	80 - 98 months			
17th Outage	98 - 100 months	B & C	105,394	72,081
18t. Power Cycle	100 - 118 months	X • D < O	1 045 977	661 074
19th Power Cycle	120 - 130 months	A + B & C	1,043,077	001,334
19th Outage	138 - 140 months	BEC	89.572	52,461
20th Power Cycle	140 - 158 months			
20th Outage	158 - 160 months	A + B & C	888,862	481,753
21st Power Cycle	160 - 178 months			
21st Outage	178 - 180 months	B&C	76,124	30,181
22nd Power Cycle	180 - 198 MONINS		755 470	350 619
23rd Power Cume	200 - 218 months	NTDEC	755,460	330,010
23rd Outage	218 - 220 months	B€C	64,696	27,788
24th Power Cycle	216 - 238 months			·
24th Outage	238 - 240 months	A + B & C	642,010	255,178
25th Power Cycle	240 - 258 months	• • •	<i></i>	
25th Outage	258 - 260 months	въс	54,983	20,224
26th Power Cycle	278 - 278 months	AABEC	545.627	185.718
27th Power Cycle	280 - 298 months		545,457	
27th Outage	298 - 300 months	B&C	46,729	14,719
28th Power Cycle	300 - 318 months			
28th Outage	318 - 320 months	A + B & C	463,714	135,165
25th Power Cycle	320 - 338 months		70 714	10 710
29th Outage	338 - 340 MODELB	8 4 C	33,174	10,712
30th Outage	358 - 360 months	A + B & C	394.097	98.372
31st Power Cycle	360 - 378 months		••••	
31st Outage	378 - 380 months	B&C	33,752	7,796
32nd Power Cycle	380 - 398 months			
32nd Outage	398 - 400 months	A + B & C	334,933	71,595
33rd Power Cycle	400 - 415 months	B 6 C	20 685	5 574
33rd Outage 34th Power Cycle	420 - 438 months	D & C	20,000	5,074
34th Outage	438 - 440 months	A+BEC	284,650	52,106
35th Power Cycle	440 - 458 months			
35th Outage	458 - 460 months	BEC	24,378	4,130
36th Power Cycle	460 - 478 months		-	-
Shutdown	478 - 480 months	none	0	0
Total Net Present	Values		8,867,789	4,940,506

_

,

ł

---- -

Alternative 2: 40-Year Test Cycle - 20-Year License Extensions Appendix J Leakage Criteria, Frequency of ILRTs Reduced to 2/10 Years

_

٠

- - - -

Type B & C Tests (Type A Tests (ILR)	(LLRTS) = (S) =	\$165,000 \$1,890,000	per test per test	
Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B∉C	153,353	143,017
14th Power Cycle	20 - 38 months	D (<i>G</i>	141 774	100 000
15th Power Cycle	40 - 58 months	25 & C	141,3/4	122.009
15th Outage	58 · 60 months	A + B & C	1,492,880	1,192,273
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	B&C	120,150	88,798
17th Outson	98 - 100 months	860	110 765	75 754
18th Power Cycle	100 - 118 months		110,700	
18th Outage	118 - 120 months	A + B & C	1,169,649	740,270
19th Power Cycle	120 - 138 months			
19th Outage	138 - 140 months	B&C	94,136	55,134
20th Power Cycle	140 - 158 months	P C C	95 705	47 035
21st Power Cvcle	160 - 178 months		00,702	47,033
21st Outage	178 - 180 months	A + B & C	916,403	459,626
22nd Power Cycle	180 - 198 months			
22nd Outage	198 - 200 months	B & C	73,754	34,232
23rd Power Cycle	200 - 218 months	B C C	67 007	10 204
2310 Uutage 24th Power Cycle	218 - 238 monthe	Dec	07,995	23,209
24th Outage	238 - 240 months	A + B & C	717,988	285,377
25th Power Cycle	240 - 258 months		,.	,-
25th Outage	258 - 260 months	BAC	57,785	21,254
26th Power Cycle	260 - 278 months		F3 681	10 153
26th Outage	278 - 280 months	BEC	53,271	10,132
27th Power Cycre	298 - 300 months	A + B & C	562.533	177,188
28th Power Cycle	300 - 318 months			
28th Outage	318 - 320 months	B & C	45,274	13,197
29th Power Cycle	320 - 338 months			
29th Outage	338 ~ 340 months	BEC	41,737	11,258
Joth Cutage	340 - 350 monthe	A + B + C	440 736	110 014
31st Power Cvcle	360 - 378 months	A + Ø ¥ C	440,120	***/***
31st Outage	378 - 380 months	BEC	35,471	8,194
32nd Power Cycle	380 - 398 months	_ ·		
32nd Outage	398 - 400 months	B€C	32,701	6,990
Jard Outson	410 - 418 months	3.860	245 210	68 306
34th Power Cycle	420 - 438 months		343,310	00,000
34th Outage	438 - 440 months	B & C	27,791	5,087
35th Power Cycle	440 - 458 months	-		
35th Outage	458 - 460 months	BAC	25,620	4,340
35th Power Cycle	460 - 478 months	none	0	0
SURCOOMI	410 - 404 MOULTR	110120	U	Ŭ
Total Net Present	Values	o	6,813,456	3,716,689

D-19

Alternative 3: 40-Year Test Cycl - 20-Year License Extensions Relaxed Leakage Criteria, Frequency of ILRTs Reduced to 2/10 Years

Type B & C Tests (LLRTs) = Type A Tests (ILRTs) =

The second se

\$157,000 per test \$1,690,000 per test

Da – í + d	A	Tests	Costs	Costs
Period	Duration	Required	5% Discount	104 Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B&C	145,918	136,083
14th Power Cycle	20 - 38 months			
14th Outage	38 - 40 months	B & C	134,520	116,094
15th Power Cycle	40 - 58 months			
15th Outage	58 - 60 months	A + B & C	1,334,903	1,066,106
16th Power Cycle	60 - 78 monthe			
16th Outage	78 - 80 months	B&C	114,325	84,493
17th Power Cycle	80 - 98 months			
17th Outage	98 - 100 monthe	B & C	105,394	72,081
18th Power Cycle	100 - 118 months			
18th Outage	118 - 120 months	A + B & C	1,045,877	661,934
19th Power Cycle	120 - 138 months			
19th Outage	138 - 140 months	B&C	89,572	52,461
20th Power Cycle	140 - 158 months			
20th Outage	158 - 160 months	B&C	82,575	44,755
21st Power Cycle	150 - 178 months			
21st Outage	178 - 180 months	A + B & C	819,429	410,988
22nd Power Cycle	180 - 198 Months			<u> </u>
22nd Outage	198 - 200 months	B&C	70,178	32,572
23rd Power Cycle	200 - 218 months		C +	58 700
23rd Outage	218 - 220 months	вес	64,696	27,788
24th Power Cycle	218 - 238 months		642 010	SEE 170
24th Outage	238 - 240 MORENS	Atbec	042,010	255,178
25th Power Cycle	240 - 250 months	B (0	E4 003	20 224
25th Dowar Chola	250 - 270 months		34,303	20,224
26th POWEI Cycle	278 = 280 months	B 6 C	50 699	17 253
27th Dower Cucle	276 = 200 months	DEC	50,000	17,200
27th Outage	298 - 300 months	ALBEC	503 006	158 438
28th Dower Cucle	300 - 318 months	ATPEC	303,000	100,400
28th Outage	318 - 320 months	R L C	43 079	12 557
29th Power Cycle	320 - 338 months			
29th Outage	338 - 340 months	8 4 0	39,714	10.712
30th Power Cycle	340 - 358 months	2 4 4	527725	207/44
30th Outage	358 - 360 months	A + B & C	394.097	98.372
31st Power Cycle	360 - 378 months			
31st Outage	378 - 380 months	BEC	33,752	7.796
32nd Power Cycle	380 - 398 months			•••
32nd Outage	398 - 400 months	BEC	31.115	6,651
33rd Power Cycle	400 - 418 months	-	•	
33rd Outage	418 - 420 months	A+B&C	308,769	61,078
34th Power Cycle	420 - 438 months		-	•
34th Outage	438 - 440 months	BEC	26,444	4,841
35th Power Cycle	440 - 458 months			
35th Outage	458 - 460 months	B & C	24,378	4,130
36th Power Cycle	460 - 478 months			
Shutdown	478 - 480 months	none	0	0
Total Net Present	Values		6,159,422	3,362,585

¢

Alternative 4: 40-Year Test Cycle - 20-Year License Extensions Appendix J Leakage Liiteria, Frequency of ILRTs Reduced to 1/10 Years

Type B & (:ste (LIPT's, = Type A Tr ts (llrTs) =

 \$165,000 per test \$1,890,000 per test

Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
		•		
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B&C	153,353	143,017
14th Power Cycle	20 - 38 months			
14th Outage	38 - 40 months	B & C	141,374	122,009
15th Power Cycle	40 - 58 months			
15th Outage	58 - 60 months	9 & C	130,331	104,087
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	BEC	120,150	88,798
17th Power Cycle	80 - 98 monena			56 5 6
17ch Outage	98 - 100 months	BEC	110,765	15,154
18th Power Cycle	100 - 118 months		1 100 010	340 370
18ch Outage	118 - 120 months	A + B & C	1,109,649	740,270
Tatu bomer chore	120 - 138 months	b c d	04 176	EE 174
19th Outage	138 - 140 MONTAS	BEC	99,130	22,134
20th Power Cycle	140 - 159 MONTAS		06 700	47 035
20th Outage	158 - 160 months	BEC	66,782	47,035
218t Power Lycle	160 - 178 MONCAS	n	00.000	40 126
21st Outage	1/6 - 180 MONENS	BAC	80,003	40,120
22nd Power Cycle	160 - 136 months	B 6 6	77 754	24 223
22nd Outage	198 - 200 monthe		/3,/34	34,232
23rd Outage	200 - 210 months	9 5 0	£7 997	29 204
2310 Oucage	210 - 220 months		01, 333	25,204
24th Power Cycle	238 - 240 months	A L B L C	717 988	285.377
25th Power Cycle	240 - 258 months		121,200	
25th Outage	258 - 260 months	9 4 C	57.785	21.254
26th Power Cycle	260 - 278 months	2 4 6	5.,	,
26th Outage	278 - 280 months	BEC	53,271	18,132
27th Power Cycle	280 - 298 months		•••	
27th Outage	298 - 300 months	BEC	49,110	15,469
28th Power Cycle	300 - 318 months			•
28th Outage	318 - 320 months	B&C	45,274	13,197
29th Power Cycle	320 - 338 months		• -	•
29th Outage	338 - 340 months	B&C	41,737	11,258
30th Power Cycle	340 - 358 months			-
30th Outage	358 - 360 months	A + B & C	440,736	110,014
31st Power Cycle	360 - 378 months		·	
31st Outage	378 - 380 months	BEC	35,471	8,194
32nd Power Cycle	380 - 398 months			
32nd Outage	398 - 400 months	_ B & C	32,701	6,990
33rd Power Cycle	400 - 418 months	-		•
33rd Outage	418 - 420 months	B€C	30,146	5,963
34th Power Cycle	420 - 438 months			
34th Outage	438 - 440 months	B&C	27,791	5,087
35th Power Cycle	440 - 458 months			_
35th Outage	458 - 460 months	B&C	25,620	4,340
36th Power Cycle	460 - 478 months		_	-
Shutdown	478 - 480 months	none	0	0
Total Net Present	Values		3,785,920	1,984,941

Alternative 5: 40-Year Test Cycle - 20-Year License Extensions Felaxed Leakage Criteria, Frequency of ILRTs Reduced to 1/10 Years

- ---

Type B & C Tests Type A Tests (ILR)	(LLRTS) = [S) =	\$157,010 \$1,690,000	per test per test	
Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B&C	145,918	136,083
14th Power Cycle	20 - 38 months			
14th Outage	38 - 40 months	В⊾С	134,520	116,094
15th Power Cycle	40 - 58 months	_		
15th Outage	58 - 60 months	B & C	124,012	99,041
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	8 & C	114,325	84,493
1/th Power Cycle	80 - 98 months	D (0	105 104	75 001
1/th Outage	98 - 100 months	BKC	102,394	1.,001
18th Power Cycle	100 - 118 months		1 045 977	661 074
18th Downer Cyclo	116 - 120 months	A + D & L	1,043,077	001,954
19th Outage	138 - 140 months	BEC	89 572	52 461
20th Dower Cycle	140 - 158 months		00,012	02,401
20th Outage	158 - 160 months	B&C	82.575	44.755
21st Power Cycle	160 - 178 months		• • • • • •	
21st Outage	178 - 180 months	B&C	76,124	38,181
22nd Power Cycle	180 - 198 months			
22nd Outage	198 - 200 months	B&C	70,178	32,572
23rd Power Cycle	200 - 218 months			
23rd Outage	218 - 220 months	B&C	64,696	27,788
24th Power Cycle	218 - 238 months			
24th Outage	238 - 240 months	A + B & C	642,010	255,178
25th Power Cycle	240 - 258 months		6 4 000	20 224
25th Outage	258 - 260 months	B&C	54,983	20,224
26th Power Cycle	260 - 278 months		50 600	17 253
26th Outage	278 - 280 months		20,000	17,200
27th Power Cycle	299 - 300 months	9 A C	46 729	14 719
28th Dower Cycle	300 - 318 months			
28th Outage	318 - 320 months	B&C	43.079	12.557
29th Power Cycle	320 - 338 months			
29th Outage	338 - 340 months	B & C	39,714	10,712
30th Power Cycle	340 - 358 months		·	
30th Outage	358 - 360 months	A + B & C	394,097	98,372
31st Power Cycle	360 - 378 months			
31st Outage	378 - 380 months	B & C	33,752	7,796
32nd Power Cycle	380 - 398 months			
32nd Outage	398 - 400 months	B&C	31,115	6,651
33rd Power Cycle	400 - 418 months	· • • •	20 605	• • • •
Jard Outage	418 ~ 420 months	15 & C	28,685	0,0
34th Power Cycle	$420 \sim 430$ months	D C C	26 114	4 841
15th Dower Cycle	$440 \sim 458 \text{ monthe}$	ູ່ມີຜີບ	20,444	₩,0₩⊥
35th Outage	458 - 460 months	B.S.C	24.378	4.130
36th Power Cycle	460 - 478 months			-,
Shutdown	478 - 480 months	none	0	0
Total Net Present	Values	^	3,468,865	1,823,590

i

.
Alternative 6: 40-Year T st Cycle - 20-Year License Extensions Appendix J L akage Criteria, Frequency of ILRTs Reduced to 1/20 Years

Type B & C Tests (LLRTs) =\$165,000 per testType A Tests (ILRTs) =\$1,890,000 per test

- -

-- - -

			Tests	Costs	Costs
Period	Durati	lon	Required	5% Discount	10% Discount
13th Davies Gunla	<u> </u>				
13th Power Cycle	10 - 18	months	D C C	153 153	142 017
13th Outage	18 - 20	months	8 & C	123,323	143,017
14th Power Cycre	20 - 38	months	n <i>c</i> a	141 174	122 000
15th Dower Curle	JO - 40	months	выс	141,374	122,009
15th Outage	58 - 60	monthe	D a C	130 333	104 087
16th Dower Curle	50 - 78	months	1) W C	10,001	104,007
16th Outage	78 - 80	monthe	B L C	120 150	88.798
17th Power Cycle	80 - 98	months		100,130	,
17th Outage	98 - 100	months	B&C	110.765	75,754
18th Power Cvcle	100 - 118	months		,	
18th Outage	118 - 120	months	B&C	102.112	64,627
19th Power Cycle	120 - 138	months		•	
19th Outage	138 - 140	months	BAC	94,136	55,134
20th Power Cycle	140 - 158	months			
20th Outage	158 - 160	months	B & C	86,782	47,035
21st Power Cycle	160 - 178	months			
21st Outage	178 - 180	months	B&C	80,003	40,126
22nd Power Cycle	180 - 198	months			
22nd Outage	198 - 200	months	B & C	73,754	34,232
23rd Power Cycle	200 - 218	months			
23rd Outage	218 - 220	months	B&C	67,993	29,204
24th Power Cycle	218 - 238	months			
24th Outage	238 - 240	months	A + B & C	717,988	285,377
25th Power Cycle	240 - 258	months			6 1 1 1
25th Outage	258 - 260	months	B&C	57,785	21,254
26th Power Cycle	260 - 278	months		ED 991	10 130
26th Outage	278 - 280	months	8 4 0	33,4/1	10,132
27th Power Cycle	200 - 290	months	P.1 R	49 110	15 469
29th Dower Cycle	290 - 300	monthe		47,110	10,405
28th Outage	318 - 320	months	BEC	45 274	13,197
29th Power Cycle	320 - 338	months			207257
29th Cutage	338 - 340	months	B & C	41,737	11.258
30th Power Cycle	340 - 358	months			,
th Outage	358 - 360	months	B&C	38.477	9,604
_ist Power Cycle	360 - 378	months			-,
31st Outage	378 - 380	montha	B&C	35,471	8,194
32nd Power Cycle	380 - 398	months		·	-
32nd Outage	398 - 400	months	BAC	32,701	6,990
33rd Power Cycle	400 - 418	months			
33rd Outage	418 ~ 420	months	B . & . C	30,146	5,963
34th Power Cycle	420 ~ 430	months			
34th Outage	438 - 440	months	B&C	27,791	5,087
35th Power Cycle	440 - 458	months			
35th Outage	458 - 460	months	B&C	25,620	4,340
36th Power Cycle	460 - 478	months		~	^
Snutdown	478 - 480	montne	none	0	0
Total Net Present	Values			2,316,124	1,208.888
LOCUL HEE ELEDENC			•	-,,	_,,000

Alternative 7: 40-Y ar Test Cycl - 20-Year License Extensions Relaxed Leakage Criteria, Prequency of ILRTs Reduced to 1/20 Years

Type I Type J	B & C Tests (A Tests (ILRI	LLRT9) (8) =	-		\$	\$157,000 1,690,000) per test) per test	
P rio	đ	Du	rati	lon	ı Reç	ests puired	Costs 5% Discount	Costs 10% Discount
13th 3	Power Cycle	0 -	18	months				
13th (Outage -	18 -	20	months	E	a C	145,918	136,083
14th	Power Cycle	20 -	38	months				
14th (Dutage	38 -	40	months	E	i fe C	134,520	116,094
15th (Dutage	40 -	58	months	T		124 012	140 00
16th	Power Cycle	60 -	78	montha	•		***; ***	JJ, 044
16th (Outage	78 -	80	months	E	E C	114,325	84,493
17th 1	Power Cycle	80 -	98	months				
17th	Outage	98 -	100	months	E	B & C	105,394	72,081
18th	Power Cycle	100 -	118	months			07.161	C1 402
19Fh	Ducage Power Cvcle	120 -	138	months	5		97,101	61,493
19th (Dutage	138 -	140	months	F	a c	89.572	52,461
20th 3	Power Cycle	140 -	158	months	-		••••••	•••,•
20th (Outage	158 -	160	months	E	S & C	82,575	44,755
21st 3	Power Cycle	160 -	178	months				
218t (Outage	178 ~	180	months	E	e C	76,124	38,181
22nd	Power Cycle	109 -	730	months	ť		70 78	10 570
23. d	Power Cvcle	200 -	218	months	-) e C	10, 10	34,314
2311	Outage	218 -	220	months	E	3 & C	64,696	27,788
24tn	Power Cycle	218 -	238	months				
24th	Outage	238 -	240	months	A 4	B&C	642,010	255,178
25th	Power Cycle	240 -	258	months			CA 003	20 224
25th	Dower Cvcle	260 -	278	months	-		54,303	20,224
26th	Outage	278 -	280	months	E	8 & C	50,688	17,253
27th	Power Cycle	280 -	298	months			- •	
27th	Outage	298 -	300	months	E	3 & C	46,729	14,719
28th	Power Cycle	300 -	318	months	-			
28th	Outage Bower Ovele	318 -	320	months	1	S & C	43,079	12,557
29th (POWEL CYCLE Outage	338 -	340	months	F	3 £ C	39.714	10.712
30th	Power Cycle	340 -	358	months	•			20,702
30th	Outage	358 -	360	months	E	3 & C	36,611	9,139
31 s t	Power Cycle	360 -	378	months				
31st	Outage	378 -	380	months	I	3 & C	3,3,752	7,796
32nd	Power Cycle	300 -	378	monthe	т	7.4	21 115	6 651
33rd	Power Cvcle	400 -	418	months			341447	
33rd	Outage	418 -	420	months	I	3 <u>6</u> C	28,685	5,674
34th	Power Cycle	420 -	438	months			•	
34th	Outage	438 -	440	months	1	3 & C	26,444	4,841
35th	Power Cycle	440 -	458	months	-		04 170	
3550 3686	Vutage Dower Cucle	450 -	400	monthe		5 # L	29,3/8	4,130
30011	Shutdown	478 -	480	months	1	none	0	٥
					-		-	•
Total	Net Present	Values	5			ø	2,162,663	1,133,916

Alternative 8: 40-Year Test Cycle - 20-Year License Extensions Current L akage Criteria and ILRT Frequency, Reduced LLRTs

Type B & C Tests Type A Tests (IL)	(LLRTS) = RTS) =	\$70,00 \$1,890,00	0 per test 0 per test	
Period	Duration	Tests	Costs	Costs
		Required	5% Discount	101 Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B & C	65,059	60,674
14th Power Cycle	20 - 38 months			
14th Outage	38 - 40 months	A + B & C	1,619,377	1,397,561
15th Power Cycle	40 - 58 months			
15th Outage	58 - 60 months	B & C	55,292	44,158
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	A + B & C	1,376,264	1,017,139
17th Power Cycle	80 - 98 months	D <i>c c</i>	16 001	22.220
1/ch Outage	98 - 100 months	8 & C	40,991	32,130
18th Power Cycle	100 - 110 months	B (B C C	1 150 540	740 270
19th Dower Cycle	120 - 138 months	ATDEC	1,103,043	740,270
19th Outage	138 - 140 months	BEC	29,936	23.390
20th Power Cycle	140 - 158 months	520	557550	20,000
20th Outage	158 - 160 months	A + B & C	994.053	538,765
21st Power Cycle	160 - 178 months			
21st Outage	178 - 180 months	BEC	33,941	17,023
22nd Power Cycle	185 - 198 months			
22nd Outage	198 - 200 months	A + B & C	844,818	392,111
23rd Power Cycle	200 - 218 months			
23rd Outage	218 - 220 months	B&C	28,845	12,389
24th Power Cycle	218 - 238 months			
24th Outage	238 - 240 months	A + B E C	717,988	285,377
25th Power Lycie	240 - 258 months	P (C	24 616	0 017
25th Dower Curle	258 - 260 months	Dec	24,313	9,017
26th Outage	278 - 280 months	A+BEC	610,198	207.696
27th Power Cycle	280 - 298 months		•=•,=••	
27th Outage	298 - 300 months	B&C	20,835	6,563
28th Power Cycle	300 - 318 months		• • •	•
28th Outage	318 - 320 months	1. + B & C	518,591	151,160
29th Power Cycle	320 - 338 months			
29th Outage	338 - 340 months	въс	17,707	4,776
30th Power Cycle	340 - 350 months			
30th Outage	358 - 360 months	A + B & C	140,736	110,014
31st Power Cycle	360 - 378 months		10 040	2 476
Jist Outage	378 - 380 months	BEC	15,048	3,4/6
32nd Power Cycle	380 - 390 months	3.0.0.0	274 670	90 069
33rd Power Cycle	400 - 418 months		3/4/3/0	
33rd Outage	418 - 420 months	8 4 Č	12,789	2.530
34th Power Cycle	420 - 438 months		,	-,
34th Outage	438 - 440 months	A + B & C	318,336	58,273
35th Power Cycle	440 - 459 months		•	•
35th Outage	458 - 460 months	B & C	10,869	1,841
36th Power Cycle	460 - 478 wonths	•		
Shutdown	478 - 480 months	none	0	0
Mahal Mai 2000			0 385 404	E 104 400
TOTAL NET Presen	IE VALUSS	٥	7,350,407	2,136,403

Alt mative 9: 40-Year T st Cycle - 20-Year License Extensions kelaxed Le Mag Crit ria, Reduced LLRTs

Туре Туре	B L C rests A Tests (ILR	(LLRTs) Ts) =				\$1	\$.,б	67, 90,	000 per te 000 per te	st st	
Perio	od	Du	irat:	ion		Te	st	8	Cos	ខ េស	Costs
					Re	equ	ir	ed	5% Dis	count	10% Di count
13th	Power Cycle	0 -	18	months							
13th	Outage	16 -	20	months		В	۶.	Ç	6	2,271	58,074
14th	Power Cycle	20 -	38	months							
14th	Outage	38 -	40	months	A	+	В	€ Ĉ	1,44	8,014	1,249,671
15th	Power Cycle	40 -	58	months							
15th	Outage	58 -	60	months	•	B	٤.	C	5	2,922	42,266
16th	Power Cycle	60 -	78	months							
16 th	Outage	78 -	80	months	Å	+	В	& C	1,23	0,628	909,506
17th	Power Cycle	80 -	98	months							
17th	Outage	98 -	100	months		в	S.	C	4	4,977	30,761
181	Power Cycle	100 -	118	months							
18	Jutage	118 -	120	months	A	+	В	& C	1,04	5,877	661,934
1	Power Cycle	120 -	138	months							
15	Outage	138 -	140	months		В	£	С	3	8,225	22,388
20th	Power Cycle	140 -	158	months							
20th	Outage	158 -	160	months	A	+	В	e C	88	8,862	481,753
21st	Power Cycle	160 -	178	months							
21st	Outage	178 -	180	months		в	6	С	3	2,486	16,294
22nd	Power Cycle	180 -	198	months							
22nd	Outage	198 -	200	months	A	+	В	e C	75	5,420	350,618
23rd	Power Cycle	200 -	218	months							
23rd	Outage	218 -	220	months		В	£	C	2	7,609	11,858
24th	Power Cycle	218 -	238	months							
24th	Outage	238 -	240	months	A	+	B	& C	64	2,010	255,178
25th	Power Cycle	240 -	258	months							
25th	Outage	258 -	260	months		В	6	С	2	3,464	8,631
26th	Power Cycle	260 -	278	months							
26th	Outage	278 -	280	months	A	+	B	€ C	54	5,627	185,718
27th	Power Cycle	280 -	298	months							
27th	Outage	298 -	300	months		B	£	C	1	9,942	6,281
28th	Power Cycle	300 -	318	months							
28th	Outage	318 -	320	months	A	+	B	₽ C	46	3,714	135,165
29th	Power Cycle	320 -	338	months							
29th	Outage	338 -	340	months		B	8	Ç	1	6,948	4,571
30th	Power Cycle	340 -	358	months	-						
30th	Outage	358 -	360	months	A	+	B	e C	39	4,097	98,372
31st	Power Cycle	360 -	378	months							
31st	Outage	378 -	380	months		В	£	C	1	4,404	3,327
32nd	Power Cycle	380 -	398	months	-						
32nd	Outage	398 -	400	months	્રસ	+	B	ê C	33	4,933	71,595
33rd	Power Cycle	400 -	416	months	. '			_			
33rd	Outage	418 -	420	months		В	£	C ·	1	2,241	2,421
34th	Power Cycle	420 -	438	months	_		·				
34th	Outage	438 -	440	monthë	<u> </u>	- 🔶	B	£ C	28	4,650	52,106
35th	Power Cycle	440 -	458	months		~		-	-		
35th	Outage	458 -	460	months		B	÷.	C	1	u,403	1,762
Jeth	Power Cycle	460 -	478	months						~	^
	SULCOM	478 -	480	months		nç	hile	1		U	0
	_										

Total Net Present Values

8,389,724 4,660,250

- - -

v

Alternative Lt. 17 Year Test Cycle - 20-Year Licens Extensions Current Leakay Criceria, 2 ILRTs/10 Years, Reduced LLRTs

-

•

: уре Туре	B & C Tests A Tests (ILR)	(LLRTS) = TD) =			\$1,	\$70,000 890,000) per test) per test	
Perio	ođ	Durat.	ion		Tea	ts	Costs	Coste
				ĸe	aqui	rea	54 Discount	10% Discount
13th	Power Cycle	0 - 18	months					
13th	Outage	18 - 20	months		B C	Ċ	65.059	60.674
14th	Power Cycle	20 38	months			-	,	••••••
14th	Outage	38 - 40	months		BE	C	59,977	51,762
lSth	Power Cycle	40 - 58	months				•	,
15th	Outage	58 - 60	months	A	+ B	S ⊉ L	1,492,880	1,192,273
16th	Power Cycle	60 - 78	months					
16th	Outage	78 - 80	months		86	C	50,973	37,672
17th	Power Cycle	80 - 98	months					
17th	Outage	98 - 100	months		Β 6	, C	46,991	32,138
18th	Power Cycle	100 - 11B	months					
18th	Outage	118 - 120	months	A	+ B	E C	1,169,649	740,270
19th	Power Cycle	120 - 138	months		_			
19th	Outage	138 - 140	months		B&	: C	39,936	23,390
20th	Power Cycle	140 - 158	months		. .	_		
20th	Outage	158 - 160	months		ВĘ	; Ç	36,817	19,954
418C	Power Cycle	100 - 118	months				016 403	450 696
~10C	Dower Grale	100 . 100	months	A	+ E		910,403	459,020
22110	Outage	198 - 200	monthe		86		31 290	14 523
23rd	Power Cycle	200 - 218	months		<i>D</i> 0		52,250	17,303
23rd	Outage	218 - 220	months		Bs	С	28.845	12.389
24th	Power Cycle	218 - 238	months					
24th	Outage	238 - 240	months	A	+ E	S & C	717.988	285,377
25th	Power Cycle	240 - 258	months					
25th	Outage	258 - 260	months		ВБ	. C	24,515	9,017
26th	Power Cycle	260 - 278	months					
26th	Outage	278 - 280	months		Вб	C	22,600	7,692
27th	Power Cycle	280 - 298	months					
27th	Outage	298 - 300	months	A	+ E	E C	562,533	177,188
28th	Power Cycle	300 - 318	months			-		
28th	Outage	318 - 320	months		Вб	r C	19,207	5,599
2900	Power Cycle	320 - 338	months			~	17 707	1 776
20+h	Dower Cucle	240 - 258	months				17,707	4,770
30th	Power Cycle	359 - 360	monthe	n	. E		440 776	110 014
31st	Power Cycle	360 - 378	monthe	. "	т н			110,014
31st	Outage	378 - 380	months		Bs	C	15.048	3.476
32nd	Power Cycle	380 - 398	months					•,•••
32nd	Outage	398 - 400	months		Вδ	C	13.873	2,965
33rd	Power Cycle	400 - 418	months			-	•	•
33rd	Outage	418 - 420	months	_ A	+ E	9 & C	345,310	68,306
34th	Power Cycle	420 - 438	months			-		
34th	Outage	438 - 440	months		в	è C	11,790	2,158
35th	Power Cycle	440 - 458	months					_
35th	Outage	458 - 460	months		в 8	. C	10,869	1,841
36th	Power Cycle	460 - 478	monthe				~	~
	SULCOM	41/2 - 480	MOLICUB		nor	16	U	0
Tota	1 Net Present	Values				¢	6,110,996	3,323,080

D-27

Arternative 11. 40-Year Test Cycle - 20-Year License Extensions Relaxed Leakage Cri eria, 2 ILRTs/10 Years, Reduced LLRTs

- -- - - - . .

_

Туре Тур	B & C Tests A Tests (ILR)	(LLRTS) = (B) =		\$67,000 \$1,690,000	per test per test	
Perid	d	Duratio	n	Tests	Costs	Costs
			Re	aguired	5% Discount	10% Discount
	N					
1350	Power Cycle	0 - 18 m	nonths		<	50.034
14+5	Dower Curle	- 10 - 20 m	nonthe	Bac	64,271	58,074
1475	Outage	38 - 40 7	nontha	RLC	57.406	49 543
15th	Power Cycle	40 - 5B m	months		577400	427545
15th	Outage	58 - 60 m	months A	+ B & C	1,334,903	1,066,106
16th	Power Cycle	60 - 78 m	months			
16th	Outage	78 - 80 п	months	B&C	48,788	36,057
17th	Power Cycle	80 - 98 m	months			
17th	Outage	98 - 100 m	months	BEC	44,9 77	30,761
1850	Power Cycle	100 - 118 1	montns		1 045 077	661 034
1001	Dover Ovele	110 - 120 0	nonths A	+ 2 4 5	1,045,877	001,334
19th	Outage	138 - 140 #	monthe	BEC	38.225	22.388
20th	Power Cycle	140 - 158 m	nonths		50,220	20,000
20th	Outage	158 - 160 m	months	B&C	35,239	19,099
21st	Power Cycle	160 - 178 0	months			
21st	Outage	178 - 180 m	months A	+ B & C	819,429	410,988
22nd	Power Cycle	180 - 198 1	months			
22nd	Outage	198 - 200 #	months	B&C	29,949	13,900
23rd	Power Cycle	200 - 216 1	montna		27 600	11 050
231U 24th	Power Cycle	218 - 220	monthe		27,803	11,650
24th	Outage	238 - 240	months A	+ B & C	642.010	255.178
25th	Power Cycle	240 - 258 1	months		••••	200,200
25th	Outage	258 - 260 0	months	B&C	23,464	8,631
26th	Power Cycle	260 - 278 0	months			
26th	Outage	278 - 280 8	months	B&C	21,631	7,363
27th	Power Cycle	280 - 298 r	months			
27th	Outage	298 - 300 T	months A	+ B & C	503,006	158,438
20th	Power Cycle	310 - 310 1	months	B C C	10 204	E 750
2001 298h	Dowar Cycla	320 - 320 1	monthe	D & C	70,304	5,555
29th	Outage	33B - 340 m	nonthe	B&C	16.948	4,571
30th	Power Cycle	340 - 358 t	months			-,
30th	Outage	358 ÷ 360 r	months A	+ B & C	394,097	98,372
31st	Power Cycle	360 - 378 r	months			
31st	Outage	378 - 380 1	months	BEC	14,404	3,327
32nd	Power Cycle	-380 - 398 t	monthe	-		
32nd	Outage Dever Cuele	398 - 400 1	MONTAB	B-E-C	13,278	2,838
13rd	Power Cycre	418 - 420 1	months a	+ B E C .	308.769	61 078
34th	Power Cycle	420 - 438	moritha		, , , , , , , , , , , , , , , , , , , 	01,0,0
34th	Outage	438 - 440 1	months	B&C	11,285	2,066
35th	Power Cycle	440 - 458 1	months	-	• • • •	
35th	Outage	458 - 460 1	months	B & C 👘	10,403	1,762
36th	Power Cycle	460 - 478 1	months			
	Shutđown	478 - 480 t	months	none	0	0
Tota	l Net Present	Values		د	5,522,352	2,989,691

٠

Al Brnative 12: 40-Year Test Cycle - 20-Year Licens Extensions Correct Leakag Criteria, 1 ILRT/10 Years, Reduc d LLRTs

4

,

ł

t

-

Type B & C Tests	(LLRTS) =	\$70,	000 per test	
Type A Tests (ILR:	rs) =	\$1,890,	,000 per test	
Barlod	Townski an	m	Onete	0
PELIOQ	Duration	lests Demixed		COSCS 101 Discourt
		Keduriea	24 DIRCOULD	INA DISCOURC
13th Power Cycle	0 - 18 mont	hs		
13th Outage	18 - 20 mont	hs B&C	65,059	60,674
14th Power Cycle	20 - 38 mont	hs	-	
14th Outage	38 - 40 mont	hs B&C	59,977	51,762
15th Power Cycle	40 - 58 mont	hs	_	
15th Outage	58 - 60 mont	hs B&C	55,292	44,158
16th Power Cycle	60 - 78 mont	hs D. C.	50 070	
16th Outage	78 - 80 mont	.ns 9&C	50,9/3	37,672
17th Outage	98 - 100 mont		46 991	22 129
18th Power Cycle	100 - 118 mont	na bac	40,991	24,130
18th Outage	118 - 120 mont	hs A+Rt(1.169.649	740.270
19th Power Cycle	120 - 138 mont	ha ha	2,202,013	,
19th Outage	138 - 140 mont	hs B&C	39,936	23,390
20th Power Cycle	140 - 158 mont	hs	• • •	,
20th Outage	158 - 160 mont	ha B&C	36,817	19,954
21st Power Cycle	160 - 178 mont	hs		
21st Outage	178 - 180 mont	hs B&C	33,941	17,023
22nd Power Cycle	180 - 198 mont	hs T t		
22nd Outage	198 - 200 mont	ing B&C	31,290	14,523
23rd Outage	$200 \sim 210$ mont	ារទ ២៣ ២៩.៣	20 045	13 289
24th Power Cycle	218 - 238 mont	ha cac	20,040	14,305
24th Outage	238 - 240 mont	hs A+BL(2 717.988	285.377
25th Power Cycle	240 - 258 mont	hs		
25th Outage	258 - 260 mont	:h∎ B∉C	24,515	9,017
26th Power Cycle	260 - 278 mont	hø		
26th Outage	278 - 280 mont	hs B&C	22,600	7,692
27th Power Cycle	280 - 298 mont	hs .	~~ ~~~	
27th Outage	298 - 300 mont		20,835	6,563
28th Power Cycle	300 - 318 mont		10 207	5 599
29th Dower Cycle	-320 - 320 mont	ns pec	13,207	2,337
29th Outage	338 - 340 mont	hs B&C	17,707	4.776
30th Power Cycle	340 - 358 mont	hs		-,
30th Outage	358 - 360 mont	hs - A + B & (C 440,736	110,014
31st Power Cycle	360 - 378 mont	hs		
31st Outage	378 - 380 mont	hs BAC	15,048	3,476
32nd Power Cycle	380 - 398 mont	hs		
32nd Outage	398 - 400 mont		13,873	2,965
33IG POWER CYCLE	400 - 418 mont	រាន 	13 789	
33rd Outage	410 - 410 mout		12,703	2,530
34th Outage	438 - 440 mont	he REC	11.790	2.158
35th Power Cycle	440 - 458 mont	:hs	,	-,
35th Outage	458 - 460 mont	hs B&C	10,869	1,841
36th Power Cycle	460 - 478 mont	:hs		
Shutdown	478 - 480 mont	hs none	0	0
	10 - 1		A A 4	
TOTAL NET Present	values		2,946,727	1,495,961

Alternative 13: 40-Y ar Test Cycle - 20-Year License Extensions Relaxed Leakage Criteria, 1 ILRT/10 Years, Reduced LLRTs

Type B & C Tests	(LLRTS) =	\$67,00	00 per test	
Type A Tests (ILR	Ts) =	\$1,690,00	00 per test	
Deriod	Duration	Teata	Costa	Conto
Period	Duration	Tesce	COSTS 51 Discount	LOSTS
		redatted	24 Discomic	10. Discomit
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B&C	62,271	58,074
14th Power Cycle	20 - 38 months			
14th Outage	38 - 40 months	B&C	57,406	49,543
15th Power Cycle	40 - 58 months			
15th Outage	58 - 60 months	8 & C	52,922	42,266
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	3 8 6 C	48,788	36,057
17th Power Cycle	80 - 98 months		44 077	20.741
17th Outage	98 - 100 months	BEC	44,977	30,761
18th Power Lycie	100 - 118 months		1 045 077	663 034
19th Dower Cucle	120 - 120 months		1,045,677	001,934
19th Power Cycre	130 - 140 months	P.L.C	28 225	22 386
20th Power Cycle	140 - 158 months		JO, 24 J	22, 500
20th Outage	158 - 160 months	BAC	35 239	19.099
21st Power Cycle	160 - 178 months			25,055
21st Outage	178 - 180 months	B & C	32,486	16,294
22nd Power Cycle	180 - 198 months	I	·	
22nd Outage	198 - 200 months	B & C	29,949	13,900
23rd Power Cycle	200 - 218 months	l		
23rd Outage	218 - 220 months	B&C	27,609	11,858
24th Power Cycle	218 - 238 months			
24th Outage	238 - 240 months	A + B & C	642,010	255,178
25th Power Cycle	240 - 258 months		00 <i>444</i>	
25th Outage	258 - 260 months	B & C	23,404	8,031
26th Power Cycle	260 - 278 months		51 231	7 767
20th Outage	276 - 299 months		21,031	1,000
27th Outage	298 - 300 months	BEC	19,942	6.281
28th Power Cycle	300 - 318 months			0,202
28th Outage	318 - 320 months	BEC	18,384	5,359
29th Power Cycle	320 - 338 months			· • •
29th Outage	338 - 340 months	_ `B & C	16,948	4,571
30th Power Cycle	340 - 358 months	+ . · ·		
30th Outage	358 - 360 months	A + B & C	394,097	98,372
31st Power Cycle	360 - 378 months			
31st Outage	378 - 380 months	BAC	14,404	3,327
32nd Power Cycle	380 - 398 months	· · · · ·		
32nd Outage	398 - 400 months	B & C	13,278	2,838
33rd Power Cycle	400 - 418 months		10.041	0 401
33ru Outage	410 - 420 months	i. Dinkti⊊ r	10,041	2,421
34th Outson	43R = 440 months		11.285	2 066
35th Power Cycle	440 - 458 months		و ج ج	2,000
35th Outage	458 - 460 months	B&C	10,403	1.762
36th Power Cycle	460 - 478 months			-,
Shutdown	478 - 480 months	none none	0	0
Total Net Present	: Values	۰	2,673,836	1,360,343

Alternative 14: 40-Year T st Cycle - 20-Year License Extensions Current Leakage Criteria, 1 ILRT/20 Years, Reduced LLRTs

Type B & C Tests (LLRTs) = Type A Tests (ILRTs) =

.

\$70,000 per test \$1,890,000 per test

Period	Duration	Tests Required	Costs 5% Discount	Costs 10% Discount
13th Power Cycle	0 - 18 months			
13th Outage	18 - 20 months	B€C	65,059	60,674
14th Power Cycle	20 - 38 months		·	
14th Outage	38 - 40 months	B&C	59,977	51,762
15th Power Cycle	40 - 58 months		·	•
15th Outage	58 - 60 months	B&C	55,292	44,158
16th Power Cycle	60 - 78 months			
16th Outage	78 - 80 months	B&C	50,973	37,672
17th Power Cycle	80 - 98 months			
17th Outage	98 - 100 months	B&C	46,991	32,138
18th Power Cycle	100 - 118 months			
18th Outage	118 - 120 months	B & C	43,320	27,417
19th Power Cycle	120 - 138 months			
19th Outage	138 - 140 months	B & C	39,936	23,390
20th Power Cycle	140 - 158 months			
20th Outage	158 - 160 months	BEC	36,817	19,954
21st Power Cycle	160 - 178 months			
21st Outage	178 - 180 months	B & C	33,941	17,023
22nd Power Cycle	180 - 198 months			
22nd Outage	198 - 200 months	B&C	31,290	14,523
23rd Power Cyc:e	200 - 218 months		20.045	15 200
23rd Outage	218 - 220 months	B 4 C	28,845	12,389
24th Power Cycle	218 - 238 months		717 000	205 277
24th Outage	238 - 240 months	A + B & C	/1/,988	285,311
25th Power Cycle	240 - 258 months	B & C	74 515	e 017
25th Dower Cucle	250 - 270 months		54,313	9,017
26th Outage	278 - 280 months	REC	22 600	7 692
27th Power Cycle	280 - 298 months		22,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
27th Outage	298 - 300 months	B&C	20.835	6.563
28th Power Cycle	300 - 318 months		••,•••	•,•••
28th Outage	318 - 320 months	3 & C	19.207	5,599
29th Power Cycle	320 - 338 months			• • • •
29th Outage	338 - 340 months	B&C	17,707	4,776
30th Power Cycle	340 - 358 months		•	•
30th Outage	358 - 360 months	B & C	16,324	4,075
31st Power Cycle	360 - 378 months			
31st Outage	378 - 380 months	B&C	15,040	3,476
32nd Power Cycle	380 - 398 months	:		
32nd Outage	398 - 400 months	B & C	13,873	2,965
33rd Power Cycle	400 - 418 months			
33rd Outage	418 - 420 months -	9 & C	12,789	2,530
34th Power Cycle	420 - 438 months	.	· · ·	
34th Outage	438 - 440 months	B FCC	11,790	2,158
Soch Power Cycle	440 - 450 MORLAS		10 000	• • • •
John Durage	450 - 430 monchs	5 & C	τ0,803	1,041
Soon Power Cycle	178 - 480 months		•	n.
SHUCHOWIT	470 - 400 molicits	110116	Ŭ	v
Total Net Present	Values		1,395,986	677,169
			-	•

.

Alternative 15: 40-Year T st Cycl - 20-Year License Extensions Relaxed Leakage Criteri 1 ILRT/20 Years, R duced LLRTs

 Type B & C Tests (LLRTs) =
 \$67,000 per t st

 Type A Tests (ILRTs) =
 \$1,690,000 per test

Period			Durat	ion	Te	ests lired	Costs 51 Discount	Costs
					wade	** **	J. Dibcomic	101 D.000 mil
13th Por	wer Cycle	0	- 18	monthy				
13th Out	age	18	- 20	months	B	6 C	62,271	58,074
14th Por	ver Cycle	20	- 38	months				
14th Out	age	38	- 40	months	В	£C	57,406	49,543
15th Por	ver Cycle	40	- 58	months				•
15th Ou	age	58	- 60	months	Э	& C	52,922	42,266
16th Por	ver Cycle	60	~ 78	months			•	
16th Out	age	78	- 80	months	В	£ C	48,788	36,057
17th Po	ver Cycle	80	- 98	months			•	
17th Ou	cage	98	~ 100	months	В	e C	44,977	30,761
18th Po	wer Cycle	100	- 118	months				
18th Ou	tage	118	- 120	months	В	€ C	41,464	26,242
19th Po	wer Cycle	120	- 138	months				
19th Ou	tage	138	- 140	months	В	£ C	38,225	22,388
20th Po	wer Cycle	140	- 158	months				
20th Ou	tage	158	- 160	months	В	£ C	35,239	19,099
21st Po	wer Cycle	160	- 178	months				
21st Ou	tage	178	- 180	months	В	£ C	32,486	16,294
22nd Po	wer Cycle	180	- 198	months				
22nd Ou	tage	198	- 200	months	В	& C	29,949	13,900
23rd Po	wer Cycle	200	- 218	months				
23rd Ou	tage	218	- 220	months	B	£ C	27,609	11,858
24th Po	wer Cycle	218	- 238	months				
24th Ou	tage	238	- 240	months	A +	B&C	642,010	255,178
25th Po	wer Cycle	240	- 258	months				
25th Ou	tage	258	- 260	months	B	& C	23,464	8,631
26th Po	wer Cycle	260	- 278	months				
26th Ou	tage	278	- 280	months	8	€ C	21,631	7,363
27th Po	wer Cycle	280	- 298	months	_			
27th Ou	cage	298	- 300	months	B	ΕC	19,942	6,281
28th Po	wer Cycle	300	- 316	months	-			
28th Ou	cage	318	- 320	months	8	₩ C	18,384	5,359
29th PO	Mer Cycle	320	- 338	months	_		16 040	4
29th Ou	Lage	338	- 340	months	8	f C	16,948	4,571
JOEN PO	Mer CACTE	340	- 335				16 634	1 000
JUCH UU	cage	320	- 370	months	В	e C	13,044	3,900
JISC PO	Wei Cycie	200	- 3/0		ъ		14 404	3 177
Jand Do	waye Way Ducla	370	- 100	monthe	Ð	R L	7.41.40.4	3,341
32nd 0	Her Cycle	300	- 330	monthe	10	6.0	13 370	2 630
3378 00	war Cucia	400	- 400	monthe		•	±3;410	<i>4</i> ,000
33rd Ou	tana	418	- 420	monthe		5.7	17 241	2 421
34th Po	war Cvcla	420	- 438	months			*****	
34th Ou	tage	438	- 440	monthe	- B	£ C	11.285	2.066
35th Po	wer Cvcla	440	- 458	months				2,000
35th Ou	tage	458	- 460	months	В	£ C	10.403	1.762
36th Po	wer Cvcle	460	- 478	months			,	-,
Sh	utdown	478	- 480	months	n	one	0	0
		- • •				-	-	•
Total N	et Present	Valu	185				1,290,950	630,179

•

~~~

۴

# APPENDIX E

۲

# DEPENDENCE OF ENVIRONMENTAL SOURCE TERMS CONTAINMENT LEAKAGE

#### Contents

#### Tables

| Numbe | ſ                      | ] | Page |
|-------|------------------------|---|------|
| E-1   | Source Terms for Surry |   | E-3  |

## Figures

| Numbe | 21                                | Page    |
|-------|-----------------------------------|---------|
| E-1   | Impact of Leakage on Source Terms | <br>E-5 |

,

- .

.

¢

#### APPENDIX E

#### DEPENDENCE OF ENVIRONMENTAL SOURCE TERMS ON CONTAINMENT LEAKAGE

In order to help explain the nature of the derived dependence of reactor accident risks on the assumed containment leakage rate developed in Chapter 5, it is useful to consider the relationship between fission product losses from the containment by leakage and removal from the containment atmosphere by various deposition mechanisms.

The following differential equation describes the time dependent concentration of airborne fission products in a single well-mixed volume:

where,

$$d/dt C_i = -(\Sigma \lambda_{ij})C_i - \alpha_i C_i + S_i(t)$$
(1)

$$C_i =$$
 airborne concentration of component i  
 $\lambda_{ij} =$  removal rate constant for component i due to mechanism j  
 $\Sigma =$  summation over all applicable removal mechanisms  
 $\alpha_i =$  leakage rate of component i, fraction of the volume per unit time  
 $S_i(t) =$  source into containment of component i

The above expression is quite general, but deceptively simple. It applies to fission product gases, vapors and aerosols. Its application to severe accident situations involving many removal mechanisms, each of which is time- and species-dependent, multiple containment compartments, species-dependent timing of releases, etc., can become exceedingly complex. Numerous computer codes, such as the Source Term Code Package (GIE90), MELCOR (SNL91), and CONTAIN (NRC85A) have been developed to analyze these processes. In its most general form, the solution to the seemingly simple equation above can require very extensive computing capability as well as substantial computer time.

For the present purposes, a number of simplifying assumptions can be made to illustrate some key points. If we consider only a single generic airborne species, assume constant removal, leakage and source terms, simplify the expression by dropping the explicit summation over all removal terms, and set the initial condition of  $C = C_0$  at  $t = t_0$ , the above equation is easily solved to yield

$$C = S/(\lambda + \alpha) - [S/(\lambda + \alpha) - C_{\bullet}] \exp{-(\lambda + \alpha)(t - t_{\bullet})}$$
(2)

The leaked amount during any time interval  $t - t_0$  is then given by the integral

$$L = \int_{0}^{t} C V \alpha dt \qquad (3)$$

where V is the volume of the containment.

Or,

$$L = [(SV\alpha)/(\lambda + \alpha)]\Delta t - \{[S/(\lambda + \alpha) - C_9] (\alpha V)/(\lambda + \alpha)\}$$

$$\times \{1 - \exp[-(\lambda + \alpha)\Delta t]\}$$
(4)

If  $\forall e$  make the further simplifying assumption that there is no time-dependent source term to the containment, with all of the source available initially, the expression for the leaked amount reduces to

$$L = C_0 \left[ (\alpha V)/(\lambda + \alpha) \right] \left\{ 1 - \exp[-(\lambda + \alpha)\Delta t] \right\}$$
(5)

The latter assumption is tantamount to saying that the release period to the containment is short compared to the release period from the containment to the environment. Thi, assumption is quite reasonable since in typical severe accident scenarios the releases to the containment take place over a few hours, whereas the environmental releases are assessed over about 24 hours. The long leakage durations are particularly relevant to scenarios in which the containment stays intact.

All of the above simplifying assumption are made to illustrate the essential physics

involved and the roles of the competing mechanisms for fission product removal from the containment atmosphere. Such simplifying assumptions would not necessarily be generally applicable to the analysis of severe accident scenarios.

The last expression can now be easily examined to explore the relationship between leakage and the other removal mechanisms.

If it is assumed that the leakage term,  $\alpha$ , is much smaller than the removal term,  $\lambda$ , (e.g.,  $\alpha = 0.1\lambda$ ), the above expression reduces to approximately

$$L = C_0 \left( \alpha V/1.1 \lambda \right) \left\{ 1 - \exp[-(1.1 \lambda \Delta t)] \right\}$$
(6)

For the leakage term,  $\alpha$ , approximately equal to the removal term,  $\lambda$ , Equation 5 reduces to approximately

$$L = C_{0} (V/2) \{1 - \exp[-(2\lambda\Delta t)]\}$$
(7)

And for the leakage term,  $\alpha$ , much bigger than the removal term,  $\lambda$ , (e.g.,  $\alpha = 10\lambda$ ), Equation 5 reduces to approximately

$$\mathbf{L} = \mathbf{C}_{\mathbf{u}} \left\{ \mathbf{V} \left\{ \mathbf{I} - \exp[-(\mathbf{I} \mathbf{I} \lambda \Delta t)] \right\}$$
(8)

If we next examine the exponential term in each of the last three expressions, it can be shown that for the conditions of interest all the terms are small and can be neglected for purposes of this discussion. Obviously, for very long times these terms vanish. As a more specific example, WASH-1400 (NRC75), which is generally considered as a conservative treatment of fission product behavior, calculated an effective removal lambda for aerosols under natural deposition conditions of 0.13 per hour. Under the influence of sprays or other removal mechanisms much higher deposition rates were predicted. Substituting this removal lambda into each of the above exponential terms and assuming a 24 hour

duration of release yields exponents of  $-(1.1 \times .13 \times 24)$ ,  $-(2 \times .13 \times 24)$ , and  $-(11 \times .13 \times 24)$ , respectively. Thus, it is clear that the exponential terms can be neglected in the discussion of the behavior of fission products that are subject to deposition and other removal mechanisms, even for relatively low deposition rates. This would not be true for the noble gases which are not subject to such removal mechanisms.

The dependence of environmental source terms on the containment leakage rate relative to other removal mechanisms now becomes quite apparent. For containment leakage rates that are small relative to fission product removal mechanisms, as would be the case for nominal leakage rates, the source terms (leaked amount L in Eqn. 6) are seen to be essentially directly proportional to the leakage rate  $(\alpha)$ . (A leakage rate of 1 percent per day corresponds to  $4.17 \times 10^4$  loss per hour, in contrast to the 0.13/hr nominal deposition rate.) As fission product losses due to leakage become comparable to other removal mechanisms, the environmental source terms (L) become independent of the leakage rate ( $\alpha$ ) and, under the foregoing assumptions, approach one-half of the total release to the containment (Eqn. 7). As the leakage is assumed to increase still further, to the point that it dominates other removal processes, environmental source terms are independent of the specific leakage rate and in the limit approach the total releases to the containment (Eqn. 8). These observations are consistent with the dependence of risk on containment leakage developed in Chapter 5.

è

To lend additional, more quantitative, insight to the environment on containment leakage rate and competing fission product deposition mechanisms, solutions to Equation 5 are presented in Figure E-1. Solutions are shown for removal lambdas of 0, 0.13, and 1.3/hr as functions of the assumed containment leakage rate. A removal lambda of 0 would apply to the noble gases which are not subject to deposition or removal by normal engineered safety features. As noted above, the removal lambda of 0.13/hr is taken from WASH-1400 and was derived for natural deposition of acrosols. The 1.3/hr value for lambda is an arbitrary increase over the WASH-1400 figure, recognizing that much larger removal rates would be encountered with the operation of engineered safety features. The curves in Figure E-1 are quite consistent with the qualitative discussion presented above. It is noteworthy that the shapes of the curves are very similar to those derived in Chapter 5 to show the dependence of risk on containment leakage rate. This is to be expected since risk measures, particularly for long term effects, should be proportional to the magnitudes of the source terms. The results in Figure E-1 are limited to environmental source terms due to leakage only: the risk results in Chapter 5 include contributions from all containment failure modes.

In Chapter 5, fission product source terms were presented for early containment leakages in the Surry unit. These source terms, repeated below, represent the composite frequency-weighted source terms for all accident scenarios involving early leakage through a 0.1 ft<sup>2</sup> opening. Comparison of these source terms with the simplified results illustrated in Figure B-1 suggests that the average effective removal lambda for species such as iodine and cesium as inferred from NUREG-1150 is between the 0.13/hr taken from WASH-1400 and the 1.3/hr value assumed for illustration purposes. Thus, the foregoing simplifications have not prevented a meaningful illustration of the essential physics involved.

| Filsion Product Group                          |        |        |        |        |         |         |         |        |
|------------------------------------------------|--------|--------|--------|--------|---------|---------|---------|--------|
| NG                                             | 1      | Cs     | Tc     | Sr     | Ru      | La      | Ce      | Ba     |
| No Containment Failure, 1%/day leakage         |        |        |        |        |         |         |         |        |
| .011                                           | 1.1E-4 | 2.1-E8 | 1.8-E8 | 4.2-E9 | 3.4-E10 | 4.6-E11 | 5.2-E10 | 3.5-E9 |
| Early Containment Leakage, 0.1 ft <sup>2</sup> |        |        |        |        |         |         |         |        |
| .44                                            | .075   | .064   | .036   | .0037  | 8.6-E4  | 3.1-E4  | 9.5-E4  | .0038  |

Table E-1. Source Terms for Surry

The foregoing simplified analysis of environmental fission product releases as functions of leakage rate and containment

- - - --

deposition rate has been shown to be consistent with the results of the extremely complex NUREG-1150 analyses.

- . . .. . .



- - - -



Figure E-1. Impact of Leakage on Source Terms

Ξ

=

## APPENDIX F

# **GRAND GULF NUCLEAR STATION** LOCAL LEAKAGE-RATE TEST PROGRAM

.

\_ \_ \_

v

÷

#### Contents

\_

Number

|             |                                                     | Page        |
|-------------|-----------------------------------------------------|-------------|
| F.1         | Purpose                                             | F-1         |
| F.2         | Components Required to Be Local Leakage-Rate Tested | F-1         |
| <b>F</b> .3 | Test Methods                                        | F-1         |
| F.4         | Leakage-Rate Limits                                 | <b>F</b> -1 |
| F.5         | Data Analysis                                       | F-9         |
| F.6         | Test Frequencies                                    | F-9         |
| F.7         | Repair, Replacement and Maintenance                 | F-10        |
| F.8         | Data Package Review                                 | F-11        |
| F.9         | General Requirements for Type B & C Results         | F-11        |
| F.10        | Data Trending and Analysis                          | F-11        |

# Tables

| Numbe | <b>1</b>                                                | ]     | Page |
|-------|---------------------------------------------------------|-------|------|
| F-1   | Comparison of Performance-Based and Prior Test Programs | ••••• | F-8  |

# Figures

| Numbe | <u>r</u>                                        |           | Page |
|-------|-------------------------------------------------|-----------|------|
| F-1   | Schematic of Performanced-Based Program Process | ••••••••• | F-2  |

0

#### APPENDIX F

#### GRAND GULF NUCLEAR STATION LOCAL LEAKAGE-RATE TEST PROGRAM

The Grand Gulf Nuclear Station (GGNS) Plant Operations Manual describes the local leakagerate test program for meeting the requirements of the Appendix J containment leakage-testing requirements. The LLRT Program conducts 316 tests (penetrations, valves and other components) organized into the following categories: the Performance-Based Testing Program (250 components), Fixed-Interval Components (24), Pressure Isolation Valve Tests (24), Drywell Air-lock Tests (4), Drywell Bypass Test (1), Containment ILRT (1), Containment and Drywell Visual Inspection (1), Containment Airlock Tests (8), and the Containment/Drywell Air-lock Tubing Drop Tests (3).

The following summary is excerpted from the Plant Operations Manual's Performance and Engineering Instruction. By following the requirements and applying the guidance provided in the engineering instructions, Grand Gulf test engineers determined that 149 of a total of 316 components will require LLRTs during the next scheduled unit outage. Of the categories noted above, the greatest reduction in components to be tested was from the Performance-Based Testing Program, where 164 of a total of 250 components will be not be tested in the next outage. Table F-1 provides a comparison of some of the changes brought about by the performance-based program. A schematic of the process is shown in Figure F-1. \_·· \_:

#### F.1 PURPOSE

Among other things, to identify the containment penetrations, valves and components included in the LLRT program, and the applicable test methods, the allowable leakage rates, and testing frequencies

#### F.2 COMPONENTS REQUIRED TO BE LOCAL LEAKAGE-RATE TESTED

The instruction provides a table specifying each penetration, valve and component to be tested per Type B and Type C requirements, including the test medium (air, water, nitrogen).

#### F.3 TEST METHODS

Type B tests shall be performed by local pneumatic pressurization at a pressure not less than P. Type C tests shall be performed by local pneumatic pressurization at a pressure of P., unless it is a valve sealed with a fluid, which is then tested at a pressure not less than 1.10 P. Test pressurization shall be applied in the same direction as that when the valve would be required to perform its safety function unless it can be determined that direction of pressurization isn't a safety consideration. Certain exceptions to the latter are allowed based on the design of the component. Each valve to be tested shall be closed by normal operation. i.e., without any preliminary exercising or adjustments.

#### F.4 LEAKAGE-RATE LIMITS

The combined leakage rate of all Type B & C penetrations and valves shall be less than or equal to 0.60  $L_a$  when pressurized to greater than or equal to  $P_a$ . Some exceptions may apply in the case of valves sealed with fluid from a sealing system. Leakage through main steam isolation valves shall be limited to less than 100 scfn when tested at  $P_a$ . The combined leakage rate for all containment isolation valves in hydrostatically-tested lines which penetrate the containment shall be less than or equal to 1 gpm times the total number of valves when tested at



Ň

Figure F-1. Schematic of Performance-Based Program Process



Figure F-1. Schematic of Performance-Based Program Process (Continued)



Figure F-1. Schematic of Performance-Based Program Process (Continued) NUREG-1493 F-4



Figure F-1. Schematic of Performance-Based Program Process (Continued) NUREG-1493 F-5



Figure F-1. Schematic of Performance-Based Program Process (Continued)

NUREG-1493



Figure F-1. Schematic of Performance-Based Program Process (Continued)

# Table F-1. Comparison of Performance-Based and Prior Test Programs

| Activity                                                                              | Prior Program     | Performance-Based Program                                                                                                                                                                                       | Total Components |
|---------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ILRT                                                                                  | Every 40 months   | Every 10 years                                                                                                                                                                                                  | 1                |
| CTMT & Drywell Visual<br>Inspection                                                   | Prior 10 IL.RT    | Every 40 months                                                                                                                                                                                                 | 1                |
| CTMT Air-lock Barrel Tests                                                            | Every 6 months    | Every 2 years. The air-lock relief valve and flange will be tested on the same frequency.                                                                                                                       | 6                |
| CTMT Air-lock Seal Tests                                                              | Every 72 hours    | Every month                                                                                                                                                                                                     | 2                |
| Type B Components (Electrical<br>penetrations, flanges, guard pipes,<br>access ports) | Every 2 years     | Interval based on performance (the number of consecutively-passed tests) and<br>engineering judgement.<br>- Passed 1 test or failed previous test - Test every 2 years<br>- Passed 2 tests - Test every 5 years | 98               |
| Type C Components (CTMT<br>isolation valves)                                          | Every 2 years     | Interval based on performance (the number of consecutively-passed tests) and<br>engineering judgement.<br>- Passed 1 test or failed previous test - Test every 2 years<br>- Passed 2 tests - Test every 5 years | 152              |
| Mainsteam & Feedwater Isolation<br>Valves                                             | Every 2 years     | No change - These valves were determined to have potential safety significance that would require further evaluation prior to extending their test intervals.                                                   | 16               |
| Pre-Maintenance As-Found<br>Testing                                                   | Every ILRT outage | Always required for the 250 components in the Performance-Based Testing Program.                                                                                                                                | N/A              |
| CTMT Purge Valves                                                                     | Every 30 days     | No change                                                                                                                                                                                                       | 8                |
| Fixed-Frequency Components                                                            | Every 2 years     | No change - These components are the CTMT Equipment Hatch and Puel<br>Transfer Gate. Both components will be removed each outage, therefore<br>extending the interval would be of no benefit.                   | 2                |
| Pressure Isolation Valve Tests                                                        | Every 18 months   | No change - These tests are required per technical specifications and are not Appendix J tests.                                                                                                                 | 24               |
| Drywell Bypass Test                                                                   | Every 18 months   | Every 5 or 10 years                                                                                                                                                                                             | 1                |
| Drywell Air-lock Tests                                                                | Every 18 months   | No change                                                                                                                                                                                                       | 4                |
| Drywell Air-lock Test Tubing<br>Drop Test                                             | Every 18 months   | Requirements moved to the FSAR. A 50.59 is being written to possibly eliminate the test or relax the acceptance criteria                                                                                        | 1                |
| CIMI Air lock Tubing Drop                                                             | Fy 18 months      | No change                                                                                                                                                                                                       | 2                |

not less than 1.10  $P_a$ . Overall air-lock leakage shall be less than or equal to 2 softh at a pressure equal to or greater than  $P_a$ . Pressure isolation valves shall be limited to a leakage rate of less than 1 gpm at a reactor coolant pressure between 1040 and 1060 psig. Provisions exist for testing at lower pressure differentials provided requirements are met. Purge supply and exhaust isolation valves shall not exceed 0.01  $L_a$ . The leakage rates noted in the preceding for individual components may be exceeded provided the overall Type B & C limits are maintained.

#### F.5 DATA ANALYSIS

The procedure identifies those instances where data analyses are required to ascertain the reason(s) why an acceptance limit was exceeded during a test, and specifies when and which corrective actions are necessary. The procedure also allows a test to be repeated, in lieu of the foregoing, as determined by the supervisor in charge.

#### F.6 TEST FREQUENCIES

Local leakage-rate testing for Type B & C valves and penetrations shall be performed at intervals died on the performance of each componen. Testing history will be evaluated and intervals adjusted in accordance with defined criteria. Test vent and drain valves, pressure isolation valves, vent and purge valves, two-year interval components and fixed two-year interval components are excluded from the performancebased testing program.

Test intervals shall be established by reviewing the last three consecutive Type B/C tests performed and by determining if each component had passed or failed. A failure is a test that exceeded the allowable leakage limit. Consecutive means a test must be performed in sequence at least 12 months apart with a minimum of 12-months inservice time before the test lf retest data are used to extend the test interval, criteria and restrictions apply and are specified in the instruction. The initial interval selection will be reviewed and approved by an expert panel.

The test interval for the B and C components shall be as follows: Chery two years for components that pass one test or that have failed the previous test and every five years for components that pass two consecutive tests. A review of all consecutively-passed tests will be performed to determine if the leakage was high, erratic or indicative of a degrading trend. High or erratic leakage could indicate a potential failure prior to the next scheduled Type B/C test. In order to evaluate the probability for failure the responsible engineer will consider the following information:

- Past failures To determine if the component had failed a previous Type B/C test, if the failure was catastrophic (greater than 0.60 L<sub>a</sub>) and if the appropriate corrective action was taken to avoid recurrence.
- Component application\Usage factor - To determine if the component is normally open, normally closed, used for system isolation, used for flow control, or used in any way that could induce a higher wear rate.
  - System function To determine if the component is in a system that is used for normal unit operation, such as main steam, feedwater, etc. and could induce a higher wear rate.
  - Component size To determine if the size of the component has any effect on probability of failure or increases the consequences of failure.

• Operation medium - To determine if the component is in an operating medium that could induce a higher wear rate.

Industry operating experience is reviewed to identify any generic problems including those associated with containment isolation valves and other components subject to Appendix J testing. Any generic problems identified will prompt a review to determine if the problem could affect the Type B/C test performance of any coni onent(s). If the problem could affect test performance, an evaluation will be done and the test interval will be adjusted to an appropriate interval. The problem will be monitored until it is resolved or until the problem is corrected.

A review will be performed on each failure to determine if the failure was generic or isolated. If it is determined that the failure was generic, all other components that are subject to the same failure mechanism will be adjusted to an appropriate interval. All components located in a penetration of a failed component will be evaluated for placement in the same interval as the failed component.

Following these procedures, Grand Gulf performed an engineering evaluation of the performance history all its containment penetrations, valves and components. This effort resulted in the development of a 60-page LLRT database which, along with other information, was used to determine initial testing A separate report provides all intervals. justifications and rationale for the selections made, which are themselves reviewed by an Examples of the justifications expert panel. provided for interval selection are:

> "The LLRT on this valve was changed from a water test to an air test in 1993. Only 1 air test has been performed to date, therefore, the test interval is limited to 2 years until additional testing is performed."

"This component has a total allowable leakage rate of 30,289 mi/min. Therefore, leakage of 2700 ml/min is not considered high and does not indicate a potential failure. The 120 month test interval is acceptable. The LLRT performed in 1990 was a retest for scheduled maintenance activities and was not for corrective action of a failed LLRT. This test was used in the interval selection process per the guidelines.... Although this set of LLRTs meets the criteria for 10-year interval selection, the last 3 tests results display an apparent trend of increasing leakage. Test interval will be kept at 60 months until the trend is better defined, the trend stops increasing, or corrective action is taken." [Note that subsequent to this evaluation, the NRC approved a one-time exemption to Appendix J requirements, allowing up to a 5-year LLRT test interval for Type C valves.]

F.7 REPAIR, REPLACEMENT AND MAINTENANCE

An as-found Type B/C test, as appropriate, will be performed prior to any maintenance or modification activity performed on a component if the activity could affect the' component's leaktightness. Components remaining on 2-year intervals will not require as-found testing during outages during which a Type A test is not performed.

Each maintenance or modification activity that could affect the component's leak-tightness is followed by a Type B/C test after the completion of the activity. If the post-work Type B/C test leakage rate for extended interval components was not greater than +5% of the Type B/C test leakage rate performed prior to the maintenance or modification, and other applicable retests (such as tests required for the Motor Operated Valve Testing Program) are acceptable, reestablishment of component performance will not be required and the component will remain on its current test interval. If the post-work Type B/C test leakage rate for extended interval components was greater than +5% of the Type B/C test leakage rate performed prior to the maintenance or modification, or other applicable retests were unacceptable, re-establishment of component performance is required and the test interval for the component will be adjusted to a 2-year interval. The test interval may be extended once satisfactory performance is reestablished in accordance with the requirements of this program.

#### F.8 DATA PACKAGE REVIEW

1

The instruction provides requirements for review of the data package supporting the results of the testing.

#### F.9 GENERAL REQUIREMENTS FOR TYPE B & C TEST RESULTS

During refueling or maintenance cutages when Type B & C testing is performed before a Type A test, the Type A test results shall be adjusted for any repairs or adjustments made so that the As-Found condition of the containment can be properly determined and evaluated. As-Left leakages are permitted during certain refueling outages in accordance with conditions specified in the instruction. Specific data recording needs are identified for Type B & C test results during refueling outages and during power operation; for main steam line isolation valve leakage, and hydrostatically-leakage-tested valves.

#### F.10 DATA TRENDING AND ANALYS!S

If a trend of increasing valve leakage rates is evident or suspected, it may be appropriate to analyze data for adverse trends. The procedure recommends a step-by-step method for conducting such analyses.

| Of UNA 335       U.S. NUCLEAR REGULATORY COMMISSION         2-50       BIBLIOGRAPHIC DATA SHEET         See Instructions on the reverse)       Image: Second State Sta | HET THE UMBER<br>(ALTIM L by NPC Add V.<br>Supp Hes and Addenoum M.<br>Ders 1 any 1<br>NUREG-1493<br>3 DATE REPORT PUBLISHED<br>MONTH YEAR<br>September 1995<br>FIN OR GRANT NUMBER |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M. Dey/NRC<br>L. Skoblar, P. Chen, D. Goldin/SC&A <sup>1</sup><br>P. Cybulskis, L. Minton, S. Rose/Battelle <sup>2</sup><br>W. Roman/SPC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final 7 PERIOD COVERED (Inclusive Dates)                                                                                                                                            |  |  |  |
| <ul> <li>B PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.8 Nuclear Regulatory Commission, and mailing address.)</li> <li>Division of Regulatory Applications</li> <li>Office of Nuclear Regulatory Research</li> <li>U.S. Nuclear Regulatory Commission</li> <li>Washington, DC 20555-0001</li> <li>IS. Cohen &amp; Associates, Inc., 1355 Beverly Road, Suite 250, McLean, VA 22101</li> <li>Battelle, 505 King Avenue, Columbus, OH 43201</li> <li>Southwest Power Consultants, Inc., 4935 E. Rancho Del Oro Drive, Cave Creek, AZ 85331</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |  |  |  |
| 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region,<br>U.S. Nuclear Regulatory Commission, and mailing address.)<br>Same as above<br>10. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                     |  |  |  |
| Report is a technical, support document for revision to 10 CFR Part 50, Appendix J, "Co<br>Leakage Testing."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ontainment                                                                                                                                                                          |  |  |  |
| 11 ABSTRACT (i.20 words or less)<br>The Nuclear Regulatory Commission (NRC) is implementing an initiative to eliminate requirements that are<br>marginal to safety and yet impose a significant regulatory burden on licensees. The containment leak-testing<br>requirements for power reactors have been identified as one area where performance-based requirements could<br>replace the current prescriptive requirements with only a marginal impact on safety. This technical support<br>document (TSD) provides the technical bases for the NRC's rulemaking to revise leak-testing requirements for<br>nuclear power reactors in 10 CFR Part 50, Appendix J. This report identifies alternatives to current containment<br>testing requirements which would meet the NRC's Safety Goals and achieve greater efficiency in the use of<br>resources. Changes in the allowable leak rate for containment and the testing frequencies for both integrated and<br>local leak rate tests are evaluated in terms of both risk and cost impacts. The feasibility of applying statistically-based<br>sampling techniques to local leak-rate testing, and the use of on-line monitoring systems to continuously monitor<br>containment integrity are also evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |  |  |  |
| 12 KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13. AVAILABILITY STATEMENT<br>Unlimited                                                                                                                                             |  |  |  |
| Reactor<br>Containment leakage testing<br>Risk-based regulation<br>Regulatory review and improvement<br>Elimination of requirements marginal to safety<br>Performance-based regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14. SECURITY CLASSIFICATION<br>(This Page)<br>Uriclassified<br>(This Report)<br>Uriclassified<br>15. NUMBER OF PAGES<br>16. PRICE                                                   |  |  |  |

\_\_\_\_ \_\_ \_\_ \_\_ \_\_ \_\_ \_\_

.



# Federal Recycling Program

# UNITED STATES

. 

•

·

¢

. -

۰. --

÷

. -1

SPECIAL FOURTH ASS HATE POSTAGE AND THES PAIL USHET PERMIT NO 15 11 i Į

REGULATORY GUIDE

#### **OFFICE OF NUCLEAR REGULATORY RESEARCH**

#### REGULATORY GUIDE 1.163 (Draft was DG~1037)

#### PERFORMANCE-BASED CONTAINMENT LEAK-TEST PROGRAM

#### A. INTRODUCTION

The Nuclear Regulatory Commission has amended its regulations (60 FR 49495) to provide a performunce-based option, Option B, for leakage-rate testing of containments of light-water-cooled nuclear power plants. Licensees may voluntarily comply with this Option B as an alternative to compliance with the current requirements in Appendix J, "Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities." The amendment is aimed at improving the focus of the body of regulations by eliminating prescriptive requirements that are marginal to safety and by providing licensees greater flexibility for cost-effective implementation methods for regulatory safety objectives. This regulatory guide provides guidance on an acceptable performance-based leak-test program, leakage-rate test methods, procedures, and analyses that may be used to comply with the performance-based Option B in Appendix J to 10 CFR Part 50.

The information collections contained in this regulatory guide are covered by the requirements in Appendix J to 10 CFR Part 50, which have been approved by the Office of Management and Budget Approval number 3150-0011.

#### **B. DISCUSSION**

The Commission has stated that future regulatory initiatives should use a performance-oriented and riskbased regulatory approach in which safety standards are established based upon risk, regulatory requirements are expressed in terms of meeting a performance standard, and regulated entities are provided flexibility to adopt cost-effective methods for complying with the performance-based safety standard. See Staff Requirements Memorandum dated May 18, 1994, on SECY-94-090, "Institutionalization of Continuing Program for Regulatory Improvement."1 In accordance with the policy that regulated entities should be allowed flexibility to adopt cost-effective methods for complying with regulatory requirements, detailed technical methods for compliance with the performance standard would not be incorporated into the regulatory requirement. Instead, the detailed methods would be described either in NRC regulatory guides or in industry standards and guidance documents that are reviewed and approved by the NRC

#### USNRC REGULATORY GUIDES

Regulatory Guides are issued to describe and make available to the public such information as mathods acceptable to the NRC staff for implementing specific parts of the Commission's regulations, lechniquesused by the staff in evaluating:specific problems or postulated accidence, and data needed by the NRC staff in its review of applications for permits and incenses. Regulatory guides are red substitutes for regulations, and compliance with them is not regulied. 'Asthods and solves and solves is the staff for the incenses are used to be acceptable if they provide a basis for the incurse requisite to the issuance or continuance of a permit or license by the Commission.

This guide was issued after consideration of comments received from the public shorteness and suggestions for improvements in these guides are encouraged at all times, and guides will be revised, as appropriate, to accommodate comments and to reflect new information or experience.

Written comments may be submitted to the Rules Review and Directives. Branch, DFIPS, ADM, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

The guides are issued in the following ten broad divisions:

1. Power Reactors

6. Products 7. Transportation

- 8. Occupational Health
- 9. Antitrust and Financial Review

2. Research and Test Reactors
 3. Fuels and Materials Facilities
 4. Environmental and Siting
 9. Antitrus
 6. Materials and Plant Protection
 10. General

Single copies of regulatory guides may be obtained free of charge by writing the Office of Administration, Attention, Distribution and Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; or by fax at (301)415-2260

issued guides may also be purchased from the National Technical Information Service on a standing order basis. Details on this service may be obtained by writing NTIS, 5285 Port Royal Road, Springheld  $-VA\,22161$ 

<sup>&</sup>lt;sup>1</sup>Copies are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW, Washington, DC; the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202)634-3273; (ax (202)634-3343.

 altravia care patternicaris for demonstrating consecurity from the network requirement.

Coto, ten, with this approach, the revision to Approach. Lot 10.0 FR Part 20 is less prescriptive, utilizes rick basic inciplate, and allows the licensee the flexibil it, to adopt cost-effective methods, including setting test intervals, for implementing the safety objectives underlying the requirements of Appendix J. This regulatory pinde approves an industry guideline that describes in detail a performance-based leak test program, leakage-rate test methods, procedures, and analyses, the NRC staff has determined this industry guideline to be an acceptable means of demonstrating comphance with the requirements of the amendment of Appendix J to 10 CFR Part 50.

#### C. REGULATORY POSITION

NL194-01, Revision 0, dated July 26, 1995, "Industry Guideline for Implementing Performance-Based Option of 10 CFR 50 Appendix J,"<sup>1</sup> prepared by the Nuclear Energy Institute, provides methods acceptable to the NRC staff for complying with the provisions of Option B in Appendix J to 10 CFR Part 50, subject to the following:

- NEI 94-01 references ANSI/ANS-56.8-1994. 1. "Containment System Leakage Testing Requirements,"<sup>2</sup> for detailed descriptions of the technical methods and techniques for performing Types A, B, and C tests under the amendment of Appendix J to 10 CFR Part 50. However, as stated in NEI 94-01, the test intervals in ANSI/ANS 56.8-1994 are not performance-based. Therefore, licensees intending to comply with Option B in the amendment to Appendix J should establish test intervals based upon the criteria in Section 11:0 of NEI 94-01, rather than using the test intervals specified in ANSI/ANS-56.8-1994. All other technical methods and techniques for performing Types A, B, and C tests contained in ANSI/ ANS-56.8-1994 are acceptable to the NRC staff.
- Section 11.3.2, "Programmatic Controls," of NEI 94-01 provides guidance for licensee sele tion of an extended interval greater than 60 months or 3refueling cycles for a Type B or Type C-tested component. Because of uncertainties (particularsly unquantified leakage rates for test failures, re-

petravele appearence of the desire between the teaching to the delayer for indicated parts ance data, and because of the providentic taken as in the period of three refusance were start medites of pred ion of programmatic controls described to Section 11.3 , to address these uncertaintie , the guidance provided in Section 31 5/2 for selection estended test intervals preater than 60 months for Type C tested components is not prescribly endorsed by the NRC staff. Further, the interval for Type C tests for main steam and feedwater isolation valves in BWRs, and containment purge and vent valves in PWRs and BWRs, should be limited to 30 months as specified in Section 3.3.4 of ANSI/ANS-56.8-1994, with consideration given to operating experience and safety significance.

- 3. Section 9.2.1, "Pretest Inspection and Test Methodology," of NEI 94-01 provides guidance for the visual examination of accessible interior and exterior surfaces of the containment system for structural problems. These examinations should be conducted prior to initiating a Type A test, and during two other refueling outages be fore the next Type A test if the interval for the Type A test has been extended to 10 years, in order to allow for early uncovering of evidence of structural deterioration.
- 4. Section 10.2.3.3 states that an as-found Type C test or an alternative test or analysis is to be performed prior to any maintenance, repair, modification, or adjustment activity if it could affect a valve's leak-tightness. "Alternative test or analysis" is not endorsed as an appropriate substitute for an as-found test, because the as-found test provides clear and objective evidence of performance of isolation components.

#### **D. IMPLEMENTATION**

The purpose of this section is to provide information to applicants and licensees regarding the NRC staff's plans for using this regulatory guide.

Except in those cases in which an applicant or licensee proposes an acceptable alternative method for complying with specified portions of the Commission's regulations, the methods described in this guide reflecting public comments will be used in the evaluation of submittals for construction permits and operating licenses (as appropriate) and will be used to evaluate the implementation of Option B of Appendix J to 10 CFR Part 50.

·. \_=

<sup>&</sup>lt;sup>2</sup> Copies may be obtained from the American Nuclear Society, 555 North Kensington Avenue, La Grange Park, Illinois 60525

#### **REGULATORY ANALYSIS**

A regulatory impact analysis has been prepared out the revision to Appendix J of 10 CFP Part 50 and this regulatory guide. The analysis is available for inspection or copying for a fee in the Commission's PubTo Document Room, 2120 I. Street NW, Washington, DC; the PDR's mailing address in Mail Stop L1-v. Washington, DC 20555; phone (202)634–3273. Ias (202)634–3343.



Federal Recycling Program
UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 . Ти 3 1 1 1 1 1 , ी अस्त् भ 1. 1. m. 1 1. m. 1. m 1. m. 1. m Ţ <sup>8</sup> full in the second <sup>6</sup> Mu<sub>d</sub> a --۰. . . . × 8 ∰15 @ -÷ 3 FIRST CLASS MAIL POSTAGE AND FEES PAID USNAC PERMIT NO. G.67

test intervals to be based on system and component performance and provides heensees greater flexibility for cost effective implementation methods of regulatory safety objectives

EFFECTIVE DATE: October 26, 1995.

FOR FURTHER INFORMATION CONTACT: Dr. Moni Dey, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555, telephone (301) 415-6443, e-mail mkd@nrc.gov

SUPPLEMENTARY INFORMATION:

Background—Development of Proposed Rule

NRC's Marginal-to-Safety Program

In 1984, the NRC staff initiated a program to make regulatory requirements more efficient by eliminating those with marginal impact on safety. The NRC's initiative to eliminate requirements marginal to safety recognizes both the dynamic nature of the regulatory process and that the importance and safety contribution of some existing regulatory requirements may not have been accurately predicted when adopted or may have diminished with time. The availability of new technical information and methods justify a review and modification of existing requirements.

The NRC solicited comments from industry on specific regulatory requirements and associated regulatory positions that needed reevaluation. The Atomic industrial Forum conducted a survey providing most of industry's input, published for the NRC as NUREG/CR-4330', "Review of Light Water Reactor Regulatory Requirements," Vol. 1, Ápril 1986. A list of 45 candidates for potential regulatory modification were identified. The NRC's review of the list selected Appendix ] as one of seven areas requiring further analysis (NUREC/CR-4330, Vols 2 and 3, dated June 1986 and May 1987]. The NRC also conducted a survey of its staff on the same issue. The NRC staff survey identified 54 candidates for regulatory modification, a number of which were previously identified in the industry -survey. The NRC's assessment of this

list also selected Appendix J as a potential candidate for modification

The NRC published in the Federal Register, for comment, a poposed revision to Appendix J on October 29, 1986 (51 FR 39538) to update acceptance criteria and test methods based on experience in applying the existing requirements and advances in containment leak testing methods, to resolve interpretive questions, and to reduce the number of exemption requests. This proposed rule was withdrawn from further consideration and superseded with a more comprehensive revision of Appendix J.

The NRC published a notice in the Federal Register on February 4, 1992 (57 FR 4166), presenting its conclusion that Appendix J was a candidate whose requirements may be relaxed or eliminated based on cost-banefit considerations. On the basis of NRC staff analyses of public comments on the proposal, the Commission approved and announced on November 24, 1992 (57 FR 55156) its plans to initiate rulemaking for developing a performance-oriented and risk-based regulation for containment leakagetesting requirements. On January 27, 1993, (58 FR 6196) the NRC staff published a general framework for developing performance-oriented and risk-based regulations and, at a public workshop on April 27 and 28, 1993, invited discussions of specific proposals for modifying containment leakagetesting requirements. Industry and public comments on the proposals, and other recommendations and innovative ideas raised at the public workshop, were documented in the proceedings of the workshop (NUREG/CP-0129, September 1993). Specifically, the NRC concluded that the allowable containment leakage rate utilized in containment testing may be increased and other Appendix J requirements need not be as prescriptive as the current requirements. To increase flexibility, the detailed and prescriptive technical requirements contained in Appendix J regulations could be improved and replaced with performance-based requirements and supporting regulatory guides. The regulatory guides would allow alternative approaches, although compliance with existing regulatory requirements would continue to be acceptable. The performance-based requirements would reward superior operating practices.

The present rulemaking is part of this overall effort and initiative for eliminating requirements that are marginal to safety and is guided by the policies, framework and criteria for the

### NUCLEAR REGULATORY COMMISSION

## 10 CFR Part 50

RIN 3150-AF00

### Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

AGENCY: Nuclear Regulatory Commission. ACTION: Final rule.

SUMMARY: The Nuclear Regulatory Commission is amending its regulations to provide a performance-based option for leakage-rate testing of containments of light-water-cooled nuclear power plants. This option is available for voluntary adoption by licensees in lieu of compliance with the prescriptive requirements contained in the current regulation. This action improves the focus of the regulations by eliminating prescriptive requirements that are marginal to safety. The final rule allows

<sup>&</sup>lt;sup>1</sup>Copies of NURECs may be purchased som the Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082. Washington, DC 20013-7082. Copies are also available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. A Copy is available for inspection and/or copying in the NRU 'ublic Document Room, 2120-1. Street, NW. (Lower Level), Washington, DC.

program. A more comprehensive proposed rule than that proposed in 1986 that accounts for the latest technical information and regulatory framework, using performance-oriented and risk-based approaches, was published by the NRC in the Federal Register on February 21, 1995. The public comment period for the proposed rule closed May 8, 1995.

### NRC's Regulatory Improvement Program

The NRC's marginal-to-safety initiative is part of a broader NRC initiative for regulatory improvement. Through its Program for Regulatory Improvement, the NRC has institutionalized an ongoing effort to eliminate requirements marginal to safety and to reduce the regulatory burden on its licensees. The NRC staff's plan, summarized in SECY-94-090, dated March 31, 1994, satisfies the requirement for a periodic review of existing regulations given in Executive Order 12866 of September 30, 1993. This plan was approved by the Commission on May 18, 1994. The R julatory Improvement Program is air.ied at the fundamental principle suppled by the Commission that all regulatory burdens must be justified and that its regulatory process must be efficient. In practice, this means the elimination or modification of requirements for which burdens are not commensurate with their safety significance. The activities of the **Regulatory Improvement Program** sh uld result in enhanced regulatory focus in areas that are more safety significant. As a result, an overall net increase in safety is expected from the program.

The Regulatory Improvement Program will include, whenever feasible and appropriate, the consideration of performance-oriented and risk-based approaches. The program will review requirements of license conditions that are identified as a significant burden on licensees. If review and analysis find that the requirements are marginal to a safety, they will be eliminated or relaxed. By performance-oriented, the NRC means establishing regulatory objectives without prescribing the methods or hardware necessary to accomplish the objective, and allowing licensees the flexibility to propose costeffective methods for implementation. By risk-based, the NRC means regulatory approaches that use probabilistic risk analysis (PRA) as the systematic framework for developing or modifying requirements.

In institutionalizing th Regulatory Improvement Program and adopting a performance-based regulatory approach. the NRC has formulated the following framework for revisions to its regulations

(1) The new performance based regulation will be less prescriptive and will allow licensees the flexibility to adopt cost-effective methods for implementing the safety objectives of the original rule.

(2) The regulatory safety objectives will be derived, to the extent feasible and practical, from risk considerations with appropriate consideration of uncertainties, and will be consistent with the NRC's Safety Goals.

(3) Detailed technical methods for measuring or judging the acceptability of a licensee's performance relative to the regulatory safety objectives will be, to the extent practical, provided in industry standards and guidance documents which are endorsed in NRC regulatory guides.

(4) The new regulation will be optional for current licensees so that licensees can decide to remain in compliance with current regulations.

(5) The regulation will be supported by necessary modifications to, or development of, the full body of regulatory practice including, for example, standard review plans, inspection procedures, guides, and other regulatory documents.

(6) The new regulation will be formulated to provide incentives for innovations leading to improvements in safety through better design, construction, operating, or maintenance practices.

### **Current Appendix J Requirements**

Appendix J to 10 CFR Part 50, "Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors," became effective on March 16, 1973. The regulatory safety objective of reactor containment design is stated in 10 CFR Part 50, Appendix A, "Ceneral Design Criteria for Nuclear Power Plants," Criterion No. 16, "Containment Design." GDC Criterion 16 mandates "an essentially leak-tight barrier against the uncontrolled release of radioactivity to the environment

\* \* \* \* \* for postulated accidents. Appendix J to 10 CFR Part 50 implements, in part, General Design Criterion No. 16 and specifies containment leakage-testing requirements, including the types of tests required. For each type of test required, Appendix I specifies how the tests should be conducted, the frequency of testing, and reporting requirements. Appendix J requires the following types of containment leak tests:  (i) Mean and its of the constant end integrated near and rate (i) specty tests often referred to as II K1s).

(2) Measurement of the leakage rate across each pressure containing or leakage limiting boundary for various primary reactor containment penetrations (Type B tests).

(3) Measurement of the containment isolation valves leakage rates (Type C tests)

Type B and C tests are referred to as local leakage-rate tests (LLRTs)

### Leak-Tightness Requirements

Compliance with 10 CFR Part 50, Appendix J. requirements is determined by comparing the measured containment leakage rate with the maximum allowable leakage rate. Maximum allowable leakage rates are calculated in accordance with 10 CFR Part 100, "Reactor Site Criteria," and are incorporated into the technical specifications. Typical allowable leakage rates are 0.1 percent of containment volume per day for pressurized water reactors (PWRs) and one volume percent per day for boiling water reactors (BWRs).

### **Test Frequency Requirements**

Schedules for conducting containment leakage-rate tests are specified in Appendix J for both preoperational and periodic tests. Periodic leakage-rate test schedules are as follows:

### Type A Tests

(1) After the preoperational leakag rate test, a set of three Type A tests must be performed at approximately equal intervals during each 10-year service period. The third test of each set must be conducted when the plant is shut down for the 10-year plant in-service inspection.

(2) The performance of Type A tests must be limited to periods when the plant facility is nonoperational and secured in the shutdown condition under administrative control and in accordance with the safety procedures defined in the license.

(3) If any periodic Type A test fails to meet the applicable acceptance criteria, the test schedule applicable to subsequent Type A tests will be reviewed and approved by the Commission If two consecutive periodic Type A tests fail to meet the applicable acceptance criteria, a Type A test must be performed at each plant shutdown for refueling or approximately every 18 months, whichever occurs first, until two consecutive Type A tests, meet the .....

acceptance criteria, after which time the regular refest schedule may be resumed.

### Type B Tests

(1) Except for airlocks, Type B tests must be performed during reactor shutdown for refueling, or other convenient intervals, but in no case at intervals greater than 2 years. If opened following a Type A or B test, containment penetrations subject to Type B testing must be tested prior to returning the reactor to an operating mode requiring containment integrity For primary reactor containment penetrations employing a continuous leakage monitoring system, Type B tests, except for tests of airlocks, may be performed at every other reactor shutdown for refueling but in no case at intervals greater than 3 years.

(2) Airlocks must be tested prior to initial fuel loading and at six-month intervals thereafter. Airlocks opened during periods when containment integrity is not required by the plant's technical specifications must be tested at the end of such periods. Airlocks opened during periods when containment integrity is required by the plant's technical specifications must be tosted within 3 days after being opened. For airlock doors opened more frequently than once every 3 days, the airlock must be tested at least once every 3 days during the period of frequent openings. For airlock doors having testable scals, testing the seals fulfills the 3-day test requirement. Airlock door-seal testing must not be substituted for the 6-month test of the entire airlock at not less than P<sub>s</sub>, the calculated paak containment pressure related to the design basis accident.

### Type C Tests

Type C tests must be performed during each reactor shutdown for refueling, but in no case at intervals greater than 2 years.

There have been two amendments to this Appendix since 1973. The first amendment, published September 22, 1980 (45 FR 62789), modified the Type B penetration test requirements to conform to what had become accepted practice through the granting of exemptions. The second amendment, published November 15, 1988 (53 FR 45890), incorporated the Mass Point Statistical Analysis Technique as a pormissible alternative to the Total Time and Point-to-Point techniques specified in Appendix 1

### International Experience

A combination of Type A tests and an on-line monitoring (OLM) capability is being actively pursued in Canada and Europe, notably in France and Belgium, and is currently being considered in Sweden OLM is used to identify a "normal" contamment pressurization pattern and to detect deviations from that pattern. With on-line, low-pressure testing, Hydro-Quebec's Gentilly-2 station is able to monitor the change in containment leaktightness between Type A tests. The Belgians conduct a leakage test using OLM during reactor operation after each cold shutdown longer than 15 days with the objective of detecting gross leaks. The objective of the Belgian approach to Type A testing is to reduce the frequency and duration of the tests. The Type A test is conducted at a containment pressure (P<sub>i</sub>) not ' ss than half of the peak pressure ( "). It is performed once every 10 years. In France, containment leaktightness is continuously monitored during reactor operation in all of the French PWR plants using the SEXTEN system. It is also being evaluated by the Swedes for their PWR units. Leaks may be detected during the positive or negative pressure periods in the containment by evaluating the air mass balance in the containment. Type A tests are conducted at containment peak pressure [loss-of-coolant accident pressure) before initial plant startup. during the first refueling, and thereafter every 10 years unless a degradation in containment leaktightness is detected. In that case, tests are conducted more frequently.

Further details of international approaches to containment testing are provided in NUREG-1493.

### Advance Notices for Rulemaking

Over time, it has become apparent that variations in plant design and operation frequently make it difficult to meet some of the requirements contained in Appendix J because of its prescriptive nature. Economic and occupational exposure costs are directly related to the frequency of containment testing. Containment integrated leakagerate tests (Type A) preclude any other reactor maintenance ectivities and thus are on the critical path for return to service from reactor outages. In addition to the costs of the tests, integrated leak tests impose the added burden of the cost of replacement power. Containment-perietration leak tests (Type B and C) can be conducted during reactor shutdowns in parallel with other activities and thus tend to be less costly. however, the large number of penetrations impose a significant burden on the utilities. Additionally, risk assessments performed to date indicate that the allowable leakage rate from containments can be increased,

and that control of containing it leavage at the current low rates is not as 1.55 significant as previously assumed 25

In August of 1992, the NRC initiated a rulemaking to modify Appendix J to make it less prescriptive and more performance-oriented. The Commission also initiated a plan to relay the allowable containment leakage rate used to define performance standards for containment tests. In the Federal Register of January 27, 1993 (58 FR 6196), the NRC indicated the following potential modifications to Appendix J of 10 CFR Part 50 would be considered

(1) Increase allowable containment leakage rates based on Safety Goals and PRA technology (i.e., define a new performance standard); and

(2) Modify Appendix J to be a performance-based regulation:

A. Limit the revised rule to a new regulatory objective. In order to ensure the availability of the containment during postulated accidents, licensees should either:

(i) Test overall containment leakage at intervals not longer than every 10 years, and test pressure-containing or leakage limiting boundaries and containment isolation valves on an interval based on the performance history of the equipment; or

(ii) Provide on-line (i.e., continuous) monitoring of containment isolation status.

B. Remove prescriptive requirements from Appendix J and preserve useful portions as guidance in an NRC regulatory guide.

C. Endorse industry standards on

(i) Guidance for calculating plant specific allowable leakage rates based on new NRC performance standards,

(ii) Guidance on the conduct of containment tests; and

(iii) Guidance for on-line monitoring of containment isolation status

D. Continue to accept compliance with the current detailed requirements. in Appendix J (i.e., licensees presently in compliance with Appendix J will not need to do anything if they do not wish to change their practice)

<sup>\*&</sup>quot;Severe Accident Risks, An assessment for the US S Nuclear Power Plants, Final Summary Report "NUREG-1150, December 1990 4 optend NUREGS may be purchased from the Superintendent of Discuments, US Converting of Printing Office, P.O. Bus, 17092, Wash, report, D. 20013/7092, Copies are also available from the National Technical Information Service, 5000 Nor-Reveal Moad, Springfield, VA 2010, All optiavailable for inspiration and an option to 2000 Public Discurgent Means, 21(6), Science, VM, 2010, Length, Washington Discumentation, 2000, Nor-Lengton, Washington Discussion, 2000, Science, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2

Performance Based Control and Society
Principal to Base 1493 To Strep

A public workshop on the subject was field by the NRC on April 27 and 28, 1993 \*

### February 1995 Proposed Revision

Based on several advance notices for rulemaking and significant public comment and discussion, evaluation of risks and costs, and consideration of which modifications have become feasible and practical, in the February 21, 1995, Federal Register the NRC proposed two phases for modifications of requirements to containment leakage testing. The first phase allowed leakagerate testing intervals to be based on the performance of the containment system structures and components. The second phase will further examine the needed requirements of the containment function (i.e. structural and leak-tight integrity of containment system structures and components, and prevention of inadvertent bypass), and include consideration of the potential for on-line monitoring of containment integrity to verify certain functions. Public comments were solicited to guide this future work.

The Fobruary 21, 1995, proposed rule applies to all NRC licensees who operate light-water-cooled power reactors. The proposed rule allows licensees the option of continuing to comply with the current Appendix for to adopt the new performance-based standards.

The NRC's analyses are based upon the insight gained through the use of probabilistic risk assessment techniques and the significant data base of practical, hands-on operating experience gained since Appendix J was promulgated in 1973. This operating experience provides solid evidence of the activities necessary to conduct Appendix J testing, and the costs of those activities both in monetary terms and occupational radiation exposure.

The proposed rule is based on analytical efforts documented in NUREG-1493 which, like NUREG-1150, confirms previous observations of insensitivity of population risks from severe reactor accidents to containment leakage rates.

The current Appendix J requirements continue to achieve the regulatory criterion of essuring an essentially leaktight boundary between the power reactor system and the external environment (General Design Criterion 16) Costs associated with complying with current Appendix J requirements are estimated to be \$165,000 for a compare hattery of Tope B. Clests and \$1,890,000 for Type A tests. Over the iverage reactor's remaining lifetime co 20 years, the present value of all remaining containment leakage testing at a 5 percent discount rate is estimated to be about \$7 million per reactor. Estimates of the remaining inductry wide costs of implementing current Appendix J requirements ranged from \$720 to \$1,080 million, approximately 75 percent of which could be averted with a performance-based rule

The Regulatory Analysis for the proposed rule finds that by allowing requirements to remain in effect with marginal impact on safety, but which impose a significant cost on licensees, is to have missed an opportunity to improve regulatory coherence and to focus NRC's regulations to areas where the return in terms of added public safety is higher.

Specific alternatives for modifying the current Appendix J were identified by the public in response to the NRC's Federal Register notice published on January 27, 1993 (58 FR 6196). Those whose characteristics matched the NRC's established criteria for the marginal to safety program were selected for further review.

### Modifications of Advance NRC Proposal

### Allowable Leakage Rate

The NRC had initially planned to establish, by rulemaking, a risk-based allowable leakage rate commensurate with its significance to total public risk. Specific findings from NUREC-1493 on the allowable leakage rate include:

1. Allowable loakage could be increased approximately two orders of magnitude (100-200 fold) with marginal impact on population dose estimates from reactor accidents.

2. Calculated risks to individuals are several orders of magnitude below the NRC's Safety Goals for all reactors considered.

3 Increases in the allowable lookage rate are estimated to have a negligible impact on occupational exposure.

Relaxing the allowable loakage rate is estimated to reduce future industry testing costs by \$50 to \$110 million, a 10 percent decrease in overall leakagerate testing costs.

A risk-based allowable leakage rate would be based on an evaluation, using PRA, of the sensitivity and significance of containment leakage to risk, and the determination of an appropriate containment leakage limit commensurate with its significance to the risk to the public and plant controlroom operators. However, this would have entailed a major change in policy

and restractions of the correct. te ensure to conduct a more complete. understanding of the uncertainties associated with the threat of severe acadents to the containment, and therefore, the NRC planned to develop a modification of the performance standard (allowable leakage level) in the second phase separate from modifications of testing requirements. This modification would be part of a broader effort to further examine the risk significance of various attributes of containment performance, i.e., structural and leak-tight integrity of containment-system structures and components, and inadvertent bypass.

### **On-Line Monitoring (OLM) Systems**

Currently, there is no NRC requirement for systems which continuously monitor the containment to detect unintentional breaches of containment integrity.

Studies discussed in NUREG-1493, "Performance-Based Containment Leak Test Program," found that, based on operating experience, OLM would not significantly reduce the risk to the public from nuclear plant operation and, thus, could not be justified solely on the basis of risk-based considerations. Specific findings include:

1. Existing continuous monitoring methods appear technically capable of detecting leaks in reactor containments within 1 day to several weeks. OLM systems are in use or planned in several European countries and Canada.

2. OLM systems are capable of detecting leaks only in systems that are open to the containment atmosphere during normal operation (approximately 10 percent of the mechanical penetrations).

3. The technical and administrative objectives of OLM systems and Type A tests are different.

4. OLM could not be considered as a complete replacement for Type A tests because it cannot challenge the structural and leak-tight integrity of the containment system at elevated pressures.

5. Analysis of the history of operating experience indicated a limited need for, and benefit of, OLM in the U.S.

Although OLM can not be justified solely based on risk considerations, a plant already possessing such a system bas a greater assurance of achieving certain attributes of containment integrity. Therefore, OLM systems could contribute towards an overall leakagemonitoring scheme. Some capability for on-line monitoring already exists as a byproduct of specific containment designs. For example, Licensers with

Workshop on Program for Elimination of Requirements Marginal to Safety "INURELLE-CLOS September 1994

accred BWR containments, or subatmospheric PWR containments, could possibly detect gross leakages that develop during normal operation.

Coven that the application of on-line monitoring is specific to containment design, and generic application can not be justified solely on risk considerations, the NRC did not propose a requirement for OLMs. However, licensees with such a capability (e.g. morted BWR containments, and subatmospheric PWR containments) were encouraged to propose plantspirafic application of such a capability, and to take credit for any added assurance of containment integrity provided by such a system compared to other testing methods. The NRC proposed to reconsider the role of OLM in the second phase of modifications in this area along with the allowable leakage rate.

### Proposed Modification of Type A, B, and C Test Intervals

In the February 1995 proposed rule, the NRC proposed a new risk-based regulation based on the performance history of components (containment, penetrations, valves) as the means to justify an increase in the interval for Type A, B, and C tests. The revised regulation requires tests to be conducted on an interval based on the performance of the containment structure, penetrations and valves without specifying the interval in the regulation. Currently, three Type A tests are conducted in every 10 year period. Type B (except airlocks, which are tested more frequently) and C tests are conducted on a frequency not to exceed 2 years.

The NRC proposed to base the frequency of Type A tests (ILRTs) on the historical performance of the overall containment system. Specific findings documented in NUREG-1493 that justify the proposal include:

1. The fraction of leakages detected only by ILRTs is small, on the order of a few percent.

2. Reducing the frequency of ILRT testing from 3 every 10 years to 1 every 10 years leads to a marginal increase in risk

3. ILRTs also test the strength of the containment structure. No alternative to ILRTs has been identified to provide assurance that the containment structure would meet allowable leakage rates during design-basis accidents.

4. At a frequency of 1 test every 10 years, industry-wide occupational exposure would be reduced by 0.087 person-sievert (8.7 person-rem) per year.

Based on specific, detailed analyses of data from the North Anna and Grand Colf nuclear power plants, and data from twenty two nuclear plants (see NUREG-1493), performance-based alternatives to current LLRT methods are feasible with marginal impact on risk. Specific findings include:

1. Type B and C tests are capable of detecting over 97 percent of containment leakages

2. Of the 97 percent, virtually all leakages are identified by LLRTs of containment isolation valves (Type C tests).

3. Based on the detailed evaluation of the experience of a single two-unit station, no correlation of failures with type of valve or plant service could be found.

4. For the 20 years of remaining operations, changing the Type B/C test frequency to once every 5 years for good-performing components is estimated to reduce industry-wide occupational radiation exposure by 0.72 person-sievert (72 person-rem) per year. If 20-year license extension is assumed, the estimate is 0.75 person-sievert (75 person-rem) per year.

Filture industry testing costs are reduced by approximately \$330 to \$660 million if ILRT tests are conducted once every 10 years rather than the current 3 per 10 years. ILRT savings represent about 65 percent of the remaining costs of current Appendix J requirements. Performance-based LLRT alternatives are estimated to reduce future industry testing costs by \$40 million to \$55 million. LLRT savings represent about 5 percent of the total remaining costs of Appendix J testing.

Therefore, based on the risks and costs evaluated, and other considerations discussed above, a performance-based Appendix J was proposed which encompassed the following principles, which differ moderately from those first described in the Federal Register (January 27, 1993 58 FR 6107).

General (1) Make Appendix ] less prescriptive and more performanceoriented; (2) Move details of Appendix ] tests to a regulatory guide as guidance; (3) Endorse in a regulatory guide the industry guideline (NEI 94-01) on the conduct of containment lests (The methods for testing are contained in an industry standard (ANSI/ANS \$8.8-1994) which is referenced in the NEI guideline); and (4) Allow voluntary : adoption of the new regulation, i.e., current detailed requirements in Appendix ] will continue to be acceptable for compliance with the modified rule.

Leakage Limits Acknowledge the loss risk-significant nature of allowable containment leakage but pursue its modification as a separate action

Type A Test Interval [1] Based on the limited value of integrated leakage rate tests (ILRTs) in detecting significant leakages from penetrations and isolation valves, establish the test interval based on the performance of the containment system structure; (2) The performance criterion of the test will continue to be the allowable leakage rate (La); (3) The industry guideline allows extension of the Type A test interval to once every 10 years based on satisfactory performance of two previous tests. inclusive of the pre-operational ILRT, (4) In the regulatory guide, the NRC takes exception to industry guidance for the extension of the interval of the general visual inspection of the containment system, and limits the interval to 3 times every 10 years, in accordance with current practice.

Type B & C Test Interval (1) Allow local leakage-rate test (LLRTs) intervals to be established based on the performance history of each component, (2) The performance criterion for the tests will continue to be the allowable leakage rate (La); (3) Specific performance factors for establishing extended test intervals (up to 10 years for Type B components, and 5 years for Type C components) are contained in the regulatory guide and industry guideline. In the regulatory guide, the NRC has taken exception to the NEI guideline allowing the extension of Type C test intervals up to 10 years, and limits such extensions to 5 years.

### Summary of Public Comments

Twenty-six letters were received that addressed the policy, technical, and cost aspects of the proposed rulemaking, including the nine questions posed by the NRC in the February 21, 1995 proposed rule. All comments, including the ones received by the NRC after the deadline were considered. The commenters included 4 private citizens, 1 public interest group, 16 utilities, 1 nuclear utility industry group, 1 State regulator.

Although the proposed rule did not generate a significant number of public comments, the commenters did align themselves into two distinct groups: those who supported publishing the rule and those against. Those who supported publishing the rule comprise the vast majority of the commenters (22) and included the Nuclear Energy Institute (NEI), which represents the nuclear utility incensees, eighteen individual nuclear power plant incenseer respondents, a Spanish regulatory authority and two private critizens (Mr

sub Murkley, Torspreipingen, perfore of the Commission's risk the ed regulatory program, and supports storeeting with the rule in an qualitations manner despite having reservations about three specific. provisions. The issues of most concern to this group are (1) Licensee commutments to certain requirements of the regulatory guide implementing Appendix J testing via use of the technical specifications (industry would prefer using a plant's final safety analysis report); (2) requirements to conduct visual internal and external inspections of the containment on a frequency of 3 times per 10 years (industry would prefer once per 10 vears to coincide with Type A tests); (3) making Option B of the proposed rule mandatory (industry would prefer to retain the optional feature); and (4) Type C test frequency (industry would prefer a 10-year test interval for certain Type (. valves). Industry supports a future rulemaking to increase the allowable leakage rate.

Two private citizens (Mr. Arndt and Dr. Reytblatt) are opposed to the proposed rule. The issues of most concern to these citizens are: (1) Type A test frequency (Mr. Arndt would prefer that frequencies be held at (urrent levels); (2) Type A test methodology (Dr. Reytblatt wants to halt Type A testing until the test accuracy is improved); (3) Type C test frequencies (Mr. Arndt believes the existing database does not support 10-year test intervals, and suggests 5-years as an upper limit at the present time); and (4) Leakage rate (a future rulemaking to increase the allowable leakage rate should not be undertaken).

Two organizations are opposed to the proposed rule. The Burgau of Nuclear Engineering of the state of New Jersey and the Ohio Citizens for Responsible Energy (OCRE, represented by Ms. Hiatt), a public interest group, expressed skepticism in the risk-based approach to regulation as embodied in the philosophy of the Marginal-to-Safety Program. The issues of most concern to this group are that: (1) Increases in public risk are not acceptable, no matter how marginal; and (2) A future culemaking to increase the allowable inakage rate should not be undertaken.

NRC Position. With respect to the areas of disagreement between the NRC and those who generally support the proposed rule, no new information has been provided in the public comments that was not already addressed in ongoing dialogue. Accordingly, the NRC ness not made any substantive changes to it's proposed regulation. Specifically, the "RC has retained: (1) its position of requiring the usa of technic d specifications, (2) The intervals established for visual examinations of containment, and (3) The  $\Rightarrow$  year Type C test interval.

With respect to the optional feature of the rule, the NRC agrees with the industry and has retained this feature. With respect to Mr. Arndt and Dr. Reytblatt, the NRC agrees in part with Mr. Arndt and has decided not to alter the LLRT test interval as noted in item (3). The other issues raised by Mr. Arndt and Dr. Reytblatt contain no information that has not been considered previously in a public forum. Therefore, the NRC has decided to make no substantive changes to its proposed rule as a result of the issues raised. With respect to the two organizations opposed to the proposed rule (OCRE and the NJ Burnau of Nuclear Engineering), neither has provided new information or a compelling reason to abandon the riskbased approach to regulation.

In its preliminary criteria for developing performance-based regulations, the NRC identified several issues to be addressed by the rulemaking process as a measure of the viability of the revised rule. These issues were addressed in the proposed rule and the NRC sought further public input on them. Comments were received on these topics in addition to other areas of interest to the public. The following is a summary of comments received on these issues and areas, and NRC's response. A complete discussion of all comments is included in the Public Comment Resolution Document.<sup>5</sup>

1. Can the new rule and its implementation yield an equivalent level of, or would it only have a marginal impact on safety?

Twenty-four commenters addressed this issue, offering a wide variety of opinions, Twenty commenters believe that implementation of the proposed rule will provide an equivalent level of safety to that provided by the current rule. A majority of commenters. representing for the most part nuclear utilities, believe that the proposed regulation will reduce the testing burden currently-imposed on the nuclear industry, and will result in more efficient use of utility resources,while ensuring the health and safety of the public. They believe that the practical experience gained from more than 1,500 reactor-years of commercial nuclear power-plant operation provides at apple prove to a dead, and the Appendix (de transational extention of established over 20 years ago in the basis of eligineering pidgment. Further these commonters belowe that a significant reduction in occupational exposures can be achieved with reduced testing frequency.

Mr. E. Gunter Arndt, a private citizen, believes that the NRC has neither sufficient objective data nor perspective to justify increasing containment leakage rates, decreasing test frequencies, relaxing testing criteria. and reducing containment-system maintenance standards. Dr. Reytblatt, a private citizen, believes that Type A testing must be immodiately suspended because the current testing methodology is flawed. Mr. Kent W. Tosch, Manager of New Jersey's Bureau of Nuclear Engineering, points out that the containment is an extremely important barrier to a release of radioactivity, but the philosophy reflected in this rulemaking is that this barrier can be allowed to become less reliable, even when some nuclear plants are showing signs of aging. Ms. Susan L. Hiatt, Director of Ohio Citizens for Responsible Energy, notes that relaxing the frequency of Appendix J tests leads to an increase in overall reactor risk of approximately 2 percent and, while the NRC may deem this to be marginal, it nonetheless is an increase in risk.

The NRC believes it has collected sufficient subjective and independent data to conduct its risk analysis. Detailed data from two independent power plants, representing four units, data supplied by the NEI representing approximately 30 additional units, and approximately 180 ILRT and licensee event reports were analyzed. These data produced consistent results. Dr. Reytblatt's views, while technically correct, have been opposed by several technically competent organizations including the American National Standards Institute, and Oak Ridge National Laboratory because the improvements he suggests will have an insignificant effect on measured containment leakage rates in practice and thus have no safety significance. The NRC believes there has been ample opportunity for public discussion of the basis for the Appendix J revisions.

Based on the foregoing, the NRC reaffirms its prior conclusion (stated in the February 21, 1995, Federal Register notice) that its safety objective for containment integrity can be maintained while at the same time reducing the burden on licensees. Additionally, the final rule provides a greater level of worker safety than that provided by the previous rule

<sup>\*</sup>Copies are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW, Washington, DC, the PDR s mailing address is Mail Step LL-6. Washington, DC 20555, telephone (2023 634-3273) fax 12021634-3743

2. Use the result or condets objective space of the objective manner to estates due to completive manner to above a communication becomes and the NRC on how the performance or results will be measured or judged?

Economic repetition, the NRC, incorporated responses to this question with those of Question 3.

3. Can the regulation and implementation documents be developed in such a manner that they ran be objectively and consistently inspected and enforced against?

Approximately 20 commenters expressed opinions on Questions #2 and #3 The majority of the commenters believe that regulatory/safety objectives can be established objectively, and can be consistently enforced, although opinions differ on the optimum enforcement mechanism. Mr. Fernando Robledo of the Spanish nuclear regulatory agoncy states that the use of probabilistic risk assessment in the regulatory process provides a more realistic and objective assessment of nuclear safety, and thus supports its increased use in the regulatory process. The NEI believes the use of technical specifications for inspection and enforcement is neither necessary nor worranted and that, rather than a licensee commitment in the plant technical specification, future licensee commitments to implement Option B should be provided by documentation in the updated Final Safety Analysis Report.

To assist in the common understanding of new methods of establishing Type A, B, and C test frequencies between the NRC and power reactor licensees, the NRC has had ongoing discussions with licensees. These discussions included participation in workshops designed to elicit a common understanding. Also: the NRC wishes to retain the current. practice which requires its review and approval of changes to Appendix performance limits and surveillance requirements. Therefore, the NRC has required that the regulatory guideshould be specified in the technical specifications, an approach not inconsistent with the Commission's. policy on technical specifications.

Based on the foregoing, the NRC reaffirms its prior conclusion (stated in the February 21, 1995, proposed rule) that it expects that its activities to date, the review and endorsement of a industry guideline in a regulatory guide, and the general reference of the regulatory guide in plant technical specifications, will provide a common realist dated for the flat of the construction of the construction

4. Should the proposed revision be made even less pre-criptive?

Except for Mr. Hill and Mr. Barkley, commenters did not explainly address this question, which was directed at the possibility of reducing, even further, the testing frequency of ILRTs based on the fact that there does seen: to be a strong statistical link between passing or failing successive ILRTs Mr Hill believes that there is no need to make the rule less prescriptive, and it may be inferred that is no desire on the part of industry to further increase the testing interval between ILETs or to eliminate them completely Richard Barkley, although strongly supporting an adjustment to the frequency of Type A testing to once every 10 years, also discourages the NRC from adopting a Type A surveillance interval any longer than 10 years because of aging considerations.

The NRC has decided, in general, to maintain the present level of prescriptiveness in the proposed rule and, in particular, to not decrease further the test frequency for ILRTs. The NRC's position is guided by the desire to maintain some conservatism to address uncertainties and adopt an evolutionary approach wherein incentives remain for good performance

5. Should the proposed revisions be made mandatory?

To avoid repetition, the NRC incorporated responses to this question with those of Question 7.

6. Was the definition of "backfit" in § 50.109[a](1) intended to encompass rulemakings of the type represented by this proposed rule?

To avoid repetition, the NRC incorporated responses to this question with those of Question 7.

7. Is it appropriate for the Commission to waive the applicability of the Backfit Rule?

-The majority of the 20 commenters believe that compliance with the performance-based Appendix | program should not be made mandatory. The NEL believes that rulemakings that provide relief from a current regulation but would also contain one or more new requirements (as is the case bere) would be subject to the backfit rule. These commenters believe that application of the backfit rule would be necessary before the NRC could promulgate the performance-based Appendix | program as a requirement, believing some licensees might sclect, for reasons of cost, to continue to comply with the existing Appendix I.

The majority of commenters believe that the backfit rule would apply and

and the war well. Several at lots 2.1 have the subjection to warking a trackful and viewhence or relief is available har are concerned with the generaimplications of waiving the applicability of the backfit rule. The NET believes that while the proposed Appendix | revisions would provide much needed performance-based improvements to the existing Appendix I, it would also impose new requirements, thus, the proposed rule constitutes a backfit Further, this commenter believes that, as a matter of administrative law, an agency lacks authority to depart from its own rules. thus, it cannot waive its own regulations.

The NRC believes that if the rule were made mandatory, all licensees would incur costs setting up the procedures for implementing the rule's requirements following the guidance provided in the regulatory guide and the NEI guidance document. For those utilities whose circumstances (e.g., remaining plant

"e) would lead them to follow the current Appendix J, costs would be incurred with no additional benefit. Thus, the NRC agrees with the opinions expressed by the NEI and has decided to retain the proposed rule in its present form, which provides a non-mandatory alternative to the current Appendix J requirements. Bocause the NRC has decided to retain the optional feature of the proposed rule, the question of backfit is not addressed.

8. Should NRC pursue a fundamental modification of its regulations in this area by establishing an allowable leakage rate based on risk analysis (apresented in draft NUREG-1493. Chapter 5), as compared to the current practice of using deterministic design basis accidents and dose guidelines contained in 10 CFR Part 100; or should the NRC modify the allowable leakage rate within the current licensing basis by revising source terms and updating regulatory guides (R.G.s 1.3 and 1.4). for calculating doses to the public? What are the advantages and disadvantages of the two approaches? What are some other considerations than risk to public. s.g., plant control room habitability, ... at might limit the allowable leakage rate?

-The 20 commenters who responded to this question consist predominantly of The utilities endorsing the NEI position These respondents encourages the NRC

<sup>\*</sup>Copies may be purchased at current rates trusthe Superintendent of Discumants. U.S. Government Printing Office: P.(2) Box 37082. Washington: CA 20402-9328 (releptone 202-512-22.99 of 202-512 2171): or four the National Technical Exponence Service the Mitching NTIS at Port Rose. Read SpringEast: VA 22161.

to porsue a rolemakir g to alter illowable leakage rates using risk based analysis, believing that a firm technical basis exists for relaking loakage rates up to two orders of magnitude with only a marginal impact on population risk estimates it was also suggested that a review of the present source terms, dose projection models, and associated assumptions against the revised source terms and dose methodologies should also be performed to determine if relief can be achieved, while essuring public health and safety. Three commenters discouraged the NRC from relaxing containment leakage rates ranging from the opinion that little benefit would result (Mr. E. Gunter Arndt) to an unequivocal belief that such a move would violate a plant's licensing basis by eliminating the protection provided for the nearest public individual by the 10 C' R Part 100 siting criteria [Ms. S. Hiat., Ms. Susan Hiatt, representing the Uhio Citizens for Responsible Energy. believes that containment leak rates should be periodically reexamined, not for the purpose of relaxing them, but to determine whether they should be made more stringent given increasing population density around operating nuclear power plants.

The NRC has decided to continue to pursue further reductions in regulatory burden with marginal impacts on safety and will address the complexities noted in the public comments in its future efforts to relax the allowable leakage rate.

9. If the allowable leakage rate is increased, could on-line monitoring of containment integrity replace other current containment tests? Could the results of the on-line monitoring be used to establish a new performance basis for containment integrity involving less stringent reporting requirements if there is high assurance there are no large leakage paths in containment (> 1 in. diameter).

The 18 commenters who responded to this question consist of the NEI and the utilities endorsing the NEI position, and Mr. Richard Barkley. The commenters do not believe that on-line monitoring (OLM) of containment integrity can replace many of the current containment tests, and state that OLM systems have very limited abilities to identify breaches in containment integrity. In the experience of Mr. Barkley, such systems add unnecessary plant complexity and cost.

The NRC acknowledges the public comments rendered and will be guided by them in decisions yet to be made regarding the Phase 2 effort.

10 Are there any other regulatory approaches and technical methods by which the NRC can adopt a complete performance and risk basis to its regulations for containment leak tight integrity? What are some of the attributes for performance, and what risk-based methods can be used to analyze these attributes?

The NEI, speaking for all other utilities, addressed this question by stating that it had not conducted any analyses to determine whether any other regulatory approaches and technical methods by which the NRC can adopt a complete performance and risk basis to its regulations for containment leaktight integrity.

11. Rulemaking Documents.

Seventeen commenters expressed opinions about NRC's regulatory policy decisions and/or specific language in the rule or its supporting documents. Mr. Hill believes that the NRC's and the NEI's guidance documents are not developed to the point of establishing a common understanding of how to meet NRC's regulatory and safety objectives (e.g., while NEI 94-01 contains a lot of information and solid guidance, it also contains inconsistencies, contradictions and unclear passages). The NEL whose , comments were endorsed by most responding licensees, proposed modifications to several of the rulemaking documents, including the Federal Register notice and its own guidance document.

The NRC has amended its rule and accepts most of the revisions to the implementing documents to clarify language and achieve consistency between the rulemaking documents. 12. Technical ligues.

## Testing Frequency

Twenty-four commenters expressed opinions on test frequency, the majority were supportive of 10-year intervals for both Types A. B and C tests. Regarding ILRTs, the Nuclear Energy Institute. several individual utilities, and Mr. Howard Hill expressed views that the proposed rule provides an acceptable lesting frequency for ILRTs. Mr-Fernando Robledo, of the Spanish nuclear regulatory agency, believes that 10 years is too long a time interval between Type A containment tests. Mr. E. Gunter Arndi's view is that a preoperational test should not count as one of the two successful ILRT tests required to go to a 10-year test interval because preoperational conditions are not at all representative of operating conditions. The clüzens' group, Ohio Citizens for Responsible Energy, believes th frequency of containment leak-rate testing should remain unchanged from the current practice.

Several contractives approved on t opanions on the NRC's position, P. U.P.I. testing frequency. Mr. Fernandi Robledo, while agreeing in general with the test frequency for type B and C tests. proposed in the draft regulatory guide believes that certain mechanical penetrations particularly important for plant safety should ' e leak tested every 24 months. Mr. E. Gunter Arndt's view is that the testing history of penetrations, and especially of valves. does not support leaving them untested for 10 years and suggested that an upper limit should be once every 5 years. One utility in particular, and the Nuclear Energy Institute in general believe that the NRC does not go far enough in cilling that several sets of data justify 10-year LLRT intervals. In contrast, Mr. Richard Barkley, who also endorses Type B & C testing frequency based on performance, strongly supports the NRC's proposal to prohibit the adoption of Type C surveillance intervals longer than 60 months.

In establishing the 5-year test interval for LLRTs, the NRC has designed a cautious, evolutionary approach as data are compiled to minimize the uncertainty now believed to exist with respect to LLRT data. The NRC's judgment, based on risk assessment and deterministic analysis, continues to be that the limited database on unquantified leakages and common mode and repetitive failures introduces significant uncertainties into the probabilistic risk analysis. The NRC will be open to submittals from licensees as more performance-based data are developed. The extension of LLRT test interval to 5 years is a prudent first step. By allowing a 25 percent margin in testing frequency requirements, the NRC has provided the flexibility to accommodate longer fuel cycles. With respect to the 10-year interval for ILRTs, the NRC believes its technical support document (NUREG-1493) is persuasive by demonstrating that testing intervals could be increased up to once every 20 years with an imperceptible increase in risk, using actual ILRT data which accounted for random and plant-specific failures and plant aging effects.

Based on the foregoing discussion, the NRC has decided to retain the 60-month Type C test interval and the 120-month interval for Type A and B tests. In response to public comments, the NRC has revised the regulatory guide to limit the extension of test intervals for main steam and feedwater isolation valves in BWRs, and containment purge and vent valves in PWRs and BWRs beyond 30 months given their operating experience and/or safety significance. •••

 A state of the second se ... a other manufactor to the parent resulted se confuctors Type A manage firsts the them buy. Conservation being induces that Lype A testing at full pressure is universary and believes that visual inspection coupled with a reduced pressure test will adequately assure that the containment structural members are leak tight, especially since reduced pressure Type A tests are legally acceptable tests as prescribed in the current 10 CFR Part 50, Appendix ] Mr. E. Gunter Arndt states that while Type A tests performed at reduced pressure rather than peak accident pressure are economically advantageous to the industry, the results of these tests are not necessarily indicative of leakage rates during accidents.

The NRC believes that extrapolating low pressure leakage-test results to full pressure leakage-test results has turned out to be unsuccessful. The NRC believes that the peak calculated accident pressure: (1) Is consistent with the typical practice for NRC staff evaluations of accident pressure for the first 24 hours in accordance with Regulatory Guides 1.3 and 1.4; (2) Provides at least a nominal check for gross leak paths which might exist at high test pressures, but not at low test pressures; and (3) Directly represents technical specification leakage-rate limits, and provides greater confidence in containment system leak-tight integrity.

Based on the foregoing, the NRC has decided to retain the calculated design basis loss-of-coolant accident peak pressure as the ILRT test pressure.

### Containment Inservice Visual [ Inspection

Eighteen commenters expressed opinions on this issue. The NEI and most utilities oppose the NRC's proposal to require visual examination of containment be performed 3 times every 10 years. These commenters suggest that this issue be taken up in a parallel rulemaking.

The NRC finds the industry's arguments for relaxing the frequency of containment visual inspections to be unpersuasive. Because the visual examination is not integral to the ILRT (i.e., may be performed independently) and because the NRC sees benefits to the early detection of unknown aging mechanisms which may be active, the NRC considers it prident to conduct visual inspections on a frequency greater than the ILRT. Further, the NRC believes it is mappropriate to defer a tequirement pertaining to containment

officientarian the poly to access on a redemaking to molecular ACMr Swetten XI, IWI, and IWI, shall its form and substance is fursheed.

Based on the foregoing: the NRC facdecided to retain its frequency for the inservice visual inspection.

## Reporting Requirements

Only one comment was received on this issue. Dr. Z. Reythlatt noted that the proposed rule's reporting requirements consist only of a cover letter to the NRC, and suggested this is intended to conceal information from the public. Dr. Reythlatt suggests that utilities should be required to submit all computer files related to testing to the NRC immediately after the tests have been completed to prevent their alteration or destruction.

It is not the intent of the NRC's reporting requirements to conceal information from the public; if tests fail, the information is required to be reported to the NRC, and the NRC will make such data available to the public. The NRC has decided to retain its reporting requirements as stated in the proposed rule.

# Modifications to the Proposed Rule in Response to Public Comments

The NRC has decided to amend its proposed rule and its implementing documents to clarify language. The NRC has concluded that its regulatory analysis and its technical support document, NUREG-1493, do not require corrections to its technical or cost analyses or its findings. Modifications to all documents will be restricted to clarifications and enhancements to assist in communications with the reader, specifically in areas discussed in the public comments.

The proposed rule has been modified by changing "Acceptance criteria" to "Performance criteria" in Section II, Definitions, and various conforming text changes to reflect consistent use of that term. Other similar redundant terms in the proposed rule, e.g. goals, have been relevant to astablish clear and concise language in the rule.

Specific changes to the draft regulatory guilde. Section C. Regulatory. Position, include [1] in paragraph number 2, the inclusion of the rationale for denying the "3 refueling cycle" change requested in the public comments, [2] the inclusion of a new paragraph number 4, taking exception to the NEI Industry Guideline, Section 10.2 3 3, which provides guidance that an as-found Type C test or an alternative test or analysis (emphasis added) shall be performed prior to any maintenance, report, modification, or adjustment

second to for exceptible to valve on studients of Alternate to to to alternate solutions of as appropriate substitutes for an as to indicate the latter provides clear and objective evidence of performance of isolation, components, and (3) limitation of the extension of test intervals for main steam and feedwater isolation valves in BWRs, and contajone at purge and vent valves in PWRs and BWRs beyond 30 months given their operating experience and/or safety significance.

### Regulatory Guide: Issuance, Availability

The Nuclear Regulatory Commission has issued a new guide in its Regulatory Guide Series. This series has been developed to describe and make available to the public such information as methods acceptable to the NRC staff for implementing specific parts of the Commission's regulations, techniques used by the staff in evaluating specific problems or postulated accidents, and data needed by the staff in its review of applications for permits and licenses

Regulatory Guide 1.163, "Performance-Based Containment Leakage-Test Program," endorses an industry standard which contains guidance on an acceptable performance based leakage-test program, leakage rate test methods, procedures, and analyses that may be used to implement the final regulation published in this notice.

Comments and suggestions in connection with items for inclusion in guides currently being developed or improvements in all published guides are encouraged at any time. Written comments may be submitted to the **Rules Review and Directives Branch** Division of Freedom of Information and Publications Services, Office of Administration, U.S. Nuclear Regulatory Commission, Washington, DC 20555 The NRC staff's response to public. comments received on the draft version of this guide (DG-1037, issued in February 1995) are available for inspection or copying for a fee in the NRC Public Document Room, 2120 L Street-NW., Washington, DC.

Regulatory guides are available for inspection at the Commission's Publi-Document Room, 2120 L Street NW. Washington, DC. Single copies of regulatory guides may be obtained free of charge by writing the Office or Administration, Attention, Distribution and Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, or by fax at (301) 415 2260, Issued guides may also be purchased from the National Technical Information Service on a standing other basis. Definition on this service may technical obtomed by writing NTIS, 5285 Port Roy & Road, Springfield, VA 22151. Regulatory – uides are not copyrighted, and Commission approval is not regulared to reproduce them

### Implementation

ane proposed Option B to Appendix J will become effective 30 days after publication. At any time thereafter, a licensee or applicant may notify the NRC of its desire to perform containment leakage-rate testing according to Option B. Accompanying this notification, a licensee must submit proposed technical specifications changes which would eliminate those technical specifications which implement the current rule and propose a new technical specification referencing the NRC regulatory guide or, if the licensee desires, an alternative implementation guidance. Implementation must await NRC review and approval of the licensee's proposal. The NRC anticipates that a generic communication will be issued shortly which will provide the implementation procedure to all power reactor licensees.

### Finding of No Significant Environmental Impact: Availability

The Commission has determined under the National Environmental Policy Act of 1969, as amended, and the **Commission's regulations in Subpart A** of 10 CFR Part 51, that this rule, if adopted, would not be a major Federal " action significantly affecting the quality of the human environment, and therefore an environmental impact statement is not required. There will be a marginal radiological environmental impact offsite, and the occupationalexposure onsite is expected to decrease by about 0.8 person-rem per year ofplant operation for plant personnel if licensees adopt the performance-based testing scheme provided in the revised regulation. Alternatives to issuing this revision of the regulation were considered, One alternative would also entail complex revisions to other NRC regulations and therefore the NRC has decided to pursue it separately in the future. A third alternative would add regulatory burden without a commensurate safety benefit and therefore was found not to be acceptable. The environmental assessment is available for inspection or copying for a fee in the NRC Public. Document Room, 2120 L Street NW. (Lower Level), Washington, DC: the PDR's mailing address is Mail Stop LL- Washington, DC 20555, phone (202). 634 -3273; fax (202) 634-3343.

### **Paperwork Reduction Act Statement**

This final rule amends information collection requirements that are subject to the Paperwork Reduction Act of 1980 (4+ U.S.C. 3501 et seq.). These requirements were approved by the Office of Management and Budget, approval number 3150-0011.

Because the rule will relax existing information collection requirements by providing an option to the existing requirements, the public burden for this collection of information is expected to be reduced by approximately 400 hours per licensee per year. This reduction includes the time required for reviewing instructions, searching existing data sources, gathering and maintaining the data needed and completing and reviewing the collection of information. Send comments regarding the estimated burden reduction or any aspect of this collection of information, including suggestions for reducing this burden, to the Information and Records Management Branch (T-6 F33), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; and to the Desk Officer, Office of Information and Regulatory Affairs, NEOB-10202, (3150-0011), Office of Management and Budget, Washington, DC 20503.

### **Regulatory Analysis**

The Commission has prepared a final regulatory analysis on this regulation. The analysis examines the costs and benefits of the alternatives considered by the Commission, The analysis is available for inspection or copying for a fee in the NRC Public Document Room, 2120 L Street NW, (Lower Level), Washington, DC; the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; phone (202) 634-3273; fax (202) 634-3343.

### **Regulatory Flexibility Certification**

In accordance with the Regulatory Flexibility Act of 1980. (\* U.S.C. 605(b)) the Commission certifies that this rule will not, if premulgated, have a significant economic impact on a substantial number of small entities. This rule affects only the licensing and operation of nuclear power plants. The companies that own these plants do not fall within the scope of the definition of 'small entities'' set forth in the Regulatory Flexibility Act or the Size standard adopted by the NRC (10 CFR 2.810).

## Backfit Analysis

This final rule mends a current regulation by establishing alternative requirements which may be voluntarily adopted by heensees. Therefore, the final rule does not constitute a backfit as defined in 10 CFR 50 109(101) Therefore, a backnit analysis is nornecessary

### List of Subjects in 10 CFR Part 50

Antitrust, Classified information, Criminal penalties, Fire protection, Incorporation by reference, Intergovernmental relations, Nuclear power plants and reactors, Radiation protection, Reactor siting critena. Reporting and recordkeeping requirements.

For the reasons set out in the preamble and under the authority of the Atomic Energy Act of 1957, as amended, the Energy Reorganization Act of 1974, as amended, and 5 U.S.C. 552 and 553, the NRC is adopting the following amendments to 10 CFR Part 50.

### PART 50-DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES

1. The authority citation for Part 50 is revised to read as follows:

Authority: Soca. 102, 103, 104, 105, 161, 182, 163, 188, 189, 68 Stat. 936, 937, 938, 948, 953, 954, 955, 956, as amended, soc 234, 83 Stat. 1244, as amended (42 U.S.C. 2132, 2133, 2134, 2135, 2201, 2232, 2233, 2236, 2239, 2262); socs. 201, as amended, 202, 208, 88 Stat. 1242, as amended, 1244 1246 (42 U.S.C. 5841, 5842, 5845).

Section 50.7 elso issued under Pub. L. 95-601, sec. 10, 92 Stat. 2951, as amended by Pub. L. 102-486, sec. 2902, 106 Stat. 3123, (42 U.S.C. 5851). Sections 50.10 also issued under secs. 101, 185, 68 Stat. 936, 955, as amended (42 U.S.C. 2131, 2235); sec. 102. Pub. L. 91-190, 83 Stat. 853 (42 U.S.C. 4332). Sections 50.13, 50.54(dd), and 50.103 also issued under sec. 108, 65 Stat. 939, as amended (42 U.S.C. 2138). Sections 50.23, 50.35, 50.55, and 50.56 also issued under sec. 185, 58 Stat. 955 (42 U.S.C. 2235). Sections 50.33a, 50.55e and Appendix Q also issued under sec. 102, Pub. L. 91-190, 83 Stat. 853 (42 U.S.C. 4332). Sections 50.34 and 50.54 also issued under sec. 204, 88 Stat. 1245 [42 U.S.C. 5844). Sections 50.58, 50.91, and 50.92 also issued under Pub. L. 97-415. 96 Stat. 2073 (42 U.S.C. 2239). Section 50.78 also insued under sec. 122, 68 Stat. 939 (42 U.S.C. 2152). Sections 50.80 50.81 also issued under sec. 184:58 Stat. 954, as amended (42 U.S.C. 2234). Appendix F also issued inder sec. 187, 68 Stat. 955 [42 U S.C. 22371

2. Appendix J to 10 CFR Part 50 is amended by adding the following language between the title and the Table of Contents and adding the language for Option B after Section V.B3

### Appendix J--Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

This appendix includes two options. A and B, either of which can be chosen for meeting the requirements of this appendix.

#### Opt. n.A.: Prescriptive Requirements \* \* \* . .

Option H.: Performance Based Requirements

### Table of Contents

- 1 Introduction
- **II** Definitions
- III. Performance based leakage-test
- requirements
- A `lype A test
- B. Type B and C tests
- IV Recordkeeping
- V Application

#### I. Introduction

One of the conditions required of all operating licenses for light-water-cooled power reactors as specified in § 50.54(o) is that primary reactor containments meet the leakage-rate test requirements in either Option A or B of this appendix. These test requirements ensure that (a) leakage through these containments or systems and components penetrating these containments does not exceed allowable leakage rates specified in the Technical Specifications and (b) integrity of the containment structure is maintained during its service life. Option B of this appendix identifies the performancebased requirements and criteria for preoperational and subsequent periodic leakage-rate tosting.<sup>3</sup>

### II. Definitions

Performance criteria means the performance standards against which test results are to be compared for establishing the acceptability of the containment system as a leakage-limiting boundary.

Containment system means the principal barrier, after the reactor coolant pressure boundary, to prevent the release of quantities of radioactive material that would have a significant radiological effect on the health of . the public.

Overall integrated leakage rate means the total leakage rate through all tested leakage paths, including containment-welds, valves, fittings, and components that penstrate the ... containment system.

La (percent/24 hours) means the maximum allowable leakage rate at pressure Pa as specified in the Technical Specifications:

Pa (p.s.i.g) means the calculated peak containment internal pressure related to the design basis loss-of-coolant accident as specified in the Technical Specifications.

## III. Performance-Based Leakage-Test-Requirements

### A Type A Test

Type A tests to measure the containment system overall integrated leakage rale must be conducted under conditions representing design basis loss-of-coolant accident containment peak pressure. A Type A lest must be conducted (1) after the containment system has been completed and is ready for

operation and (2) at a periodic interval based on the historical performance of the overall containment system as a barrier to fission product releases to reduce the risk from reactor accidents. A general visual inspection of the accessible interior and exterior surfaces of the containment system for structural deterioration which may affect the containment leak-tight integrity must be conducted prior to each test, and at a periodic interval between tests based on the performance of the containment system. The leakage rate must not exceed the allowable leakage rate (La) with margin, as specified in the Technical Specifications. The test results must be compared with previous results to examine the performance history of the overall containment system to limit leakage.

## B. Type B and C Tests

Type B pneumatic tests to detect and measure local leakage rutes across pressure retaining, loakage-limiting boundaries, and Type C pneumatic tests to measure containment isolation valve leakage rates, must be conducted (1) prior to initial criticality, and (2) periodically thereafter at intervals based on the safety significance and historical performance of each boundary and isolation valve to ensure the integrity of the overall containment system as a barrier to fission product release to reduce the risk from reactor accidents. The performancebased testing program must contain a performance criterion for Type B and C tests, consideration of leakage-rate limits and factors that are indicative of or affect performance, when establishing test intervals, evaluations of performance of containment system components, and comparison to previous test results to examine the performance history of the overall containment system to limit leakage. The tests must demonstrate that the sum of the leakage rates at accident pressure of Type B tests, and pathway leakage rates from Type G tests, is less than the performance criterion (La) with margin, as specified in the Technical Specification. سا د مود ور رو د م

### IV. Recording

14 7 A The results of the preoperational and periodic Type A. B. and C tests must be documented to show that performance. criteria for leekage have been met. The ÷ comparison to previous results of the performance of the greenell containment It must be included for the containment system and components within it are adequate. These records must be available for inspection at plant sites. If the test results exceed the performance criteria (La) as defined in the plant Technical Specifications, those exceedances must be assessed for Emergency Notification System reporting under \$\$ 50.72 (b)(1)(ii) and \$ 50.72 (b)(2)(i), and for a Licensee Event Reportunder § 50.73 (a)(2)(ii)

~. .

5 L T

- V. Application
- A Applicability

The requirements in either or both Option B, III.A for Type A tests, and Option B, III.B for Type B and C tests, may be adopted on

a voluntary basis by an operating raclear power mactor licensee as specified in § 27-4 in substitution of the requirements for these tests contained in Op ion A of this appendix If the requirements for tests in Option B, III A or Option B. III.B are implemented, the recordkeeping requirements in Option B. IV for these tests must be sub- uted for the reporting requirements of these tests contained in Option A of this appendix.

### **B.** Implementation

1. Specific exemptions to Option A of this appendix that have been formally approved by the AEC or NRC, according to 10 CFR 50.12, are still applicable to Option B of this appendix if necessary, unless specifically revoked by the NRC.

2. A licensee or applicant for an operating license may adopt Option B, or parts thereof, as specified in Section V.A of this Appendix, by submitting its implementation plan and request for revision to technical specifications (see paragraph B.3 below) to the Director of the Office of Nuclear Reactor Regulation.

3. The regulatory guide or other implementation document used by a licensee, or applicant for an operating license, to develop a performance-based leakage-testing program must be included, by general reference, in the plant technical specifications. The submittal for technical specification revisions must contain justification, including supporting analyses. if the licensee chooses to deviate from methods approved by the Commission and endorsed in a regulatory guide.

4. The detailed licensee programs for conducting testing under Option B must be available at the plant site for NRC inspection

Dated at Rockville, Maryland this 20th day of September, 1995.

For the Nuclear Regulatory Commission. John C. Hoyle,

## Secretary of the Commission.

5. j <sup>1</sup>.

Ì - È

- 57

=:...

τ.

<u>,</u> 1 

[FR Doc. 95-23803 Filed 9-25-95; 8:45 am] BILLING.CODE 7900-01-P

<sup>&</sup>lt;sup>3</sup> Spacific guidance concerning a performance bused loakage-tust program, acceptable loakage-rate test methods, procedures, and analyses that may be used to implement these requirements and criteria are provided in Regulatory Guide 1 163. Performance Based Containment Loak Test Presents



NEI 94-01 Revision 0

# NUCLEAR ENERGY INSTITUTE

# **INDUSTRY GUIDELINE FOR**

# **IMPLEMENTING PERFORMANCE-BASED**

**OPTION OF 10 CFR PART 50, APPENDIX J** 

July 26, 1995

9510200180 950930 PDR NUREG 1493 R PDR

# **INDUSTRY GUIDELINE FOR IMPLEMENTING PERFORMANCE-BASED OPTION OF 10 CFR PART 50, APPENDIX J**

July 26, 1995

## ACKNOWLEDGMENTS

This guidance document, <u>Industry Guideline for Implementing Performance-Based</u> Option of 10 CFR 50, <u>Appendix J</u>, NEI 94-01, was developed by the Nuclear Energy Institute (NEI) Appendix J Working Group and the Task Force for the Implementation of Appendix J Alternative Containment Testing Rule. We appreciate the direct participation of the many licensees who contributed to the development of the guideline and the participation of the balance of the industry who reviewed and submitted comments to improve the document clar ty and consistency. The dedicated and timely effort of the many Task Force participants, including their management's support of the effort, is greatly appreciated.

NEI also wishes to express its appreciation to the Electric Power Research Institute (EPRI) who devoted considerable time and resources to the development of this industry Appendix J guideline.

## NOTICE

Neither NEI, nor any of its employees, members, supporting organizations, contractors, or consultants make any warranty, expressed or implied, or assume any legal responsibility for the accuracy or completeness of, or assume any liability for damages resulting from any use of, any information apparatus, method, or process disclosed in this report or that such may not infringe privately owned rights.

## FOREWORD

The purpose of this guidance is to assist licensees in the implementation of Option B to 10 CFR 50, Appendix J. "Leakage Rate Testing of Containment of Light Water Cooled Nuclear Power Plants." In response to NRC data gathering inquiries, the industry collected, evaluated, and provided summary data that supported the NRC's independent data analysis.

Licensees can minimize the redundant and overlapping engineering and evaluation efforts associated with these related regulatory requirements by internal coordination. NEI will continue to monitor these and other activities to provide focus on opportunities for safety improvement and cost avoidance.

## EXECUTIVE SUMMARY

This document describes an acceptable approach for implementing the optional performance-based requirements of Option B to 10 CFR 50. Appendix J. It delineates a performance-based approach for determining Type A, Type B, and Type C containment leakage rate surveillance testing frequencies. Justification of extending test intervals is based on the performance history and risk insights.

This guideline discusses the performance factors that licensees must consider in determining test intervals. It does not address how to perform the tests because these details can be found in existing documents (e.g., ANSI/ANS 56.8-1994).

The performance criteria for Type A tests is less than 1.0L<sub>a</sub> Extension in Type A test intervals are allowed based upon two consecutive successful Type A tests and consideration of performance factors as described in Section 11 of this guideline. Type A testing shall be performed at a frequency of at least once per 10 years. If the As-found Type A results are not acceptable, a determination should be performed to identify the cause of unacceptable performance and determine appropriate corrective actions. Once completed. acceptable performance should be reestablished by performing a Type A test within 48 months following the unsuccessful Type A test. Following a successful Type A test, the surveillance frequency may be returned to once per 10 years.

Extensions in Type B and Type C test intervals are allowed based upon completion of two consecutive periodic As-found tests where the results of each test are within a licensee's allowable administrative limits. Intervals for Type B and Type C may be increased from 30 months up to a maximum of 120 months (except for containment airlocks). If the Type B and C test results are not acceptable, the test frequency should be set at the initial test intervals. Once the cause determination and corrective actions have been completed, acceptable performance may be reestablished and the testing frequency returned to the extended intervals as specified in this document.

Containment airlock(s) shall be tested at an internal pressure of not less than  $P_{sc}$  prior to a preoperational Type A test. Subsequent periodic tests shall be performed at a frequency of at least once per 30 months. When containment integrity is required, airlock door seals should be tested within 7 days after each containment access. For periods of multiple containment entries where

the airlock doors are routinely used for access more frequently than once every 7 days (e.g., shift or daily inspection tours of the containment), door seals may be tested once per 30 days during this time period.

The phormance factors that have been identified as important and should be considered in establishing testing intervals include past performance, service, design, safety impact, and cause determination as described in Section 11.3.1.

If a licensee considers extended test intervals of greater than 60 months or three refueling cycles for Type B or Type C tested components, the review should include the additional considerations of As-found tests, schedule and review as described in Section 11.3.2.

Finally, this document discusses the general requirements for recordkeeping for implementation of Option B to Appendix J.



٧

# TABLE OF CONTUNTS

|                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56              | 12.2 Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92              | Linemeriupesi 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22              | 12.0 RECORD/CERPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22              | 11.3.2 Programmetic Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 54              | 11.3.1 Forformance Factors, 1.5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 53              | FIODAL METHON SHIRE CONSERVED BALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>6</b> I      | Tollander C. S. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8T.             | TIL TOTAL CONTRACTOR OF THE TOTAL OF TOTAL OF THE TOTAL OF                                                                                                                                                                                                                                            |
| <b>8</b> 1 '    | SUSEN O'SELECTION SEEDER STREET STREE |
|                 | 11.0 BASIS FOR REFEORMANCE AND RISK-BASED TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LT              | Inview Inview Destroyand The Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31 <sup>°</sup> | edoofutAmennisino) S.S.OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ۶Ľ              | 10.2.1 Type B Test Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>E</b> I.     | 10.2 Type B and Type C Testing Frequencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21.             | 10.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21              | FOR TYPE B AND TYPE C TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 10.0 DETERMINING PERFORMANCE-BASED TEST FREQUENCIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21.             | 0.2.6 Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21.             | arrestric exceptance Acceptance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| II              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>0</b> T '    | alavrend isert behaver E.S.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 01              | elavient 14eT faitinl S.S.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6               | teeT A eavT S.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6               | Isvrətni tesT 2.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8               | Performance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ľ               | noitoubortal 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ζ.              | TYPE A TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | 9.0 DETERMINING PERFORMANCE-BASED TEST INTERVAL FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ğ.              | 8.0 TESTING METHODOLOGIES FOR TYPE A, B AND C TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ĝ.              | 2.0 UTILIZATION OF EXISTING PROGRAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4               | 6.0 GENERAL REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3               | 5.0 DEFINITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.              | 4.0 APPLICABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.              | 3.0 RESPONSIBILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2               | 2.0 PURPOSE AND SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.              | noisenseil 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I               | 1.1 Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ľ               | 1 0 INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Į

# APPENDICES

# APPENDIX A

-

NRC Rule for Implementing Performance-Based Leakage Test Requirements



# LIST OF IL LUSTRATIONS

Page

Table 1 Risk Results for Type A, Type B, and Type C Testing Intervals from EPRI Research Project Report 4114-22 22-23



## 1.0 INTRODUCTION

## 1.1 Background

Currently, containment leakage rate testing is performed in accordance with 10 CFR 50, Appendix J, "Leakage Rate Testing of Containment of Light Water Cooled Nuclear Power Plants." Appendix J specifies containment leakage testing requirements, including the types of tests required. In addition, for each type of test, Appendix J discusses leakage rate acceptance criteria, test methodology, frequency of testing, and reporting requirements. The specific testing requirements are discussed in a variety of sources, including Technical Specifications, Final Safety Analysis Reports (FSARs), National Standards (e.g., ANSI/ANS 56.8–1994, "Containment System Leakage Testing Requirements"), and licensee/NRC correspondence. These documents require that periodic testing be conducted to verify the leakage integrity of the containment and those containment systems and components which penetrate the containment..

The reactor containment leakage test program includes performance of an Integrated Leakage Rate Test (ILRT), also known as a Type A test; and performance of Local Leakage Rate Tests (LLRTs), also known as either Type B or Type C tests. The Type A test measures overall leakage rate of the primary reactor containment. Type B tests are intended to detect leakage paths and measure leakage for certain primary reactor containment penetrations. Type C tests are intended to measure containment isolation valve leakage rates.

The NRC has amended the regulations to provide an Option B to the existing Appendix J. Option B is a performance-based approach to Appendix J leakage testing requirements. This option would allow licensees with good ILRT performance history to reduce the Type A testing frequency from three tests in 10 years to one test in 10 years. For Type B and Type C tests, Option B would allow licensees to reduce testing frequency on a plant-specific basis based on experience history of each component, and established controls to ensure continued performance during the extended testing interval.

Generally, a FSAR describes plant testing requirements, including containment testing. In some cases, FSAR testing requirements differ from those of Appendix J. In many cases, Technical Specifications were approved that incorporated exemptions to provisions of Appendix J. Additionally, some licensees have requested and received exemptions after their Technical Specifications were issued. The alternate performance-based testing requirements contained in Option B of Appendix J will not invalidate such exemptions.

## 1.2 Discussion

This guideline describes an approach that may be used to meet the alternate testing requirements described in Option B to Appendix J. The performance history of containment, penetrations, and containment isolation valves is used as the means to justify extending test intervals for containment Type A, Type B, and Type C tests. This guideline provides a method for determining the extended test intervals based on performance.

Under Option B, test intervals for Type A, Type B, and Type C testing may be determined by using a performance-based approach. Performance-based test intervals are based on consideration of operating history of the component and resulting risk from its failure. Performance-based for Appendix J refers to both performance history necessary to extend test intervals as well as criteria necessary to meet the requirements of Option B. The performance-based approach to leakage rate testing discussed in NUREG-1493, "Performance-Based Leak-Test Program," concludes that the impact on public health and safety due to extended intervals is negligible.

The objective for monitoring performance of Type A tests focuses on verifying the leakage integrity of a passive containment structure. Type B and C testing focuses on assuring that containment penetrations are essentially leak tight.

## 2.0 PURPOSE AND SCOPE

This guideline describes an acceptable method for implementing the optional performance-based requirements of Appendix J. This method uses industry performance data, plant-specific performance data, and risk insights in determining the appropriate testing frequency. Licensees may elect to use other suitable methods or approaches to comply with Option B, but must obtain NRC approval prior to implementation.

The approach described in this guideline to implement Appendix J, Option B includes:

Continued assurance of the leakage integrity of the containment without adversely affecting public health and safety;

Licensee flexibility to implement cost-effective testing methods;

- A framework to acknowledge good performance; and
- Utilization of risk and performance-based methods

This guideline delineates the basis for a performance-based approach for determining Type A, Type B, and Type C containment leakage rate surveillance testing frequencies. It does not address how to perform the tests because these details can be found in existing documents (e.g., ANSI/ANS 56.8-15.4). Licensees that select Option B are urged to coordinate the implementation of Appendix J, as described in this guideline, with their plans for implementation of the Maintenance Rule and other changes in the regulations as they are finalized.

## 3.0 **RESPONSIBILITY**

Each licensee should determine if the requirements of the existing Appendix J (Option A) or the alternate requirements (Option B) are most appropriate for its facility. If a licensee elects to implement the Option B requirements, the guidance described in this document has been reviewed and endorsed by the NRC as an acceptable method of implementing the requirements.

In addition, if a licensee elects to adopt Option B, it may elect to adopt the requirements that apply to a specific category of tests (i.e., Type A, or Type B and Type C tests) only.

## 4.0 APPLICABILITY

This guideline is applicable to licensees holding an operating license issued in accordance with 10 CFR 50.21(b) and 50.22, and 10 CFR Part 52, Subpart C.

Industry perating experience and plant modifications that may affect Type A, Type B, an Type C testing program(s) should be reviewed to assure test and maintenance programs are appropriately adjusted to reflect these changes.

# 5.0 DEFINITIONS

Definitions of commonly accepted terms used in this guideline may be found in ANSI/ANS 56.8-1994.

## 6.0 GENERAL REQUIREMENTS

Option B of 10 CFR 50, Appendix J states, in part, that - Type A test which measures b th the containment system overall integrated leakage rate at the containment pressure and system alignments assumed during a large break loss of coolant accident (LOCA), and demonstrates the capability of the primary containment to withstand an internal pressure load may be conducted at a periodic interval based on the performance of the overall containment system. The leakage rate must not exceed what is allowed as specified in a plant's Technical Specifications.

A review of leakage rate testing experience indicates that only a small percentage of Type A tests have excessive leakage. Furthermore, the observed leakage rates for the few Type A test failures were only marginally above current limits. These observations, together with the insensitivity of public risk to containment leakage rate at these low levels, suggest that for Type A tests, intervals may be established based on performance. Type A test is the primary test to detect significant leakage from the containment that would not be detected by the Type B and Type C testing programs, and to verify at periodic intervals the accident leakage (L<sub>B</sub>) assumptions in the accident analysis. Specific details of Type A test requirements are discussed in ANSI/ANS 56.8-1994.

An LLRT is a test performed on Type B and Type C components. An LLRT is not required for the following cases:

- Primary containment boundaries that do not constitute potential primary containment atmospheric pathways during and following a Design Basis Accident (DBA);
- Boundaries sealed with a qualified seal system; or,
- Test connection vents and drains between primary containment isolation valves which are one inch or less in size, administratively secured closed and consist of a double barrier.

For Type B and Type C tests, intervals shall be established based on the performance history of each component. Performance criterion for each component is determined by designating an administrative leakage limit for each component in the Type B and Type C testing program. The acceptance criteria for Type B and Type C tests is based upon demonstrating that the sum of leakage rates at DBA pressure for containment penetrations and valves that are testable, is less than the total allowable leakage rate specified in the plant Technical Specifications. Primary containment barriers sealed with a qualified acid system shall be p-roducally tested to demonstrate their functionality in accordance with the plant Technical Specifications. Specific details of the testing methodology and requirements are contained in ANSI/ANS 56.8-1994 and should be adopted by licensees with applicable systems. Test frequency may be set using a performance bit us in a manner similar to that described in this guideline for Type B and Type C test intervals. Leakage from containment isolation valves that are sealed with a qualified seal system may be excluded when determining the combined leakage rate provided that:

- Such verves have been demonstrated to have fluid leakage rates that do not exceed those specified in the technical specifications or associated bases, and
- The installed isolation valve seal-water system fluid inventory is sufficient to assume the sealing function for at least 30 days at a pressure of 1.10 Pa.

## 7.0 UTILIZATION OF EXISTING PROGRAMS

Licensees should use existing industry programs, studies, initiatives and data bases, where possible

## 8.0 TESTING METHODOLOGIES FOR TYPE A, B AND C TESTS

Type A, Type B and Type C tests should be performed using the technical methods and techniques specified in ANSI/ANS 56.8-1994, or other alternative testing methods that have been approved by the NRC. However, because ANSI/ANS 56.8-1994 is not performance based, certain exceptions and clarification to methods, techniques and definitions contained in that document are required. These are discussed in the following paragraphs.

Test intervals in ANSI/ANS 56.8-1994 are not performance-based. This guideline should be implemented when establishing test intervals for Type A, Type B and Type C testing.

All Appendix J pathways must be properly drained and vented during the performance of the ILRT, with the following exceptions

ţ

- Pathways in systems which are required for proper conduct of the Type A test or to maintain the plant in a safe shutdown condition during the Type A test;
- Pathways in systems that are normally filled with fluid and operable under post-accident conditions;
- Portions of the pathways outside primary containment that are designed to Seismic Category I and at least Safety Class 2; or,
- For planning and scheduling purpose, or ALARA considerations, pathways which are Type B or C tested within the previous 24 calendar months need not be vented or drained during the Type A test.

The proper methods for draining and venting are specified in ANSI/ANS 56.8-1994.

It should be noted that the Type B or C tests performed on those pathways must test all of its containment barriers. This includes bonnets, packings, flanged joints, threaded connections, and compression fittings. If the Type B or C test pressurizes any of the 1 athway's containment barriers in the reverse direction, it must be shown that test results are not affected in a nonconservative manner by directionality. The As-found and the As-left leakage rate for all pathways that are not drained and vented must be determined by Type B and Type C testing within the previous 24 calendar months of the time that the Type A test is performed and must be added to the Type A leakage rate UCL to determine the overall  $L_a$ surveillance acceptance criteria in accordance with the definition in ANSI/ANS 56.8-1994.

The As-found Type A test results described in ANSI/ANS 56.8-1994 are defined to include the positive differences between the As-found and As-left LLRT leakage rates for each pathway tested and adjusted prior to the performance of the Type A test (leakage savings). For purposes of determining an acceptable Type A test for operability considerations, the definitions and discussions found in ANSI/ANS 56.8-1994 for As-found Type A leakage rate should be followed.

However, because of the performance-based emphasis on Type A testing, criteria for Type A tests have been defined differently, and do not use the leakage savings value. The performance criteria use a calculated performance leakage rate,

6

which is defined as the sum of the Type A UCL and As left MNPLR leakage rate for all Type B and Type C pathways that were in service, isolated or not lined up in their test position (i.e., drained and vented to containment atmosphere) prior to performing the Type A test. In addition, any leakage pathways that were isolated during performance of the test because of excessive leakage must be factored into the performance determination. If the leakage can be determined by a local leakage rate test, the As-left MNPLR for that leakage path must also be added to the Type A UCL. If leakage cannot be determined by local leakage rate testing, the performance criteria for the Type A test were not met.

ANSI/ANS 56.8 1994 also specifies surveillance acceptance criteria for Type B and Type C tests. The ANSI/ANS 56.8-1994 definition is that the combined leakage rate for all penetrations subject to Type B or Type C tests is limited to less than or equal to 0.60L<sub>a</sub>, when determined on a MNPLR basis from As-found LLRT results; and limited to less than or equal to 0.60L<sub>a</sub>, as determined on a Maximum Pathway Leakage Rate (MXPLR) basis from the As-left LLRT results.

Due to the performance-based nature of Option B to Appendix J and this guideline, it is recommended that acceptance criteria for the combined As-found leakage rate for all penetrations subject to Type B or Type C testing be the same as that defined in ANSI/ANS 56.8-1994, with the following additions. The combined As-left leakage rates determined on a MXPLR basis for all penetrations shall be verified to be less than 0.60L<sub>B</sub> prior to entering a mode where containment integrity is required following an outage or shutdown that included Type B and Type C testing only. The combined As-found leakage rates determined on a MNPLR basis for all penetrations shall be less than 0.60L<sub>B</sub> at all times when containment integrity is required. These combined leakage rate determinations shall be done with the latest leakage rate test data available, and shall be kept as a running summation of the leakage rates.

## 9.0 DETERMINING PERFORMANCE BASED TEST INTERVAL FOR TYPE A TESTS

## 9.1 Introduction-

Determination of the surveillance frequency of Type A tests is based upon satisfactory performance of leakage tests that meet the requirements of Appendix J. Performance in this context refers to both the performance history necessary to determine test intervals as well as overall criteria needed to demonstrate leakage integrity performance. Performance is also used as a basis for demonstrating negligible impact on public health and safety. The purpose of Type A testing is to verify the leakage integrity of the containment structure. The primary performance objective of the Type A test is not to quantify an overall containment system leakage rate. The Type A testing methodology as described in ANSI/ANS 56.8–1994, and the modified testing frequencies recommended by this guideline, serves to ensure continued leakage integrity of the containment structure. Type B and Type C testing assures that individual penetrations are essentially leak tight. In addition, aggregate Type B and Type C leakage rates support the leakage tightness of primary containment by minimizing potential leakage paths. A review of performance history has concluded that most, if not all, containment leakage is identified by local leakage rate testing.

This section discusses a method to determine a testing frequency for Type A testing based on performance. The extended test interval is based upon industry performance data that was compiled to support development of Option B to Appendix J, and is intended for use by any licensee. In adopting extended test intervals recommended in this guideline, a licensee should perform Type A testing in accordance with recommended industry practices. Additional technical information concerning data analysis may be found in NUREG-1493.

Consistent with standard scheduling practices for Technical Specifications Required Surveillances, intervals for recommended Type A testing given in this section may be extended by up to 15 months. This option should be used only in cases where refueling schedules have been changed to accommodate other factors.

## 9.1.1 Performance Criteria

Performance criteria for establishing Type A test intervals should provide both the standard against which performance is to be measured and basis for determining that performance is acceptable. Because of the performance-based emphasis on Type A testing, the criteria to determine extended Type A test intervals have been defined differently than the surveillance acceptance criteria discussed in ANSI/ANS 56.8-1994. This is to make the performance leakage rate more of an indicator of the overall condition of containment leakage integrity.

The performance criteria for Type A test allowable leakage is less than 1.0L<sub>a</sub>. This allowable leakage rate is calculated as the sum of the Type A UCL and As-left MNPLR leakage rate for all Type B and Type C pathways that were in service, isolated, or not lined up in their test position (i.e., drained and vented to containment atmosphere) prior to pe<sup>-forming</sup> the Type A test. In addition, leakage pathways that were isolated during performance of the test because of excessive heakage must be factored into the performance determination. If the leakage can be determined by a local leakage rate test, the As-found MNPLR for that leakage path must also be added to the Type A UCL. If the leakage cannot be determined by local leakage rate testing, the performance criteria are not met.

Performance criteria do not include addition of the positive differences between the As-found MNPLR and the As-left MNPLR for each pathway tested and adjusted prior to Type A testing (total leakage savings). Total leakage savings are identified through performance of Type B and Type C testing and do not contri<sup>1</sup> ' significantly to performance of a Type A test. Failure of Type B and Type C test components found during performance of a Type A test should be reviewed for cause determination and corrective actions.

## 9.1.2 Test Interval

Extensions in test intervals are allowed based upon two consecutive, periodic Type A tests and consideration of performance factors as described in Section 11.3, "Plant-Specific Testing Program Factors." The elapsed time between the first and the last tests in a series of consecutive passing tests used to determine performance shall be at least 24 months.

## 9.2 Type A Test

## 9.2.1 Pretest Inspection and Test Methodology

Prior to initiating a Type A test, a visual examination shall be conducted of accessible interior and exterior surfaces of the containment system for structural problems which may affect either the containment structure leakage integrity or the performance of the Type A test. This inspection should be a general visual inspection of accessible interior and exterior surfaces of the primary containment and components.

ANSI/ANS 56.8-1994 testing methodology states that pathways open to the primary containment atmosphere under post-DBA conditions shall be drained and vented to the primary containment atmosphere during a Type A test. There are three exceptions discussed in ANSI/ANS 56.8-1994 that allow penetrations to be tested under the LLRT program and the results added to the Type A leakage rate Upper Confidence Limit (UCL). One exception states that pathways in systems which are required for proper conduct of the Type A test or to maintain the plant in a safe condition during the Type A test may be operable in their normal mode. Proper outage planning should identify systems that are important to shutdown safety. A sufficient number of systems should be available so as to minimize the risk during the performance of the Type A test. For planning and scheduling purposes, or ALARA considerations, hensees may want to consider not venting and draining additional penetrations that are capable of local leakage rate testing. It should be noted that the Type B or C tests performed on those pathways must test all of its containment barriers. This includes bonnets, packings, flanged joints, threaded connections, and compression littings. If the Type B or C test pressurizes any of the pathway's containment barriers in the reverse direction, it must be shown that test results are not affected in a nonconservative manner by directionality. The As-found and the As-left leakage rate for all pathways that are not drained and vented must be determined by Type B and Type C testing within the previous 24 calendar months of the time that the Type A test is performed and must be added to the Type A leakage rate UCL to determine the overall  $L_a$  surveillance acceptance criteria in accordance with the definition in ANSI/ANS 56.8-1994.

## 9.2.2 Initial Test Intervals

A preoperational Type A test shall be conducted prior to initial reactor operation. If initial reactor operation is delayed longer than 36 months after completion of the preoperational Type A test, a second preoperational Type A test shall be performed prior to initial reactor operations.

The first periodic Type A test shall be performed within 48 months after the successful completion of the last preoperational Type A test. Periodic Type A tests shall be performed at a frequency of at least once per 48 months, until acceptable performance is established in accordance with Section 9.2.3. The interval for testing should begin at initial reactor operation. Each test interval begins upon completion of a Type A test and ends at the start of the next test.

If the test interval ends while primary containment integrity is either not required or it is required solely for shutdown activities, the test interval may be extended indefinitely. However, a successful Type A test shall be completed prior to entering the operating mode requiring primary containment integrity.

## 9.2.3 Extended Test Intervals

Type A testing shall be performed during a period of reactor shutdown at a frequency of at least once per 10 years based on acceptable performance history. Acceptable performance history is defined as completion of two consecutive periodic Type A tests where the calculated performance leakage rate was less than 1.0  $L_a$ . A preoperational Type A test may be used as one of the two Type A tests that must be successfully completed to extend the test interval, provided that an engineering

analysis is performed to document why a preoperational Type A test can be treated as a periodic test. Elapsed time between the first and last tests in a series of consecutive satisfactory tests used to determine performance shall be at least 24 months.

For purposes of determining an extended test interval, the performance leakage rate is determined by summing the UCL (determined by containment leakage rate testing methodology described in ANSI/ANS 56.8–1994) with As-left MNPLR leakage rates for penetrations in service, isolated or not lined up in their accident position (i.e., drained and vented to containment atmosphere) prior to a Type A test. In addition, any leakage pathways that were isolated during performance of the test because of excessive leakage must be factored into the performance determination. If the leakage can be determined by a local leakage rate test, the As-found MNPLR for that leakage path must also be added to the Type A UCL. If the leakage cannot be determined by local leakage rate testing, the performance criteria for the Type A test are not met.

In reviewing past performance history, Type A test results may have bee calculated and reported using computational techniques other than the Mass Poi. method from ANSI/ANS 56.8-1994 (e.g., Total Time or Point-to-Point). Reported test results from these previously acceptable Type A tests can be used to establish the performance history. Additionally, a licensee may recalculate past Type A UCL (using the same test intervals as reported) in accordance with ANSI/ANS 56.8-1994 Mass Point methodology and its adjoining Termination criteria in order to determine acceptable performance history. In the event where previous Type A tests were performed at reduced pressure, at least one of the two consecutive periodic Type A tests shall be performed at peak accident pressure ( $P_{ac}$ ).

## 9.2.4 Containment Repairs and Modifications

Repairs and modifications that affect the containment leakage integrity require leakage rate testing (Type A testing or local leakage rate testing) prior to returning the containment to operation. Testing may be deferred to the next regularly scheduled - Type A test for the following repairs or modifications:

- Welds of attachments to the surface of steel pressure-retaining boundary;
- Repair cavities, the depth that does not penetrate required design steel wall by more than 10%; or

 Welds attaching to steel pressure -retaining boundary penetrations, where the nominal diameter of the welds or penetrations does not exceed one inch.

## 9.2.5 Surveillance Acceptance Criteria

The As-found Type A test leakage rate must be less than the acceptance criterion of 1.0  $L_a$  given in the plant Technical Specifications. Prior to entering a mode where containment integrity is required, the As-left Type A leakage rate shall not exceed 0.75  $L_a$ . The As-left and As-found values are as determined by the appropriate testing methodology specifically described in ANSI/ANS 56.8-1994.

## 9.2.6 Corrective Action

If the As-found Type A results are not acceptable, then a determination should be performed to identify the cause of unacceptable performance and determine appropriate corrective actions. Cause determination and corrective action should reinforce achieving acceptable performance. Once the cause determination and corrective actions have been completed, acceptable performance should be reestablished by performing a Type A test within 48 months following the unsuccessful Type A test. Following a successful Type A test, the surveillance irequency may be returned to once per 10 years.

Performance criteria do not include addition of the positive differences between the As-found MNPLR and the As-left MNPLR for each pathway tested and adjusted prior to Type A testing (total leakage savings). Total leakage savings are identified through performance of Type B and Type C testing and do not contribute significantly to performance of a Type A test. As discussed in Section 9.2.2, leakage paths detected during a Type A test that are caused by failures of Type B and Type C test components are not required to be included in determination of adequate performance and Type A test intervals. Corrective actions for Type B and Type C failures should be taken in accordance with Sections 10.2.1.4, 10.2.2.3, or 10.2.3.4 of this guideline.

## 10.0 DETERMINING PERFORMANCE-BASED TEST FREQUENCIES FOR TYPE B AND TYPE C TESTS

## 10.1 Introduction

This section discusses the method to determine extended test intervals for Type B and Type C tests based on performance. It presents a range of acceptable intervals based upon industry data which have been analyzed through a process similar to that used by NRC in NUREG-1493, and have been reviewed for safety significance Individual licensees may adopt a testing interval and approach as discussed in this guideline provided that certain performance factors and programmatic controls are reviewed and applied as appropriate. Programmatic controls may be necessary to ensure that assumptions utilized in analysis of the industry data are reasonably preserved at individual facilities.

The range of recommended frequencies for Type B and Type C tests are discussed in Section 11.0. The proposed frequencies are in part based upon industry performance data that was compiled to support the development of Option B to Appendix J, and a review of their safety significance. A licensee should develop bases for new frequencies based upon satisfactory performance of leakage tests that meet the requirements of Appendix J. Additional considerations used to determine appropriate frequencies may include service life, environment, past performance, design, and safety impact. Additional technical information concerning the data may be found in NUREG-1493.

Consistent with standard scheduling practices for Technical Specifications Required Surveillances, intervals for the recommended surveillance frequency for Type B and Type C testing given in this section may be extended by up to 25 percent of the test interval, not to exceed 15 months.

## 10.2 <u>Type B and Type C Testing Frequencies</u>

The testing interval for each component begins after its Type B or Type C test is completed and ends at the beginning of the next test. If the testing interval ends while primary containment integrity is not required or is required solely for cold shutdown or refueling activities, testing may be deferred; however, the test must be completed prior to the plant entering a mode requiring primary containment integrity.

Leakage rates less than the administrative leakage rate limits are considered acceptable. Administrative limits for leakage rates shall be established and documented for each Type B and Type C component prior to the performance of local leakage rate testing. The administrative limits assigned to each component should be specified such that they are an indicator of potential valve or penetration degradation. Administrative limits for airlocks may be equivalent to the surveillance acceptance criteria given for airlocks in Technical Specifications.

Administrative limits are specific to individual penetrations or valves, and are not the surveillance acceptance criteria for Type B and Type C tests. Due to the performance-based nature of Option B to Appendix J and this guideline, it is processing index that acceptance criteria for the combined leakage rate for all prinetrations subject to Type B or Type C testing be defined as follows

- The combined As left leakage rates determined on a MXPLR basis for all penetrations shall be verified to be less than  $0.60L_{\rm B}$  prior to entering a mode where containment integrity is required following an outage or shutdown that included Type B and Type C testing only. These combined leakage rate determinations shall be done with the latest leakage rate test data available, and shall be kept as a running summation of the leakage rates.
- The As-found leakage rates, determined on a MNPLR basis, for all newly tested penetrations when summed with the As-left MNPLR leakage rates for all other penetrations shall be less than 0.60L<sub>a</sub> at all times when containment integrity is required.

The surveillance acceptance criteria for airlocks are as specified in Technical Specifications. In addition, there is other leakage rate testing specified in the Technical Specifications that contain Surveillance Acceptance Criteria and Surveillance Frequencies. This guideline does not address the performance-based frequency determination of those surveillances.

## 10.2.1 Type B Test Intervals

## 10.2.1.1 Initial Test Intervals (Except Containment Airlocks)

Type B tests shall be performed prior to initial reactor operation. Subsequent periodic Type B tests shall be performed at a frequency of at least once per 30 months, until acceptable performance is established per Section 10.2.1.2.

## 10.2.1.2 Extended Test Intervals (Except Containment Airlocks)

The test intervals for Type B penetrations may be increased based upon completion of two consecutive periodic As-found Type B tests where results of each test are within a licensee's allowable administrative limits. Elapsed time between the first and last tests in a series of consecutive satisfactory tests used to determine performance shall be 24 months or the nominal test interval (e.g., refueling cycle) for the component prior to implementing Option B to Appendix J. An extended test interval for Type B tests may be increased to a specific value in a range of frequencies from greater than once per 30 months up to a maximum of once per 120 months. The specific test interval for Type B penetrations should be determined by a heensee in accordance with Section 11.0.
### 10.2.1.3 Repairs or Adjustments (Except Containment Airlocks)

In addition to the periodic As-found Type B test, an As-found Type B test shall be performed prior to any maintenance, repair, modification, or adjustment activity if the activity could affect the penetration's leak tightness. An As-left Type B test shall be performed following maintenance, repair, modification or adjustment activity. In addition, if a primary containment penetration is opened following Asfound testing, a Type B test shall be performed prior to the time primary containment integrity is required. If the As-found and As-left Type B test results are both less than a component's allowable Administrative Limit, a change in test frequency is not required. If As-found or As-left test results are greater than the allowable administrative limit, provisions of Section 10.2.1 4 apply.

Frequency for a Type B testing shall be in accordance with Section 10.2.1.1 if the penetration is replaced or engineering judgment determines that modification of the penetration has invalidated the performance history. Testing shall continue at this frequency until adequate performance is established in accordance with Section 10.2.1.2.

### 10.2.1.4 Corrective Action

If Type B test results are not acceptable, then the testing frequency should be set at the initial test interval per Section 10.2.1.1. In addition, a cause determination should be performed and corrective actions identified that focus on those activities that can eliminate the identified cause of failure<sup>1</sup> with appropriate steps to eliminate recurrence. Cause determination and corrective action should reinforce achieving acceptable performance. Once the cause determination and corrective actions have been completed, acceptable performance may be reestablished and the testing frequency returned to the extended interval in accordance with Section 10.2.1.2.

Failures of Type B penetrations discovered during performance of a Type A test should be considered as failures of a Type B test for purposes of cause determination and corrective action. This includes failures of penetrations that were not previously identified by a Type B testing program.

<sup>&</sup>lt;sup>1</sup> A failure in this context is exceeding an administrative limit and not the total failure of the penetration. Administrative limits are established at a value low enough to identify and allow early correction of potential total penetration failures.

### 10.2.2 Containm nt Airlocks

### 10.2.2.1 Test Interval

Containment airlock(s) shall be tested at an internal pressure of not less than  $P_{ac}$  prior to a preoperational Type A test. Subsequent periodic tests shall be performed at a frequency of at least once per 30 months. Containment airlock tests should be performed in accordance with ANSI/ANS 56.8-1994. In addition, equalizing valves, door seals, and penetrations with resilient seals (i.e., shaft seals, electrical penetrations, view port seals and other similar penetrations) which are testable, shall be tested at a frequency of once per 30 months.

Airlock door seals should be tested prior to a preoperational Type A test. When containment integrity is required, airlock door seals should be tested within 7 days after each containment access.

For periods of multiple containment entries where the airlock doors are routinely used for access more frequently than once every 7 days (e.g., shift or daily inspection tours of the containment), door seals may be tested once per 30 days during this time period.

Door seals are not required to be tested when containment integrity is not required, however they must be tested prior to reestablishing containment integrity. Door seals shall be tested at  $P_{ac}$ , or at a pressure stated in the plant Technical Specifications.

### 10.2.2.2 Repairs or Adjustments of Airlocks

Following maintenance on an airlock pressure retaining boundary, one of the following tests shall be completed:

Airlock shall be tested at a pressure of not less than Pac; or

- .

Leakage rate testing at  $P_{ac}$  shall be performed on the affected area or component.

# 10.2.2.3 Corrective Action

If containment airlock Type B test results are not acceptable, then a cause determination should be performed and corrective actions identified that focus on

showe activities that can eliminate the identified cause of a failure<sup>2</sup> with appropriate steps to dominate recurrence. Cause determination and corrective action should reinforce dowing acceptable performance.

# 10.2.3 Type C Test Interval

### 10.2.3.1 Initial Test Interval

Type C tests shall be performed prior to initial reactor operation. Subsequent periodic Type C tests shall be performed at a frequency of at least once per 30 months, until adequate performance has been established consistent with Section 10 2 3.2.

### 10.2.3.2 Extended Test Interval

Test intervals for Type C values may be increased based upon completion of two consecutive periodic As-found Type C tests where the result of each test is within a licensee's allowable administrative limits. Elapsed time between the first and last tests in a series of consecutive passing tests used to determine performance shall be 24 months or the nominal test interval (e.g., refueling cycle) for the valve prior to implementing Option B to Appendix J. Intervals for Type C testing may be increased to a specific value in a range of frequencies from 30 months up to a maximum of 120 months. Test intervals for Type C valves should be determined by a licensee in accordance with Section 11.0.

#### 10.2.3.3 Repairs or Adjustments

In addition to the periodic As-found Type C test, an As-found Type C test or an alternative test or analysis shall be performed prior to any maintenance, repair, modification, or adjustment activity if it could affect a valve's leak tightness. An As-left Type C test shall be performed following maintenance, repair, modification or adjustment activity unless an alternate testing method or analysis is used to provide reasonable assurance that such work does not affect a valve's leak tightness and a valve will still perform its intended function.

If As-found and As-left Type C test results are both less than a valve's allowable administrative limit, a change of the test frequency is not required. If As-found or As-left test results are greater than the allowable administrative limit, then provisions of Section 10.2.3.4 apply.

The frequency for Type C testing shall be in accordance with Section 10.2.3.1 if a valve is replaced or engineering judgment determines that modification of a valve has invalidated the valve's performance history. Testing shall continue at

<sup>&</sup>lt;sup>2</sup> A failure in this context is exceeding performance criteria for the airlock, not a total failure.

this frequency until an adequate performance history is established in accordance with Section 10.2.3.2.

## 10.2.3.4 Corrective Action

If Type C test results are not acceptable, then the testing frequency should be set at the initial test interval per Section 10.2.3.1. In addition, a cause determination should be performed and corrective actions identified that focus on those activities that can eliminate the identified cause of a failure<sup>3</sup> with appropriate steps to eliminate recurrence. Cause determination and corrective action should reinforce achieving acceptable performance. Once the cause determination and corrective actions have been completed, acceptable performance may be reestablished and the testing frequency returned to the extended interval in accordance with Section 10.2.3.2.

Failures of Type C values that are discovered during performance of a Type A test should be considered as a failure of a Type C test for purposes of cause determination and corrective action. This includes failures of values that were not previously identified by a Type C test.

# 11.0 BASIS FOR PERFORMANCE AND RISK-BASED TESTING FREQUENCIES FOR TYPE A. TYPE B. AND TYPE C TESTS

## 11.1 Introduction

This section provides guidance on establishing leakage testing frequencies and provides information regarding the risk impact of such actions. Extended test intervals in Sections 9.0 and 10.0 have been selected based on performance, and have been assessed for risk impact using historical performance data. The various factors and discussion in this section should be considered when establishing different plant-specific testing frequencies.

Section 10.0 presents a range of acceptable extended test intervals for Type B and Type C tests. Individual licensees may adopt specific testing intervals of up to 60 months or three refueling cycles as discussed in Section 10.0 without additional detailed analysis provided the performance factors discussed in Section 11.3.1 are considered. Additional programmatic controls are discussed in Section 11.3.2 and

· \_ - '

<sup>&</sup>lt;sup>3</sup> A failure in this context is exceeding an administrative limit and not the total failure of the valve. Administrative limits are established at a value low enough to identify and allow early correction of total valve failures.

should be considered when the extended test intervals are greater than 60 months or three refueling cycles.

# 11.2 Discussion

The effect of extending containment leakage rate testing intervals is a corresponding increase in the likelihood of containment leakage. The degree to which intervals can be extended, if at all, is a direct function of the potential effects on the health and safety of the public that occur due to an increased likelihood of containment leakage.

In order to determine the acceptability of extended testing intervals, the methodology described in NUREG-1493 was applied, with some modifications, to historical representative industry leakage rate testing data gathered from approximately 1987 to 1993, under the auspices of NEI. The range of testing intervals recommended for Type B and Type C testing was evaluated to determine the level of increased risk in the event of an accident. The same methodology was also applied to the 10-year interval for Type A testing. In all cases, the increased risk corresponding to the extended test interval was found to be small and compares well to the guidance of the NRC's safety goals.

NUREG-1493 provides the technical basis to support rulemaking to revise leakage rate testing requirements contained in Option B to Appendix J. The basis consisted of qualitative and quantitative assessments of the risk impact (in terms of increased public dose) associated with a range of extended leakage rate testing intervals.

NUREG-1493 found the effect of Type B and Type C testing on overall accident risk is small and concluded that:

Performance-based alternatives to local leakage rate testing requirements are feasible without significant risk impacts; and

• Although extended testing intervals led to minor increases in potential offsite dose consequences, the actual decrease in on-site (worker) doses exceeded (by at least an order of magnitude) the potential off-site dose increases.

NEI, in conjunction with EPRI, undertook a similar study in order to supplement NRC's rulemaking basis and provide added assurance the more detailed elements in this guideline have an adequate basis. Results of the EPRI study are documented in EPRI Research Project Report TR-104285, "Risk Impact Assessment of Revised Containment Leak Rate Testing Intervals." EPRI developed an abbreviated methodology that was used to assess plant risk impact associated with containment leakage rate testing alternatives currently being proposed by this guideline. The overall approach involved an examination of the risk spectra from accidents reported in PWR and BWR IPEs. Plant risk was quantified for a PWR and a BWR representative plants. Quantification of the risk considered the consequences from containment leakage in more detail than reported in IPEs. The impact associated with alternative Type A, Type B and Type C test intervals, measured as a change in risk contribution to baseline risk, is presented in Table 1. The risk values compare well with the analysis in NUREG-1493.

The risk model was specifically quantified by using a "failure to seal" probability (as opposed to failure to close considered in IPEs). This required failure rates to be developed for this failure mode. Type B and Type C test data obtained by NEI allowed determination of failure rates where failure is defined as the measured leakage exceeding allowable administrative limits for a specific Type B or Type C component. The failure rate values were used in the containment isolation system fault tree, and used to calculate a failure-to-seal probability. Characterization of baseline risk (in terms of accident sequences that are influenced by containment isolation valve or containment penetration leakage rate) allowed the plant models to calculate the risk .mpact associated with changes in test intervals.

As indicated above, historical industry failure rate data was used to develop the component failure to seal probabilities used in the analysis. This approach is quite conservative because these guidelines require demonstration of performance prior to extending the component leakage rate testing interval. The performance demonstration consists of successful completion of two consecutive leakage rate tests to increase the interval from 30 to 60 months or three refueling cycles, and three consecutive leakage rate tests to increase the interval to greater than 60 months or three refueling cycles. This takes advantage of the findings of NUREG-1493, Appendix A, which suggests that "If the component does not fail within two operating cycles, further failures appear to be governed by the random failure rate of the component," and "Any test scheme considered should require a failed component pass at least two consecutive tests before allowing an extended test interval." In addition, the penetration failure analysis considered components which exceeded the administrative limits as failures. The containment leakage rate computation conservatively used maximum pathway leak rates derived from the upper bounds of the NEI data. Therefore, the analysis is very conservative, and the component performance trending provides the necessary confidence demonstration that component leakage is being managed at a low level.

For Type C test, a bounding analysis was performed that assumed all valves have test intervals that were extended to 48, 60, 72 and 120 months. For Type B tests, it was assumed that electrical penetrations were tested at a nominal 120 months frequency. In addition, it was assumed that some portion of the

20

penetrations was tested periodically during the 120 months. Airlock tests were assumed to be conducted every 24 months. Blind flanges were assumed to be tested after each opening, or at 48-month intervals.

There are many points of similarity between the NUREG-1493 report and the EPRI study, both in methodology and assumptions, reflecting close agreement on elements important to safety for containment leakage rate testing. The similarity also extends to the results. The EPRI study confirms the low risk significance associated with Type A testing intervals of 10 years. Similarly, extending the Type B and Type C test intervals to 120 months was found acceptable provided the Type B or Type C components have successfully passed two consecutive tests, and provided that certain controls were imposed on the leakage rate testing program.

Changing Appendix J test intervals from those presently allowed to those in this guideline slightly increases the risk associated with Type A and Type B and Type C-specific accident sequences as discussed in Table 1. The data suggests that increasing the Type C test interval can slightly increase the associated risk, but this ignores the risk reduction benefits associated with increased test intervals. In addition, when considering the total integrated risk (representing all accident sequences analyzed in the IPE), the risk impact associated with increasing test intervals is negligible (less than 0.1 percent of total risk). This finding is further reinforced by the conservative assumptions used in the analysis. The EPRI study reaffirms the conclusion in NUREG-1493 that changes to leakage testing frequencies are "feasible without significant risk impact."

### 11.3 Plant-Specific Testing Program Factors

A licensee may adopt specific surveillance frequencies from Section 10.0 provided that plant-specific test performance history is acceptable as discussed in Section 10.0, and certain performance factors and controls are reviewed and applied as appropriate in the determination of test intervals. Each licensee should demonstrate by quantitative or qualitative review that plant-specific performance is adequate to support the extended test interval. . .

An extension of up to 25 percent of the test interval (not to exceed 15 months) may be allowed on a limited basis for scheduling purposes only. یرینی 1= \_\_\_\_\_ ۱۰۰۰ - \_\_\_\_

21

# Table 1

# Risk Results for Type A, Type B, and Type C Test Intervals

| Test                             | Risk-Impact                                                                           | Risk Impact                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |  |  |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Туре                             | Current Test Intervals                                                                | Extended Test Intervals                                                                                                                                                                                                                                                                                                                       | Comment                                                                                                                                               |  |  |
| PWR Representative Plant Summary |                                                                                       |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |  |  |
| Туре А                           | 0 0032% incremental risk<br>contribution, based on<br>2xL <sub>a</sub> leakage        | 0.035% incremental risk contribution,<br>based on test interval 1 in 10 years                                                                                                                                                                                                                                                                 | Compares well with<br>Surry risk<br>contribution of 0 07%<br>A range of 0.002 to<br>0.14 percent is<br>reported for other<br>plants in NUREG<br>1493. |  |  |
| Type B                           | «0 001% incremental risk<br>contribution<br>6.9E–05 person–rem/yr<br>rebaselined risk | <0.001% incremental risk contribution,<br>1.3E-04 person-rem/yr rebaselined<br>risk. Based on testing with some<br>components tested periodically during<br>time interval months. In addition,<br>blind flanges and penetrations would<br>be removed and retested during every<br>refueling outage. Airlocks to be tested<br>every 24 months. | A range of 0.2 to 4.4<br>percent is provided for<br>other plants for both<br>Type B and Type C<br>penetrations in<br>NUREG-1493.                      |  |  |
| Туре С                           | 0.022% of total risk<br>4.9E-03 person-rem/yr                                         | 0.04% incremental risk contribution,<br>8.8E-03 person-rem/yr rebaselined<br>risk, based on 48 month test intervals.<br>1E-2, 1.2E-2, and 1.64E-2 person-<br>rem/yr risk, based on 60, 72, and 120<br>month test intervals                                                                                                                    | A range of 0.2 to 4.4<br>percent of total risk is<br>provided for other<br>plants for both Type B<br>and Type C<br>penetrations in<br>NUREG-1493.     |  |  |

÷

•

# Table 1 (continued)

| Туре А | 0.023% incremental risk<br>Untribution, based on<br>2xL <sub>a</sub> leakage | 0 029% incremental risk contribution.<br>based on test interval i in 10 years                                                                                                                                                                                                              | Compares well with<br>the Peach Bottom<br>estimated value of<br>0.038% A range of<br>0.02 to 0.14 percent is<br>reported for other<br>plants in NUREG-<br>1493. |
|--------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре В | <0.001% of total risk<br>8.0F06 personrem/yr                                 | 0.001%, 1.85E-05 person-rem/yr<br>Based on testing with some<br>components tested periodically during<br>time interval months. In addition,<br>blind flanges and penetrations would<br>be removed and retested during every<br>refueling outage. Airlocks to be tested<br>every 24 months. | A range of 0.2 to 4.4<br>percent is provided for<br>other plants for both B<br>and C penetration<br>types in NUREG-<br>1493.                                    |
| Туре С | 0.002% of total risk<br>4.5E-06 person-rem/yr                                | 0.006% of total risk, 1.1E-04 person-<br>rem/yr,<br>based on 48 months test intervals.<br>1.8E-4, 2.3E-4, and 5.01E-4 person-<br>rem/yr risk, based on 60, 72, and 120<br>month test intervals.                                                                                            | A range of 0.2 to 4.4<br>percent is provided for<br>other plants for both B<br>and C penetration<br>types in NUREG-<br>1493.                                    |

# BWR Representative Plant Summary

1

and the second se

# 11.3.1 Performance Factors

Prior to determining and implementing extended test intervals for Type B and Type C components, an assessment of the plant's containment penetration and valve performance should be performed and documented. The following are some factors that have been identified as important and should be considered in establishing testing intervals.

- <u>Past Component Performance</u> Based on a survey sample of industry data from approximately 1987 to 1993, 97.5% of the industry's containment penetrations have not failed a Type B test, and 90% of the isolation valves have never failed a Type C test in over 500 reactor years of commercial operation. Of the 10% of the Type C tests that have failed, only 22% of those have failed more than once. A licensee should consure that leakage rate testing intervals are not extended until plant-specific component performance of two successful consecutive As-found tests are performed.
- <u>Service</u> The environment and use of components are important in determining its likelihood of failure. For example, a plant may have experienced high leakage in valves in a high-flow steam environment due to effects of valve seat erosion. Certain valves that open and close frequently during normal plant operations may have experienced higher leakage. The licensee's existing testing program should identify these types of components to establish their testing intervals based on their performance history.
- <u>Design</u> Valve type and penetration design may contribute to leakage. For example, motor operated valves in a plant may be found to leak less frequently than check valves, and may support a longer test interval. Vendor recommendations for valve or penetration subcomponent service life may be a factor in determining test intervals. Certain passive penetrations, such as electrical penetrations, may have had excellent performance history. Test intervals for these penetrations may be relatively longer.
- <u>Cafety Impact</u> The relative importance of penetrations can be judged in terms of the potential impact of failure in limiting releases from containment under accident conditions. Due to size or system inter-connections, some components or penetrations may be more important than others in ensuring the safety function of a containment penetration is achieved. This relative importance should be considered in determining the test interval.
- <u>Cause Determination</u> For failures identified during an extended test interval, a cause determination should be conducted and appropriate corrective actions identified. Part of a corrective action process should be to identify and address common-mode failure mechanisms.

# 11.3.2 Programmatic Controls

It a licensee considers extended test intervals of greater than 60 months or three refueling cycles for a Type B or Type C tested component, the review to establish surveillance test intervals should include the additional considerations:

- <u>As-found Tests</u> In order to provide additional assurance that the increased probability of component leakage is kept to a minimum, and is reasonably within the envelope of industry data, a licensee should consider requiring three successive periodic As-found tests to determine adequate performance.
- <u>Schedule</u> To minimize any adverse effects of unanticipated random failures, and to increase the likelihood unexpected common-mode failure mechanisms will be identified in a timely manner, a licensee should implement a testing program that ensures components are tested at approximate evenly- distributed intervals across the extended testing interval for valves or groups of valves. A licensee should schedule a portion of the tests during each regularly scheduled outage or on some regular periodic basis, such that some percentage of the components are tested periodically, and all components are tested at the new extended test interval of greater than 60 months or three refueling cycles.
- <u>Review</u> A review of the entire process should be performed prior to establishing alternate test intervals under Option B to 10 CFR 50, including plant-specific performance history, data analysis, establishment of surveillance frequencies, and, if available and applicable, any risk-impact assessment. This review should include adjustments to the program as required, based on expert insight or engineering judgment. Results of the review should be documented.

# 12.0 RECORDKEEPING

# 12.1 Report Requirements

# 12.2 Records

Documentation developed for implementation of Option B to Appendix J should be done in accordance with licensee established procedures. Sufficient documentation shall be collected and retained so that the effectiveness of the implementation of Option B to Appendix J can be reviewed and determined. This documentation shall be available for internal and external review, but is not required to be submitted to the NRC.

