Docket File

52-003

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

September 27, 1995

APPLICANT: Westinghouse Electric Corporation

PROJECT: AP600

SUBJECT: SUMMARY OF MEETING AND TELECONFERENCE TO DISCUSS PASSIVE CON-TAINMENT COOLING SYSTEM (PCCS)

The subject meeting was held in Rockville, Maryland on August 16, 1995, between representatives of Westinghouse Electric Corporation and the Nuclear Regulatory Commission (NRC) staff. The purpose of the meeting was to discuss Westinghouse-proposed closure paths for issues associated with the PCCS program approach. Attachment 1 is a list of attendees. Attachment 2 is the meeting agenda.

On August 9, 1995, Westinghouse forwarded Tables 1 and 2, "PIRT Application to Evaluation Model Inside Containment" and "PIRT Application to Evaluation Model Outside Containment". These two tables and several other tables were provided at the meeting (Attachment 5).

The key issues discussed were noding sensitivity and mixing and stratification sensitivity. The NRC staff expressed the need for Westinghouse to show a nodal link between the large scaling test (LST) and the AP600 plant. To address this concern, Westinghouse is performing sensitivity studies at the Massachusetts Institute of Technology (MIT). The studies will include three noding cases to confirm that the AP600 would not be any more sensitive to noding than the LST. MIT will also provide the rationale for the applicability of LST-peak pressure insensitivity to noding perturbations to the AP600 using a simplified model. Westinghouse will also address time-step sensitivities by a study that will include using one-half the time-step for a loss of coolant accident (LOCA) sequence in the application report. To address mixing and stratification sensitivities, Westinghouse will perform a sensitivity study comparing one-half the flow area and the actual flow area between the upper and lower containment compartments.

During the meeting, action items from the previous meeting were reviewed and progress was discussed (Attachment 3). The staff and Westinghouse agreed to a number of action items during the course of the meeting. These action items were recorded by Westinghouse and collectively agreed to by the meeting participants (Attachment 4). Westinghouse committed to provide a schedule for the agreed upon deliverables at a later date.

On September 1, 1995, Westinghouse faxed a schedule for deliverables to the NRC. Attachment 6 is the Westinghouse-proposed schedule. On September 7, 1995, a teleconference was held to discuss the schedule. The participants on the call were Joel Woodcock and Jim Gresham of Westinghouse and Ed Throm of the NRC. The NRC staff noted that several documents did not appear on the schedule, including responses to low priority issues, the Application Report,

NRC FILE CENTER COPY

9510040261 950927 PDR ADOCK 05200003 A PDR

U400S6

- 2 - September 27, 1995

and a f nal standard safety analysis report submittal based on the revised design basis accident approach. These documents would be necessary to complete the review for the final safety evaluation report. Westinghouse stated that they provided a schedule based on what they believe is needed for a supplemental draft safety evaluation report on testing and code applicability.

> original signed by: Diane T. Jackson, Project Manager Standardization Project Directorate Division of Reactor Program Management Office Of Nuclear Reactor Regulation

Docket No. 52-003

Attachments: As stated

cc w/attachments: See next page DISTRIBUTION w/attachment: Docket File PUBLIC JKudrick, 0-8 H7

PDST R/F WHuffman MFranovich

RArchitzel DJackson

DISTRIBUTION w/o attachment: WRussell/FMiraglia, 0-12 G18 AThadani, 0-12 G18 DCrutchfield TKenyon JMoore, 0-15 B18 EThrom, 0-8 H7

BGrimes ACRS (11) WDean, EDO

RZimmerman, 0-12 G18 TQuay EJordan, T-4 D18 PBoehnert, 0-2 E26

DOCUMENT NAME: A: AUG16.PCS *See previous concurrence To receive a copy of this document, indicate in the box: "C" = Copy without attach-ment/enclosure "E" = Copy with attachment/enclosure "N" = No copy

OFFICE	PM: PDST: DRPM	18	DSSA	SC:PDST:DRPM	
NAME	DJackson:sg	F	JKudrick*	RArchitzel*	
DATE	09/27/95	2	09/22/95	09/26/95	

Westinghouse Electric Corporation

cc: Mr. Nicholas J. Liparulo, Manager Nuclear Safety and Regulatory Analysis Nuclear and Advanced Technology Division Westinghouse Electric Corporation P.O. Box 355 Pittsburgh, PA 15230

> Mr. B. A. McIntyre Advanced Plant Safety & Licensing Westinghouse Electric Corporation Energy Systems Business Unit Box 355 Pittsburgh, PA 15230

Mr. John C. Butler Advanced Plant Safety & Licensing Westinghouse Electric Corporation Energy Systems Business Unit Box 355 Pittsburgh, PA 15230

Mr. M. D. Beaumont Nuclear and Advanced Technology Division Westinghouse Electric Corporation One Montrose Metro 11921 Rockville Pike Suite 350 Rockville, MD 20852

Mr. Sterling Franks U.S. Department of Energy NE-42 Washington, DC 20585

Mr. S. M. Modro EG&G Idaho Inc. Post Office Box 1625 Idaho Falls, ID 83415

Mr. Charles Thompson, Nuclear Engineer AP600 Certification U.S. Department of Energy NE-451 Washington, DC 20585 Docket No. 52-003

Mr. Frank A. Ross U.S. Department of Energy, NE-42 Office of LWR Safety and Technology 19901 Germantown Road Germantown, MD 20874

Mr. Ronald Simard, Director Advanced Reactor Program Nuclear Energy Institute 1776 Eye Street, N.W. Suite 300 Washington, DC 20 06-3706

STS, Inc. Ms. Lynn Connor Suite 610 3 Metro Center Bethesda, MD 20814

Mr. James E. Quinn, Projects Manager LMR and SBWR Programs GE Nuclear Energy 175 Curtner Avenue, M/C 165 San Jose, CA 95125

Mr. John E. Leatherman, Manager SBWR Design Certification GE Nuclear Energy, M/C 781 San Jose, CA 95125

Barton Z. Cowan, Esq. Eckert Seamans Cherie & Mellott 600 Grant Street 42nd Floor Pittsburgh, PA 15219

Mr. Ed Rodwell, Manager PWR Design Certification Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94303

PASSIVE CONTAINMENT COOLING SYSTEM ATTENDANCE SHEET AUGUST 16, 1995

NAME

ORGANIZATION

John Butler Jim Gresham Joel Woodcock Paul Boehnert Jack Kudrick Ed Throm Tom Kenyon Diane Jackson Westinghouse Westinghouse ACRS NRC/SCSB NRC/SCSB NRC/PDST NRC/PDST

MEETING ON WESTINGHOUSE AP600 PASSIVE CONTAINMENT COOLING SYSTEM MEETING AGENDA AUGUST 16, 1995

- 1. STATUS OF ACTION ITEMS FROM JULY 27, 1995, MEETING
- 2. IDENTIFICATION AND DISCUSSION OF KEY PCS DBA ISSUES
 - WATER COVERAGE
 - UNCERTAINTIES
 - MIXING AND STRATIFICATION
 - NODING CONVERGENCE
 - USE OF SCALING
- 3. CLOSURE PROCESS

ACTION ITEMS FROM JULY 27, 1995, MEETING PROVIDED BY WESTINGHOUSE AT THE AUGUST 16, 1995, MEETING BETWEEN WESTINGHOUSE AND THE NRC ON PASSIVE CONTAINMENT COOLING SYSTEM

PCS MEETING JULY 27, 1995

Meeting Actions:

×.

1.	Blowdown Calculations	In response to questions on how the WGOTHIC calculation of blowdowns compares to more traditional code approaches, Westinghouse will perform WGOTHIC calculations using an approach which is consistent with standard SRP assumptions for blowdown.
2.	Riser (Viskanta) Issues	During discussion on Riser eddy current concerns raised by preliminary calculations performed by Dr. Viskanta, Westinghouse accepted a level of risk associated with not addressing the concerns at this time.
		NRC to identify the schedule for Dr. Viskanta's work.
		W to provide a basis for the statement in Table 1 of the meeting presentation material that notes "negligible effect" for item "C" (Flow field stability or stratification of external flow path). This basis should address the sensitivity to the effects of potential maldistributions, flow degradation and startup effects.
3.	Break Spectrum effects	<u>W</u> needs to address effects of break spectrum in "WGOTHIC APPLICATIONS DOCUMENT". As part of this, <u>W</u> should add discussion of how the effects of smaller LOCA breaks are addressed by model in addition to addressing effect of small MSLB.
4.	Code Uncertainty	Considerable discussion on the approach proposed by Westinghouse to address code uncertainty. NRC expressed high level of "uncertainty" with the proposed approach.
		Westinghouse took an action to evaluate alternative ways to address including replacing the code uncertainty approach and instead use a more traditional approach of using conservative heat transfer correlations.
5.	LOCA M&E Calculations	Westinghouse to provide rationale on why use of SATAN is appropriate for AP600 LOCA mass and energy releases. As part of this, Westinghouse to identify and discuss the parameters changed in M&E calculations from traditional core response calculations.
6.	Noding Sensitivities	Westinghouse to provide a discussion of MIT Noding Sensitivity activities (Scope and Schedule) at next NRC/Westinghouse meeting (planned for 8/16 or 8/17)

<i>i</i> .	Mixing and Stratification	During discussion on mixing and stratification concerns, Westinghouse identified that sensitivity calculations are being performed to address these concerns and that in combination with MIT noding studies should address most concerns.
		NRC noted that these sensitivity calculations should address velocity effects on mixing and stratification.
8.	Schedule & Deliverables	The schedule and deliverable content will be provided and discussed at next meeting (planned for 8/16 or 8/17).
9.	Scaling	$\frac{W}{AP600}$ and identify those items that scaling does not have to or cannot address.
		Scaling to be included as topic at next meeting (planned for 8/16 or 8/17).
10.	Water Coverage	\underline{W} to evaluate results from code of Test 219 to assess code capability to conservatively predict pressure under relevant AP600 conditions of dryout and rewetting.
11.	WGOTHIC Documentation	NRC needs listing of GOTHIC models not being used by AP600 WGOTHIC so that NRC can exclude from their review/acceptance of WGOTHIC.
		\underline{W} to facilitate revision of GOTHIC equation documentation errors/problems.
		Westinghouse to identify how WGOTHIC was modified to address items corrected in GOTHIC to yield version 4.0.
12.	Next Meeting	August 17th preferred but otherwise August 16th. Location open but can be in Monroeville.
13.	Open Items/RAIs	NRC (Ed Throm) to review proposed priority on RAIs (pages 53-54 of meeting handout). NRC (Ed Throm) and Westinghouse (Joel Woodcock) to
		discuss priorities and statuses of OIs on Monday PM (7/31/95) at 2:00 PM. Westi use to establish similar phone call on Hydrogen and Ex Vessel OIs and RAIs (hopefully set up next week).
14.	Miscellaneous	\underline{W} to have remainder of Table 1 (meeting handout) a week before next meeting (August 11th)
		Fax typed up version of notes to NRC on Friday, July 28th.

2532A

AUGUST 16, 1995 WESTINGHOUSE/NRC MEETING ON AP600 PCS

Joel Woodcock Jim Gresham Paul Boehnert Jack Kudrick Ed Throm John Butler Diane Jackson

Action Items from Previous Meeting

1. Blowdown Calculations

Westinghouse will perform WGOTHIC calculations using an approach which is consistent with standard SRP assumptions for blowdown.

LOCA and SLB Few (possibly one) node Uchida heat transfer on internal heat sinks and shell

NRC expecting to see simplistic nodalization (model) If differences appear between standard calculation and AP600 calculation Westinghouse to explain.

NRC expecting AP600 margin to be at least as much as current plants. Westinghouse expressed concerns relative to how differences will be judged.

2. Riser (Viskanta) Issues

No actions necessary at this time. Issue to be revisited if results of Viskanta calculations warrant.

3. Break Spectrum Effects

SLB

Westinghouse needs to provide basis in SSAP for why cases presented are limiting M&E cases (reference back to previous spectrum of breaks) (i.e., why is 1992 spectrum of break applicable to current model)

LOCA

Westinghouse to perform 0.6CD case to address spectrum effects and will include discussion on how spectrum effects are addressed.

NRC believes proposed actions can address need to address spectrum of breaks

Attachment 4

4. Code Uncertainty

Westinghouse to replace "code uncertainty" approach and will instead conservatively bias heat transfer correlations used on internal and external sides of PCS shell..

NRC believes proposed approach adequately addresses (closes) concern.

5. LOCA M&E Calculations

Westinghouse to provide rationale which should identify that SATAN M&E calculations use "traditional" approach and why appropriate for AP600 noting that no changes were made to model AP600 specific features.

- Noding Sensitivities Noding sensitivity calculations which are being performed include:
 - Addressing extension of LST noding results to AP600 by setting up 3 AP600 noding cases.
 - Confirm that AP600 pressure is not sensitive to noding perturbations using simplified separate effects models and provide rationale for resulting sensitivity
 - Separate sensitivity to be provided to address time step sensitivity. Sensitivity will consist of cutting time step in half for LOCA event.
- 7. Mixing and Stratification

Westinghouse provided discussion of current modeling and why modeling being used conservatively addresses mixing. Current calculations bias flow area between upper compartment and lower compartments by using 1/2 of actual flow area. Sensitivity calculation will be performed using actual flow area to show level of bias.

Separate discussion: Staff currently believed to be calculating higher 24 hour pressure than Westinghouse. NRC to confirm and separate discussion needed to resolve difference.

9. Scaling

Recent changes in AP600 DBA methodology have lessened the importance of using scaling to scale LST test results to the plant. Scaling was used to understand the importance of various phenomena (PIRT). Key phenomena will now be addressed in a bounding approach.

Westinghouse will reassess what actions are needed and schedule to address past comments on existing scaling analysis. NRC believes this is a key item and should be addressed soon.

10. Water Coverage

Discussion on test 219 modeling provided by Westinghouse where water coverage is input as a boundary condition. NRC review of Westinghouse water coverage report is ongoing.

11. WGOTHIC Documentation

List of GOTHIC models not being used by AP600 WGOTHIC will be provided by Westinghouse.

Westinghouse will (with EPRI agreement) transmit WGOTHIC 4.0 documentation (3 volumes) and transmittal will identify those model excluded from AP600 WGOTHIC, identify other exceptions where 4.0 differs from WGOTHIC, identify how peer review comments are handled by WGOTHIC.

- 12. Next Meeting
- Open Items/RAIs Phone call held August 14, 1995
- 14. Miscellaneous

Revised Table 1 provided informally by Fed Ex prior to meeting and during meeting. NRC believes that the document is very useful. Table 1 will be revised to incorporate discussions of August 16, 1995, meeting and will be transmitted formally to NRC. Document will be maintained as a "living" document and will be revised as necessary. Revisions will clearly identify what has changed from previous revision.

15. Summary

Objective of the meeting was to go through all of the remaining issues relative to PCS DBA testing and analysis and with each of these issues agree to a path to resolution. There is agreement between Westinghouse and NRC that this objective was achieved. Schedules and deliverables were not discussed in any detail at the meeting. Westinghouse stated they need to go back and reevaluate priorities and establish a prioritized list of deliverable and schedules. NRC recommended that prioritization be based on early resolution of issues which could have significant impact on AP600 design and final closure. Once developed, the prioritized list will be discussed among Westinghouse, NRC and interested parties. It is expected that meeting will be held in approximately one month or less. TABLES PROVIDED BY WESTINGHOUSE FOR THE AUGUST 16, 1995, MEETING BETWEEN WESTINGHOUSE AND THE NRC ON PASSIVE CONTAINMENT COOLING SYSTEM

Appendix A

Westinghouse / NRC Meeting on PCS Closure Paths August 16, 1995 Rockville, MD

- Table A-1 PIRT Application to Evaluation Model: Inside Containment - All Phases
- Table A-2 PIRT Application to Evaluation Model: Outside Containment - LOCA - All Phases
- Table A-3 PCS Reports Issued

4

- Table A-4 Westinghouse / NRC PCS Meetings
- Table A-5 Prioritization of RAIs and DSER Ch 21 Open Items
- Table A-6 "Old" PCS Test Analysis and Containment Pressure DBA RAI Summary

Module	PIRT Phenomena	Ranking for Containment	AP600 BCs or Phenomena Models	Test Bases	Report Submitted to NRC	Report Conclusions	Applicability of LST with Respect to Phenomena	Validation of Modeling Method and/or WGOTHIC	Use of Validation Results in this Evaluation Model	How Uncertainty is Handled
1. Volume	A. Multi-component Compressible Gasses	н	Gas constituents in the governing equations	All tests analyzed with WGOTHIC	Consplete NTD-NRC 94-4260 Enclosure 1 GOTHIC Technical Manual describes governing equations Enclosure 2 GOTHIC User's Manual describes how to invoke various gasses Enclosure 3 GOTHIC Qualification Report provides large database of tests with air, hydrogen, and belium NTD-NRC 95-4462 EPRI Report RA-93-10, GOTHIC Design Review, Final Report WCAP-14382 validates WGOTHIC with separate effects, integral tests with steam, air, and helium	Effects of multicomponent compressible gasses are correctly included in governing equations	LST includes air, steam, and helium	WGOTHIC has been validated with the LST	Governing equations in WGOTHIC are a valid representation of compressible, multicomponent gas behavior Maximum Technical Specification pressure used in conjunction with 0% relative humidity.	Bounded
	B Buoyancy	н	Buoyancy forces are included in the lumped parameter junction governing equations	LST Hugot tests Siegel & Norris tests	Complete WCAP-14382	Lumped modeling overmixes noncondensibles above operating deck thereby reducing hear removal from vessel when PCS is dominant Distributed parameter modeling shows good agreement with 550 node LST model. Modeling of buoyancy and entrainment is acceptable	Steam injection point elevation and direction effects tests were performed LST has prototypical buoyancy driving forces and covered the range of Froude numbers for LOCA	WGOTHIC has been validated with the LST	Mixing and stratification resulting from buoyancy driven flow will be studied in the WGOTHIC Applications WCAP	Sensitivity to mixing will be provided in applications WCAP

Service of the servic

Module	PIRT Phenomena	Ranking for Containment	AP600 BCs or Phenomena Models	Test Bases	Report Submitted to NRC	Report Conclusions	Applicability of LST with Respect to Phenomena	Validation of Modeling Method and/or WGOTHIC	Use of Validation Results in this Evaluation Model	How Uncertainty is Handled
	C. Flow Field Stability or Stratification	t	Mixing within the containment upper regions and mixing between the upper and lower portions of the containment	LST	NTD-NRC-95-4459, Stratification and Mixing Effects on AP600 Passive Containment Cooling System DBA WGOTHIC Applications Document ACRS T/H Subcommittee Meeting, March 29-30, 1995 (to be documented in letter report)	Blowdown is the same as standard plants. Long-term LOCA is driven by buoyant plume and LST covers range for AP600. MSLB is well mixed due to high velocity jet. Distributed parameter modeling shows good agreement with 550 node LST model. Modeling of buoyancy and entrainment is acceptable.	Upper and lower regions of containment represented in the LST	WGOTHIC model has been validated with the LST	Mixing and stratification resulting from buoyancy driven flow will be studied in the WGOTHIC Applications WCAP	Sensitivity to ntixing and break size will be provided in applications WCAP
II. Surface	A. Liquid Film Heat Transfer	м	Thermal conductivity of liquid film for film temperature drop	Chun & Seban Wisconsin Condensation Tests	Complete NTD-NRC-94-4100, Enclosure 2 "Liquid Film Model Validations" WCAP-14382 §2	The Chun and Seban data provides a basis for film thermal conductivity.	Internal and external liquid film effects are represented in the LST	All validation performed with WGOTHIC includes the small effect of film temperature drop	Nominal wavy-laminar and turbulent Chun and Seban correlations used as appropriate	Negligible effect since resistance across film is small part of total resistance
	B. Liquid Film Stability/ Coverage	L	Condensation on the interior surface of containment	LST Wisconsin Condensation Tests	WCAP-13307 1.K. Huhtinine.ai, "Condensation in the Presence of Noncondensible Gas: Effect of Surface Orientation," Ph.D. Thesis, Univ. Wisconsin, 1992	Internal films are stable since containment shell slope is in excess of 1° Droplet formation improves mass transfer	Prototypical surfaces included in the LST Separate effects studied in Wisconsin Condensation Tests	WGOTHIC model has been validated with th: LST	Shell slopes modeled with WGOTHIC exceed 1° Costeevsate on containment is returned to the IRWST Benefits of droplet formation neglected	Bounded
	C Liquid Film Enthalpy Transport	M	Liquid film energy conservation equation	LST Wisconsin Condensation Tests	Complete WCAP-14382 §2 4, 2 5 show equations for liquid film WCAP-14190	Subcooling is negligible compared to energy transported to liquid field	Prototypical surfaces included in the LST Separate effects studied in Wisconsin Condensation Tests	WGOTHIC model has been validated via the LST and Wisconsin Condensation Tests	Temperature profile through film considered in solution	Negligible, film is at or near saturation temperature

Module	PIRT Phersomena	Ranking for Containment	AP600 BCs or Phenomena Models	Test Bases	Report Submitted to NRC	Report Conclusions	Applicability of LST with Respect to Phenomena	Validation of Modeling Method and/or WGOTHIC	Use of Validation Results in this Evaluation Model	How Uncertainty is Handled
	D. Free Convection Heat Transist	L	McAdams Flat Plate Correlation Mixed convection	LST	WCAP-14190 page 2-7 WCAP-14326 page 4-1 WCAP-14382 §8	Free convection heat transfer is not significant in comparison to mass transfer	Prototypical internals Range of validation defined in WCAP- 14382 §C 2	WGOTHIC model has been validated with the LST	Nominal correlation used	Negligible effect
	E. Forced Convection Heat Transfer	£.	Lumped - not modeled Distributed - flat plate forced convection, mixed convection	LST	WCAP14190 page 2-7 WCAP-14326 page 4-1 WCAP-14382 §8	Convective heat transfer is not significant in comparison to mass transfer	Prototypical internals Range of validation defined in WCAP- 14382 §9.2	WGOTHIC model has been validated with the LST	Lumped - Forced convection heat transfer not considered Distributed - Nominal Sat plate correlation	Lumped - Bounded by neglecting forced convection Distributed - Bounded by code uncertainty
	F. Radiation Heat Transfer	L	Nor modeled	LST	WCAP-14190 page 2-8	Temperature differences within containment are small enough that radiative heat transfer is low	Prototypical internals and temperature driving forces modeled in LST	WGOTHIC modeling of LST neglected radiative heat transfer	Not modeled	Bounded
	G. Free Convection Mass. Transfer	н	Lumped - Heat and mass transfer analogy based on McAdams flat plate heat transfer correlation Distributed - Heat and mass transfer analogy using the mixed convection correlation	LST Wisconsin Condensation Tests	WCAP-14190 page 2-8 WCAP-14326 53.8, 3.9, 4.3 WCAP-14382 54.3, 8.2	Mass transfer conservatively biased mean=0.983 (r=0.187	Prototypical internals and temperature driving forces modeled in LST Range of validation defined in WCAP- 14382 §9.2	LST internal data as a separate effect Wisconsin Condensation Tests	Lumped - Nominal free connection correlation used with conservative bias Distributed - Mixed convection correlation combining free and forced convection with a conservative bias	Bounds mean of the test data
	H. Forced Convection Mass Transfer	E.	Lumped - Not modeled Distributed - Heat and mass transfer analogy based on flat plate forced convection in the mixed convection correlation	LST	WCAP-14190 page 2-8 WCAP-14326 \$3.8	Mass transfer conservatively biased mean=0.968 σ=0.203	Prototypical internals and Froude numbers modeled in LST Range of validation defined in WCAP- 14382 §9.2	Lumped - Validated WCAP- 14382 §8 Dominant only during first seconds of transient Distributed - Dominant only during first seconds of transient	Lumped - Not modeled Distributed - Mixed convection correlation combining free and forced convection with a conservative bias	Lumped - Bounded Distributed - Bounded by code uncertainty
		1			1					

2	
.3	
10	
-	
1	
1	
-	
E	
ž	
2	
100	
*	
5	
0	
4	
12	
5	
and it	
-	
Fe -	
00	
3	
1	
8	
-2	
- 52	
-	
2	
-	
0	
-	
10	
61	
i.	
0	
9	
1	
1	
24	
0.	
-	
4	
4	
2	

How Uncertainty is Handled	Bounded	Bounded	Bounded
Use of Validation Results in this Evaluation Model	SRP guidefines are an acceptable approach. Conservatively bounded material properties are used for A PK00: internal for a conductor. Surface area and volume of internal heat sinks are conservatively understimated	Restrict maxing between upper and lower regions of containment when mixing is a benefit	1-D conduction equation is part of the Chime subcourtines used for heat rannfer through the shell Effects of degradation of inorganic zine paint are included in material properties. Conservatively neglects aritimuthal conduction from dry to set stripe.
Validation of Modeling Method and/or WC0TRIC	WCAP-14382 shows vehidation results with unternal heat sinks modeled with Uchida	Sensitivity to large scale mixing to be studied in WGOTHIC Applications WCAP	WCAP-14382 §4.1 contains validation of the 1- D conduction equations in Clime subroutine
Applicability of LST with Respect to Phenomena	Internal LST heat sinks are modeled using GOTHKC conductors with Uchida for condensation	Applicable to above deck credition and the and mass transfer correlation validation	 D. conduction used to model heat transfer which medices the additional heat tentoval by azimuthal wet surfaces.
Report Conclusions	Use of Uchtda with 1 D conductor for internal heat sinks is consistent with SRP guidelines	Lumped - Overmixing penulizes bear and raiss transfer when PCS is dominant Distributed - 375 node LST is withoently accurate with slight bias towards overmixing	The 1-D conduction model is correctly programmed into W.GOTHIC
Report Submitted to NRC	NTD-NRC-34-4260 -GOTHIC Containment Analysis Package, Version 3.4c, Volume 1, §6 describes the U-D conduction solution used WCAP-14382 provides withdation with LST	NTD-NRC-95 4459, Stratefication and Mixing Effects on AP600 Passive Containment Cooling System DBA WCAP 14190 §9 WCAP 14190 §9	Complete. WCAP-14382 §2.5 shows the governing equation and discretization for 1-D conduction
Test Bases	CVTR LST with internel heat sinks	LST	Comparison to theoretical solutions
AP600 BCs or Phertomena Models	GOTHK: conductors used to model internal heat sinks include a 1-D conduction solution	Governing equations for lumped parameter volumes connected with junctions and node to node connections for distributed parameter	Climes include 1-D cenduction model used for containment shell containment shell
Ranking for Containment	x	-	×
Pl&T	A 1-D Transient Conduction Heat Transfer	A. Convection	B Conduction
Module	III Solids	IV Inser- Module	

Module	PIRT Phenorsena	Ranking for Containment	AP606 BCs or Phenomena Modeis	Test Bases	Report Submitted to NRC	Report Conclusions	Applicability of LST with Respect to Phenomena	Validation of Modeling Method and/or WGOTHIC	Use of Validation Results in this Evaluation Model	How Uncertainty is Handled
	C. Form and Friction Losses	L	Inter-compartment losses	Standard experimentally based loss coefficients	WGOTHIC Applications. WCAP to be submitted	To be presented in WGOTHIC Applications WCAP	Not Applicable	Sensitivity to large scale mixing to be studied in WGOTHIC Applications WCAP	Restrict mixing between upper and lower regions of containment when mixing is a benefit	Sensitivity to mixing will be provided in applications WCAP

poetulated annulus flow start-up concerns Inducted in code uncertainly How Uncertainty is Handled Weak sensitivity to loss coefficient Woak sensitivity to loss coefficient Naghgibia effect Conservative aritist at flow Nominal loss coefficient is bounds The external sorul: is in modelled with presence boundary constitions with presence boundary constitions at the hist and older, such that the interest of the solar the momentum equation is solved, balancing the bouyancy driving hand with the unrecoverable losses through the External flow path is modeliad as 10 temped persmeter The influe arrunkus on flow is conservely established at a negative value Use of Validstion Results in Eveluation Model annukun. Use of 10 Now path is justifiable, since heat transfer and momentum in the domenorme, relative to the riser, is so scraft that the possibility of domenome instabilities is resorthcast. WGOTHIC has been validated with LST with natural convection driving the annuclas flows in WCAP-14382 \$5, 6, 7, 8 Vandation of Moduling Mathod and/or WGOTHEC WCAP 14362 The LST priority teet 214.1 has been used for valitation. AB LST in the HWRIF program ware run with the fan off LST inchates as steam, and heaturn Applicability of LST web Respect to Phenomenon XX Effects of multi-component compressible gassen are comochy included in governing equations Potential for local recirculation to affect total air flow at AP600 The external annutus provide reasonable agreement with LST and associated uncertainties can be accommoduated in the BGA Since tuby developed turbulent flow developes in annutus before baffle heats up there is no impact on start up of annutus air flow Small sensitivity to tarity large Kloss effects cyerating conditions neighble Report Conclusions WCAP 14382 §8 provides validation using 1D flow path for izmetus. Complete NTD MIC: 9177 NTD MIC: 9777 MICAP 14100. Startion 7.2 and 7.3 provide MICAP 14100. Startion 72 and 7.3 provide momentum and energy scating for justification. Complete Distribution State Enclosues 1: 007145: Technical Manual Enclosues 1: 007145: Technical Manual Enclosues 2: 007145: Cuelline Manual describes how to involve vesions gatales describes how to involve vesions gatales Enclosues 3: 007045: Cuellineation Report Enclosues 3: angle distributes of heats with air hydrogen, and helium To be issued: Applications Report Document semilitrity to Noss (uniform and noruniform; and nominal delay time. To be resulted Applications Report Document exceptivity to Kloses (uniform and nonuntitorm) and nominal delay time Complete WCAP 14382 §7.2.2 identifies the relevant priority least with iten off to support external amutos modellarg EPRI Report RA-82 13, GOTHIC Design Review Final Repc. : WCAP-14282 valetable WGOTHIC with separate effects and integral tests with s air, and helium gases "Revision will be made to correct hypographical errors. Report Submitted to NRC NTD-NRC-95-4462 All tests analyzed with WGOTHIC - LST wetnout tan rummeg - Hugot tuets - Eckent and Diagosia tests - Siegel and Non tests Tost Basas Buoyancy forces are included in the traped parameter junction governing equations External flow path is a 1D hydreckic model Gas constituents in the governing squatterns APBON BCs or Phenomena Montats Ranking for Risser⁽¹⁾ z x L. Weekie Vahane C Flow field stability or stratification A Muth component compresent-is games 8. Buoyancy Pheno

Table 2: PIRT Application to Evaluation Model: Outside Containment - LOCA - All Phases

1

1

How Uncertainty is Hended	Nuppline after	hegigtes also	Bounded		Nagligible affect succe resettance across tim is smail part of totel resistance
Use of Vabration Results in Evaluation Model	Mujtiphia affect on somers	Assumption of no recirculation due to Search has regisjeden to Search has regisjeden ingest on pressure prediction	Astrumption of no vetod is bounding for pressure prediction		Nominal Chan and Sehan correlation is used accounting for way laminar and tabulant liqual Brits.
Validation of Modelling Method and/or WGOTHEC	Effect of tag neglected in WGOTHIC models	Ecternal pressure boundary condition is unadjusted for three effects	External pressure boundary condition is unadjushici for these effects		All validation partormed sets WGOTHIC extrates the small effect of film temperature drop.
Applicability of LST with Respect to Phenomenon	Database consistent with AP600 supectations	LST was ran in no wind (<5 mph) conditions	Not application		Internal and onternal liqual film effords are represented in the UST
Report Conclusions	Justification for regreting effect of log in arendus corre where of redeators approve by log in AP900 that a majogible effect on the annotas air the annotas air benetimates the heat transfer to the befile.	Outendetication of potential for anicrotation of adheet and formular stratified atmosphere to affect cooking strates gave bounding rescritation traction, and a reaching searching strend no searching strend no searching strend no	Oucliditing flows for worst carse sits with lease carse sits with lease coefficient applity increase heat removal and from orditament case prove brother who nons postflows who nons postflows who heat removal.		The Churs and Seban data provides a basis for film themas conductively. The speed then temps either drup is small
Report Submitted to NRC	Complete MTD NRC: 94 4100, Encodure 1 "Reditation Heat Transfer Through Fog in the PCCS At Gap"	Complete httD-MBC da 4186 "4/900 Containmere Plame investigation"	Completes NTD MRC 56 4467 "Author 56 4467 "Authors of AP900 Wind Turnel Testing for PCS Heat Remove"		Complete NTD MPIC 94.4100, Enclosure 2 "Logid Fam Model Valdation" WCAP.14382.§2 Sceling supplement will documant consistent definition of resettances inside to ontektant
Tast Bases		Liberathure	Wind turned tests		Chum and Saban
AP606 BCs or Pharcomeru Modele	Fing in armalus	Effort of wind indicated indicated intradified attraction and attraction attraction	Effect of ared- induced hufedance is neglacted		Theomal conductively of logical Ban Los Bim temperature drop
Ranking tor Rase(7)					2
PIRT Phenomenon				R. Medula Surface	A. Lapado filom head transfer

How Uncontainty is Handbel]	Bounded
Use of Valdothon Results in Evaluation Model	Rouveringe Interfacion undel	Time deliny used bounds all poetstated effects.
Validation of Modeling Method and/or MCOTHIC	Wallier coverage is an input boundary condition	Input Boundery Condition delay items produces a conservative result. Earlier wrate application does not adversary import at the instation because there is a net trepcoverneet in exepantive and vegor context of unsperature and vegor context of unsperature and vegor context of setter application. A servatively earlier welfting with be provided in the Applications report.
Applications of LST with Respect to Phenomenon	Heated LST data has been used to assess has the direct on coverage fraction. In coverage fractions on the LST were used as reput boundary conditions in the boundation conservative write conditions to the the TS BBA models with hast data. The conditions for which the data the conditions for the the PCS BBA Evaluation Model.	LST 219.1 has water onto hold surfaces and thermocoopea hermperatures show the surfaces readily ves.35 during the high prodotypical oscitating files the protein of the non- transpirate anonewhat highes files rate show write haltware dearvaring film thord sizzhed as the rate solided do zolow a wide strates down with surface halt below the extra bolder and wide strates the extra bolder and solver as the rate solver at wide strates the surface halt below the latertroid temperature.
Report Conclusions	Make converge on don's and softwards as a consistent of these is used to bound (Figure 1) ookly tal bound (Figure 1) ookly tal bound (Figure 1) ookly tal deter them LST. The model has been validated deter them of hasted taks, and bounds tal deter and bounds tal and the adhet on the works and the adhet deter Model adheteration deter Model adheteration deter Model adheteration deter Model adheteration adhet	Stroe free outline surfaces in cert low used wrates reactions surfaces in real franc cold lash was accorptable to obterminate deary france. Dealey from o to wait this arctering to wait this arctering to wait this arctering to react hat arctering from to reach hat arctering from the drun application that removal during about 5 mitmates of arcterial seature application than surdices targendorantly increased surgendorantly increased
Report Submitters to NRC	Compiles NID-RHC on 424 NID-RHC of 424 NID-RHC of A26 System System NID APO Pracess Contamenent Cooling System NID APO Pracess Contamenent Cooling System NID APO Pracess Net APO Pracess Net APO Coverage Methodogy To be accel In Prace Version report on affects of age and ordernetation. Note: An independent review by an industry expert a also planned	A written discussion will be provided in the applications report.
Tadi Biznas	 Full scale, cold Hist LST Hist LST Hist LST Hist LST Secondamendation 	- Full scale, cold 1/8 sector tests
AP600 BCs or Phenomera Models	Sheld water coverage hactions	Shadi aveting time delay
Rentrary for Renar ⁽¹⁾	I	
PIRT Physicamenoe	B. Lapad time stability-converage	

I DOWN TO DO TO DO TO DO	AND DESCRIPTION OF THE OWNER WATER AND THE REAL PROPERTY OF THE REAL PRO	NAME AND TAXABLE POST OF TAXAB	and are shall to shall the same of the state	CONTRACTOR OF THE OWNER.	NAMES AND ADDRESS OF TAXABLE PARTY.
How Uncertainty is Handled	Negligation adhoct interaction and the control provide the control of the control provide the control of the co	Nughtiplika afluct	Uncertainty (scatter) a mooppretext as a dement of code uncertainty	Roanded	Negligibles affect
Use of Validation Results in Evaluation Model	M3C/THC uses in appropriate set by pretering quattors for signal film. Subcoding accords for a weat traction (-5%) of the AP000 heat removal	Mined connection consistent restores to forced connection at high Carity ²	Nominal consisten (set) inherent contentrative kiss) used in WGOTHIC. WGOTHIC. Connective hast transfer is not a significa. I best removal mechanism for AF400 CBA.	Conservative property values are used in AP600 DBA	See fres convection heat transfer
Validation of Modelling Method andro WSOTHIC	WCAP 14382, p. 8-6 discusses velation of LST host hus distribution predictions over the doma.	Missed convection correlation provides good agreement with annulax coorditions in the LST	Wi-AP 1438C, §3.2.1.4.2 provels summaries of the validation. Although the competences with data show high scatters it is attributable to high instrument incorebanty with remain of any tend in the mean over the image indicates the mean over the image indicates the mean over the image indicates the mean over the image indicates of an attribute validation, covering down much less seattle.	WCAP (4392 §7 strows valection of LST and §8 shows validation needs.	See her convection hast transfer
Applecatelity of LST with Respect to Phenomenon	LST covers range of liqued film subcooling aspectual for ARtiologi a majority of the LST have higher thections of aneign have higher thections of aneign have higher thections of aneign APB00, the LST is well for validation of physics and physics and kipad film stiftally transport model a saudi	LST includes lasts with and and without fain on, covering this without fain on, covering this address threads convection dominated regimes.	Dry LST has dominant annulus heat removal by convection	Varying tractions of dry shell surfaces are included for all wet tests. The dry LST cases transfer a large fraction of heat by radiation to the battle.	See Hee convector heat
Report Conclusions	Industrial of convective term in averagy agradics accounts for liquid tilen accounts for liquid tilen accounts for liquid tilen dome heat those	Convective heat transfer accounts for a small hection of total heat transferred See also forced See also forced	Convective heat transfer eccounts for a small transfer of total heat transfer of total heat transferred of obtained the transferred the transferred the means over the analyse with a relatively large restaurement due to large restaurement our constrainty with annel of $\eta = 0.270$	Dry auternal vessel heat transfer is velicitated	Sale free convector head transfer
Report Submitteet to NRIC	Complete MCAP -14382 §2.4, 2.5 shore equilitions for lispets film	Compiles WCAP 14190 WCAP 14190 WCAP 14190 WCAP 14190 WCAP 14190 WCAP 14190 WCAP 1410 WCAP 1410 WCAP 1410 WCAP 1410 WCAP 1410 WCAP 14190 WCAP 14	Complete MCAP 14190 Consider AFSO fraction of heat removed by Consider AFSO fraction of heat removed by MCAP 14205 (31 1 2 33 34 35, and 4 1 storer validation of the considerions with separate effects texts	Complete WCAP 14382 §2.5 describes the radiant heat transfer model used in Climes.	Compake See hea convector hast transfer
Tost Basen	Large Scale Tests	Hugot teets Educat and Educate and Educate energy Supplet and Neuro auto auto teets teets for dry anternet hour execution	H-ugot teeth - H-ugot teeth - E-clasget mod Cangadian bersts Sangal and Norrise Meethroghouse STC day tee painte Beth Beth Beth STC day external beat tenrefee LST - day external	Wonthrightcome STC dry Bet plate tests Dry LST	 Gillitand and Shereood shereood weetergloxasa STC flat plats everyoration tests University of Wisconsin condensation tests
AP500 BCs or Phenomena Micotets	Lepart fitm anargy contraction equation	Manual convection correlations which induces to the MacAdams MacAdams and Marsel Anamateria langth in G instruction on marties in high CarRe ²	Mitraet convection correlation which reduces to the cofficent completion at low GarRa ²	Wolf to well radiant head transfer	Engatical correlation for the sheemood number, estimentials is derived by denemotoral existing the Reprofit's analogy electors fectors
Randong for Rissault)	2	-	J.		
PIRT	C. Lapas Nen subcooling	D. Free convection hoat brandler	E. Forced connection heat stander	F Radiation haut	G. Free convector mass brander

How Uncontrainty is Hearded	Instatutional in coole unconfuturity	Uncertainty (scatter) is incorporated as an element of odd uncertainty		Boundaist		Naghgataa aflact dua to waak neusibnity to anternal Noses
Uses of Volidation Results in Evaluation Model	Forced convection consistent modified for moved convection effects is appropriate	Nerminal correlation (with intereast conservative tran) used in WG/07HIC.		Contractivity bounded material properties are used for APS00 asternal conductors Surface area and volume of heat sinks are conservatively undereationated		A 1D kanged parameter model to used with an input nominal loss coefficient in WGOTHC analyses Booyancy driven flows are tratanced by the form and friction losses.
Vaistation of Miccaling Mathod and/or WGOTHIC		WCAP 14382 summattee WOOTHC separate effects validation results (§3.2.1. 4.4)		GOTHEC Cualification Report alrows validation for the GOTHIC 10 conductor.		For tests without the tun operating, external free rate and 31 is predicted well.
Applecability of LST with Respect to Phenomenon	LST covers range of AP600 Gar9a2 including lacts without the ten naneing	WCAP 14282 WCAP 14282 To modeling with which correct range of AP600 subcooling predictions of total wegoenders predictions of total wegoenders prediction and 3-51 validate models in an indegral setting		Not applicable		LST without the fain operating are applicable for validation of antural convective flows through the amoutus flow model 10 annulus flow model
Report Conclusions	APRIO shown to querate in faceed convectors dominant regenes	Connelation is based 6 4% conservative with transcontrible scatter over the range p = 0 139 or = 0 139		Use of Uchetts for head stream conservative and consentant with SRP guidelinee.		For tasks without the fair operating, antamal thes rate and of a predicted well. Pressure response is neithed, internative the pressure at Connetting The highly non-trease relation of eraporation to encreased encounties in antano lenguestics antano lenguestics antano lenguestics in conserve
Report Submitted to NRC	Complete NTD MPC: 86-4597 "Supporting information for the Use of Forced Convection in the APe00 PCS Annulus"	Complete WCAP 14255 gives correlation (§2.0.2.1), writerine effect used for separate effect test effect used for separate effect test (§2.5), and correlation validation with tests (§2.6.3.7)		NTD ARIC 44.4280 "GOTHRC Contennent Analysis Pechage. Vension 3.46, Volumes 1.81," Volume 1. §5 Vension 3.46, Volumes 1.81," Volume 1.85 MicAP 14282 provides validation with LST		Enternal flow rate and d.f. comparisons between WGOTHIC and LST have been presented at several meetings. These will be provided in a later report. Samption in a later report. Samption will be strained local uniform and non-uniform, as well as sampling to at the March 17, 1984 MIC PCS meeting As part of the Applications report, these amonthyles will be similared using the final Evaluation Model.
Tast Bases	 Galifierrei and Shammood enegoration texts Waamporation texts Ustantrajhouae Ustantrajhy of Miscontac condemetition texts 	Catitand and Shareood Evaporetion Tests Wootinghouse STC Fat Phese STC Fat Phese Evaporetion Tasts		CVTR		LST without the fen operating values adding to understand adding to convective flows:
AP900 BCs or Phenomena Models	Empired correlation for the Sterward number, when is denived when seend analysis using the Periodics analogy and column j taking	APEgo forced convector mass transfer consistion		GOTHIC conductors caed the model a two waterand concrete thesis and/or, using the conduction reduction		Governing equators for burged parameter volumes corrected with junctiona
Ranshing for Rase(1)	I			I		3
Pilatomanon	H. Forced on-exton mass transfer		E. Nodute Solids	 A 10 bansiont conduction heat bandle 	N. Inter-Merchale	A. Currection

f.,	attraction of constants are and constant shad	A State
How U	Contrast bounded properties contain contain	Digner Digner Digner Digner Digner
Use of Valification Results in Eveluation Model	1D conduction equation is part of the Clines submother asset transfer through the shell Effects of connexion of inergenic Effects and connexion of inergenic properties.	Nominal less coefficient used, lack of semithery
Validation of Monselling Mathod and/or WGCTHIC	WCAP 14282, §k 1 contains validation of the 1D conduction aquation and in Clines admonthme.	LST - used constant loss coefficient for all predictions
Applicability of LST with Respect to Phenomenon	10 conduction used to model that therease through the LST shell, which methods the LST shell which methods the last additional heat evenowed by azamethal conduction from dry to well surfaces.	
Report Canchatores	The 1D conduction model is consoly programmed was WISOTHIC	Loss coefficient for actional flow path
Report Submitted to NRC	Compains WCAP: 14362 §2:5 shows the governing equation and discretization for 1D carefundion, as well as modal validation.	Completes Sas also the labolis on itisms I.C and IV A.
Tast Bases	Comparison to theoretic at solutions	Air those parts dP test, -1/6 scalo
AP600 BCs or Phanomena Modess	Climes include 10 conduction model used for conduction through conductionent shall	Esternal flow path hydraulic resistance
Ranking to: Risea ⁽¹⁾	I	I
Presentation	B. Conduction	C. Form and fedfoor lossees

Table A-3: Reports Issued to NRC on PCS DBA

Report Number	Report Title	Date Issued
NTD-NRC-94-4100. Enclosure 1	Radiation Heat Transfer Through Fog in the PCCS Air Gap	April 1994
NTD-NRC-94-4100, Enclosure 2	Liquid Film Model Validation	April 1994
NTD-NRC-94-4166	AP600 Containment Plume Investigation	June 1994
NTD-NRC-94-4174	AP600 PCS Design Basis Analysis (DBA) and Margin Assessment	Jittie 1994
NTD-NRC-94-	AP600 Integrated Structure for Technical Issue Resolution (ISTIR) for Passive Containment Cooling System	July 1994
NTD-NRC-94-4247	Method for Determining Film Flow Coverage for the AP600 Passive Containment Cooling System	July 1994
NTD-NRC-94-4260	D-NRC-94-4260 Enclosure 1: GOTHIC Containment Analysis Package, Version 3.4e, Volume 1: Technical Manual Enclosure 2: GOTHIC Containment Analysis Package, Version 3.4e, Volume 2: User's Manual (EPRI Proprietary) Enclosure 3: GOTHIC Containment Analysis Package, Version 3.4e, Volume 3: Qualification Report (EPRI Proprietary)	
NTD-NRC-94-4271	WGOTHIC Lumped Parameter LST Input Definition and Input Deck	August 1994
NTD-NRC-94-4286	Supplemental Information on AP600 PCS Film Flow Coverage Methodology	August 1994
NTD-NRC-94-4287	Experimental Basis for the Convective Heat Transfer Correlations Selected for Modeling Heat Transfer from the AP600 Containment Vessel	August 1994
NTD-NRC-94-4327	Experimental Basis for the Mass Transfer Correlations Selected for Modeling Condensation and Evaporation on the AP600 Containment Vessel	October 1994
NTD-NRC-94-4318 WCAP-14190	Scaling Analysis for AP600 Passive Containment Cooling System	October 1994
NTD-NRC-95-4397	Supporting Information for the Use of Forced Convection in the AP600 PCS Annulus	
NTD-NSA-CRA-95-096	Blind Pre-test Prediction (NRC declined to receive this document.)	April 1995

2

Report Number	Report Title	Date Issued
NTD-NRC-95-4428 WCAP-14326	Experimental Basis for the AP600 Containment Vessel Heat and Mass Transfer Correlations	April 1995
NTD-NRC-95-4459	Stratification and Mixing Effects on AP600 Passive Containment Cooling System DBA	May 1995
NTD-NRC-95-4463	Large-Scale Test Data Evaluation	May 1995
NTD-NRC-95-4462	5-4462 EPRI Report RA-93-10, GOTHIC Design Review, Final Report	
NTD-NRC-95-4489 WCAP-14382	WGOTHIC Code Description and Validation	May 1995
NTD-NRC-95-4467	Analysis of PCS Wind Tunnel Testing for PCS Heat Removal (PCS-T2C-059)	June 1995
NTD-NRC-95-4504 Enclosure 1	Proposed Draft/Markups of SSAR Section 6.2	July 1995

Table A-4: Westinghouse - NRC Meetings In Support of AP600 PCS DBA Review

DATE	TOPICS	MEETING CONTENT NOTES
February 23-24, 1994	Update on confirmatory PCS program status	WGOTHIC validation process overview PCS test data results overview Phenomenological model update WGOTHIC model changes since 1992 SSAR
March 16, 1995	ACRS T/H Subcommittee Mtg.	PCS analysis overview Phenomenological model and separate effects update
March 17, 1995	DSER preparation meeting	AP600 DBA codes and methods, including bounding value methods AP600 sensitivities LST sensitivities Content of June 30, 1994 letter report on margins and model assessment
May 25, 1994	- DSER/FSER supporting information plans - WGOTHIC development	 PCS analysis work plans DSER information exchange schedule/content Schedule for resolution of technical issues TOC for June 30, 1994 report TOC for scaling report Summary of WGOTHIC development and versions Outline of QA program for WGOTHIC Relationship to EPRI GOTHIC development programs
July 26, 1994	PCS Scaling - SASM Iteration 1 Report Review Kickoff	Presentation of overview of methodology and results contained in SASM Iteration 1 report
July 27, 1994	- PCS Computer Code Validation (Mid Stage 2)	 WGOTHIC validation results and status based on distributed parameter modelling of LST (Status of "C" on p. 26 of May 25, 1994 meeting handouts) input and modelling methodology comparison to LST 212.1 NRC CONTAIN validation results and status input and modelling methodology comparison to LST 212.1 (Data comparison formats per May 25, 1994 meeting) Review status and NRC data needs

DATE	TOPICS	MEETING CONTENT NOTES
July 28, 1994	- Baseline Definition of Blind Test Lumped Parameter Input	 Detailed discussions of Table of Blind Test Input Parameters Rev. 0
September 27, 1994	PCS program overview	PCS analysis program and interaction of all relevant tests PCS analysis results and sensitivities wt&E release assumptions Summary of Models and Margins Assessment report Reports schedules Closure paths for DSER Open Items
November 15-17, 1994	 PCS scaling WGOTHIC model review at end of Stage 2 Discussion of remaining issues, schedule NRC AP600 results Westinghouse open item review 	Review of PCS scaling - Overview of conclusions from phenomenological reports - Detailed review of SASM Component 1 scaling - Discussion of PCS action items from March 16, 1994 ACRS meeting Model review prior to start of blind test prediction calculations Framework on usage of LST data Presentation of results of 550 node for 212.1 and 222.1 Discussion of noding studies done with LST distributed parameter model of a baseline test Velocity field predictions from WGOTHIC
March 17, 1995	 PCS test and analysis NRC review results 	NRC provide summaries of their consultants reviews Review drafts of Westinghouse presentation for ACRS
March 29-30, 1995	ACRS T/H Subcommittee Meeting	Overview of Westinghouse PCS approach Containment PIRT WGOTHIC formulation and governing equations Phenomenological models, water coverage models PCS scaling
April 11, 1995	ACRS and DSER issues	Presentation prepared for ACRS on WGOTHIC LST calculations Key ACRS issues Chapter 6.2 DSER Open Items
May 1, 1995	Overview of PCS methods	Review PCS methods Discuss water coverage sensitivities Discuss blind test results and steam flow boundary condition

DATE	TOPICS	MEETING CONTENT NOTES
July 27, 1995	Preliminary review and discussion of closure paths for PCS DBA	Drafts of the following - closure paths for all significant PCS phenomena, including bounding values for DBA - road map to information required for a supplemental DSER, with summary of Westinghouse approach for each topic - comparisons of margins with those in current operating plant analysis methods
August 16, 1995	Closure paths for PCS DBA	Program level discussions with NRC, focusing on closure of key PCS issues

Totals for PCS DBA meetings 1994-1995

13 Meetings 19 days Table A-5 PCS Test Analysis / Code Validation Methodology -Priority of RAI's and DSER Ch 21 Open Items

Topic	DSER Ch 2	1 Open Items	R	RAI		
	High Priority	Detailed	High Priority	Detailed		
Scaling	21.3.8.5-1 (High level statement)	21.5.8-7	952.100 (High level statement) 480.304 480.317 480.318	480.378380		
LST Integral Test	21.3.8.1-1 (High level statement) 21.5.8-3	21.5.8-4 21.5.8-5				
Separate effects tests and correlations			480.279 480.363364 480.373374	480.277 480.310324 480.340 480.343-344 480.356357 480.358 480.359 480.360361 480.365368 480.369371 480.372 480.375		
WGOTHIC	21.6-6 (High level statement) 21.5.8-1		480.281284 480.295301 480.314315 480.331332 480.337339 480.345	952.101 480.278 480.280 480.285-287 480.289-294 480.334 480.335-336 480.341-342 480.346-351 480.362		
PCS Annulus	21.5.8-6			952.102 480.329330		
Water Distribution	21.3.9.3-1 21.5.9-1 21.5.9-2	21.3.9.1-1 21.5.8-2 21.5.9-3	480.325328 480.381	952.103 952.104		

Topic	DSER Ch 21 Open Items		PAI	
in the second second	High Priority	Detailed	High Priority	Detailed
Wind Tunnel	21.5.7.4-1 (High level statement) 21.6-5			
WGOTHIC Application	DSER Ch 6.2 questions will be addressed after priority DSER Ch 21 and RAI questions on methods are addressed.		480.276 480.288 480.303 480.305-307 480.308-313 480.316 480.333 480.352 480.376-377	480.302 480.353355

Notes for Table A-5 Prioritizing of DSER Open Items and RAI's

Open items for PCS DBA have been prioritized

- DSER Ch 21
- RAI's on code and methods
- DSER Ch 6.2 (After methods questions are resolved)

Prioritization is based on

- Most significant methodology questions required to understand the overall Westinghouse approach

- NRC top level concerns on methodology
- Methodology Issues not addressed in existing documentation

DSER Ch 6.2 Open Item responses on application of methodology will be provided after priority open items on methodology are addressed.

Table A-6 "Old" PCS TEST ANALYSIS AND CONTAINMENT PRESSURE DBA RAI SUMMARY

RAI #	SUBJECT
480.2 *	Mechanistic Heat/Mass Transfer Correlations
480.4	Dry Shell LST and SST Data
480.8	Natural Circulation of Air in the PCS
480.9 *	HT to Internal Structures and Mixing in the Containment
480.10 *	Jet Discharge: Location/Orientation/Scaling
480.11	1/8 Scale Facility Instrumentation
480.12	1/8 Scale Facility Test Matrix
480.13 *	Westinghouse Scaling Approach
480.14 *	Mechanistic Correlations in WGOTHIC
480.15 *	WGOTHIC Validation Using Test Data
480.16 *	WGOTHIC Numerics
480.17	External Film Pattern/Water Distribution Tests
480.18	Degree of "Rain" in the AP600 Containment
480.32	Hydrogen Control-Prediction of Hydrogen Distribution
951.2	WGOTHIC Condensation Model
480.66 *	Margin between max calc. and design containment pressure
480.67 *	HT coefficient sensitivity to node size near the wall
480.68	Postulated break size for subcompartment analysis
480.69	Use of TMD code for M&E releases
480.71 *	Testing of containment heat transfer
952.100	PCCS scaling analysis

RAI #	SUBJECT
952.101 *	Calculations of PCS interior velocities
952.102	Analysis of PCS annulus air flow
952.103	PCS film coverage when wall is hot
952.104	How water distribution model supports DBA analyses

Note

* Indicates an RAI that has been previously answered, but will need to be revised.

SCHEDULE PROVIDED BY WESTINGHOUSE FOR THE SEPTEMBER 7, 1995, TELECONFERENCE BETWEEN WESTINGHOUSE AND THE NRC ON PASSIVE CONTAINMENT COOLING SYSTEM

Proposed So	chedule for PCS DBA
8/30/95	Provide road map table (inside and outside) revision based on 8/16/95 meeting
COMPLETE	(Related Priority RAI 480.318, 480.281, 480.284, 480.295, 480.345)
	 Cross reference of bounding approach for each PCS PIRT phenomenon, internal and external
9/15/95	Rationale for use of SATAN for AP600 - Description of AP600 M&E related features relative to operating plants
	 Document justification for use of SATAN for blowdown M&E calculation
9/15/95	Document role of scaling for AP600 PCS DBA (Related Priority RAI 952.100, 952.102, 480.304, 480.317, 480.279)
	(Related Priority DSER OI 21.3.8.5-1) - Summary of PCS scaling results
	 Usage of scaling for AP600 PCS DBA Summary of usage of LST to develop rationale for bounding approach
9/30/95	Provide updated GOTHIC documentation
	- Westinghouse transmittal of EPRI GOTHIC 4.0 documentation Technical Manual
	 Identification of GOTHIC models excluded from AP600 review List of differences between GOTHIC 4.0 and WGOTHIC
9/30/95	Document bases for mass transfer correlation biases (Related Priority BAI 480,363, 480,364, 480,373, 480,374)
	Reference to separate effects studies for correlations Method for bounding separate effects data Correlation bioses to be used in PCS DBA evaluation model

. . .

10/31/95 Document GOTHIC Design Review results applicable to WGOTHIC (Related Priority RAI 480.337, 480.338, 480.339)

- Applicability of peer Design Review to WGOTHIC
- Summary of peer review results
- List of Design Review Report sections applicable to WGOTHIC
- List of Appendix B findings relevant to AP600 evaluation model

and how resolved for WGOTHIC

- 10/31/95 Provide sensitivity to use of nominal internal deck flow area (Related Priority DSER OI 21.5.8-1)
 - Sensitivity calculation using nominal internal deck flow area
 - Comparison of steam concentration profile versus base case
 - Summary of conservatism in bounding approach

10/31/95 Provide LOCA/MSLB few node SRP style calculation for blowdown

- Description of modelling method for SRP blowdown simulation
 - Summary of results
 - Comparions to base case

 Conclusions regarding AP600 blowdown performance relative to SRP methods

Provide LOCA with 0.6 Cd and document discussion of how spectrum 11/30/95 is addressed Summary of AP600 postulated LOCA break spectrum - Bases for break spectrum analyzed - Discussion of postulated increased stratification for smaller breaks - Results of LOCA sensitivity using 0.6 Cd - Justification for selected DBA LOCA break size Provide summary results of convergence studies 11/30/95 (Related Priority RAI 480.298, 480.300, 480.301, 480.331, 480.332) - Summary of convergence study results - Conclusions from convergence studies relative to AP600 PCS **DBA** evaluation model Document completion of responses to priority RAIs/DSER Open Items 11/30/95

- Essential information to assess priority issues is addressed by the above schedule

- Transmittals will be referenced, which close priority RAIs and Open Items

13