

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

NORTHEAST NUCLEAR ENERGY COMPANY

THE CONNECTICUT LIGHT AND POWER COMPANY

THE WESTERN MASSACHUSETTS ELECTRIC COMPANY

DOCKET NO. 50-336

MILLSTONE NUCLEAR POWER STATION, UNIT NO. 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 97 License No. DPR-65

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Northeast Nuclear Energy Company, et al. (the licensee), dated October 12, 1983 as supplemented May 16, 1984 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (1) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. DPR-65 is hereby amended to read as follows:
 - (2) Technical Specifications

the Technical Specifications contained in Appendices A and B, as revised through Amendment No. 97 , are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective on the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

James R. Miller, Chief Operating Reactors Branch #3 Division of Licensing

stand & dale

Attachment: Changes to the Technical Specifications

Date of Issuance: September 5, 1984

ATTACHMENT TO LICENSE AMENDMENT NO. 97

FACILITY OPERATING LICENSE NO. DPR-65

DOCKET NO. 50-336

Remove and replace the following pages of the Appendix A Technical Specifications with the enclosed pages. The revised pages are identified by amendment number and contain vertical lines indicating the area of change. The corresponding overleaf pages are provided to maintain document completeness.

Remove	Insert
3/4 4-4	3/4 4-4
B 3/4 4-2	B 3/4 4-2

REACTOR COOLANT SYSTEM

RELIEF VALVES

LIMITING CONDITION FOR OPERATION

3.4.3 Two power operated relief valves (PORVs) and their associated block valves shall be OPERABLE.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

- a. With one or more PORV(s) inoperable, within 8 hours either restore the PORV(s) to OPERABLE status or close the associated block valve(s) and remove power from the block valve(s); otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With one or more block valve(s) inoperable, within 8 hours either restore the block valve(s) to OPERABLE status or close the block valve(s) and remove power from the block valve(s); otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

- 4.4.3.1 Each PORV shall be demonstrated OPERABLE:
 - a. Once per 31 days by performance of a CHANNEL FUNCTIONAL TEST, excluding valve operation, and
 - b. Once per 18 months by performance of a CHANNEL CALIBRATION.
- 4.4.3.2 Each block valve shall be demonstrated OPERABLE once per 92 days by operating the valve through one complete cycle of full travel. This demonstration is not required if a PORV block valve is closed and power removed to meet Specification 3.4.3 a or b.

REACTOR COOLANT SYSTEM

PRESSURIZER

LIMITING CONDITION FOR OPERATION

- 3.4.4. The pressurizer shall be OPERABLE with:
 - a. A water volume greater than or equal to 525 cubic feet (35%) but less than or equal to 1050 cubic feet (70%), and
 - b. At least two groups of pressurizer heaters each having a capacity of at least 130 kW.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

- a. With only one group of pressurizer heaters OPERABLE, restore at least two groups to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 12 hours.
- b. With the pressurizer otherwise inoperable, be in at least HOT STANDBY with the reactor trip breakers open within 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.4 The pressurizer water volume shall be determined to be within its limits at least once per 12 hours.

3/4.4.1 COOLANT LOOPS AND COOLANT CIRCULATION

The plant is designed to operate with both reactor coolant loops and associated reactor coolant pumps in operation, and maintain DNBR above 1.30 during all normal operations and anticipated transients.

A single reactor coolant loop with its steam generator filled above 10% of the span provides sufficient heat removal capability for core cooling while in MODES 2 and 3; however, single failure considerations require plant cooldown if component repairs and/or corrective actions cannot be made within the allowable out-of-service time.

In MODES 4 and 5, a single reactor coolant loop or shutdown cooling loop provides sufficient heat removal capability for removing decay heat; but single failure considerations require that at least two loops be OPERABLE. Thus, if the reactor coolant loops are not OPERABLE, this specification requires two shutdown cooling loops to be OPERABLE.

The operation of one Reactor Coolant Pump or one shutdown cooling pump provides adequate flow to ensure mixing, prevent stratification and produce gradual reactivity changes during boron concentration reductions in the Reactor Coolant System. The reactivity change rate associated with boron reductions will, therefore, be within the capability of operator recognition and control.

The restrictions on starting a Reactor Coolant Pump during MODES 4 and 5 with one or more RCS cold legs < 275°F are provided to prevent RCS pressure transients, caused by energy additions from the secondary system, which could exceed the limits of Appendix G to 10 CFR Part 50. The RCS will be protected against overpressure transients and will not exceed the limits of Appendix G by either (1) restricting the water volume in the pressurizer and thereby providing a volume for the primary coolant to expand into or (2) by restricting starting of the RCPs to when the secondary water temperature of each steam generator is less than 43 F (31 F when measured by a surface contact instrument) above each of the RCS cold leg temperatures.

3/4.4.2 SAFETY VALVES

The pressurizer code safety valves operate to prevent the RCS from being pressurized above its Safety Limit of 2750 psia. Each safety valve is designed to relieve 296,000 lbs per hour of saturated steam at the valve setpoint. The relief capacity of a single safety valve is adequate to relieve any overpressure condition which could occur during shutdown. In the event that no safety valves are OPERABLE, an operating shutdown cooling loop, connected to the RCS, provides overpressure relief capability and will prevent RCS overpressurization.

BASES

During operation, all pressurizer code safety valves must be OPERABLE to prevent the RCS from being pressurized above its safety limit of 2750 psia. The combined relief capacity of these valves is sufficient to limit the Reactor Coolant System pressure to within its Safety Limit of 2750 psia following a complete loss of turbine generator load while operating at RATED THERMAL POWER and assuming no reactor trip until the first Reactor Protective System trip setpoint (Pressurizer Pressure-High) is reached (i.e., no credit is taken for a direct reactor trip on the loss of turbine) and also assuming no operation of the pressurizer power operated relief valve or steam dump valves.

3/4.4.3 RELIEF VALVES

The power operated relief valves (PORVs) operate to relieve RCS pressure below the setting of the pressurizer code safety valves. These relief valves have remotely operated block valves to provide a positive shutoff capability should a relief valve become inoperable. The electrical power for both the relief valves and the block valves is capable of being supplied from an emergency power source to ensure the ability to seal this possible RCS leakage path.

3/4.4.4 PRESSURIZER

An OPERABLE pressurizer provides pressure control for the reactor coolant system during operations with both forced reactor coolant flow and with natural circulation flow. The minimum water level in the pressurizer assures the pressurizer heaters, which are required to achieve and maintain pressure control, remain covered with water to prevent failure, which occurs if the heaters are energized uncovered. The maximum water level in the pressurizer ensures that this paramter is maintained within the envelope of operation assumed in the safety analysis. The maximum water level also ensures that the RCS is not a hydraulically solid system and that a steam bubble will be provided to accommodate pressure surges during operation. The steam bubble also protects the pressurizer code safety valves and power operated relief valve against water relief. The requirement that a minimum number of pressurizer heaters be OPERABLE enhances the capability of the plant to control Reactor Coolant System pressure and establish and maintain natural circulation.

The requirement that 130 kW of pressurizer heaters and their associated controls be capable of being supplied electrical power from an emergency bus provides assurance that these heaters can be energized during a loss of off-site power condition to maintain natural circulation at HOT STANDBY.

3/4.4.5 STEAM GENERATORS

The Surveillance Requirements for inspection of the steam generator tubes ensure that the structural integrity of this portion of the RCS will be maintained. The program for inservice inspection of steam generator tubes is based on a modification of Regulatory Guide 1.83, Revision 1. Inservice inspection of steam generator tubing is essential in order to maintain surveillance of the conditions of the tubes in the event that there is