ATTACHMENT 2

Proposed Changes to Technical Specifications Pages

Unit 1

Page 3/4 0-1	Page 3/4 7-94
Page 3/4 1-4	Page 3/4 8-6
Page 3/4 2-6	Page 3/4 11-4
Page 3/4 3-59	Page 3/4 11-5
Page 3/4 3-61	Page 3/4 11-6
Page 3/4 3-66	Page 3/4 11-11
Page 3/4 4-24	Page 3/4 11-12
Page 3/4 5-3	Page 3/4 11-13
Page 3/4 5-7	Page 3/4 11-14
Page 3/4 6-9	Page 3/4 11-17
Page 3/4 7-81	Page 3/4 11-19
Page 3/4 7-82	Page 3/4 12-1
Page 3/4 7-85	Page 3/4 12-9
Page 3/4 7-88	Page 3/4 12-10
Page 3/4 7-90	Page B3/4 2-5
Page 3/4 7-92	Page B3/4 4-3
	Page 6-19
	Appendix B Page 4-1

Unit 2

Page 3/4 7-64
Page 3/4 8-6
Page 3/4 11-4
Page 3/4 11-5
Page 3/4 11-6
Page 3/4 11-11
Page 3/4 11-12
Page 3/4 11-13
Page 3/4 11-14
Page 3/4 11-17
Page 3/4 11-19
Page 3/4 12-1
Page 3/4 12-9
Page 3/4 12-10
Page B3/4 2-5
Page B3/4 4-3
Page 6-19
Appendix B Page 4-1
Appendix b rage 4-1

3/4 LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

3/4.0 APPLICABILITY

LIMITING CONDITION FOR OPERATION

- 3.0.1 Compliance with the Limiting Conditions for Operation contained in the succeeding specifications is required during the OPERATIONAL MODES or other conditions specified therein; except that upon failure to meet the Limiting Conditions for Operation, the associated ACTION requirements shall be met.
- 3.0.2 A condition prohibited by the technical specifications shall exist when the requirements of the Limiting Condition for Operation and associated ACTION requirements are not met within the specified time intervals. If the Limiting Condition for Operation is restored prior to the expiration of the specified time intervals, completion of the ACTION requirements is not required.
- 3.0.3 When a Limiting Condition for Operation is not met, except as provided in the associated ACTION requirements, within one hour ACTION shall be initiated to place the unit in a MODE in which the specification does not apply by placing it, as applicable, in:
 - 1. At least HOT STANDBY within the next 6 hours,
 - 2. At least HOT SHUTDOWN within the following 6 hours, and
 - 3. At least COLD SHUTDOWN within the subsequent 24 hours.

Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time limits as measured from the time of failure to meet the Limiting Condition for Operation. Exceptions to these requirements are stated in the individual specifications.

- 3.0.4 Entry into an OPERATIONAL MODE or other specified condition shall not be made unless the conditions of the Limiting Condition for Operation are met without reliance on provisions contained in the ACTION requirements. This provision shall not prevent passage through OPERATIONAL MODES as required to comply with ACTION requirements. Exceptions to these requirements are stated in the individual specifications.
- 3.0.5 When a system, subsystem, train, component or device is determined to be inoperable solely because its emergency power source is inoperable, or solely because its normal power source is inoperable, it may be considered OPERABLE for the purpose of satisfying the requirements of its applicable Limiting Condition for Operation, provided: (1) its corresponding normal or emergency power source is OPERABLE; and (2) all of its redundant system(s), subsystem(s), train(s), component(s) and device(s) are OPERABLE, or likewise satisfy the requirements of this specification. Unless both conditions (1) and (2) are satisfied within 2 hours, ACTION shall be initiated to place the unit in a MODE in which the applicable Limiting Condition for Operation does not apply by placing it, as applicable, in:

REACTIVITY CONTROL SYSTEMS

MODERATOR TEMPERATURE COEFFICIENT

LIMITING CONDITION FOR OPERATION

- 3.1.1.3 The moderator temperature coefficient (MTC) shall be:
 - a. Less than or equal to 0.5×10^{-4} delta k/k/°F for the all rods withdrawn, beginning of cycle life (BOL), below 70% THERMAL POWER condition. Less than or equal to 0 delta k/k/°F at or above 70% THERMAL POWER.
 - b. Less negative than -3.9×10^{-4} delta k/ $^{\prime}$ / $^{\circ}$ F for the all rods withdrawn, end of cycle life (EOL), RATED THERMAL POWER condition.

APPLICABILITY: Specification 3.1.1.3.a - MODES 1 and 2* only# Specification 3.1.1.3.b - MODES 1, 2 and 3 only#

ACTION:

- a. With the MTC more positive than the limit of 3.1.1.3.a above, operation in MODES 1 and 2 may proceed provided:
 - Control rod withdrawal limits are established and maintained sufficient to restore the MTC to within its limit within 24 hours or be in HOT STANDBY within the next 6 hours. These withdrawal limits shall be in addition to the insertion limits of Specification 3.1.3.6.
 - 2. The control rods are maintained within the withdrawal limits established above until a subsequent calculation verifies that the MTC has been restored to within its limit for the all rods withdrawn condition.
 - 3. A Special Report is prepared and submitted to the Commission pursuant to Specification 6.9.2 within 10 days, describing the value of the measured MTC, the interim control rod withdrawal limits and the predicted average core burnup necessary for restoring the positive MTC to within its limit for the all rods withdrawn condition.
- b. With the MTC more negative than the limit of 3.1.1.3.b above, be in HOT SHUTDOWN within 12 hours.

*With Keff greater than or equal to 1.0

#See Special Test Exception 3.10.3

FARLEY-UNIT 1

SURVEILLANCE REQUIREMENTS (Continued)

- 2. When the $F_{xy}^{\ C}$ is less than or equal to the F_{xy}^{RTP} limit for the appropriate measured core plane, additional power distribution maps shall be taken and $F_{xy}^{\ C}$ compared to F_{xy}^{RTP} and $F_{xy}^{\ L}$ at least once per 31 EFPD.
- e. The F_{XY} limit for RATED THERMAL POWER (F_{XY}^{RTP}) shall be provided for all core planes containing bank "D" control rods and all unrodded core planes in a Radial Peaking Factor Limit Report per Specification 6.9.1.11.
- f. The F_{xy} limits of e, above, are not applicable in the following core planes regions as measured in percent of core height from the bottom of the fuel:
 - 1. Lower core region from 0 to 15%, inclusive.
 - 2. Upper core region from 85 to 100%, inclusive.
 - 3. Grid plane regions at 17.8 \pm 2%, 32.1 \pm 2%, 46.4 \pm 2%, 60.6 \pm 2% and 74.9 \pm 2%, inclusive.
 - 4. Core plane regions within \pm 2% of core height (\pm 2.88 inches) about the bank demand position of the bank "D" control rods.
- g. With F_{xy}^{C} exceeding F_{xy}^{L} the effects of F_{xy} on F_{Q} (Z) shall be evaluated to determine if F_{Q} (Z) is within its limits.
- 4.2.2.3 When F $_{\rm Q}$ (Z) is measured for other than F $_{\rm XY}$ determinations, an overall measured F $_{\rm Q}$ (Z) shall be obtained from a power distribution map and increased by 3% to account for manufacturing tolerances and further increased by 5% to account for measurement uncertainty.

INSTRUMENTATION

FIRE DETECTION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.9 As a minimum, the fire detection instrumentation for each fire detection zone shown in Table 3.3-12 shall be OPERABLE.

APPLICABILITY: Whenever equipment protected by the fire detection instrument is required to be OPERABLE.

ACTION:

With the number of OPERABLE fire detection instrument(s) less than the minimum number OPERABLE requirement of Table 3.3-12:

- a. Within 1 hour establish a fire watch patrol to inspect the zone(s) with the inoperable instrument(s) at least once per hour, unless the instrument(s) is located inside the containment, then monitor the containment air temperature at least once per hour at the locations listed in Specification 4.6.1.5.
- b. Restore the inoperable instrument(s) to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the instrument(s) to OPERABLE status.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.9.1 Each of the above required fire detection instruments which are accessible during plant operation shall be demonstrated OPERABLE at least once per 6 months by performance of a function test which includes subjecting the detector to test aerosol. Fire detectors which are not accessible during plant operation shall be demonstrated OPERABLE by the performance of this functional test during each COLD SHUTDOWN exceeding 24 hours unless performed in the previous 6 months.

4.3.3.9.2 The NFPA Standard 72D supervised circuits supervision associated with the detector alarms of each of the above required fire detection instruments shall be demonstrated OPERABLE at least once per 6 months.

INSTRUMENTATION

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.10 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3-13 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.1.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: At all times.

ACTION:

- a. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above specification, immediately suspend the release of radioactive liquid effluents monitored by the affected channel or declare the channel inoperable.
- b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-13.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.10 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-8.

INSTRUMENTATION

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.11 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3-14 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the ODCM.

APPLICABILITY: As shown in Table 3.3-14.

ACTION:

- a. With a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel or declare the channel inoperable.
- b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-14.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.11 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-9.

REACTOR COOLANT SYSTEM

ACTION: (Continued)

MODES 1, 2, 3, 4 and 5:

a. With the specific activity of the primary coolant greater than 1.0 microcurie per gram DOSE EQUIVALENT I-131 or greater than $100/\overline{E}$ microcuries rer gram, perform the sampling and analysis requirements of item 4a of Table 4.4-4 until the specific activity of the primary coolant is restored to within its limits.

SURVEILLANCE REQUIREMENTS

4.4.9 The specific activity of the primary coolant shall be determined to be within the limits by performance of the sampling and analysis program of Table 4.4-4.

EMERGENCY CORE COOLING SYSTEMS

3/4.5.2 ECCS SUBSYSTEMS - Tava > 350°F

LIMITING CONDITION FOR OPERATION

- 3.5.2 Two independent Emergency Core Cooling System (ECCS) subsystems shall be OPERABLE with each subsystem comprised of:
 - a. One OPERABLE centrifugal charging pump,
 - b. One OPERABLE residual heat removal heat exchanger,
 - c. One OPERABLE residual heat removal pump, and
 - d. An OPERABLE flow path capable of taking suction from the refueling water storage tank on a safety injection signal and transferring suction to the containment sump during the recirculation phase of operation.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

With one ECCS subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

EMERGENCY CORE COOLING SYSTEMS

3/4.5.3 ECCS SUBSYSTEMS - Tavg < 350°F

LIMITING CONDITION FOR OPERATION

- 3.5.3 As a minimum, one ECCS subsystem comprised of the following shall be OPERABLE:
 - a. One OPERABLE centrifugal charging pump,
 - b. One OPERABLE residual heat removal heat exchanger,
 - c. One OPERABLE residual heat removal pump, and
 - d. An OPERABLE flow path capable of taking suction from the refueling water storage tank upon being manually realigned and transferring suction to the containment sump during the recirculation phase of operation.

APPLICABILITY: MODE 4.

ACTION:

- a. With no ECCS subsystem OPERABLE because of the inoperability of either the centrifugal charging pump or the flow path from the refueling water storage tank, restore at least one ECCS subsystem to OPERABLE status within 1 hour or be in COLD SHUTDOWN within the next 20 hours if at least one RHR loop is OPERABLE.
- b. With no ECCS subsystem OPERABLE because of the inoperability of either the residual heat removal heat exchanger or residual heat removal pump, restore at least one ECCS subsystem to OPERABLE status or maintain the Reactor Coolant System T_{avg} less than 350°F by use of alternate heat removal methods.

SURVEILLANCE REQUIREMENTS (Continued)

- b. Removing one wire from each of a dome, vertical and hoop tendon checked for lift off force and determining that:
 - The corrosion level over the entire length of the tendon wires has not progressed since the original installation or the previous surveillance.
 - There are no changes in physical appearance of the sheathing filler material.
 - 3. A minimum tensile strength of 240,000 pounds per square inch for at least three wire samples (one from each end and one at mid-length) cut from each removed wire. Failure of any one of the wire samples to meet the minimum tensile strength test is evidence of abnormal degradation of the containment structure.
- 4.6.1.6.2 End Anchorages and Adjacent Concrete Surfaces The structural integrity of the end anchorages and adjacent concrete surfaces shall be demonstrated by determining through inspection that no adverse changes have occurred in the visual appearance of the end anchorage concrete exterior surfaces or the concrete crack patterns adjacent to the end anchorages. Inspections of the concrete shall be performed during the first Type A containment leakage rate tests only (reference Specification 4.6.1.2) while the containment is at its maximum test pressure.
- 4.6.1.6.3 <u>Liner Plate</u> The structural integrity of the containment liner plate shall be determined during the shutdown for the first Type A containment leakage rate test only (reference Specification 4.6.1.2) by a visual inspection of the plate and verifying no adverse changes in appearance or other abnormal degradation.

SURVEILLANCE REQUIREMENTS (Continued)

- 1. With a half-life greater than 30 days (excluding Hydrogen 3), and
- 2. In any form other than gas.
- b. Storage sources not in use Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous six months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use.
- c. Startup sources and fission detectors Each sealed startup source and fission detector shall be tested within 31 days prior to being subjected to core flux or installed in the core and following repair or maintenance to the source.

3/4.7.11 FIRE SUPPRESSION SYSTEMS

FIRE SUPPRESSION WATER SYSTEM

LIMITING CONDITION FOR OPERATION

- 3.7.11.1 The fire suppression water system shall be OPERABLE with:
 - a. Two high pressure pumps, each with a capacity of 2500 gpm, with their discharge aligned to the fire suppression header,
 - b. Separate water supplies, each with a minimum contained volume of 250,000 gallons, and
 - c. An OPERABLE flow path capable of taking suction from each tank and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each sprinkler or hose standpipe, and the last valve ahead of the deluge valve on each deluge or spray system required to be OPERABLE per Specifications 3.7.11.2, 3.7.11.4 and 3.7.11.5.

APPLICABILITY: At all times.

ACTION:

- a. With one of the above required pumps and/or water supplies inoperable, restore the inoperable equipment to OPERABLE status within 7 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the plans and procedures to be used to provide for the loss of redundancy in this system. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.
- b. With the fire suppression water system otherwise inoperable:
 - Establish a backup fire suppression water system within 24 hours, and
 - 2. Submit a Special Report in accordance with Specification 6.9.2:
 - a) By telephone within 24 hours,
 - b) Confirmed by telegraph, mailgram or fascimile transmission no later than the first working day following the event, and
 - c) In writing within 14 days following the event, outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.

SPRAY AND/OR SPRINKLER SYSTEMS

LIMITING CONDITION FOR OPERATION

3.7.11.2 The spray and/or sprinkler systems listed in Table 3.7-5 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the spray/sprinkler protected areas is required to be OPERABLE.

ACTION:

- a. With one or more of the above required spray and/or sprinkler systems inoperable, within one hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol. Restore the system to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
- b. The provisions of Spe 'fication 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.2 Each of the above required spray and/or sprinkler systems shall be demonstrated OPERABLE:
 - a. At least once per 31 days by verifying that each valve (manual, power operated or automatic) in the flow path is in its correct position.
 - b. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.

CO2_SYSTEMS

LIMITING CONDITION FOR OPERATION

- 3.7.11.3 The following high pressure and low pressure CO_2 systems shall be OPERABLE.
 - a. Service Water Intake Structure (each 4160 volt bus and each 600 volt load center) HP.
 - b. Turbine Building 13 ton unit and distribution system in the Auxiliary Building L.P.
 - c. Diesel Building 5 ton unit and distribution system.

APPLICABILITY: Whenever equipment protected by the CO₂ systems is required to be OPERABLE.

ACTION:

- a. With one or more of the above required CO₂ systems inoperable, within one hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol. Restore the system to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.3.1 Each of the above required CO_2 systems shall be demonstrated OPERABLE at least once per 31 days by verifying that each manual valve in the flow path is in its correct position.
- 4.7.11.3.2 Each of the above required low pressure CO_2 systems shall be demonstrated OPERABLE:
 - a. At least once per 7 days by verifying the ${\rm CO}_2$ storage tank level to be greater than 50% and pressure to be greater than 250 psig, and
 - b. At least once per 18 months by verifying:
 - The system valves and associated ventilation dampers and fire door release mechanisms actuate manually and automatically, upon receipt of a simulated actuation signal, and
 - 2. Flow from each nozzle during a "Puff Test."

FIRE HOSE STATIONS

LIMITING CONDITION FOR OPERATION

3.7.11.4 The fire hose stations shown in Table 3.7-6 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the areas protected by the fire hose stations is required to be OPERABLE.

ACTION:

- a. With one or more of the fire hose stations shown in Table 3.7-6 inoperable, route* an additional equivalent capacity fire hose to the unprotected area(s) from an OPERABLE hose station within 1 hour if the inoperable fire hose is the primary means of fire suppression; otherwise route the additional hose within 24 hours. Restore the fire hose station to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the station to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.4 Each of the fire hose stations shown in Table 3.7-6 shall be demonstrated OPERABLE:
 - a. At least once per 31 days by visual inspection of the fire hose stations accessible during plant operation to assure all required equipment is at the station.
 - b. At least once per 18 months by:
 - 1. Removing the hose for inspection and re-racking, and
 - Inspecting all gaskets and replacing any degraded gaskets in the couplings.
 - c. At least once per 3 years by:
 - Partially opening each hose station valve to verify valve OPERABILITY and no flow blockage.
 - 2. Conducting a hose hydrostatic test at a pressure at least 50 psig greater than the maximum pressure available at that hose starton.

^{*}If routing of the hose would require rendering a fire barrier penetration inoperable, hose will be routed up to but not through the penetration with sufficient hose length to reach the unprotected area(s).

YARD FIRE HYDRANTS AND HYDRANT HOSE HOUSES

LIMITING CONDITION FOR OPERATION

3.7.11.5 The yard fire hydrants and associated hydrant hose houses shown in Table 3.7-7 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the areas protected by the yard fire hydrants is required to be OPERABLE.

ACTION:

- a. With one or more of the yard fire hydrant or associated hydrant hose houses shown in Table 3.7-7 inoperable, within 1 hour have sufficient additional lengths of 2 1/2 inch diameter hose located in an adjacent OPERABLE hydrant hose house to provide service to the unprotected area(s) if the inoperable fire hydrant or associated hydrant hose house is the primary means of fire suppression; otherwise provide the additional hose within 24 hours. Restore the hydrant or hose house to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the hydrant or hose house to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.5 Each of the yard fire hydrants and associated hydrant hose houses shown in Table 3.7-7 shall be demonstrated OPERABLE:
 - a. At least once per 31 days by visual inspection of the hydrant hose house to assure all required equipment is at the hose house.
 - b. At least once per 6 months (once during March, April or May and once during September, October or November) by visually inspecting each yard fire hydrant and verifying that the hydrant barrel is dry and that the hydrant is not damaged.
 - c. At least once per 12 months by:
 - Conducting a hose hydrostatic test at a pressure at least 50 psig greater than the maximum pressure available at any yard fire hydrant.
 - Inspecting all the gaskets and replacing any degraded gaskets in the couplings.
 - 3. Performing a flow check of each hydrant to verify its OPERABILITY.

3/4.7.12 FIRE BARRIER PENETRATIONS

LIMITING CONDITION FOR OPERATION

3.7.12 All fire barrier penetrations (including cable penetration barriers, firedoors and fire dampers) in fire zone boundaries protecting safety related areas shall be functional.

APPLICABILITY: At all times.

ACTION:

- a. With one or more of the above required fire barrier penetrations non-functional, within one hour either, establish a continuous fire watch on at least one side of the affected penetration, or verify the OPERABILITY of fire detectors on at least one side of the non-functional fire barrier and establish an hourly fire watch patrol. Restore the non-functional fire barrier penetration(s) to functional status within 7 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the non-functional penetration and plans and schedule for restoring the fire barrier penetration(s) to functional status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.12 Each of the above required fire barrier penetrations shall be verified to be functional:

- a. At least once per 18 months by a visual inspection.
- b. Prior to returing a penetration fire barrier to functional status following repairs or maintenance by performance of a visual inspection of the affected penetration fire barrier(s).

SURVEILLANCE REQUIREMENTS (Continued)

- b) Coolant Temperature High (CTH)
- c) Coolant Pressure Low (CPL)
- d) Crankcase Pressure High (CCPH)
- 11. Verifying the capability to reject a load of greater than or equal to the largest single load associated with that diesel generator (approximately 1000 kw); while maintaining voltage between 3740 and 4580 volts and speed less than or equal to 75% of the difference between nominal speed and the overspeed trip setpoint.
- d. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting the diesel generators simultaneously, and verifying that the diesel generators accelerate to at least 900 rpm, for the 2850 kw generator and 514 rpm for the 4075 kw generator, in less than or equal to 12 seconds.
- e. At least once per 5 years, on a staggered basis, by verifying that the diesel generator can reject a load of 1200-2400 kw without tripping. The diesel generator output breaker(s) must remain closed such that the diesel generator is connected to at least one emergency bus. Verify that all fuses and breakers on the energized emergency bus(es) are not tripped. The generator voltage shall remain within 3330 and 4990 volts during and following the load rejection.

Table 4.11-1 (Continued)

TABLE NOTATION

- b. A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen which is representative of the liquids released.
- c. A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed, by a method described in the ODCM, to assure representative sampling.
- d. A continuous release is the discharge of liquid wastes of a nondiscrete volume; e.g., from a volume of system that has an input flow during the effluent release.
- e. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported.
- f. Sampling will be performed only if the effluent will be discharged to the environment.
- g. Deviation from the MDC requirements of Table 4.11-1 shall be reported per Specification 6.9.1.8.

DOSE

LIMITING CONDITION FOR OPERATION

- 3.11.1.2 The dose or dose commitment to an individual from radioactive materials in liquid effluents released, from each reactor unit, from the site (see Figure 5.1-4) shall be limited:
 - a. During any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and
 - b. During any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive materials in liquid effluents during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose or dose commitment to an individual from these releases is within 3 mrem to the total body and 10 mrem to any organ.
- b. The provisions of specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.1.2 <u>Dose Calculations</u>. Cumulative dose contributions from liquid effluents shall be determined in accordance with the ODCM at least once per 31 days.

LIQUID WASTE TREATMENT

LIMITING CONDITION FOR OPERATION

3.11.1.3 The LIQUID RADWASTE TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses due to the liquid effluent from the site (see Figure 5.1-4) when averaged over the calendar quarter would exceed 0.18 mrem to the total body or 0.6 mrem to any organ.*

APPLICABILITY: At all times.

ACTION:

- a. With the LIQUID RADWASTE TREATMENT SYSTEM inoperable for more than 31 days or with radioactive liquid waste being discharged without treatment and in excess of the above limits prepare and submit to the Commission within 30 days pursuant to Specification 6.9.2 a Special Report which includes the following information:
 - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability,
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.1.3.1 Doses due to liquid releases to unrestricted areas shall be projected, based on computed operational history, at least once per 31 days, in accordance with the ODCM.
- 4.11.1.3.2 The LIQUID RADWASTE TREATMENT SYSTEM shall be demonstrated OPERABLE by operating the LIQUID RADWASTE TREATMENT SYSTEM equipment for at least 15 minutes at least once per 92 days unless the LIQUID RADWASTE TREATMENT SYSTEM equipment has been utilized to process radioactive liquid effluents during the previous 92 days.
- * Per reactor unit

Table 4.11-2 (Continued)

TABLE NOTATION

- b. Analyses shall also be performed following shutdown from >15% RATED THERMAL POWER, startup to >15% RATED THERMAL POWER or a THERMAL POWER change exceeding 15 percent of the RATED THERMAL POWER within a one hour period.
- c. Tritium grab samples shall be taken from the plant vent stack at least once per 24 hours when the refueling canal is flooded.
- d. Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing (or after removal from sampler). Sampling shall also be performed at least once per 24 hours for at least 2 days following each shutdown from >15% RATED THERMAL POWER, startup to >15% RATED THERMAL POWER or THERMAL POWER change exceeding 15 percent of RATED THERMAL POWER in one hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding MDC may be increased by a factor of 10.
- e. Tritium grab samples shall be taken at least once per 7 days from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.
- f. The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Specifications 3.11.2.1, 3.11.2.2 and 3.11.2.3.
- g. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measureable and identifiable, together with the above nuclides, shall also be identified and reported.
- h. Deviations from MDC requirements of Table 4.11-2 shall be reported per Specification 6.9.1.8.
- i. A composite particulate sample is one in which the quantity of air sampled is proportional to the quantity of air discharged. Either a specimen which is representative of the air discharged may be accumulated and analyzed or the individual samples may be analyzed and weighted in proportion to their respective volume discharged.
- j. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and Xe-138 for gaseous emissions. This does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

DOSE - NOBLE GASES

LIMITING CONDITION FOR OPERATION

- 3.11.2.2 The air dose due to noble gases released in gaseous effluents, from each reactor unit, from the site (see Figure 5.1-3) shall be limited to the following:
 - a. During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation and,
 - b. During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

APPLICABILITY: At all times.

ACTION

- a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive noble gases in gaseous effluents during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose is within 10 mrad for gamma radiation and 20 mrad for beta radiation.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.2 <u>Dose Calculations</u> Cumulative dose contributions for the current calendar quarter and current calendar year shall be determined in accordance with the ODCM at least once per 31 days.

DOSE - RADIOIODINES, RADIOACTIVE MATERIALS IN PARTICULATE FORM, AND RADIONUCLIDES OTHER THAN NOBLE GASES

LIMITING CONDITION FOR OPERATION

- 3.11.2.3 The dose to an individual from radioiodines and radioactive materials in particulate form, and radionuclides (other than noble gases) with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, from the site (see Figure 5.1-3) shall be limited to the following:
 - a. During any calendar quarter: Less than or equal to 7.5 mrem to any organ and,
 - b. During any calendar year: Less than or equal to 15 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated dose from the release of radioiodines, radioactive materials in particulate form, or radionuclides (other than noble gases) with half lives greater than 8 days, in gaseous effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit and defines the corrective actions to be taken to reduce the releases of radioiodines and radioactive materials in particulate form, and radionuclides (other than nobles gases) with half-lives greater than 8 days in gaseous effluents during the remainder of the current calendar quarter and during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose or dose commitment to an individual from these releases is within 15 mrem to any organ.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.3 Dose Calculations Cumulative dose contributions for the current calendar quarter and current calendar year shall be determined in accordance with the ODCM at least once per 31 days.

GASEOUS RADWASTE TREATMENT

LIMITING CONDITION FOR OPERATION

3.11.2.4 The GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the GASEOUS RADWASTE TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases from the site (see Figure 5.1-3), when averaged over the calendar quarter, would exceed 0.6 mrad for gamma radiation and 1.2 mrad for beta radiation.* The appropriate portions of the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases from the site (see Figure 5.1-3) when averaged over the calendar quarter would exceed 0.9 mrem to any organ.*

APPLICABILITY: At all times.

ACTION:

- a. With the GASEOUS RADWASTE TREATMENT SYSTEM and/or the VENTILATION EXHAUST TREATMENT SYSTEM inoperable for more than 31 days or with gaseous waste being discharged without treatment and in excess of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which includes the following information:
 - Identification of the inoperable equipment or subsystems and the reason for inoperability.
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.2.4.1 Doses due to gaseous releases from the site shall be projected, based on computed operations history, at least once per 31 days, in accordance with the ODCM.
- 4.11.2.4.2 The GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be demonstrated OPERABLE by operating the GASEOUS RADWASTE TREATMENT SYSTEM equipment and the VENTILATION EXHAUST TREATMENT SYSTEM equipment for at least 15 minutes, at least once per 92 days unless the appropriate system has been utilized to process radioactive gaseous effluents during the previous 92 days.
- * Doses are per reactor unit.

3/4.11.3 RADWASTE SOLIDIFICATION

LIMITING CONDITION FOR OPERATION

3.11.3 The radwaste solidification system shall be OPERABLE and used, as applicable in accordance with a PROCESS CONTROL PROGRAM, for the SOLIDIFICATION and packaging of radioactive wastes to ensure meeting the requirements of 10CFR Part 20 and of 10CFR Part 71 prior to shipment of radioactive wastes from the site.

APPLICABILITY: At all times.

ACTION:

- a. With the packaging requirements of 10CFR Part 20 and/or 10CFR Part 71 not satisfied, suspend shipments of defectively packaged solid radioactive wastes from the site.
- b. With the radwaste solidification system inoperable for more than 31 days prepare and submit to the Commission within 30 days pursuant to Specification 6.9.2 a Special Report which includes the following information:
 - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability,
 - Action(s) taken to restore the inoperable equipment to OPERABLE status,
 - 3. A description of the alternative used for SOLIDIFICATION and packaging of radioactive wastes, and
 - 4. Summary description of action(s) taken to prevent a recurrence.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.3.1 The radwaste solidification system shall be demonstrated OPERABLE at least once per 92 days by:
 - a. Operating the radwaste solidification system at least once in the previous 92 days in accordance with the PROCESS CONTROL PROGRAM, or
 - b. Verification of the existence of a valid contract for SOLIDIFICATION to be performed by a contractor in accordance with a PROCESS CONTROL PROGRAM.

3/4.11.4 TOTAL DOSE

LIMITING CONDITION FOR OPERATION

3.11.4 The dose or dose commitment to any member of the public, due to releases of radioactivity and radiation, from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mrem) over 4 consecutive quarters.

APPLICABILITY: At all times.

ACTION:

- With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Specification 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b prepare and submit a Special Report to the Director, Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, within 30 days, which defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the limits of Specification 3.11.4. This Special Report shall include an analysis which estimates the radiation exposure (d'e) to a member of the public from uranium fuel cycle sources (including all effluent pathways and direct radiation) for a 4 consecutive quarter period that includes the release(s) covered by this report. If the estimated dose(s) exceeds the limits of Specification 3.11.4, and if the release condition resulting in violation of 40CFR190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40CFR190 and including the specified information of § 190.11(b). Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete. The variance only relates to the limits of 40CFR190, and does not apply in any way to the requirements for dose limitation of 10CFR Part 20, as addressed in other sections of this technical specification.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREM_NTS

4.11.4 <u>Dose Calculations</u> Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Specifications 4.11.1.2, 4.11.2.2, and 4.11.2.3, and in accordance with the ODCM.

3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.1 MONITORING PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.1 The radiological environmental monitoring program shall be conducted as specified in Table 3.12-1.

APPLICABILITY: At all times.

ACTION:

- a. With the radiological environmental monitoring program not being conducted as specified in Table 3.12-1 prepare and submit to the Commission, in the Annual Radiological Operating Report, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 3.12-1 prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause of the unavailability of samples and identifies locations for obtaining replacement samples. The locations from which samples were unavailable may then be deleted from those required by Table 3.12-1, provided the locations from which the replacement samples were obtained are added to the environmental monitoring program as replacement locations.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

Table 4.12-1 (Continued)

TABLE NOTATION

- b. MDC for drinking water.
- c. Other peaks which are measurable and identifiable, together with the radionuclides in Table 4.12-1, shall be identified and reported per Specification 6.9.1.8.

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS

LIMITING CONDITION FOR OPERATION

3.12.2 A land use census shall be conducted and shall identify the location of the nearest milk animal and the nearest residence.

APPLICABILITY: At all times.

ACTION:

- a. With a land use census identifying a location(s) which yields a calculated dose or dose commitment greater than the values currently being calculated in Specification 4.11.2.3, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the new location(s).
- b. With a land use census identifying a location(s) which yields a calculated dose or dose commitment (via the same exposure pathway) 20 percent greater than at a location from which samples are currently being obtained in accordance with Specification 3.12.1 prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the new location. The new location shall be added to the radiological environmental monitoring program within 30 days. The sampling location, excluding the control station location, having the lowest calculated dose or dose commitment (via the same exposure pathway) may be deleted from this monitoring program after (October 31) of the year in which this land use census was conducted.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.12.2 The land use census shall be conducted at least once per 12 months between the dates of (June 1 and October 1) using that information which will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities.

The radial peaking factor $F_{\chi y}(Z)$, is measured periodically to provide additional assurance that the hot channel factor, $F_Q(Z)$, remains within its limit. The $F_{\chi y}$ limit for RATED THERMAL POWER (F_{χ}^{RTP}) as provided in the Radial Peaking Factor limit report per Specification 6.9.1.11 was determined from expected power control maneuvers over the full range of burnup conditions in the core.

3/4.2.4 QUADRANT POWER TILT RATIO

The quadrant power tilt ratio limit assures that the radial power distribution satisfies the design values used in the power capability analysis. Radial power distribution measurements are made during startup testing and periodically during power operation.

The limit of 1.02, at which corrective action is required, provides DNB and linear heat generation rate protection with x-y plane power tilts.

The two hour time allowance for operation with a tilt condition greater than 1.02 but less than 1.09 is provided to allow identification and correction of a dropped or misaligned control rod. In the event such action does not correct the tilt, the margin for uncertainty on F_Q is reinstated by reducing the maximum allowed power by 3 percent for each percent of tilt in excess of 1.0.

3/4.2.5 DNB PARAMETERS

The limits on the DNB related parameters assure that each of the parameters are maintained within the normal steady state envelope of operation assumed in the transient and accident analyses. The limits are consistent with the initial FSAR assumptions and have been analytically demonstrated adequate to maintain a minimum DNBR of 1.30 throughout each analyzed transient.

The 12 hour periodic surveillance of these parameters through instrument readout is sufficient to ensure that the parameters are restored within their limits following load changes and other expected transient operation. The 18 month periodic measurement of the RCS total flow rate is adequate to detect flow degradation and ensure correlation of the flow indication channels with measured flow such that the indicated percent flow will provide sufficient verification of flow rate on a 12 hour basis.

3/4.4.6 STEAM GENERATORS

The Surveillance Requirements for inspection of the steam generator tubes ensure that the structural integrity of this portion of the RCS will be maintained. The program for inservice inspection of steam generator tubes is based on a modification of Regulatory Guide 1.83, Revision 1. Inservice inspection of steam generator tubing is essential in order to maintain surveillance of the conditions of the tubes in the event that there is evidence of mechanical damage or progressive degradation due to design, manufacturing errors, or inservice conditions that lead to corrosion. Inservice inspection of steam generator tubing also provides a means of characterizing the nature and cause of any tube degradation so that corrective measures can be taken.

The plant is expected to be operated in a manner such that the secondary coolant will be maintained within those chemistry limits found to result in negligible corrosion of the steam generator tubes. If the secondary coolant chemistry is not maintained within these limits, localized corrosion may likely result in stress corrosion cracking. The extent of cracking during plant operation would be limited by the limitation of steam generator tube leakage between the primary coolant system and the secondary coolant system (primary-to-secondary leakage = 500 gallons per day per steam generator). Cracks having a primary-to-secondary leakage less than this limit during operation will have an adequate margin of safety to withstand the loads imposed during normal operation and by postulated accidents. Operating plants have demonstrated that primary-to-secondary leakage of 500 gallons per day per steam generator can readily be detected by radiation monitors of steam generator blowdown. Leakage in excess of this limit will require plant shutdown and an unscheduled inspection, during which the leaking tubes will be located and plugged.

Wastage-type defects are unlikely with proper chemistry treatment of the secondary coolant. However, even if a defect should develop in service, it will be found during scheduled inservice steam generator tube examinations. Plugging will be required for all tubes with imperfections exceeding the plugging limit of 40% of the tube nominal wall thickness. Steam generator tube inspections of operating plants have demonstrated the capability to reliably detect degradation that has penetrated 20% of the original tube wall thickness.

Whenever the results of any steam generator tubing inservice inspection fall into Category C-3, these results will be reported to the Commission pursuant to 10CFR50.73 prior to resumption of plant operation. Such cases will be considered by the Commission on a case-by-case basis and may result in a requirement for analysis, laboratory examinations, tests, additional eddy-current inspection, and revision of the Technical Specifications, if necessary.

- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. Solidification agent (e.g., cement, urea formaldehyde).

The radioactive effluent release reports shall include unplanned releases from the site to unrestricted areas of radioactive materials in gaseous and liquid effluents on a quarterly basis.

The radioactive effluent release reports shall include any changes to the PROCESS CONTROL PROGRAM (PCP) made during the reporting period.

MONTHLY OPERATING REPORT

6.9.1.10 Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the PORV's or safety valves, shall be submitted on a monthly basis to the Director, Office of Management and Program Analysis, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, with a copy to the Regional Office of Inspection and Enforcement, no later than the 15th of each month following the calendar month covered by the report.

Any changes to the OFFSITE DOSE CALCULATION MANUAL shall be submitted with the Monthly Operating Report within 90 days in which the change(s) was made effective. In addition, a report of any major changes to the radioactive waste treatment systems shall be submitted with the Monthly Operating Report for the period in which the change was implemented.

RADIAL PEAKING FACTOR LIMIT REPORT

6.9.1.11 The F_{xy} limit for Rated Thermal Power (F_{xy}^{RTP}) shall be provided to the Director of the Regional Office of Inspection and Enforcement, with a copy to the Director, Nuclear Reactor Regulation, Attention Chief of the Core Performance Branch, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555 for all core planes containing bank "D" control rods and all unrodded core planes at least 60 days prior to cycle initial criticality. In the event that the limit would be submitted at some other time during core life, it will be submitted 60 days prior to the date the limit would become effective unless otherwise exempted by the Commission.

Any information needed to support F_{xy}^{RTP} will be by request from the NRC and need not be included in this report.

ANNUAL DIESEL GENERATOR RELIABILITY DATA REPORT

6.9.1.12 The number of valid tests and the number of failures to start on demand (upon a valid test signal) for each diesel generator shall be submitted to the NRC annually.

- 4.0 Environmental Conditions
- 4.1 Unusual or Important Environmental Events

Any occurrence of an unusual or important event that indicates or could result in significant environmental impact causally related to plant operation shall be recorded and reported to the NRC in accordance with 10CFR50.72(b)(2)(vi) or by a written report per Subsection 5.4.2, as appropriate. The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions and unanticipated or emergency discharge of waste water or chemical substances.

No routine monitoring programs are required to implement this condition.

- 4.2 Environmental Monitoring
- 4.2.1 Aerial Remote Sensing

Vegetation communities of the site and vicinity within 1 kilometer of the cooling towers in all directions shall be aerially photographed to detect and assess the significance of damage, or lack thereof, as related to cooling tower drift dispersions. Photography shall be done by aerial overflight during May or June. Monitoring shall include a program of low altitude false color aerial photography (either color infrared photography or multispectral or multiband photography). The scale for full coverage shall be adequate to

3/4 LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

3/4.0 APPLICABILITY

LIMITING CONDITION FOR OPERATION

- 3.0.1 Compliance with the Limiting Conditions for Operation contained in the succeeding specifications is required during the OPERATIONAL MODES or other conditions specified therein; except that upon failure to meet the Limiting Conditions for Operation, the associated ACTION requirements shall be met.
- 3.0.2 A condition prohibited by the technical specifications shall exist when the requirements of the Limiting Condition for Operation and associated ACTION requirements are not met within the specified time intervals. If the Limiting Condition for Operation is restored prior to the expiration of the specified time intervals, completion of the ACTION requirements is not required.
- 3.0.3 When a Limiting Condition for Operation is not met, except as provided in the associated ACTION requirements, within one hour ACTION shall be initiated to place the unit in a MODE in which the specification does not apply by placing it, as applicable, in:
 - 1. At least HOT STANDBY within the next 6 hours,
 - 2. At least HOT SHUTDOWN within the following 6 hours, and
 - 3. At least COLD SHUTDOWN within the subsequent 24 hours.

Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time limits as measured from the time of failure to meet the Limiting Condition for Operation. Exceptions to these requirements are stated in the individual specifications.

- 3.0.4 Entry into an OPERATIONAL MODE or other specified condition shall not be made unless the conditions of the Limiting Condition for Operation are met without reliance on provisions contained in the ACTION requirements. This provision shall not prevent passage through OPERATIONAL MODES as required to comply with ACTION requirements. Exceptions to these requirements are stated in the individual specifications.
- 3.0.5 When a system, subsystem, train, component or device is determined to be inoperable solely because its emergency power source is inoperable, or solely because its normal power source is inoperable, it may be considered OPERABLE for the purpose of satisfying the requirements of its applicable Limiting Condition for Operation, provided: (1) its corresponding normal or emergency power source is OPERABLE; and (2) all of its redundant system(s), subsystem(s), train(s), component(s) and device(s) are OPERABLE, or likewise satisfy the requirements of this specification. Unless both conditions (1) and (2) are satisfied within 2 hours, ACTION shall be initiated to place the unit in a MODE in which the applicable Limiting Condition for Operation does not apply by placing it, as applicable, in:

REACTIVITY CONTROL SYSTEMS

MODERATOR TEMPERATURE COEFFICIENT

LIMITING CONDITION FOR OPERATION

- 3.1.1.3 The moderator temperature coefficient (MTC) shall be:
 - a. Less than or equal to 0.5×10^{-4} delta k/k/°F for the all rods withdrawn, beginning of cycle life (BOL), below 70% THERMAL POWER condition. Less than or equal to 0 delta k/k/°F at or above 70% THERMAL POWER.
 - b. Less negative than -3.9×10^{-4} delta k/k/°F for the all rods withdrawn, end of cycle life (EOL), RATED THERMAL POWER condition.

APPLICABILITY: Specification 3.1.1.3.a - MODES 1 and 2* only# Specification 3.1.1.3.b - MODES 1, 2 and 3 only#

ACTION:

- a. With the MTC more positive than the limit of 3.1.1.3.a above, operation in MODES 1 and 2 may proceed provided:
 - Control rod withdrawal limits are established and maintained sufficient to restore the MTC to within its limit within 24 hours or be in HOT STANDBY within the next 6 hours. These withdrawal limits shall be in addition to the insertion limits of Specification 3.1.3.6.
 - 2. The control rods are maintained within the withdrawal limits established above until a subsequent calculation verifies that the MTC has been restored to within its limit for the all rods withdrawn condition.
 - 3. A Special Report is prepared and submitted to the Commission pursuant to Specification 6.9.2 within 10 days, describing the value of the measured MTC, the interim control rod withdrawal limits and the predicted average core burnup necessary for restoring the positive MTC to within its limit for the all rods withdrawn condition.
- b. With the MTC more negative than the limit of 3.1.1.3.b above, be in HOT SHUTDOWN within 12 hours.

*With Keff greater than or equal to 1.0

#See Special Test Exception 2.10.3

- 2. When the $F_{xy}^{\ C}$ is less than or equal to the F_{xy}^{RTP} limit for the appropriate measured core plane, additional power distribution maps shall be taken and $F_{xy}^{\ C}$ compared to F_{xy}^{RTP} and $F_{xy}^{\ L}$ at least once per 31 EFPD.
- e. The F_{xy} limit for RATED THERMAL POWER (F_{xy}^{RTP}) shall be provided for all core planes containing bank "D" control rods and all unrodded core planes in a Radial Peaking Factor Limit Report per Specification 6.9.1.11.
- f. The F_{XY} limits of e, above, are not applicable in the following core planes regions as measured in percent of core height from the bottom of the fuel:
 - 1. Lower core region from 0 to 15%, inclusive.
 - 2. Upper core region from 85 to 100%, inclusive.
 - 3. Grid plane regions at 17.8 \pm 2%, 32.1 \pm 2%, 46.4 \pm 2%, 60.6 \pm 2% and 74.9 \pm 2%, inclusive.
 - 4. Core plane regions within \pm 2% of core height (\pm 2.88 inches) about the bank demand position of the bank "D" control rods.
- g. With F_{xy}^{C} exceeding F_{xy}^{L} the effects of F_{xy} on F_{Q} (Z) shall be evaluated to determine if F_{Q} (Z) is within its limits.
- 4.2.2.3 When F $_Q$ (Z) is measured for other than F $_{XY}$ determinations, an overall measured F $_Q$ (Z) shall be obtained from a power distribution map and increased by 3% to account for manufacturing tolerances and further increased by 5% to account for measurement uncertainty.

INSTRUMENTATION

FIRE DETECTION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.9 As a minimum, the fire detection instrumentation for each fire detection zone shown in Table 3.3-12 shall be OPERABLE.

APPLICABILITY: Whenever equipment protected by the fire detection instrument is required to be OPERABLE.

ACTION:

With the number of OPERABLE fire detection instrument(s) less than the minimum number OPERABLE requirement of Table 3.3-12:

- a. Within 1 hour establish a fire watch patrol to inspect the zone(s) with the inoperable instrument(s) at least once per hour, unless the instrument(s) is located inside the containment, then monitor the containment air temperature at least once per hour at the locations listed in Specification 4.6.1.5.
- b. Restore the inoperable instrument(s) to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the instrument(s) to OPERABLE status.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.9.1 Each of the above required fire detection instruments which are accessible during plant operation shall be demonstrated OPERABLE at least once per 6 months by performance of a function test which includes subjecting the detector to test aerosol. Fire detectors which are not accessible during plant operation shall be demonstrated OPERABLE by the performance of this functional test during each COLD SHUTDOWN exceeding 24 hours unless performed in the previous 6 months.

4.3.3.9.2 The NFPA Standard 72D supervised circuits supervision associated with the detector alarms of each of the above required fire detection instruments shall be demonstrated OPERABLE at least once per 6 months.

INSTRUMENTATION

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.10 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3-13 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.1.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: At all times.

ACTION:

- a. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above specification, immediately suspend the release of radioactive liquid effluents monitored by the affected channel or declare the channel inoperable.
- b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-13.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.10 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-8.

INSTRUMENTATION

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.11 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3-14 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the ODCM.

APPLICABILITY: As shown in Table 3.3-14.

ACTION:

- a. With a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel or declare the channel inoperable.
- b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channe's OPERABLE, take the ACTION shown in Table 3.3-14.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.11 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-9.

REACTGR COOLANT SYSTEM

ACTION: (Continued)

MODES 1, 2, 3, 4 and 5:

a. With the specific activity of the primary coolant greater than 1.0 microcurie per gram DOSE EQUIVALENT I-131 or greater than 100/E microcuries per gram, perform the sampling and analysis requirements of item 4a of Table 4.4-4 until the specific activity of the primary coolant is restored to within its limits.

SURVEILLANCE REQUIREMENTS

4.4.9 The specific activity of the primary coolant shall be determined to be within the limits by performance of the sampling and analysis program of Table 4.4-4.

EMERGENCY CORE COOLING SYSTEMS

3/4.5.2 ECCS SUBSYSTEMS - Tavg > 350°F

LIMITING CONDITION FOR OPERATION

- 3.5.2 Two independent Emergency Core Cooling System (ECCS) subsystems shall be OPERABLE with each subsystem comprised of:
 - a. One OPERABLE centrifugal charging pump,
 - b. One OPERABLE residual heat removal heat exchanger,
 - c. One OPERABLE residual heat removal pump, and
 - d. An OPERABLE flow path capable of taking suction from the refueling water storage tank on a safety injection signal and transferring suction to the containment sump during the recirculation phase of operation.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

With one ECCS subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

EMERGENCY CORE COOLING SYSTEMS

3/4.5.3 ECCS SUBSYSTEMS - Tava < 350°F

LIMITING CONDITION FOR OPERATION

- 3.5.3 As a minimum, one ECCS subsystem comprised of the following shall be OPERABLE:
 - a. One OPERABLE centrifugal charging pump,
 - b. One OPERABLE residual heat removal heat exchanger.
 - c. One OPERABLE residual heat removal pump, and
 - d. An OPERABLE flow path capable of taking suction from the refueling water storage tank upon being manually realigned and transferring suction to the containment sump during the recirculation phase of operation.

APPLICABILITY: MODE 4.

ACTION:

- a. With no ECCS subsystem OPERABLE because of the inoperability of either the centrifugal charging pump or the flow path from the refueling water storage tank, restore at least one ECCS subsystem to OPERABLE status within 1 hour or be in COLD SHUTDOWN within the next 20 hours if at least one RHR loop is OPERABLE.
- b. With no ECCS subsystem OPERABLE because of the inoperability of either the residual heat removal heat exchanger or residual heat removal pump, restore at least one ECCS subsystem to OPERABLE status or maintain the Reactor Coolant System T_{avg} less than 350°F by use of alternate heat removal methods.

SURVEILLANCE REQUIREMENTS (Continued)

4.6.1.6.2 End Anchorages and Adjacent Concrete Surfaces The structural integrity of the end anchorages of all tendons inspected pursuant to Specification 4.6.1.6.1 and adjacent concrete surfaces shall be demonstrated by determining through inspection that no apparent changes have occurred in the visual appearance of the end anchorage or the concrete crack patterns adjacent to the end anchorages. Inspections of the concrete shall be performed during the first Type A containment leakage rate tests (reference Specification 4.6.1.2) while the containment is at its maximum test pressure.

4.6.1.6.3 <u>Liner Plate</u> The structural integrity of the containment liner plate shall be determined during the shutdown for the first Type A containment leakage rate test (reference Specification 4.6.1.2) by a visual inspection of the liner plate verifying no apparent changes in appearance or other abnormal degradation.

SURVEILLANCE REQUIREMENTS (Continued)

- 1. With a half-life greater than 30 days (excluding Hydrogen 3), and
- 2. In any form other than gas.
- b. Storage sources not in use Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous six months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use.
- c. Startup sources and fission detectors Each sealed startup source and fission detector shall be tested within 31 days prior to being subjected to core flux or installed in the core and following repair or maintenance to the source.

3/4.7.11 FIRE SUPPRESSION SYSTEMS

FIRE SUPPRESSION WATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.11.1 The fire suppression water system shall be OPERABLE with:

- a. Two high pressure pumps, each with a capacity of 2500 gpm, with their discharge aligned to the fire suppression header,
- b. Separate water supplies, each with a minimum contained volume of 250,000 gallons, and
- c. An OPERABLE flow path capable of taking suction from each tank and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each sprinkler or hose standpipe, and the last valve ahead of the deluge valve on each deluge or spray system required to be OPERABLE per Specifications 3.7.11.2, 3.7.11.4 and 3.7.11.5.

APPLICABILITY: At all times.

ACTION:

- a. With one of the above required pumps and/or water supplies inoperable, restore the inoperable equipment to OPERABLE status within 7 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the plans and procedures to be used to provide for the loss of redundancy in this system. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.
- b. With the fire suppression water system otherwise inoperable:
 - Establish a backup fire suppression water system within 24 hours, and
 - 2. Submit a Special Report in accordance with Specification 6.9.2:
 - a) By telephone within 24 hours,
 - b) Confirmed by telegraph, mailgram or fascimile transmission no later than the first working day following the event, and
 - c) In writing within 14 days following the event, outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.

SPRAY AND/OR SPRINKLER SYSTEMS

LIMITING CONDITION FOR OPERATION

3.7.11.2 The spray and/or sprinkler systems listed in Table 3.7-5 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the spray/sprinkler protected areas is required to be OPERABLE.

ACTION:

- a. With one or more of the above required spray and/or sprinkler systems inoperable, within one hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol. Restore the system to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.2 Each of the above required spray and/or sprinkler systems shall be demonstrated OPERABLE:
 - a. At least once per 31 days by verifying that each valve (manual, power operated or automatic) in the flow path is in its correct position.
 - b. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.

CO2 SYSTEMS

LIMITING CONDITION FOR OPERATION

- 3.7.11.3 The following high pressure and low pressure $\rm CO_2$ systems shall be OPERABLE.
 - a. Service Water Intake Structure (each 4160 volt bus and each 600 volt load center) HP.
 - b. Turbine Building 13 ton unit and distribution system in the Auxiliary Building - L.P.
 - c. Diesel Building 5 ton unit and distribution system.

APPLICABILITY: Whenever equipment protected by the CO₂ systems is required to be OPERABLE.

ACTION:

- a. With one or more of the above required CO₂ systems inoperable, within one hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol. Restore the system to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.3.1 Each of the above required CO₂ systems shall be demonstrated OPERABLE at least once per 31 days by verifying that each manual valve in the flow path is in its correct position.
- 4.7.11.3.2 Each of the above required low pressure CO₂ systems shall be demonstrated OPERABLE:
 - a. At least once per 7 days by verifying the CO₂ storage tank level to be greater than 50% and pressure to be greater than 250 psig, and
 - b. At least once per 18 months by verifying:
 - The system valves and associated ventilation dampers and fire door release mechanisms actuate manually and automatically, upon receipt of a simulated actuation signal, and
 - 2. Flow from each nozzle during a "Puff Test."

FIRE HOSE STATIONS

LIMITING CONDITION FOR OPERATION

3.7.11.4 The fire hose stations shown in Table 3.7-6 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the areas protected by the fire hose stations is required to be OPERABLE.

ACTION:

- a. With one or more of the fire hose stations shown in Table 3.7-6 inoperable, route* an additional equivalent capacity fire hose to the unprotected area(s) from an OPERABLE hose station within 1 hour if the inoperable fire hose is the primary means of fire suppression; otherwise route the additional hose within 24 hours. Restore the fire hose station to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the station to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.4 Each of the fire hose stations shown in Table 3.7-6 shall be demonstrated OPERABLE:
 - a. At least once per 31 days by visual inspection of the fire hose stations accessible during plant operation to assure all required equipment is at the station.
 - b. At least once per 18 months by:
 - 1. Removing the hose for inspection and re-racking, and
 - Inspecting all gaskets and replacing any degraded gaskets in the couplings.
 - c. At least once per 3 years by:
 - Partially opening each hose station valve to verify valve OPERABILITY and no flow blockage.
 - Conducting a hose hydrostatic test at a pressure at least 50 psig greater than the maximum pressure available at that hose station.

^{*}If routing of the hose would require rendering a fire barrier penetration inoperable, hose will be routed up to but not through the penetration with sufficient hose length to reach the unprotected area(s).

YARD FIRE HYDRANTS AND HYDRANT HOSE HOUSES

LIMITING CONDITION FOR OPERATION

3.7.11.5 The yard fire hydrants and associated hydrant hose houses shown in Table 3.7-7 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the areas protected by the yard fire hydrants is required to be OPERABLE.

ACTION:

- a. With one or more of the yard fire hydrant or associated hydrant hose houses shown in Table 3.7-7 inoperable, within 1 hour have sufficient additional lengths of 2 1/2 inch diameter hose located in an adjacent OPERABLE hydrant hose house to provide service to the unprotected area(s) if the inoperable fire hydrant or associated hydrant hose house is the primary means of fire suppression; otherwise provide the additional hose within 24 hours. Restore the hydrant or hose house to OPERABLE status within 14 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the hydrant or hose house to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.11.5 Each of the yard fire hydrants and associated hydrant hose houses shown in Table 3.7-7 shall be demonstrated OPERABLE:
 - a. At least once per 31 days by visual inspection of the hydrant hose house to assure all required equipment is at the hose house.
 - b. At least once per 6 months (once during March, April or May and once during September, October or November) by visually inspecting each yard fire hydrant and verifying that the hydrant barrel is dry and that the hydrant is not damaged.
 - c. At least once per 12 months by:
 - Conducting a hose hydrostatic test at a pressure at least 50 psig greater than the maximum pressure available at any yard fire hydrant.
 - Inspecting all the gaskets and replacing any degraded gaskets in the couplings.
 - 3. Performing a flow check of each hydrant to verify its OPERABILITY.

3/4.7.12 FIRE BARRIER PENETRATIONS

LIMITING CONDITION FOR OPERATION

3.7.12 All fire barrier penetrations (including cable penetration barriers, firedoors and fire dampers) in fire zone boundaries protecting safety related areas shall be functional.

APPLICABILITY: At all times.

ACTION:

- a. With one or more of the above required fire barrier penetrations non-functional, within one hour either, establish a continuous fire watch on at least one side of the affected penetration, or verify the OPERABILITY of fire detectors on at least one side of the non-functional fire barrier and establish an hourly fire watch patrol. Restore the non-functional fire barrier penetration(s) to functional status within 7 days or prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the action taken, the cause of the non-functional penetration and plans and schedule for restoring the fire barrier penetration(s) to functional status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.7.12 Each of the above required fire barrier penetrations shall be verified to be functional:
 - a. At least once per 18 months by a visual inspection.
 - b. Prior to returning a penetration fire barrier to functional status following repairs or maintenance by performance of a visual inspection of the affected penetration fire barrier(s).

SURVEILLANCE REQUIREMENTS (Continued)

- b) Coolant Temperature High (CTH)
- c) Coolant Pressure Low (CPL)
- d) Crankcase Pressure High (CCPH)
- 11. Verifying the capability to reject a load of greater than or equal to the largest single load associated with that diesel generator (approximately 1000 kw); while maintaining voltage between 3740 and 4580 volts and speed less than or equal to 75% of the difference between nominal speed and the overspeed trip setpoint.
- d. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting the diesel generators simultaneously, and verifying that the diesel generators accelerate to at least 900 rpm, for the 2850 kw generator and 514 rpm for the 4075 kw generator, in less than or equal to 12 seconds.
- e. At least once per 5 years, on a staggered basis, by verifying that the diesel generator can reject a load of 1200-2400 kw without tripping. The diesel generator output breaker(s) must remain closed such that the diesel generator is connected to at least one emergency bus. Verify that all fuses and breakers on the energized emergency bus(es) are not tripped. The generator voltage shall remain within 3330 and 4990 volts during and following the load rejection.

Table 4.11-1 (Continued)

TABLE NOTATION

- b. A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen which is representative of the liquids released.
- c. A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed, by a method described in the ODCM, to assure representative sampling.
- d. A continuous release is the discharge of liquid wastes of a nondiscrete volume; e.g., from a volume of system that has an input flow during the efficient release.
- e. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported.
- f. Sampling will be performed only if the effluent will be discharged to the environment.
- g. Deviation from the MDC requirements of Table 4.11-1 shall be reported per Specification 6.9.1.8.

DOSE

LIMITING CONDITION FOR OPERATION

- 3.11.1.2 The dose or dose commitment to an individual from radioactive materials in liquid effluents released, from each reactor unit, from the site (see Figure 5.1-4) shall be limited:
 - a. During any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and
 - b. During any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive materials in liquid effluents during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose or dose commitment to an individual from these releases is within 3 mrem to the total body and 10 mrem to any organ.
- b. The provisions of specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.1.2 Dose Calculations. Cumulative dose contributions from liquid effluents shall be determined in accordance with the ODCM at least once per 31 days.

LIQUID WASTE TREATMENT

LIMITING CONDITION FOR OPERATION

3.11.1.3 The LIQU D RADWASTE TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the system shall be used to reduce the radioactive materials in liqu d wastes prior to their discharge when the projected doses due to the liquid effluent from the site (see Figure 5.1-4) when averaged over the calendar quarter would exceed 0.18 mrem to the total body or 0.6 mrem to any organ.*

APPLICABILITY: At all times.

ACTION:

- a. With the LIQUID RADWASTE TREATMENT SYSTEM inoperable for more than 31 days or with radioactive liquid waste being discharged without treatment and in excess of the above limits prepare and submit to the Commission within 30 days pursuant to Specification 6.9.2 a Special Report which includes the following information:
 - Identification of the inoperable equipment or subsystems and the reason for inoperability,
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.1.3.1 Doses due to liquid releases to unrestricted areas shall be projected, based on computed operational history, at least once per 31 days, in accordance with the ODCM.
- 4.11.1.3.2 The LIQUID RADWASTE TREATMENT SYSTEM shall be demonstrated OPERABLE by operating the LIQUID RADWASTE TREATMENT SYSTEM equipment for at least 15 minutes at least once per 92 days unless the LIQUID RADWASTE TREATMENT SYSTEM equipment has been utilized to process radioactive liquid effluents during the previous 92 days.
- * Per reactor unit

Table 4.11-2 (Continued)

TABLE NOTATION

- b. Analyses shall also be performed following shutdown from >15% RATED THERMAL POWER, startup to >15% RATED THERMAL POWER or a THERMAL POWER change exceeding 15 percent of the RATED THERMAL POWER within a one hour period.
- c. Tritium grab samples shall be taken from the plant vent stack at least once per 24 hours when the refueling canal is flooded.
- d. Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing (or after removal from sampler). Sampling shall also be performed at least once per 24 hours for at least 2 days following each shutdown from >15% RATED THERMAL POWER, startup to >15% RATED THERMAL POWER or THERMAL POWER change exceeding 15 percent of RATED THERMAL POWER in one hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding MDC may be increased by a factor of 10.
- e. Tritium grab samples shall be taken at least once per 7 days from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.
- f. The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Specifications 3.11.2.1, 3.11.2.2 and 3.11.2.3.
- g. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measureable and identifiable, together with the above nuclides, shall also be identified and reported.
- h. Deviations from MDC requirements of Table 4.11-2 shall be reported per Specification 6.9.1.8.
- i. A composite particulate sample is one in which the quantity of air sampled is proportional to the quantity of air discharged. Either a specimen which is representative of the air discharged may be accumulated and analyzed or the individual samples may be analyzed and weighted in proportion to their respective volume discharged.
- j. The principal gamma emitters for which the MDC specification applies exclusively are the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and Xe-138 for gaseous emissions. This does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

DOSE - NOBLE GASES

LIMITING CONDITION FOR OPERATION

- 3.11.2.2 The air dose due to noble gases released in gaseous effluents, from each reactor unit, from the site (see Figure 5.1-3) shall be limited to the following:
 - a. During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 15 mrad for beta radiation and,
 - b. During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

APPLICABILITY: At all times.

ACTION

- a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive noble gases in gaseous effluents during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose is within 10 mrad for gamma radiation and 20 mrad for beta radiation.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.2 Dose Calculations Cumulative dose contributions for the current calendar quarter and current calendar year shall be determined in accordance with the ODCM at least once per 31 days.

DOSE - RADIOIODINES, RADIOACTIVE MATERIALS IN PARTICULATE FORM, AND RADIONUCLIDES OTHER THAN NOBLE GASES

LIMITING CONDITION FOR OPERATION

- 3.11.2.3 The dose to an individual from radioiodines and radioactive materials in particulate form, and radionuclides (other than noble gases) with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, from the site (see Figure 5.1-3) shall be limited to the following:
 - a. During any calendar quarter: Less than or equal to 7.5 mrem to any organ and,
 - b. During any calendar year: Less than or equal to 15 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated dose from the release of radioiodines, radioactive materials in particulate form, or radionuclides (other than noble gases) with half lives greater than 8 days, in gaseous effluents exceeding any of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit and defines the corrective actions to be taken to reduce the releases of radioiodines and radioactive materials in particulate form, and radionuclides (other than nobles gases) with half-lives greater than 8 days in gaseous effluents during the remainder of the current calendar quarter and during the remainder of the current calendar year, so that the cumulative dose or dose commitment to an individual from these releases is within 15 mrem to any organ.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.3 <u>Dose Calculations</u> Cumulative dose contributions for the current calendar quarter and current calendar year shall be determined in accordance with the ODCM at least once per 31 days.

GASEOUS RADWASTE TREATMENT

LIMITING CONDITION FOR OPERATION

3.11.2.4 The GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the GASEOUS RADWASTE TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases from the site (see Figure 5.1-3), when averaged over the calendar quarter, would exceed 0.6 mrad for gamma radiation and 1.2 mrad for beta radiation.* The appropriate portions of the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases from the site (see Figure 5.1-3) when averaged over the calendar quarter would exceed 0.9 mrem to any organ.*

APPLICABILITY: At all times.

ACTION:

- a. With the GASEOUS RADWASTE TREATMENT SYSTEM and/or the VENTILATION EXHAUST TREATMENT SYSTEM inoperable for more than 31 days or with gaseous waste being discharged without treatment and in excess of the above limits prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which includes the following information:
 - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability.
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.2.4.1 Doses due to gaseous releases from the site shall be projected, based on computed operations history, at least once per 31 days, in accordance with the ODCM.
- 4.11.2.4.2 The GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be demonstrated OPERABLE by operating the GASEOUS RADWASTE TREATMENT SYSTEM equipment and the VENTILATION EXHAUST TREATMENT SYSTEM equipment for at least 15 minutes, at least once per 92 days unless the appropriate system has been utilized to process radioactive gaseous effluents during the previous 92 days.
- * Doses are per reactor unit.

3/4.11.3 RADWASTE SOLIDIFICATION

LIMITING CONDITION FOR OPERATION

3.11.3 The radwaste solidification system shall be OPERABLE and used, as applicable in accordance with a PROCESS CONTROL PROGRAM, for the SOLIDIFICATION and packaging of radioactive wastes to ensure meeting the requirements of 10CFR Part 20 and of 10CFR Part 71 prior to shipment of radioactive wastes from the site.

APPLICABILITY: At all times.

ACTION:

A

- a. With the packaging requirements of 10CFR Part 20 and/or 10CFR Part 71 not satisfied, suspend shipments of defectively packaged solid radioactive wastes from the site.
- b. With the radwaste solidification system inoperable for more than 31 days prepare and submit to the Commission within 30 days pursuant to Specification 6.9.2 a Special Report which includes the following information:
 - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability,
 - Action(s) taken to restore the inoperable equipment to OPERABLE status,
 - A description of the alternative used for SOLIDIFICATION and packaging of radioactive wastes, and
 - 4. Summary description of action(s) taken to prevent a recurrence.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

- 4.11.3.1 The radwaste solidification system shall be demonstrated OPERABLE at least once per 92 days by:
 - a. Operating the radwaste solidification system at least once in the previous 92 days in accordance with the PROCESS CONTROL PROGRAM, or
 - b. Verification of the existence of a valid contract for SOLIDIFICATION to be performed by a contractor in accordance with a PROCESS CONTROL PROGRAM.

3/4.11.4 TOTAL DOSE

LIMITING CONDITION FOR OPERATION

3.11.4 The dose or dose commitment to any member of the public, due to releases of radioactivity and radiation, from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mrem) over 4 consecutive quarters.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Specification 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b prepare and submit a Special Report to the Director, Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, within 30 days, which defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the limits of Specification 3.11.4. This Special Report shall include an analysis which estimates the radiation exposure (dose) to a member of the public from uranium fuel cycle sources (including all effluent pathways and direct radiation) for a 4 consecutive quarter period that includes the release(s) covered by this report. If the estimated dose(s) exceeds the limits of Specification 3.11.4, and if the release condition resulting in violation of 40CFR190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40CFR190 and including the specified information of § 190.11(b). Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete. The variance only relates to the limits of 40CFR190, and does not apply in any way to the requirements for dose limitation of 10CFR Part 20. as addressed in other sections of this technical specification.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.4 Dose Calculations Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Specifications 4.11.1.2, 4.11.2.2, and 4.11.2.3, and in accordance with the ODCM.

3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.1 MONITORING PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.1 The radiological environmental monitoring program shall be conducted as specified in Table 3.12-1.

APPLICABILITY: At all times.

ACTION:

- a. With the radiological environmental monitoring program not being conducted as specified in Table 3.12-1 prepare and submit to the Commission, in the Annual Radiological Operating Report, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 3.12-1 prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause of the unavailability of samples and identifies locations for obtaining replacement samples. The locations from which samples were unavailable may then be deleted from those required by Table 3.12-1, provided the locations from which the replacement samples were obtained are added to the environmental monitoring program as replacement locations.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

Table 4.12-1 (Continued)

TABLE NOTATION

- b. MDC for drinking water.
- c. Other peaks which are measurable and identifiable, together with the radionuclides in Table 4.12-1, shall be identified and reported per Specification 6.9.1.8.

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS

LIMITING CONDITION FOR OPERATION

3.12.2 A land use census shall be conducted and shall identify the location of the nearest milk animal and the nearest residence.

APPLICABILITY: At all times.

ACTION:

- a. With a land use census identifying a location(s) which yields a calculated dose or dose commitment greater than the values currently being calculated in Specification 4.11.2.3, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the new location(s).
- b. With a land use census identifying a location(s) which yields a calculated dose or dose commitment (via the same exposure pathway) 20 percent greater than at a location from which samples are currently being obtained in accordance with Specification 3.12.1 prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the new location. The new location shall be added to the radiological environmental monitoring program within 30 days. The sampling location, excluding the control station location, having the lowest calculated dose or dose commitment (via the same exposure pathway) may be deleted from this monitoring program after (October 31) of the year in which this land use census was conducted.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.12.2 The land use census shall be conducted at least once per 12 months between the dates of (June 1 and October 1) using that information which will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities.

BASES

The radial peaking factor $F_{xy}(Z)$, is measured periodically to provide additional assurance that the hot channel factor, F_Q (Z), remains within its limit. The F_{xy} limit for RATED THERMAL POWER (F_{xy}^{RTP}) as provided in the Radial Peaking Factor limit report per Specification 6.9.1.11 was determined from expected power control maneuvers over the full range of burnup conditions in the core.

3/4.2.4 QUADRANT POWER TILT RATIO

The quadrant power tilt ratio limit assures that the radial power distribution satisfies the design values used in the power capability analysis. Radial power distribution measurements are made during startup testing and periodically during power operation.

The limit of 1.02, at which corrective action is required, provides DNB and linear heat generation rate protection with x-y plane power tilts.

The two hour time allowance for operation with a tilt condition greater than 1.02 but less than 1.09 is provided to allow identification and correction of a dropped or misaligned control rod. In the event such action does not correct the tilt, the margin for uncertainty on F_Q is reinstated by reducing the maximum allowed power by 3 percent for each percent of tilt in excess of 1.0.

3/4.2.5 DNB PARAMETERS

The limits on the DNB related parameters assure that each of the parameters are maintained within the normal steady state envelope of operation assumed in the transient and accident analyses. The limits are consistent with the initial FSAR assumptions and have been analytically demonstrated adequate to maintain a minimum DNBR of 1.30 throughout each analyzed transient.

The 12 hour periodic surveillance of these parameters through instrument readout is sufficient to ensure that the parameters are restored within their limits following load changes and other exjected transient operation. The 18 month periodic measurement of the RCS total flow rate is adequate to detect flow degradation and ensure correlation of the flow indication channels with measured flow such that the indicated percent flow will provide sufficient verification of flow rate on a 12 hour basis.

3/4.4.6 STEAM GENERATORS

The Surveillance Requirements for inspection of the steam generator tubes ensure that the structural integrity of this portion of the RCS will be maintained. The program for inservice inspection of steam generator tubes is based on a modification of Regulatory Guide 1.83, Revision 1. Inservice inspection of steam generator tubing is essential in order to maintain surveillance of the conditions of the tubes in the event that there is evidence of mechanical damage or progressive degradation due to design, manufacturing errors, or inservice conditions that lead to corrosion. Inservice inspection of steam generator tubing also provides a means of characterizing the nature and cause of any tube degradation so that corrective measures can be taken.

The plant is expected to be operated in a manner such that the secondary coolant will be maintained within those chemistry limits found to result in negligible corrosion of the steam generator tubes. If the secondary coolant chemistry is not maintained within these limits, localized corrosion may likely result in stress corrosion cracking. The extent of cracking during plant operation would be limited by the limitation of steam generator tube leakage between the primary coolant system and the secondary coolant system (primary-to-secondary leakage = 500 gallons per day per steam generator). Cracks having a primary-to-secondary leakage less than this limit during operation will have an adequate margin of safety to withstand the loads imposed during normal operation and by postulated accidents. Operating plants have demonstrated that primary-to-secondary leakage of 500 gallons per day per steam generator can readily be detected by radiation monitors of steam generator blowdown. Leakage in excess of this limit will require plant shutdown and an unscheduled inspection, during which the leaking tubes will be located and plugged.

Wastage-type defects are unlikely with proper chemistry treatment of the secondary coolant. However, even if a defect should develop in service, it will be found during scheduled inservice steam generator tube examinations. Plugging will be required for all tubes with imperfections exceeding the plugging limit of 40% of the tube nominal wall thickness. Steam generator tube inspections of operating plants have demonstrated the capability to reliably detect degradation that has penetrated 20% of the original tube wall thickness.

Whenever the results of any steam generator tubing inservice inspection fall into Category C-3, these results will be reported to the Commission pursuant to 10CFR50.73 prior to resumption of plant operation. Such cases will be considered by the Commission on a case-by-case basis and may result in a requirement for analysis, laboratory examinations, tests, additional eddy-current inspection, and revision of the Technical Specifications, if necessary.

- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. Solidification agent (e.g., cement, urea formaldehyde).

The radioactive effluent release reports shall include unplanned releases from the site to unrestricted areas of radioactive materials in gaseous and liquid effluents on a quarterly basis.

The radioactive effluent release reports shall include any changes to the PROCESS CONTROL PROGRAM (PCP) made during the reporting period.

MONTHLY OPERATING REPORT

6.9.1.10 Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the PORV's or safety valves shall be submitted on a monthly basis to the Director, Office of Management and Program Analysis, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, with a copy to the Regional Office of Inspection and Enforcement, no later than the 15th of each month following the calendar month covered by the report.

Any changes to the OFFSITE DOSE CALCULATION MANUAL shall be submitted with the Monthly Operating Report within 90 days in which the change(s) was made effective. In addition, a report of any major changes to the radioactive waste treatment systems shall be submitted with the Monthly Operating Report for the period in which the change was implemented.

RADIAL PEAKING FACTOR LIMIT REPORT

6.9.1.11 The F_{XY} limit for Rated Thermal Power (F_{XY}^{RTP}) shall be provided to the Director of the Regional Office of Inspection and Enforcement, with a copy to the Director, Nuclear Reactor Regulation, Attention Chief of the Core Performance Branch, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555 for all core planes containing bank "D" control rods and all unrodded core planes at least 60 days prior to cycle initial criticality. In the event that the limit would be submitted at some other time during core life, it will be submitted 60 days prior to the date the limit would become effective unless otherwise exempted by the Commission.

Any information needed to support F_{xy}^{RF} will be by request from the NRC and need not be included in this report.

ANNUAL DIESEL GENERATOR RELIABILITY DATA REPORT

6.9.1.12 The number of valid tests and the number of failures to start on demand (upon a valid test signal) for each diesel generator shall be submitted to the NRC annually.

P Environmental Conditions

4.1 Unusual or Important Environmental Events

Any occurrence of an unusual or important event that indicates or could result in significant environmental impact causally related to plant operation shall be recorded and reported to the NRC in accordance with 10CFR50.72(b)(2)(vi) or by a written report per Subsection 5.4.2, as appropriate. The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions and unanticipated or emergency discharge of waste water or chemical substances.

No routine monitoring programs are required to implement this condition.

- 4.2 Environmental Monitoring
- 4.2.1 Aerial Remote Sensing

Vegetation communities of the site and vicinity within 1 kilometer of the cooling towers in all directions shall be aerially photographed to detect and assess the significance of damage, or lack thereof, as related to cooling tower drift dispersions. Photography shall be done by aerial overflight during May or June. Monitoring shall include a program of low altitude false color aerial photography (either color infrared photography or multispectral or multiband photography). The scale for full coverage shall be adequate to