> KE POWER COMPANY McGUIRE NUCLEAR STATION UNIT 2 CYCLE 8 STARTUP REPORT

Revision

Original issue

May 28, 1992

Date

Table of Contents

			Page
List	of Tab	les	ii
List	of Fig	ures	iii
1.0	Intro	duction	1
	1.1	Prestartup NIS Realignment Following Refueling - PT/0/A/4600/78	3
2.0	Criti	cality	5
3.0	Zero	Power Physics Testing	6
	3.1	Boron Endpoint Measurement - PT/0/A/4150/10	10
	3.2	Isothermal Temperature Coefficient Measurement - PT/0/A/4150/12	11
	3.3	Control Rod Worth Measurement - PT/0/A/4150/11	14
	3.4	Control Rod Worth Measurement: Rod Swap - PT/0/A/4150/11A	16
4.0	Power	Escalation Testing	18
	4.1	Thermal Power Output Measurement - PT/0/A/4150/03	23
	4.2	Reactivity Anomalies Calculation - PT/0/A/4150/04	25
	4.3	Core Power Distribution and Incore/NIS Correlation Check - PT/0/A/4150/02A	26
	4.4	Incore and Nuclear Instrumentation Systems Recalibration - PT/0/A/4600/02G	28

List of Tables

		Take
1.	Overlap Data	7
2.	Nuclear Heat	8
з.	Reactivity Computer Checkout	9
4.	Control Rod Worth Measurement: Rod Swap	17
5.	M2C8 Core Power Distribution Results - 38% Full Power	19
6.	M2C8 Incore and NIS Interim Recalibration Results	20
7.	M2C8 Core Power Distribution Results - 78% Full Power	21
8.	M2C8 Incore and NIS Interim Recalibration Results	22
9,	Thermal Power Output Measurement Results	24
10.	M2C8 Core Power Distribution Results - 100% Full Power	27
11.	M2C8 Incore and NIS Recalibration Results	29

List of Figures

		Page
1.	Unit 2 Cycle 8 Core Loading Pattern	2
2.	Assemblies to Use for Calculating IR and PR Calibration	4
3.	ITC Heatup and Cooldown Data: Cooldown	12
4.	ITC Heatup and Cooldown Data: Heatup	13
5.	Shutdown Bank B Rod Worth	15

1.0 Introduction

Core loading for McGuire Unit 2 Cycle 8 was started on February 19, 1992, and was completed February 22. The core for McGuire 2 Cycle 8 consists of 121 Westinghouse optimized fuel assemblies and 72 Babcock & Wilcox Mark-BW fuel assemblies. To control power peaking and maximize cycle length, 64 Purnable Absorber inserts are used. Figure 1 gives the Unit 2 Cycle 8 core loading pattern.

Criticality, Zero Power Physics Testing (ZPPT) and Power Escalation Testing (PET) began March 15, 1992. The unit reached 100% power on March 25, 1992.

1

Figure 1

McGuire Nuclear Station Unit 2 Cycle 8

Core Loading Pattern

Ached

In	s# 1	2	3	4	5	6	7	8	9.	10	11	12	13	14	15	
A				1.1	U69	V63	U30	V75	U72	V09	1146					A
					2018T	124	119	56	ZZORT	. 85	11					
B			U53	U39	V50	U75	V71	U08	V42	U44	V04	U37	U15			В
			2298T	R134	BONY	8115	BEPT	9154	86R1	R151	36P0	R153	21882			
C		U43	U65	V52	U10	V14	U09	U74	U32	V10	U12	V25	U11	U55		C
		94	73	B6P5	9146	BERR	R109	105	R148	BERU	R155	BEPA	96	55		
D		U21	V48	T03	V39	T10	V62	T24	V54	T14	V20	T05	V34	U03		D
		R160	BSP4	B137	86R9	315KT	BERC	R113	BORE	6.6	B683	R103	BEPA	R106		
E	U35	V03	U62	VOI	T37	U06	T68	V22	T01	U70	T38	V68	U20	V41	U13	E
	83	BENW	R143	8697	33487	103	81	BEPM	69	51	127	BGRL	R144	36P2	22883	
F	V30	U01	V46	T27	U19	T57	V60	T35	V16	T28	U59	T65	V43	U24	V21	F
	108	B) 12	BERN	126	20782	R145	BÓPH	360	B6PR	8124	59	75	DARW	R107	53	
G	1127	V55	U48	V32	T13	V57	T64	V08	T72	V28	T25	V66	U18	V53	U51	G
~	50	REPY	817	BERS	122	BSPI	205KT	B6PL	45	369U	205KT	BERR	R162	8683	133	
н	V73	104	U58	T46	V61	T06	V38	T19	V36	T21	V65	T47	U31	U52	V76	H
1.1	120	2121	0588	R111	BEPC	B118	B6PG	8159	BGFP	R116	BEPV	R120	0889	R63	44	
1	1168	VER	U50	V29	T40	V45	T09	V70	T63	V17	T43	V69	U05	V05	U64	1
~	000	2000	1 1111	847.4	13187	BEPD	147KT	BGPK	57	86PT	22282	B6RJ	R139	B6R2	71	
v	VIDE	1133	VIR	TE	1140	T45	V56	T41	V37	T17	U60	T04	V47	U26	V33	K
0	100	000	2604		0.6	8108	RAPP	8125	BOPM	R135	88	2088T	BERV	8110	211RT	
	1161	V-35	1176	VAA	736	1136	T26	V07	T44	U25	T60	V26	U02	V18	U41	1
6	001	100	2105	2624	100	91	22687	REPJ	46	139	31282	867	B121	86P1	21987	
	1 270KT	LIZA	VA7	TES	VIS	T39	V31	T48	V23	T49	V51	T18	V24	U57	1	N
1V1		004		1.01.11	DED.	1 22	REPA	8142	BERD	21387	B6RF	B125	B6P9	R150	1.1	
		1149	1199	VAG	1120	Vag	1117	1138	U14	V39	U66	V02	U56	U71	1	ħ
14		0.42	Use		0110	0400	5120	22780	8126	BERT	8112	8627	22187	60		
10		21683	123	1107	V07	1163	V19	1123	VII	1116	V19	U67	U47		ef	- 1
P			013	001	141	000			2520	9139	2587	8167	20487			
			121	[R140	LIAE	N70	1164	VZA	1149	V64	1128	Contraction in the	A			F
M					040	116	004	1	045	100	2008					
					52	T 443KT	TYTERT	T 100	1 80	1 0/	E STRI	1				
	100 B					6	7	12	0	10		12	13	14	15	

2

1.1 Prestartup NIS Realignment Following Refueling - PT/0/A/4600/78

This procedure was performed on March 2-4, 1992.

This test was used to calculate preliminary calibration data for the intermediate range (IR) and power range (PR) detectors following refueling.

The set of Cycle 8 preliminary calibration data was determined by taking the End of Cycle 7 (EOC7) calibration data and adjusting it by a weighted average of the ratio of the sum of the predicted assembly powers for the Cycle 8 loading to the sum of the measured assembly powers from the last Cycle 7 Incore/Excore calibration. The core locations used to calculate the ratio of the predicted Beginning of Cycle 8 (BOC8) assembly powers to the measured EOC7 values are shown in Figure 2.

The average predicted BOC8-to-EOC7 IR ratio was -1.05; the average predicted BOC8-to-EOC7 PR ratio was -0.91. Based on these results, the IR and PR currents were adjusted prior to Cycle 8 Initial Criticality.

Figure 2

Assemblies to Use for Calculating IR and PR Calibration Setpoints

2.0 Criticality Following a Change in Core Nuclear Characteristics -PT/0/A/4150/28

On March 15, 1992, boron samples were taken in preparation for the approach to criticality. These samples indicated reactor coolant boron to be 1911 ppm. Since it was desired to achieve criticality with either:

- (a) -500 pcm of Control Bank D inserted, OR
- (b) the lowest allowable boron concentration while maintaining 1.0% Shutdown Margin.

a target value of 1646 ppm was chosen for reactor coolant boron concentration. This was based upon a predicted HZP, ARO, no Xenon, equilibrium samarium critical boron concentration at BOC of 1696 ppm minus 50 ppm. This met the requirements of (b) above, which was 1640 ppm (1% shutdown margin at 557°F plus 100 ppm conservatism). Calculations using the unit Data Book (OF/2/A/6100/22) indicated a volume of 9112 gallons of demineralized water should be added to the system to dilute from 1911 ppm to 1646 ppm. On March 15, 1992, this dilution of the Reactor Coolant System was started. The dilution was secured after 9112 gallons of demineralized water had been added to the system. After adequate system mixing, Chemistry samples indicated Reactor Coolant System boron was 1622 ppm.

On March 15, 1992, rod withdrawal commenced starting the Shutdown Bank A. As rods were withdrawn, both source range detectors were observed and rod motion was stopped each time either flux level doubled or any control rod bank was fully withdrawn. At these points a set of counts was taken on each source range detector and Inverse Count Rate Ratio (ICRR) was plotted to monitor the approach to criticality. The unit achieved criticality at 1615 hours on March 15, 1992, with Control Bank D at 61 steps withdrawn. The predicted critical position per OP/0/A/6100/06, Reactivity Balance Calculation was 71 steps withdrawn on Con.rol Bank D. This represented a reactivity difference of 63 pcm based on the predicted HZP. No Xenon Integral Rod Worths.

5

3.0 Zero Power Physics Testing - (ZPPT)

Zero Power Physics Testing for McGuire 2 Cycle 8 started March 15, 1992, and was completed March 17, 1992. The output of Power Range Detector N42 was used as input to the reactivity computer for Zero Power Physics Testing. All acceptance criteria for ZPPT were met.

A minimum of one decade of overlap between the source range and the intermediate range detectors was verified on March 15, 1992, via the Control Board indication, the NIS panel, and the Operator Aid Computer (OAC). The results shown on table 1 reflect the data from the OAC.

The point of adding nuclear heat was determined March 15, 1992. This was done by establishing a slow positive startup rate and observing a change in plant parameters such as an increase in the reactivity trace and an increase in pressurizer level. The test was performed twice to establish repeatability of the data. Table 2 gives the results of the two trials which were used to determine an average nuclear heat reading.

ar!

Nuclear heat was determined to be at an average flux level of 4.10×10^{-7} amps on the reactivity computer picoammeter (N42) and 2.606×10^{-7} amps on Intermediate Range Detector N35 and 3.032×10^{-7} amps on Intermediate Range Detector N36. From these results the test band for ZPPT was determined to be 10^{-9} to 10^{-7} amps on the reactivity computer.

On March 15, 1992, an on line checkout of the reactivity computer was performed. This was done by withdrawing Control Bank D until a positive reactivity insertion of -+25 pcm was indicated on the reactivity computer. The time for the flux level to double was measured and from this doubling time (DT), the reactor period was calculated (period = DT/0.693). Using the reactor period, the amount of reactivity was determined using the predicted data. This reactivity was compared to the reactivity computer indication. The test was repeated for a reactivity insertion of ~+40 pcm. An on-line negative reactivity checkout on the reactivity computer was also performed. This was done by inserting Control Bank D until a negative reactivity change of --40 pcm was indicated on the reactivity computer. The time for the flux level to halve was measured and from this halving time (HT), the reactor period was calculated (period = HT/0.693). Using the reactor period, the amount of reactivity was determined using predicted data. This reactivity was compared to the reactivity computer indication. The test as repeated for a reactivity change of --25 pcm. The final results met all acceptance criteria and are given in Table 3.

An electronics only negative reactivity insertion test was also completed satisfactorily as part of PT/0/B/4600/55, Reactivity Computer Periodic Test.

Overlap Data on March 15, 1992 via the OAC

	Source	s Range ps	Intermediate Range amps			
	<u>N31</u>	<u>N32</u>	<u>N35</u>	<u>N36</u>		
When In on scale:	700	700	1.1 x 10 ⁻¹¹	1.2 × 10 ⁻¹¹		
After 1 decade increase on IR:	15000	15000	1.1 x 10 ⁻¹⁰	1.5 x 10 ⁻¹⁰		
When SR blocked:	16000	16000	1.6 x 10 ⁻¹⁰	1.6×10^{-10}		

٠

Nuclear Heat

	Reactivity Computer	Intermedia	te Range
	<u>N42</u>	<u>N35</u>	<u>N36</u>
Trial 1	2.60 x 10"7	1.697×10^{-7}	1.967×10^{-7}
Trial 2	5.60 x 10 ⁻⁷	<u>3.514 x 10⁻⁷</u>	4.097 x 10 ⁻⁷
Average	4.10×10^{-7} amps	2.606×10^{-7} amps	3.032×10^{-7} imps

Test Band: $10^{-8} \mbox{ to } 10^{-7} \mbox{ amps on N42}$

8

Period (Seconds)	Doubling or Halving Time (Seconds)	Reactivity Computer (Ap) (pcm)	Reactivity from DT or HT (Å _{2c}) (pcm)	φ Σ Error
180.53	131.3	33.46	34.16	2.05
107.00	78.93	31.36	52.21	1.62
113.89	107.32	-33,85	-32.68	3.58
-270.30	107.34		.27.68	2.76
	Period (Seconds) 189.53 113.89 -270.30	Period (Seconds) Doubling or Halving Time (Seconds) 189.53 131.3 113.89 78.93 -270.30 187.32	Doubling or Halving Time (Seconds) Reactivity Computer (Δρ) (pcm) 189.53 131.3 33.46 113.89 78.93 51.36 -270.30 187.32 -33.85	Doubling or Halving Time (Seconds) Reactivity Computer (Δp) (pcm) Reactivity DT or HT (Δ _{2c}) (pcm) 189.53 131.3 33.46 34.16 113.89 78.93 31.36 52.21 -270.30 187.32 -33.85 -32.68

TABLE 3 Reactivity Computer Checkout +@c

Results on March 15, 1092

*

.

+ $\left|\frac{\Delta \rho - \Delta \rho_c}{\Delta \rho_c}\right| \ge 100$

3.1 Boron Endpoint Measurement - PT/0/A/4150/10

This test was performed March 16, 1992. Three sets of data were obtained. In the first set, Control Bank D was initially at 212 steps withdrawn, the Reactor Coolant System boron concentration was 1695 ppm and the Pressurizer boron concentration as 1730 ppm.

Control Bank D was pulled to the All Rods Out (ARO) Configuration and the resulting reactivity change was converted to equivalent boron using the predicted Differential Boron Worth. Control Bank D was then reinserted to the just critical condition and the test was performed two more times.

The results of these reactivity changes were each added to the initial Reactor Coolant System boron concentration to give the ARO Boron Endpoint. The values were averaged to give the final result of 1696 ppm. This value met the acceptance criterion of the Hot Zero Power (HZP) ARO Critical Boron concentration of 1696 ±50 ppm.

3.2 Jsothermal Temperature Coefficient Measurement - PT/0/A/4150/12

This test was performed of March 16, 1992. The test measures Isothermal Temperature Coefficient (ITC) by plotting Reactivity versus Average Reactor Coolant System Temperature. The Moderator Temperature Coefficient (MTC) is found using the following relationship:

MTC (pcm/°F) = ITC - Doppler Temperature Coefficient.

The acceptance criterion on the ARO ITC was $1.03 \pm 2.0 \text{ pcm/°F}$. The predicted Doppler Temperature Coefficient was -1.44 pcm/°F.

The Reactor Coolant System boron concentration was 1695 ppm at the start of the test. A heatup/cooldown was performed while keeping rod position and boron concentration constant to determine reactivity change versus temperature. The heatup/cooldown was performed a second time because equipment problems rendered the data from the first cooldown/heatup invalid. The results are shown in Figures 3 and 4. The average ARO ITC was found to be -0.1 pcm/°F. This fell within the acceptance criterion band. This gave an ARO MTC of *1.34 pcm/°F which was within acceptable Technical Specification limits.

Following the completion of this test, PT/0/A/4150/31, Determination of Rod Withdrawal Limits to Ensure Moderator Temperature Coefficient Within Limits of Technical Specifications was performed. The results of this test indicated there were no rod withdrawal limits needed for Unit 2 Cycle 8.

•

3.3 Control Rod Worth Measurement - PT/0/A/4150/11

On March 16, 1992, Shutdown Bank B rod worth was measured using the established boration/dilution method. There were no other rods in the core at the time. Shutdown Bank B was predicted to be the highest worth bank and was measured using this method so as to serve as the reference bank for Control Rod Worth Measurements by Rod Swap.

The measured worth of Shutdown Bank B was 846 pcm. The predicted worth was 882 pcm with an allowable band of ± 132 pcm. This represented an error of 4.1% and was within the acceptance criterion of $\pm 15\%$. Figure 5 shows the measured integral and differential rod worths for Shutdown Bank B.

McGuire Unit 2 Cycle 8 Shutdown Bank B Worth Differential and Integral Worths

3.4 Control Rod Worth Measurement: Rod Swap - PT/0/A/4150/11A

On March 16/17, 1992, the rod swap method of control rod worth measurement was begun. Shutdown Bank B was used as the reference bank and its worth was measured by the boration/dilution method (see Section 3.3).

With the reference bank essentially all the way in and the reactor just critical, each control and shutdown bank was measured via rod exchange. The integral worth of the bank being measured (i.e., the test bank) was determined from the difference in the critical rod position of the reference bank with and without the test bank in the core.

The measured bank worths were compared with predicted worths and all banks were within the acceptance criteria of $\pm 30\%$ or ± 200 pcm whichever was greater. The measured total rod worth was >90\% of the predicted worth which met the acceptance criteria. In addition, all review criteria were met.

The results of the rod exchange test are given on Table 4.

Bank Identification	Predicted Worth pcm	Measured Worth pcm ++	Percent + Difference
Control Bank C (predicted reference bank)	882	846 *	4,3
Control Bank A	330	335	-1.5
Control Bank B	693	644	7.6
Control Bank C	842	817	3.1
Control Bank D	503	496	1.4
Shutdown Bank A	292	278	5.0
Shutdown Bank C	411	386	6.5
Shutdown Bank D	411	381	7.9
Shutdown Bank E	426	406	4.9
Total Rod Worth	4790	4589	4.4

Control Rod Worth Measurement: Rod Swap

* Measured by boration / dilution method

++ Rounded to nearest pcm

4.0 Power Escalation Testing

McGuire Unit 2 Cycle 8 Power Escalation testing started March 17, 1992, at the conclusion of ZPPT and was completed March 28, 1992.

The unit went on line March 17 at 1243 hours. The unit experienced some holds during power escalation which were scheduled to allow testing per PT/0/A/41°0/21. Post Refueling Controlling Procedure for Criticality, Zero Power Physics, and Power Escalation Testing, and to allow Chemistry testing.

At -38% power on March 20, 1992, PT/0/A/4150/02A, Core Power Distribution and Incore/NIS Correlation Check, was performed. Table 5 shows the full core flux map results based on PT/0/A/4150/02A. The results from the full core flux map taken were used to project a "limiting" power at which $F_{\rm Q}$ or $F_{\rm AB}$ Tech Spec peaking factor margin would be maintained. This projection indicated that the $F_{\rm Q}$ Tech Spec peaking factor margin would be maintained to 91.1% power. PT/0/A/4600/02F, Incore and Nuclear Instrumentation Systems Interim Recalibration, was also performed at -38% power. The results of this test were used as calibration data for the Power Range excore detectors. Table 6 shows the test results.

At -78% power on March 23, 1992, PT/0A/4150/02A. Core Power Distribution and Incore/NIS Correlation Check, was performed. The test results are given in Table 7. The results of the NIS correlation check indicated a difference between incore and excore AFD to be 2.041% for Quadrant 1. PT/0/A/4600/02F, Incore and Nuclear Instrumentation Systems Interim Recalibration, was therefore completed at -78% power. The results of this test were used as calibration data for the Power Range excore detectors. Table 8 shows the test results. The results from the full core flux map taken were used to project a "limiting" power at which $F_{\rm Q}$ or $F_{\rm AH}$ Tech Spec peaking factor margin would be maintained. This projection indicated that both the $F_{\rm AH}$ Tech Spec peaking factor margin and the $F_{\rm Q}$ Tech Spec peaking factor margin would be maintained for power levels up to 100% power.

Power escalation then resumed at a rate of ~2.5%/hr. Upon achieving ~90%, PT/0/A/4150/03, Thermal Power Output Measurement, was performed (see Section 4.1). The remaining tests designated for Hot full Power Equilibrium Conditions were performed on March 27-28, 1992. The tests and their results are described in Sections 4.2 - 4.4.

M2C8 Core Power Distribution Results 38% Full Power

NOTE: Axial location 1 is the bottom of the core. Axial location 61 is the top of the core.

Unit 2 Cycle 8

Date/Time Map Taken

Power Level

Cycle Burnup

Boron Concentration

Control Rod Position

Maximum FT SUB Q

Maximum pin F^{N} SUB ΔH

Maximum Reaction Rate error (from predicted)

Minimum F-SUB-Q-OP Margin 24.7427% Location M-11

Minimum F-SUB-Q-RPS Margin 11.0820% Location J-10

Minimum F-DELTA-H Margin 38.1236% Location M-11

Total Incore Axial Offset

Incore Tilts:

Upper Core

Quadrant 1: -2.184% Quadrant 2: 1.417% Quadrant 3: 1.750% Quadrant 4: -0.983%

Map M2C8F001 3/20/92 0400 hours 37.82% 0.5 EFPD 20.2 MWD/MTU

1489 ppm

Control Bank D at 178 steps withdrawn

1.8637 at Axial Loc. 40, Horiz, Loc. E-14

1.4594 at Horiz. Loc. L-14

7.98% at Horiz, Loc. B-06

7.407%

Lower Core

Quadrant.	1:	-1.681%
Quadrant	2:	0.654%
Quadrant	31	1.138%
Quadrant	4:	-0.111%

-19-

Table 6

OP/2/A/6100/22 ENCLOSURE 4.3 TABLE 2.2 Excore Currents and Voltages Correlated to 100% Full Power at Various Axial Offects

Unit Z Cycle 8

FULL POWER DETECTOR CURRENTS (MICHOAMPS) CO DESPONDING TO VARIOUS INCORE AXIAL OFFSETS

INCORE	DETECTOR	N-41	DETECTO	8 8-42	DETECTO	0. N-43	DETECTO	8 31-44
AXIAL								
OFFSET	1		2	8	7	9	4	8
10.0			124.14					
3919		2122.0	227.14	2.8712	694-2	88317	209.6	216.1
20.0	247.0	219.0	318.3	270,8	277.6	243.0	273.3	233.8
10.0	232.7	237.5	299.1	292.4	261.0	262.4	257.1	251.5
0.0	217.6	255.3	280.0	314.0	244.3	281.7	240.8	269.2
-10.0	202.5	273.1	260.9	335.6	227.7	101.1	224.5	287.0
-20.0	187.4	291.0	241.7	357.2	2:1.1	120.4	208.3	104.7
-30.0	172.3	308.8	222.6	378.8	194.5	339.8	192.0	322.4

r^{*} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NORMALIZED DETECTOR VOLTAGES (VOLTS) AT VARIOUS AXIAL OFFSETS

INCORE AXIAL	D	FTECTOR N	-41	0E	FECTOR N-	42	DET	ECTOR 8-43		DETEC	TOR N-44	
OFFSET	T	8	7-B	τ	8	$\hat{\mathbb{T}}^{-}\mathbb{B}$	τ	8	7-8	7	8	$\overline{u}-\overline{u}$
30.0	10.064	6.584	3.480	10.638	6.611	3.427	10.029	6.614	3.416	10.018	6.686	3.332
20.0	9.466	7.166	2.320	9.468	7.184	2.284	9.463	7.186	2.277	9.455	7.234	2.222
10.0	8,908	7.748	1.160	8.899	7.757	1.142	8.896	7.758	1.139	8.893	7.782	1.111
0.0	8.330	8,330	0.000	8.330	8.330	0.000	8.330	8.330	0.000	8.330	8.330	0.000
-10.0	7.752	8.912	-1.160	7,761	8.903	-1.142	7.764	8,902	-1.139	7.767	0.078	-1.111
-20.0	7.174	9.494	-2.320	7.192	9,476	-2.284	7.197	9.474	-2.277	7,205	9.425	-2.222
-30.0	6.596	10.076	-3.480	6.622	10.049	-3.427	6.631	10.046	-3.416	6.542	9.974	-3.332

AFD INCORE/EXCORE RATIOS FOR QUADRANTS 1 - 4

		the second second second second second

QUAD 4	QUAD 2	QUAD 1	QUAD 3
N-41	N=42	N-43	N-44
H = 1.436	M # 1.459	H = 1.463	M * 1.500

PREPARED BY autolien CATE 3/20/92

M2C8 Core Power Distribution Results 78% Full Power

NOTE: Axial location 1 is the bottom of the core. Axial location 61 is the top of the core.

Unit 2 Cycle 8	Mar M2C8F002
Date/Time Map Taken	3/23/92 0050 hours
Power Level	77%
Cycle Burnup	1.63 EFPD 66 MWD/MTU
Boron Concentration	1410 ppm
Control Rod Position	Control Bank D at 199/198 steps withdrawn
Maximum F^{T} SUB Q	1.6981 at Axial Loc. 35, Horiz. Loc. J-10
Maximum pin F ^N SUB ∆H	1.4520 at Horiz. Loc. J-10
Maximum Reaction Rate error (from predicted)	5.11% at Horiz. Loc. B-08
Minimum F-SUB-Q-OP Margin 6.7815%	Location F-09
Minimum F-SUB-Q-RPS Margin 11.2082%	Location J-10
Minimum F-DELTA-H Margin .0615%	Location G-12
Total Incore Axial Offset	1.146%
Incore Tilts:	
Upper Core	Lower Core
Ouadrant 1: -1.3821	Quadrant 1: -0.7072

Quadrant	1:	-1.382%
Quadrant	2 :	0.899%
Quadrant	3 :	1.295%
Quadrant	4:	~0.813%

Quadrant	1:	-0.707%
Quadrant	2:	0.373%
Quadrant	31	0.515%
Quadrant	4:	-0.182%

-21-

Table 3

OF/2/A/8100/22 ENCLOSURE 4.3 TABLE 2.2 Excore Currents and Voltages Correlated to 100% Full Power at Various Axis) Offsets

MARK 1 CONTR

FULL POWER DETECTOR CURRENTS (MICROAMPS) CORRESPONDING TO VARIOUS INCORE AXIAL OFFETS

INCORE	DETECTO	N-41	SETECTO	0.9-42	PETECTO	8 N-43	DETECTO	R H-44
AXIAL OFTERT		2	τ	ő	7	з	2	5
1.1	224-8	206-0	154.6	263.9	112.7	239.0	102.3	218.7
29.19	260.0	224.2	134.5	275.9	295.0	249.9	285.3	236.6
2010	246.0	242.4	314.4	297.0	277.4	269.0	268.3	254.6
20.0	448.1	260.6	294.3	119.9	259.7	289.6	251.3	272.5
0.9	449-1	376.5	278.2	342.0	242.1	309.5	234.4	290.4
×10.0	21316	4 (8 / R	262.1	364.0	224.4	329.4	217.4	308.4
-30.0	181.4	315.0	234.0	1.16.0	206.8	349.3	200.4	326.3

r* 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NORMALIZED DETECTOR VOLTAGES (VOLTS) AT VARIOUS AXIAL OFFSETS

INCORE	DE	TECTOR N-	41	DET	ECTOR N-4	2	DETE	CTOR N-43		DETECT	TOR 8-44	
AXIAL OFFSET			T-8	Ŧ	8	2-3	τ	5	T-8	τ	8	2~8
	6.25		5.445	10.012	6.610	3,426	10.028	6.615	3.414	10.019	6.685	. 3,333
30.0	10.064	0.203	21994		7.184	2.284	9.462	7,186	2.276	9.456	7.234	2.222
20.0	9.486	7,166	2.321	9.400	11299		0.000	1 250	1.138	8,893	7.782	1.111
10.0	8.908	7,748	1.160	8.899	7.757	21246	0.090	1.4.4.44			8.335	0.000
	4.330	8,330	0.000	8.330	8.330	0.000	8.330	8.330	0.000	8.330	0.320	******
9.9	01000			2 263	8,903	-1-142	7.764	8.902	-1.138	7,767	8.876	-1.111
-10.0	7.752	6.915	- 9 - 760	11104			W. 1240	A 174	-2.226	7.204	9.426	-2.222
-20.0	7.174	9.494	-2.321	7,192	9,476	-2.284	1.780	3-919				.1.211
- 30.0	6.596	10.077	-3.481	6.623	10,050	-3.426	6.632	10.045	-3.414	0.041	3.315	191240

AFD INCORE/EXCORE RATIOS FOR QUADRANTS 1 - 4

OUAD 4	QUAD 2	QUAD 1	C CAUQ
8-41	N-42	N-43	N - 4.4

M = 1,416 H = 1,459 H = 1,464 M = 1,499

PREPARED BY CU Lolue DATE 3/23/92

4.1 Thermal Power Output Measurement - PT/0/A/4150/03

This test was used to verify that the primary and secondary heat balances on the plant computer were consistent with primary and secondary heat balances on a benchmarked offline computer. The test was run on March 23/24, 1992, at 90% F.P. The results are shown in Table 9.

The acceptance criterion of 1% difference between the offline computer and the plant computer was met.

.0

Thermal Power Output Measurement Results

	Plant	Computer	Off-Line	Computer
	x	MW	X	MW,
Primary Heat Balance	90.776	3096.391	90.97	3103.0
Secondary Heat Balance	90.398	3083.516	90.39	3083.203

4.2 Reactivity Anomalies Calculation - PT/0/A/4150/04

This test compared the actual core reactivity to the predicted core reactivity by taking into account the actual Reactor Coolant System boron concentration, Xenon and Sama, um worths, rod positions and power level and adjusting these to the ARO, Hot Full Power (HFP), equilibrium Xenon and Samarium condition. Theoretical and actual Reactor Coolant System boron concentration for these conditions were then compared.

The test, performed at -100% on March 27, 1992, indicated that the actual ARO, HFP, equilibrium Xenon and Samarium condition boron concentration was 1188.9 ppm. This compares to a predicted value of 1202.8 ppm. The 13.9 ppm difference translated into a 109.5 pcm error between actual and predicted reactivity worths. This was within the acceptance criterion for the test of ±1000 pcm.

4.3 Core Power Distribution and Ircore/NIS Correlation Check -PT/0/A/4150/02A

On March 27, 1992, PT/0/A/4150/02A, Core Power Distribution and and Incore/NIS Correlation Check, was performed at -100% Full Power and equilibirum conditions.

The indicated incore axial flux difference (AFD) from flux map M2C8F004 was -2.035%. The results of this test indicated at the maximum absolute difference between the AFD from any Power Range excore detector channel and the indicated incore AFD from the full core flux map was <3%. The results of the test are summarized in Table 10.

M2C8 Core Power Distribution Results -100% Full Power

NOTE: Axial location 1 is the bottom of the ore. Axial location 61 is the top of the core.

> Unit 2 Cycle 8 Map M2C8F004 3/27/92 1000 hours Date/Time Map Taken -100% Power Level Cycle Burnup 5.79 EFPD 234 MWD/MTU Boron Concentration 1198 ppm Control Rod Position Control Bank D at 211 steps withdrawn Maximum FT SUB Q 1.6585 at Axial Loc. 34, Horiz. Loc. G-10 Maximum pin F^N SUB ΔH 1.4337 at Horiz, Loc. G-10 Maximum Reaction Rate error 5.16% at Horiz, Loc. B-06 (from predicted) Minimum F-SUB-Q-OP Margin 3.5437% Location M-07 Location L-14 Minimum F-SUB-Q-RPS Margin 11.3242% Minimum F-DELTA-H Margin 4.2350% Location G-12 -2.035% Total Incore Axial Offset Incore Tilts:

Upper Core

Quadrant 1: -1.561% Quadrant 2: 1.493% Quadrant 3: 1.002% Quadrant 4: -0.934%

Lower Core

Quadrant	1:	-0.603%
Quadrant	21	0,497%
Quadrant	3:	0.329
Quadrant	4:	-0.223%

-27-

4.5 Incore and Nuclear Instrumentation Systems Recalibration -PT/1/A/4600/02G

This test was performed on March 27-28, 1992, to obtain recalibration data for the excore detectors based on the incore axial offsets. The NIS amplifier gains, the $f(\Delta I)$ reset function for the over-power differential temperature protective serpoints, and the OAC excore power distribution monitor were all calibrated on March 31, 1992. The results of the test are given in Table 11.

CP/2/A/8100-22 ENCLOSURE 4.3 TABLE 2.2 E-core Currents and Voltabes Correlated to 120% Full Pleer at Various Acial Offects

unit & Octor O.

INCORE DETECTOR N-43 DETECTOR N-42 DETECTOR N-43 DETECTOR N-43 </th <th>RULL POWE</th> <th>A DETECTOR</th> <th>CURRENTS</th> <th>#(CRUAMPS) (</th> <th>(CRRESPOND)</th> <th>NG TO JARIO</th> <th>US INCORE A</th> <th>ULIAL OFFSETS</th> <th></th>	RULL POWE	A DETECTOR	CURRENTS	#(CRUAMPS) ((CRRESPOND)	NG TO JARIO	US INCORE A	ULIAL OFFSETS	
Missing	INCORE	SETECTO	(N=4)	06100100	k N−až	2876010	R 16-43	DETECTOR	N-++
30.0 290.1 203.8 370.8 254.9 324.3 828.6 312.3 3 2010 275.7 225.5 350.3 380.2 307.0 252.0 275.6 3 13.0 257.3 247.1 329.3 305.4 189.8 275.4 279.0 3 0.0 240.7 258.7 309.2 330.7 273.5 298.8 252.4 279.0 3 -11.0 224.5 290.4 288.8 355.7 273.5 298.8 252.4 2 -11.0 224.5 290.4 288.8 355.7 273.5 298.8 252.4 2 -11.0 224.5 290.4 288.8 355.7 322.2 245.7 3 -20.0 268.0 312.0 288.3 381.1 238.1 345.6 229.1 3 +30.0 191.8 333.7 247.8 406.4 220.9 364.0 212.4 3	CRESET	1.4	8	1	1	Ť	8	7	В
	20.0 20.0 11.0 0.0 +11.0 +11.0 +30.0	290.1 273.7 257.3 240.9 224.5 2(8.0 191.6	203.8 225.5 247.1 290.4 312.0 333.7	270,9 350,3 329,3 309,2 389,8 288,3 247,8	254.9 280.2 305.4 230.7 355.9 381.1 405.4	284.3 369.9 1999.5 238.5 238.5 228.0 228.0	228.6 252.9 275.4 298.8 322.2 345.6 369.0	312,3 2759,0 2552,0 2555,1 2555,1 212,4	216.6 238.0 257.3 280.6 302.0 323.3 344.7

r# 0,9977 0,9968 0,9981 0,9975 0,9971 0,9960 0,9970 0,9964

NORMALIZED DETECTOR VOLTAGES (VOLTS) AT VARIOUS AXIAL OFFSETS

INCORE	CORE DETECTOR N-41		DE	DETECTOR N-42			DETECTOR N-43			DETECTOR N-64		
OFFBET	1	E.	1-3	1	9	1-9	1	8	1-9	+	9	T-8
39.0	10. 33	6,318	3,715	9,986	6.422	3.564	9,911	6.371	3.537	9.916	6.430	3.486
30.0	9.465	6.988	8.477	9.434	7.058	2.376	9.384	7.026	2.350	9.387	7.063	2.324
10.0	3.578	7.659	865.6	8.882	7.694	1.188	8.857	7.678	1.179	8.859	7.697	1.162
4.6 %	3.335	8.330	0.000	9.330	8.330	0.000	8.330	8.230	0.000	8.330	8.330	0.000
-10.1	54".7	4.001	-1.238	2,778	8.966	-1.188	7.803	8.982	-1.179	7,801	8.963	-1.162
-20.0	9,195	9.678	-2.477	1.226	9.602	-2.376	7.276	9.634	-2.358	7.273	9.597	-2.324
.30.0	2.627	10.342	-3.715	6.674	10.239	-3.564	6.749	10.286	-3.537	6.744	10.230	-3.486

AFD INCORE/EXCORE RATIOS FOR QUADRANTS 1 - 4

QUAU 4	S GAUG	QUAD 1	QUAD 3
N-41	S4-M	N-43	N-44
H N 1.045	H = 1.402	8 = 1.413	H = 1.43

PREPARED BY AR DATE 3/28/92

Duke Pouxe Company Wachovia Center P.O. Bax 1007 Charlosse, N.C. 28201-1007

DUKE POWER

June 16, 1992

Mr. Rex Gleason Regional Manager Water Quality Section Department of Environmental, Health and Natural Resources 919 North Main Street Mooresville, N. C. 28115

Subject: Marshall Steam Station NPDES Permit NC0004987 Release of Domestic Wastewater File: Ms-704.01, MS-704.21 Certified: P067 125 0850

Dear Mr. Gleason:

Pursuant to Part II, Section D (6)(C) of Marshall Steam Station's NPDES permit (NC0004987), this is a follow-up written report to the North Carolina Department of Environment, Health and Natural Resources (NCDEHNR) of recent noncompliances associated with Marshall's sanitary treatment system. Telephone notifications were made to Mr. Mike Parker of the Mooresville Regional office on June 3 and 5, 1992, by Ms. Norma Atherton of Duke Power Company.

EVENTS

On June 2, 1992, due to maintenance sinsing activities, water from a fire hose inadvertently entered the domestic w stewater package plant through a manhole cover. The manhole cover, which was located in a paved traffic area, is solid except for several one inch holes.

The package plant was unable to process this surge of water and, as a result, the facility overflowed for approximately three and one half hours via an overflow line. The overflow discharged to Lake Norman at the Marshall intake canal.

On June 4, 1992, a rainfall event that produced 1.7 inches of rain within 2 hours caused rainwater to enter the sanitary system through the manhole cover referenced above. The sanitary treatment system overflowed to the intake canal for approximately 1 hour via the overflow line.

and all

CORRECTIVE ACTIONS

A review was made of all existing sanitary system manhole covers. Two manhole covers were replaced with solid manhole covers, including the manhole cover in question, and sealed in place with a sealant. No additional covers were identified that would allow surface water infiltration.

The overflow line from the sanitary treatment facility was "capped" by removing the elbow connection from the chlorination chamber and inserting a blank flange. For long term corrective action, a design study is being initiated to evaluate the possible upgrade of the sanitary treatment system. Recommendations from the design study and time tables will be provided as this information becomes available to us.

Operations personnel have been reminded to check both the number two sump and the sanitary system levels if a civil alarm is received in the control room. This alarm is a stared alarm between the two locations.

Should you have any questions, please contact Norma Atherton at (704)382-2116.

Sincerely,

norma D. atherton

Norma G. Atherton, Production Specialist II Generation Services Department Environmental Division

NGA/jfw

cc: NCDEHNR - Raleigh

bc: G. S. Rice J. R. Hendricks J. S. Carter D. L. Burrell B. E. Davis Central Records NRC Document Control Desk