ATTACHMENT 2 PROPOSED CHANGES TO THE HOPE CREEK TECHNICAL SPECIFICATIONS

The following Technical Specifications and Bases pages have been revised to reflect the proposed changes:

Technical Specification	Pages
4.6.2.2.b	3/4 6-15
4.6.2.3.b	3/4 6-16
Bases for 3/4.6.2	B 3/4 6-4

9602090118 960205 PDR ADOCK 05000354 P PDR

CONTAINMENT SYSTEMS

SUPPRESSION POOL SPRAY

LIMITING CONDITION FOR OPERATION

3.6.2.2 The suppression pool spray mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:

- a. One OPERABLE RHR pump, and
- b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger and the suppression pool spray sparger.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

- a. With one suppression pool spray loop inoperable, restore the inoperable loop to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With both suppression pool spray loops inoperable, restore at least one loop to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN* within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.2 The suppression pool spray mode of the RHR system shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each val.2, manual, power operated or automatic, in the flow path that is not locked, sealed or otherwise secured in position, is in its correct position.
- b. By verifying that each of the required RHR pumps develops a flow of at least 500 gpm on recirculation flow through the RHR heat exchanger and suppression pool spray sparger when tested pursuant to Specification 4.0.5.

Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

by pass value,

CONTAINMENT SYSTEMS

SUPPRESSION POOL COOLING

LIMITING CONDITION FOR OPERATION

3.6.2.3 The suppression pool cooling mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:

- a. One OPERABLE RHR pump, and
- b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

- a. With one suppression pool cooling loop inoperable, restore the inoperable loop to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With both suppression pool cooling loops inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN* within the next 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.3 The suppression pool cooling mode of the RHR system shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve, manual, power operated or automatic, in the flow path that is not locked, sealed or otherwise secured in position, is in its correct position.
- b. By verifying that each of the required RHR pumps develops a flow of at least 10,000 gpm on recirculation flow through the RHR heat exchanger, and the suppression pool when tested pursuant to Specification 4.0.5.

"Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

Sits Associated closed bypass value,

HOPE CREEK

3/4 6-16

CONTAINMENT SYSTEMS

BASES

Insect A.

DEPRESSURIZATION SYSTEMS (Continued)

tested during the Humboldt Bay and Bodega Bay tests was 170°F and this is conservatively taken to be the limit for complete condensation of the reactor coolant, although condensation would occur for temperatures above 170°F.

Should it be necessary to make the suppression chamber inoperable, this shall only be done as specified in Specification 3.5.3.

Under full power operating conditions, blowdown from an initial suppression charber water temperature of 95°F results in a water temperature of approximately 135°F immediately following blowdown which is below the 200°F used for complete condensation via mitered T-quencher devices. At this temperature and atmospheric pressure, the available NPSH exceeds that required by both pressure during the accident injection phase. If both RMR loops are used for containment cooling, there is no dependency on containment overpost-LOCA operations.

Experimental data indicates that excessive steam condensing loads can be avoided if the peak local temperature of the suppression pool is maintained below 200°F during any period of relief valve operation. Specifications have been placed on the envelope of reactor operating conditions so that the reactor can be depressurized in a timely manner to avoid the regime of potentially high suppression chamber loadings.

Because of the large volume and thermal capacity of the suppression pool, the volume and temperature normally changes very slowly and monitoring these parameters daily is sufficient to establish any temperature trends. By requiring the suppression pool temperature to be frequently recorded during periods of significant heat addition, the temperature trends will be closely followed so that appropriate action can be taken. The requirement for an external visual examination following any event where potentially high loadings could occur provides assurance that no significant damage was encountered. Particular attention should be focused on structural discontinuities in the vicinity of the relief valve discharge since these are expected to be the points of highest stress.

In addition to the limits on temperature of the suppression chamber pool water, operating procedures define the action to be taken in the event a safetyrelief valve inadvertantly opens or sticks open. As a minimum this action shall include: (1) use of all available means to close the valve, (2) initiate suppression pool water cooling, (3) initiate reactor shutdown, and (4) if other safetyrelief valves are used to depressurize the reactor, their discharge shall be separated from that of the stuck-open safety relief valve to assure mixing and uniformity of energy insertion to the pool.

In conjuction with the Mark I containment Long Term Program, a plant unique analysis was performed which demonstrated that the containment, the attached piping and internal structures meet the applicable structurel and mechanical acceptance criteria for Mope Creek. The evaluation followed the design basis leads defined in the Mark I Load Definition Report, MEDO-21888, December 1978, as modified by NRC SER MUREG 0661, July 1980 and Supplement 1, August 1982, to ensure that hydrodynamic leads, appropriate for the life of the plant, were applied.

HOPE CREEK

Inserts for LCR H96-03

Insert A

The Hope Creek design contains a bypass line around each of the RHR net exchangers. The line contains a valve that is used for adjusting flow through the heat exchanger. The valve is not designed to be a tight shut-off valve. With the bypass valve closed, a portion of the total flow travels through the bypass line, which can affect overall heat transfer, although no heat transfer performance requirement of the heat exchanger is intended by the Technical Specification RHR pump Surveillance Requirements.

One of the Surveillance Requirements for the Suppression Pool Cooling (SPC) and Suppression Pool Spray (SPS) modes of the RHR system demonstrate that each RHR pump develops the required flowrate while operating in the applicable mode with flow through the associated heat exchanger and its closed bypass valve. Verifying that each RHR pump develops the required flow rate, while operating in the applicable mode with flow through the heat exchanger and its associated closed bypass valve, ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by ASME Code, Section XI. This test confirms one point on the pump baseline curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance.