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This report documents work performed under the sponsorship of the Institute
of Nuclear Energy Research of Taiwan. The information in this report has
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the Coordination Council for North American Affairs (CCNAA) and the American
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the widest possit e circulation among the reactor safety community. Neither
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of such use, or any information, apparatus, product or process disclosed in
this report, or represents that its use by such third party would not
infringe privately owned rights.

R

| =T e Wi = T L

I ——

R T



e I T el B ek T T R i =R . e e e e e i e e M— o e ——— bt S

ABSTRACT

comprehensive analysis with RELAPS/MOD2 is performed to
predict the LOFT transient thermal-hydraulic responses for the
LOCE L2-5 test. Experiment L2-5 is planned to simulate a hypo-
thetical LOCA which results from a 200% double-ended offset shear
break in a cold-leg of a typical pressurized water reactor. The
test simulation begins with break initiation and subseguent
blowdown, and continues through lower plenum refill, core
reflood, and terminates with corewide gquench. The nominal best

estimate calculation results indicate that the cladding

temperature continuously increases during blowdown phase without
an early fuel-rod rewet (blowdown guench). A peak cladding
temperature of 1,112 K, which is very close to the experimental
data, is calculated at 7.0 s, and fuel rods are predicted to be
quenched at 57 s after the ULreak initiation. Sensitivity
analyses of the test simulation with respect te various code
input uncertainties, including broken loop initial temperature,
cross-flow junction, discharge coefficient, accumulator
condition, reflocod fine mesh number, form loss coefficient, fuel
; gap dimension, and reflood option are performed to investigate

g their impacts on the calculation results. Scenario study on the

pump behavior is analyzed to see whether the blowdown quench

could be resulted from the RELAPS5/MOD2 model. The effect of the
uncertainty of Biasi CHF on the cladding temperature response 1is

also studied.
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SUMMARY

This report documents the results and conclusions of the
RELAPS5/MOD2 code assessment in the analysis of LOCE test L2-5,
Sensitivity studies of the L2-5 simulation with respect to
various modeling options are performed as well to investigate
their impacts on the calculation results,

LOCE L2-5 is performed to simulate a hypothetical LOCA which
results from a 200% double-ended cffset shear break ir the cold-
leg of a typical pressurized water reactor. A specific purpose
of L2-5 test is to establish conditions which will result in a
large break blowdown without early gquench that occurred during
previous large break LOCA tests. RELAPS5/MOD2 is an advanced, one-
dimensional, ¢two fluid, six-equation, thermal noneguilibrium
reactor transient and accident analvsis program. The objective
of this assessment study is to provide systematic assessment of
the RELAP5/MOD2 code relative to code development, code
improvement, and the enhancement of user guidelines.

In this study, the test simulations using RELAPS/MOD2 begin
with break initiation and subsegquent blowdown, and continue
through lower plenum refill, core reflood, and terminate with
corewide quench. Major events and their timings of the large
break LOCA test L2-5 are well predicted by the RELAPS/MOD2 model.
According teo the hydraulic process (pump behavior) set up in
L2-5, the RELAP5/MOD2 calculation gives no early gquench

phenomenon. Important parameters, such as pressure, break flow,



and cladding temperature, are zalculated with reasonable
agreement in the comparison to the test data, Noticed
differences between tnhe calculation results and the test data
including hot-leg break flow at initial period, cladding
temperature during reflood, pressurizer pressure response,
cladding temperature responies at upper and )l wer elevations of
the fuel rod, fuel quench temperature etc., are discussed with
possible reasons in this report. On the other hand, the calcul-
ated peak cladding temperature (the maost .. 1ical pasrameter
concerned in a large hreak LOCA) of 1,112 K is in excellent
ajreement with the test data of 1,077 K.

Sensitivity analyses of the test simulation with respect to
various code input uncertainties, including broken loop initial
temperature, cross-flow junction, discharge coefficent,
accumulator condition, reflood fine mesh number, form loss
coef{iclent, fuel gap dimension, and reflood opticn are performed
to investigate their impacts on the calculation results.
Scenario study on the pump behavior is analyzed to see whether
the blovdown quench could be resulted from the RELAPS /MOD2 model.
The effect of the uncertainty of Biasi CHF on the cladding
temperature response is also studied.

Calculated PCTs are quite insensitive to the selected
parameters and their variations in the sensitivity studies except
in the cases of the fuel gap dimension and the CHF correlation.

With the doubled fuel gap dimension used in the code calculation,

v
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the resulted PCT is increased by 130 K in the comparison to that
of the base case. In the sensitivity study of the Biasi CHF
correlation, the reduction of the CHF does not yield improvement
in the cladding temperature predictions at upper and lower
elevations of the fuel rod. At the hottest location, significant
reduction of the time-to-CHF is calculated with the reduction of
the CHF, which leads to an overestimation of the PCT by more than
500 K.

From the results of the scenario study, it is learned that
the present RELAP5/MOD2 model does not calculate the blowdown
quench phenomena even at the assumption of connected flywheel
system during the pump coastdown.

Excessive precursory cooling of the fuel rod is calculated
during the reflood period. It is seen that discontinuities of
the cladding surface heat flux and the vapor temperature are
calculated at the moment of the reflood model actuation. Without
using the reflood model in RELAP5/MOD2, the calculated cladding
temperatures during the reflood period are in good agreement with
the test data, These results may indicate that either the
criteria used in RELAP5/MOD2 for the actuation of the reflood
imodel calculation are inadeguate or the heat transfer package in

the reflood model is improper.

Vil
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1. INTRODUCTION

The assessment study documented in this report contributes
to the overall code assessment effort, which is coordinated
within the International Code Assessment and Applications J)r~ ram
(ICAP) sponsored by the U.S. Nuclear Regqulatory Commission (MRC).
The objective of the ICAP is to provide gualitative assessment of
the major thermal-hydraulic computer codes relative to code
development, code improvement, and the enhancement of user
guidelines. This report contains results from the best estimate
experiment prediction analysis performed using the RELAPS /MOD2( 1]
Version 36.04 computer code to simulate the g ~tem thermal-
hydraulic responses of the Loss-of-Fluid Test (LOF1' during Loss-
of-Coolant Experiment (LOCE) L2-5.

LOCE L2-5%, in conjunction with previously conducted LOCE
L2-2 and L2-3, is intended to evaluate the system responses
during a large break loss-of-coolani accident (LOCA) . These
tests are conducted to address conservatisms in licensing
criteria defined in the U.S. code of Federal Regulations {(10CFR50
Appendix K). Current licensing criteria limit fuel rod cladding
temperatures to 1,477 K (2,200 F). For most plants limited by
this criteria, the peak cladding temperature occurs during
reflood portion of the licensing calculation. While there are
other limits that determine the maximum power a plant c.n oper te

at, the majority of plants are lim.ted by the LOCA analysic.
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Experiment L2-5 uses nominally the same system configuration
as the previously performed Experiment 1L2-3. The essential
differences between L2-5 and L2-3 are the post-break pump
operation and ECCS actuation times. Experiment L2-2 and L2-3
unexpectedly show that during blowdown phase (with pump left
running), a surge of coolant through the core occurs when flow
from the pumps exceeds flow out of the cold-leg break, This
coolant surge caused an "early rewet" of the nuclear fuel rods,
effectively halting the rapid increase in cladding temperature
that is typically predicted to occur in large break LOCAs. One
purpose of Experi.ent L2-5 is to establish condi*‘~ns which will
result in a large break blowdown without "rewet". Therefore, in
Experiment 1L2-5, the primary coclant pumps (PCPs) are unpewered
quickly and then coast down while disconnected from their
flywheel system. Such a coastdown during Experiment L2-5 is
nontypical since the LOFT pumps weuld normally coast down while
connected to their flywheel system to simulate the normal
coastdown of the PCPs in a commercial PWR. The reason of having
this nontypical PCP coastdown is the intention of producing core
nydraulic conditions which would most likely prevent the early
fuel-rod rewet that occurred during Experiment L2-3.

A RELAP5/MODZ model used in the simulation of Experiment
L2-5 is dJdeveloped for the base case study according to the
information provided by the Idaho Naticnal Engineering Lakcoratory

(INEL}. These information include description of the LOPT

o
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facility (2], L2-5 test conditions [3), RELAP5/MOD1 input deck
(4], and data report [5). Except the base case study, sensitiv-
ity analyses with respect to various code input uncertainties are
also performed to investigate their impacts on the calculation
results, and to provide information in setting user guidelines of
the RELAP5/MOD2 code. Scenario study on the pump coastdown
behavior and simple modification of the CHF correlation in the
code are made as well. In these studies, the experiment
simulations using RELAPS5/MOD2 begin with break i{nitiation and
subsequent blowdown, and continue through lower plenum refill,
cere reflood, and terminate with corewide gquench,

This report is organized as follows: section 2 gives brief
descriptions of the test facility and conditions. The
RELAPS /MOD2 model used to simulate the experiment is described in
section 3, In se>tion 4 the calculation results compared to the
test data are presented anid discussed, Computational efficiency
of RELAP5/MOD2 is given in section 5. Finally, some conclusions
obtained from this study are drawn in section 6. A listing of
the RELAPS/MOD2 input deck for the Experiment L2-5 simulation is

provided in Appendix A.

2. FACILITY AND TEST DESCRIPTIONS
2.1 LOFT Facility
The LOFT facility is a 50-MWt pressurized water reactor

system with instruments that meas:re and provide data on the



system tnermal-hydraulic and nuclear core behavior during
postulated LOCAs and ancmalous transients. ThC LOFT facility
consists of five major systems: reactor system, primary coolant
system, blowdown suppression system, emergency core cooling
system, and secondary coolant system.

The LOFT primary-coolant-system (PCS), shown in Figure 1.1,
is volume-scaled to a typical four-loop comnercial PwR. The
general philosophy in scaling coolant volumes and flow areas in
LOFT is to use the ratio of the LOFT core power (50 MWt) to a PWR
core power (3,000 MWt),

The nuclear core of the LOFT facility is 1.68 m high and 0.6
m in diameter and contains 1,300 fuel rods and 4 control
assemblies, A top view of the cure arrangement is shown in
Figure 1.2. The postulated broken loop and three unbroken loops
of a four-loop PWR are simulated by a single brrken loop and
intact loop, respectively. The broken loop is connected to a
suppression tank that holds the effluent and simulates the back
pressure in a PWR containment building. The ECCS is designed
functionally the same as commercial plant system but has
additional flexibility in injection flow rates and locations.

The LOFT system response may not be identical to that of any
specific commercial plant for a LOCA or operational transient.
However, the LOFT design incorporates the same p.iysical processes
and general boundary conditions important to the transient so

that results can be used to qualify the accuracy of the
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analytical models used for predicting accident behavior. The
safety of commercial plants can then be assessed by these
gualified models.

2.2 Experiment L2-5

LOCE L2-5 is the third experiment conducted in LOFT Power
Ascension Experiment Series L2, The purpose of the LOFT L2
experiment s ries is to provide thermal-hydraulic and fuel
behavior data during double-ended cold-leg break experiments at
various ECCS conditions. These data are to be used to evaluate
and verify models in computer codes to predict large PWR LOCA
response.

The major conditions achieved in Experiment L2-5 are: (1)
the reactor has been operating at steady state power long enough
to establish near equilibrium fission product concentrations; (2)
there has been a loss of offsite power coincident with the LOCA,
thus the primary coolant pump will be tripped off at break
initiation and ECC injection will be delayed for a period of time
corresponding to the delay until the commercial plant's emergency
diesel is dJelivering power; (3) the minimum ECC action tuakes
plcce, which requires that the High Pressure Injection Systvem
(HPIS), and Low Pressure Injection System (LPIS) flow rates be
scaled to represent only one of the two pumps available for each
system; and (4) The PCP will coast down without connection to its
flywheel system in order to establish hydraulic condition which

would prevent the occurrence uf early rewet for this experiment.



2.2.1 Initial conditions 1Initial reactor criticality occurred

about 54 hours prior %o experiment initiation. The power level
reached 36.0 +« 2.0 MW 28 hours prior to Experiment L2-5 initia-
tion, and was maintained at approximately that level until the
experiment began. Prior to blowdown, the conditions in the
intact 1loop were established to provide a flow of 192.4 + 7.8
ky/s, with temperature and pressure in the hot-leg of 589.7 + 1.6
X and 14.94 + 0.06 MPa, respectively.

2.2.2 Experiment procedure The experiment was initiated by

opening the Quick Opening Blowdown Valves (QOBVs) in the broken
loop hot-leg gnd cold-leg. The reactor scrammed on low pressure
at 0.24 + 0.0 8. Following the reactor scram, the operators
tripped the PCPs at 0.94 + 0.01 s, Accumulator injection was
actuated when the system pressure dropped below 4.2 MPa. Delayed
ECC injection from the HPIS and LPIS were actuated at 23.90 +
0.02 and 37.32 + 0.02 s, respe~tively. The LPIS injection was
stopped at 107.1 + 0.4 s, after the experiment was considered

complete,

3. CODE AND MODEL DESCRIPTIONS
3.1 Computer Code

The RELAPS/MOD2 Version 36.04 computer code is used to
simulate the transient thermal-hydraulic response of the LOFT
system during Experiment L2-5. RELAPS5/MOD2 is a one-dimensional,

two fluid, six-egquation, thermal nonequilibrium reactor transient

oh
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and accident analysis program. This computer code is developed
at the INEL for the U.S. Nuclear Regulatory Commission. Specific
application of the code to the Experiment L2-5 simulation is
discussed in the following sections,
3.2 Model Descriptions

The RELAPS/MOD2 model of the L2-5 simulation is shown in
Figure 3.1, The nodalization used in this study is based on the
nodalization presented in Reference 4 with changes where
necessary to convert the RELAP5/MCD) model into the RELAPS /MOD2
model and to make simplifica’ based on experience obtained in
usin~ of the code. This mo consists of 128 wvolumes, 145
junctions, and 77 heat structures to describe the LOFT systems
including reactor vessel, b -ven loop, intact loop, pressurizer,
steam generator, an’ BECCS. Brief descriptions of ti . RELAPS/MOD2
model of the LOFT facitily are presented as follows.
3.2.1 Reactor vessel The reactor core is represented by two
parallel six-volume channels --- hot and average ~hannels. The
geometry of the hot channel represents that of the center fuel
assembly 1in the LOFT core; the average channel is used teo
simulate the remaining eight fuel assemblies. Crossflow
junctions with apprupriate flow areas and resistances between
volumes are employed to represent the interconnections of these
assemblies. A three-section pipe in parallel with fuel channels

is used in modeling the bypass channel.
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Modeling of the reactor vessel down~omer is one area of
major importance in a large-break LOCA analysis because of ECC
water injection phenomena. Conventionally, the downcomer was
modelled by a single series of wvertically stacked control
volumes. The inadequacy of this model was demonstrated in the
LOFT large-break LOCA simulations in which strong azimuthal
asymmetries were measured, especially during ECC injection. The
coaventional downcomer model apparently is unable to calculate
these phenomena. This deficiency can be improved by modeling the
downcomer as a two-channel downcomer interconnected with
croseflow junction. In this study, the downcomer is split into
two egual parts (with equal flow area and volume) associated with
the intact loop and broken loop, respectively. Each part is
represented by six stacked annulus components. The connections
between the parallel downcomers are represented by crossflow
junctior. .

The lower plenum and upper plenum are divided into several
control volumes and simulated by branch or single-volume
components in the RELAPS/MOD2 model.

Cylindrical heat structures are included to represent high-
powered fuel rods (4 rods in the core center) and average fuel
rods in the hot channel, and average fuel rods in the average
channel. These heat structures representing the fuel rods are
each divided vertically into six geometrical structures to allow

different radial nodalization dimensions of the fuel rods at
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different axial locations associated with different power levels.
The best estimate values of the dimensions of tae fuel pellet,
gap, and cladding corresponding to the Experiment L2-5 power
levels are used in oré r to obtain the best estimate initial
stered energy. Reflood option is chosen tur the fuel rod heat
structures, and reflood calculation will be turned on when the
connected hydrodynamic volume is nearly empty. A maximum number
of axial fine mesh intervals of 8 is specified for axial length
of 0.28 m during reflood calculation.

Other heat structures representing the flow ducts and
reactor vessel are also modelled to describe the apprepriate heat
transfer between different flow channels, and ambient.

3.2.2 Broken loop Modeling of the broken loop deserves careful
attention since the accuracy of the break flow calculation is of
major importance in the predictions of the system respon:es of a
large break LOCA. 1In this study, the broken loops (hot-leg and
cold-leg) are simulated by a series of branch and pipe components,
and the QOBVs are represented by trip valves to simulate the
break junctions. Downstream of the break Junctions, the broken
loops are connected to time-dependent volumes where the pressure
boundary conditions of the blowdown suppression tank (BST) are
provided. Flow areas and flow resistances of the junctions along
the broken loops are specified to simulate the pump simulator,

steam generator simulator, and broken loop piping. Choked-flow
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model is applied to the junctions wherever the junction flow
area is restricted.

Definition of the break geometry is also of importance in

accurately calculating the break flow. A discharge coefficient
is required to account for multi-dimensional effects at the break
that cannot be calculated using one-dimensional conputer codes,
A recommended discharge ccefficient of 0.84 [6,7) is applied in
the brecken loop cold-leg break for both subcooled and saturated
choked flow. However, a discharge coefficient of 1.0 is used for
the broken loop hot-leg break.
3.2.3 Intact loop The intact loop modeling includes the hot-leg,
loop seal, PCP, and cold-leg which are simulated by branch,
single-volume, pipe, and pump components. Pump characteristics
(head curves and torque curves) are provided for single-phase
conditions. A set of two-phase diff -~nce curves are input, in
conjunction with the single-phase cuu to calculate the two
phase pump performance. The moment of i.crtia of the pump rotor
shaft (1.43 kg-m ) is used to characterize the coastdown behavior
of the PCP.

3.2.4 Pressurizer The pressurizer model is not expected to be

sensitive to the calculated peak cladding temperature in a large
break LOCA analysis, therefore, simplification with neglecting
the water spray and heater is made in order to save computation
effort. The pressurizer surge line is nodalized with three

control volumes and related junctions. The pressurizer tank is
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represented by a seven-section pipe with PORV simulated by a trip
valve connecting to a time-dependent volume with atmospheric
pressure at the top.

3.2.5 Steam generator The steam generator primary side is repre-
sented by two branch components in modeling of the irlet and
outlet plena, and an eight-section pipe (with four sections
direct vertically upward and four sections direct downward) in
simulating the steam generator U-tubes. In the secondary side, il
is represented by a series of feedwater system, downcomer,
boiler, scoperator, riser, and mist extractor simulations based on
various components available in the RELAP5/MOD2 code. At the exit
of the secondary side, » time-dependent volume is used to provida
the pressure boundary conditions of the air-cooled condenser.
Cylindrical heat structures representing the tubes are added to
permit the heat exchange between the primary and the secondary
sides of the steam generator. Additiona: heat structures are
also used to simulate the heat loss to the environment.

3.2.6 ECCS The emergency core cooling systems, including the
accumulator, HPIS and LPIS are simulated in the RELAP5/MOD2
model. The accumulator is represented by an ACCUMTOR component
with back pressure of 4.2 MPa. The HPIS and LPIS are modelled by
time-dependent junctions with injected coolant flow controlled by
the system pressure. 1In or er to simulate delayed HPIS and LPIf
established in L2-5 test, <: HPIS and LPIS are initiated in the

calculation wmodel at given times (23.9 and 37.32 s, respective-
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ly). The accumulator flow is, howev:r, actvated when the calcu-
lated system pressure drops below its bhack pressure, and the
accumulator flow rate is determined by the pressure difference
rnd given flow resistance, All emergency cooclant injections are
conducted to a common volume ( volume 600) before being injected
to the intact loop cold-legy.

Downstream of the accumulator, a TRPVLV component (junction
603) is wused in simulating the accumulator check valve. This
component will be used to shutoff nitrogen injection after the
accumulator is empty in order to avoid the numerical problem of

the RELAPS/MOD2 calculation.

3.3 Initialization Process

The RELAPS/MOD2 model of the L2-5 experiment simulation is
initialized to a steady-state corresponding to the test initial
conditions before it 1is utilized for the large break LOCA
transient analysis. During initialization, the following
processes ase taken:
(1) In order to achieve pressure cona.tion, a time-dependent
volume with system initial pressure (14.94 MPa) is connected to
the top of the pressurizer _.ank,
(2) In order to obtain correct pressurizer wa.er level (i.e.
primory water inventory), a tir _.-depende t volume is connected to
the bottow of the pressurizer *ank by a time-dependent junction.
The flow rée:r> (including both insurge and outsurge flows) of the

time-“cpendent Jjunction is controlled by the difference between
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the calculated water level and desired water level. Thermodynamic
properties of the water inventery provided by the time-dependent
vol me are specified according to the properties of the water in
the pressurizer tank.
(3) In the primary coolant system, minor adjustments of the flow
resistances at certain locations are made in order to achieve the
flow coadition and core T.
(4) At the steam gen=srator secondary side, & pressure lower than
the measurement is used in the RELAPS/MOD2 model in order to
obtain the primary coolant temperature cleosing to the test data.
This requirement shows a possible deficiency of RELAP:/MOD2 in
describing heat transfer betweon the primary and the secondary
sides. However, the conditions of the steam generator secondary
side is not sensitive in determin.ng the system response of a
large break LOCA type of transient, minor adjustment of the
secondary side pressure is acceptable.

The initial conditions of the RELAPS5/MOD2 mo”el obtained by
the initialization process are listed in Table 3.1 in comparison
to the test data.

4. RESULTS AND DISCUSSIONS
Results of the experimental simulation of the thermal-
hydraulic responses of L2-5 test are assessed through comparison

of experimental data. The comparisons presented in this report
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are representative “av parameters of the L2-5 large break LOCA
transient,
4.1 Base Case Analysis

Following t‘he test procedure in L2-5 simulation with tran-
sient calculation initiated by the opening of break valves, the
timings of major events calculated by RELAPS/MOD2 compared to the
test data are listed in Table ).1, There is no significant
difference between the calculated transient scenario and the test
result,

The calculated pressure response upstream of the cold-leg
break (volume 345) ccmpared to the test data are shown in Figure
4.1. An extremely rapid system depressurization commences with
the opening of the QUBVs, Figure 4.1 shows that both the calcu-
lated and measured pressures drop from 14,94 MPa to 10.0 MPa
immediateliy after the test initiation. As the pressure decreases,
the temperature of the liguid in the vessel reaches saturation
and flashing phenomenon occurs. Consequently, the depressuriza-
tion rate is reduced by the voiding in the vestel &8 shown in
both the calculation result aad test data. The calculated
pressure closely follows the test data at the first five seconds.
After that, the pressure is underpredicted by RELAPS5/MOD2 with
little difference to the measurement. In Figure 4.2, the
comparison of the pressurizer pressure is shown. It can be seen
that the differences between the calculated and measured

pressures are large with lower pressurizer pressure being
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calculated by RELAPS/ MOD2. This could be resulted from the
overprediction of the outsurge flow and the neglect of the
pressurizer heat structure in the calculation model. The
inflection point of the pressurizer pressure response at the
mom nt of pressurizer empty occurs earlier in the calculation
than that of measurement. According to the pressurizer water
level response shown in Figure 4,3, the calculated pressurizer
empty occurs at 10.0 s after the test initiation, which is about
four seconds earlier than the test data,

In Figure 4.4, c2leulated interfacial water levels of the
core region, the downcomer region near intact loop, and the
downcomer region near broken loop are shown with level zero
referring to the bottcn of the reactor vessel. Based on the
calculated water level in the core region, the L2-5 large break
LOCA transient is divided into three periods: blowdown phase
(0 to 2" 8), refill phase (21 to 30 s), and reflood dhase (30 to
54 s). According to the void - asurements of L2-5 test, lower
plenum refill starts at 22 s and ends with the begining of core
reflood at 31 s; and core reflood sequentially completes at 55 s,
These events and their timings are well predicted by RELAPS/MOD2,
During the blowdown phase, the calculated water level at the
downcomer near broken loop declines much faster than that of the
downcomer near intact loop. This result emphasizes th2 necessity
of the downcomer modeling used in this study. In the core region,

an even faster water level decrease is calculated with minimum
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water level reaching 0.623 m below the bottom of the active fuel
at 21.3 s. At this time, the blowdown phase of the transient ends
and the refill phase begins as liguid from the accumulator
reaches the lower plenum. The lower plenum is then refilled when
the calculated water level reaches the bottom of the active fuel
at 30.5 s. The end of the core reflood is ralculated when the
water level reaches the top of active fuel at 54.0 s. During the
reflood period, the calculated water level rises with a rate of
70 mm/s,

Figurs 4.5 shows calculated mass flow rates from the accumu-
lator, HPIS, and LP1S. Calculated HPIS and LPIS flow rates shown
in this figure are 1.585 kg/e and 6.42 kg/s, respectively.
Compared to the test data, calculated HPIS and LPIS flow rates
are overpredicted (measured HPIS and LPIS flow rates are 0.75
kg/s and 6.0 kg/s, respectively) because of th. underprediction
of the system pressure by RELAPS5/MOD2. Since the major portion of
the ECC flow is provided by the accumulator, the differences
found in HPIS and LPIS flow rates can be neglected. The
calculated accumulator flow initiated at 15.7 s goes up to 50,0
kg/s at 27.7 s, and then decreases linearly t»> 30.0 kg/s at the
end of the calculation (90.0 s). However, the accumulator flow
is, unfortunately, failed to be measured in L2-5 test., After the
actuation of the accumulator recorded at 16.8 s, the only
available measurement regurding to the accumulater is the

accumulator water level, which gives #n indication that the
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caovum lyoor tlow ends at 50.0 s because the water level drops
r 9w the inlet of the variable standpipe at that time. In L2-5
cest, the inlet of the variable standpipe is located at 0.95 m
above the bottom of the accumulatcr tank, Therefore, certain
amount of water (about 1,200 kg) stored below the variable
standpipe inlet would not be injected inte the reactor vessel.
This condition is not included properly in the calculation model
of the base case study which congequently leads to a continuous
accumulator flow after 50.0 8 in the calculation result. This
error may not be significant in calculating the L2-5 transient
since major events are almost compiete at that time. A
sensitivity study with accumulator tripped off at 50.0 s will be
performed to investigate whether it is important or not in
calculating the L2-5 transient.,

According to the test data, single-phase blowdown ends and
two-phase blowdown begins at the cold-leg break 2.4 s after the
experiment initiation. While in the calculation, break flow
transition from subcooled to saturated condition occur: at 2.0 s.
Calculate® cold-leg break flow rates compared to the test data
are shown in Figure 4.6. It is seen that RELAPS/MOD2 gives good
result in the prediction of the cold-leg break flow during the
blowdown period. 1In general, subcooled break flow is slightly
underpredicted while saturated break flow is overestimated by the
RELAPS5/MOD2 model. During the refill and reflood periods,
RFELAPS/MOD2 calculates an almost zero break flow while the test

17
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data shows a bunch of water slugs periodically rush out of the
cold-leg break. The cold-leg break flow cbserved during the
refill and reflood periods of L2-5 test may be attributed to the
ECC bypass which is not calculated by the RELAPS/MOD? model.
Certainly, the underprediction of the system pressure shown in
Figure 4.1 could be the reason of the underestimation of the
break flow during these periods. After 70.0 seconds, increased
cold-leg break flow rates are calculated because the calculated
downcomer water Jevel increases to the level of the cold-leg
break by the excessive accumulator flow.

For the hot-leg break flow comparison showr in Figure 4.7,
significant differences are .ound during the blowdown period,
However, the calculated break flow shows excellent agreéement with
the test data later on. During blowdown, the measured flow rate
shows a hump shape response while the calculated break flow
monotonicallv decreases trom its initial peak value. It is seen
that the measured flow rate drops from an initial flow of 210
kg/s to a minimum flow of 30 kg/s at 4.0 s, and then increases
to a maximum flow of 70.0 kg/s at 8.0 s. During this period, the
break flow is signilicantly overpredicted by the RELAPS/MOD2
model ., In the test data, the reason for the break flow to
increas: during system depressurization is very ditricul® to
identify without other detailed measurenents. The break flow can
be increased with the increasing density (or with the decreasing

void fraction) near the break. Probably, the break flow increase
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as observed in L2-5 is due to "loop clearance" occurred at the
top of the steam gererator simulator. During the blowdown period,
bubbles are generated by flashing flow upward along the U-~tube
(0.367 m ID pipe) of the steam generator simulator., Because the
broken loop flow is restricted by the critical discharge at the
break, the flowing bubbles could be momentarily accumulated in
the region of the U-tube bend which results in a vertical
stratification pattern in the U-tube pipe. At the moment when
the broken loop cold-leg starts voiding, the cold-leg break flow
rate is suddenly reduced which produces a perturbation to push
the upstream 1liquid in the broken loop hot-leg over the U-tube
bend., This liguid push over will yield conezquently a syphon
phenomenon which leads to void reduction near the break and
therefore the hot-leg break flow increases. Calculated void
fractions near the breaks are shown in Figure 4.8, From this
figure, it is noted that the broken loop hot-leg starts voiding
immediately after the break initiation. 8Small oscillation of the
hot-leg void are calculated during the period of 4.0 to 8.0 s
resulted from the occurrence of significant void in the broken
loop cold-leg. The hot-leg void oscillation leads to oscillation
of the hot-leg break flow without having flow increase in the
calculation results, The failure in the prediction of the hot-
leg break flow increase during blowdown with the RELAFS/MOD2 code
could refer to its capability in the modeling ~»f the phase

seperation and loop clearance phenomena.
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The mass flow rate of the intact loop c¢old-leg is shown in
Figure 4.9. Before the accumulator {low initiation, the cold-leg
flow calculated by RELAPS/MOD2 agrees reasonably well with the
test data. Flow oscillation observed in L2-5 after ECC injection
due to direct contact condensation is also calculated by
RELAPS5/MOD2 with smaller oscillation magnitude than the test
data.

The comparison between calculated and measured results of
the intact loop hot-leg flow is slwwn in  Figure 4.10,
Significant discrepancies of the flow rates during the blow.own
period are found in this figure. In order to wunderstand the
differences, a more detailed comparison of the hot-leg flow
during the blowdown period is presented in Figure 4.11 with zero
flow indication. It clearly shows that calculated flow rates are
lower than the test data at the first few seconds of the initial
period, After four second € the transient, negative flow rates
(water runback) caused by the PCP stop are calcvulated with
similar magnitudes of the positive flow rates shown by the test
data. It is known (5] that as the result of partial failure of
the flow measurement in test L2-5, the test data provides only
the magnitude of the intact loop hot-leg flow without indication
of the fiow direction. However, the dJifferential pressure
measurement across the intact loop hot-leg indicates the
existence of reverse flow during the bl “own period because the

measured differential pressure changes sign from an initial
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positive value to .« negative value at 5.0 4, and maintains
negative prassure difference to the end of the blowdown period,
Calrulated core flow rates during the blowdown period are
shown in Figure 4.12. It shows that the core inlet flow changes
direction immediately after the break initiation from a positive
(upward) flow of 195 kg/s to a negative (downward) flow of 250
kg/s, while a positive flow is sustained at the core outlet for
0.5 s, This bidirectional flow configuration results in the
reducing of water inventory in the core region, flow stagnation
somewhere in the core, and the occurrence of transient CHF. Cure
flow oscillation induced by direct condensation during ECC
injection is also caiculatod and presented in Figure 4,13,
Calculated cladding tenperatures of the hot channel hot rod
at different axial elevations (with level 1 corresponding to the
bottom node) are shown in Figure 4.14, It is seen that
significant temperature rises are calculated for the fuel rod
cladding at levels 2, 3, and 4 when CHF conditions are predicted
at U.3 s. At the level 1 positicn, temperature spikes occur with
relatively smail magnitudes during the blowdowr and i1efill
periods. At higher portions of the fuel rod (levels 5 and 6},
calculated cladding temperatures keep gcing down without
departure from saturation temperature during the whole transient.
However, the cladding temperature measurements located at varicus
axial positions from the bottom to the top of the hottest fuel
rods indicate that the whole fuel rods wxperience CHF during L2-5
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test. Inaccurate predictions of the cladding temperature
responses at the upper and lower parts of the fuel rod could be
resulted from inaccurate prediction of the CHF, The present
m>del wused in RELAPS/MOD2 for CHF calculation is the Biasi
correlation which overpredicts the CHF by 60% in the comparison
to the dryout experiment conducted at the Royal Institute of
Technology in Sweden [8). A sensitivity study with reduced Biasi
CHF will be performed to see whether the cladding temperature
prediction can be improved.

In test L2-5, a peak cladding temperature (PCT) is recorded
at one third of the full length of the fuel rod from the bottom
which corresponds to the elevation at the middle of the level 2
and level 3 positons in the calculation ‘odel. Hovever, differ-
ences in calculated cladding temperatures between che level 2 and
level 3 positions are small. Therefore, calculated cladding
temperatures of the level 3 elevation shown in Figure 4.15 are
used in the comparison to the test data. According to the
calculated cladding temperature response, the CHF occurrence is
predicted at 0.3 s after the break initiation. The calculated
cladding temperature reaches a peak value of 1,112 K at 7.0 & and
gustains at that level to the end of the hlowdown period without
the occurrence of the early fuel rod rewet. An enhanced cooling
is calculated after the reflood model is turned on at 26.0 s,
which depresses the cladding temperature to a calculated gquench

temperature (T ) of 530 K at 57.2 s. In test L2-5, the cladding



temperature drops before the CHF occurs at 0.9 s. After that, 2
severe heatup of the fuel rod cladding is detected, and the 1
cladding temperature increases from 600 K to 1,000 K in six
seconds. A slower temperature increase is then measured to the
end of the refill period with the PCT of 1,077 K reached at 28.5
¢ after the experiment initiation. Early quenching phenomena
observed in test L2-3 does not occur in test L2-5 becaure
different hydraulic conditions arhieved in these tests. At the
begining of the reflood period, the measured cladding temperature
starts declining with slower decreasing rate than that of the
calculated temperature. Fuel rod quench occurred at 54.0 8 1is
detected when the cladding temperature drops to 820 K which is
about 300 K higher than the RELAPS/MOD2 calculation. The
underestimation of the fuel rod quench temperature by RELAPS/MOD2
is also found in the comparison to FLECHT-SEASET data (9). It is
caused by a simplified formula in computing quench temperature
currently used in the reflood heat transfer package which gives
an almost constant quench temperature of 520 K [1). Based on the
observation of the guench temperature in test L2-5, the calcula-
tion model should be reexamined.

The underprediction of the ~ladding temperature before
quench caused by an excessive cooling is calculated with the
reflood model of RELAPS5/MOD2. Currently, the reflood model uses a
correlation for the dispersed-flow film boiling heat transfer

based on Dougall and Rohsenow's modifications to the single phase
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flow Dittus- ocelter correlation. It is known that the correlation
does not account for nonequilibrium effect, therefore, tends to
overpredict the film boiling heat transfer coefficients (10,11).
The excessive precursory cooling of the fuel c¢ladding by the
RELAPS /MOD2 calculation could also be caused by excessive
interfacial drag with its present model [12,13],. Too much
liguid is entrained from the lower plenum to the core region. 1In
the hydraulic volumes next to the fuel where post-dryout
condition occurs, the flow regimes predicted by RELAP5/MOD2 are
mist (dispersed) flow during the refill and reflood periods.
Increased liquid droplet entrainment will increase interface heat
transfer area between the liquid and vapor, which in turn will
reduce the degree of vapor superheating in rod bundles and lead
to a higher driving potential for en-rgy removal. 1In addition,
the vapor superheating could be also underpredicted by
RELAPS/MOD2 with its present interfacial heat transfer model at
high void fiow conditions (14,15). Moreover, steep increase of
the wall heat flux is calculated at the moment of the reflood
model actuation, which contributes also to the excessive
precursory cooling. Detailed discussions of the reflood model
calculation can be seen in the following section.
Evidence of RELAPS5/MOD2 underpredicting the vapor super-
heating can be observed from the comparison of fluid temperatures
at the upper plenum and hot-leg, Calculated fluid temperatures at

the upper plenum (volume 240) compared to the test data are shown
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in Figure 4.6, The temperature measurements indicate the exist-
ence of superieated steam while calculated temperatures show that
both the 1liguid and vapor stay saturated during the refill and
reflood periuds. At the end »f the reflood period, subcooled ECC
water reaching the upper plenum recion is calculated. Super -
heated vapor is also observed in the hot-leqg region during L2-5
test. Fluid temperature responses at the intact loop and broken
loop are shown in Figures 4.17 and 4.18, respectively. Again,
the comparison clearly indicates that RELAPS5/MOD2 fails in calcu-
lating the extent of vapor superheating of the L2-5 transient.

In the intact loop cold-leg, near the ECC injection point,
subcooled liquid temperatures are calculated at the moment of the
accumulator flow initiation. According to the measurements shown
in Figure 4.19, .he thermocouple could be surrounded by vapor
space at the initial period of the accumulator injection,
subcooled temperature is detected with several seconds delay.
Temperature oscillation measured during the accumulator injection
can be caused by the alternate contact of the liquid and vapor
phases with the thermocouple. However, measured fluid tempera-
ture in the intact loop cold-leg is higher than the RELAPS/MOD2
prediction. The underprediction of the liquid temperature could
be resulted from underestimation of the condensation with the
RELAPS/MOD2 model,

In the downcomer regior., calculated liguid temperavures of

the upper portion (veolume 202 and 282) and the lower portion
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{volume 210 and 290) are shown in Figures 4.20 and 4,21,
respectively, It 18 seen that calculated temparatures near the
intact loop where ECC water is injected are different from that
near the broken loop. At the intact side, the delivery of the
subcooled ECC water to the downcomer is calculated with few
seconds delay after the uccumulator flow initiation, At the
broken side, subcooled liguid temperature is calculated in the
downcomer when the ligquid level increases during the refill and
reflood periods. In test L2-%, downcomer fluid temperature
measurements are located at an azimuthal angle of 15% away from
the intact loop cold-ley. The fluid temperature responses
measured at various axial locations in the dowhcomer region are
shown from Figures 4,22 to 4.25 for the comparison rto the
calculated temperatures in the downcomer near the broken loop.
The temperature underprediction shown in these figures could be
caused by the underprediction of the heat transfer between tle
vessel hot wall and the ECC liquid. Of course, the downcomer
ligquid temperature could be also underpredicted if the ECC
condensation is underestimated with the RELAPS/MOD? model.
The comparison of the fluid temperatures of the broken loop
hot-leg is shown in Figure 4.26. Significant differences found
fter 60.0 s are caused by the excessive accumulator injection in
the calculation model,
The comparisons of the fluid densities of the intact loop

vold-leg, intact loop hot-leg, and brolen loop cold-leg are
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presented in Figures 4.27, 4,28 and 4,29, respectively. Calcu-
lated fluid densities in the intact loop cold-leg 7gree well with
the measurem ts before the actuation of the accumulator,
Increased densities with ECC injection are noted in the test data
with significant variations resulted from local measurement ., In
the calculation results, the volume-averaged densities are shown
with smooth changes. Density overprediction in the RELAPS /MCD2
calculation after 60.0 & is due to overfill of the downcomer by
excessive accumulater flow, Excessive carryover of the core
ligquid to the intact loop hot-leg is illustrated by the high
density fluid present after 45.0 s (see Figure 4.28). The cause
of this carryover lies in the interfacial drag model used in the
RELAPS/MOD2 code. 1In the broken loop cold-leg (volume 34%),
calculated densities shown in Figure 4.29 are in good agreement
with the test data during early period of the transient, After
about 10,0 s, calculated densities in general are higher than the
measurements, It 1is interesting to note that the calculated
density in the broken loop cold-leg is hign while the caiculated
cold-leg break flow shown in Figure 4.6 is almost zero during the
EC. injection period. The guestions turn out to be where the
high density fluid comes from and where it goes during the refill
and reflood periods. In Figure 4.30, calculated mass flow rates
of the BLCL junction (vessel outlet junction from volume 282 to
volume 335) and the cold-leg break junction are shown, From this

figure, it 1s seen that fluid periodically flows into the broken
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loop cold-leg and back to the reactor vessel without exiting flow
through the break during 25.0 to 42.0 s. However, whether the
flow 1is provided by the carryover from the downcomer or resulted
from the ECC bypass phenomena in the calculation model remains
unknown. Calculated flow rates of the BLCL junction are compared
to that of junction 272 and junction 283 in Figure 4,31, A
positve flow of the junction 272 represents bypass flow from the
intact side (volume 202) to the broken side (vnlume 282); while a
negative flow of the junction 283 indicates the amount of
carryover from' downcomer to the broken loop. It is seen from
Figure 4.3 that in general the junction 272 flow is less than
zero, i.e. reverse flow is calculated on the flow path of the ECC
bypass. It is known that the ECC bypass phenomena will occur when
the ECC water can flow downward the annulus downcomer by gravity
and be swept out through the break by the :scaping upward steam
flow, that is, due to the counter-current flow limitation (CCFL)
phenomenon. However, there is no direct modeling of the CCFL in
RELAPS/MOD2, and the existing model of the interfacial drag is
not gocd enough in retarding the downflow of the ECC water [16].
Therefore, it can be concluded that the RELAPS/MOD2 model does
not calculaie ECC bypass in the L2-5 simulation. High density
fluid of the broken loop cold-leg during ECC injection is
resulted from excessive carryover with the present RELAPS5/MOD2
models,
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4.2 Sensitivity Studies

In addition to the base case calculation, sensitivity
studies are performed to explore the effects of input modeling
and code options. Scenario study and simple model modification,
specifically speaking, the pump coastdown behavior and the Biasi
CHF correlation are alsc analyzed in elucidating the code
performance. The identifications of the cases analyzed in this
study are listed in Table 4.2 with the conditions which are
different from that of the base case. The purpose and the results
of the sensitivity studies are discussed in the fcllowing
sections.
4.2.1 ACCUM50 This case study is used to identify the influences
of the thermal-hydraulic response predictions resulted from the
excessive accumulator flow of the base case. Calculated accumula-
tor flows compared to the bas~ case are shown in Figure 4.32,
The water level comparisons are presented from Figure 4.33 to
4.35. Major differmnces of the water level responses can be
seen when the accumulator flow is tripped off at 50.0 = in the
ACCUMS0 case. The cold-leg break flow shown in Figu e 4.36
indicates similar results except some flow spikes after 70.0 s
are calculated. Calculated fluid densities of the broken loop
cold-leg are compared in Figure 4.37. Simulation with correct
accumulator flow stop can improve the prediction cf the dansity
at later period. However, the calculated density of the 7rCi™MS0

case 1is still higher than the test data. In Fijares 4.318 and
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4.39, calculated cladding temperatures are shown, It is seen
that there is no significant difference in the cladding tempera-
ture prediction resulted from the difference in the accumulatox
simulation. With lower accumulator flow simulated in the ACCUMS0
case, the fuel rod quench is delayed by 2.0 seconds compared to
the base case.

4.2.2 BLHL-HT 1In the base case study, it is found that the hot-
leg break flow is overpredicted during the blowdown phase.
Considering the possible uncertainties in the tempaerature
measurements, higher initial temperatures of the broken locp hot-
leg are used in the BLHL-HT case t: see if the hot-leg break flow
prediction can be improved.

Reluced hot-leg break flow with the increasing of the
initial temperature is shown in Figure 4,40, However, the hump
shape of the break flow response shown by the test data is still
failed to be calculated. With reduced hot-leg break flow,
increasing of the cold-leg break is expected. Figure 4.41 shows
that the calculated cold-leg break flcw of the BLHL-HT case 1is
higher than the base case in the first two seconds. Cladding
temperature respunses at various axial locations are compared in
Fijure 4.42. Significant difference is seen in the cladding
temperature at level 2 position., This could be resulted from the
relccation of the stagnation point. Higher flow resgistance can
be induced b; the higher initial temperature in the broken leop

hot leg, which moves the stagnaticn point upward in the core
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region ane introduces an increased reverse flow in the level 2
node immediately after the opening of the (OBVs. The increased
reverse flow will then prevent the deviation from saturation at
that location. However, the calculated PCT at ths hottest
location (level 2) of the BLHL-HT case is only 20 K lower than
that of Che base case (see Figure 4.43).

4.2.3 BLHAL-DC The calculated f'ow can be reduced with red 2ing
of the discharge ~oefficent specified in the RELAP5/MOD2 input.
In the BLHL-DC case, the hot-leg break dischage coefficent is
reduced from 1.0 in the bhase case to 0.8,

It is seen from Figure 4.44 that the calculated hot-leg
breax flow is decreased by this input change, buc with limited
differunce from the base case. The other parameters, including
the pressure, cold-leg break flow, and cladding temperature
recponses, shown in Figures 4 .45 to 4.48 indicate minor effects
of the hot-leg break discharge coefficent on the L2-5 simulation.
4.2.4 BLHL-5K Regarding the uncertainty of the form loss coeff-
icient during flew transient condition, a sensitivity study is
needed to investigate the possible impacts in the large break
LOCA calculation. In the BLHL-5K case, the form loss coefficents
of the Jjuncticns in the broken loop hot-leg specified in the
RELAPS5/MOD2 input are five times of the base case.

Calculated pressures of the broken loop cold-leg and
pressurizer compared to the test data are chown in Figures 4.49

and 4.45, respectively. It is seen that the system pressure
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increases with increased form loss coefficient in the broken loop
hot-leg. During the blowdown period, the calculated pressure of
the broken loop cold-leg is higher than the test data with
increased form loss coefficient, hovever, the calculated pressure
of the pressurizer is still mich lower than the test data.
Significant reduction of the hot-leg break flow is seen in the
BLHL-5K case (see Figure 4,%1), In general, better agreement on
the hot-ieg break flow is seen in the BLHL-5K case, but the
initial break ['Ow is apparently underestimated. Because of the
increasing of the systes, piiecsure, the calculated cold-leg break
flow shown in Figure 4.52 is increased with the increasing of the
form loss coefficent. The comparisons of the cladding temper-
atures are presented in Figures 4.53 and 4,54. The major
difference is found in the temperature response of the level 2
position as resulted from the relocation of the stagnation point.
The fuel quench time is delayed by 8.0 seconds while the PCT is
compatible in the comparison to the base case.

4.2.5 PV-X-P. The RELAPS/MOD2 numerical scheme is generally
formulated using one-dimensiocnal elements, However, there are
several applications where an approximate treatment of crossflow
provides an improved physical simulation. One major application
of the crossflow junction is to provide a tee model. In the L2-5
base deck, the pressure vessel outflow junctions connecting to
broken loops are considered to be normal junctions. In reality,

the momentum flux in the reactor vessel is perpendicular to the
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momentum flux in the broken loop. Therefore, <rossflow junctions
instead are chosen in the PV-X-BL case to identify the difference
with this option in the L2-5 simulation.

Important parameters with respect to the large break LOCA

transient, including the break flows and cladding temperatures,
are shown in Figures 4.55 to 4.58. It is interesting to see the
calculated break flows, bot. in the hot-leg break and the cold-
leg break, with crossflow junction modeling are equal to the
base case. The effects of the crossflow option on the cladding
temperature responses ave calculated with limited differences.
The PCT calculated in the PV-X-BL case is the same as that of the
base case,
4.2.6 MESHp32 A fine mesh-rezoning scheme is implemented to
efficiently use the two-dimensional conduction solution for
reflood calculations. It is suggested in the RELAPS/MOD2 manual
that appropriate user-specified maximum number of axial fine mesh
intervals fs# 8 to 32 with the length of hydrodynamic volumes
ranged from 0.5 m te 0.6 m. In the analysis of the MESH#32
case, the number of fine mesh intervals increases from B used in
thes base case to 32,

The .esults of this study are nresented in Figures 4.59 to
4.62. it is seen that important paramters calculated with
increased number of fine mesh intevals are identical to those in

the base vcase, ercept a little difference of the fuel guench

time,
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4.2.7 FUEL-GAP Tt is well known that fuel gap distance (or gap
conductance) is an extremely important parameter in determining
the PCT during a large break LOCA., 1In the L2-5 base deck, varied
fuel gap distances are used for various axial and radial
locations of the fuel rods in accordance with different power
levels. At the hottest section, the fuel gap distance specified
in the base deck is 0.04944 mm, In the FUEL-GAP case, a mominal
fuel gap distance of 0.0953 mm [2) is wuniversally used for fuel
rod modeling at various locations. The increase of the fuel gap
distance will reduce the gap conductance and, conseguently,
increase the initial rod temperature and the initial stored
energy.

Radial profiles of calculated rod temperatures a‘ the
hottest location are presented in Figure 4.63, It is seen that
the initial fuel rod centerline temperature of the FUEL-GAP rcase
is 270 K higher than the base case. The effect of the increased
stored energy on the cladding surface temperature can be seen in
Figures 4.64 and 4.65. The PCT calculated for the FUEL-GAP case
is 130 K higher than that of the base case in the L2-§
simulation. This disparity emphasizes the importance of fuel-rod
modeling for the large break LOCA transient analysis. Calculated
braak flows presented in Figures 4.66 and 4.67 are, however, not
affected by the increasing of the fuel gap distance.

4.2.8 PUMP-FW The major difference observed between the LOCE

L2-3 and L2-5 tests is the early rewet phenomena as a result of
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different operations of the primary coolant pumps during the
transients. In the base case study, no early rewet of the fuel
rod is calculated according to the pump operation of L2-5, In a
sensitivity study (4) performed with earlier version RELAPS/MOD1,
it is found that the early rewet of the fuel rod can be predicted
in the L2-5 simulation if the pumps coast down with their
flywheel system, In this study, the same assumption on the pump
behavior is used to see whether the RELAPS/MOD2 code can predict
early quenching.

Figure 4,68 shows the coolant mass flow rate of the intact
loop cold-leg provided by the surge flow from the coastdown pump.
It is seen that with the assistance of the flywheel aystem the
cold-leg flow of the PUMP-FW cise is sustained for a longer
period than the base case. Because of the higher coolant flow in
the intac’ loop cold-leg of the PUMP-FW case, a positive core
flow is re-estabilished at earlier time and resvlts in a higher
core flow between 5.0 to 10.0 s in the comparison tc the base
case (see Figure 4.69). However, calculated cladding temperature
shown in Figure 4.70 indicates no early rewet even though the
pumps coastdown with their flywheel is assumed in the
calculation. Calculated cladding temperatures of the PUMP-FW
case deviate from the base case after 7.0 s with small
difference. The calculated PCT of the PUMP-FW case is almost the
same as that of the base case. Calculated break flows shown in

Figures 4.71 and 4.72 can be used to illustrate the insignificant
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effect of the pump coastdown behavier on the break flow
calculation in the L2-5 simulation.
4.2.9 CHF*0.6 Regarding the failure of the cladding temper-
ature predictions at the upper and lower portions of the hottest
fuel rods in the base case study, the accuracy of the Biasi CHF
correlation used in RELAPS/MOD2 is questioned. This sensitivity
study is performed with a modified Biasi correlation (simply
multiply by a factor of 0.6) to see whether the c¢ladding
temperature prediction can he improved.

Results of the cladding temperatures are shown in Figures
4.73 to 4.75. It is learned that the discrepancies of the
cladding temperature responses at the upper portion of the fuel
rod found in the base case still exist in the CHF*0.6 case.
The calculation model still fails in predicting CHF at low power
sections. Moreover, the predictions of the cladding temperatures
of the hottest portion are even worse with the CHI reducticn.
In Figure 4.73, it is seen that the time-to-CHF is reduced from
0.3 s in the base case to almost time zero with the reduction of
the CHF, and the associated PCT is calculated to be 500 K higher
than the test data. Therefore, a solid statement on the Biasi
correlation can not be made, and the reason for the failure of
the cladding temperature prediction is unknown.
4.2,10 NORFLOD Different heat transfer correlations are used in
RELAP5/MOD2 for post-dryout condition between the calculations
with and without reflood model option [(1]). The reflood model
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calculation 1is actuated when the system pressure is lower than
1.0 MPa, when the mass flux is less than 200 kg/m s, a1 when
the connected hydrodynamic volume is nearly empty. In view of
the failure of the cladding temperature prediction resulted from
the excessive p.ecurso. cooling during the reflood period of the
base case analysis, an experimental simulation is performed
without the actuation of the reflood model in the RELAPS/MOD2
calculation,

Calculated void fractions in ths hot channel of the NORFLOD
case compared to the base case are shown in Figure 4.76, In
general, the calculated void fraction without uring reflood model
is a little ﬁithr than that of calculation with reflood model,
In Figure 4.77, calculated cladding temperatures at various axial
elevations of the NORFLOD case are shown. It is seen that high
cladding temperatures are sustained for the rest of the reflood
period without significant precursory cooling before quench
because lower heat fluxes are calculated for the NORFLOD case in
the comparison to the base case (see Figure 4.78), Discontinuity
of the heat flux calculation is exhibited in the base case at the
moment of the reflood model actuation. The calculated vapor
temperature comparison shown in Figure 4.79 indicates also a
significant vapor temperature increase with the heat transfer
package switching. These dis.ontinuities =hould be further

studied to see whether they are .eal situations.
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The <~omparisons of the cladding temperatures are shown in
Figures 4.80, 4.81, and 4.82 for various axial elevations,
Significant improvement in the cladding temperature prediction at
the hottest section results in the NORFL O case study. 1In Figure
4.80, it 1is seen that not only the cladding temperatures before
quench but also the fuel rod guench temperature and its timing
calculated without the reflood model are in good agreement with
the test Aata. These results may indicate that either the
criteria wused in RELAP5/MOD2 for the actuation of the reflood
model calculation are inadequate or the heat transfer package in
the reflood model is improper. However, the suggestion of not
using reflood model in the L2-5 simulation can not be justified
because the accuracy of the RELAPS/MOD2 model in predicting local
hydraulic conditions (quality, droplet size, interfacial area,
and two phase velocities' is still an open question. It would be
almost impossible to evaluate separately the heat transfer
correlations and hydraulic models in calculating the c¢ladding
temperature response during post-dryout dispersed flow

conditions.

5. RUN STATISTICS
The computational efficiency of the RELAPS/MOD2 simulations
are summarized in Table 5.1, The simulations are conducted on a

FACOM M200 computer which is compatible to an IBM MVS system.
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6. CONCL!'SIONS

In this study, the large break LO’A test L2-5 {g analyzed by

the RELAPS5/MODZ model. The test simulations begin with break
initiation and subsequent blowdown, and continue through lower
plenum refill, core raflood, and terminate with corewide guench,
Major events and their timings of the lirge break test L2-5 are
well predicted by the RELAPS/MOD2 model. Important parameters,
such as pressure, break flow, and cladding temperature, are
calculated with reasonable agreement in the comparison to the
test data. Especially, the most cuoitical parameter in the large
break LOCA, the peak cladding temperature, is wvery well
calculated by the RELAP5/MOD2 model. Noticed differences and
code def.ciencies found in the L2-5 test simulation and various
major findings of the gensitivity studies are described in the
following:

1. The  ©broken loop pressure is well predicted ( slightly
underestimated) while the pressurizer pressure is sinnifican-
tly wunderpredicted. The underprediction of the preusurizer
pressure ig caused by the overprediction of the outsurgs flow
during blowdown.

2, 8Significant differences in the water level responses hetween
the downcomer near the intact lecop and the downcomer ne.r the
broken loop are calculated. It indicates that the downcomer
modeling employed in this study is guite important in a large
break LOCA analysis.
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The effect of the excessive accumulator injection after 50.0
8¢ found in the base case calculation 1. insignificant in
determining the transient behaviors of the L2-5 simulation.
Since L2-5 failed to measure the accumulator flow rate, the
calculated result ac ording to the accumulator model used in
the RELAP5/MOD2 calculation ¢ .1 not be verified. However,
according to the comparison of the major event timing, the
calculated accumulatur flow rate could be a close resemblance
to the test condition.

The hot-leg break flow is overpredicted by RELAPS/MOD2 during
early stages of the transient. The measured hot-leg break
flow rate shows a hump shape response while the calculated
break flow monotonicall decreases from its initial peak
value during the blowdown period. The break flow increase
during blowdown observed ir L2-5 could be resulted from
momentarily accumulation of the bubbles in the U-tube bend
and seguentially the occurrence of the "loop clearance" by
the liquid push over. These phenomena could be out of the
RELAPS/MOD2 calculation capability. In the sensitivity
studies, no improvemen: in the hot-leg break flow |is
calculated with various input modifications.

Flow oscillation observed in L2-5 after ECC injection due to
direct contact condensation is calculzted by RELAPS/MOD2 with
smaller oscillation magnitude than the test data. In the

comparison of the fluid temperatur<s in both the cold-leg and
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the downcomer regions, it is found that RELAPS/MOD2
underpredicts the fluid temperature during ECC injection
period. These differences indicate a possible deficiency in
the condensation model of the present RELAPS5/MOD2 code.
During ECC injection, high density fluid is calculated in the
broken loop cold-leg. However, the high density liquid in
the calculation 1is provids:d by the carryover from the
downcomer region instead of the ECC bypass. Compared to the
measured density, it is found that the carryover is overpre-
dicted with the in*erfacial drag model of RELAPS5/MOD2.
According to the cladding temperature measurements located at
various axial elevations, the hottest fuel rods from the
bottom to the top experience CHF conditions during L2-5 test.
The RELAPS/MOD2 calculation, however, shows that only the
middle high power portions of the fue. rods suffer from
dryout vhile the lower and upper elevations of the fuel rods
stay cooled in the transient analvsis. In the sengitivity
study with the reduction of the Biasi CHF by a factor of 0.6,
the calculation results do not give better predictions of the
cladding temperatures at the low power elevations. Moreover,
the calculated cladding temperatures at the high power
elevations significantly deviate from the test data with the
reduction ol the CHF.

With the reflood model calculation, excessive precursor

cooling of the fuel rod results which leads to the underesti-
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mation of the cladding temperature duriag the reflood period.
Calculation without using the reflood model, not only the
ca culated cladding temperatures but also the quench
temperature and its timing are in very good agreements
with the test data. However, the exciting results of this
special calculation could be caused by wrong reasons, because
the accuracy of the RELAPS5/MOD2 model in predicting local
hydraulic conditicns is ~till an open guestior. However, the
results may indicate that either the criteria used in
RELAP5/MOD2 for the actuation of the reflood model
calculation are inadeqguate or the heat transfer package in
the reflood model is improper. 1In any case, the discontinui-
ties of the caiculated rod surface heat flux and vapor
temperature indicate a discontinuous heat transfer
coefficient before and after the actuation of the reflood
model. Further review is required for these discontinuity.
| 9. 1In the sensitivity studies of the large break LOCA test L2-5,
the calculated PCTs of various cases are obtained during the
blowdown period. The calculated PCTs are quite insensitive
| tc different input modifications including (1) adjusted
accumulator modeling; (2) initial temperature distributions
| in the broken loop hot-leg; (3) flow resistances of the
| broken 1loop hot-leg; (4) discharge coefficient of the
| critical flow at the hot-leg break; (5) creoss-flow junction

L used for the linkage between the broken loop and the reactor
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vessel. However, significant differences in the PCT
calculations are found in the studies of the fuel gap
dimension and the CHF correlation.

With the assumption of having flywheel connected during pumj
coastdown, the calculation results show that the present

RELAPS/MOD2 model does not yield blowdeown guench phenomena.
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Table 3.1 Initial Conditions of LOCE Test L2-5

Parameter L2-§ _RELAPS /MOD2
Power level (Mw) 36.02 1,2 36.0
Primary colant system 192.42 7.8 154,97

mass flow (kg/s)

Hot-leg pressure (MPa) 14.94 20,06 14.935

Intact loop hot-leg 589.7% 1.6 589.71
temperature (XK)

Intact loop cold-leg 556.6 + 4.0 556,24
temperature (K)

Core AT (K) 33.124.3 33.47

Broken loop hot-leg 561.91 4.3 565.44
temperature (K)

Broken loop cold-leg 554.3%4.2 554.31
temperature (K)

S.G. secondary side 5.85¢+0.06 5.548
pressure (MPa)

5.G. secondary side flow (kg/s) 19.120.4 18.86

Pressutrizer water level (m) 1.14 20,03 1.14
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Table 4.2 Cases Analyzed in the Sensitiuity Study
of the LOCE Test L2-5 Simulation

Case Conditions different from the base case
ACCUMS50 Smaller accumulator volume (€7% of the base case) and

: , accumulator flow tripped-off at 50.0 s

‘BLHL—HT Initial temperature of 590 K (25 K higher than the
base case) is specified in the broken loop hot-leg

BLHL-DC Discharge coefficient of 0.8 (instead of 1.0 in the
base case) is used in the hot-leg break

BCHL-5K Junction form loss coefficents used in the broken
loop hot-leg are five times of the base casc

PV-X-BL Cross-flow junction is used in connecting the broken
loop to the pressure vessel

MESH#32 Number of reflood fine mesh intervals increases
from 8 to 32

*PUEL-GAP Nominal fuel gap distance of 0.0953 mm (about twice
larger than the base case) is assumed without
considering possible fuel swelling effect

| PUMP-FW Pump coastdown with 316.04 kg-m? inertia (instead o-
| 1.431 kg-m< in the base case) produced by its
flywheel system

CHF*0.6 CHF calculated by the Biasi correlation is reduced by
| # factor of 0.6

NORFLOD Calculaticn without the actuation of the reflood heat
transfer nodel

*Initialization process is performed before transient calo _ation

l
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Table 5.! Run Statistics of the LOCE Test L2-5 Simulation

Case Transient CPU(s) Number of Number ot I'Per:fc,rmancca
Time(s) Time Step Volume Cell Number
BASE 90 2277:13 6284 128 4.074
BLHL-HT 60 2301.99 4394 128 4.093
BLHL-DC 60 2280.81 4335 128 4.110
BLHL-SK 90 2761.04 5220 128 4.132
PV-X~BL 60 2310. 41 4436 128 4,069
MESH#32 60 0 9423.19 4494 128 4.213
FUEL-GAP 80 2969.44 5825 128 3.983
PUMP-FW 60 2330.0 4452 128 4.089
CHF*0,6 90 3068.71 5992 128 4.001
NORFLOD 80 2685.07 5503 128 3.812

*
Performance Numbers

CPU x 103/ [ Number of Time Step ] / [ Number of Volume Cell )

a7
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3650204 068986 3.523k¢ 1.0
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5650207 “e 89655 5.5657€6 1.0

56502082 2441379 3.5784E6 1,0

550209 2.75%62 8.5754E6 1.0
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5650213 4,13793 5.5364E6 1.0
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5650223 11,2069 5.3998E6 1.0
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565C230 23,0000 3435116 1,0

5650231 2T7.4138 5.3478E6 1.0
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6350209 1025}’6 2-67: OOO 0.0
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8100101 0.0 1,0 % 0.0 0,0 0
8100102 0.0 0.0 00

8100300 003 $10
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8100202 0.0 1.00003+8% 293,000

8100203 1C00,0 1.00002¢5 293,000
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PPrLRCLBCUTHRELOORREERUTVRBLORIPLTREREERBL Bt cRRRpRER B P RN gt Al

89000000 EOUNDVLYV VALVE
*9000191 420010000 905000000 0.0 0.0 0.0 072190
89000291 ¢ 0.0 b B 0.0

45000200 TRPVLV
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#910010% 915000000 &41500C000 0.0
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BE SRR LB RS ROE SRR RN RN AR O LR U LR RB LU ERV PR IR OIRED LR DR BLCR R R B RO PR Y
& REACTOR VESSEL WALL HEATY STRUCTURES
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12250000
12250100
12250191
12250201
12259391
12250421
12250501
12250502
12250803
422508584
12250525
12250601
12250602
1225C6%3
122505204
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12250701
12250501
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12250803
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0
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)
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260510000
200010002
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&
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8300000 i i 0,5590 ]
(& 1 1 Ne8430 b
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0 ¢ 1 0,37175 7
0 ¢ 1 N,35590 9
0 e 1 0.8430 10
OIO 3-:‘ 0.:‘ 13

0+6 ve Ved20 i

0.6 Q.0 0.3772 L j

0.6 0.0 0.5590 9
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* LOWER CHORE SUPPLART STRUCTURE

e STATIOM
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STRUCTURE AND FUEL MDDULE LOWER END

96,644 T)
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12251000
12251100
12251101
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0

6
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0

0

0

7 2 | 0.282

1
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6

[

7

e 1 1 0.52 1
0 0 b 0.52  §
0.0 0.0 0.0 1
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¢ STATION 116.91 TO 182.94
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® AVERAGE FUEL RMDS IN AVERAGE CHANMELCAXTAL LEVEL 1) }
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12361020
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12361100
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12361301
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s O

10 2 1 0.0
1 8

1
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5.36265-3
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12361408
12361¢09
1236161C
12361501
12361601
12361701
12361901
®

® AVERASGE
»

12362220
+

12362100
12362101
12362102
12362103
12362271
12362202
12362223
12362301
12362302
12362401
12352402
12362403
12362404
12362405
12362406
12362407
12362408
12362409
12362410
12362501
12362601
12362701
12362301
*

* AVERAGE
#
12363000
-

12363100
12363101
12363102
12363103
12363201
12363202
12363203
12363301
123633902
12363401
12363402
12363403
12363504
12363405
12363406
12363407
12363493
12363409
12363410
12362501
12343401
12363701

610,30 &

604,29 9

598,48 10

0 0 0 1
22T0100C0 O i 1

500 04127545 0.0 0.0

¢ 0.013633 ¢C.0 0.2795

306,222
306,222
i
i

FUEL RDODS [ AVERAGE CHANMELC(AXIAL LEVEL 2)

b 2 1
8

+58060=3
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2
3

-
<

1
|
4
“
-
8
6
9
S
0.0 :
1602.1 1
1376,7 2
1294,5 3
1168,95 4
1005,1 5
826,87 6
664,72 7
635,29 8
626,18 9
617,36 1
0 0 1
228010000.0 3 1
900 0,197174 0.0 0.0
0 0.01363% 0.0 0.2795

0

0,0
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306,222
1
1
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10 2 1
1 8

1
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1 P~ W WO

0

229010029

5
]
9
5
9
b
b3
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&
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6
7
8
9
1
0
0
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o
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® AVERAGE FUEL RNDS ['s AVERAGE CHAMNMELCAXIAL LEVEL &)

L ]
12364900

*
12384100
12364101
12354102
12304103
12344201
12364202
12364203
12364301
12364302
123664601
123644602
12266403
12364404
12364405
12364408
12364407
12364408
12364409
1234646410
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