SNUPPS

Standardized Nuclear Unit Power Plant System

5 Choke Cherry Road

Rockville, Maryland 20850
(301) 869-8010

September 6, 1984
SLNRC 84-112 FILE: 0541/M-189
SUBJ: Preservice Inspection Relief Request - Wolf Creek Plant

Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation US Nuclear Regulatory Commission Washington, D.C. 20555

Docket No.: STN 50-482
Dear Mr. Denton:
Enclosures A - F provide data in support of a request for rel lief from preservice examination (volumetric and visual) requirements for selected Wolf Creek component and piping systems. Enclosure G provides data in support of a volumetric examination relief request for 18 branch connection welds in the Reactor Coolant System. With exception of partial relief requests required for certain weldments in the Wolf Creek Reactor Pressure Vessel, no additional volumetric examination relief requests are anticipated.

A supplemental submittal in support of the Wolf Creek Reactor Pressure Vessel preservice examination relief request is being finalized and will be forwarded to the NRC by Sept. 15, 1984.

8409110137840906 CDR ADOCK 05000482

Very truly yours,

S. Seiken, Manager Quality Assurance

SJS/dck/8a19

Enclosures: A thru G
cc: G. L. Koester, KSE
J. M. Evans, KCPL
D. F. Schne11, UE
J. H. Neisler/B. H. Little, USNRC/Cal
H. Bund, USNRC/WC
D. R. Hunter, Region IV
B. L. Forney, Region III
R. C. DeYoung, USNRC/IE:HQ
B. Brown, EGG Idaho

SLNRC 84-112
Page Two
bcc: J. A. Bailey, KGE/WC
D. W. Capone, UE
J. A. Holland, KGE/WC
D. E. Shafer, UE
M. A. Hannah, KGE
J. H. Smith, B
R. A. Love, NES

System: Main Feedwater

Component I.D.	Category	Description		Code Requirement	Basis For Relief

System: Steam Generator

Component I.D.	Category	Description	Code Requirement	Basis for Relief
$\begin{aligned} & \text { 1-EBBO1A-SEAM- } \\ & 2-\mathrm{W} \end{aligned}$	C-A	Tube Sheet to Stub Barrel	100\% Volumetric Examination	Flange obstruction limiting scan length on tube sheet side. Three latches, insc.rumentation, nuzzle and I.D. plate obstructing scan path on stub barrel side. 5% loss of volume coverage at $60 \% \& 45^{\circ}$.
$\begin{aligned} & \text { 1-EBB01A-SEAM- } \\ & 6-\mathrm{W} \end{aligned}$	C-A	Transition Cone to Shell Section C	100\% Volumetric Examination	Four instrumentation nozzles, two lugs, guages and a feedwater nozzle obstructing scan path. 5% loss of volume coverage at 60° scan angle and 10% at a 45° scan angle.
$\begin{aligned} & \text { 1-EBB01A-SEAM- } \\ & 8-W \end{aligned}$	C-A	Shell Section D to Top Head	100\% Volumetric Examination	Loss of transducer contact due to transition section, lug and guage obstructions. 10% loss of volume coverage.
$\begin{aligned} & \text { 1-EBBO1A-SEAM- } \\ & 5-W \end{aligned}$	C-A	Shell Section B to Transition Cone	100\% Volumetric Examination	Loss of transducer contact due to transition section and two guages. 10% loss of volume coverage at 60° and 5% loss of volume at 0°.
$\begin{aligned} & \text { 1-EBB01A-SEAM- } \\ & 3-\mathrm{W} \end{aligned}$	C-A	Stub Barrel to Shell Section A	100\% Volumetric Examination	Loss of transducer contact due to transition section and two guages. 10% loss of volume coverage.

System: Reactor Coolant	
Category: C-F	
Component Description:	
Component Identification	
Component Description	

System:	Essential Service Water System
Category:	D-A
Component Description:	$\begin{array}{rlll} \text { Pump Supports } & K-E F 11-R 005, & K-E F 11-B 003, & K-E F 11-R 001 \\ K-E F 11-R 006, ~ K-E F 11-B 004, ~ K-E F 11-R O D 2 ~ \end{array}$
Code Requirement:	Visual Examination - 3
Areas for Relief:	Entire Examination
Basis for Relie ?:	The pump supports are inaccessible due to their submersion within the Essential Service Water Pump Pit.
Alternate Testing:	None

ENCLOSURE E

```
System:
Category:
Component Description:
Code Requirement:
Areas for Relief:
Basis for Relief:
Alternate Testing:
```

Fuel Pool Cooling and Cleanup
D-C
Pipe Supports 1-EC-04-R026, 1-EC-04-R027, 1-EC-04-R029, 1-EC-04-R030

Visual Examination - 3

Entire Examination

These pipe supports will be submerged in the spent fuel pool during the life of the plant.

None

System: Pressurizer		Description	Code Requirement	Basis for Relief
Component I.D	Categ			
1-TBB03-4-W	B-F	Relief Nozzle to Safe-end Weld	Volumetric examination by scanning both sides of weld.	Component undulations restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 20\% loss of volume coverage with a 60° axial scan and a 45% loss of volume coverage with a 45° axial scan.
1-TBB03-3-A-W	B-F	Safety, Nozzle to Safe-end Weld	Volumetric examination by scanning both sides of weld.	Component undulations restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 50\% loss of volume coverage with a 60° axial scan and a 35\% loss of volume coverage with a 45° axial scan.
1-TBB03-1-W	B-F	Surge Nozzle to Safe-end Weld	Volumetric examination by scanning both sides of weld.	Component undulations restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 15\% loss of volume coverage with a 60° axial scan and a 40\% loss of volume coverage with a 458 axial scan.
1-TBB03-3-B-W	B-F	Safety Nozzle to Safe-end Weld	Volumetric examination by scanning bot ${ }^{3}$ sides of weld.	Component undulatiors restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 55% loss of volume coverage with a 60° axial scan and a 40% loss of volume coverage with a 45° axial scan.
1-TBB03-2-W	B-F	Spray Nozzle to Safe-end Weld	Volumetric examination by scanning both sides of weld.	Component undulations restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 10\% loss of volume coverage with a 60° axial scan and a 40\% loss of volume coverage with a 45° axial scan.

System: Pressurizer	Description	ENCLOSURE F CONT 'D Code Requirement	Basis for Relief
Component I.D Category			
$1-T B B-03-3-C-W \quad B-F$	Safety Nozzle to Safe-end Weld	Volumetric examination by scanning both sides of weld.	Component undulations restricting search unit movement and metal structure of inconell buttering inhibiting shear wave transmission. 20: loss of volume coverage with a 60° axial scan and a 40% loss of volume coverage with a 45° axial scan.

ENCLOSURE G

RELIEF REQUEST FOR THE
VOLUMETRIC PRESERVICE INSPECTION -
WOLF CREER REACTOR COOLANT
SYSTEM BRANCH CONNECTIONS

1. ASME CODE SECTION XI REQUIREMENTS

In Section XI, 1977 Edition/Summer 1978 Addenda, Table IWB-2500-1, examination Category BJ, item B9.31 requires a surface and volumetric examination of regions described in Figures IWB-2500-10 and 11, for branch connection piping $2^{\prime \prime}$ nominal pipe ize and greater. However, the above code does not define the specific weld volume required to be examined. To address this lack of definition, Figure IWB-2500-8 was used as a guideline to define the examination volume of the branch connection welds.

Figure 01 corresponds to Figure IWB-2500-8 of the Code and Figures 02 and 03 correspond to Figures IWB-2500-10 and 11, respectively, with the modifications as stated above. The preservice inspection examinations were performed to ultrasonically examine the defined volumes in Figures 02 and 03.

II. SPECIFIC RELIEF REQUEST

Relief is requested from performing volumetric examinations of 18 branch connection welds on the primary loops of the Reactor Coolant System. The welds are identified in Table I along with identification of the type of weld (referring to the weld configuration in the attached figures). Branch connections for the accumulator discharge lines are butt welded to the reactor coolant loop piping and are not included in this relief request. All branch connections to the reactor coolant loop piping are covered by this relief request, with the exception of the accumulator discharge lines as noted above.

1II. BASIS FOR RELIEF

Due to the materials of construction (austenitic) and the design and fabrication geometry of corner type branch connections depicted in attached Figures 02 and 03, it is concluded that meaningful examination by ultrasonic methods is not feasible and that no other practical volumetric method is available.

IV. ALTERNATE TEST METHOD

As an alternative, VT-2 examinations for leakage will be conducted in accordance with IWA-5240. These will be carried out during the leakage test specified under IWB-5221. The combination of required surface examination, visual examination for leakage and the Code required fabrication examinations will establish the integrity of the as-built pressure boundary.

BRANCH CONNECTION WELDS

Item WWELD \# KOLUME LOME WELD \# SIZE UNEXAMINABLE TYPE OF WELD

1	15
2	17
3	19
4	21
5	22

1BB 01 Si02-3 12"
1BB 01 S105-5 $3^{\prime \prime}$ 1BB 01 S101-5 $\quad 4^{\prime \prime} \quad 60 \%$ 1 BB 01 S101-8 $3^{\prime \prime} \quad 75 \%$ 1BB $01 \operatorname{si01-9} \quad 3^{\prime \prime}$

Loop 2
$6 \quad 15$
$7 \quad 17$
$8 \quad 19$
$9 \quad 21$

10	15
11	17
12	21
13	20

SIMILAR AND DISSIMILAR METAL WELDS IN PIPING

NOM. PIPE SIZE \&IN. AND GREATER

PIPE BRANCH CONNECTION

ILLUSTBATIVB ONLY

FIGURE 03

EEPERENCE TABLE 1

PIPE BRANCH CONNECTION

