oml

NUREG/CR-3460 ORNL/TM-8890

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-6

R. H. Chapman A. W. Longest J. L. Crowley

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

8409110104 340731 PDR NUREG CR-3460 R PDR Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-3460 ORNL/TM-8890 Dist. Category R2, R3

Engineering Technology Division

EXPERIMENT DATA REPORT FOR MULTIROD BURST TEST (MRBT) BUNDLE B-6

> R. H. Chapman A. W. Longest J. L. Crowley

Manuscript Completed - June 11, 1984 Date Published - July 1984

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

NRC Fin No. B0120

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400

CONTENTS

	Page
LIST OF FIGURES	v
LIST OF TABLES	xi
FOREWORD	xiii
ABSTRACT	1
1. INTRODUCTION	1
2. TEST DESCRIPTION	4
2.1 Assembly	4
2.2 Operations	7
3. SUMMARY OF TEST RESULTS	9
4. DETAILED TEST RESULTS	13
4.1 Transient Res 1ts	13
4.1.1 Bundle behavior	13 16 17
4.2 Pretest and Posttest Results	18
 4.2.1 Bundle pretest photographic documentation 4.2.2 Bundle posttest photographic documentation 4.2.3 Bundle cross-section photographs 4.2.4 Deformation data reduction methodology and results 	18 19 20 22
5. SOME OBSERVATIONS AND LIMITED INTERPRETATION OF RESULTS	27
ACKNOWLEDQMENTS	29
REFERENCES	30
APPENDIX A. TRA SIENT PRESSURE AND TEMPERATURE PLOTS	131
APPENDIX B. MEASURED CONDITIONS AT SELECTED TIMES OF INTEREST	133
APPENDIX C. GEOMETRIC PARAMETERS OF SECTION PHOTOGRAPHIC DATA	135
APPENDIX D. DEFORMATION PROFILES	137
APPENDIX E. TUBE CENTROID DISPLACEMENTS AT EACH AXIAL NODE	139
APPENDIX F. PLOTS OF TUBE DISPLACEMENTS AT EACH AXIAL NODE	141

iii

LIST OF FIGURES

Figure		Page
1	Schematic of B-6 test assembly	53
2	Typical fully instrumented fuel pin simulator	54
3	Thermocouple identifications and as-built locations in B-6 test (plan view)	55
4	As-built axial locations of simulator thermocouples in B-6 test (elevation view)	56
5	Locations and identifications of thermocouples for mea- suring temperature of (a) inlet steam at 107-cm elevation and (b) outlet steam at 3-cm elevation in B-6 test	57
6	B-6 applied voltage and bundle average temperature	58
7	Burst times in B-6 test	58
8	Burst frequency in B-6 test	59
9	Comparison of B-6 burst data with prediction from single-rod heated shroud test data	59
10	Initial-to-burst pressure ratios in B-6 test	60
11	Volume increase of B-6 tubes	60
12	Burst strain of B-6 tubes	61
13	Flow area restriction of B-6 central 4 \times 4 array, inner 6 \times 6 array, and entire 8 \times 8 test array	61
14	Measured steam temperatures 1.0 s before power-on. (a) Inlet steam at 107-cm elevation and (b) outlet steam at 3-cm elevation \dots	62
15	Measured steam temperatures 1.0 s before the first tube burst. (a) Inlet steam at 107 -cm elevation and	
	(b) outlet steam at 3-cm elevation	63
16	Cladding temperatures measured at 84 -cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst	64
17	Cladding temperatures measured at 76-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first	
	Lube ourse ************************************	00

v

Figure

18	Cladding temperatures measured at upper grid (66-cm) elevation (a) 1.0 s before power-on and (b) 1.0 s	66
	before first tube burst	00
19	Cladding temperatures measured at 56-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	
	tube burst	67
20	Cladding temperatures measured at 48-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	60
	tube burst	08
21	Cladding temperatures measured at 38-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	60
	tube burst	09
22	Cladding temperatures measured at 28-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	70
	tube burst	70
23	Cladding temperatures measured at 20-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	
	tube burst	/1
24	Cladding temperatures measured at lower grid (10-cm)	
	elevation (a) 1.0 s before power-on and (b) 1.0 s	-
	before first tube burst	12
25	Cladding temperatures measured at 5-cm elevation	
	(a) 1.0 s before power-on and (b) 1.0 s before first	70
	tube burst	13
26	Simulator-averaged cladding temperature measurements	
	(a) 1.0 s before power-on and (b) 1.0 s before first	71
	tube burst	74
27	Axial temperature profile of inner 6×6 array of B-6	
	measured 1.0 s before power-on and 1.0 s before first	
	tube burst	15
28	Differential pressures (kPa) measured (a) 1.0 s	
	before power-on and (b) 1.0 s before first	77
	tube burst	/6
29	Typical temperature and pressure behavior during	
	B-6 test	77
30	Typical steam-related parameters measured during	
	B-6 test	77

Figure

Page 31 Axial temperature profiles of inner 6×6 array of B-6 measured during time of tube bursts 78 32 Shroud temperature measurements at the 76-cm elevation ... 79 33 Shroud temperature measurements at the 28-cm elevation ... 79 34 Comparison of shroud and simulator temperature measurements on the north side of the array 80 35 Comparison of shroud and simulator temperature measurements on the south side of the array 80 36 Typical cladding pressure and temperature behavior for an interior simulator 81 37 Typical cladding pressure and temperature behavior for a fully instrumented exterior simulator 81 Partially assembled B-6 test array 38 82 39 Typical shroud panels from B-4 test shown with reflector strip folded back to illustrate construction details 83 Shroud panels with highly polished reflector strips 40 in place prior to assembly around bundle 84 41 Bundle before installation of north panel of shroud box 85 Completely assembled B-6 test array 42 86 Typical shroud thermocouple attachment 43 87 Typical shroud thermocouple installation 44 88 Detail of outlet steam thermocouple installation 45 89 46 Posttest view of west face of test array and shroud panel 90 Posttest views of four faces of test array 47 91 North and east faces of bundle between interior grids 43 92 South and west faces of bundle between interior grids 49 93 50 Posttest views of shroud panels showing distortion and discoloration from contact with simulators 94

igure		Page
51	Section in undeformed region at -6.0-cm elevation	95
52	Section at start of heated zone at 0.0-cm elevation	95
53	Section at 1.5-cm elevation	96
54	Section at 3.0-cm elevation	96
55	Section at 4.5-cm elevation	97
56	Section at 6.0-cm elevation	97
57	Section at 7.5-cm elevation	98
58	Section through lower grid at 9.0-cm elevation	98
59	Section through lower grid at 11.6-cm elevation	99
60	Section at 13.2-cm elevation	99
61	Section at 14.7-cm elevation	100
62	Section at 16 lear elevation	100
62	Section at 17 See elevation	101
63	Section at 17.5-cm elevation	101
64	Section at 18.9-cm elevation	101
65	Section at 20.3-cm elevation	102
66	Section at 21.8-cm elevation	102
67	Section at 23.2-cm elevation	103
68	Section at 24.6-cm elevation	103
69	Section at 26.1-cm elevation	104
70	Section at 27.5-cm elevation	104
71	Section at 27.9-cm elevation (reversed image to show correct tube positions)	105
72	Section at 29.5-cm elevation	105
73	Section at 31.0-cm elevation	106
74	Section at 32.4-cm elevation	106
75	Section at 33.8-cm elevation	107

Figure			Page
76	Section at 35.2-cm elevation		107
77	Section at 37.0-cm elevation		108
78	Section at 38.4-cm elevation		108
79	Section at 39.8-cm elevation		109
80	Section at 41.8-cm elevation		109
81	Section at 43.6-cm elevation		110
82	Section at 45.3-cm elevation		110
83	Section at 46.9-cm elevation		111
84	Section at 48.4-cm elevation		111
85	Section at 50.0-cm elevation		112
86	Section at 51.6-cm elevation		112
87	Section at 53.2-cm elevation		113
88	Section at 54.8-cm elevation		113
89	Section at 56.5-cm elevation		114
90	Section at 58.2-cm elevation		114
91	Section at 60.0-cm elevation		115
92	Section at 61.7-cm elevation		115
93	Section at 63.4-cm elevation		116
94	Section through upper grid a	65.0-cm elevation	116
95	Section through upper grid as	67.6-cm elevation	117
96	Section at 69.2-cm elevation		117
97	Section at 71.0-cm elevation		118
98	Section at 72.8-cm elevation		118
99	Section at 74.7-cm elevation		119
100	Section at 76.6-cm elevation		119

Figure		Page
101	Section at 78.5-cm elevation	120
102	Section at 80.4-cm elevation	120
103	Section at 82.4-cm elevation	121
104	Section at 84.4-cm elevation	121
105	Section at 86.2-cm elevation	122
106	Section at 88.0-cm elevation	122
107	Section at 89.5-cm elevation	123
108	Section at 91.5-cm elevation	123
109	Approximate burst midpoint elevations	124
110	Approximate burst midpoint orientations	125
111	Example of software reconstruction of photograph in Fig. 74	125
112	Example of strain data verification procedure	126
113	Deformation profile of tube 20	126
114	Deformation profile of tube 1	127
115	Example of tube relocation at 32.4-cm elevation	127
116	Comparison of deformation profiles of first layer of tubes on north side of bundle	128
117	Comparison of deformation profiles of first and second layers of tubes on north side of bundle	129
118	Comparison of deformation profiles of second and third layers of tubes on north side of bundle	130

x

LIST OF TABLES

Table		Page
1	As-built data for B-6 fuel pin simulators	33
2	Summary of B-6 initial conditions	34
3	Summary of B-6 conditions at time of maximum pressures	35
4	Summary of B-6 conditions measured at time of bursts	36
5	Summary of B-6 test results	37
6	Summary of B-6 test conditions at rod 29 burst time	38
7	Approximate axial elongation of tubes	39
8	Burst locations in B-6 test array	40
9	Geometric parameters of B-6 section at 32.4-cm elevation	41
10	Circumferential strain values in B-6 tubes	42
11	Outside areas of deformed tubes in B-6 test array	46
12	Flow area restriction in B-6 test array	50
13	Tube displacements at 32.4-cm elevation	51
14	Test results as a function of radial position - average	52

FOREWORD

Examination, analysis, and interpretation of a bundle test take place over a long period of time, and our practice has been to report progress and results as they become available. Dissemination of the information in this manner results in its being disjointed and scattered throughout several publications. This presents some problems to the users in that one is never sure if the information at hand is the most recent. Our intention has been to alleviate some of these problems by (1) publication of a data report on each bundle test and (2) publication of analytic and interpretative reports when sufficient information has been developed.

Consistent with this intention, the objective of this data report is to provide a reference source of information and results obtained during the B-6 test and from pretest and posttest examination of the test array. We believe the data presented herein, consisting of plots, tabulations, photographs, and some important observations, are necessary for analysis and interpretation of the test. A decision was made that the data should be presented with a minimum of interpretation and that analysis or "second-generation" data, such as comparative temperature vs time plots, should be excluded.

This report is derived from research performed by the (now completed) Multirod Burst Test (MRBT) Program at Oak Ridge National Laboratory (ORNL). This program was sponsored by the Division of Accident Evaluation of the Nuclear Regulatory Commission, and the results were published routinely in a series of progress reports, topical reports and papers, quick-look test reports, and test data reports.

Progress reports published by the MRBT Program include:

NUREG Report No.	ORNL Report No.	Period covered
	ORNL/TM-4729	July-September 1974
	ORNL/TM-4805	October-December 1974
	ORNL/TM-4914	January-March 1975
	ORNL/TM-5021	April-June 1975
	ORNL/TM-5154	July-September 1975
	ORNL/NUREG/TM-10	October-December 1975
	ORNL/NUREG/TM-36	January-March 1976
	ORNL/NUREG/TM-74	April-June 1976
	ORNL/NUREG/TM-77	July-September 1976
	ORNL/NUREG/TM-95	October-December 1976
	ORNL/NUREG/TM-108	January-March 1977
	ORNL/NUREG/TM-135	April-June 1977
NUREG/CR-0103	ORNL/NUREG/TM-200	July-December 1977
NUREG/CR-0225	ORNL/NUREG/TM-217	January-March 1978
NUREG/CR-0398	ORNL/NUREG/TM-243	April-June 1978
NUREG/CR-0655	ORNL/NUREG/TM-297	July-December 1978
NUREG/CR-0817	ORNL/NUREG/TM-323	January-March 1979
NUREG/CR-1023	ORNL/NUREG/TM-351	April-June 1979
NUREG/CR-1450	ORNL/NUREG/TM-392	July-December 1979
NUREG/CR-1883	ORNL/NUREG/TM-426	January-June 1980

NUREG/CR-1919			ORNL/NUREG/TM-436	July-December 1980
NUREG/CR-2366.	vol.	1	ORNL/TM-8058	January-June 1981
NUREG/CR-2366.	vol.	2	ORNL/TM-8190	July-December 1981
NUREG/CR-2911			ORNL/TM-8485	January-June 1982

Topical reports and papers pertaining to research and development carried out by this program are:

- 1. R. H. Chapman (comp.), Characterization of Zircaloy-4 Tubing Procured for Fuel Cladding Research Programs, ORNL/NUREG/TM-29 (July 1976).
- W. E. Baucum and R. E. Dial, An Apparatus for Spot Welding Sheathed Thermocouples to the Inside of Small-Diameter Tubes at Precise Locations, ORNL/NUREG/TM-33 (August 1976).
- 3. W. A. Simpson, Jr., et al., Infrared Inspection and Characterization of Fuel-Pin Simulators, ORNL/NUREG/TM-55 (November 1976).
- R. H. Chapman et al., Effect of Creep Time and Heating Rate on Deformation of Zircaloy-4 Tubes Tested in Steam with Internal Heaters, NUREG/CR-0343 (ORNL/NUREG/TM-245) (October 1978).
- 5. J. F. Mincey, Steady-State Axial Pressure Losses Along the Exterior of Deformed Fuel Cladding: Multirod Burst Test (MRBT) Bundles B-1 and B-2, NUREG/CR-1011 (ORNL/NUREG/TM-350) (January 1980).
- R. W. McCulloch, P. T. Jacobs, and D. L. Clark, Development of a Fabrication Procedure for the MRBT Fuel Simulator Based on the Use of Cold-Pressed Boron Nitride Preforms, NUREG/CR-1111 (ORNL/NUREG/ TM-362) (March 1980).
- 7. R. H. Chapman, J. V. Cathcart, and D. O. Hobson, "Status of Zircaloy Deformation and Oxidation Research at Oak Ridge National Laboratory," in Proceedings of Specialists Meeting on the Behavior of Water Reactor Fuel Elements Under Accident Conditions, Spatind, Norway, September 13-16, 1976, CSNI Report No. 13 (1977).
- 8. R. H. Chapman et al., "Zircaloy Cladding Deformation in a Steam Environment with Transient Heating," pp. 343-408 in Zirconium in the Nuclear Industry (Fourth Conference), ASTM STP 681, American Society for Testing and Materials, 1979.
- 9. R. L. Anderson, K. R. Carr, and T. G. Kollie, Thermometry in the Multirod Burst Test Program, NUREG/CR-2470 (ORNL/TM-8024) (March 1982).
- A. W. Longest, J. L. Crowley, and R. H. Chapman, Variations in Zircaloy-4 Cladding Deformation in Replicate LOCA Simulation Tests, NUREG/CR-2810 (ORNL/TM-8413) (September 1982).

- A. W. Longest, R. H. Chapman, and J. L. Crowley, "Boundary Effects on Zircaloy-4 Cladding Deformation in LOCA Simulation Tests," Trans. Am. Nucl. Soc. 41, 383 (1982).
- R. H. Chapman, J. L. Crowley, and A. W. Longest, "Effect of Bundle Size on Cladding Deformation in LOCA Simulation Tests," in *Zirconium* in the Nuclear Industry: Sixth International Symposium, ASTM STP 824, D. G. Franklin, R. B. Adamson, and B. Cox, eds., American Society for Testing and Materials, in press.

The following bundle test quick-look and data reports have been issued by this program:

- 1. R. H. Chapman (comp.), Quick-look Report on MRBT No. 1 4 × 4 Bundle Burst Test, Internal Report ORNL/MRBT-2 (September 1977).
- 2. R. H. Chapman (comp.), Quick-look Report on MRBT No. 2 4 × 4 Bundle Burst Test, Internal Report ORNL/MRBT-3 (November 1977).
- 3. R. H. Chapman, Guick-look Report on MRBT No. 3 4 × 4 Bundle Burst Test, Internal Report ORNL/MRBT-4 (August 1978).
- 4. R. H. Chapman, Quick-look Report on MRBT B-4 (6 × 6) Bundle Test, Internal Report ORNL/MRBT-6 (February 1981).
- 5. R. H. Chapman et al., Quick-look Report on MRBT B-5 (8 × 8) Bundle Test, Internal Report ORNL/MRBT-5 (July 1980).
- 6. R. H. Chapman et al., Quick-look Report on MRBT B-6 (8 × 8) Bundle Test, Internal Report ORNL/MRBT-7 (January 1982).
- 7. R. H. Chapman et al., Bundle B-1 Test Data, ORNL/NUREG/TM-322 (June 1979).
- R. H. Chapman et al., Bundle B-2 Test Data, ORNL/NUREG/TM-337 (August 1979).
- 9. R. H. Chapman et al., Bundle B-3 Test Data, ORNL/NUREG/TM-360 (January 1980).
- A. W. Longest et al., Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-4, NUREG/CR-2968 (ORNL/TM-8509) (December 1982).
- 11. R. H. Chapman et al., Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-5, NUREG/CR-3459 (ORNL/TM-8889) (in publication).
- 12. R. T. Bailey, Steady-State Pressure Losses for Multirod Burst Test (MRBT) Bundle B-5, NUREG/CR-2597 (ORNL/Sub/80-40441/1) (April 1982).

EXPERIMENT DATA REPORT FOR MULTIROD BURST TEST (MRBT) BUNDLE B-6

R. H. Chapman A. W. Longest J. L. Crowley

ABSTRACT

A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 × 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re ~140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (330°C) to the burst temperature at a rate of 3.5°C/s. The simulators burst in a very narrow temperature range, with an average of 930°C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. The average burst strain and the average volumetric expansion for the interior simulators were only slightly greater than the averages for the exterior simulators. The coolant channel flow area reduction was modest, with a maximum of 39% for the entire 8×8 array, 43% if based on the interior 6×6 array, and 45% if based on the central 4 × 4 array. As expected, no evidence of rod-to-rod mechanical interaction effects was observed.

Keywords: Zircaloy, nuclear fuel cladding, tubes, bundle burst tests, loss-of-coolant accident, deformation, flow blockage, boundary conditions, cod-to-rod interactions, fuel pin simulators.

1. INTRODUCTION

This report presents in considerable detail, the experimental data for the B-6 test (the second of two 8 × 8 multirod burst tests) conducted by the Multirod Burst Test (MRBT) Program at Oak Ridge National Laboratory (ORNL). This work (now completed) was sponsored by the Division of Accident Evaluation of the Nuclear Regulatory Commission (NRC) and was designed to investigate Zircaloy cladding deformation behavior under simulated loss-of-coolant accident (LOCA) conditions. Although preliminary versions of the data have been published in a quick-look report¹ and in periodic progress reports,²⁻⁴ the data are collected in final form in this report to provide a reference source document for the B-6 test results. Interpretation of the data is limited to that necessary to understand pertinent features of the test. Because of this, this report should be used in conjunction with other published results and interpretations.²⁻⁷ (The Foreword lists all publications issued by this program.)

The primary objective of the B-6 test, which was conducted on December 3, 1981, was to investigate cladding deformation in a large array in the alpha-plus-beta-Zircaloy temperature range. Single-rod burst tests have shown that deformation is rather insensitive to heating rate in this temperature range and that the magnitude of the deformation is considerably less than observed in the nigh-alpha and low-beta temperature ranges. Consistent with these observations, test conditions were selected to give a burst temperature of about 925°C with a heating rate of 3-4°C/s. These conditions are representative of predictions from LOCA licensing calculations for a range of postulated light-water-reactor (LWR) accidents.

tions for a range of postulated light-water-reactor (LWR) accidents. Results of the earlier B-5 test,⁵,⁶,⁸ which was conducted with an 8 × 8 array under conditions conducive to large deformation in the highalpha temperature range, showed that temperature uniformity and rod-torod mechanical interactions (resulting from large deformation and lateral restraint in a large test array) have a significant effect on deformation behavior in large arrays. Therefore, a secondary objective of the B-6 test was to determine, if possible, the relative importance of these two parameters. Analysis of the test results should permit this determination because very uniform temperature conditions existed and rod-to-rod interactions were relatively nonexistent in the test.

Because test conditions used in this program simulate the adiabatic heatup (reheat) phase of an LOCA and are generally considered to be conservative, the B-6 test results are believed to provide an upper-limit estimate of the deformation that can be anticipated in most accidents with cladding failures in the alpha-plus-beta-Zircaloy temperature range. Similarly, the results of the B-5 test²⁻⁶,⁸,⁹ are believed to be a reasonable upper-limit estimate of the deformation that can be expected for failures in the high-alpha temperature range. Based on the burst strains characteristic of these two temperature ranges, that is, 50-100% for the high-alpha and 25-50% for the alpha-plus-beta temperature range, the B-5 and B-6 deformation results taken together bracket the variation in the upper limit of expected deformation over a wide temperature range of interest.

Following the format of the other reports⁸, 10-13 in this series, a brief description of the test design and an overview of test operations are given first. These are followed, in turn, by a section giving a summary of the test results and a section giving detailed test results, including photographic documentation of the bundle before and after testing and of the 58 cross sections on which the deformation measurements were made. Since the transient test data and the posttest deformation data are voluminous, much of the data is presented (in computer-generated graphical and tabular formats) on microfiche enclosures inserted in the pocket attached to the inside back cover. Similar to the B-5 report, ⁸ a

final section is devoted to interpretation and important observations; however, the interpretation is limited to that we believe necessary to understand and explain the test results.

2. TEST DESCRIPTION

2.1 Assembly

Figure 1 shows a simplified drawing of the B-6 test assembly installed in the test vessel. An *unheated* (electrically) shroud surrounded the test array as indicated in Sect. A-A of the figure. The shroud was constructed of thin (0.13-mm-thick) stainless steel, with a highly reflective, gold-plated surface to minimize thermal capacity and radiative thermal losses. The stainless steel sheet was backed by a layer of insulating material to reduce heat losses and the insulating material by a strong structure to withstand radial forces during the test transient. The thin shroud was spaced 1.75 mm (i.e., one-half of a coolant channel distance) from the outer rod surfaces. This permitted some deformation of these simulators before contact with the shroud but prevented gross outward movement of the simulators.

The test array and shroud assembly were separately suspended from the test vessel cover flange to allow free and independent axial movement. Four Inconel-718 grids, typical of the type used in commercial pressurized water reactor (PWR) 15 × 15 fuel bundles, provided proper spacing (14.43 mm center-to-center) of the fuel rod simulators (10.92 mm diam) in a square array. Because grid tie-rods were not used, the grids were held in position only by grid-spring forces acting on the individual simulators and were free to move axially to compensate for growth or shrinkage of the bundle during the test.

The steam inlet configuration (above the upper end of the bundle heated zone) was modified from the single-entry nozzle used in the B-5 test to a double-entry arrangement as shown in Sect. B-B of Fig. 1. This modification, combined with additional insulation to reduce heat losses from the top of the test vessel, provided a more uniform radial temperature distribution in the bundle at the inlet than could be obtained in the B-5 test.⁸

Because the B-5 test showed that the outer ring of simulators (and the next inner ring to a lesser extent) acted as deforming guard heaters and their deformation behavior was atypical, a decision was made to omit the temperature measuring instrumentation in 20 of the 28 simulators in the outer ring of the B-6 array. However, all 28 of the simulators were instrumented with pressure monitoring instrumentation.

Design features of the fully instrumented fuel pin simulators are illustrated in Fig. 2, and as-built data are listed in Table 1. The fuel simulators (internal heaters) were anchored to the cladding tubes by the lower seal gland. Differential axial movement (thermal expansion, growth, and/or shrinkage) between the fuel simulator and the cladding tube was accommodated by a flexible section in the upper electrical lead. Different simulator lengths were required to accommodate the dimensions of the upper seal gland (see Figs. 1 and 2), but ceramic inserts were used in both types to adjust the free volume to the same nominal value. The average free volume of the B-6 simulators was 49.7 cm³, with a standard deviation of 1.1 cm³.

Although the simulator gas volume was reasonably typical, the distribution of the volume was not typical of a full-length fuel rod. Of the total initial volume (at room temperature), about 13% was in the heated portion of the annulus between the fuel simulator and the inside diameter of the Zircaloy tube, 10% was in the unheated portion of the annulus, 33% was in the pressure transducer and connecting tube, and 44% was distributed in the end regions (mostly at the upper end) of the fuel pin simulator.

The fuel simulators (internal heaters) were produced in the ORNL Fuel Rod Simulator Technology Development Laboratory, using fabrication procedures¹⁴ developed specifically for the needs of this program. Of the 64 simulators, 54 were previously used, 50 in the 8×8 B-5 test and 4 in single-rod tests; these were cleaned, straightened, and restored (within specifications) to their original condition. A thin plasma-sprayed ZrO2 protective coating was applied to the outside surface (over the heated length) of all the simulators. The axial heat generation profile of the coated simulators was characterized (before assembly within the Zircaloy tube) under transient heating conditions, using a high-temperature infrared (IR) scanning technique.¹⁵ The highest-quality simulators, as judged by heat generation uniformity, were selected for the array interior positions.

The Zircaloy-4 tubes (10.92-mm OD by 0.635-mm wall thickness) came from the master lot of well-characterized $^{16-18}$ tubing purchased for use in several NRC-sponsored cladding research programs. Tube serial numbers, given in Table 1, can be used to relate the individual tubes to their fabrication history.¹⁶ The tubes were lightly oxidized in superheated steam for 50 min at 480°C on both internal and external surfaces prior to fabrication of the fuel pin simulators to better simulate the condition of fuel cladding after a period of reactor operation. Metallographic examination of typical specimens oxidized under these conditions showed the oxide film to be very uniform and thin (1 to 2 µm); this should not have materially affected the metallurgical conditions of the tubes.

Each fuel pin simulator was instrumented with a fast-response, straingage-type pressure transducer. The fully instrumented simulators were also instrumented with four Inconel-sheathed (0.71-mm-OD) type K (Chromel-Alumel) thermocouples with ungrounded junctions. These were spot-welded to the inside surface of the Zircaloy-4 tubes, using a device developed specifically for this purpose,¹⁹ at the locations shown in Fig. 3. Tantalum wire was used in place of the thermocouples for centering the fuel simulators (internal heaters) in the Zircaloy tubes of the 20 simulators in the outer ring without temperature sensors. The figure also gives thermocouple identifications for use in subsequent figures and discussions (the nomenclature TE 10-4 identifies thermocouple 4 in simulator 10).

Axial locations of the thermocouples are shown more clearly in Fig. 4. As evident from the figures, the inner 6×6 array had 18 thermocouples (average of one for every two simulators) installed at each of the seven instrumented elevations of primary interest, with 12 thermocouples at the lowest instrumented elevation and 3 thermocouples at each of the two grid elevations. The thermocouples in the fully instrumented simulators in the outer ring of the array were located at elevations of greatest interest. A repeating pattern was selected for the orientations of the thermocouples (Fig. 3) at any given elevation to provide supplementary

5

temperature information of potential benefit for plotting radial temperature profiles and for detecting rod-to-rod thermal interactions.

Eight 0.13-mm-diam bare-wire type S (Pt vs Pt + 10% Rh) thermocouples were spot-welded directly to the outside surface of the thin shroud surrounding the test array. Two thermocouples were attached to each side of the shroud at locations shown in Fig. 3 to obtain information on both the axial and circumferential temperature distributions. The shroud thermocouple identifications are also given in the figure for use in subsequent temperature plots.

As noted in Fig. 3, five simulator thermocouples (TE 19-3, TE 35-4, TE 38-3, TE 42-4, and TE 55-3) and possibly a sixth (TE 14-3) became detached during fabrication of the simulators. Although it is not apparent from the data, the detached thermocouples might have indicated temperatures slightly higher than those they would have indicated if they had remained attached to the Zircaloy tubes. For this reason they were not considered reliable indicators of the burst temperature.

Eight thermocouples (TE 11-2, TE 20-2, TE 29-2, TE 31-2, TE 34-2, TE 38-2, TE 45-2, and TE 52-2) at the 38-cm elevation on interior simulators were averaged electronically (in real time) to represent the bundle average temperature. This average, identified as TAV-10, was recorded and displayed to provide on-line information as the test progressed.

Five thermocouples (TE-320 through TE-324) were located in the inner 6×6 matrix at the 107-cm elevation (centerline elevation of the steam inlet nozzles; see Fig. 1) to obtain inlet steam temperature measurements across the bundle. Similarly, five thermocouples (TE-325 through TE-329) were located in the tube matrix near the bottom of the heated zone (3-cm elevation) to obtain outlet steam temperature measurements. Unfortunately, two of the latter (TE-326 and TE-329) were damaged during assembly and were inoperative during the test. Figure 5 shows the identifications and locations of these sensors. These were 0.71-mm-diam, stainless-steel-sheathed, type K thermocouples with insulated junctions.

A detailed description of the temperature measurement systems and a comprehensive analysis of the errors and uncertainties associated with the measurements have been reported previously.²⁰

Millivolt signals from the pressure transducers, thermocouples, and electrical power measuring instruments were recorded on magnetic tape by a computer-controlled data acquisition system (CCDAS) for subsequent analysis. Calibration corrections, preprogrammed into the computer system, were automatically applied to the millivolt signals before printout of the data.

Each fuel pin simulator was connected in parallel at the upper end through separately fused electrical circuits to a common dc, constantvoltage power supply and was attached to a current collector at the lower end of the array as indicated in Fig. 1. Because the electrical characteristics were nearly the same for all the simulators (the average value for the resistance data given in Table 1 is 1.97 Ω with a standard deviation of 0.02 Ω), means were not provided in the external circuits for redistribution of the current to improve distribution of the power generation in the bundle.

2.2 Operations

Heatup of the vessel containing the test assembly was initiated early in the afternoon of the day before the test; the temperature was ~200°C at the end of the work shift. Power adjustments to the vessel heaters were made to maintain the temperature near this value during the next 12 h to avoid temperature cycling the test assembly. Early on the day of the test, power to the vessel heaters was increased, and superheated steam was admitted to the vessel in the approach to the initial test temperature. Throughout this phase of operation, electrical power was not applied to the simulators; periodic leak checks indicated the simulator seals were performing very well (i.e., <10-kPa helium pressure loss per min at 7600 kPa and ~330°C).

After thermal equilibration (~ 322° C) of the test assembly was attained, the simulators were pressurized to ~2100 kPa, and a short powered run (13.0-s transient) was conducted to ascertain that the data acquisition system and all the instrumentation were functioning properly and that the performance of the test components was as expected. Examination and evaluation of the limited quick-look data from this short transient (the temperature of the simulators increased to ~ 380° C) indicated that slight adjustments were needed to achieve the desired heating rate.

Following the adjustments and restabilization of the bundle temperature at ~ 330 °C, all the fuel pin simulators were pressurized simultaneously to ~ 3050 kPa (differential above the external pressure) and individually isolated from the supply header to provide a constant helium inventory in each one during the transient. The header was vented, and the leak rate of each of the simulators was checked over a 2-min period, with the pressure loss being ~ 1 kPa/min. With these initial conditions established, the test transient was initiated by applying dc voltage to the simulators. The applied voltage was maintained constant throughout the powered portion of the transient and resulted in an average linear power generation of 1.42 kW/m in the simulators.

During the powered portion of the transient, superheated steam entered the test array through two inlet nozzles located at the 107-cm elevation on the east and west sides of the bundle (Fig. 1) and flowed downward through the test assembly at the same mass flux used in the B-5 test $\sim 288 \text{ g/s} \cdot \text{m}^2$. Inlet steam conditions of $\sim 329 \,^{\circ}\text{C}$ and 309 kPa (absolute) resulted in a Reynolds number of 140. These inlet conditions remained essentially constant until disrupted by helium escaping from the ruptured tubes and by the opening of valves to admit posttest cooling steam. When power to the bundle was terminated, the steam flow was increased to an estimated minimum of 2000 g/s $\cdot \text{m}^2$ to effect rapid cooldown of the bundle.

Termination of the powered portion of the test could be initiated by any of four actions: (1) CCDAS action resulting from a signal that 60 of the 64 simulators had burst, (2) CCDAS action resulting from a signal that 115 simulator thermocouples had exceeded the high-temperature limit (50°C above the anticipated burst temperature) on each of three successive data scans, (3) a timer that limited the transient to ~145 s, and (4) operator override. The choice to program criterion (1) to terminate power to the bundle after 60 tube bursts (with the expectation that all 64 tubes would burst) was made to minimize the temperature overshoot at the end of the test. Also, criterion (2), the high-temperature limit, was established close to the expected burst temperature for the same reason. The test was terminated by criterion (3) and all 64 tubes burst.

3. SUMMARY OF TEST RESULTS

Initial conditions of the test, obtained by averaging each data channel over the time interval (~25 s) from the start of scanning to the power-on time, are summarized in Table 2. There are no temperature data in this and subsequent tables for those 20 of the 28 simulators in the outer ring of the array that were not instrumented with thermocouples; however, measured pressure data are available. All the simulators were pressurized simultaneously from a common manifold and then individually isolated from the manifold for the test. After isolation the average simulator pressure was 3050 kPa differential above the external steam pressure. The initial cladding average temperature was 330°C; the temperature distribution in the bundle was unusually uniform in both the radial and axial directions. The average temperature indicated by the eight shroud thermocouples was 334°C. Superheated steam entered the bundle at an indicated average temperature of 329°C and a pressure of 309 kPa (absolute) and flowed downward through the bundle at a constant mass flow rate of 288 g/s*m2; the indicated average steam outlet temperature prior to initiation of the transient was 332°C. Based on the inlet steam conditions and flow rate, the Reynolds number at the top of the heated zone (91.4-cm elevation) was 140 throughout the powered portion of the transient.

Figure 6 shows the applied voltage and the bundle average temperature represented by TAV-10 (i.e., the average of ten thermocouples attached to the inside surface of the cladding at the 38-cm elevation on interior simulators) during the transient. Constant voltage was applied to the bundle for 141.74 s; power generation (1.42 kW/m) and the temperature rate of increase were nearly constant during this time as indicated in the figure. The average heating rate in the high-alpha temperature range (i.e., from ~35 to ~105 s after power-on) was about 4.5°C/s. As the temperature increased into the two-phase-Zircaloy range, the heating rate decreased because of greater heat losses and the higher heat capacity of the two-phase material and, perhaps, the effects of deformation. The average heating rate from ~115 to ~141 s after power-on (1.e., to about the power-off time) was 3.5°C/s. This value is considered the appropriate one for characterizing deformation behavior in the test because the deformation occurred during the latter time interval. The average temperature, as indicated by TAV-10, reached a maximum of ~958°C about 5 s after power was terminated.

The time at which maximum pressure occurred in each simulator is a measure of the onset of significant deformation (i.e., the time when the rate of pressure increase caused by thermodynamic heating equals the rate of pressure decrease caused by increasing volume) and is given in Table 3 with the corresponding cladding remnerature and pressure conditions. The bundle average maximum differential pressure was 3245 kPa and occurred at an average time of 112.6 s after power-on. The observation that the maximum pressures and the times at which they occurred were approximately the same in all the simulators is indicative of very uniform heating and the absence of seal leaks.

Times (after power-on), temperatures, and differential pressures measured at the burst time of each tube are given in Table 4. The tube

bursts occurred in an unusually orderly manner, starting 133,14 s after power-on, because of uniform azimuthal conditions coupled with a small radial temperature gradient that was caused by external heat losses. Tube burst times are plotted in three groups in Fig. 7 to indicate radial positions in the bundle. With one exception, all the simulators in the central 4 × 4 array burst before any bursts occurred in the next ring (i.e., the outer ring of the inner 6 × 6 array), and all the simulators in the inner 6×6 array burst before any burst in the exterior ring. Power was terminated 0.60 s after the last burst in the inner 6 × 6 array; however, the temperature continued to increase (Fig. 6) for several seconds before it turned around and slowly decreased. The first simulator in the outer ring burst 0.40 s after power-off, and all the simulators except the four corner ones burst by the time the average temperature (represented by TAV-10) reached its maximum value. The corner simulators, with the greatest external heat losses, were subjected to nearisothermal creep conditions and failed 25 to 50 s later as indicated in Fig. 7. A histogram (in 1.0-s intervals' of the burst times (Fig. 8) shows two distinct distributions for the interior and exterior tubes. Excluding the four corner rods, the average burst time for the bundle was 139.40 8.

Our practice for tests without significant rod-to-rod interactions has been to select the burst temperature as the maximum measured temperature at the time of failure, without regard to the location of the measurement with respect to the burst. This definition rests on the premise that the temperature at the failure point is at least as high as the maximum measured value but does not preclude its being higher. We evaluated the measured data and revised the quick-look burst temperature data² to exclude from consideration temperatures indicated by detached thermocouples (see Fig. 3). The revised data, given in the summary of test results (Table 5), represent the best-estimate burst temperatures in the absence of more definitive analysis of the data. Excluding the uninstrumented simulators in the outer ring, the bundle average burst temperature was 930°C.

The bundle average burst pressure (Table 5) was 2879 kPa; no significant variation was observed in the burst pressures for a rather narrow burst temperature range. The data are plotted in Fig. 9, in which greatly expanded scales and different symbols are used to differentiate the data for the three radial zones of the bundle. Although one can detect a difference between the data for the exterior and interior simulators, the burst data for the interior simulators were independent of simulator position in the array. As expected, the simulators in the outer ring of the bundle burst at a pressure slightly higher than the average. The range of the burst pressures for the exterior simulators, excluding the four corner ones, is noted in the figures. The curve labeled "B-6 LSF" is a linear least-squares fit to the B-6 data points.

Prior to performing the B-6 test, three single-rod heated shroud tests were conducted³ with heating rates in the range of 5 to 6° C/s to aid selection of the B-6 test parameters. The burst data for these three tests are included in the plot for comparison; the curve labeled "SR-LSF" is a linear least-squares fit of the three single-rod data points. While the two fitted curves have virtually identical slopes, the bundle curve is about 10°C lower than the single-rod curve. Some of this difference may be a result of the slightly lower heating rate in the bundle test (3.5 vs 5.5°C/s), but most of the difference is attributed to our use of fewer thermocouples to measure temperatures in bundle simulators than in single-rod simulators (i.e., 4 vs 12), which creates a greater statistical probability for underestimating burst temperatures in bundle tests.

The initial-to-burst pressure ratio is a qualitative measure of the volumetric expansion and has been shown³ to be a useful parameter for modeling average deformation in the absence of measured geometrical data. This parameter is given in Table 5 and is plotted in Fig. 10 for the three radial zones of the test array. Consistent with the burst pressure data from the previous figure, slightly greater volumetric expansion is indicated for the interior zones.

The test array was cast in an epoxy matrix and sectioned at a number of axial nodes 10 to 20 mm apart. Enlarged photographs of the sections were digitized and processed (by the procedure described in Sect. 4.2.4) to obtain geometric parameters describing the deformation of each tube at each axial node. The strain profiles were used to calculate the volumetric expansion of the cladding heated length (based on the outside perimeter of the tubes) by assuming circular cross sections at each node. This parameter is tabulated in Table 5 and is plotted in Fig. 11 in a format similar to the previous figure. The average and the sample standard deviation limits of the data are also indicated in the figure; the bundle average volumetric increase, excluding the four corner rods, was 22.9%. The average strain in each tube was also calculated, by assuming that the volumetric expansion was uniformly distributed over the heated length, and is given in Table 5. These data also show that the interior simulators deformed slightly more than the exterior ones; however, there were no significant differences between the central 4 × 4 array and the next outer ring.

The volumetric increase of the heated length obtained from the deformation profiles was assumed equal to the increase in total gas volume and used to calculate the fuel pin simulator volumetric increase (Table 5) appropriate for analysis with the measured temperature and pressure data. However, as discussed in Sect. 2.1, the major fraction of the gas volume was distributed in regions in which the temperature during the test ranged from room temperature to the initial temperature, with only a small fraction of the gas in the heated zone.

Tube burst strains are plotted in Fig. 12 for each of the three radial zones; the average and the sample standard deviation limits are also indicated for each zone. As mentioned earlier, the four corner simulators deformed and failed under near-isothermal creep conditions much later (see Fig. 7) than the other simulators. As a result, deformation of these simulators was greater and atypical, as indicated by the large burst strains (relative to the other simulators in the outer ring). For this reason, they were excluded from the average of this zone. The bundle average burst strain, excluding the four corner rods, was 30%. As evident, the average burst strain was approximately the same in each of the three zones, indicating that burst strain was not a strong function of position. This was an unexpected observation since azimuthal temperature gradients were presumably greater in the outer ring of simulators (as a result of heat losses to the relatively cold shroud surrounding the array) than in the interior simulators. An explanation for this observation is given in Sect. 5.

As mentioned earlier, three single-rod heated shroud tests were conducted prior to the bundle test to aid definition of bundle test conditions. Burst strains³ for the three tests (36, 36, and 37%) were consistent with the results of this test.

The measured tube areas were summed at each axial node and combined to obtain the flow area restriction data shown in Fig. 13 as a function of array size. The maximum loss in flow area was modest and amounted to 39% for the entire 8×8 array, 43% for inner 6×6 array, and 45% for the central 4×4 array.

Because definitive flow tests were performed on the B-5 bundle,8,21 which was more severely deformed than the B-6 bundle, there was no need to perform similar tests on the latter bundle.

4. DETAILED TEST RESULTS

The previous section summarized the important test results; this section presents, in a number of subsections, detailed results of the B-6 test. The purpose of this presentation is to provide a fairly complete reference source of uninterpreted data that can be used for analysis and evaluation by those interested.

4.1 Transient Results

4.1.1 Bundle behavior

Information contained in this section was obtained during the course of the test transient. The data were recorded by the CCDAS in the continuous scan mode (i.e., each sensor was sampled every 0.025 s) over a period of ~10 min, starting ~25 s before power-on. All 64 simulators were instrumented with fast-response pressure transducers, and all of the interior simulators and 8 of those in the outer ring of the 8×8 array were each instrumented with 4 sheathed (0.71-mm-diam) thermocouples spot-welded to the inside cladding surface at various positions (Figs. 3 and 4). The temperature of the thin (electrically) unheated shroud was measured by eight small-diameter, bare-wire (0.13-mm-diam) thermocouples, located as indicated in Fig. 3, spot-welded to the outside surface of the shroud. Steam temperature measurements were made with sheathed thermocouples (0.71 mm diam) at the locations shown in Fig. 5. Also, the electrical power parameters were measured and recorded by the CCDAS.

Superheated steam entered the test array through two inlet nozzles located at the 107-cm elevation on the east and west sides of the bundle (see Fig. 1) at an average temperature of 329° C and a pressure of 309° kPa (absolute) and flowed downward through the array at a constant mass flux of 288 g/s·m². With these conditions the nominal Reynolds number at the top of the heated zone (91.4-cm elevation) was 140. These inlet conditions remained essentially constant until disrupted by escaping helium from the bursting tubes. When power to the bundle was terminated, the steam mass flux was increased to an estimated minimum of 2000 g/s·m² for rapid cooldown. Inlet and outlet steam temperatures measured 1.0 s before power-on and 1.0 s before the first tube burst are indicated in Figs. 14 and 15, respectively.

Figures 16-25 present cladding temperatures measured at the instrumented elevations 1.0 s before power-on and 1.0 s before the first tube burst. The data are presented in a format intended as a schematic layout of the thermocouple locations. If the thermocouple junction is at the elevation for which the particular map applies, the thermocouple number circle is filled in to denote the azimuthal position of the measurement, and the temperature measurement is given. The row average temperatures for the inner 6×6 array are printed on the left; the columm average temperatures, at the bottom of the layout. The cross-section and bundle (excluding the six thermocouples at the grid elevations) averages, based on the inner 6×6 array measurements, are also included in the format.

The overall radial temperature distribution may be visualized somewhat more easily using the temperature map depicted in Fig. 26. The temperature given for each simulator is the average of the thermocouple measurements for that simulator without regard to elevation. Because every other interior simulator had thermocouples near the upper and lower ends of the heated zone (see Figs. 3 and 4), the averages given for these simulators in Fig. 26(b) reflect the lower temperatures existing near the ends of the heated zone during the transient. The figure also shows that the temperatures of the exterior simulators were 10 to 20° C lower (at the time for which it applies) than the average of the interior ones, as would be expected from the boundary conditions.

The data given in Figs. 16-25 for the inner 6×6 array were used to obtain the axial temperature profiles plotted in Fig. 27; the average at each instrumented elevation, the range of the data, and the number of thermocouples on which the average is based are also noted in the plot. The profile 1.0 s before the first tube burst shows the end effects mentioned above. Also evident is a slight temperature increase toward the lower end of the bundle (in the direction of and caused by the steam flow), with the peak temperature elevation being nearest the lower grid.

The temperature maps provide considerable insight and greatly facilitate visualization, interpretation, and evaluation of local and overall temperature distributions. As evident, the initial radial and axial temperature distributions were very uniform, indicating uniform distribution of the steam. Compare, for example, the data in Fig. 16 for the 84-cm elevation with the inlet steam temperatures at the 107-cm elevation in Figs. 13 and 14. Also, compare Fig. 25 with these figures for the radial distributions at the lower end of the heated zone. The modifications made to the inlet steam nozzle and others made to control heat losses from the top of the test vessel effectively eliminated temperature gradients in the bundle like those experienced in the B-5 test.

Differential pressures measured 1.0 s before power-on and 1.0 s before the first tube burst are presented in a similar format in Fig. 28. Because the simulators were pressurized simultaneously from a common header and then isolated individually, the uniformity in initial pressure indicates the absence of seal leaks. The data in Fig. 28(b) are consistent with Fig. 26(b) and indicate that the interior simulators were slightly hotter and had deformed slightly more at this time than the exterior ones.

A number of data plots are presented below to illustrate significant features of the test as it progressed and to provide an indication of the general conditions prevailing at the times of important events. A parameter, TAV-10, is plotted in a number of these figures to represent the bundle average temperature. This parameter is in reality the average of eight thermocouples (TE 11-2, TE 20-2, TE 29-2, TE 31-2, TE 34-2, TE 38-2, TE 45-2, and TE 52-2) at the 38-cm elevation (see Fig. 3 for relative positions) that was electronically averaged and recorded during the test to facilitate characterization and visualization of the bundle temperature as a function of time.

Figure 6, presented earlier, showed this parameter and the applied voltage as a function of time after power-on. Constant voltage (dc) was applied to the simulators for 141.74 s; this point is noted in the figure (and subsequent plots) for reference purposes by an arrow on the time axis. Because the temperature coefficient of resistivity of the heating element material (Kanthal A-1) is very low (less than 0.005%/°C above 700°C), the power generation varied very little from the average of 1.42 kW/m. As a result the cladding temperature increased at a nearly constant rate as indicated in the figure. The average heating rate in the high-alpha-Zircaloy temperature range (i.e., from ~35 s to ~105 s after power-on, corresponding to TAV-10 temperatures of 498 and 813°C) was 4.5°C/s. As the temperature increased into the two-phase-Zircaloy temperature range, the heating rate decreased because of increased heat losces at the higher temperatures and the significantly greater heat capacity of the two-phase material; deformation feedback effects also may have contributed to the reduction of the heating rate. The cladding average heating rate from ~115 s to ~141 s after power-on (i.e., just before power-off) was 3.5°C/s. Because maximum pressure, indicating the onset of significant deformation, was encountered in the latter time frame (Table 3), the lower heating rate (i.e., 3.5 C/s) is considered to be the appropriate rate for characterizing deformation behavior in this test. The average temperature, as indicated by TAV-10, reached a maximum of 958°C about 5 s after power-off and then slowly decreased.

Figure 29 depicts the bundle characteristic temperature (TAV-10) and several pertinent pressures. In particular, the vessel gage pressure is shown by PE-301, and differential pressures are shown by PE-29 for simulator 29 (one of the four central simulators and the first simulator to burst), by PE-55 for simulator 55 (one of the corner simulators in the inner 6 × 6 array and the last simulator of this array to burst), and by PE-8 for simulator 8 (an outside corner simulator and the last simulator to burst). The vessel pressure remained constant until the first tube burst, at which time it increased because of the release of the hot, high-pressure gas from the ruptured simulators. About 3 s after poweroff, the steam control valves opened to reduce the vessel pressure and to permit increased steam cooling; at this time the vessel pressure decreased rapidly to atmospheric. The sudden decrease in the external pressure caused a small (~200-kPa) increase in the differential pressure of those simulators (near the corners in the outer ring of the array) not yet burst, as typified by the PE-8 pressure trace in the figure; this small increase (~7%) in differential pressure may have slightly advanced the failures in the last nine or ten tubes to burst.

Typical steam temperatures measured (see Fig. 5 for thermocouple locations) at the inlet (TE-322) and at the outlet (TE-327) and the vessel pressure (PE-301) are shown in Fig. 30; TAV-10 is included to characterize the bundle temperature. Neither the inlet nor the outlet steam thermocouples indicated unstable temperatures during the time the simulators were bursting; however, the outlet steam thermocouples sensed a temperature increase after the sudden vessel pressure decrease. This temperature increase was probably an effect of increased steam flow, caused by opening the large bypass valve downstream of the vessel, on the heat transfer conditions at the lower end of the bundle. The small spike evident in the vessel pressure trace (PE-301) at ~137 s after power-on was

caused by a number of tube bursts during a short time interval (Fig. 8) about this time.

The tube bursts occurred in an unusually orderly manner, starting 133.14 s after power-on, as was indicated earlier in Fig. 7, because of uniform azimuthal conditions and a small radial temperature gradient that was caused by heat losses to the surrounding shroud. The cladding axial temperature distribution, averaged over the inner 6×6 array, was also very uniform at this time as shown in Fig. 31. Except for one, all the simulators in the central 4 × 4 array burst (Fig. 7) before any bursts occurred in the next outer row (i.e., the outer ring of the inner 6 × 6 array). The 16 simulators of the central 4×4 array burst in a 2.25-s time interval. All the simulators in the outer ring of the inner 6×6 array burst in a 6.00-s time interval, with the four corner simulators of this array bursting last. The axial temperature distribution (Fig. 31) was still very uniform when power was terminated 0.60 s later. The first simulator in the outer ring burst 0.40 s after power-off; all the simulators except the four corner ones in this ring burst by the time the axial temperature distribution became distorted ~10 s later (Fig. 31). The corner simulators, with the greatest external heat losses, were subjected to near-isothermal creep conditions over a major portion of their length and failed 25-50 s later. By the time of the last failure, the axial temperature distribution had become severely distorted (Fig. 31) as the result of the increased steam flow that was initiated at power-off. A histogram of the tube burst times, depicted in Fig. 8, shows that the frequency distribution of the interior simulator tube bursts was distinctly different from the distribution of the exterior simulators.

4.1.2 Shroud behavior

The need for electrical isolation between the test array and the closely fitted shroud precluded Joule heating of the shroud. Although the shroud had a highly polished, gold-plated surface to reflect thermal radiation, the temperature of the shroud increased significantly during the test. Figure 32 compares measured shroud temperatures on each of the four sides at the 76-cm elevation (see Fig. 3 for thermocouple identifications and locations) to the characteristic bundle temperature (TAV-10). Similar data are shown in Fig. 33 for the thermocouples at the 28-cm elevation and in Appendix A for all the shroud thermocouples. Differences of ~100°C were measured around the shroud at both elevations; this was probably caused by variations in contact resistance between the outside of the thin shroud and the backup thermal insulating material (see Sect. A-A of Fig. 1). About 135 s after power-on, the shroud thermocouples indicated significant and rapid temperature increases that were probably caused by the release of significant quantities of high-temperature gas from the rupturing tubes (the first tube burst 133.14 s after power-on). Figures 34 and 35 compare shroud temperature measurements at the two instrumented elevations on the north and south sides of the bundle, respectively, with simulator cladding temperature measurements in the vicinity (see Fig. 3 for measurement locations). The average of the eight shroud temperature measurements was ~165°C less than the bundle average temperature during the time deformation was occurring (i.e., 1.0 s before the first tube burst).

These figures, as well as similar data in Appendix A for the east and west sides, indicate small (2 to 3°C) steplike decreases in simulator cladding temperatures at approximately the same time the shroud temperatures increased significantly. These small cladding temperature decreases, which sometimes occur, cannot be attributed to failure of these simulators because all the exterior simulators failed after power-off. Noise spikes appear to be unlikely causes because the perturbations were all negative. Although the major cause of the shroud temperature increases can be attributed to heating by hot gas escaping from failed interior simulators, there is a possibility that some of the increase can be attributed to contact between the deforming simulators and the shroud.

4.1.3 Fuel pin simulator behavior

Although the temperature distributions presented in Sect. 4.1.1 characterize the bundle as a whole, the individual simulators behaved differently from these smoothed (averaged) profiles. This would be expected, because the simulator temperature distributions would be strongly influenced by the heat generation characteristics of the individual simulators and by their locations within the array.

As was discussed in Sect. 2.1, the simulators in the outer ring were considered as guard heaters for simulating the radial temperature and mechanical boundary conditions imposed on the interior simulators. Because the deformation behavior of the exterior simulators would be atypical, only 8 of the simulators were instrumented with thermocouples; however, all 28 of the exterior simulators were instrumented with pressure transducers. Each of the 36 interior simulators was instrumented with 4 thermocouples, spot-welded to the inside surface of the cladding at the locations shown in Fig. 3, and a pressure sensor to provide cladding temperature and pressure data during the test transient.

Plots of these data provide considerable insight and qualitative information that supplement the tabulated data for analytical purposes. However, to include plots and data tabulations of convenient sizes for reading would add considerable bulk to this report. Instead, typical examples are displayed to illustrate the type of information that is included for each simulator in the computer-generated microfiche enclosures inserted in the pocket on the inside back cover. Figure 36 shows a typical plot of pressure (differential above the external pressure in the test vessel) and temperature data for an interior simulator. This particular one (simulator 29) is in one of the four central positions in the array and was the first to burst. A reference arrow is located on the abscissa to mark the time power was terminated. The time of burst is indicated by the sudden drop in pressure and frequently by a perturbation in the temperature traces. Figure 37 is a similar plot for one of the fully instrumented simulators (simulator 3) in the exterior ring of the array. The small pressure increase just before the burst was caused by the opening of the large bypass steam valve (for rapid posttest cooldown) to reduce the vessel pressure. Both figures show that the temperature distribution was unusually uniform before the power was terminated; after power-off the individual temperature traces (for different measurement

elevations in the simulators) diverged as a result of the increased posttest cooling steam flow. Similar plots for all the simulators are presented in Appendix A.

Qualitative information on burst time, temperature, pressure, etc., can be obtained from the figures, but quantitative information is best obtained from the computer-generated summary tables presented in Appendix B for the conditions measured at the time each tube burst. An example, for simulator 29, is given in Table 6 to illustrate the format and type of information available in the appendix. The tables include (1) the times from power-on and power-off and the magnetic data tape record from which the tabulation was printed, (2) the simulator differential pressure, (3) the measured cladding temperatures (as indicated by each of the four thermocouples and their average) on those simulators instrumented with thermocouples, and (4) the times from other tube bursts (relative to that for which the table pertains). Pertinent miscellaneous measurements include (1) shroud temperatures (TE 91-1 through TE 91-4 and TE 92-1 through TE 92-4; see Fig. 3 for locations), (2) inlet steam temperatures (TE-320 through TE-324; see Fig. 5 for locations), (3) outlet steam temperatures (TE-325, TE-327, and TE-328; see Fig. 5 for locations), (4) vessel gage pressure (PE-301), (5) total current through bundle (EIE-10), (6) voltage drop across bundle (EEE-10), and (7) characteristic bundle average temperature (a posttest software-averaged version of TAV-10; see Sect. 2.1 for definition).

Similar tables are also given in Appendix B at selected time intervals for 200 s of the transient; these can be used to approximate the transient of either the individual simulators or the bundle as a whole.

4.2 Pretest and Posttest Results

The information contained in this section was obtained from the pretest and posttest examinations of the test array. Some information, such as the simulator IR scans, resulted from quality assurance efforts made to characterize the test components. Other information, such as bundle disassembly photographs, was obtained as a step in the posttest examination of the bundle. The results are presented in considerable detail, because we believe the data are extremely important to the interpretation of the test in terms of deformation behavior and distribution.

4.2.1 Bundle pretest photographic documentation

Although they are not directly applicable to the interpretation of the test, selected photographs of the bundle assembly are included in this section for general interest. Various details of the construction and monitoring instrumentation can be seen.

A view of test array before installation of the shroud is shown in Fig. 38. As described earlier, the design was essentially identical to the B-5 8 \times 8 design. The array was supported from the top flange and was free to move axially during the test. A close-fitting shroud was also supported from the top flange and was used to simulate the radial restraint in a nuclear fuel assembly without restricting axial movement of the grids. The shroud was constructed of thin stainless steel strips, having highly polished, gold-plated surfaces, backed by insulating material; construction details are illustrated in Fig. 39. The four shroud panels (Fig. 40) were assembled into a box around the test array as illustrated in Fig. 41. The completely assembled array is shown in Fig. 42.

Several modifications were made to the B-5 design to improve performance in the B-6 test. These included improving the steam distribution at the bundle inlet and outlet. Instead of one steam inlet on the north side of the shroud, the flow was directed to two sides (east and west), as can be seen in Fig. 42. Additionally, a flow distribution baffle (Fig. 38) with 12.3-mm-diam holes for the 10.92-mm-diam rods was positioned between the steam inlet and the uppermost grid. A steam deflector (Fig. 38) was added to minimize impingement of hot steam on the lower seal glands of the fuel pin simulators.

Figure 43 shows a typical shroud thermocouple attachment. Each thermocouple was formed by making a ball junction (-0.4-mm diam) on the end of 0.13-und-diam type S wires. The ball was then spot-welded to the back side of the thin shroud reflector strip. The mass of the thermocouple was kept small to minimize thermal shunting, that is, cooling of the reflector strip at the point of attachment by the thermocouple itself. An even smaller (0.076-mm-diam) type S wire was used in B-5 but was found to be difficult to work with and too fragile for this particular application. The small thermocouple wires exited through an insulator at the center of a plug, as shown in Fig. 44, and were spliced to 0.25-mm-diam wires that exited the end of sheathed type S thermocouple extension material through a glass end seal to prevent ingress of moisture. A protective cover was installed over the area where the thermocouple wires exited the shroud panel (Fig. 42).

A view of the lower end of the bundle showing the outlet steam thermocouples is shown in Fig. 45. All the steam thermocouples were 0.71 mm diam, stainless steel sheathed type K with insulated junctions. The junction end was centered within the flow channel with a ceramic spacer.

4.2.2 Bundle posttest photographic documentation

Following the burst test, the test assembly was removed from the test vessel and partially disassembled for observation and examination. After posttest instrumentation checks were performed, the shroud assembly was removed to permit visual observation and dimensional checks of the test array. Further disassembly (including successful removal of the internal heaters from all except four of the simulators in the outer ring) was then accomplished, and photographs were made to document the appearance in detail.

Figure 46 shows the west face of the assembly after removal of the shroud and internal heaters. The meter stick (suspended from the bundle with zero at the bottom of the heated zone) serves as a convenient reference to the discussion throughout this report. The west face panel of the shroud box is also shown in its relative axial position; the polished reflector strip shows discoloration and distortion patterns that reflect the image of the test array. A different perspective of the array is shown in Fig. 47. Deformation is rather uniformly distributed except for the corner tubes. As discussed earlier, these tubes were the last to fail (Fig. 8) and were subjected to near-isothermal creep conditions for relatively long times compared to the deformation time of the other tubes. As a result their deformation, being considerably greater and less uniformly distributed, was atypical. Enlarged frontal views of the north and east faces, showing the region between the two interior grids (Fig. 38), are presented in Fig. 48. A scale is included to measure distances from the start of the heated zone. Similar views of the south and west faces are shown in Fig. 49.

The thin, highly polished reflector strips used in the shroud panels were preloaded axially with high-temperature springs (Figs. 39 and 40) to compensate for differential thermal expansion and to keep the strips taut during the test. The design was not entirely successful, because the strips wrinkled (bowed inward) and contacted the simulators as illustrated by the irregular discoloration and distortion patterns in Fig. 50; the locations of the grids are noted (by marks on the polished surfaces) for reference. Evidently the two-dimensional temperature gradients in the thin strips and/or the restricted movement caused them to buckle and touch the simulators. Undoubtedly this influenced the distribution of the cladding deformation, as discussed in Sect 5. Interestingly, there is little evidence that the corner simulators, although they deformed more than their neighbors, touched the strips. Shroud box corner restraints probably prevented the transverse buckling patterns from bowing the strips inward, so they did not contact the corner simulators.

Because deformation occurred in the two-phase-Zircaloy temperature range, texture effects caused very little change in the axial length of the cladding heated zone. The average elongation, based on the data presented in Table 7, was 0.31%.

4.2.3 Bundle cross-section photographs

Following photographic and dimensional documentation of the test array, it was cast into an epoxy matrix and sectioned transversely at 10to 20-mm intervals for measurement of the deformation in each tube. The sections were polished sufficiently to sharply define the tube wall boundaries and then photographed. Although the photographs facilitated measurement of the tube strain at the axial nodes, we believe careful study of them also provides considerable insight into the deformation behavior and temperature distributions during the deformation process. For these reasons, the section photographs are given in Figs. 51 through 108 for documentary purposes.

The photographs were taken looking down on the surface at the given elevation with simulator l in the northwest corner. This corresponds to the layout of Fig. 3, which can be used as a convenient reference for tube identification in each section photograph. All the figures have white arrow points in the upper left corner. The distance along the edge of the epoxy matrix between the arrow points is proportional to the elevation of the section and can be used to calculate the height (from the bottom of the heated zone) of the actual plane of the photograph. A scale was also cast into (and is readable from the north side of) the matrix adjacent to tubes 4 and 5 to provide another convenient and permanent reference measurement. A 1-in. scale (subdivided into 50 divisions of an inch) is included on the north edge of the matrix to facilitate calculation of the actual magnification factor of the photograph. Certain tubes are identified by number in several of the photographs for discussion of interesting features.

The remains of the internal heaters that could not be removed from the inside of the cladding tubes of four of the simulators can be seen in the section photographs. Figure 51, a photograph of a section well below the heated zone, shows an undeformed region of the array. Sections through the lower grid are shown in Figs. 58 and 59; the band (Fig. 45) that tightly retained the outer ring of simulators within the grid was locate between the cutting planes of the two sections. Some flattening of the tubes at the spring-loaded contacts is evident in Fig. 59; the strain in the tubes at this node was in the range of 5 to 7%.

Four of the six failures (tubes 11, 13, 17, and 18) that probably initiated at thermocouple spot-welds occurred at the 20.3-cm elevation shown in Fig. 65. Although the failure orientations of tubes 11 and 13 are slightly different from the specified thermocouple locations (Fig. 3), there is physical evidence that the failures were at the spot-welds. The other two failures at thermocouple locations can be seen in Fig. 71 (tube 30) and in Fig. 78 (tube 62). Sections made at other planes containing thermocouples are shown in Figs. 84, 89, 100, and 104.

Localized wall thinning other than in the immediate vicinity of the tube failures was observed at a number of locations; typical examples are tube 42 in Fig. 65, tube 35 in Fig. 67, tube 54 in Fig. 73, tube 46 in Fig. 74 [incipient failure (?), although the failure was at a much lower elevation (Fig. 65)], tube 20 in Fig. 76 (at two places), and tube 38 in Fig. 82. While some of the locally thinned areas (at least before the burst) were opposite neighboring tubes (tube 42 in Fig. 65 is an example), a number of the thinned areas were located $\sim \pi/4$ rad away (tube 20 in Fig. 76, for example) from neighboring tubes. Presumably, very small azimuthal temperature gradients, combined with the high sensitivity of the creep rate equation to temperature in the alpha-plus-beta phase region, 22 were responsible for the localized thinning.

The sections were carefully examined to define the tube burst locations given in Table 8. The axial locations were determined first by internal examination of the tubes with a borescope before the encapsulation with epoxy and confirmed later from measurements of the sections; the midpoint elevations and burst lengths are considered reasonably accurate (to within 3 to 5 mm). The azimuthal orientations were determined from angle measurements made on the sections near the end of each burst opening and are probably accurate to within 5 to 10° of arc length. Burst midpoint elevations and orientations are shown schematically in Figs. 109 and 110, respectively.

As evident in Fig. 109, the bursts occurred over a length of ~28 cm in the lower portion of the region between the two interior grids (centerline elevations of 10 and 66 cm); this is consistent with the axial temperature profiles shown in Fig. 31. Although the steam mass flux was the same as in the previous tests, the heating time was longer and a greater quantity of steam flowed through the bundle. This caused a relatively greater cooling effect and displaced the deformation downward (i.e., in the direction of steam flow).

As evident in Fig. 110, burst orientations in the two outer rings of simulators had a preferred (and rather uniform) direction toward the center of the bundle, indicating the influence of small azimuthal temperature gradients and an unusually high sensitivity to temperature in the alphaplus-beta-Zircaloy phase temperature range. Burst directions for the central 4×4 array were more randomly distributed, indicating negligible azimuthal gradients. The six bursts that probably initiated at thermocouple spot-welds are noted in the figure. However, the unusual consistency in burst times, temperatures, pressures, and deformation profiles indicates that the bursts were not premature. Also, the burst opening shapes and lengths (Table 8) suggested nothing unusual about these failures. (In previous bundle tests, failures at thermocouple spot-welds resulted in very small binholes.)

4.2.4 Deformation data reduction methodology and results

Enlarged (~3X) photographs of the sections were digitized to facilitate computer reduction of the photographic data to geometrical parameters describing strains, areas, volumes, centroids, and displacements. From 25 to 50 points on both the outside and inside perimeters of each tube were digitized to provide x-y coordinates with respect to an arbitrary origin established at the same relative position on each section photograph. The digitized points were smoothed by forward-fitting a quadratic curve to four consecutive points and then using the curve to generate ten points between each successive pair of digitized points. Thus, the series of curves (equal to the number of digitized points) was used to smooth and expand the number of digitized points by a factor of ten for use in generating areas, centroids, and chord lengths.

The nodes containing tube bursts required special treatment because the software algorithms required closed perimeters. The endpoints of the burst lips were connected by straight line segments, drawn in such a way as to not enclose any of the adjacent tubes, to provide a continuous (but fictitious) perimeter for use in the fitting and integration algorithms. All the area enclosed by the fictitious perimeter was included as tube cross-sectional area at the burst node. Because the same line segments were used for completing both the inside and outside perimeters, the segments also represented fictitious tube wall regions (of zero thickness) in calculating the area of the deformed tube. Of course, the length of the line segments was not included as part of the perimeter in the strain calculations.

The photographic data for each section were thus reduced to a table of geometric parameters that were used for verification of the digitized data and as a source file for further processing to obtain desired output parameters. Because these tables transform and summarize the section photographs into geometric parameters for analysis, they are included in Appendix C; an example is shown in Table 9 for illustrative purposes. This table, for the section at the 32.4-cm elevation, gives for each tube the cross-sectional areas enclosed by the tube outside and inside perimeters and (by difference) the tube wall area, the lengths of the outside
and inside perimeters, the x- and y-coordinates of the outside and inside tube area centroids referenced to the arbitrary origin established at the same relative position on each section photograph, and the strains (total circumferential elongation) based on the outside and inside perimeters.

One of the data verification procedures used the digitized data and the computer graphics software to reconstruct the section image for comparison with the original photograph. An example of this procedure is illustrated by Fig. 111, which shows the tube identification number, the strain based on outside tube perimeter, and the tube centroid and outline correctly located on the arbitrary coordinate grid. Comparison with Fig. 74 shows that the reconstructed image is an excellent reproduction of the section photograph.

Another more quantitative data verification procedure involved comparing the measured inside and outside perimeter strains to the theoretical expression relating the two (assuming constant tube wall area) as illustrated in Fig. 112. The corresponding inside and outside tube strain data of Table 9 are plotted on the graph as a single data point for each tube. Assuming constant tube wall area, the data points should lie on the theoretical curve. For practical purposes the inside and outside strain values are derived from independent measurements, and if either is incorrect the data point will deviate significantly from the theoretical curve. As evident from the figure, the data are in excellent agreement with the curve and can be assumed to represent the true strains adequately.

After verification of the digitized data, the data tapes were reprocessed to generate a strain matrix (Table 10) of the strain in each tube at each axial node; the values in the table are given as percentage increases of original tube outside circumferences. Burst strains, underlined in the table, were summarized earlier in Table 5 and displayed graphically in Fig. 12 as a function of tube radial position. As was evident in the section photographs (Figs. 51-108), the axial lengths of some of the bursts were such that they appeared in two or three of the section photographs; thus, for a single tube, multiple values of the burst strain could result. We selected the value (underlined in the table) from the section nearest the burst midpoint as the most representative.

The strain matrix was used to plot the axial profile of the deformation in each tube. These profiles are presented in Appendix D; however, an example of an interior simulator (simulator 20, which had the largest burst strain) is shown in Fig. 113 to illustrate the type and format of the information available in this appendix. The centerline positions of the two interior grids and the axial location and length of the burst are noted on the deformation profile. The pretest IR characterization scan of the fuel simulator (internal heater), the pretest axial positions of the thermocouples, and the direction of steam flow are also shown for reference purposes. An illustrative plot of a corner simulator (simulator 1, with the largest volumetric expansion) is presented in Fig. 114.

All the deformation profiles have certain characteristics, more or less independent of the characteristics of the individual fuel simulators. These include strains of 4 to 8% in the region of the grids (centered about the 10- and 66-cm pretest elevations) and maximum strains of 3 to 8% in the region between the bottom of the heated zone and the lower grid. Most tubes exhibited maximum strains of 8 to 13% in the region between the upper grid and the top of the heated zone. Strain in this region was strongly influenced by the cooling effect of the inlet steam.

Strains of the interior tubes in the region between the interior grids increased rather uniformly in the direction of the steam flow. Strains of the exterior tubes in this region were in general less uniform because of localized contact with the shroud. The more or less uniform increase in deformation along the length of the tubes was caused by the unusually high sensitivity of the creep rate equation to temperature in the two-phase-Zircaloy temperature range²² and the small axial temperature gradient (Fig. 31).

The deformation profiles did not correlate as well with the pretest IR characterization scans as in previous tests. The characterization scans were made primarily for simulator manufacturing quality assurance purposes and used a heating rate of ~40°C/s. At the heating rate used in the test (~4°C/s), the perturbations in heat generation were much less pronounced. Consequently, the deformation profiles were more sensitive to other effects than to the minor variations in simulator heat generation.

The bursts in six of the tubes initiated at thermocouple welds, as noted in Fig. 110. The deformation plots in Appendix D suggest that other bursts may have initiated at thermocouples. However, these can be eliminated from consideration by comparison of the burst orientations in Fig. 110 with the thermocouple locations in Fig. 3.

Excessive ballooning over an extended length is a concern in LOCA analyses. For the tubes and spacing (1.32 pitch-to-diameter ratio) used in our tests, adjacent tubes will touch with 32% uniform expansion. As evident from the deformation profiles and Table 10, very few tubes exceeded this value and then only close to the bursts.

Another important characterization of tube deformation is the volume increase over the heated length. This parameter is closely related to flow resistance, because the volume increase takes into account deformation along the length of the tube. The volume increase was calculated for each of the tubes from the geometric data given in Appendix C. The calculation assumed that the tube cross section at each axial node was circular in shape and had a perimeter equal to the deformed tube outside perimeter; presumably, this represents the shape of the tube just before tailure. The area of the tube was then calculated at each node and integrated over the tube heated length, using the trapezoidal rule, to obtain the volume occupied by the outside diameter. This value was expressed as a percentage increase over the original volume and was tabulated in Table 5 and displayed graphically in Fig. 11 as a function of tube radial position.

Individual tube overall deformation was also characterized by computing an average strain value from the volumetric expansion data. This calculation assumed that the expansion was uniformly distributed over the tube heated length; that is, no account was taken of local variations caused by grid and end effects. The average strains thus calculated were tabulated in Table 5.

The total expansion for all tubes at each axial node is also of interest because it determines the coolant channel flow area restriction. This parameter is normally expressed as an average value for an array cross section and was calculated on the basis of a rod-centered unit cell, using the equation

$$B = 100 \times \frac{\sum_{n=N}^{n=N} (A_{d,n} - A_{o})}{N(p^{2} - A_{o})}, \qquad (4.1)$$

where

B = percentage restriction in coolant channel flow area, A_{d,n} = outside area of deformed tube (mm²), A_o = outside area of original tube (mm²), p = tube-to-tube pitch in square array (mm), N = number of tubes in square array.

With this definition, B is 0 for no deformation and 100% if all the tubes deform into a square whose sides are of length p (completely filling the open area). For the case of uniform ballooning such that the tubes just come into contact (i.e., 32% strain for the dimensions appropriate to this test), B is 61%.

In summing the deformed tube areas in Eq. (4.1) for those nodes that contain bursts, one must decide how to treat the burst lips. As in the past, we used two treatments that appear to be reasonable upper and lower limits for the flow restriction. The upper limit used the area enclosed by the fictitious tube outside perimeter discussed earlier. Tube areas obtained this way are tabulated in the tables of Appendix C. For the lower limit, the software compared the area enclosed by the fictitious perimeter to that enclosed by a circular tube having the same (actual) perimeter of the burst tube and used the latter if smaller to describe the deformed tube area, $A_{d,n}$, at the burst. Results from processing the data in this manner are tabulated in Table 11. The right-hand column of the fourth page of the table is the sum of the 64 tube areas at any elevation.

The percentage flow area restriction was calculated at each axial node, using the above equation and appropriately defined values for the parameters, for the entire 8×8 array, the inner 6×6 array, and the central 4×4 array. The results are tabulated in Table 12; values listed under "maximum" are based on outside tube areas given in Appendix C, and those listed under "minimum" are based on the data in Table 11. By definition the two values differ only at those nodes where tube bursts occurred. Even at these nodes the differences are small because the burst openings were small and the two definitions are not greatly different.

The minimum flow area restriction data of Table 12 were depicted graphically earlier in Fig. 13. It is noted that the lower limit of coolant channel flow area restriction, as defined above, was also used by Powers and Meyer in NUREG-0630 (Ref. 23).

Restraint conditions of a full-size fuel bundle were simulated in the B-6 test by surrounding the 8×8 test array with a closely spaced

shroud that limited outward movement of the simulators. The pretest spacing (1.75 mm) was such that contact would be made when the exterior simulators deformed 32% provided the simulators were neither displaced nor bowed outward. Posttest examination showed that contact forces during deformation and/or thermal bowing caused permanent displacement of the simulators.

Simulator displacements were estimated at each axial node by a least-squares fitting routine that simultaneously minimized all the displacements. The manner in which this was accomplished can be visualized by imagining placement of a rigid grid (with pretest tube centroids at the center of each grid cell) on the section photograph and then translating and rotating the grid on the plane of the photograph until the average displacement between the pretest and posttest centroids of the 64 tubes is minimized. Using the centroids of the areas enclosed by tube outside perimeter from the geometric data source file (Appendix C) and the pretest tube pitch, the data were processed to provide the displacements in both tabular and graphical form. An example of the tabular output (for the section displayed in Fig. 111) is presented in Table 13; tables for all the sections are given in Appendix E. Although the computations were performed with reference to the arbitrary coordinate system that was established relative to the north side of the epoxy matrix when the section photographs were digitized, the results were translated to a new coordinate system that has its origin at the pretest centroid of simulator 1 (see Fig. 3). This facilitates interpretation and use of the displacement data. As evident from the pretest centroid coordinates in Table 13, the coordinate system used for digitizing the data was not perfectly aligned with the epoxy matrix; instead, it was rotated slightly clockwise.

As an example, the graphical output for the section displayed in Fig. 111 is shown, referenced to the digitizing coordinate system, in Fig. 115 to illustrate tube displacements relative to an imaginary grid that defines the pretest unit cells at this elevation. Similar plots are presented in Appendix F for all the axial nodes. In the figure, dots are used to denote the tube pretest centroids at the midpoints of the unit cells and crosses to denote the posttest centroids of the tube outlines. The latter correspond to the shapes and sizes of the areas enclosed by the tube outside perimeters. Straight line segments, representing fictitious perimeters, are drawn in the burst regions of those tubes that have bursts at this elevation (see Fig. 74). The outside of the imaginary grid corresponds to the pretest dimensions and the position of the shroud.

The figure shows the permanent displacements of the tubes within the original unit cells and aids visualization of subchannel flow area restriction.

5. SOME OBSERVATIONS AND LIMITED INTERPRETATION OF RESULTS

Initial conditions for the test were unusually uniform in both the axial and radial directions. As a result of the uniform conditions and the low heating rate, the temperature distributions remained reasonably uniform until all the tubes in the inner 6×6 array burst. Table 14 gives the average and standard-deviation (σ) values of a number of characteristic parameters and can be used to investigate variations as a function of radial position in the test array. Heat losses from the exterior simulators to the unheated shroud caused slightly lower heating rates and slightly later burst times for these simulators. Also, the heat losses were nonsymmetrical and caused azimuthal temperature gradients to develop in these simulators and influence the failure patterns, as evident in the burst orientations shown in Fig. 110.

In addition to this general behavior, there were local perturbations, caused by contact between the shroud and the exterior simulators, that influenced the axial distribution of the deformation. As shown by Fig. 50, contact with the shroud occurred at more or less regular intervals along the length and caused these localized regions of the simulators to be colder and, thus, experience less deformation. The deformation profiles of the exterior simulators show a periodic variation in the amplitude of the deformation that correlates well with the shroud contact areas. Figure 116 illustrates the periodic behavior of the profiles for the simulators on the north face of the array (see Fig. 3 for relative positions); similar behavior was observed on the other three faces. Since the corner simulators (simulators 1 and 8 in the figure) did not contact the shroud as much and as frequently as the others, the peaks and valleys in their profiles are not as well aligned.

Figure 117 is a similar plot that compares the profiles of the first layer of simulators to those of the second layer. Although some cyclic behavior is evident in the latter, it is less pronounced, except for simulators 9 and 16, which were located on the west and east faces of the array and thus were in contact with the shroud. The cyclic effect is practically dissipated with two layers of tubes, as shown by the comparison in Fig. 118 of the deformation profiles of the second and third layers of simulators.

As shown in Fig. 110, there was a preferred direction for the orientation of the bursts in the two outer rings of simulators, indicating an influence of azimuthal temperature gradients in each ring. Burst directions for the central 4×4 array were more randomly distributed, indicating a rather uniform temperature field. Unlike the results from the B-5 test,⁸ the data presented in Table 14 — particularly the data for volumetric expansion over the heated length, burst strain, and average strain of the region between the interior grids — can be interpreted to imply that a single row of guard heaters is sufficient to establish a uniform radial temperature profile in a small test bundle without a heated shroud. However, the preferred burst orientation (inward) for the simulators in the outer ring of the inner 6×6 array and the effect of local perturbations shown in Figs. 117 and 118 indicate that the azimuthal temperature gradient effects were sufficient to influence the direction and axial location of the bursts and, presumably, the magnitude of the local flow restriction in the two outer rings of simulators. Altogether the data show, consistent with the B-5 test results, that the equivalent of two rows of deforming guard simulators is necessary in small bundles to duplicate temperature and mechanical boundary conditions of large bundles.

ACKNOWLEDGMENTS

Data presented in this report reflect the combined efforts of a number of people over an extended period of time, spanning fabrication, testing, pretest and posttest examination of the test array, and reducing and processing the test data.

We wish to acknowledge the contributions of W. A. Bird for his careful attention to all the instrumentation and control aspects of the test; E. L. Biddle, J. N. Money, and C. Cross for assembly of the test array and for the many other necessary support tasks; F. R. Gibson for programming and operating the CCDAS and for processing much of the data; C. M. Boles for excellent pretest and posttest photography; F. G. Childress for developing procedures and casting the array in a high-quality epoxy matrix; B. C. Leslie for the sectioning, polishing, and excellent photography of the bundle cross sections; L. Jung and co-workers for developing software and digitizing the photographic data; N. J. Price for developing software and processing much of the digitized data; the Fuel Pin Simulator Development Group, under the leadership of R. W. McCulloch, for development and procurement of the fuel simulators; and the many other groups and individuals who had a part in the test and in the preparation and publication of this report.

We would like also to express our appreciation for the support and guidance provided by the NRC Program Managers: Dr. M. L. ("Pic") Picklesimer for several years prior to his retirement and, afterward, Dr. R. Van Houten.

REFERENCES

- R. H. Chapman et al., Quick-look Report on MRBT B-6 (8 × 8) Bundle Test, Internal Report ORNL/MRBT-7 (January 1982).
- 2. R. H. Chapman, Multirod Burst Test Program Prog. Rep. January-June 1982, NUREG/CR-2911 (ORNL/TM-8485).
- 3. A. W. Longest, Multirod Burst Test Program Prog. Rep. January-June 1981, NUREG/CR-2366, Vol. 1 (ORNL/TM-8058).
- 4. J. L. Crowley, Multirod Burst Test Program Prog. Rep. July-December 1981, NUREG/CR-2366, Vol. 2 (ORNL/TM-8190).
- A. W. Longest, R. H. Chapman, and J. L. Crowley, "Boundary Effects on Zircaloy-4 Cladding Deformation in LOCA Simulation Tests," Trans. Am. Nucl. Soc. 41, 383 (1982).
- R. H. Chapman, J. L. Crowley, and A. W. Longest, "Effect of Bundle Size on Cladding Deformation in LOCA Simulation Tests," Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP 824, D. G. Franklin, R. B. Adamson, and B. Cox, eds., American Society for Testing and Materials, in press.
- A. W. Longest, J. L. Crowley, and R. H. Chapman, Variations in Zircaloy-4 Cladding Deformation in Replicate LOCA Simulation Tests, NUREG/CR-2810 (ORNL/TM-8413) (September 1982).
- R. H. Chapman, J. L. Crowley, and A. W. Longest, Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-5, NUREG/CR-3459 (ORNL/TM-8889) (in publication).
- 9. R. H. Chapman, Multirod Burst Test Program Prog. Rep. January-June 1980, NUREG/CR-1883 (ORNL/NUREG/TM-426).
- R. H. Chapman et al., Bundle B-1 Test Data, ORNL/NUREG/TM-322 (June 1979).
- R. H. Chapman et al., Bundle B-2 Test Data, ORNL/NUREG/TM-337 (August 1979).
- R. H. Chapman et al., Bundle B-3 Test Data, ORNL/NUREG/TM-360 (January 1980).
- A. W. Longest, R. H. Chapman, and J. L. Crowley, Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-4, NUREG/CR-2968 (OKNL/TM-8509) (December 1982).

- R. W. McCulloch, P. T. Jacobs, and D. L. Clark, Development of a Fabrication Procedure for the MRBT Fuel Simulator Based on the Use of Cold-Pressed Boron Nitride Preforms, NUREG/CR-1111 (ORNL/NUREG/TM-362) (March 1980).
- 15. W. A. Simpson, Jr., et al., Infrared Inspection and Characterization of Fuel-Pin Simulators, ORNL/NUREG/TM-55 (November 1976).
- 16. R. H. Chapman (comp.), Characterization of Zircaloy-4 Tubing Procured for Fuel Cladding Research Programs, ORNL/NUREG/TM-29 (July 1976).
- 17. R. H. Chapman, Multirod Burst Test Program Prog. Rep July-September 1976, ORNL/NUREG/TM-77.
- J. E. Lewis et al., "Texture Measurement Techniques for Zircaloy Cladding: A Round-Robin Study," pp. 39-62 in Zirconium in the Nuclear Industry: Fifth Conference, ASTM STP 754, D. G. Franklin, ed., American Society for Testing and Materials, 1982.
- W. E. Baucum and R. E. Dial, An Apparatus for Spot Welding Sheathed Thermocouples to the Inside of Small Diameter Tubes at Precise Locations, ORNL/NUREG/TM-33 (August 1976).
- R. L. Anderson, K. R. Carr, and T. G. Kollie, Thermometry in the Multirod Burst Test Program, NUREG/CR-2470 (ORNL/TM-8024) (March 1982).
- R. T. Bailey, Steady-State Pressure Losses for Multirod Burst Test (MRBT) Bundle B-5, NUREG/CR-2597 (ORNL/Sub/80-40441/1) (April 1982).
- 22. C. A. Mann et al., The Deformation of PWR Fuel in a LOCA, UKAEA Report ND-4-701(S) (April 1982).
- 23. D. A. Powers and R. O. Meyer, Cladding Swelling and Rupture Models for LOCA Analysis, NUREG-0630 (April 1980).

		Internal fu-	1 simulator ^a	b			Internal fue	l simulator ^a	mab
Bundle position No.	Zircaloy tube serial No.	Serial No.	Element resistance (Ω)	FPS gas volume (cm ³)	Bundle position No.	Zircaloy tube serial No.	Serial No.	Element resistance (Ω)	<pre>FPS gas volume (cm³)</pre>
1	0886	MNL-066	1.94	47.5	33	0873	MNL-049	1.96	48.9
2	0244	MNL-003	1.97	50.7	34	0231	MNL-015	1.99	50.7
3	0869	MNL-054	1.96	48.9	35	0857	MNL-029	1.95	48.6
4	0245	MNL-038	1.98	50.3	36	0232	MNL-086	2.01	50.8
5	0870	MNL-031	1.96	48.9	37	0858	MNL-071	1.97	48.8
6	0246	MNL-060	1.98	50.4	38	0233	MNL-055	2.00	50.8
7	0888	MNL-074	1.96	47.3	39	0859	MNL-022	1.97	49.6
8	0247	MNL-023	1.94	49.9	40	0251	MNL-006	1.96	50.8
9	0248	MNL-032	1.96	50.6	41	0252	MNL-017	1.98	52.9
10	0845	MNL-026	1.96	49.6	42	0860	MNL-018	1.97	48.9
11	0219	- mc1-076	: .99	49.5	43	0234	MNL-040	1.99	50.4
12	0846	MNL-004	1.96	49.3	44	0861	MNL-063	1.98	49.0
13	0220	MNL-079	2.00	50.1	45	0235	MNL-028	1.98	51.5
14	0847	MNL-024	1.96	49.0	46	0862	MNL-020	1.97	50.2
15	0221	MNI -016	1.98	51.1	47	0236	MNL-068	1.98	49.5
16	0880	MNI -067	1.97	47.4	48	0882	MNL-053	1.97	48.7
17	0871	MNI -044	1.95	48.6	49	0890	MNL-037	1.95	49.9
19	0222	MNI -078	2 01	50.1	50	0237	MNL-051	2.00	49.8
10	0885	MNI -062	1.97	49.5	51	0863	MNL-008	1.97	49.5
20	0223	MNL-081	2.00	50.6	52	0238	MNL-050	1.97	49.8
20	0849	MNI -064	1.95	48.5	53	0867	MNL-025	1.98	50.1
22	0224	MNI -027	1.98	49.7	54	0240	MNL-052	1.97	50.4
22	0850	MNI -021	2.01	49.6	55	0868	MNL-012	2.00	50.0
24	0249	MNI-005	1.95	48.7	56	0256	MNL-057	1.95	52.2
24	0249	MNI -045	1 96	49.6	57	0257	MNL-009	1.93	50.5
25	0250	MNI -048	1.96	49.1	58	0891	MNL-069	1.95	47.6
20	0225	MNI -0.92	2 00	50.5	59	0258	MNL-061	1.97	50.9
21	0225	MNI -070	1.96	48.9	60	0883	MNL-043	1.98	49.0
28	0000	MNI -073	2 00	50.7	61	02:9	MNL-058	1.98	51.6
29	0220	MNI -080	1 98	50.0	62	0884	MNL-007	1.97	49.7
30	0830	MNI -034	1 95	50.9	63	0260	MNL-046	1.96	48.7
31	0227	MNL 034	1 97	49.9	64	0893	MNL-059	1.94	48.0

Table 1. As-built data for B-6 fuel pin simulators

^aAll 64 fuel simulators were fabricated in the ORNL Fuel Pin Simulator Development Laboratory.

^bFuel pin simulator gas volume measured at room temperature before installation into bundle; the volume measured includes a pressure transducer and connecting tube identical to the facility hookup for each simulator.

****	**********	*****	******	******	******	******		************					
ROD NO.	DIFFERENTIAL	-INITI	AL COND TEMPER	ITIONS- ATURES	(DEG C)		ROD	DIFFERENTIAL	-INITI	AL COND TEMPER	ITIONS- ATURES	(DEG C)	
	(KPA)	TE-1	TE -2	TE-3	TE-4	A VG	NO.	(KPA)	TE-1	TE-2	TE-3	TE -4	AVG
1	3052						33	3051	331	330	329	330	330
2	3050						34	3054	330	330	330	331	330
3	3051	327	328	329	329	328	35	3046	330	331	330	329	330
4	3046						36	3046	330	331	330	331	330
5	3053	328	328	329	329	328	37	3044	329	331	331	329	330
6	3051						38	3049	331	331	331	332	331
7	3053						39	3046	332	331	332	332	332
8	3052						40	3051					
9	3053						41	3054					
10	3048	327	329	329	329	328	42	3055	330	330	331	330	330
11	3047	328	328	329	329	329	43	3049	331	331	331	331	331
12	3048	326	329	329	329	329	44	3043	329	330	331	330	330
13	3048	327	330	330	330	329	45	3041	329	331	331	231	221
14	3053	328	330	330	328	329	46	3038	330	331	331	331	331
15	3052	330	329	329	330	330	47	3045	332	331	329	332	331
16	3046						48	3047	332	332	329	330	331
17	3052	330	329	329	330	330	49	3063					
18	3046	329	330	329	330	330	50	3057	329	330	330	330	330
19	3047	329	329	330	329	329	51	3055	329	330	330	330	330
20	3050	328	329	330	330	329	52	3053	329	330	331	331	330
21	3049	327	330	330	330	329	53	3055	327	330	331	330	330
55	3049	329	330	330	331	330	54	3053	330	331	330	331	330
23	3044	329	330	331	330	330	55	3049	330	330	331	330	330
24	3044						56	3052				3.50	330
25	3049						57	2059					
26	3052	330	330	330	330	330	58	3054					
27	3049	330	330	330	330	330	59	3056					
28	3048	329	330	331	330	330	60	3058	330	329	329	330	329
29	3042	329	330	330	330	330	61	3047					
30	3041	330	330	331	330	331	62	3058	220	3.20	220	221	220
31	30%1	332	331	330	331	331	63	3054	263	363	220	221	330
32	3:435	332	320	330	331	331	64	3054					

Table 2. Summary of B-6 initial conditions

OD D.	DIFFERENTIAL	DITIONS	AT TIME TEMPER/	E OF MA ATURES	XIMUM P (DEG C)	RESSURES	a	ROD	DIFFERENTIA	IDITIONS	AT TIM	E OF MAD ATURES	(IMUM PI	RESSURES	
	(KPA)	TE-1	TE-2	TE-3	TE-4	AVG	(SEC)		(KPA)	TE-1	TE-2	TE-3	TE-4	AVG	(SEC)
١	3308						147.09	33	3227	816	823	820	818	819	112.2
2	3250						114.34	34	3239	817	823	824	822	822	107.3
3	3236	821	836	824	821	826	115.64	35	3238	816	844	840	818	830	111.0
ŧ.,	3235						110,09	36	3231	801	814	816	807	809	104.5
	3241	794	810	811	801	804	110.04	37 -	3248	791	819	816	794	805	105.1
÷	3235						110.39	38	3251	806	817	820	812	814	105.2
	3227						115.19	39	3241	800	823	816	796	809	106.4
	3324						146,84	40	3252						114.8
	3253						115.19	41	3232						117.4
	3235	796	818	819	798	808	108.54	42	3234	810	834	833	805	820	110.6
	3240	814	821	829	820	821	108.34	-43	3242	805	817	817	809	812	105.2
	3249	791	824	820	798	808	105.99	44	3245	796	824	822	797	310	107.5
	3229	814	830	833	826	826	108.94	45	3230	818	830	831	826	827	108.
	3236	809	834	834	804	820	110.24	46	3240	813	843	840	817	828	111.
	3244	823	829	832	827	828	110.64	47	3244	816	823	818	814	818	107.
	3219						115.09	48	3236	818	820	827	812	819	113.
	3234	817	814	828	833	823	113.24	49	3256						114.
	3238	822	830	832	828	828	110.04	50	3251	825	831	833	832	830	111.3
	3253	806	827	827	801	815	108.49	- 51	3259	781	806	800	779	791	103.1
	3240	827	834	840	832	833	110.19	52	3248	830	840	841	836	837	111.5
	2245	799	829	825	803	814	107.79	53	3248	786	812	812	788	800	105.
	3234	817	828	829	823	824	108.44	54	3245	832	837	831	834	834	111.
	3244	784	812	814	783	798	105.54	- 55	3252	806	827	824	798	814	110.
	3219						116,04	56	3231						1.14.1
	3235						114.24	57	3299						146.
	3256	808	831	830	807	819	109.09	58	3231						115.
	3249	812	821	822	816	818	105.74	- 59	3241						114.
	3253	778	802	804	777	790	101.64	60	3255	798	798	800	802	800	107.
	3242	809	820	822	813	816	106.29	61	3225						116.
	3229	808	833	830	806	819	108.69	62	3249	823	816	812	817	817	1111.
	3230	818	828	825	820	823	107.49	63	3213						116.
	3245	819	838	834	825	829	115.24	64	3327						146.

Table 3. Summary of B-6 conditions at time of maximum pressures

^aTime after power-on.

ROD	DIFFERENTI	AL	TEMPER	ATURES	(DEG C)	N3=====	BURST	ROD	DIFFERENTI	APPRO	TEMPER	BURST CATURES	ONDITIO	NS	BURST
	(KPA)	TE-1	TE-2	TE-3	TE-4	AVG	(SEC)	MO.	(KPA)	TE-1	TE-2	TE-3	TE-4	AVG	(SEC)
1	2826						191.43	33	2941	910	908	921	919	914	142.1
2	3128						146.14	34	2835	919	928	936	931	928	136.1
3	3015	905	923	909	905	911	144.39	35	2816	897	936	925	906	916	134.7
4	2987						142.24	36	2731	912	929	939	930	927	134.9
5	2882	895	917	924	912	912	143.09	37	2803	893	926	924	900	911	134.4
6	2997						143.54	38	2720	912	927	939	926	926	134.5
7	3046						147.19	39	2805	904	929	921	904	914	135.9
8	2861						192.08	40	2934						142.6
9	3059	1		1.16			144.44	41	2956						142.9
10	2785	901	924	929	898	913	139.94	42	2815	901	918	934	897	912	137.0
11	2815	921	919	934	925	924	136.19	43	2785	919	936	928	922	926	134 6
12	2744	898	932	927	901	915	135.59	44	2846	897	934	923	892	911	135.1
13	2856	912	928	929	921	922	135.14	45	2763	913	924	935	927	925	135.1
14	2748	903	924	938	894	914	137.14	46	2770	897	933	936	908	918	135.3
15	2822	926	932	923	917	924	139.34	47	2909	916	925	909	914	916	135.1
16	3079						148.54	48	2982	905	916	923	898	911	143.6
17	2941	911	903	920	931	916	143.94	49	2996						144.5
18	2797	911	919	929	927	922	136.84	50	2810	914	913	916	932	919	139.0
19	2826	901	919	925	900	910	134.44	51	2842	903	924	913	892	908	136.9
20	2759	923	927	934	929	928	135.04	52	2837	916	920	923	927	922	137.0
1	2813	894	923	923	898	909	134.14	53	2821	895	928	916	895	908	136.7
2	2847	914	932	923	925	924	135.14	54	2710	923	934	911	926	924	137.1
23	2746	899	928	927	891	911	138.09	55	2759	912	941	941	890	921	141.1
24	3087						145.94	56	3127						145.7
5	2944						143.29	57	2975						174.6
26	2799	900	937	932	903	918	135.74	58	3014						147.2
?7	2827	923	936	932	927	929	133.69	59	2977						143.6
8	2797	895	924	934	891	911	133.39	60	2933	918	907	903	913	910	142.8
9	2868	908	924	933	917	921	133.14	61	3012						143.9
0	2811	901	937	926	897	915	135.14	62	2995	925	915	903	912	914	143.1
31	2715	932	936	929	925	930	137.14	63	3043	and a					150.0
32	2920	904	929	909	902	911	142.54	64	2865						189

Table 4. Summary of B-6 conditions measured at time of bursts

^aTime after power-on.

	8	urst condition		Tube heate	d length ^a	Fuel pin	simulatorb	T							
Rod	Pressure	Temperature	Strain	Volume	Average	Volume	Progeneo		В	ursi condition	6	Tube heate	d length"	Fuel pin	simulator ^b
_	(kPa)	(°C)	(1)	increase ^c (%)	strain (%)	fncrease ^e (ratio)	decrease (ratio)	Rod	Pressure (kPa)	Temperature (°C)	Strain ^a (%)	Volume increase ^c	Average	Volume increase	Pressure f decrease
1	2826	8	49	31.9	15	1 5 7 4		+				(4)	(2)	(ratlo)	(ratio)
2	3128	8	24	19.8	10	1.5/6	1.080	33	2941	921	27	17.2	0		
3	3015	923	31	20.6	10	1+ 535	0.975	34	28 35	936	27	24 3		1,303	1.037
~	2987	8	25	16.4	10	1.301	1,012	35	2816	936	42	29.3	12	1.411	1,077
5	2882	924	31	21 6		1.279	1.020	36	2731	939	30	62+3	12	1.446	1,082
6	2997		28	18.0	:0	1.376	1.059	37	2803	926	32	20.3	13	1.447	1.115
7	3046		3.2	10.0	9	1.305	1.018	38	27.20	9.27	32	24.8	12	1.436	1.086
8	2861		47	18.9	9	1.342	1.002	39	2805	9.20	31	28.5	13	1.480	1,121
9	3059		25	28.9	14	1.497	1.067	40	2934	767	26	23.0	11	1.398	1.086
10	2785		23	19.5	9	1.331	0.998	41	2956	8	29	18.4	9	1.311	1,040
11	2815	034	21	26.8	13	1.463	1.094	42	2815	8	32	19.3	9	1.312	1.033
12	2744	932	20	25.1	12	1.436	1.082	43	2785	0.34	43	25,1	12	1.440	1.085
13	2856	934	32	29.1	14	1.507	1.111	44	2846	936	35	25.9	12	1.440	1.095
14	2748	924	27	24.4	12	1.417	1.062	45	2763	939	33	24.0	11	1.420	1.069
15	28.2.2	929	41	28.6	13	1.501	1-115	46	27 0.3	432	35	27.7	13	1,460	1.101
14	2022	932	26	23.9	11	1.401	1.082	1 47	2170	936	29	26.1	12	1.445	1.007
10	30/4	8	24	18.0	9	1.326	0.980	41	2909	925	21	20.6	10	1 356	1.097
10	2941	931	31	23.2	11	1.409	1.030	40	2982	923	23	17.2	9	1.300	1+047
10	2/9/	929	26	24.3	12	1.415	1.030	99	2996	8	32	22.8	11	1.303	1.022
18	28.26	919	26	25.3	1.2	1 439	1.089	50	2810	932	22	23.2	11	1. 392	1.022
20	2759	934	56	27.3	13	1.430	1.078	51	2842	924	34	23.1	11	1.400	1,088
21	2813	923	30	21.9	10	1.402	1.105	52	28 37	927	27	23.3	11	1.399	1.075
22	2847	932	29	22.7	11	1. 300	1.084	53	28 21	928	29	23.0	11	1.402	1.076
23	27.46	928	36	25.6	12	1.391	1.071	54	2710	934	43	31.1		1.394	1.083
24	3087	8	26	18.0	12	1.443	1.109	55	2759	941	35	27.0	15	1.529	1.127
25	2944		26	20.6		1.317	0.986	56	31 27		22	27.0	13	1.463	1.105
26	2799	937	33	20.0	10	1.356	1.036	57	2975	8	39	19.8	9	1.276	0.976
27	28 27	936	30	20.0	12	1.454	1.090	58	3014	0	30	26.1	12	1.444	1.028
28	2797	934	31	22.8	12	1.439	1.079	59	2977	0	29	23.1	11	1.415	1.013
29	2868	933	34	23.8	12	1.452	1.090	60	2933	019	32	19.9	10	1.335	1.027
30	2811	033	20	23.4	11	1.396	1.061	61	3012	210	20	18.3	9	1.321	1.043
31	2715	03/	26	24.5	12	1.419	1.082	62	2995	8	31	18.1	9	1.300	1.012
12	29.20	936	44	31.4	15	1.529	1,124	63	2042	925	25	16 6	8	1.287	1.021
	2920	929	21	16.8	8	1.289	1,040	64	3043	8	24	20.6	10	1.362	1.004
	Measurement	s hand on tub						04	2003	8	39	25.6	12	1.457	1.066

Table 5. Summary of B-6 test results

^aMeasurements based on tube outside perimeter.

bincludes fuel pin simulator, pressure transducer, and connecting tube.

 $c_{\ensuremath{\mathsf{From}}}$ deformation profiles assuming circular cross sections.

 $d_{\mbox{\sc Assumes}}$ volume increase is uniformly distributed over heated length.

 $e_{\mbox{Ratio}}$ of final to initial volume (see note b).

 ${\rm f}_{\rm Ratio}$ of initial pressure to burst pressure.

Simulator not instrumented with thermocouples.

••••	DIFFERENTIAL		TEMPER.	ATURE (DEG C)		TIME FROM	*****	DIFFERENTIAL		TEMPE	RATURE (D	EG C)		TIME FROM
ROD NO.	PRESSURE (KPA)	TE-1	TE-2	TE-3	TE-4	AVG	BURST (SEC)	NO.	(KPA)	TE-1	TE-2	TE-3	TE-4	AVG	(SEC)
1357	3210 3161 3139 3172	881 874	897 892	886 896	879 882	886 886	-58.29 -11.25 -9.95 -14.05	2468	3193 3165 3163 3212						-13.00 -9.10 -10.40 -58.94
9 11 13 15	3185 3001 2978 3087	909 902 905	908 920 910	923 924 909	912 914 908	913 915 908	-11.30 -3.05 -2.00 -6.20	10 12 14 16	3074 2955 3003 3170	881 890 889	907 922 913	911 917 923	881 894 883	895 906 902	-6.80 -2.45 -4.00 -15.40
17 19 21 23	3141 2963 2962 3049	887 897 890 883	881 916 920 912	900 916 918 912	905 896 897 877	893 906 906 896	-10.80 -1.30 -1.00 -4.95	18 20 22 24	3035 2982 2998 3163	901 916 907	910 917 927	918 931 918	912 919 916	910 921 917	-3.70 -1.90 -2.00 -12.80
25 27 29 31	3154 2913 2868 2995	921 908 916	934 924 921	929 933 926	924 917 919	927 921 921	-10.15 -0.55 0.0 -4.00	26 28 30 32	3007 2862 2981 3161	890 894 895 880	926 923 927 897	923 933 920 893	897 891 891 886	909 910 908 889	-2.60 -0.25 -2.00 -9.40
33 35 37	3149 2974 2950 3000	887 892 889 895	897 932 921 919	898 919 918 911	891 900 896 896	893 911 906 905	-9.00 -1.60 -1.35 -2.85	34 36 38 40	3030 2977 2930 3165	910 906 907	925 921 921	923 934 931	919 923 920	919 921 920	-3.00 -1.80 -1.45 -9.50
41 43 45 47	3165 2962 2969 3023	914 906 909	930 917 918	924 928 904	916 918 906	921 917 909	-9.80 -1.50 -2.00 -2.00	42 44 46 48	3039 3000 2975 3158	888 890 890 884	908 926 924 888	919 915 927 898	885 887 901 878	900 904 910 887	-3.95 -2.00 -2.25 -10.50
49 51 53	3170 3057 3045 3096	889 883 884	911 916 915	907 910 911	880 887 873	897 899 896	-11.45 -3.85 -3.60 -8.00	50 52 54 56	3097 3047 2998 3178	898 904 910	902 910 922	904 914 902	911 915 913	904 911 912	-5.90 -3.90 -4.00 -12.65
57 59 61 63	3208 3168 3157 3169						-41.50 -10.50 -10.80 -17.50	58 60 62 64	3158 3160 3174 3221	888 897	888 893	888 888	890 889	889 892	-14.15 -9.70 -10.50 -56.09
****		******				MISCE	LLANEOUS IN	STRUMEN	NTS						
14 25 28 43 45 473	TE-328 TE-321 TE-324 TE-91-1 TE-91-4 TE-92-3 EEE-10	867 337 332 761 697 695 56	DEG C DEG C DEG C DEG C DEG C DEG C V			19 26 29 41 44 47 488	2E-301 E-322 TE-325 TE-91-2 TE-92-1 TE-92-4 TAV-10	209 336 879 727 800 749 918	KPA DEG C DEG C DEG C DEG C DEG C DEG C		24 27 31 42 45 472	TE-320 TE-323 TE-327 TE-91-3 TE-92-2 EIE-10		327 DE 330 DE 882 DE 790 DE 710 DE 1640 A	2G C 2G C 2G C 2G C 2G C

Table 6. Summary of B-6 test conditions at rod 29 burst time

Simulator	Heated	d length gation	Simulator	Heated	length ation
No.	mm	z	No.	mm	x
1	3.2	0.35	33	3.2	0.35
2	4.0	0.43	34	2.4	0.26
3	3.2	0.35	35	2.8	0.30
4	3.2	0.35	36	2.4	0.26
5	3.2	0.35	37	2.4	0.26
6	3.2	0.35	38	1.2	0.13
7	2.0	0.22	39	3.2	0.35
8	2.4	0.26	40	3.2	0.35
9	3.2	0.35	41	3.2	0.35
10	3.2	0.35	42	2.4	0.26
11	3.2	0.35	43	2.8	0.30
12	3.2	0.35	44	2.4	0.26
13	3.2	0.35	45	2.4	0.26
14	2.4	0.26	46	1.2	0.13
15	3.2	0.35	47	2.4	0.26
16	3.2	0.35	48	3.2	0.35
17	3.2	0.35	49	3.2	0.35
18	3.2	0.35	50	2.4	0.26
19	3.2	0.35	51	2.8	0.30
20	3.2	0.35	52	2.4	0.26
21	3.2	0.35	53	2.4	0.26
22	2.4	0.26	54	2.4	0.26
23	2.4	0.26	55	2.8	0.30
24	3.2	0.35	56	2.8	0.30
25	3.2	0.35	57	3.2	0.35
26	3.2	0.35	58	3.2	0.35
27	3.2	0.35	59	3.2	0.35
28	3.2	0.35	60	3.2	0.35
29	3.2	0.35	61	3.2	0.35
30	2.4	0.26	62	3.2	0.35
31	2.4	0.26	63	3.2	0.35
32	3.4	0.35	64	2.8	0.30

Table 7. Approximate axial elongation of tubes

and the	Burst 1	ocation	Burst		Burst 1	ocation	Burst
Simulator No.	Axial ^a (mm)	Angle ^b (deg)	length (mm)	Simulator No.	Axial ^a (mm)	Angle ^b (deg)	longth (mm)
1	374	115	14	33	213	100	25
2	179	158	12	34	243	55	19
3	343	200	26	35	225	350	31
4	337	180	23	36	200	305	17
5	338	190	23	37	265	0	36
6	266	180	24	38	456	45	21
7	268	180	21	39	219	290	29
8	189	238	8	40	383	295	21
9	190	120	13	41	217	102	24
10	329	173	22	42	208	100	31
11	203	144°	6 ^C	43	247	40	18
12	259	100	36	44	193	45	14
13	204 °	152°	9°	45	296	145	13
14	332	113	19	46	199	62	19
15	218	2 40	20	47	381	317	23
16	388	260	18	48	383	270	32
17	205	90°	140	49	236	50	14
18	202°	135°	6 ^C	50	213	45	14
19	346	80	24	51	235	57	14
20	349	318	16	52	391	45	14
21	302	95	37	53	238	355	38
22	304	315	17	54	301	315	21
23	278	5	40	55	322	333	17
24	328	275	23	56	401	310	18
25	313	90	25	57	234	45	7
26	259	60	13	58	317	0	27
27	256	45	20	59	392	350	25
28	227	75	30	60	387	350	22
29	309	45	24	61	389	315	15
30	285 °	270°	160	62	385	00	160
31	264	320	25	63	314	350	26
32	329	265	22	64	423	277	15

Table 8. Burst locations in B-6 test array

^aPosttest midpoint elevation above bottom of heated zone. The bottom of heated zone of the bundle (zero elevation) represents an average of all rods.

^bClockwise rotation looking down on top of bundle. Estimated angle of rupture initiation.

^CBurst probably initiated at thermocouple attachment.

Table 9. Geometric parameters of B-6 section at 32.4-cm elevation

PHOTO	IDENTIFICATION	5851-86	32.4 CH	LLEVATION						and the second second	
TUBE	(R BH + + 2)	IS APEA	WALL AREA O	U PERIMETER	10 PERIMETER	OD CX	OD CY	IDCX	10 04	OD STA	10 STR
1	191.62868	140.30536	21.2:332	45.14728	42.05552	15.46815	134.33694	15.57706	134.22527	31.6	38.7
5	131.96893	104.63988	21.62509	39.90234	36.31679	29.06686	134.38882	29.08669	134.35973	16.3	19.8
4	136.68921	115.56116	21.12811	41.56618	38.20415	58.02293	134.32909	43-31143	134.258.4	18.8	23.7
2	\$37.06032	116.04799	21.01233	41.50141	38.26468	72.84431	133.86099	72.8+996	133.81866	21.2	26.2
7	119.41550	98.40500	21.17886	35.60107	36.06464	86.61870	133.32288	80 . 62332	133.25716	15.4	18.9
6	140.43996	119.04376	20.89618	42.06917	36.82187	114.61507	133.90089	114.56993	133.86841	22.6	28.0
16	192-71674	171.97990	22.10504	40.20494	36-57664	15.34716	119.58307	15.39391	119.57236	17.2	20.6
11	132.73587	112.08543	20.65044	40.89355	37.59297	43.03249	119.75520	43.04132	119.73409	19.2	24.0
13	155.03812	133.28777	21.75035	44.24336	11.06497	57.49654	119.46680	57.54466	119.46840	28.9	35.4
14	195.91342	174.55612	21.35730	47.4440!	45.18826	87.44810	118,12050	87.59218	119.03853	19.7	24.3
16	133.95645	113.12385	20.83250	41.08255	37.75992	101.64374	119.384.38	101.62775	119.36491	19.7	24.5
17	134.73566	113.34767	21.38799	41,15003	37.76746	114.80000	119.22762	114.71251	119.160 3	21.8	26.7
18	128.42789	107.24644	21.18144	40.23009	36.76123	28.89478	105.60609	28.92561	105.58775	17.2	21.2
20	142.54773	121.68250	20-86523	91.92379	30-17868	41.81956	105.40535	41.86632	105.41013	20.7	25.9
21	147.15279	126.01524	21.13754	43.08522	39-87413	12.30794	105.64984	72.40680	105.63771	25.6	31.5
23	135-55624	114.52206	21.08931	41.34898	37.99355	87.47925	194.03828	87.43518	104.03284	20.5	25.7
24	206.63055	165.82161	20.62674	43.34898	40.91692	113.71194	104.85123	113-47842	104.85124	20.4	24.9
204	152.44992	131.05060	21.39932	42.22270	39.31381	15.29537	91.21.46	15.40452	91.28267	23.1	29.7
27	132.82127	111.778.1	21.04317	40.89555	37.52657	43.71538	91.20354	43.71735	91.71159	25.8	31.6
28	154.71552	133.03450	21.68102	44.15356	90.93643	58.15508	89.92941	28.24033	89.97807	28.7	35.0
30	126.51350	106.54564	21.96826	40.221972	36. 92398	71.89186	90.40053	71.96950	90.43796	23.2	28.4
31	157-16176	136.02995	21.13101	44.76183	41.63809	100.66569	90.00391	100.66585	90.02037	30.5	37.3
34	1 -0 - 5 3963	169.16193	20.60982	41.55592	38.89577	114.11105	89.73323	113.88966	89.12099	21.1	20.3
34	140.16090	118.90912	21.25179	42.03032	38.68810	28.86002	77.20743	28.90675	77.22566	13.5	16.3
35	130.73169	106.86876	21.86313	40.56447	37.03946	43.29941	75.87909	43.29803	75.89584	16.2	22.2
27	131.83054	110.47624	21.35429	40.73790	37.20333	72.19736	75.64156	72-21191	75.89687	23.4	29.0
38	133-16641	111,91336	21.25305	40.95004	37-53156	86.49147	76.08330	86.48006	76.09128	19.4	23.8
40	131.26660	110.30342	20.96318	40.65031	37.26941	115-04047	75-81056	100.72481	75.97566	20.5	25+2
41	122.26163	100.04321	22.21841	39.23679	35.51109	15.41688	62.27577	15.40916	62.29608	14.4	17.1
43	134.23029	112.70605	21.52423	41.12356	37.68315	29.17728	62-14168	29.22955	62.13196	18.0	22.2
44	128.35321	106.62939	21.72302	40.22069	36.65315	51.57036	61.00363	50.62469	61.83055	17.2	20.0
45	156-19794	134.35376	21.82860	41.65289	38.22185	71.82028	61,69136	71.81926	61.64142	21.4	26.0
47	130.72916	109.43512	21.29404	40.50693	37.10497	100.98250	61.83730	100.93617	62.69305	29.4	35.6
48	124.40904	162.57271	21.83633	37.61198	35.94147	115.15363	61.61343	115.10735	61.60513	15.4	18.5
50	129.34180	167.64009	21.70171	40.38144	36.82797	29.22691	47.59082	15.54626	47.61774	18.1	21.3
51	132.35402	110.96310	21.39091	40.83385	37.36155	43.20937	47.08422	43.22285	47.89897	19.0	23.3
24	131.81027	107.07653	22.01971	40.42467	15. 14 255	57-96173	47.98424	57.98270	48.00325	17.8	21.2
54	164.55234	142.76860	21.76353	45.50768	42.42 77	86.79564	48.15230	86.82025	48.23947	18.9	39.9
55	174.91637	154.08663	20.83574	45.42392	43.57:10	100.82535	48.80339	100.77444	48.91701	35.3	43.7
57	132.04005	111.19130	21.64955	40. 49978	37.42587	15.63409	32.79013	15.63753	32.80127	19.2	15.7
28	192.75916	170.23776	22.52139	43-94576	40.75677	29.253#1	34.39529	29.247.9	34.62762	26.6	34.4
60	128.92064	107.25394	21.66670	40.27650	36.73332	58.28053	33.45010	43.78925	33.59091	22.4	27.5
61	129.16798	106.89546	22.27252	40.32207	36.68222	73.00739	33.34834	72.98438	33.40448	17.5	21.0
63	174-16200	151.83392	22.32808	40.49225	36.92380	86.53954	3.25705	86+52907	33.31096	18.0	21.8
64	147.66022	125.66623	21.99399	43.10246	39.76599	115.00237	33.11078	114.97015	33.14435	25.6	31.1

Table 10. Circumferential strain values (%) in 8-6 tubes (Burst strains are underlined)

*********	******	*****	*****		*****	*****	*****	*****	*****		*****	*****	*****	******	*****	*****
ZLEVATION			****	C	IRCUME	ERENTI	AL STR	AIN OF	TUBE	NO. (8)					
(CM)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0.0	8.6	1.1	41.8	0.7	11.2	0.0	0.6	0.1	0.6	0.7	0.6	0.1	-0.2	0.3	0.4	
1.5	2.0	1.8	2.3	1.7	1.4	1.8	1.4	1.3	1.8	2.0	1.8	1.2	1.8	1.5	1.0	1.1
3.0	3.1	3.1	3.0	2.4	2.8	2.8	2.1	2.3	2.9	3.8	3.4	3.2	3.3	3.2	2.4	2.4
4.5	3.8	3.4	3.3	3.1	3.0	2.6	2.4	2.5	3.1	4.9	4.9	4.7	4.5	4.1	3.4	2.2
6.0	5.7	4.8	4.5	3.7	5.1	4.9	4.2	4.6	4.9	6.6	6.4	6.5	6.3	6.1	5.1	3.3
7.5	6.5	5.7	5.7	4.8	6.5	5.2	4.7	5.8	4.3	6.5	6.7	6.7	6.7	6.6	5.2	3.9
9.0	5.4	4.7	4.9	4.3	5.0	3.9	3.9	4.5	4.0	5.8	5.8	5.9	4.9	5.5	5.1	3.1
11.6	6.6	6.4	6.3	5.5	6.7	5.5	5.5	6.8	6.3	7.5	7.9	7.6	7.4	7.3	6.7	4.8
13.2	10.1	8.0	7.8	6.0	7.3	6.4	6.9	8.5	10.2	11.7	11,3	11.7	10.6	10.9	9.3	6.3
14.7	17.4	11.5	11.6	8.4	10.0	8.2	8.0	12.6	14.0	15.5	15.0	15.0	13.4	14.3	12.2	8.7
10.1	18.4	14.5	15.5	10.0	13.1	9.9	10.3	20.1	13.3	19.0	16.9	17.6	15.5	16.2	13.3	8.8
19.0	21.0	23.0	24.3	12.5	17.1	14.3	15.7	30.6	15.5	25.1	21.3	21.3	18.7	18.7	15.6	8.5
20.3	23.2	19.0	10.9	12.2	10.1	10.0	16.0	4/.3	42.9	30.0	24.0	24.3	22.1	19.7	17.4	9.7
21.8	28.3	11.5	11.0	9.3	13.4	10.7	12.7	30.1	16.6	20.4	20.1	24.9	20.9	20.0	22.1	14.0
23.2	31.9	11.6	11.4	9.0	12.7	10.4	12.3	15.5	12.9	19.9	18 6	24 1	20.6	21.0	22.9	10.1
24.6	18.5	11.9	13.5	12.0	16.3	13.8	15.6	18.3	10.7	10.0	20.8	32.0	21.6	25.7	22.2	0.3
26.1	16.6	12.3	14.3	14.5	21.1	28.4	32.2	34.2	12.5	18.4	22.8	32.1	19.9	25.0	21.1	13.3
27.5	17.0	12.2	13.0	12.8	17.3	24.3	28.7	35.3	14.2	18.9	22.1	26.1	18.1	22.1	20.5	19.4
27.9	14.8	9.8	10.5	10.3	14.5	15.8	19.5	31.7	11.8	17.1	20.4	22.9	16.9	21.6	20.1	18.3
29.5	18.8	11.4	10.5	9.2	11.6	10.0	11.8	33.1	11.6	18.7	20.4	21.9	16.2	19.8	18.2	13.2
31.0	25.9	15.2	14.8	12.7	15.2	11.6	12.0	30.9	13.7	21.9	21.4	26.7	18.3	22.8	19.6	18.8
32.4	31.6	16.3	18.81	21.1	21.2	15.4	13.1	22.6	17.2	26.9	19.2	28.9	19.7	38.3	19.7	21.8
33.8	32.1	16.4	30.5	24.7	31.3	18.7	14.6	22.0	16.1	26.2	17.9	27.2	20.4	46.9	19.1	14.9
35.2	28.3	16.7	29.5	16.9	20.1	12.4	12.0	18.0	13.0	21.3	17.7	23.0	19.9	27.8	16.8	10.6
37.0	49.4	14.0	13.6	10.1	12.1	9.7	9.5	22.2	14.6	19.1	15.6	19.8	16.8	19.9	15.1	14.7
38.4	38.1	11.7	11.0	9.4	12.3	10.3	9.9	19.5	15.3	17.9	14.9	19.6	16.6	18.6	15.1	23.6
39.8	31.3	13.4	13.6	12.4	16.1	13.2	13.1	22.6	14.0	17.8	15.3	21.1	17.1	18.4	15.6	21.0
41.8	26.0	14.1	14.3	12.7	18.7	16.4	16.1	17.7	11.6	16.8	15.5	20.9	16.6	17.9	16.0	10.9
43.0	13.0	11.7	11.0	9.0	14.0	13.3	14.1	16.1	8.3	15.7	15.6	17.7	15.9	18.1	16.4	11.4
45.0	10.0	10.2	9.8	0.7	10.4	9.1	9.0	11.1	7.7	14.1	14.3	15.9	13.9	16.6	14.7	8.6
40.9	12 0	10.0	11.5	0./	10.7	9.1	8.8	10.5	7.8	13.7	14.3	15.1	13.0	16.3	13.7	9.5
50.0	15 4	0.9	0.1	7.0	0.5	9.9	10.4	13.9	9.1	14.0	14.1	15.4	12.9	15.7	13.9	11.3
51.6	17.2	11.5	10.9	9.3	10.5	0.2	0.3	12.0	10.5	13.5	12.8	14.3	12.2	15.0	12.5	9.8
53.2	17.5	11.2	11.4	8.8	12 2	8.9	9.3	9.3	10.5	12.2	12.0	14.1	12.9	13.9	12.4	8.2
54.8	19.5	11.2	10.9	8.7	11.6	8.6	8.2	9.4	31.0	12.0	16.9	13.4	12.1	13.2	12.0	8.0
56.5	13.2	9.0	8.9	6.7	9.6	7.5	7.8	12.3	9.4	12.4	11.3	12.2	11.0	13.1	11.7	7.2
58.2	17.1	9.3	9.2	7.1	9.2	7.1	7 9	10.9	0.3	11.7	10.7	10.0	10.2	11.0	10.3	7.2
60.0	14.1	7.7	7.2	5.7	8.5	6.8	7.1	11.5	7.7	8.9	8 5	8.8	8 4	9.0	10.3	6.7
61.7	10.0	6.4	5.5	4.5	5.9	4.9	5.1	9.5	6.0	7.9	7.5	7.9	7.7	7.9	7.0	5.3
63.4	9.0	7.0	6.8	5.6	6.7	5.4	5.6	8.4	7.0	8.0	7.6	8.0	7.4	7.6	7.3	6.2
65.0	4.8	4.6	4.6	4.1	4.4	4.0	4.0	4.8	5.0	5.7	5.4	5.6	5.3	5.6	5.3	3.8
67.6	6.3	6.0	5.9	5.4	6.5	5.6	5.0	5.3	5.5	6.7	6.9	6.9	6.6	6.7	6.3	4.1
69.2	6.1	5.0	5.6	5.4	7.6	5.8	5.6	6.5	5.7	7.5	8.3	8.3	8.4	8.7	8.0	5.4
71.0	7.4	5.8	6.5	5.6	7.7	6.5	6.7	10.5	6.4	9.4	9.6	10.1	9.4	10.3	9.6	6.7
72.8	10.3	7.1	7.1	6.3	8.0	6.5	6.3	11.8	7.9	9.7	9.8	10.3	9.8	10.5	10.0	8.8
74.7	11.1	9.3	8.0	6.3	8.4	6.8	7.3	11.5	8.6	10.3	9.9	9.9	9.3	10.7	10.1	8.5
76.6	13.4	9.4	8.1	6.5	8.7	6.8	7.8	10.5	11.0	10.2	9.4	9.6	9.0	10.2	9.9	8.7
78.5	12.5	9.7	8.1	6.2	8.0	6.8	7.6	8.9	9.3	9.1	8.6	8.7	7.9	8.8	0.5	8.2
80.4	10.6	8.5	7.5	6.5	8.6	6.7	7.1	7.3	8.8	8.3	8.0	8.0	7.4	8.1	7.5	6.5
82.4	6.6	7.6	6.3	5.2	6.3	6.1	6.5	5.2	6.3	6.7	6.7	6.2	5.8	6.5	6.0	5.0
84.4	1.2	1.3	0.4	5.0	0.4	5.1	5.0	3.6	5.9	5.9	5.4	4.9	5.0	5.4	5.0	4.2
80.2	0.5	3.1	5.3	4.5	5.8	4.6	4.7	3.7	5.8	4.9	4.1	3.9	3.8	4.0	3.9	3.9
39.5	3.1	2.8	3.9	3.0	3.0	3.0	3.2	2.8	3.8	3.3	2.9	2.7	2.6	2.5	2.9	2.9
91.5	2 1	2.2	2 0	1 9	1 5	1 7	1 2	2.2	1.7	2.3	1.8	1.8	2.0	1.8	1.8	2.0
93.0	1.8	1.6	1.4	1 2	1.1	1 1	0.0	0.7	1.0	2.2	1.0	1 7	1.3	1	4.3	1.7
*********		*****					******	******		******	******	******	******	******	*****	******

Table 10 (continued)

*********	*****	*****	*****	*****	*****	******					******	*****	*****	*****	*****	*****
ELEVATION	1.7		10	20	21	22	23	24	36	26	27	30	20	20	33	32
(CH)	* 1	10	19	20	41	66	23	69	63	20	61	20	23	30	31	32
0.0	0.1	0.3	0.4	0.3	-0-1	-0.1	0.4	0.2	0.2	0.3	0.1	0.1	0.1	-0.3	0.1	-0.3
1.5	1.9	2.0	1.3	1.4	1.2	1.7	1.1	0.7	1.7	1.4	1.4	1.6	1.1	1.6	1.4	0.6
3.0	2.9	3.2	3.0	3.6	3.2	2.9	2.3	1.8	2.7	3.6	3.4	4.0	3.8	3.0	2.8	2.1
4.5	3.2	4.7	4.8	4.5	3.7	3.6	3.5	2.0	3.0	4.9	4.5	4.2	3.8	3.9	4.1	1.9
6.0	5.1	6.2	6.3	5.7	5.4	5.0	4.6	2.8	3.9	6.1	6.0	6.1	5.4	5.9	5.7	2.4
7.5	4.8	6.2	6.0	5.9	5.7	5.4	4.9	3.5	4.3	6.2	5.9	6.1	5.7	5.7	5.5	2.9
9.0	4.2	4.9	4.9	4.6	3.9	4.3	4.2	2.5	4.3	5.6	5.6	5.3	4.7	5.3	5.6	3.1
11.6	6.8	7.0	6.4	6.1	5.8	5.6	5.6	3.8	5.5	6.7	6.5	6.2	5.9	5.7	6.7	4.1
13.2	11.2	10.6	10.0	9.8	8.6	8.7	8.5	5.8	8.8	10.2	10.2	9.7	8.7	8.7	10.1	5.6
14.7	14.6	13.5	13.3	13.3	11.2	12.2	11.9	7.4	11.8	13.6	14.1	13.6	12.3	12.2	14.0	7.2
16.1	13.0	14.3	16.0	.15.7	12.5	13.5	12.9	6.2	10.4	15.1	17.8	16.3	14.8	13.9	15.9	7.6
17.5	13.5	15.6	21.1	16.9	12.7	15.3	15.0	8.1	9.7	17.3	22.3	18.5	17.8	16.5	19.3	9.6
18.9	18.9	18.1	29.5	17.3	13.2	16.5	16.2	10.0	13.2	19.2	26.4	20.3	20.1	18.2	21.3	10.7
20.3	31.3	26.3	28.8	17.5	13.8	17.6	18.1	13.4	19.4	20.9	28.1	21.6	21.4	18.1	21.9	11.8
21.8	21.8	22.8	26.4	18.4	14.3	16.9	18.5	16.2	21.2	23.0	25.8	28.9	20.8	18.9	24.8	13.2
23.2	15.4	21.3	21.9	19.0	14.1	17.3	17.9	15.3	14.1	22.8	22.0	31.4	20.8	19.7	28.4	10.1
24.0	12.1	22.1	20.2	19.3	15.0	18.9	21.4	12.8	11.7	25.4	28.1	24.0	22.5	21.5	33.4	10.0
20.1	10.9	42.0	20.5	18.1	17.5	20.1	28.7	14.2	15.7	32.0	30.4	21.2	21.0	20.0	42.1	19.1
27.5	23.0	23.0	19.3	10.7	19.5	22.0	31.9	10.9	23.2	20.0	20.0	20.2	22. 0	25.2	40.5	11 6
20.5	23.0	10.5	17.6	17.3	26 6	22.1	30.3	19.9	10 3	22.3	10.1	21 6	22.5	20.4	27.1	8.0
23.3	10 5	10.5	10 4	20.3	20. 3	20.1	29.9	15.0	26.2	22.9	10.0	24.0	26 A	10 0	27.2	13.2
32.4	20.0	17.3	20.7	23.5	25 6	20.0	20.4	26.3	20.2	24.0	19.0	29.7	23.3	17.2	30.5	21.1
33.9	16.0	17 2	25.9	40.5	21.7	17.4	10.3	21 7	12.9	22.0	10 0	20.5	19.0	16.3	29.5	21.9
35.0	13.7	17.7	24 9	40.5	10.0	19.0	20.0	11 4	12.3	20 2	21.7	25.1	18.0	18.3	26.9	12.1
37.0	16.8	17.4	17.8	26.7	16.4	15.0	17.6	13.0	14.5	17.3	20.4	19.0	15.8	18.3	21.6	12.0
38.4	17.4	17.1	16.9	21.7	14.8	15.5	17.9	14.7	13.3	16.9	18.2	18.0	14.7	20.5	20.0	13.0
39.8	16.1	16.4	17.7	19.1	14.9	15.2	16.8	13.0	13.4	16.2	16.9	17.0	15.0	21.9	17.6	10.4
41.8	12.6	14.7	15.8	17.3	13.9	16.4	15.0	9.0	11.6	14.7	15.0	15.1	14.4	20.0	15.3	7.4
43.6	9.6	14.0	15.3	18.4	14.0	14.6	16.0	10.8	10.2	14.0	14.6	15.4	15.1	18.0	16.2	8.5
45.3	9.5	12.8	14.8	18.9	13.0	13.5	18.3	10.8	8.8	12.9	13.5	14.8	14.2	17.2	17.2	10.0
46.9	9.0	13.1	13.6	18.4	12.9	13.3	22.1	12.2	8.3	13.1	13.0	14.2	13.3	16.5	17.7	10.7
48.4	11.8	13.9	13.2	17.4	13.3	13.4	22.6	13.4	10.4	13.0	13.3	14.3	13.4	16.1	18.3	11.2
50.0	11.8	13.2	12.4	15.3	12.2	11.9	17.2	12.9	10.0	12.6	12.9	13.0	12.1	13.6	16.5	11.3
51.6	11.2	13.1	12.5	13.6	12.2	12.1	14.9	11.9	10.2	12.6	12.2	12.5	11.8	13.6	16.4	11.2
53.2	10.2	12.1	11.8	12.1	11.1	11.5	13.2	12.2	9.4	12.3	11.5	11.4	10.8	12.3	15.0	10.9
54.8	12.4	12.1	11.6	11.8	10.6	11.0	12.4	11.3	11.8	12.2	11.1	10.8	10.5	11.3	14.3	10.9
56.5	11.1	11.6	11.4	10.9	9.8	10.5	11.4	9.3	12.6	11.7	10.6	10.1	9.9	10.6	13.2	10.2
58.2	10.5	10.3	9.9	9.7	9.0	9.1	10.1	8.2	10.7	10.5	9.8	9.2	9.0	10.0	11.3	8.4
60.0	9.1	8.0	7.7	7.2	7.0	6.8	7.9	6.4	8.0	8.0	7.6	7.0	7.0	7.4	9.0	5.0
61.7	6.5	7.2	7.5	6.9	6.2	0.2	6.9	4.8	5.5	7.6	6.8	6.4	6.5	7.0	8.2	4.3
63.4	7.6	7.4	1.3	0.7	0.0	0.5	1.2	0.5	0.5	7.5	0.0	6.0	0.7	0.9	8.1	5.8
65.0	4.9	5.0	9.0	9.4	6.0	9.0	4.0	9+1	4.3	2.1	4.1	9.0	4.3	9.2	7.2	3.0
60.2	6.6	7.1	7 3	7.6	7.0	6.2	7.9	5.0	6.2	9.3	7.7	5.0	7 1	7.6	9.2	4.9
71.0	0.0	0.4	0.0	0.7	9.0	7 9	0.1	6 6	0.2	0.2	0.6	0.3	0 4	0.1	11.2	6.4
72.0	0.2	10.2	0.0	0.0	0.0	9.7	9.6	0.0	0.0	10.5	0.0	9.0	0.0	10.1	12 3	8.8
74.0	10.5	10.2	9.3	0.1	0.0	0. /	0.0	0.9	10.0	10.0	0.4	0.5	0.5	0.7	12.3	9.1
74.1	10.5	10.1	0.9	9.1	7.6	0.4	9.9	7.6	0.0	10.3	0.4	0.0	0.0	9.9	11.6	7.0
70.0	9.5	8.5	7 3	7.2	6.0	6.6	7.3	7.5	8 4	8.2	7.8	7 1	6.3	7.1	9.4	7.2
80.4	10.1	7.6	6.8	6.9	6. 1	6.4	6.6	6.3	7.2	7.6	7.2	6.6	6.4	7.0	8.2	6.2
82.4	8.2	6.1	5.2	5.3	4.9	4.7	5.4	4.8	6.1	5.9	5.8	4.9	4.9	5.5	6.4	4.5
84.4	6.0	5.7	4.8	4.0	3.8	4.0	4.7	4.5	6.1	5.6	4.6	4.1	4.0	4.6	5.6	3.8
86.2	6.0	4.3	3.6	3.5	2.9	3.0	3.3	3.9	5.2	4.0	3.6	3.1	3.3	3.2	4.0	3.3
88.0	3.8	3.0	2.6	2.2	2.3	2.2	2.2	2.7	3.0	3.0	2.3	2.0	2.2	2.0	2.5	2.9
89.5	2.8	2.4	1.7	1.2	1.4	1.5	1.5	1.8	2.5	2.4	1.5	1.3	1.8	1.4	1.6	1.7
91.5	2.0	1.6	1.4	0.8	0.7	0.5	0.9	1.2	1.8	1.2	1.3	1.0	1.1	0.6	0.7	0.9
93.0	1.9	1.7	1.6	0.8	0.8	0.5	0.7	0.8	1.7	1.4	1.2	0.9	0.9	0.7	0.5	0.8
*********							******						******		*****	

Table 10 (continued)

*********	******	*****	*****	******	*****	*****	******	*****	*****	*****	*****	*****	******	*****	*****	*****
ELEVATION	12	2.4	26	36	27	1 KCUM	20	AL STR	ALN UP	TUBE	NU. (1	\$)	45	46	47	40
(CM)	33	24	35	20	31	30	23	40	47	46	43	44	43	40		40
0.0	0.3	0.4	-0.0	-0.2	-0.3	-0.5	-0.6	0.1	0.7	1.4	1.0	0.6	0.7	0.5	0.6	0.9
1.5	1.8	1.8	1.9	1.7	1.5	1.2	1.6	1.7	2.4	2.3	1.9	2.0	1.9	1.4	1.1	1.4
3.0	2.5	2.6	2.4	2.5	2.6	2.2	2.0	1.8	2.0	2.7	2.8	2.5	2.5	2.1	2.1	1.6
4.5	2.7	3.9	3.9	3.6	4.4	3.9	3.4	2.0	2.8	4.2	4.7	4.3	4.4	3.8	3.2	2.6
6.0	3.6	5.2	5.1	5.2	5.4	5.5	4.4	2.7	3.3	5.2	5.6	5.7	5.4	5.0	4.3	3.6
7.5	3.8	5.3	5.3	5.9	6.1	6.2	5.0	3.8	4.4	6.2	6.6	6.5	6.5	6.0	5.6	4.8
9.0	3.6	5.2	4.9	4.9	5.1	5.8	4.5	3.1	3.2	4.7	5.2	4.3	4.8	4.7	4.2	2.6
11.6	5.2	6.2	6.4	6.5	5.8	6.2	5.9	4.6	4.8	6.2	6.8	6.3	6.1	6.6	5.6	4.8
13.2	8.6	9.7	9.5	10.1	9.0	9.4	8.4	5.5	8.3	10.2	11.1	9.9	10.1	10.3	8.4	5.9
14.7	12.0	13.0	12.8	13.5	13.6	13.2	12.4	7.1	10.8	13.2	13.9	13.7	14.0	14.5	11.3	7.9
16.1	12.9	15.0	16.0	17.1	18 2	15.7	14.11	8.6	10.8	15.1	16.2	17.5	17.6	17.8	12.3	9.8
17.5	10.2	16.2	20.0	21 2	23.0	18.0	16.3	0.0	10.2	17 7	18.6	22.5	19.8	21.3	12.9	9.9
18.9	12.9	10.8	26.1	33.0	26.0	21.7	19.3	0.3	12.0	24 7	20.2	32 0	21 4	27 4	13.3	8 6
20.3	25.0	22.9	28.5	19.4	21.4	24.3	22.5	10.7	21 1	42 5	21.0	12.5	24.5	29.0	14.1	10.2
21.8	27 0	24.5	30.7	28 7	20.8	24 2	26 5	13.1	22.2	35 0	22 6	25 4	24 4	22 4	14.2	11.7
23.2	14 5	35 7	A1 6	22.1	21.7	25 2	27 1	15 6	10 2	33.0	25.0	23.4	22 0	10 0	12 7	10.1
24 6	12.2	26 7	26	21 0	22.0	23.6	27.1	12 0	15.4	23.3	23.0	23.9	23.3	19.0	13.7	0.1
26.1	15 6	22.0	20.0	21.0	23.9	23.0	20.7	13.0	17.4	20.1	34.3	21.1	29.1	19.3	13.1	0.9
27 5	16 6	23.0	24.0	21.0	31.0	20.0	20.7	13.0	17.1	20,1	27.0	20.1	20.0	22.0	14.3	11.0
27.0	10.0	10 1	10.3	10.0	31.9	20.9	22.2	13.1	17.1	20.9	22.2	20.1	20.7	22.9	13.0	12.0
20 5	10.2	10.1	17.6	22.0	20.1	20.3	22.2	13.4	13.2	10.2	23.4	10.2	20.0	24.1	14.0	11.0
23.0	10.5	20.2	17.6	26.3	10.0	19.0	21.3	11.0	11.2	18.4	22.2	18.2	39.1	29.8	18.0	12.0
22.4	12.5	20.3	1/.0	20.3	19.0	19.9	6201	10.0	16.6	17.8	20.5	17.8	20.5	20.1	19.3	14.0
33.9	13.3	22.3	10.4	23.4	10.1	19.4	20.5	18.5	14.4	18.0	19.9	17.2	21.4	29.4	18.3	15.4
33.8	11.9	21.3	10.9	20.0	17.1	19.8	19.1	21.4	13.5	18.3	18.6	16.2	18.8	24.8	17.0	13.5
35.4	12.9	21.7	11.1	21.5	18.3	22.9	18.2	19.0	15.8	20.3	19.2	18.4	20.5	21.7	17.6	10.3
37.0	12.4	18.3	17.2	22.8	17.5	21.4	10.2	22.6	13.2	17.9	18.7	17.3	21.6	20.7	20.5	20.2
38.4	9.9	16.1	17.3	22.8	16.4	29.1	16.3	29.4	11.0	16.4	20.1	16.6	22.1	21.0	21.1	22.7
39.8	10.0	15.2	17.3	20.6	17.1	23.0	15.4	17.8	11.1	15.9	19.0	17.1	21.0	19.9	19.0	20.5
41.8	9.0	13.4	16.4	16.8	15.5	20.1	12.7	9.2	10.9	14.1	16.5	14.6	19.3	16.7	14.5	11.3
43.6	7.5	13.4	15.7	15.3	15.0	23.4	12.6	10.2	8.6	13.4	15.4	14.2	18.6	15.3	14.1	9.6
45.3	5.9	12.3	14.0	13.7	14.6	31.2	12.5	9.6	6.8	11.7	13.8	13.0	16.6	14.5	12.4	8.8
46.9	6.5	11.9	13.0	13.1	14.5	23.8	11.9	7.9	7.1	11.9	13.3	12.0	15.6	13.7	11.8	8.3
48.4	8.0	12.1	12.5	13.4	14.2	20.0	11.5	7.3	9.7	12.3	13.1	12.7	16.5	14.2	11.6	7.0
50.0	7.2	11.4	11.1	12.0	12.5	16.2	10.9	7.1	8.5	11.9	12.7	10.9	15.1	12.3	11.4	7.3
51.6	8.5	12.2	11.5	12.4	12.6	15.5	11.8	7.7	11.0	12.4	13.0	11.0	14.5	13.0	11.4	7.6
53.2	7.9	11.3	11.0	11.7	12.2	14.7	11.3	7.7	11.4	12.1	12.3	10.6	13.3	12.7	11.5	9.4
54.8	9.2	11.2	10.4	11.1	11.3	13.7	11.0	9.0	11.0	10.8	11.0	10.0	11.7	11.4	10.3	8.3
56.5	8.2	10.3	9.4	9.8	9.6	11.7	9.2	10.1	8.2	9.3	9.9	9.0	10.4	10.1	8.7	7.8
58.2	8.3	9.9	9.0	8.8	9.1	11.2	8.6	9.6	8.5	9.2	9.4	8.9	9.7	9.1	8.0	6.4
60.0	6.3	7.5	7.2	7.2	7.1	8.6	6.8	5.6	8.1	8.0	7.6	7.4	8.5	7.5	7.0	5.6
61.7	4.6	6.8	6.7	6.8	6.5	7.7	6.3	5.7	5.0	7.0	6.8	6.4	7.0	6.5	5.8	5.9
63.4	5.3	6.3	6.0	5.9	6.0	6.9	5.9	5.0	5.3	6.2	6.1	5.9	6.1	5.8	5.6	4.9
65.0	3.6	4.6	4.3	3.9	4.0	4.7	4.3	3.9	3.6	4.8	4.4	4.1	4.3	4.2	4.4	3.2
67.6	4.9	6.4	5.4	5.1	5.0	5.7	5.3	4.5	5.6	6.8	6.4	5.7	6.0	5.7	6.1	5.0
69.2	6.0	8.0	7.3	6.9	6.8	7.9	7.0	5.0	6.4	7.4	7.8	6.9	7.4	7.0	6.9	5.3
71.0	6.3	9.8	8.9	8.3	8.1	9.7	8.6	7.8	6.7	9.0	9.6	8.2	9.0	8.4	8.3	7.6
72.8	8.2	10.9	9.2	9.0	9.0	10.6	9.5	8.9	8.9	9.6	9.4	8.1	9.7	8.7	8.3	7.3
74.7	9.7	10.6	8,6	8.7	8.3	10.2	9.8	8.7	10.3	9.5	9.2	7.7	9.3	8.7	8.3	9.0
76.6	8.2	10.1	9.1	8.7	7.8	9.7	9.6	8.0	9.3	9.1	9.1	8.0	9.2	8.5	8.6	9.0
78.5	6.5	8.4	7.6	7.1	6.5	7.9	7.8	8.7	9.0	8.5	8.4	7.6	8.0	7.8	7.8	9.5
80.4	5.8	7.3	7.0	6.8	6.6	7.7	7.0	7.5	9.2	8 1	7.0	7.2	7.2	7 2	7.1	8 7
82.4	5.1	5.9	5.3	5.5	5.0	5.8	5.2	6.0	7.7	6.5	6 1	5 6	57	5.6	5 7	6.5
84.4	6.0	5.4	4.5	4.4	4.3	4.7	0.0	5.2	6.0	5.5	6.0	4.0	A 6	4.2		5 3
86.2	4 5	3 7	3.6	3 6	2.2	3.2	2.2	4 5	6 3	4.4	8.0	2.6	1.5	2.7	2.2	5.1
88.0	2.5	2.4	2.5	2.2	1.9	1.9	1.6	3.1	3.6	3.9	3.0	2.0	2.7	2.7	2.5	3.3
89.5	2.3	1.9	1.0	1.6	1.5	1 4	1.6	2 2	2.0	2.4	1.0	1.0	1 7	4.3	1.5	3.3
91.5	1.5	1.3	1.2	0.8	0.9	0.2	0.6	1.2	1 2	1.4	0.9	1.0	0.0	2.3	0.0	1.7
93.0	1 0	1 4	1 1	0.0	0.9	0.2	0.0	1.0	2.0	1.4	1.2	1.9	0.9	0.4	0.8	1.2
33.0	4.7			0.7	0.0	0.3	0.0	1.0	1.0	1.0	4+3	4+3	4 . 4	0.1	0.8	1.3

Table 10 (continued)

*********	******	*****	*****	******	*****											
ELEVATION						CIRCUM	FERENT	IAL ST	RAIN O	F TUBE	NO. (8)				
(CM)	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
0.0	0.8	0.7	0.9	0.7	0.7	0.6	0.3	0.3	0.8	0.7	0.9	0.7	1.2	0.5	0.0	
1.5	2.2	2.1	1.4	1.4	1.2	1.5	1.4	1.9	1.9	1.8	1.7	1 4	1.4	0.0	0.9	0.7
3.0	2.2	2.7	2.9	2.4	2.4	2.4	2.2	2.1	2.2	1.0	1.9	1 7	1.0	1.1	1.0	1.1
4.5	3.0	4.2	4.5	4.2	3.9	4.3	3.9	1.9	2.9	2.6	2.9	2.6	2.7	1.9	1.4	1.7
6.0	3.6	4.9	5.4	5.2	5.0	5.8	5.1	2.8	4.7	4 6	4 3	2 . J	2.1	1.1	2.0	1.0
7.5	4.5	6.2	6.7	6.6	6.3	6.9	6.2	4 1	5 1	5 3	4.2	4.4	3.0	2.1	3.2	3.4
9.0	3.1	4.9	4.7	5.0	4.2	5.3	4.9	2.7	3.5	3.3	4.1	4.0	9+1	3.7	4.6	4.8
11.6	4.8	6.7	6.4	6.4	5.8	7.5	6.9	4.1	5.3	5.2	3.0	3.1	3.1	2.5	3.0	2.7
13.2	8.6	10.2	10.1	10.0	9.5	11.2	10.8	6.1	0.0	9.3	6.0	4, 5	4.0	9.2	4.7	5.1
14.7	11.2	12.7	12.8	12.7	12.3	15.1	14.0	7.8	10.7	9.0	6.0	7.4	0.0	0.0	1.1	1.9
16.1	9.9	13.3	13.6	13.5	13.1	17.0	15.8	7.7	10.6	10.3	8.0	6.2	7.0	0.3	9.0	11.8
17.5	11.8	16.1	15.9	17.4	16.1	21.3	17.8	8.3	15.4	14.8	11 3	11 0	1.9	8.3	11.2	13.6
18.9	14.6	17.2	16.3	18.9	16.7	21.6	17.1	6.3	21.7	14.0	11 3	12.2	11.0	11.5	13.2	15.0
20.3	18.9	21.0	18.0	19.3	18.9	20.9	17.0	7.0	20. 2	12 7	11.4	12.2	11.3	10.0	11.4	13.0
21.8	23.3	22.0	22.0	18.4	24.6	21.4	17.7	10.2	10 6	12.1	11.9	13.6	11.1	8.5	10.3	15.0
23.2	32.2	20.0	33.5	16.4	28.1	24.0	16.9	7.7	38 0	14 4	12.5	11.0	11.3	10.2	13.0	18.2
24.6	24.9	19.0	26.7	15.9	29.0	27.1	11.7	6 1	24 6	16.3	12.0	12.1	12.4	11.0	13.4	14.7
26.1	20.9	17.2	18.4	14.9	21.6	26.3	18.1	8.3	16 2	10.3	13.2	13.0	13.2	10.5	11.5	10.6
27.5	19.5	16.4	17.8	15.4	18.5	27.9	19.1	10.2	16.3	19.2	10.1	10.7	9.8	8.1	10.1	13.6
27.9	16.5	14.3	15.9	14.2	17.2	28.3	19.9	9.6	14 6	11. 3	9.9	10.2	10.2	9.0	12.4	19.3
29.5	13.7	16.3	17.6	16.7	18.9	42.2	23.8	11 5	10 0	17.0	0.0	0./	9.2	9.0	12.4	19.8
31.0	14.8	17.2	19.2	17.5	18.7	42.9	28.6	15.0	10 1	20 4	13.9	13.3	13.8	13.2	17.3	28.2
32.4	18.1	17.7	19.0	17.8	18.9	32.9	35.3	13.5	19.1	29.4	22.4	17.1	17.9	10.1	24.1	33.6
33.8	18.9	17.9	16.8	16.3	18.5	27.5	24.2	0 4	16 1	20.0	64.9	17.9	11.5	18.0	24.4	25.6
35.2	19.1	19.0	17.1	17.5	18.9	24.9	23 2	11.0	17.6	10.9	14.0	12.0	12.9	14.5	16.2	16.3
37.0	17.2	17.1	17.0	20.1	19.7	24.1	24.0	15.0	15.2	17 1	16.0	11.0	12.1	12.6	15.0	15.0
38.4	13.7	16.2	17.5	27.1	19.4	23.4	22.4	17.3	14 4	20 2	10.9	17.0	18.3	17.6	19.4	20.3
39.8	13.6	16.1	17.0	23.8	18.1	22.2	20.9	21.0	14 0	17 6	31.0	20.1	30.9	25.1	18.0	23.0
41.8	13.2	15.2	14.5	17.4	15.0	18.2	17.3	15 0	19.5	17.0	31.5	23.4	24.3	16.7	15.9	25.0
43.6	10.4	14.1	13.9	15.5	13.5	16.9	16.7	12.0	10.0	17.1	10.1	13.7	14.1	14.7	18.4	38.7
45.3	8.3	11.8	12.3	13.3	12.2	15.6	15.4	11.0	0.7	42.1	10.1	9.1	9.8	10.4	16.6	32.6
46.9	9.1	11.7	11.7	12.4	11.8	15.5	15.2	11 4	13.4	3.2	7.0	1.3	7.8	7.6	12.2	22.8
48.4	12.4	12.5	11.6	12.7	12.1	15.4	15.4	11.6	16.2	12.0	0.3	0.7	8.1	8.6	13.0	19.6
50.0	11.3	11.8	11.2	12.3	11.0	15.1	14.7	11.6	17 1	12.5	9.6	7.1	9.0	9.4	13.6	19.4
51.6	12.6	13.2	12.2	13.2	11.6	15.3	14.6	11.4	20.7	10 4	12.0	1+3	6.0	8.2	11.8	16.9
53.2	13.6	13.2	12.0	13.1	11.3	14.5	14.1	11.1	21.7	17.2	13.0	11.1	12.0	10.8	14.6	15.5
54.8	12.8	11.9	11.3	12.5	10.9	13.6	13.5	10.0	10 7	15 3	12.0	11.5	11.3	10.6	13.3	12.7
56.5	9.6	10.7	9.7	10.5	9.3	12.4	12.2	7.4	11.0	13.5	13.9	12.0	10.9	9.2	11.3	12.7
58.2	10.0	9.9	9.4	9.4	8.8	11.8	11.1	8.2	12.4	44.0	44.7	10.9	10.5	9.8	11.9	13.0
60.0	10.0	8.5	7.8	7.9	7.1	9.5	9.0	7 7	12.4	9.1	6.0	8.0	8.5	8,6	10.9	12.2
61.7	6.7	7.4	6.6	6.7	5.9	8.2	7.3	6.1	0 6	9.3	0.0	0,0	5.5	4.9	8.3	9.2
63.4	6.7	6.7	5.9	6.3	5.9	7.5	6.7	5 2	0 7	7.0	1.0	0.2	5.4	4.5	5.7	5.5
65.0	4.3	5.1	4.4	4.5	4.4	5.2	4.8	3 9	5 7		0.2	0.0	D . /	5.2	5.8	5.1
67.6	6.0	7.5	6.3	6.2	5.6	7.1	7.2	4.0	6 2	2.2	2.3	9 /	4.5	3.6	4.3	3.7
69.2	7.9	8.2	6.9	7.2	6.3	8.6	8.9	5 1	0.1	2.9	2.2	5.0	4.8	4.4	4.6	3.0
71.0	8.6	10.5	8.4	8.8	7.8	10.8	11.1	6 4	32.4	0.9	5.4	2.2	4.9	5.1	6.9	5.4
72.8	11.6	11.3	9.1	9.7	B 1	11.5	11.0	5 0	13.9	11.4	1.0	0.0	6.3	5.2	6.8	6.8
74.7	12.9	11.3	9.3	10.1	8.3	12 3	12 4	0.7	14.2	14.0	10.0	9.8	8.4	7.9	9.1	5.8
76.6	11.5	10.4	8.5	9.7	8.3	12 2	19 9	0.3	13.2	13.4	9.7	10.7	9.0	8.3	9.2	6.4
78.5	10.4	9.5	8-0	8.5	7 2	10.7	10. 3	9.3	12.9	10.0	8.1	8.4	8.5	9.7	10.0	7.5
80.4	10.4	8.6	7.2	8.0	7 0	0.7	0.1	9.0	* 6 . 6	10.8	8.4	7.8	6.3	6.2	9.0	5.8
82.4	8.2	6.7	5.9	6.2	5 6	7.3	7 . 1	1.0	9.8	9.4	8.4	8,3	6.7	5.1	6.3	6.1
84.4	6.9	5.3	4.6	4 9	4 3	5 0	5 7	0.0	5.8	7.9	6.4	6.3	5.3	5.5	6.0	4.5
86.2	5.3	4 4	3.0	4	3.6	3.9	2.1	D.1	6.0	6.3	5.0	4.5	4.1	4.5	4.6	3.2
88.0	2.9	2.4	1.0	2.4	3.5	4+0	4.3	4.4	4.7	4.7	3.4	3.5	2.6	2.8	3.6	2.7
89.5	2.2	1.0	3.0	6.9	1.8	1.9	2+2	2.3	2,6	2.4	2.3	2,3	1.8	1.7	2.0	1.6
91.5	1.4	1.1	1.0	0.0	1.16	1.1	1.6	2+2	2.0	1.9	1.8	2.0	1.8	1.7	1.6	1.6
93.0	2 1	1 7	1.0	1.9	0.8	1.0	0.1	1.0	1.3	1.2	1.1	0.9	0.9	0.4	0.8	0.9
*********		******	******	******	******	******	0.6	0.8	1.7	1.8	1.2	1.2	1.2	1.3	0.9	0.8

Table 11. Outside areas of deformed tubes in B-6 test array

PLEVATION					OUTS	IDE AR	EA C	TUBE N	IO. (MM	(**2)		10.1				
(CM)	3	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0.4		05	0.4	91	9.4	94	94	93	92	94	94	93
0.0	95	90	95	04	95	07	96	05	96	97	97	95	96	96	95	95
1.5	97	90	91	90	90	0.0	0.7	0.0	9.8	100	99	99	99	99	98	98
3.0	99	99	99	98	90	90	0.97	00	00	102	102	102	102	101	100	97
4.5	100	99	99	99	99	98	90	90	102	106	105	106	105	105	103	99
6.0	104	102	102	100	103	102	101	102	103	100	105	106	105	106	103	101
7.5	105	104	104	102	106	103	102	104	101	100	100	100	102	104	103	00
9.0	103	102	103	101	102	100	101	102	101	109	109	109	102	107	106	102
11.6	106	105	105	104	105	104	104	106	105	107	100	116	114	114	111	105
13.2	113	109	108	105	107	105	106	110	113	110	110	123	120	122	117	110
14.7	128	116	116	109	113	109	109	118	121	124	123	123	120	126	120	110
16.1	131	122	124	113	119	113	113	134	120	132	127	129	124	120	125	110
17.5	128	143	144	118	129	122	125	159	124	146	137	137	131	131	120	112
18.9	137	133	132	117	130	124	139	200	147	159	143	144	139	134	129	1 2 1
20.3	141	119	117	111	120	116	127	170	127	149	147	145	150	154	139	121
21.8	153	116	114	111	118	114	118	134	126	136	134	147	137	137	140	123
23.2	162	116	116	111	118	114	117	124	119	132	131	143	136	138	141	113
24.6	131	117	120	117	126	121	125	130	114	133	136	163	138	147	139	111
26.1	127	117	122	122	137	154	163	167	118	131	141	163	134	146	137	120
27.5	127	117	119	119	128	144	155	171	122	132	139	148	130	139	135	133
27.9	122	112	113	113	122	124	133	161	116	127	135	140	127	138	134	130
20 5	132	116	114	111	116	113	116	165	116	131	135	139	126	134	130	119
31 0	149	124	123	118	124	116	117	160	120	138	137	150	131	141	133	132
32.4	161	126	131	136	137	124	119	140	128	150	132	155	133	179	133	138
22.9	162	126	159	145	161	130	122	138	125	149	129	150	135	202	132	123
35.0	154	127	157	127	134	118	117	130	119	137	129	141	134	152	127	114
33.6	208	1 21	120	112	117	112	112	130	122	132	125	134	127	134	123	123
37.0	178	126	115	111	119	113	112	133	124	130	123	133	127	131	124	143
30.9	161	120	120	118	125	119	119	140	121	129	124	137	128	131	125	136
39.8	101	120	120	110	121	126	126	120	116	127	24	136	127	129	126	115
41.8	148	141	115	110	1.31	120	1 2 1	125	109	125	125	129	125	130	126	116
43.0	1.0	110	110	114	114	111	117	115	109	121	122	125	121	127	123	110
45.3	114	113	112	100	114	111	110	114	108	121	122	123	119	126	121	112
46.9	113	114	110	110	114	11.1	110	1.41	112	122	121	124	119	125	121	115
48.4	119	116	110	110	114	41.5	119	110	112	120	110	122	117	123	118	112
50.0	124	112	111	108	112	109	109	110	114	120	110	1.2.2	110	121	118	109
51.6	128	116	114	109	114	109	108	111	114	121	113	123	11.7	110	117	100
53.2	129	115	116	110	117	110	109	111	112	1 ZO	118	121	117	110	116	107
54.8	133	115	115	110	116	110	109	111	115	119	117	120	110	117	115	103
56.5	119	111	110	106	112	108	108	118	111	119	115	111	113	115	112	107
58.2	128	111	111	107	111	107	108	114	111	115	114	114	113	113	100	106
60.0	121	108	107	104	110	106	107	116	108	110	110	110	110	110	103	100
61.7	113	105	104	102	105	102	103	112	105	108	108	108	108	109	107	105
63.4	111	107	106	104	106	103	104	109	107	109	108	109	107	100	107	100
65.0	102	102	102	101	101	101	101	102	103	104	103	104	103	104	103	100
67.6	105	104	104	103	106	104	103	103	104	106	106	106	106	100	102	101
69.7	105	103	104	103	108	104	104	106	104	108	109	109	109	110	109	103
71.0	107	104	106	104	108	106	106	114	105	112	112	113	111	113	112	106
72 8	113	107	107	105	109	105	105	116	108	112	112	113	112	114	113	110
74 7	115	111	109	105	109	106	107	116	110	113	112	113	111	114	113	110
76.6	120	111	109	106	110	106	108	114	115	113	111	112	111	113	112	110
79 5	119	112	109	105	109	106	108	110	111	111	110	110	108	110	110	109
80.4	110	120	108	106	110	106	107	107	110	109	109	109	107	109	108	100
80.4	114	100	100	103	105	105	105	103	105	106	106	105	104	106	105	10
82.4	106	103	105	103	105	107	103	100	104	105	103	102	103	104	103	103
84.4	107	107	103	103	104	103	102	100	104	102	101	100	100	101	101	104
86.2	106	104	103	108	100	102	00	99	100	99	99	98	98	98	98	91
88.0	102	102	101	100	100	07	97	97	99	97	96	96	97	96	96	9
89.5	99	98	98	91	98	0.5	96	96	96	30	96	95	96	95	95	91
91.5	97	97	31	30	30	90	90	0.0	07	06	0.5	96	95	95	95	9
93.0	97	96	96	95	95	95	30	94		90						

Table 11 (continued)

ELEVATION	****					OUTS	IDE AR	EA OF	F TUBE NO. (MM**2)							
(CM)	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
0.0	93	94	94	94	93	93	94	93	93	0.4	0.2					
1 -	97	97	96	96	95	96	95	94	96	30	95	>3	93	92	93	93
3.0	99	99	99	100	99	98	97	96	00	100	90	30	95	96	96	94
4.5	99	102	102	102	100	100	100	97	90	102	100	100	100	99	98	97
6.0	103	105	105	104	103	103	102	00	100	102	102	101	100	101	101	97
7.5	102	105	105	104	104	103	102	100	100	105	105	105	103	104	104	97
9.0	101	102	102	102	100	101	101	0.0	101	103	104	105	104	104	104	99
11.6	106	106	105	105	104	104	104	100	102	104	104	103	102	103	104	99
13.2	115	114	113	112	110	110	110	104	103	113	113	105	104	104	106	101
14.7	122	120	120	120	115	117	117	107	117	120	121	112	110	110	113	104
16.1	119	122	126	125	118	120	119	105	114	120	120	120	117	11/	121	107
17.5	120	125	137	127	118	124	123	109	112	129	129	120	123	121	125	108
18.9	132	130	157	128	119	127	126	113	110	132	140	131	129	120	133	112
20.3	161	149	154	129	121	129	1 30	120	122	136	152	130	133	130	137	114
21.8	138	140	149	130	121	127	1 31	126	137	1.41	100	138	137	130	138	116
23.2	124	137	139	132	121	128	130	124	1.21	141	147	100	130	132	145	119
24.6	118	139	135	133	124	132	137	110	116	147	140	101	130	134	154	126
26.1	127	140	135	130	129	135	155	122	125	164	150	145	140	138	171	127
27.5	143	141	133	131	133	138	163	126	140	147	123	137	138	1.54	190	123
27.9	141	135	129	128	134	139	174	122	127	141	143	135	140	142	193	118
29.5	141	: 31	129	129	149	155	145	112	1.20	140	130	132	137	149	184	116
31.0	133	1 2 2	132	135	157	154	138	1 2 2	140	145	132	138	140	140	151	110
32.4	134	128	136	142	147	135	1 25	140	141	140	132	145	149	132	151	119
33.8	125	128	148	184	138	128	132	120	110	1.30	132	154	141	128	157	137
35.2	121	129	146	223	134	130	134	116	110	139	132	159	132	126	156	139
37.0	127	129	129	150	126	125	129	110	122	133	138	140	1.30	130	150	117
38.4	128	128	127	138	123	124	130	123	120	127	135	132	125	130	138	117
39.8	126	126	129	132	123	124	127	110	120	126	130	130	123	135	134	119
41.8	118	123	125	128	121	126	123	111	116	122	122	120	123	138	129	114
43.6	112	121	124	131	121	122	125	214	112	123	123	129	122	134	124	107
45.3	112	119	123	132	119	120	130	114	110	110	120	124	123	130	126	110
46.9	111	119	120	131	119	120	139	117	100	110	120	123	122	128	128	113
48.4	116	121	119	128	120	120	140	120	112	110	120	122	120	120	129	114
50.0	116	120	118	124	117	117	128	110	113	110	120	122	120	126	131	115
51.6	115	119	118	120	117	117	123	117	113	110	119	119	117	120	126	115
53.2	113	117	116	117	115	116	110	117	113	110	117	118	110	120	126	115
54.8	118	117	116	116	114	115	110	115	117	110	110	110	114	118	123	115
56.5	115	116	116	115	112	114	115	111	110	110	113	115	114	115	122	114
58.2	114	113	113	112	111	111	112	100	114	110	114	113	113	114	119	113
60.0	111	109	108	107	107	106	100	105	100	1.14	112	111	111	113	115	109
61.7	106	107	108	106	105	105	106	102	109	109	108	107	106	108	111	103
63.4	108	107	107	106	106	106	107	102	104	108	106	105	106	107	109	101
65.0	102	103	102	101	102	102	102	100	100	108	1.6	105	106	106	109	104
67.6	105	107	106	105	105	105	106	101	101	103	102	101	101	101	103	100
69.2	106	108	107	108	107	105	100	103	105	107	105	104	105	105	108	102
71.0	109	112	110	112	100	100	108	103	105	109	108	106	107	108	111	102
72.8	113	113	111	112	110	1109	114	100	108	113	112	109	110	111	115	106
74.7	114	113	110	111	100	110	112	110	112	114	112	111	111	113	117	110
76.6	115	112	110	110	100	140	113	109	114	113	111	110	110	111	118	109
78.5	112	110	107	107	100	109	1.4.4	108	112	112	112	110	109	110	116	107
80.4	117	108	105	105	105	106	107	108	109	109	108	107	105	107	112	107
82.4	109	105	103	103	103	100	106	105	107	108	107	106	105	107	109	105
84.4	107	104	103	103	102	102	104	102	105	105	104	102	102	104	105	101
86.2	105	101	102	101	100	101	102	102	105	104	102	101	101	102	104	100
88.0	100	99	0.0	100	99	99	99	100	103	101	100	99	99	99	101	99
89.5	9.9	0.0	96	97	91	97	97	98	99	99	97	97	97	97	98	98
91-5	97	96	90	95	96	96	96	96	98	98	96	96	96	96	96	96
93.0	07	90	90	94	94	94	95	95	97	95	96	95	95	94	94	95
1310	31	30	30	95	95	94	94	95	96	96	0.5	3.0	0.5	0.4	0.4	0.5

Table II (continued)

ELEVATION						-OUTSI	DE ARE	A OF T	UBE NO	. (MM*	*2)					
(CM)	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
0.0	9.4	94	93	93	92	92	92	93	94	96	95	94	94	94	94	95
1.5	96	96	96	96	96	95	96	96	97	97	97	96	96	95	95	95
3.0	98	98	98	98	98	97	97	96	97	98	98	98	98	97	97	96
4.5	98	100	101	100	101	101	100	97	98	101	102	101	102	100	99	98
6.0	100	103	103	103	103	104	102	98	99	103	104	104	103	103	101	100
7.5	100	103	103	104	105	105	103	100	101	105	106	106	106	105	104	102
9.0	100	103	103	102	103	104	101	99	99	102	103	101	102	102	101	98
11.6	103	105	105	105	104	105	104	102	102	105	106	105	104	105	103	102
13.2	110	112	112	113	111	112	110	104	109	113	115	113	113	113	109	104
14 7	117	110	119	120	120	119	118	107	114	119	121	. 121	121	122	115	108
16 1	119	123	125	128	130	125	121	110	114	123	126	129	129	129	117	112
17.5	113	126	134	137	143	130	126	113	113	129	131	140	134	137	119	113
19.0	119	134	149	167	148	138	131	111	119	144	135	165	137	152	120	110
20.3	146	140	153	182	137	144	139	114	136	190	138	163	144	155	121	113
21.8	151	144	182	154	136	144	147	119	163	172	142	146	144	140	121	116
22.2	122	147	187	141	138	146	150	122	132	142	147	142	143	132	120	113
24.6	117	150	148	138	143	142	140	121	124	136	169	141	143	133	120	110
26.1	125	141	137	136	162	136	136	121	129	135	152	137	150	138	122	115
27 5	127	137	134	138	163	136	137	120	128	136	117	134	154	141	123	118
27 9	117	130	130	134	155	135	139	120	119	130	142	130	153	140	122	116
29.5	113	130	129	141	137	133	137	116	115	131	139	130	170	145	130	117
33 0	118	135	129	149	134	134	138	125	117	130	135	129	147	148	133	122
22.4	120	140	1.80	142	131	133	135	131	122	130	134	128	137	156	130	124
32.9	117	127	127	1.34	128	134	132	137	120	130	131	126	131	145	128	120
33.0	110	130	120	138	1 23	1.41	130	133	125	135	132	131	135	138	129	126
35.6	119	130	129	141	129	152	126	140	119	130	131	128	138	136	136	135
37.0	110	1.30	120	1.41	126	155	126	156	115	126	135	127	139	136	137	141
38.4	113	120	120	1.25	120	141	124	129	115	125	132	128	137	134	132	136
39.8	113	123	120	137	120	1 35	118	111	115	121	126	122	133	127	122	115
41.8	111	120	120	124	122	142	118	113	110	120	124	121	131	124	121	112
43.0	108	120	140	129	100	161	110	112	106	116	121	119	127	122	118	110
45.3	104	110	121	110	122	147	117	109	107	1.7	120	117	125	120	117	109
40.9	106	447	110	120	122	1 3 4	116	107	112	117	119	118	127	122	116	106
48.4	109	111	110	120	110	125	115	1.07	110	117	118	115	124	117	116	107
50.0	107	110	112	110	110	1.24	117	108	115	118	119	115	122	119	116	108
51.0	110	4.4.7	110	110	117	1.0.2	116	100	115	117	117	114	120	118	116	111
53.2	108	115	110	110	227	120	115	111	115	114	115	113	116	116	113	109
54.8	111	110	114	113	110	116	111	113	109	111	112	111	114	113	110	108
56.5	109	223		110	2.2.2	116	110	117	110	111	111	110	112	111	109	106
58.2	109	113	444	110	107	110	106	104	100	109	108	107	110	108	106	104
60.0	105	108	107	107	100	110	105	104	103	107	106	106	107	106	104	104
61.7	102	106	106	100	100	100	105	107	103	105	105	104	105	104	104	102
63.4	103	105	105	104	100	100	103	100	100	102	102	101	101	101	102	99
65.0	100	102	101	101	101	102	101	100	100	104	102	104	105	104	105	10
67.6	102	105	103	103	103	104	103	102	104	107	100	106	107	107	106	10
69.2	105	109	107	106	106	109	107	103	100	107	113	100	111	109	109	10
71.0	105	112	111	109	109	112	140	108	100	110	117	100	112	110	109	10
72.8	109	115	111	111	111	114	112	***	110	117	111	109	111	110	109	11
74.7	112	114	110	110	109	113	112	110	113	111	111	100	111	110	110	11
76.6	109	113	111	110	108	112	211	109	111	110	100	109	100	108	108	11
78.5	106	109	108	107	106	108	108	110	1.4.4	100	109	100	107	107	107	1.1
80.4	104	107	107	106	106	108	107	108	111	109	108	107	100	104	104	10
82.4	103	104	103	104	103	104	103	105	108	106	105	104	109	104	101	10
84.4	105	104	102	102	101	102	101	103	105	104	103	101	102	101	101	10
86.2	102	100	100	100	99	99	99	102	103	102	101	100	101	100	100	10
88.0	98	98	98	97	97	97	96	99	100	99	99	99	98	97	98	9
89.5	97	97	96	96	96	96	96	97	97	97	97	91	30	30	90	
91.5	96	95	95	95	95	93	94	95	95	96	95	95	95	94	90	9
03.0	97	96	95	95	95	94	94	95	97	96	96	95	95	94	90	

Table il (continued)

ELEVATION							-OUTSI	DE AREA	OFT	UBE NO	(MM*	*21		******		******	*******
(CM)	49	50	51	52	53	54	55	5.6	57	58	59	60	61	62	63	64	TOTAL
0.0	95	95	95	94	94	94	94	9.8	9.4	94	95	9.6	20	9.4	0.4	9.4	6028
1.5	97	97	96	95	95	96	96	96	97	96	96	9.6	96	95	0.5	05	6171
3.0	97	98	98	98	98	98	97	97	97	97	96	96	9.0	95	95	95	6297
4.5	99	101	102	101	100	101	101	97	98	9.8	9.8	9.0	97	96	97	96	6411
6.0	100	102	103	103	103	104	103	98	102	102	101	102	100	98	99	99	6577
7.5	102	105	106	106	105	106	105	101	103	103	102	102	101	100	102	102	6657
9.0	99	102	102	103	101	103	102	98	100	100	99	99	99	98	99	98	6520
11.6	102	106	105	105	104	107	106	101	103	103	102	101	102	101	102	103	6709
13.2	110	113	113	113	112	115	114	105	110	110	106	106	106	106	108	108	7102
14.7	115	118	119	118	117	123	121	108	114	111	106	107	107	106	111	117	7492
16.1	112	120	120	120	119	128	125	108	114	113	109	109	108	109	115	120	7721
17.5	116	126	125	128	126	137	129	109	124	123	115	117	115	116	119	123	8120
18.9	122	128	126	132	127	138	128	105	138	121	115	117	115	113	116	119	8471
20.3	131	136	129	133	132	136	127	108	135	118	115	119	115	110	113	123	8637
21.8	141	139	139	130	144	137	129	113	133	117	114	115	115	113	120	130	8626
23.2	163	134	167	126	153	143	128	108	177	122	118	118	118	115	120	123	8570
24.6	145	132	149	125	155	151	129	105	145	126	120	120	119	114	116	114	8517
26.1	136	128	131	123	138	149	130	109	126	122	113	114	112	109	113	120	8614
27.5	133	126	129	124	131	153	132	113	125	118	113	113	113	111	118	133	8618
27.9	126	1.21	125	121	128	153	134	112	122	114	109	110	111	111	118	134	8371
29.5	120	126	129	127	132	189	143	116	132	129	121	120	121	119	128	153	8438
31.0	123	128	\$32	129	131	191	154	123	132	156	137	128	1.30	126	144	166	8721
32.4	130	129	132	129	131	164	171	120	132	150	140	128	129	130	144	147	8826
33.8	1.31	129	127	126	131	151	143	111	125	125	121	118	119	122	126	126	8649
35.2	132	132	128	129	1.32	145	142	117	120	119	118	116	117	118	123	123	8465
37.0	128	128	127	135	134	144	143	123	124	127	127	128	130	129	133	175	8368
38.4	120	126	129	151	133	142	140	128	122	135	162	149	160	146	130	141	8440
39.8	120	126	128	148	130	139	136	139	123	129	161	142	144	127	125	148	8310
41.8	120	124	122	128	123	130	128	125	1.81	128	126	121	1.21	123	130	180	8016
43.6	114	121	121	124	120	127	127	117	122	118	112	112	112	114	127	164	7797
45.3	109	116	118	120	117	125	124	117	112	1.1.1	108	107	LOB.	1.08	117	1.41	7593
46.9	111	116	116	118	116	124	124	116	120	115	100	106	200	110	119	1 2 3	7563
48.4	118	118	116	118	117	124	124	116	126	117	111	LOR	111	115	120	122	7633
50.0	115	117	115	117	115	123	123	116	128	118	111	LOR	110	1.00	116	127	7496
51.6	118	119	117-	119	116	124	122	116	136	1 31	119	116	117	114	1 2 3	124	7565
53.2	120	119	117	119	115	122	121	115	1.78	128	118	116	116	114	120	110	7505
54.8	119	117	115	118	115	120	120	113	131	124	1.50	117	116	335	115	110	7455
56.5	112	114	112	114	111	118	117	107	121	118	116	115	114	510	117	10	7207
58.2	113	113	111	112	113	116	115	1.09	120	111	108	1.00	1.1.1	1.1.4	1.74	1.1.7	7105
60.0	113	110	108	108	107	112	1111	109	117	111	106	100	2.2.0	2.8.9	113		1190
61.7	106	108	106	1.05	105	109	107	105	110	110	107	1.05	103	1.32	1.0.9	2.2.4	6907
63.4	106	1.06	1114	1.05	108	108	106	1.0.7	110	1.00	LIK	105	417.2	100	1.04	1.04	63007
65.0	101	103	1.01	1.02	101	1.03	1.02	1.00	1.118	100	242	107	104	103	104	1.03	6/90
67,6	104	247	105	105	1.34	1.17	1.37	102	1.05	103	103	102	1.02	1.01	101	100	6710
69.2	108	1.0.9	106	1117	1.65	110	110	Lar	111	1	103	102	1.3.2	1.01	1400		60710
71.0	110	114	1.09	1110	108	114	115	1.05	1.20	138	1.09	100	LUE	103	100	104	0030
72.R	116	115	1.1.1	112	108	116	114	1.0.8	1.5.1	1.00	1.00	1120	103	1.03	100	100	7437
74.7	110	115	111	113	102	118	110	1.0.0	11.0	1.72	110	11.0	410	100	222	104	7162
76.6	116	11.2	1.1.12	13.5	1.40	117	1.5	100	11.0	4.25	446	114	3.3.4	109	444	105	1183
78.5	114	113	1.00	110	107	114	-115	1 1 1	11.4	2.2.4	1.09	2.2.10	110	112	113	108	7+52
84.4	114	110	1.07	100	1.00	111	111	100	113	119	100	1.020	105	105	4.4.4	104	1014
82 4	1.00	1.24	1.1.4	1.05	1.00	2.2.4	111	100	4.4.6	112	109	703	106	193	105	105	6930
9.8 4	109	2.000	1124	105	104	101	- 197	0.6	204	108	105	105	103	104	105	102	6724
86.7	100	103	1112	102	101	104	104	2.03	103	192	103	105	k () k	102	192	99	6610
0012	103	101	100	101	100	102	101	ANZ	2.02	1.02	100	100	98	98	100	98	6486
00.0	99	98	90	98	96	97	37	97	98	98	97	97	96	96	97	96	6311
03.3		0.5	197	90	95	96	95	97	97	97	96	97	96	96	96	9.6	6218
0.2	20	20	90	20	73	95	94	95	95	25	95	95	95	94	95	95	6128
3381	26.7	30	9.2	19.0	3.3	3.2	94	3.2	30	96	95	95	95	9.6	9.5	95	6128

Elevation	Entire 8	x 8 array	Inner 6	x 6 array	Central 4 x 4 array			
(cm)	Maximum (%)	Minimum (%)	Maximum (%)	Minimuum (%)	Maximum (%)	Minimum (%)		
0.0	0.4	0.6	0.4	0.4	0.1	0.1		
1.5	2.4	2.4	2.3	2.3	2.3	2.3		
3.0	4.1	4.1	4.6	4.6	4.7	4.7		
4.5	5.7	5.7	6.8	6.8	6.8	6.8		
6.0	7.9	7.9	9.1	9.1	9.1	9.1		
7.5	9.0	9.0	10.0	10.0	9.9	9.9		
9.0	7.2	7.2	8.2	8.2	8.0	8.0		
11.6	9.7	9.7	10.6	10.6	10.1	10.1		
13.2	15.1	15.1	16.9	16.9	16.4	16.4		
14.7	20.4	20.4	23.1	23.1	23.0	23.0		
16.1	23.6	23.6	27.1	27.1	28.2	28.2		
17.5	29.2	29.0	32.8	32.8	34.3	34.3		
18.9	34.1	33.8	39.0	38.7	43.3	42.5		
20.3	38.1	36.1	45.3	42.6	46.5	44.0		
21.8	40.0	35.9	46.9	42.0	48.3	43.5		
23.2	38.1	35.1	46.4	41.4	47.8	42.5		
24.6	36.7	34.4	46.3	42.3	42.7	41.9		
20.1	39.9	35.7	47.1	41.8	40.4	41.1		
27.5	38.9	35.8	43.3	40.9	44.0	41.1		
27.9	33.8	32.4	40.5	38.4	40.5	38.9		
29.5	33.2	33.3	42.3	39.3	45.5	40.8		
31.0	40.8	37.2	42.8	40.8	45.0	41.0		
32.4	42.1	38.0	42.0	41,1	39.1	39.1		
33.8	39.4	30.2	40.8	39.8	40.5	30.0		
33.2	34.0	33.1	39.9	30.9	43.7	41.0		
37.0	32.8	32.4	34.4	34.3	35.2	33.2		
30.4	37.0	21.7	39.3	33.0	37.6	22 6		
39.0	32.1	27.6	29 4	28 4	29 1	20.1		
41.0	24.6	24.6	27 5	27 5	28.5	28.5		
45.0	22.3	21.8	26.8	26.0	29.6	27.8		
45.5	21 4	21.4	24.9	24.9	25.7	25.7		
48 4	22.4	22.4	24.9	24.9	25.3	25.3		
50.0	20.5	20.5	22.5	22.5	22.3	22.3		
51.6	21.4	21.4	22.6	22.6	22.1	22.1		
53.2	20.6	20.6	21.3	21.3	20.6	20.6		
54 8	19.9	19.9	20.2	20.2	19.3	19.3		
56.5	17.8	17.8	18.3	18.3	17.5	17.5		
58.2	16.4	16.4	16.7	16.7	16.1	16.1		
60.0	13.1	13.1	13.2	13.2	12.4	12.4		
61.7	11.1	11.1	11.8	11.8	11.3	11.3		
63.4	10.9	10.9	11.2	11.2	10.6	10.6		
65.0	7.4	7.4	7.7	7.7	7.1	7.1		
67.6	9.8	9.8	10.5	10.5	9.9	9.9		
69.2	11.5	11.5	12.8	12.8	12.1	12.1		
71.0	14.2	14.2	15.6	15.6	14.8	14.8		
72.8	15.9	15.9	16.6	16.6	15.8	15.8		
74.7	16.2	16.2	16.4	16.4	15.0	15.0		
76.6	15.8	15.8	15.9	15.9	14.6	14.6		
78.5	13.9	13.9	13.5	13.5	12.2	12.2		
80.4	12.7	12.7	12.5	12.5	11.7	11.7		
82.4	9.9	9.9	9.7	9.7	8.9	8.9		
84.4	8.4	8.4	7.9	7.9	7.2	7.2		
36.2	6.7	6.7	6.1	6.1	5.6	5.6		
88.0	4.3	4.3	3.9	3.9	3.8	3.8		
89.5	3.0	3.0	2.7	2.7	2.4	2.4		
91.5	1.8	1.8	1.5	1.5	1.3	1.3		
93.0	1.8	1.8	1.6	1.6	1.5	1.5		

Table 12. Flow area restriction in B-6 test array

	and the state of t	and the second sec				
	PRETEST	CENTROID	-POSTTESI	CENTRCID	-CTF DIS	PLACEMENT
TUBE	X-DIM.	T-DIM.	X-DIM.	Y-DIM.	X-DIRECT	Y-DIRECT
NO.	(88)	(88)	(88)	(# ?)	(88)	(88)
1	0.000	0.000	0.900	-0.339	0.900	-0.339
2	14. 427	-0-010	14.479	-0.391	0.051	-0.381
3	28.854	-0.020	28.741	-0.E11	-0.114	- 0. 791
4	43. 282	-0.030	43.435	-0.331	0.153	-0.301
5	57.709	-0.040	58.255	0.137	0.547	0.177
6	72. 136	-0.050	72.030	0.675	-0.106	0.725
7	86. 563	-0.060	86.544	0.683	-0.020	0.143
8	100.990	-0-070	100.027	0.097	-0.964	0.167
9	0.010	14. 427	0.759	14.415	0.749	-0.013
10	14. 437	14.417	14.832	14.585	0.394	0.168
11	28. 864	14.407	28.444	14-243	- 0- 420	-0.165
12	43. 292	14. 197	42.908	14.531	-0.384	0.134
13	57.719	14. 387	57.953	14-535	0.234	0-548
14	72. 146	14.377	72.860	15.177	0.714	1- 500
15	86. 573	14. 367	87-055	14-613	0.482	0-247
16	101.000	14.357	100-212	14.770	-0.789	0-413
17	0.020	28 854	0.869	28. 252	0.849	-0.603
10	14 44 1	29, 844	14.306	28. 162	-0.141	-0.453
10	28 874	28 834	27.231	78 692	-1.643	-0.242
20	43. 302	28.824	43.993	29.242	0.691	0-417
21	57.729	29.814	57.720	28.348	-0.009	-0-466
22	72. 156	28 804	72.891	29.559	0.735	1. 155
23	86. 583	28.794	86.016	29. 362	-0.567	0.568
24	101.011	28.784	39 124	29.147	- 1. 887	0. 36 2
25	0.030	43.282	0.707	42.532	0.677	-0.549
26	14 457	43.272	15 536	82.727	1.079	-0.944
27	20 005	43.262	20 127	42.544	0.243	-0.547
20	43.393	43.202	43 567	44. 160	0.255	0.817
20	57 730	43.231	57 304	44.000	-0.435	0.356
20	72 166	43.231	72 770	43.577	0.600	0.645
30	96 503	43.231	96 076	43.604	-0.516	0.045
31	00. 393	43.221	00.070	43.334	-0.010	1 053
32	0 040	67 700	0 720	57 404	-1.490	-0.303
33	40.040	57 600	14 272	57.400	0.090	-0.000
34	20 005	57.699	14.676	50. 190	-0.190	-0.908
30	20.070	57.607	20.090	50.119	-0. 199	0 430
30	43. 344	57.679	67 600	50. 154	-0.300	0.600
30	72 176	57.669	71 009	57 614	-0.267	0.256
30	94 403	57 649	06 547	50 046	-0.207	0.200
37	101 031	57.649	100.147	50.040	-0. 570	0.540
	0 050	77.030	0.032	30.107	-0.379	0.549
41	0.050	72.130	0.020	71. 144	0. 110	-0.270
42	20 005	72 116	20 120	72 610	0. 222	0.690
43	20.905	72.110	27.120	72.010	0. 450	0.094
	43.332	72.100	43.990	72.194	-0.533	0.000
43	77. 104	72.090	77 651	71. 300	-0.521	-0.750
40	12. 180	72.080	12.001	71.330	0.304	-0.750
47	80.013	72.070	00-394	72.100	-0.219	0.210
45	101.041	2.000	100.565	12.384	-0. 475	0.319
69	0.000	00.003	0.933	00.407	0.873	-0.150
50	14.487	80.003	14.035	85.797	0.151	-0.750
51	28.915	80.543	28.621	86.113	-0.294	-0.430
52	43. 342	86.533	43.373	86.014	0.032	-0.519
53	57.769	80.523	58.081	80.507	0.312	0.444
54	72. 196	86.513	12.207	85.845	0.011	-0.668
55	86.623	86.503	86.237	85. 194	-0.387	-1.308
56	101.051	H6.493	100.623	86.880	-0.428	0.387
57	0.070	100.990	1.051	101.208	0.980	0.217
58	14.498	100.980	14.666	99.602	0.168	- 1. 378
59	28.925	100.970	29.152	100.468	0.228	- 0.502
eo	43. 352	100.960	43.692	100.548	0.340	-0.413
61	57.779	100.950	58.419	100. 149	0.640	-0.301
62	72.206	100.940	71.951	100.741	-0.255	-0.199
63	86. 634	100.930	85.635	100.428	- 0. 998	-0.502
64	101.061	100.920	100.414	100.887	-0.647	-0.033

Table 13. Tube displacements^a at 32.4-cm elevation (in millimeters)

 a_{Tube} centroid locations based on area enclosed by OD perimeter with origin arbitrarily located at pretest centroid of tube 1 (note: positive X is left to right, positive Y is top to bottom).

-

Four	exterior er rods	Outer ri without	ng of 8 x 8 corner rods	Outer	Outer centra	
Avg.	Dev.	Avg.	Dev.	Avg.	Dev.	Avg.
4		24		20		12
3054	3	3051	5	3051	4	3046
a		330 ^b	1.2	330	0.9	330
3314	13	3235	13	3243	8	3241
3216	5	3176	11	3062	34	3013
a		888 ^b	7.1	911	6.3	919
8		3.50	>	3.53		3.69
2882	65	2999	65	2799	50	2799
а		924 ^b	4.2	931	4.6	932
186.8	8.2	144.5	3.9	137.2	1.6	134.8
43.3	5.8	27.4	3.6	31.4	7.6	33.4
28.1	2.9	19.2	2.0	25.5	2.8	25.4
20.5	2.1	13.4	1.4	18.3	2.1	18.5
	Four corn Avg. 4 3054 a 3314 3216 a a 2882 a 186.8 43.3 28.1 20.5	Four exterior corner rods Avg. Dev. 4 3054 3 a 3314 13 3216 5 a 2882 65 a 186.8 8.2 43.3 5.8 28.1 2.9 20.5 2.1	Four exterior corner rods Outer rivel without Avg. Dev. Avg. 4 24 3054 3 3051 a 330 ^b 3314 3314 13 3235 3216 5 3176 a 888 ^b 3.50 ^c 2882 65 2999 a 924 ^b 186.8 8.2 144.5 43.3 5.8 27.4 28.1 2.9 19.2 20.5 2.1 13.4	$ \begin{array}{c c} Four exterior \\ corner rods \\ \hline \hline Avg. Dev. \\ \hline $	Four exterior corner rodsOuter ring of 8 x 8 without corner rodsOuter centrAvg.Dev.Avg.Dev.Avg.4242030543305153051a330 ^b 1.23303314135235133243321653176113062a 888^{b} 7.1911a 3.50^{b} 3.53 28826529996528826529996528826529993.53186.88.2144.53.9137.243.35.827.43.631.428.12.919.22.025.520.52.113.41.418.3	Four exterior corner rodsOuter ring of 8 x 8 without corner rodsOuter ring of central 6 x 6Avg.Dev.Avg.Dev.Avg.Dev.42420305433051530514a330 ^b 1.23300.93314135235133243832165317611306234a 888^b 7.19116.3a 3.50^b 3.53 288265299965a 924^b 4.29314.6186.88.2144.53.9137.21.643.35.827.43.631.47.628.12.919.22.025.52.820.52.113.41.418.32.1

Table 14. Test results as a function of radial

^aSimulators not instrumented with thermocouples.

^bBased on eight simulators in outer ring instrumented with thermocouples.

^CBased on thermocouples in region between interior grids.

^dBased on average temperature of region between interior grids and 115 s and 132 s after power-on.

eBased on integration of strain profiles between 18.3-cm and 58.3-cm elevations in region between interior grids

g of x 4	Central	2 x 2 array	Central	x 4 array	Central	6 x 6 array	8 x 8 a cor	rrsy less ners	Entire 8 x 8 array		
IV.	Avg.	Dev.	Avg.	Dev.	Avg.	Dev.	Avg.	Dev.	Avg.	Dev.	
	4		16		36		60		64		
4	3045	3	3046	4	3048	5	3050	5	3050	5	
0.8	330	0	330	0.7	330	0.8	330 ^b	0.9	330 ^b	0.9	
8	3239	18	3242	8	3243	8	3240	11	3244	21	
17	2988	30	3007	23	3037	40	3093	75	3100	79	
5.8	921	6.1	919	5.8	915	7.3	909 ^b	13.0	909 ^b	13.0	
	3.72		3.70		3.61		3.58 ^b		3.58 ^b		
19	2800	56	2799	42	2799	46	2879	113	2879	110	
5.9	933	5.4	932	5.6	932	5.0	930	5.6	930 ^b	5.6	
0.5	134.0	0.9	134.6	0.7	136.0	1.8	139.4	5.3	142.4	12.8	
8.2	32.3	5.4	33.1	7.5	32.2	7.5	30.3	6.6	31.1	7.3	
1.9	25.1	1.4	25.3	1.8	25.4	2.4	22.9	3,8	23.2	4.0	
1.4	18.5	1.3	18.5	1.4	18.4	1.2	16.1	3.6	16.3	3.7	

position - average and standard deviation values

TI APERTURE CARD

8409110104-01

ORNL-DWG 82-6386 ETD

Fig. 1. Schematic of B-6 test assembly.

ORNL-DWG 77-8293

Fig. 2. Typical fully instrumented fuel pin simulator.

NOTES

A BECAME DETACHED DURING ASSEMBLY

8 SUSPECTED TO HAVE BECAME DETACHED DURING ASSEMBLY

Fig. 3. Thermocouple identifications and as-built locations in B-6 test (plan view).

simulator thermocouples in Fig. 4. As-built axial locations of (elevation view). test

Fig. 5. Locations and identifications of thermocouples for measuring temperature of (a) inlet steam at 107-cm elevation and (b) outlet steam at 3-cm elevation in B-6 test.

Fig. 9. Comparison of B-6 burst data with prediction from singlerod heated shroud test data.

ORNL-DWG 81-23642A ETD

Fig. 12. Burst strain of B-6 tubes.

Fig. 13. Flow area restriction of B-6 central 4×4 array, inner 6×6 array, and entire 8×8 test array.

Fig. 14. Measured steam temperatures 1.0 s before power-on. (a) Inlet steam at 107-cm elevation and (b) outlet steam at 3-cm elevation.

Fig. 15. Measured steam temperatures 1.0 s before the first tube burst. (a) Inlet steam at 107-cm elevation and (b) outlet steam at 3-cm elevation.

CRNL-DWG 82-6388 ETD

÷ .9 01 03 152 6 2 10 @ 2) 23 (23 G 1.4 24 (4) 2 26 3 32 0 30 (4) 2 28 26 3 30.00 2 32 3 2 37 1 \$ 33 0 0 35 3 D 39 @ 2 33 3 35 (1 0 37 (2) 2 39 G 3.96 0 48 0 4.7 2 48 C 44 18 \$ 46 0 3 46 3 42 4 5,8, 10 60 B 62 (1) 0 60 3 (62 G (b) (a) -----LAYOUT NOT TO SCALE LAYOUT NOT TO SCALE ROW AND COLUMN AVERAGES (°C) - ROW AND COLUMN AVERAGES (°C) SECTION (6 X 6) AVERAGE = 888°C SECTION (6 X 6) AVERAGE - 329°C BUNDLE AVERAGE (6 X 6) - 907°C BUNDLE AVERAGE (6 X 6) - 330°C

Fig. 16. Cladding temperatures measured at 84-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6389 ETD

Fig. 17. Cladding temperatures measured at 76-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

THRNL-DWG 82-6390 ETD

ORNL-DWG 82-6391 ETD

ORNL - DWG 82-6392 ETD

Fig. 20. Cladding temperatures measured at 49-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6393 ETD

Fig. 21. Cladding temperatures measured at 38-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6394 ETD

Fig. 22. Cladding temperatures measured at 28-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6395 ETD

Fig. 23. Cladding temperatures measured at 20-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6396 ETD

ORNL-DWG 82-6397 ETD

Fig. 25. Cladding temperatures measured at 5-cm elevation (a) 1.0 s before power-on and (b) 1.0 s before first tube burst.

ORNL-DWG 82-6398 ETD

Fig. 27. Axial temperature profile of inner 6×6 array of B-6 measured 1.0 s before power-on and 1.0 s before first tube burst.

ORNL-DWG 82-6404 ETD

Fig. 30. Typical steam-related parameters measured during B-6 test.

Fig. 31. Axial temperature profiles of inner 6×6 array of B-6 messured during time of tube bursts.

Fig. 32. Shroud temperature measurements at the 76-cm elevation.

Fig. 33. Shroud temperature measurements at the 28-cm elevation.

Fig. 34. Comparison of shroud and simulator temperature measurements on the north side of the array.

Fig. 35. Comparison of shroud and simulator temperature measurements on the south side of the array.

Fig. 37. Typical cladding pressure and temperature behavior for a fully instrumented exterior simulator.

ORNL-PHOTO 7887-81A

Fig. 39. Typical shroud panels from B-4 test shown with reflector strip folded back to illustrate construction details.

Fig. 40. Shroud panels with highly polished reflector strips in place prior to assembly around bundle.

Fig. 41. Bundle before installation of north panel of shroud box.

Fig. 42. Completely assembled B-6 test array.

Fig. 43. Typical shroud thermocouple attachment.

ORNL-PHOTO 7881-81A

Fig. 45. Detail of outlet steam thermocouple installation.

.

1

1

-

1

а 19 19

ير بر د

**

67

Fig. 46. Posttest view of west face of test array and snroud panel.

Fig. 47. Posttest views of four faces of test array.

ORNL-PHOTO 5803-83

Fig. 48. North and east faces of bundle between interior grids.

ORNL-PHOTO 5804-83

Fig. 49. South and west faces of bundle between interior grids.

ORNL-PHOTO 5805-83A

Fig. 50. Posttest views of shroud panels showing distortion and discoloration from contact with simulators.

M&C PHOTO Y183686 V 3 Section at 3.0-cm elevation. 6 ÷ . à į Fig. 54. \leq . M&C PHOTO Y183691 đ 1 ÷ 4 Section at 1.5-cm elevation. Fig. 53. 9 0 16 2 Nº. ĥ 2 1

Fig. 71. Section at 27.9-cm elevation (reversed image to show correct tube positions).

105

ORNL-PHOTO 3501-82

M&C PHOTO Y184318

Cont.

4

and the

1

· ·

M&C PHOTO Y184590 1 Section at 88.0-cm elevation. Fig. 106. M&C PHOTO Y 184591 Section at 86.2-cm elevation. . 2 Fig. 105. . 11

. 38 - 30° .

- - Xaa

3

e. Ar

.

.

.....

(a

1.5

MRBT-BC

2.0

1.5

1.0

0.5

0.0

0.0

32.4

30

X

3.5

4.0

4.5

5.0

ş

.

(1)

Fig. 113. Deformation profile of tube '0.

Fig. 114. Deformation profile of tube 1.

Fig. 115. Example of tube relocation at 32.4-cm elevation.

.

Fig. 116. Comparison of deformation profiles of first layer of tubes on north side of bundle.

Fig. 117. Comparison of deformation profiles of first and second layers of tubes on north side of bundle.

ORNL-DWG 83-5703 ETD

...

Fig. 118. Comparison of deformation profiles of second and third layers of tubes on north side of bundle.
APPENDIX A

TRANSIENT PRESSURE AND TEMPERATURE PLOTS

Individual pressure (differential) and temperature plots are presented for the simulators as a function of time after power-on in Figs. A-1 through A-64 on sheet 1 of the microfiche enclosures in the pocket attached to the inside back cover of this report. Typical examples of the plots were given in Figs. 36 and 37 to illustrate the type of data available from the microfiche records.

Because cladding temperature measurements were not made on 20 of the 28 simulators in the outer ring of the array (see Fig. 3), we have plotted TAV-10 (characteristic bundle average temperature defined in Sect. 2.1) on the plots for these simulators to give an impression of their temperature as a function of time. No claim is made that TAV-10 is a good measure of the temperature of these simulators; better indications may be available, depending on relative positions in the array, from the fully instrumented neighboring simulators.

Temperatures measured on the four faces of the shroud are plotted in Figs. A-65 through A-68 and compared in Figs. A-69 through A-72 to temperatures measured on simulators in the immediate vicinity.

Transient plots of the inlet steam temperature measurements are given in Fig. A-73 and of the outlet steam temperature measurements in Fig. A-74.

les

APPENDIX B

MEASURED CONDITIONS AT SELECTED TIMES OF INTEREST

Summary tables of the bundle conditions measured at the times of the individual tube bursts are presented in Tables B-1 through B-64 on sheet 2 of the microfiche enclosures in the pocket attached to the inside back cover of this report. An example was given in Table 6 to illustrate the type, format, and identification of the data available from the micro-fiche records.

Similar tables, giving summary test conditions over a 200-s time span, are presented in Tables B-65 through B-95. These tables, with 10-s time intervals for the first 120 s, 2-s intervals for the next 40 s, and 5-s intervals for the remaining 40 s, can be used to approximate either the transient of an individual simulator or that of the bundle as a whole from power-on until a few seconds after the last tube burst.

APPENDIX C

GEOMETRIC PARAMETERS OF SECTION PHOTOGRAPHIC DATA

The section photographs were digitized and reduced to tables of geometric parameters that were used for verification of the digitized data and as source files for further processing. For documentary purposes, Tables C-1 through C-61 are reproduced on sheet 3 of the microfiche enclosures in the pocket attached to the inside back cover of this report. An example was given as Table 9 to illustrate the type, format, and identification of the data available from the microfiche records.

5

APPENDIX D

DEFORMATION PROFILES

The strain matrix (Table 10) was used to generate axial profiles of the circumferential strain in each of the tubes. These are presented in Figs. D-1 through D-64 on sheet 4 of the microfiche enclosures in the pocket attached to the inside back cover of this report. Example plots were presented in Figs. 113 and 114 to illustrate the type and format of the information available from the microfiche records.

6

APPENDIX E

TUBE CENTROID DISPLACEMENTS AT EACH AXIAL NODE

A least-squares fitting routine was used to minimize the average displacement between the pretest and posttest centroids of the 64 tubes as described in Sect. 4.2.4. The results are presented in Tables E-1 through E-61 on sheet 5 of the microfiche enclosures in the pocket attached to the inside back cover of this report. An example was given in Table 13 to illustrate the type and format of the data available from the microfiche records.

APPENDIX F

PLOTS OF TUBE DISPLACEMENTS AT EACH AXIAL NODE

The least-squares fitting routine that was used to minimize the average displacement between the pretest and posttest centroids of the 64 tubes was combined with the routine that reconstructed the images of the section photographs to produce a plot of the posttest tube locations relative to an imaginary grid at the respective axial node. The plots show, in effect, the permanent displacement of the tubes within their individual unit cells and aid visualization of subchannel flow area restriction. The plots are presented in Figs. F-1 through F-61 on sheet 6 of the microfiche enclosures in the pocket attached to the inside back cover of this report. An example of the plots was depicted in Fig. 115 to illustrate the type and format of the data available from the microfiche records.

NUREG/CR-3460 ORNL/TM-8890 Dist. Category R2, R3

Internal Distribution

- 1-5. R. H. Chapman 6-10. J. L. Crowley 11. D. S. Griffith 12. D. O. Hobson 13-17. A. W. Longest 18. A. P Malinauskas

 - 19. H. E. Trammell

- 20. Patent Office
- 21. Nuclear Safety Information Center
- 22. Central Research Library
- 23. Document Reference Section
- 24-25. Laboratory Records Department
 - 26. Laboratory Records (RC)

External Distribution

- 27. Office of Assistant Manager for Energy Research and Development, DOE, ORO, Oak Ridge, TN 37830
- 28. Chief, Fuel Behavior Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission, Washington, DC 20555
- 29. Chief, Core Performance Branch, Office of Nuclear Reactor Regulation, Nuclear Regulatory Commission, Washington, DC 20555
- 30. R. Van Houten, Fuel Behavior Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission, Washington, DC 20555
- 31. G. P. Marino, Fuel Behavior Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission, Washington, DC 20555
- 32. R. A. Adamson, Mail Code V-03, General Electric Company, Vallecitos Atomic Laboratory, P.O. Box 846, Pleasanton, CA 94566
- 33. D. L. Burman, Westinghouse Nuclear Fuel Division, P.O. Box 355, Pittsburgh, PA 15230
- 34. C. E. Crouthamel, Exxon Nuclear, Inc., 2955 George Washington Way, Richland, WA 99352
- F. J. Erbacher, Project Nukleare Sicherheit, Kernforschungszentrum 35. Karlsruhe, Postfach 3640, 75 Karlsruhe, Federal Republic of Germany
- M. D. Freshley, Pacific Northwest Laboratories, P.O. Box 999, Rich-36. land, WA 99352
- 37. R. Potter, UKAEA Atomic Energy Research Establishment, Harwell, Didcot, Oxfordshire, OX11 ORA, England
- 38. D. L. Hagrman, EG&G Idaho, Inc., INEL, Idaho Falls, ID 83401
- 39. T. Healey, CEGB Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, GL13 9PB, England
- 40. E. D. Hindle, UKAEA Springfields Nuclear Laboratories, Salwick, Preston, PR4 ORR, England
- 41. S. Saito, Japan Atomic Energy Research Institute, Tokai-Mura, Naga-Gum, Ibaraki-Ken, Japan
- 42. T. Howe, EG&G Idaho, Inc., INEL, Idaho Falls, ID 83401
- 43. S. Kawasaki, Japan Atomic Energy Research Institute, Tokai-Mura, Naga-Gum, Ibaraki-Ken, Japan

- 44. E. T. Laats, EG&G Idaho, Inc., INEL, Idaho Falls, ID 83401
- 45-46. W. Lowenstein, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412, Palo Alto, CA 94304
 - 47. A. L. Lowe, Babcock and Wilcox Company, P.O. Box 1260, Lynchburg, VA 24505
 - R. Duffey, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412, Palo Alto, CA 94304
 - 49. H. Rininsland, Projekt Nukleare Sicherheit, Kernforschungszentrum Karlsruhe, Postfach 3640, 75 Karlsruhe, Federal Republic of Germany
 - P. A. Smerd, Combustion Engineering, Inc., 1000 Prospect Hill Road, Windsor, CT 06093
 - 51. W. Spencer, EG&G Idaho, Inc., INEL, Idaho Falls, ID 83401
- 52-53. Technical Information Center, DOE, Oak Ridge, TN 37830

54-438. Distribution as shown for NRC categories R2 and R3 (NTIS-10)

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET	1. REPORT NUME NUREG/CR- ORNL/TM-8	BER (Assigned by DDC) 3460 890
4. TITLE AND SUBTITLE (Add Volume No., if appropriate) Experiment Data Report for Multirod Burst Test (MRBT) Bundle B-6	(MRBT)	CCESSION NO
7 AUTHORIS)	6. NECK 1217 0	
R. H. Chapman, A. W. Longest, and J. L. Crowley	June	YEAR 1984
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zig Oak Ridge National Laboratory Post Office Box X Oak Ridge, TN 37830	DATE REPORT MONTH July 6. (Leave Diank) 8. (Leave Diank)	ISSUED YEAR 1984
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zig Division of Accident Evaluation Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555	D Code) 10. PROJECT/TAS 11. FIN NO. B012	K/WORK UNIT NO.
3. TYPE OF REPORT	ERIOD COVERED (Inclusive dates)	
15. SUPPLEMENTARY NOTES	14. (Leave plank)	
deformation in the alpha-plus-beta-Zircaloy temp water-reactor (LWR) loss-of-coolant accident (LO simulated the adiabatic heatup (reheat) phase of temperature distributions. The fuel pin simulate linear power generation of 1.42 kW/m) and were s (Re \sim 1.0) of low-pressure superheated steam. The initial temperature (330°C) to the burst temp simulators burst in a very narrow temperature rate burst strain ranged from 21 to 56%, with an avera the heated length of the cladding ranged from 16 average burst strain and the average volumetric of were only slightly greater than the averages for channel flow area reduction was modest, with a min 43% if based on the interior 6 x 6 array, and 45 As expected, no evidence of rod-to-rod mechanica 7 KEY WORDS AND DOCUMENT ANALYSIS Zircaloy Nuclear fuel cladding Bundle burst tests Loss-of-coolant accident simulation Fuel pin simulators Flow blockage	erature range under si CA) conditions. B-6 t a LOCA and produced v ors were electrically lightly cocled with a he cladding temperatur perature at a rate of nge, with an average o age of 31%. Volumetri to 32%, with an avera expansion for the inte the exterior simulato aximum of 39% for the % if based on the cent <u>l interaction effects</u> DESCRIPTORS Tubes Deformation Rod-to-rod interactio Boundary conditions	mulated light- cest conditions very uniform heated (average very low flow re increased from 3.5°C/s. The of 930°C. Cladding c expansion over age of 23%. The erior simulators ors. The coolant entire 8 x 8 array ral 4 x 4 array. was observed.
76 IDENTIFIERS OPEN ENDED TERMS		
AVAILABILITY STATEMENT	19 SECURITY CLASS (This report)	21 NO. OF PAGES