

Document No.

ALPHA-529

Document Title

PANDA Transient Tests

M6/8 Integral System Test Procedure

PSI Internal Document

	Revision Status						
		A	pproval / Da	te			
Rev.	Prepared / Revised by	P-PM	G-PM	G-SQR	Issue Date	Remarks	
0	C. Aubert	1. Prever 8-XII-95	J. Torbeck 08, Dec 95	Achiet 8-XII-95	08.12.95	G-PM approved ERM-031 p.2	

9601230398 960117 PDR ADOCK 05200004 A PDR

12

Controlled Copy (CC) Distribution List

13

Note: Standard distribution (cf. next page) is non-controlled

CC No.	Holder Name, Affiliation	CC List Entry Date	Return / Recall Date
1	PANDA Betriebswarte	date issued	
		15 19 19 19 19 19 19 19 19 19 19 19 19 19	
-			
-			

	PAUL SCHERRER INSTITUT	Registrierung TM-42-95-30 ALPHA 529-0
Titel	PANDA Transient Tests M6/8 Integral System Test Procedure	Ersetzi
Autoren/ Autorinnen	C. Aubert	Erstellt 08 December 1995

Abstract:

This report details the procedure for conducting PANDA Transient Tests M6/8 specified by GE document 25A5788 Rev.0.

All phases for PANDA operation during the preconditioning processes and the test phases are described.

Verteiler	Abt.	Emptänger / Empfängerinnen	Expl.	Abt.	Emplanger / Emplangerinnen	Expl.		Expl.
F	42	G. Yadigaroglu G. Varadi	1		GE at PSI J. Torbek/G. Wingate	1	Bibliothek	
		C. Aubert T. Bandurski J. Dreier J. Healzer M. Huggenberger S. Lomperski H.J. Strassberger ALPHA-Dokumentation Betribswarte	1	A. Arretz	1	Reserve	5	
			1		GE San Jose B. Connen J.E. Terbech	1	Total	20
			1	1 1 1 2 1	(for distribution at GE to J.R. Fitch, T.R. Mc Intyre, B.S. Shiralkar, 6.A. Googete,		Seiten	32
			1				Beilagen	
			2 1		T1000005)		Informationsliste	
				Distribution list corrected by FO42 95-12-13		Visum Abt./Laborlei	tung:	

ALPHA-529-0 Page 4

PANDA Transient Tests

M6/8 Integral System Test Procedure

00 Introduction

01 Test Configuration and Initial Co' ditions

10 Initial Alignment

- 11 Control System and DAS Setul
- 12 Valve Alignment
- 13 General Facility Configuraton Check
- 14 Prepare Automatic Heat Power Regulation
- 15 Auxiliary Water System Miling
- 16 Instrument / Zero Cheuk

20 RPV Setup for Vessel Preconditioning

- 21 Water Filling
- 22 Heating / Purging

30 Suppression Chambers Setup

- 31 Water Filling
- 32 Gas Space Heating
- **33** Pressurization

40 GDCS Heating

- 41 Water Filling
- 42 Pressurization

50 IC Pool Setup

51 Water Filling

60 PCC1 Pool Setup

61 Water Filling

70 PCC2 Pool Setup

71 Water Filling

80 PCC3 Pool Setup

81 Water Transfer from GDCS Tank 82 GDCS Pressurization

90 IC Condenser Setup

91 IC Condenser Purging

100 Drywells Setup

101 Gas Space Heating

102 Pressurization

110 RPV Initial Conditions Setup for Test

111 Adjusting RPV Conditions

120 Test Conditions Setup

- 121 Adjusting SC Pools Conditions
- 122 Adjusting SC Gas Space Conditions
- 123 Adjusting GDCS Conditions
- 124 Adjusting DWs Conditions
- 125 Adjusting IC Pool Conditions 126 Adjusting PCC1 Pool Conditions
- 127 Adjusting PCC2 Pool Conditions
- 128 Adjusting PCC3 Pool Conditions

130 Test

- 131 Data Recording
- 132 Adjusting RPV Conditions
- 133 Configuration Setup and Test Initiation

140 End of Test

141 End of Data Recording

142 Facility Shut Down

200 Checklist

210 Test Course

00 Introduction

This procedure for Transient Test M6/8 describes all test phases including preconditioning processes. Assuming that the starting point for the preconditioning is an empty facility at atmospheric conditions, this procedure gives sequences of processes, which do not need to be strickly followed during the preconditioning process, at the discretion of Test Engineer. Required phases are listed in the Checklist and must be recorded when conducted.

The current procedure gives guidance on how to proceed to bring PANDA to the required initial test conditions for a extreme case (from a cold and empty facility). The order of preconditioning sequences may be modified if needed, and single phases may be adapted to the actual conditions. Heating power indicated in preconditioning phases is theoretical and considered as basis for time estimation. Due to PSI electrical power limitation or modification in preconditioning process, the heating power may be reduced.

In any case, the foreseen preconditioning process is to start with the Suppression Chambers conditioning after the facility has been set ready for operation. It continues with the GDCS tank, all IC/PCC pools, IC condenser and the Drywells. Just before test initiation, the RP's' is set up to satisfy the required initial conditions. The test is then conducted under automatic power control and with specific operator actions during the test in order to satisfy the test objectives. These actions depending on the system behaviour are associated to conditions, which will be checked in accordance to test procedure phases described further. A test course in function of different/divers scenarios is given at phase n°210 in order to make clear when operator actions must be conducted.

A time estimation for the preconditioning of an empty and cold facility is given for each component in the following table.

Test Plan Specifications are described in the GE document 25A5788 REV.0.

- Note: Since temperatures are given in Kelvin in the Test Plan Specification and in °C in the PANDA DAS, they are indicated in both units in the current procedure.
 - Idem for pressures which appear in kPa in the Test Plan Specification and in bar in the PANDA DAS; they are also indicated in two units in the current procedure.
 - Key parameters or key actions are indicated in dark frames to make reading easier during PANDA operation.

Phase n°	Preconditioning Phases		time	
10	Initial Alignment		not estin	nated
20	RPV Setup for Vessel Preconditioning		5,2	[hour]
30	Suppression Chambers Setup	집에서 관계	12,8	[hour]
40	GDCS Heating	4.111.035	2,6	[hour]
50	IC Pool Setup	11 - 12 - 13 - 13	2,0	[hour]
60	PCC1 Pool Setup		2,0	[hour]
70	PCC2 Pool Setup		2,0	[hour]
80	PCC3 Pool Setup	1021	2,0	[hour]
90	IC Condenser Setup		not estimated	
100	Drywells Setup		1,5	[hour]
110	RPV Initial Conditions Setup for Test		not estin	nated
120	Test Conditions Setup	1	not estin	nated
130	Test	~	10,0	[hour]
10 to 120	Duration for Preconditioning		30,0	[hour]
10 to 140	Duration for the whole Test	-	40,0	[hour]

Time Estimation

Note: Duration of phases n°10, 90,110 & 120 cannot be estimated; it should not exceed a couple of hours.

۰.

01 Test Configuration and Initial Conditions

The configuration for the Transient Test M6/8 includes the RPV, Suppression Chambers, Drywells, GDCS, all IC/PCC condensers and their respective pools, and the Drywell to Suppression Chamber Leakage Bypass line. The Equalization Lines connecting both Wetwells to the RPV are not part of the system and kept closed.

A detailed description of the required configuration is given in the Test Plan.

The initial conditions described in the above mentioned G.E document are listed below with the respective tolerances.

Note: The current procedure is based on the values given in the following List.

Test Initial Conditions List

RPV (V.RP)

-Total Pressure	MP.RP.1 =	295 [kPa]	±	4 [kPa]
- Mean Fluid Temperature	$T_{F_mean}(RP) =$	Σ(MTF.RP.i)/ma	x (i)	with i=1 to 5
	$T_{F_mean}(RP) =$	406 [K]	±	2 [K]
- Local Fluid Temperature	MTF.RP.15 =	TF_mean(RP)	*	2 [K]
- Water Level	ML.RP.1 =	12,70 [m]	±	0,20 [m]
Drywell 1 and 2 (V.D1 - V.D2)				
- Air Partial Pressure	MPG.D1.1 =	13 [kPa]	±	2 [kPa]
	MPG.D2.1 =	13 [kPa]	±	2 [kPa]
- Mean Gas Temperature	$T_{G_mean}(D1) =$	Σ(MTG.D1.i)/ma	x(i)	with i=1 to 6
	$T_{G_mean}(D2) =$	Σ(MTG.D2.i)/ma	x(i)	with i=1 to 6
	$T_{G_{mean}}(D1) =$	404 [K]	±	2 [K]
	$T_{G_{mean}}(D2) =$	404 [K]	+	2 [K]
- Local Gas Temperature	MTG.D1.16 =	$T_{G_mean}(D1)$	<u>+</u>	2 [K]
	MTG.D2.16 =	T _{G mean} (D2)	+	2 [K]
- Water Level	ML.D1 =	0,00 [m]	±	0,10 [m]
	ML.D2 =	0,00 [m]	±	0,10 [m]
Suppression Chamber 1 and 2 ((V.S1 - V.S2)			
-Total Pressure	MP.S1 =	285 [kPa]	±	4 [kPa]
	MP.S2 =	285 [kPa]	+	4 [kPa]
- Mean Gas Temperature	$T_{G_{mean}}(S1) =$	Σ(MTG.S1.i)/max	x(i)	with i=1 to 6
	$T_{G_mean}(S2) =$	Σ(MTG.S2.i)/max	x(i)	with i=1 to 6
	$T_{G_{mean}}(S1) =$	352 [K]	±	2 [K]
	$T_{G_{mean}}(S2) =$	352 [K]	+	2 [K]
- Local Gas Temperature	MTG.S1.16 =	T _{G mean} (S1)	+	2 [K]
	MTG.S2.16 =	T _{G mean} (S2)	+	2 [K]
- Mean Water Temperature	$T_{W mean}(S1) =$	Σ(MTL.S1.i)/max	(i)	with i=1 to 6
	$T_{W mean}(S2) =$	Σ(MTL.S2.i)/max	(i)	with i=1 to 6
	$T_{W,mean}(S1) =$	352 [K]	+	2 [K]
	$T_{W mean}(S2) =$	352 [K]	+	2 (K)
	a multiple of months	AA	and an and a second	- L - J

3,80 [m]

± 0,10 [m]

ML.S2 =

- Local Water Temperature

- Water Level

Test Initial Conditions List (cont'd)

GDCS (V.GD)

-Total Pressure	MP.GD =	294 [kPa]	± .	4 [kPa]
- Mean Fluid Temperature	$T_{F,mean}(GD) = 1$	E(MTF.GD.i)/ma	x(i)	with i=1 to 7
	$T_{F,mean}(GD) =$	333 [K]	<u>±</u>	4 [K]
- Local Fluid Temperature	MTF.GD.17 =	TF mean(GD)	±	4 [K]
- Water Level	ML.GD =	0,00 [m]	±	0,10 [m]

IC. PCC1. PCC2 and PCC3 Pools (V.U0 - V.U1 - V.U2 - V.U3)

-Total Pressure	* MP.ENV =	97 [kPa]			
- Mean Water Temperature	$T_{W mean}(U0) =$	Σ(MTL.UO.i)/ma	x(i)	with	i=1 to 7
incurrent compensions	$T_{W,mean}(U1) =$	Σ(MTL.U1.i)/ma	x(i)	with	i=1 to 7
	$T_{W mean}(U2) =$	Σ(MTL.U2.i)/ma	x(i)	with	i=1 to 7
	$T_{W mean}(U3) =$	Σ(MTL.U3.i)/ma	x(i)	with	i=1 to 19
	* Tw mean(U0) =	372 [K]	+0/ -4		[K]
	* Tw mean(U1) =	372 [K]	+0/ -4		[K]
	* Tw mean(U2) =	372 [K]	+0/-4		[K]
	* Tw mean(U3) =	372 [K]	+0/ -4		[K]
- Local Water Temperature	MTL.U0.17 =	Tw_mean(U0)	±	2	[K]
	MTL.U1.17 =	Tw_mean(U1)	±	2	[K]
	MTL.U2.17 =	Tw_mean(U2)	±	2	[K]
	MTL.U3.119 =	Tw_mean(U3)	*	2	[K]
- Water Level	ML.U0 =	4,80 [m]	±	0,20	[m]
	ML.U1 =	4,80 [m]	±	0,20	[m]
	ML.U2 =	4,80 [m]	±	0,20	[m]
	ML.U3 =	4,80 [m]	±	0,20	[m]

Note: * The pressure and temperature defined for the IC/PCC Pools correspond to saturation values at usual atmospheric pressure at the test site.

10 Initial Alignment

Before starting any preconditioning process, the facility is set into the specific state which establishes operations from the control room. The configuration is set in order to avoid any unintentional hardware manipulation during testing or preconditioning. The Data Acquisition and Control System must be properly initiated and brought into operation. Valves are aligned in accordance to STARTUP Status, automatic heat power regulation files are loaded and the auxiliary water system is filled to allow pump operation.

Five different preparation phases are needed for the Transient Tests: phase n°11 starting Control and Data Acquisition Systems, phase n°12 for the initial valve setup, phase n°13 for the configuration checking, phase n°14 to prepare the automatic heat power regulation and phase n°15 for auxiliary water system filling.

11 Control System and DAS Setup

- Ethernet connection is isolated from PSI network (Unplug Ethernet connector)

- Run Factory Link software on HP-UNIX workstation (cf. Trending System User's Guide) - Run DAS software (cf. DAS User's Guide)
- Run Factory Link software on PC (cf. Control Syst. User's Guide)
- Switch all local controllers to "external" and "automatic" state

Record on attached checklist

12 Valve Alignment

 Valve off pressure difference transmitters
 Set valve positions according to the STARTUP status Record on attached checklist

13 General Facility Configuraton Check

- Check that the facility configuration corresponds to the required test configuration Record on attached checklist

14 Prepare Automatic Heat Power Regulation

- Copy PF_TABLE.dec and PF_TABLE.str in C:\FLINK\RECIPE
 - Test these two files (RUN program called "TEST" on the PC)
Record on attached checklist

15 Auxiliary Water System Filling

- Fill the Auxiliary Water System

16 Instrument / Zero Check

16.0 - Turn On Oxygen Probes - Reference Gas and Probe Heaters

16.1 - Check Instruments

Transmitter zero check and DAS reading check according to the actual facility state, recording on DAS-Reading Hard-Copy and Trending Plots.

Record on attached checklist

20 RPV Setup for Vessel Preconditioning

As the heat source for the whole preconditioning process, the RPV must be capable of producing steam for vessel heating or providing hot water to the auxiliary system. In order to establish conditions to generate steam, the RPV is first heated to 373K, while most of the air is purged by venting to the atmosphere. Not all air is purged at this temperature, but that does not affect vessel preconditioning; pure steam conditions are only required for the tests. Then the RPV is heated to about 415K to supply the auxiliary water system heat exchanger.

The RPV water level is set before preconditioning to anticipate evaporation occuring during heating by steam injection; it should reach the required test water level at the end of the preconditioning process. However in any case it must be lower than the main steam line inlets to avoid water hammer.

21 Water Filling

21.0 Monitor RPV Parameters	Assumption:	
- Water Level	ML.RP.1 =	0,0 [m]
	M(RPV-water) =	0,00 [ton]

21.1 Supply water until level reaches 12.7 [m] Vent Air to the Atmosphere - Open valve CC.RPV

	Auxiliary water system operation				
	Pump MP.BOD On	MV.B0D =	2 [Vs]		
	ML.RP.1 = 12,7 [m]	M(RPV-water) =	15,01 [ton]		
		=> time =	7505 [sec]		
	Pump MP.BOD Off				
	Fill preheater heating side with water				
	- Open valve CB.HRH, CB.HFH				
-	Manitar DDV Decemeters				
21.2	Montor MPV Parameters	MI DD 1 -	12 70 (m)		
	- Water Lever	MIL.FIF.I	12,70 [11]		
22	Heating / Purging				
22.0	Monitor RPV Parameters				
	-Total Pressure Assumption	s: MP.RP.1 =	97 [kPa]	=	0,97 [bar
	- Local Fluid Temperature	MTF.RP.15 =	283 [K]	=	10 [°C]
	- Structure temperature	MTI.RP.13 =	283 [K]	-	10 [°C]
	- Water Level	ML.RP.1 =	12,70 [m]		
	Linet will to me not up not up 1	11/21			
22.1	Heat until temperature equals 373	[K]			
	MALER 7 - POO [LW]				
	MITE DD 1 6- 972 141	-> AT -	90 IK1		
	= 100 PC1	-> 01 -	00 [11]		
	M(BPV-water) = 15.01 [ton]	=> AQ =	5.67378 [GJ]		
	M(RPV-struct) = 8.00 [ton]	=> ΔQ =	0.36 [GJ]		
	and a second second second	=> \Qtot =	6.04 [GJ]		
		=> time =	7544 [sec]		
	- Close valve CC.RPV				
22.2	Heat until temperature equals 415	5 [K]			
	MTF.RP.15 = 415 (K)	=> AT =	42 [K]		
	= 142 [°C]				
Note:	* Temperature corresponding to the h	leat exchanger ope	ration: SC's	water fi	lling
	M(RPV-water) = 15.01 [ton]	=> AQ =	2.65 [GJ]		
	M(RPV-struct) = 8.00 [ton]	=> AQ =	0.17 [GJ]		
		=> \(\Delta\)Qtot =	2,82 [GJ]		
		=> time =	3521 [sec]		
	Heaters Off				
22.3	Monitor RPV Parameters				
	-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
	- Local Fluid Temperature	MTF.RP.15 =	415 [K]	-	142 [°C]
	- Structure temperature	MTI.RP.13 =	415 [K]	=	142 [°C]
	- Water Level	ML.RP.1 =	13,7 [m]		
		M(RPV-water) =	15,01 [ton]		

30 Suppression Chambers Setup

The Test Initial Conditions require a collapsed water level in both Suppression Chambers of 3,8m above the PANDA heater bundle, that corresponds to a water column of 3,8m from the bottom of the Suppression Chamber. The required temperature is a homogeneous temperature of 352K for the pool water as well as for the gas space. The total pressure, considering saturated conditions, is at 285kPa, which includes an air partial pressure of 240kPa.

The Suppression Chambers Setup starts with water filling and pool conditioning (phase n° 31), continues with gas space heating by steam injection keeping 1 bar air partial pressure inside the vessels (phase n° 32). The total pressure is then set up by injecting air with the auxiliary air system (phase n° 33). Phase n° 33 is performed during phases n° 31 and 32.

31 Water Filling

31.0 Monitor SCs Parameters	Assumptions:				
-Total Pressure	MP.S1 =	97 [kPa]	=	0,97 [bar]	
	MP.S2 =	97 [kPa]	=	0,97 [bar]	
- Local Water Temperature	MTL.S1.16 =	283 [K]	=	10 [°C]	
	MTL.S2.16 =	283 [K]	=	10 [°C]	
- Water Level	ML.S1 =	0,00 [m]			
	ML.S2 =	0,00 [m]			
31.1 RPV Setup for Heat Exchanger Opera	ition				
Monitor RPV Parameters					
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]	
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]	
- Water Level	ML.RP.1 =	13,72 [m]			
Heaters On					
MW.RP.7 = 800 [kW]					
31.2 Supply water until level reaches 3,8 Auxiliary water system operation Pump PC.HFH On	[m]				
Setup control valve CC.BHA	MTL.BHA =	354,5 [K]	-	81 [°C]	
CC.BCA	MTL.BCA =	max [K]	Contract of Incontra		1
- Open valve CB.S1L, CB.S2L					
Pump PC.B0D On	MV.BOD =	2 [l/s]			
ML.S1 = 3.8 [m]	M(S1-water) =	42,50 [ton]			
ML.S2 = 3.8 [m]	M(S2-water) =	42,50 [ton]			
	M(TSL-water) =	7,10 [ton]			
	=> time =	46050 [sec]			
- Close valve CB.S1L, CB.S2L					
Pump PC.B0D Off	MV.BOD =	0 [l/s]			
Pump PC.HFH Off					
Heaters Off					
31.3 SCs Parameters					
- Mean Water Temperature	Tw mean(S1) =	352 [K]	=	79 [°C]	
a the second structure of	Tw mean(S2) =	352 [K]	=	79 [°C]	
- Water Level	ML.S1 =	3.80 [m]			
	ML S2 =	3.80 [m]			
		and the second second			

32 Gas Space Heating

32.0 Monitor SCs Parameters	Assumptions:			
-Total Pressure	MF S1 =	156 [kPa]	=	1,56 [bar]
	MP.52 -	156 [kPa]	-	1,56 [bar]
- Local Gas Temperature	MTG.S1.16 =	183 [K]	=	10 [°C]
	MTG.S2.16 =	283 [K]	=	10 [°C]
- Structure temperature	MTI.S1.19 =	283 [K]	=	10 [°C]
	MTI.S2.19 =	283 [K]	=	10 [°C]
32.1 RPV Setup for Steam Injection				
Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
- Water Level	ML.RP.1 =	13,72 [m]		
Heaters On				
MW.RP.7 = 800 [kW]				
32.2 Steam injection				
- Open valve CB.B1S, CB.S1S,	CB.S2S			
MTI.S1.19 = 352 [K]	=> Δ T =	69 [K]		
= 79 [°C]				
MTI.S2.19 = 352 [K]				
= 79 [°C]				
M(SCs-struct) = 72,7 [ton]	=> ∆Q =	2,52 [GJ]		
∆M(steam) = 1095 [kg]	=> time =	3148 [sec]		
- Close valve CB.B1S, CB.S1S,	CB.S2S			
Heaters Off				
Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
- Water Level	ML.RP.1 =	12,75 [m]		
32.3 Monitor SCs Parameters				
-Total Pressure	MP.S1 =	201 [kPa]	=	2,01 [bar]
	MP.S2 =	201 [kPa]	*	2,01 [bar]
- Mean Gas Temperature	$T_{G_{mean}}(S1) =$	352 [K]	=	79 [°C]
	$T_{G_{mean}}(S2) =$	352 [K]	=	79 [°C]
- Mean Water Temperature	$T_{W_mean}(S1) =$	352 [K]	=	79 [°C]
	$T_{W,mean}(S2) =$	352 [K]	=	79 [°C]
- Water Level	ML.S1 =	3,80 [m]		
	ML.S2 =	3,80 [m]		

33 Pressurization

0

33.0 Monitor SCs Parameters				
-Total Pressure	MP.S1 =	201 [kPa]		2,01 [bar]
	MP.S2 =	201 [kPa]	=	2,01 [bar]

33.1 Air injection until total pressure reaches 285 [kPa]

Auxiliary air supply system operation Setup control valve CC.B0G.2 MM.B0G = max - Open valve CB.S1G, CB.S2G, CB.B0G MP.S1 = 285 [kPa] = 2,85 [bar] $\Delta M(air) = 62 [kg] => time = 2073 [sec]$

- Close valve CB.S1G, CB.S2G, CB.B0G

33.2 Monitor SCs Parameters

-Total Pressure	MP.S1 =	285 [kPa]	=	2,85 [bar]
	MP.S2 =	285 [kPa]	=	2,85 [bar]
- Mean Gas Temperature	$T_{G_{mean}}(S1) =$	352 [K]	=	79 [°C]
	$T_{G_{mean}}(S2) =$	352 [K]	=	79 [°C]
- Mean Water Temperature	$T_{w_{mean}}(S1) =$	352 [K]	-	79 [°C]
	$T_{W_mean}(S2) =$	352 [K]	=	79 [°C]
- Water Level	ML.S1 =	3,80 [m]		
	ML.S2 =	3,80 [m]		

40 GDCS Heating

The Test Initial Conditions require a water level in the GDCS tank of 10,7m above the PANDA heater bundle, corresponding to a water level of 0,0m from the bottom of the tank, taking into account a full GDCS Return Line. The required temperature is a homogeneous temperature of 333K for the whole tank, which is achieved by filling with water up to approximately 5,5m at the required temperature and then draining the tank. The total pressure in GDCS, under saturated conditions and in equilibrium with the Drywell pressure is at 294kPa, which includes an air partial pressure of 274kPa.

The GDCS Setup consits of heating by water filling (phase n° 41) and pressurization by air injection (phase n° 42). Filling and draining processes are performed with the GDCS vent valve open. The total pressure is then adjusted by injecting air by mean of the auxiliary air system or by venting air to the atmosphere (phase n° 42). That last phase is performed after water has been drained and transferred to the PCC pools.

41 Water Filling

Monitor GDCS Parameters	Assumptions:			
-Total Pressure	MP.GD =	97 [kPa]	=	0,97 [bar]
- Local Fluid Temperature	MTF.GD.17 =	283 [K]	=	10 [°C]
- Structure temperature	MTI.GD.16 =	283 [K]	=	10 [°C]
- Water Level	ML.GD =	0,00 [m]		
RPV Setup for Heat Exchanger O	peration			
Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
- Water Level	ML.RP.1 =	12,75 [m]		
Heaters On				
	Monitor GDCS Parameters -Total Pressure - Local Fluid Temperature - Structure temperature - Water Level RPV Setup for Heat Exchanger O Monitor RPV Parameters -Total Pressure - Local Fluid Temperature - Water Level Heaters On	Monitor GDCS ParametersAssumptions:-Total PressureMP.GD =- Local Fluid TemperatureMTF.GD.17 =- Structure temperatureMTI.GD.16 =- Water LevelML.GD =RPV Setup for Heat Exchanger Operation Monitor RPV Parameters-Total PressureMP.RP.1 =- Local Fluid TemperatureMTF.RP.15 =- Water LevelML.RP.1 =	Monitor GDCS ParametersAssumptions:-Total PressureMP.GD =97 [kPa]- Local Fluid TemperatureMTF.GD.17 =283 [K]- Structure temperatureMTI.GD.16 =283 [K]- Water LevelML.GD =0,00 [m]RPV Setup for Heat Exchanger Operation Monitor RPV ParametersMP.RP.1 =388 [kPa]- Local Fluid TemperatureMTF.RP.15 =415 [K]- Water LevelML.RP.1 =12,75 [m]Heaters OnME.RP.1 =12,75 [m]	Monitor GDCS ParametersAssumptions:-Total PressureMP.GD =97 [kPa] =- Local Fluid TemperatureMTF.GD.17 =283 [K] =- Structure temperatureMTI.GD.16 =283 [K] =- Water LevelML.GD =0,00 [m]RPV Setup for Heat Exchanger Operation Monitor RPV ParametersMP.RP.1 =388 [kPa] =- Local Fluid TemperatureMTF.RP.15 =415 [K] =- Water LevelML.RP.1 =12,75 [m]Heaters OnML.RP.1 =12,75 [m]

MW.RP.7 = 800 [kW]

Heaters On MW.RP.7 = 800 [kW]

41.2 Supply water until level reaches 5,5 [m]

	Setup control valve - Open valve	CC.BUV CB.GDV				
	Auxiliary water system of	peration				
	Pump PC.HFH On					
	Setup control valve	CC.BHA	MTL.BHA =	335 [K]	=	62 [°C]
		CC.BCA	MTL.BCA =	max [K]		
	Pump PC.B0D On		MV.BOD =	2 [Vs]		
	- Open valve CB.GD)L				
	MLGD = 5.5	[m]	M(GD-water) =	16,4 [ton]		
	NAME OF ADDRESS OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS OF TAXABLE ADDRESS OF TAXABLE ADDRESS OF TAXABLE ADDR	0410140000	=> time =	8195 [sec]		
	- Close valve CB GD					
	Pump PC BOD Off					
	Pump PC HEH Off					
	Heatore Off					
	ribatoro On					
1.3	Monitor GDCS Paramet	ers				
	-Total Pressure		MP.GD =	97 [kPa]	=	0,97 [bar]
	- Mean Fluid Temperate	ITP	T_{F} max(GD) =	333 [K]	-	60 [°C]
	- Structure temperature		MTI GD 1 6 =	333 [K]	=	60 [°C]
	- Structure temperature		ML GD =	5.50 [m]		
	Processing		1916-010 -	alee [m]		
42	Pressurization					

42.0 See phase n°82

1

Since the GDCS is full with water, it cannot be pressurized during the phase n°42. The GDCS pressurization is performed at phase n°82.

50 IC Pool Setup

The Test Initial Conditions for all IC/PCC Pools are the same; water level from the top of the PANDA heater bundle is defined at the maximum possible level (23,6m), which corresponds to a water level of 4,8m in the pools. The end point temperature is near the saturation temperature for actual atmospheric pressure.

The Pools Setup is performed as follows: water is filled at the highest possible temperature (phase n°51, 61, 71 & 81) and the temperature conditions are adjusted then by water circulation through the auxiliary heat exchanger (phase n°125, 126, 127 & 128).

Note: Pools can be connected together and filled simultaneously; water circulation might also be performed simultaneously with interconnected pools.

51 Water Filling

51.0	Monitor IC Pool Parameters				
	- Local Water Temperatura	MTL.U0.17 =	283 [K]	=	10 [°C]
	- Water Level	ML.U0 =	0,00 [m]		
51.1	RPV Setup for Heat Exchanger Op	peration			
	Monitor RPV Parameters				
	-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
	- Local Fluid Temperature	MTF.RP.15 =	415 [K]	*	142 [°C]
	- Water Level	ML.RP.1 =	12,75 [m]		

1,

Heaters On MW.RP.7 = 800 [kW]

Note: The RPV temperature indicated here is a basis for the water filling operation; it might be lower than indicated.

51.2	Auxiliary water s	ystem operation	9 [m]					
	Setup control va Pump PC.BOD - Open valve	Ve CC.BHA CC.BCA On CB.UOL	MTL.BHA = MTL.BCA = MV.BOD =	375 [K] max [K] 2 [l/s]	=	62	[°C]	
	MLJUO =	4,9 [m]	M(U0-water) = => time =	14,22 [K] 7111 [sec]				
	- Close valve Pump PC.B0D Pump PC.HFH Heaters Off	CB.UOL Off Off						
51.3	Monitor IC Pool	Parameters						
	- Mean Fluid Te - Water Level	mperature	$T_{w_{mean}}(U0) = ML.U0 =$	372 [K] 4,90 [m]	-	5	99 [°C]	

60 PCC1 Pool Setup

Pump PC.B0D On - Open valve CB.U1L

For PCC1 Pool Setup refer to description of pools conditioning in phase n°50.

61 Water Filling

61.0	Monitor PCC1 Pool Parameters				
	- Local Water Temperature	MTL.U1.17 =	283 [K]	=	10 [°C]
	- Water Level	ML.U1 =	0,00 [m]		
61.1	RPV Setup for Heat Exchanger Op Monitor RPV Parameters	eration			
	-Total Pressure	MP.RP.1 =	388 [kPa]		3,88 [bar]
	- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
	- Water Level	ML.RP.1 =	12,75 [m]		
	Heaters On				
	MW.RP.7 = 800 [kW]				
Note:	The RPV temperature indicated h lower than indicated.	ere is a basis for the w	ater filling opera	ation; i	it might be
61.2	Supply water until level reaches	4,9 [m]			
	Auxiliary water system operation				
	Pump PC.HFH On				
	Setup control valve CC.BHA CC.BCA	MTL.BHA = MTL.BCA =	375 [K] max [K]		102 [°C]
	Pump PC.B0D On	MV.BOD =	2 [Vs]		

ALPHA-529-0 Page 16 ,×.

le 1t	2					
	ML.U1 =	= 4,9 [m]	M(U1-water) =	14,22 [ton] 7111 [sec]		
	- Close valve	CB.U1L				
	Pump PC.B0D Pump PC.HFH Heaters Off	Off Off				
61.3	Monitor PCC1 P	ool Parameters				
	- Mean Water 1	emperature	$T_{W_mean}(U1) =$	372 [K]	=	99 [°C]
	- water Lever		ML.OT E	4,90 [m]		
70	PCC2 Pool	Setup				
	For PCC2 Pool	Setup refer to descri	ption of pools conditio	ning in phase n'	°50.	
71	Water Filling					
71.0	Monitor PCC2 P	ool Parameters				10 (00)
	- Local Water T	emperature	MTL.U2.17 =	283 [K]	25	10 [°C]
	- water Lever		WIL.02	0,00 [11]		
71.1	RPV Setup for H	leat Exchanger Ope	ration			
	Monitor HPV Pa	rameters	MP RP 1 -	388 (kPa)		3.88 [bar]
	- Local Fluid Te	mperature	MTF.RP.15 =	415 [K]	-	142 [°C]
	- Water Level	in portator o	ML.RP.1 =	12,75 [m]		
	Heaters On MW.RP.7 =	= 800 [kW]				

/1.2	Auxiliary water un	svstem	operation	4,9 [m]			
	Pump PC.HFH	On					
	Setup control va	lve	CC.BHA	MTL.BHA =	375 [K]	=	102 [°C]
			CC.BCA	MTL.BCA =	max [K]		
	Pump PC.B0D	On		MV.BOD =	2 [l/s]		
	- Open valve	CB.U	2L				
	ML_U2 =	- 4,	9 [m] e	M(U2-water) =	14,22 [ton]		
		and the second	Contraction of the second second	=> time =	7111 [sec]		
	- Close valve	CB.U	2L				
	Pump PC.B0D	Off					
	Pump PC.HFH	Off					
	Heaters Off						
71.3	Monitor PCC2 P	ool Pa	ameters				
	- Mean Water T	emper	ature	$T_{W_{mean}}(U2) =$	372 [K]	=	99 [°C]
	- Water Level			ML.U2 =	4,90 [m]		

10 1-1

80 PCC3 Pool Setup

For PCC3 Pool Setup refer to description of pools conditioning in phase n°50. In that case, the water comes from the GDCS; this phase defines the transfer (of the water used to heat the GDCS tank) from GDCS to PCC3 pool.

After water has been drained, the GDCS is pressurized by air injection (phase n°82).

81 Water Transfer from GDCS Tank

81.0	Monitor PCC3	Pool Parameters				
	- Local Water	Temperature	MTL.U3.119 =	283 [K]	=	10 [°C]
	- Water Level		ML.U3 =	0,00 [m]		
	Monitor GDCS	Parameters				
	-Total Pressure	9	MP.GD =	97 [kPa]	=	0,97 [bar]
	- Mean Fluid T	emperature	$T_{F_mean}(GD) =$	333 [K]	-	60 [°C]
	- Structure tem	perature	MTI.GD.16 =	333 [K]	=	60 [°C]
	- Water Level		ML.GD =	5,50 [m]		
81.1	RPV Setup for I	Heat Exchanger Opera	ation			
	Monitor RPV Pa	arameters				
	-Total Pressur	e	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
	- Local Fluid Te	emperature	MTF.RP.15 =	415 [K]		142 [°C]
	- Water Level		ML.RP.1 =	12,75 [m]		
	Heaters On					
	MW.RP.7	= 800 [kW]				
Note:	The RPV tem lower than ind	perature indicated here	e is a basis for the w	ater filling operation	ation; i	t might be
81 2	Supply water up	til level reaches 40	[m]			
C. I ster	Auxiliary water	system operation	. 1			
	Pump PC HEH	On				
	Setup control va	alve	MTL BHA -	375 3 [K]		102 [°C]
	ootop control it		MTL BCA -	may [K]	- C -	102 [0]
	Pump PC BOA	00	MIL.BOA -	111ax [N]		
	- Open value	CR PAL CRIVA CI	DAVU	2 [1/5]		
	- Open valve	CB USU CB GDL	D.MAU			
	MI 113 -	= 4.90 [m]	M(U3-water) =	14.22 [ton]		
	and a subject of the second	The state of the second second	=> time =	7111 [sec]		
	- Close valve	CR USU CR GDL		riti [bee]		
	01000 10110	CB BOL CB LXA CE	BAXU			
	Heaters Off	enterent enterer i er				
	Pump PC BOA	Off				
	Pump PC.HFH	Off				
	Isolate GDCS fr	om atmosphere				
	- Close valve	CC.BUV, CB.GDV				
81.3	Monitor PCC3 P	ool Parameters				
	- Mean Water 7	emperature	Tw mean(U3) =	372 [K]	=	99 [°C]
	- Water Level		ML.U3 =	4,90 [m]		
	Monitor GDCS F	Parameters				

ALPHA-529-0 Page 18				ALPHA-529-0 Page 18
-Total Pressure	MP.GD =	97 [kPa]	55	0,97 [bar]
- Mean Fluid Temperature	TE mean(GD) =	333 [K]	=	60 [°C]
- Structure temperature	MTI.GD.16 =	333 [K]	=	60 [°C]
- Water Level	ML.GD =	0,00 [m]		
Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
- Water Level	ML.RP.1 =	12,75 [m]		
82 GDCS Pressurization				
82.0 Monitor GDCS Parameters				
-Total Pressure	MP.GD =	97 [kPa]	=	0,97 [bar]
82.1 Air injection until total pressure reaches Auxiliary air supply system operation	294 [kPa]			
Setup control valve CC.B0G.2 - Open valve CB.GDG, CB.B0G	MM.B0G = r	nax		
MP.GD = 294 [kPa] =	2,94 [bar]			
∆M(air) = 38 [kg] - Close valve CB.GDG, CB.B0G	=> time =	1255 [sec]		
82.2 Monitor GDCS Parameters				
-Total Pressure	MP.GD =	294 [kPa]	=	2,94 [bar]
- Mean Fluid Temperature	$T_{F_mean}(GD) =$	333 [K]		
- Water Level	ML.GD =	0,00 [m]		

90 IC Condenser Setup

In order to allow IC operation with non-condensable gas inventory as low as possible at the test initiation, the condenser must be purged and brought into pure steam conditions. Phase n°91 describes how the air is purged from IC condenser.

91 IC Condenser Purging

91.0	Monitor RPV Parameters				
	-Total Pressure	MP.RP.1 =	388 [kPa]	-	3,88 [bar]
	- Mean Fluid Temperature	$T_{F mean}(RP) =$	415 [K]	=	142 [°C]
	- Water Level	ML.RP.1 =	12,75 [m]		
	Monitor IC Parameters				
	-Total Pressure	MP.11F = ~	200 [kPa]	25	2,00 [bar]
	- IC Drum Temperatures	MTG.I1.1.2 =	372 [K]	=	99 [°C]
	- Center Line Temperatures	MTG.I1.39 =	372 [K]	=	99 [°C]
	Monitor SCs Parameters (V.S1)				
	-Total Pressure	MP.S1 =	285 [kPa]	=	2,85 [bar]
	- Mean Gas Temperature	$T_{G_{mean}}(S1) =$	352 [K]	=	79 [°C]
91.1	IC Purging				
	- Open valve CB.I1F				
	- Monitor IC Pressure	MP.11F = ~	388 [kPa]	=	3,88 [bar]
	- Open IC Vent & Drain Valves after p	pressure has stabilize	ed: CB.ILV, CE	LIIC	

Page 19				
- IC Drum Temperatures - Close valve CB.ILV, CB.I1C	MTG.I1.1.2 =	415 [K]	=	142 [°C]
- Close valve CB.I1F		Record on attach	ned ch	necklist
91.2 Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	#	3,88 [bar]
- Mean Fluid Temperature	T_{F} mean(RP) =	415 [K]	-	142 [°C]
- Water Level	ML.RP.1 =	13 [m]		
Monitor IC Parameters				
-Total Pressure	MP.11F = -	100 [kPa]	=	1,00 [bar]
- IC Drum Temperatures	MTG.11.1.2 =	372 [K]	25	99 [°C]
- Center Line Temperatures	MTG.11.39 =	372 [K]	=	99 [°C]
Monitor SCs Parameters				
-Total Pressure	MP.S1 =	285 [kPa]	=	2,85 [bar]
- Mean Gas Temperature	TG_mean(S1) =	352 [K]	=	79 [°C]

100 Drywells Setup

ALPHA-529-0

The nominal Drywell condition is no water; the atmosphere ω a mixture of steam with a small amount of air. The total pressure considered at saturated condition is defined at 294kPa, which includes an air partial pressure of 13kPa. The required temperature being homogeneous in the whole gas space, corresponds to 404K.

The Drywells Setup consists of steam injection to heat the gas space (phase n° 101) and of a depressurization by venting to atmosphere (phase n° 102). In order to get homogeneous temperature in the vessels, air is purged during phase n°101 and 20kg of air is reinjected to the Drywells in order to satisfy the required air partial pessure of 13kPa.

During the heating process, the RPV, used as steam source, is cooled down in order to approach the required test initial conditions - heater power is controlled in order to decrease the RPV temperature.

101 Gas Space Heating

101.0	Monitor Drywell Parameters	Assumptions:			
	-Total Pressure	MP.D1 =	97 [kPa]	=	0,97 [bar]
		MP.D2 =	97 [kPa]	=	0,97 [bar]
	- Local Gas Temperature	MTG.D1.16 =	283 [K]	-	10 [°C]
		MTG.D2.16 =	283 [K]	-	10 [°C]
	- Structure temperature	MTI.D1.19 =	283 [K]	=	10 [°C]
		MTI.D2.19 =	283 [K]	=	10 [°C]
	- Water Level	ML.D1 =	0,00 [m]		
		ML.D2 =	0.00 [m]		

101.1 Connect Drywells to all PCC Condensers - Open valve CB.P1F, CB.P2F, CB.P3F

101.2 RPV Setup for Heat Exchanger Operation

Monitor RPV Parameters				
-Total Pressure	MP.RP.1 =	388 [kPa]	=	3,88 [bar]
- Local Fluid Temperature	MTF.RP.15 =	415 [K]	=	142 [°C]
- Water Level	ML.RP.1 =	12,75 [m]		
Heaters On				
MW.RP.7 = 800 [kW]				

ALPHA-529-0 Page 19 101.3 Steam injection (with air purging)

Vent valve opening for air purging

- Open valve CC.BUV, CB.D1V, CB.D2V

- Open valve CB.B1S, CB.D1S, CB.D2S

MTI.D1.19=	373 [K]	=> ∆T =	90 [K]
-	100 [°C]		
MTI.D2.19=	373 [K]	=> AT =	90 [K]
	100 (°C]		
M(DWs-struct) =	48,9 [ton]	=> ∆Q =	2,21 [GJ]
M(DWs-steam) =	98 [kg]	≈> ∆Q =	0,26 [GJ]
		=> \(\Delta\)Qtot =	2.47 [GJ]
∆M(steam) =	1073 [kg]	=> time =	3084 [sec]

Vent valves are closed when temperature has reached 373K and is steady - Close valve CC.BUV, CB.D1V, CB.D2V

101.4 Continue Steam Injection (without air purging)

en management reason protocologica da terra	-	and the second se		04 1473
MTI.D1.19=	404	[K]	=> \[] =	31 [K]
-	131	[°C]		
MTI.D2.19=	404	[K]	=> ∆T ==	31 [K]
11 14 14 14 19 19 1 1 1 1 1 1 1 1 1 1 1	131	[00]		
M(DWs-struct) =	48,9	[ton]	=> AQ =	0,76 [GJ]
M(DWs-steam) =	182	[kg]	=> ∆Q =	0,43 [GJ]
			=> \(\Delta\)Qtot =	1,20 [GJ]
∆M(steam) =	520	[kg]	=> time =	1494 [sec]

- Close valve CB.B1S, CB.D1S, CB.D2S Heaters Off

Note: * During that phase, the RPV, used as heat source for steam injection to the Drywell, is cooled down in order to approach the required test initial conditions - heat power is controlled (eventually not used) in order to decrease the RPV temperature.

101.5 Monitor RPV Parameters

-Total Pressure	MP.RP.1 =	295 [kPa]	-	2,95 [bar]
- Mean Fluid Temperature	$T_{F,mean}(RP) =$	406 [K]	25	133 [°C]
- Water Level	ML.RP.1 =	11,35 [m]		
Monitor Drywell Parameters				
-Total Pressure	MP.D1 =	281 [kPa]	=	2,81 [bar]
	MP.D2 =	281 [kPa]	=	2,81 [bar]
- Local Gas Temperature	MTG.D1.16 =	404 (K)		131 [°C]
	MTG.D2.16 =	404 [K]	=	131 [°C]
- Structure temperature	MTI.D1.19 =	404 [K]	-	131 [°C]
	MTI.D2.19 =	404 [K]	-	131 [°C]
Monitor PCCs Parameters				
-Total Pressure	MP.P1F =	281 [kPa]	-	2.81 [bar]
	MP.P2F =	281 [kPa]	=	2.81 [bar]
	MP.P3F =	281 [kPa]	=	2.81 [bar]
- Local Gas Temperature	MTG.P1.19 =	372 [K]	=	99 [°C]
전화 한 것의 경제에서 생각을 들었다.	MTG.P2.19 =	372 [K]	=	99 [°C]
	MTG.P3.19 =	372 [K]	=	99 [°C]

C CI

131 [°C]

102 Pressurization

Both Drywells have now been purged and heated up to 404K; since the three PCCs were connected to the Drywells and due to the PCC pool temperature (~370K), a certain amount of air has been vented to the PCCs satisfying pressure equilibrium between Drywells and PCCs. The Drywell, which atmosphere is considered as being under almost pure steam condition, is pressurized by air injection. In order to avoid condensation in the PCCs and let stabilize the Drywell pressure, the PCCs are isolated for the pressurization process.

- 102.0 Isolate Drywells from PCCs
 - Close valve CB.P1F, CB.P2F, CB.P3F
- 102.1 Monitor Drywell Parameters

-Total Pressure	MP.D1 =	281 [kPa]	=	2,81 [bar]
	MP.D2 =	281 [kPa]	=	2,81 [bar]
- Local Gas Temperature	MTG.D1.16 =	404 [K]	=	131 [°C]
	MTG.D2.16 =	404 [K]	=	131 [°C]
- Structure temperature	MTI.D1.19 =	404 [K]	=	131 [°C]
	MTI.D2.19 =	404 [K]	=	131 [°C]

102.3 Air injection until Drywell total pres	sure increases by	13 [KPa]		
Auxiliary air supply system operati	on			
Setup control valve CC.B0G.	2 MM.BOG = m	ax		
- Open valve CB.D1G, CB.D20	G, CB.BOG			
MPG.D1.1 = 13	[kPa]			
MPG.D2.1 = 13	[kPa]			
∆M(air) = 21 [kg]	=> time =	778 [sec]		
- Close valve CB.D1G, CB.D20	G, CB.B0G			
102.4 Monitor Drywell Parameters				
- Air Partial Pressure	MPG.D1.1 =	13 [kPa]		
	MPG.D2.1 =	13 [kPa]		
- Local Gas Temperature	MTG.D1.16 =	404 [K]	æ	131 [°C]
	MTG.D2.16 =	404 [K]	-	131 [°C]
- Structure temperature	MTI.D1.19 =	404 [K]	=	131 [°C]

MTI.D1.1...9 = 404 [K] = - Structure temperature MTI.D2.1...9 = 404 [K] -

110 RPV Initial Conditions Setup for Test

After having used the RPV as heat source for vessel preconditioning, it might be under conditions differing from these required for test initiation; water level, pressure and temperature may need to be adjusted in order to satisfy the test initial conditions.

Phase nº 111 starts with a parameter monitoring, which will give the basis for RPV condition adjustement.

111 Adjusting RPV Conditions

111.0 Monitor RPV Parameters	Assumtions:			
-Total Pressure	MP.RP.1 =	295 [kPa]	=	2,95 [bar]
- Mean Fluid Temperature	$T_{F_mean}(RP) =$	406 [K]	-	133 [°C]
- Water Level	ML.RP.1 =	11,35 [m]		

111.1 Adjust Test Initial Conditions in RPV

Assuming saturated conditions and a negligible air partial pressure, the pressure is set by adjusting the temperature. Cooling is achieved by venting steam to the atmosphere. Heating is performed by using RPV heaters. Any required action is allowed to set up the RPV test initial conditions with the required tolerances (see phase 01).

120 Test Conditions Setup

PANDA preconditioning has now been performed and the state of the facility is close to that required for test initiation; conditions out of tolerance must be adjusted to the defined values. The test condition setup starts with the adjustment of both Suppression Chamber (SC) Pools (phase n° 121) and continues with the SCs gas space setup (phase n°122). The GDCS tank is then adjusted to its defined test initial conditions (phase n°123), before adjusting conditions of both Drywells (phase n° 124). The test condition setup continues with the IC/PCC Pools condition adjustment (phase n° 125, 126, 127 & 128), which can be performed simultaneously. All these phases are not defined in detail, allowing any required action to get the test initial conditions established.

121 Adjusting SC Pools Conditions

121.0 Adjust Test Initial Conditions in Suppression Chamber Po...

After the check of the water temperature and water level, required action to adjust the corresponding parameters are supplying or draining water to satisfy the defined water level, and water circulation through one or the other of the two auxiliary heat exchangers as required to adjust the desired temperature. Any action is allowed to setup the SCs pools test initial conditions according to the defined tolerances (see phase 01).

121.1 Monitor SCs Parameters

- Mean Water Temperature
- 2 [K] Tw_mean(S1) = 352 [K] 4 79 [°C] 56 S 352 [K] 2 [K] Tw mean(S2) = + 79 (°C) 2 [K] MTL.S1.1...6 = Tw_maar(S1) + Tw_mean(S2) 2 [K] MTL.S2.1 ... 6 = 4 0.10 [m] ML.S1 = 3.80 [m] ± ML.S2 = 3,80 [m] 4 0,10 [m]
- Local Water Temperature

- Water Level

Record on attached checklist

122 Adjusting SC Gas Space Conditions

122.0 Adjust Test Initial Conditions in Suppression Chamber Gas Space

Assuming saturated steam/air mixture, the temperature and the pressure are separately adjusted by steam and air injection. Any required action is allowed to setup the SCs gas space test initial conditions according to the defined tolerances (see phase 01).

- 122.1 Monitor SCs Parameters -Total Pressure
 - Mean Gas Temperature

- Local Gas Temperature

MP.S1 =	2,85 [bar]	±	0,04 (bar)
MP.S2 =	2,85 (bar)	+	0,04 (bar)
T _{G_mean} (S1) =	352 [K]	±	2 [K]
-	79 [°C]		
Te_mean(S2) =	352 [K]	±	2 [K]
-	79 [°C]		
MTG.S1.16 =	TG_mean(S1)	±	2 [K]
MTG.S2.16 =	TG_meen(S2)	±	2 [K]

Record on attached checklist

123 Adjusting GDCS Conditions

123.0 Adjust Test Initial Conditions in GDCS

Assuming saturated steam/air mixture, the temperature and the pressure are separately adjusted by steam and air injection. Any required action is allowed to setup the GDCS test initial conditions according to the defined tolerances (see phase 01).

123.1 Monitor GDCS Parameters -Total Pressure

- Mean Fluid Temperature

- Local Fluid Temperature - Water Level

MP.GD = 2.94 (bar) 0,04 [bar] + 333 [K] TF mean(GD) = 4 [K] ± 60 [°C] TF men (GD) 4 [K] MTF.GD.1...7 = + ML.GD = 0,00 [m] 0,10 [m] 4

Record on attached checklist

124 Adjusting DWs Conditions

124.0 Adjust Test Initial Conditions in Drywelis

Assuming saturated conditions and an air partial pressure satisfying the required value, the temperature is adjusted by steam injection. Any required action is allowed to setup the Drywells test initial conditions according to the defined tolerances (see phase 01).

124.1 Monitor Drywell Parameters

- Air Partial Pressure

- Mean Gas Temperature

- Local Gas Temperature
- Structure temperature

- Water Level

M(r(x, u), i = 10 [nrd] 2 < in	raj
MPG.D2.1 = 13 [kPa] ± 2 [k	Pa]
$T_{G,mean}(D1) = 404 [K] \pm 2 [K]$	J. Barris
= 131 [°C]	
$T_{G,mean}(D2) = 404 [K] \pm 2 [K]$	1
= 131 [°C]	
MTG.D1.16 = $T_{G_{max}}(D1) \pm 2$ [K	J
MTG.D2.16 = $T_{G_{mean}}(D2) \pm 21K$]
$MTLD1.19 = T_{G,man}(D1) \pm 2[K$]
MTI.D2.19 = Togman(D2) ± 2 [K	1
ML.D1 = 0,00 [m] ± 0,10 [m	n]
ML.D2 = 0,00 [m] ± 0,10 [m	n]

Record on attached checklist

125 Adjusting IC Pool Conditions

125.0 Adjust Test Initial Conditions in IC Pool

For all pools, water temperature adjustment is performed by water circulation through the auxiliary heat exchanger and level adjustment by supplying water from the demineralized water tank. Any required action is allowed to setup the IC/PCC pools test initial conditions according to the defined tolerances (see phase 01).

Since all IC/PCC pool initial conditions are the same, they may be adjusted simultaneously by connecting the four pools together.

- 125.1 Set IC Pool Parameters
 - Mean Water Temperature
 - Local Water Temperature
 - Water Level

	$T_{W_{emean}}(U0) =$	372	[K]	+0/-4		[K]
	and a state of a	99	[°C]	+01-4	C. S. S. S. S. S.	[°C]
	MTLU0.1 7 =	Tw_meas	"(UO)	+	2	[K]
	ML_U0 =	4,80	[m]	±	0,20	[m]
Record	on attached che	cklist				

126 Adjusting PCC1 Pool Conditions

126.0 Adjust Test Initial Conditions in PCC1 Pool

For PCC1 Pool conditions adjustment refer to description of phase nº125.

- 126.1 Set PCC1 Pool Parameters
 - Mean Water Temperature

- Local Water Temperature

- Water Level

Tw mean(U1)	=	372 [K]	+0/-4	[K]
	#	99 [°C]	+0/-4	[°C]
MTL.U1.17	*	Twy_mean(U1)	±	2 [K]
MLUT	-	4,80 [m]	±	0,20 [m]

Record on attached checklist

127 Adjusting PCC2 Pool Conditions

127.0 Adjust Test Initial Conditions in PCC2 Pool

For PCC2 Pool conditions adjustment refer to description of phase n°125.

127.1 Monitor PCC2 Pool Parameters

- Mean Water Temperature

- Local Water Temperatur	le
--------------------------	----

- Water Level

T _{W mean} (U2) =	372 [K]	+0/-4	[K]	
CALLER DA # 10	99 [°C]	+0/-4	[00]	
MTL.U2.17 =	Tw_mean(U2)	± 2	[K]	
MLU2 =	4.80 (m)	+ 0	20 [m]	

Record on attached checklist

128 Adjusting PCC3 Pool Conditions

- 128.0 Adjust Test Initial Conditions in PCC3 Pool For PCC3 Pool conditions adjustment refer to description of phase n°125.
- 128.1 Monitor PCC3 Pool Parameters
 - Mean Water Temperature
 - Local Water Temperature
 - Water Level

	Tw_mean(U3) =	372 [K]	+0/-4		[K]
	MTL.U3.119 =	Tw_inten(U3)	±	2	[K]
have an	ML.U3 =	4,80 [m]	±	0,20	[m]

Record on attached checklist

130 Test

The facility satisfies now the required test initial conditions and must be configured according to the test configuration described in GE Test Plan. Due to the relatively quick test initiation, data recording is started (phase n°131) before setting the desired RPV conditions (phase n°132) and before setting the test configuration (phase n°133). That last phase should not affect the FANDA conditions, but in order to assure test initial conditions satisfying the defined tolerances, the duration of all these phases between the test configuration setup (phase n°133.1 to n° 133.9) and the test initiation (phase n°133.10) should not exceed a few minutes (~5min). Before test initiation, just before phase n° 133.9, the test initial conditions must be within the tolerances given in all n°120 and n°132 phases, in order to satisfy the acceptance criteria defined in phase 01. If test initial conditions do not satisfy the above mentioned acceptance criteria, the test is interrupted, the heat power is shut down (phase n° 143.0), the vessels are isolated (phase n° 143.3) and the procedure starts again with the Test Conditions Setup (phase n° 120).

Due to the excessive pressure differences between vessels during the preconditioning, the pressure difference transmitters valve-in must be performed after the test initial conditions have been established; it is performed during test configuration setup (phase n°133.8).

131 Data Recording

131.0 Start Data Recording

- Set "Daten-Speich." on HP-1000

- Set "Data recording rate" on HP-1000 / High Scan Rate: 1/2 Hz Record on attached checklist

131.1 Record the PANDA-Building temperatures at elevation 0m and 22m Record on attached checklist

132 Adjusting RPV Conditions

132.0 Adjust Test Initial Conditions in RPV

Assuming saturated conditions and a negligible air partial pressure, the required pressure is set by adjusting the temperature. Any required action is allowed to setup the RPV test initial conditions according to the defined tolerances (see phase 01).

132.1 Monitor RPV Parameters

- -Total Pressure
- Mean Fluid Temperature
- Local Fluid Temperature
- Water Level

MP.RP.1 =	2,95 [bar]	±	0,04 [bar]	and the
$T_{F_{mean}}(RP) =$	406 [K]	4-	2 [K]	
and the second se	133 [°C]	a m		
MTF.RP.15 =	TF mean(RP)	£	2 [K]	
ML.RP.1 =	12,70 [m]	±	0,20 [m]	

Record on attached checklist

133 Configuration Setup and Test Initiation

Before test initiation the PANDA facility is partly configured; all valves which must be lined up are open, except both main steam line valves and the IC feed and drain line valves. These last lineup processes are included in the test initiation phase; they are performed at phases n°133.11

×

.

133.0	Setup Automatic Heat Power Regulation - Set "SCALED OPERATING POWER" - Set "TRANSIENT START TIME AFT, SCRAM"	Record on attached checklist
133.1	Isolate Pools Pools might be already isolated, in that case verify that the - Close valve CB.U0L, CB.U1L, CB.U2L, CB.U3L	he following valves are closed
	CB.U0U, CB.U1U, CB.U2U, CB.U3U	Record on attached checklist
133.2	Open GDCS Pressure Equialization lines - Open valve CB.GP1, CB.GP2	Record on attached checklist
133.3	Open Main Vent Lines - Open velve CB.MV1, CB.MV2	Record on attached checklist
133.4	Open GDCS Return Line - Open valve CB.GRT.2, CB.GRT.1	Record on attached checklist
133.5	Open PCC Vent Lines - Open valve CB.P1V, CB.P2V, CB.P3V	Record on attached checklist
133.6	Open PCC Condensate Lines - Open valve CB.P1C, CB.P2C, CB.P3C	Record on attached checklist
133.7	Open all PCC Feed Lines - Open valve CB.P1F, CB.P2F, CB.P3F	Record on attached check! st
133.8	Instrument / Zero Check and Pressure Difference Transr - Pressure Difference Transmitters Piping Valve In	nitters Piping Valve In
	- Check instruments as described in phase in 10	Record on attached checklist
133.9	Open Main Steam Lines - Open valve CB.MS1, CB.MS2	Record on attached checklist
133.10	Heat Power Setup - Connect Electrical Lines on Schema (click on the lowe - Select "ACTUAL CALCULATED POWER" - " POWER Select "ACTUAL TRANSIENT TIME" - "TRANS STAF	r arrow) ON" RT*
	- OBJECT AGTORE ITEMASILITITIME TO THE OTHER	Record on attached checklist
133.11	Connect IC Condenser after steam flow through MSLs ha - Open valve CB.11F - Monitor IC Pressure MP.11F	as just started Record on attached checklist
	- Open IC Drain Valve after pressure has stabilized:	CB.IIC Record on attached checklist
133.12	Within 5 minutes after IC valve in, vent the IC for 5 min	nutes through the lower vent
	- MININE MININE	

133.13 After <u>5 minutes of venting</u>, close the IC lower vent - Close valve CB.ILV Re

Record on attached checklist

133.14 Print Valve Status Report every two hours during the Test duration - Compare to Valve Status for Test M6/8 - Attach Valve Status Reports to the Checklist Record or

Record on attached checklist

133.15 Check O2 Probes

 Check every two hours, the oxygen flow which must be at ~10-20%
 Check every two hours, the probe temperature which must be at ~695 °C Record on attached checklist

133.16 Check Test Initial Conditions - See if Acceptance Criteria were reached before Test Initiation - Check parameters as indicated in phases nº120 & nº132.

Record on attached checklist

133.17 Test Interruption

If the Acceptance Criteria were not satisfied before test start, conduct phases n°142.0 & 142.3 => phase n° 142.0

=> phase n° 142.3

- Restart procedure with phase nº 110 (Test Conditions Setup)

133.18 VB-Opening Setup

Set up automatic VB-Opening Control (Process Control System)
 Set up automatic Burst-measurement for VB-Opening (DAS-System)

Record on attached checklist

133.19 At 4 hours after test start, establish the bypass leakage path.

- Open valve CB.VL1

Record on attached checklist

133.20 At 6 hours after test start

Check condition of IC operation and perform 133.21a) or 133.21b) as applicable

Monitor IC Parameters		
- IC Drum Temperatures	MTG.I1.1.2 =	
- Center Line Temperatures	MTG.11.39 =	
- Water Level	ML.U0 =	
- Local Water Temperature	MTL.UO.17 =	

If the IC is still in operation perform phase n°133.21a) or

If the IC has shutdown because of air accumulation, perform phase n°133.21b) Record on attached checklist

133.21a) Terminate IC operation by closing the feed and drain valves and continue test for 4 hours or until pressure reaches 4 bars.

- Close valve CB.I1F, CB.I1C

Record on attached checklist

At 10 hours after test start, terminate the test.

- Conduct phase nº140

ALPHA-529-0 Page 28

133.21b) Continue the test

After 4 hours of bypass leakage operation with the IC shutdown, or when pressure reaches 4 bars, open the IC vent line and continue the test for 2 additional hours or until pressure reaches 4,3 bars.

- Open valve CB.ILV

Record on attached checklist

After 2 additional hours, terminate the test - Conduct phase n°140

140 End of Test

At the completion of phase 133.21a) or 133.21b), as applicable, data recording may be terminated (phase n°141), and the test performance declared complete. The facility shutdown is described at phase n°142.

141 End of Data Recording

141.0 Stop Data Recording (cf DAS User's Guide) Record on attached checklist After specific criteria have been reached, the test is terminated and data recording stopped.

141.1 Save Data (cf DAS User's Guide)

Record on attached checklist

141.2 Record the PANDA-Building temperatures at elevation 0m and 22m Record on attached checklist

142 Facility Shut Down

142.0 Stop Heat Power Heaters Off

- 142.1 Oxygen Probes Shut Off
- 142.2 Pressure Transmitters Piping Valve Off
- 142.3 VB-Opening Setup - Disable automatic VB-OPening Control (Process Control System)
- 142.4 Isolating Vessels

Check that the following valves are closed :

CB.I1F, CB.I1C CB.ILV CB.VL1 CB.MS1, CB.MS2

4

٠

CB.P1F, CB.P2F, CB.P3F CB.P1C, CB.P2C, CB.P3C CB.P1V, CB.P2V, CB.P3V CB.GRT.2, CB.GRT.1 CB.MV1, CB.MV2 CB.GP1, CB.GP2

142.5 Valve Alignment

- Set valve positions according to the valve STARTUP status
- Print out valve status report
- Compare the printed out valve status report to valve STARTUP status

142.6 - Set "Data recording rate" on HP-1000 / Low Scan Rate: 2*10⁻³ Hz

ALPHA-529-0 Page 30 1

200 Checklist

Trai	Checklist nsient Test Numbe	er: Date:
Completion of Procedure Phase n°	Date / Time	Signatures Performer / Reviewer
11		
12		
13		
14		
16		
91		
121		
122		
123		
124		
125		
126		
127		
128		
131.0		
131.1	Building Temperatures at 0m	and 22m:
132		
133.0		
133.1		
133.2		
133.3		
133.4		
133.5		
133.6		
133.7		
133.8		
133.9		
133.10	Time of Test Start	

,

1

	Checklist (cont'd)
Tran	sient Test Number	: Date:
Completion of Procedure Phase n°	Date / Time	Signatures Performer / Reviewer
133.11		
133.12		
133.13		
133.14		
133.15		
133.16		
133.18		
133.19		
133.20		
133.21a) 133.21b)	
141.0		
141.1		
141.2	Building Temperatures at 0m:	and 22m:

* Mark a) or b), as applicable

ALPHA-529-0 Page 32 4

ŧ.

210 Test Course

* Events which are not scheduled, might happen before or later