25A5764 SHINO. 1 REV. 3

EIS IDENT: SBWR PANDA

REVISION STATUS SHEET

DOCUMENT TITLE PANDA TEST PLAN - TESTS M3, M3A, M3B, M4, M7

LEGEND OR DESCRIPTION OF GROUPS

TYPE: SPECIFICATION

FMF: SBWR

MPL NO: T10-5010

- DENOTES CHANGE

THIS ITEM IS OR CONTAINS A SAFETY-RELATED ITEM YES NO DE EQUIP CLASS CODE C

				REVISION		
٨	RM-02806 8/14/95					
Is	J.E. TORBECK 9/	/12/95	RJA			
	KM-02925	-				
1	J. E. TORBECK 9/	18/95	RJA			
	RM-0295					
2	A. FORTIN 10/16/	195	RJA			
	CN03219 GENERAL DOCUMENT CHANG					
S	A. FORTIN NOV 1	; 1995	RJA			
	CN03350 GENERAL DOCUME	NT CHAN	GF.			
					PRINTS TO	
MADE BY G.A. WINGATE 8/11/95		APPR G.A. V	APPROVALS G.A. WINGATE 8/11/95		GENERAL ELECT 175 CURTNER AV SAN JOSE CALIFO	RIC COMPANY ENUE DRNIA .'5125
CHKD BY: 1 R. SUGGS 2/11/95 F		R. AH	ED Mann 8/	14/95	CONT ON SHEET	° 9
IS WOF	R1, (8/28/94)			DISK =25A	5764	EIS

25A5764 SH NO. 2 REV. 3 1 4

TABLE OF CONTENTS

1. SCOPE	
2. APPLICABLE DOCUMENTS	
S. TEST OBJECTIVES.	
4. TEST FACILITY CONFIGURATION	5
5. CONTROL SYSTEM DESCRIPTION	
5.1 RFV HEATERPOWERCONTROL	
5.2 DRYWELL/WETWELLVACUUMBREAKERCONTROL	
6. REQUIRED MEASUREMENTS	
7. DATA RECORDING, PROCESSING AND ANALYSIS	
7.1 DATARECORDING	
7.4 DATAPROCESSING ANDANALYSIS	
8. SHAKEDOWN TESTS	
8.1 PURPOSE	
0.2 DESCRIPTION	
9. TEST MATRIX	
9.1 TEST DESCRIPTION	
9.2 TESTACCEPTANCEURITERIA	
10. REPORTS	
11. TEST HOLD/DECISION I TS	

25A5764 SH NO. 3 REV. 3

1. SCOPE

This test plan defines the detailed requirements, beyond those already identified in GE Spec 25A5587, for the PANDA transient integral system tests M3,M3A, M3B, M4 and M7. This Test Plan specifically covers the test program objectives, the experimental facility configuration, the test facility control, the test instrumentation, the data acquisition, processing and analysis, the test initial and boundary conditions and the test reports for tests M3, M3A, M3B, M4, & M7.

This test plan is applicable to the SBWR Design Certification project only.

2. APPLICABLE DOCUMENTS

a. PANDA Test Specification, GF. Spec 25A5587.

This document provides the general specification of requirements for tests in the PANDA facility to support SBWR Design Certification.

b. PANDA Steady State Tests - PCC Performance Test Plan & Procedure,

PSI Doc. TM-42-94-11/ALPHA 410.

This document provides a general description of the PANDA test facility and the specific plan and procedure for steady state tests of the PCC condenser performance.

c. PANDA Test Procedures for MS & M4, PSI Doc. ALPHA-520.

This document provides the implementing procedures for establishing the PANDA test facility initial and boundary conditions and the specific procedure for initiating the transient integral system tests for M3 & M4.

d. PANDA Test Procedure for M7, PSI Doc. ALPHA- 521.

This document provides the implementing procedures for establishing the PANDA test facility initial and boundary conditions and the specific procedure for initiating the transient integral system test M7.

c. PANDA PROJECT CONTROL PLAN, GF. Doc. PPCP-QA-01.

This document describes the organization, quality related activities, events and procedures necessary to ensure and verify that the PANDA project at PSI is conducted under the provisions of the GE SBWR Quality Assurance Plan as described in NEDG-S1831.

25A5764 SH NO.4 REV. 3 .

3. TEST OBJECTIVES

The objectives of the PANDA integral systems tests are to provide additional data to: (a) provide a sufficient database to confirm the capability of TRACG to predict SBWR containment system performance, including potential systems interaction effects. (Integral Systems Tests) and (b) Demonstrate startup and long-term operation of a passive containment cooling system. (Concept Demonstration).

The specific objectives and approach for the tests covered by this test plan are:

- a) Conduct tests (M3, M3A, M3B and M4) with nominal post-LOCA conditions to establish the base case and demonstrate transient system response and repeatability.
- b) Perform test M7 with drywell and PCC units initially filled with air to provide data to determine the PCC condenser start-up characteristics when blanketed with noncondensable gas.

æ,

GE Nuclear Energy

25A5764 SH NO. 5 REV. 3

4. TEST FACILITY CONFIGURATION

The PANDA test facility is described in detail in Section 3 of PSI report ALPHA 410. For Tests M3,M3A, M3B, M4 and M7 the PANDA facility will be configured to simulate the SBWR post-LOCA configuration as follows:

1) Table 4.1 identifies the key PANDA facility geometry and effective flow area (A/\sqrt{k}) characteristics. In Table 4.1, the required tolerance for the PANDA as-built value relative to the corresponding SBWR scaled value is tabulated for each of these key characteristics. In addition, the required accuracy for the as-built value for each of the key characteristics is tabulated in Table 4.1. The actual as-built accuracy should be approximately equal to or less than the required accuracy tabulated in Table 4.1. The actual as-built accuracy should be approximately equal to or less than the required accuracy tabulated in Table 4.1. The actual as-built accuracies depend on the source of the as-built value. These sources can be measurements by PSI or Electorwatt (i.e., line losses, line lengths, elevations), manufacturer's specifications or design standards (i.e., PCC/IC tubes), or calculations from as-built dimensions (i.e., vessel volumes, losses for lines without flow tests).

2) The RPV will supply steam to each drywell with two steam lines (one to each drywell). These, two steam lines will have the same pressure loss characteristics.

- RPV heater power will be controlled as follows:
 - a) For tests M3, M3A, M3B, & M4 RPV heater power will be controlled as a function of time to simulate the scaled decay heat and stored energy release as indicated in Tables 9.2a & 9.2b.
 - b) For test M7 RPV heater power will be established and held constant at a value of 1.13 MW
- 4) The IC unit will be isolated by closing the inlet and outlet valves (i.e., the IC feed, drain and vent will be closed).
- 5) All three PCC units will be lined-up to take feedflow from the drywells, to vent noncondensables and steam into the water volume of the suppression pool, and drain condensate to the GDCS volume.
- 6) The PCC pools and IC pool will be configured as follows:
 - a) For Test M3 the PCC pools will be interconnected at the bottom. During the test, no water will be added or drained from the pools. (note this test has been run based on 25A5764 Rev. 1)
 - b) For Test M3A the PCC pools and IC pool will be filled and isolated from each other. During the test, water will be added to the PCC pools, as needed, from the bottom to maintain level. (note this test has been run based on 25A5764 Rev. 2)

25A5764 SH NO. 6 REV. 8

- c) For Test M3B the PCC pools and IC pool will be filled and interconnected at the bottom. During the test, water will be added to the pools via the interconnecting bus line, as needed, from the bottom to maintain level. (note this test has been run based on 25A5764 Rev. 2)
- d) For Tests M4 the PCC pools and IC pool configuration will be based on an evaluation of the system performance displayed during M3, M3A, M3B. If M3, M3A and M3B results are evaluated as essentially the same then M3A or M3B will fulfill the requirements of Test M4 and will be designated as Test M4. If it is determined that test M4 needs to be run, the configuration for the pools will be specified by revision to this Test Plan.
- e) For Tests M7 the PCC pools will be filled and isolated from each other. During the test, no water will be added or drained from the pools.
- 7) The only direct lines of communication between the drywell and wetwell will be through the vacuum breakers (when the wetwell pressure exceeds drywell pressure sufficiently to open the vacuum breaker) and the main vent lines (which will be submerged within the wetwells).
- 8) The GDCS pressure equalization lines to both drywells will be open.
- 9) The GDCS drain line with check valve will be lined up to return PCC condensate to the RPV.
- 10) The Equalizing lines between the RPV and wetwells will be valved out of service.

DADART

• 1

GE Nuclear Energy

25A5764 SH NO. 7 REV. 3

Table 4.1: PANDA Transient Integral System Tests

Key Facility Characteristics

PARAMETER	TOLERANCE FOR PANDA AS-BUILT VALUE RELATIVE TO SBWR SCALED VALUE FOR PANDA	PANDA AS-BUILT ACCURACY
PCC/IC Heat Exchanger Tubing		
-Length	±5%	± 5 mm
-Outside Diameter	±5%	± 0.3 mm
-Thickness	± 15 %	± 0.2 mm
PCC/IC Hear Exchanger Headers	-	
-Outside diameter	±5%	± 5 mm
-Length	±5%	± 5 mm
-Steel thickness cylindrical section	± 5 %	± 0.3 mm
-Steel thickness end plates	±5%	± 0.5 mm
-Distance between headers (drums)	±5%	± 5 mm

25A5764 SH NO. 8 REV. 3 . .

Table 4.1: PANDA Transient Integral System Tests

Key Facility Characteristics(continued)

PARAMETER	TOLERANCE FOR PANDA AS- BUILT VALUE RELATIVE TO	PANDA AS-BUILT ACCURACY
	SBWR SCALED VALUE FOR	
	PANDA	

-RPV	±10%	±2%
-Drywell 1	±10%	±2%
-Drywell 2	±10%	±2%
-Wetwell 1	±10%	±2%
-Wetwell 2	± 10 %	±2%
GDCS	(1)	±2%
-IC/PCC pools	(2)	±2%

(1) GDCS pool volume is not scaled to SBWR

Vessel Volumes

(2) IC/PCC pool volumes are not scaled to SBWR

discharge

+ 1

GE Nuclear Energy

25A5764 SH NO. 9 REV. 8

Table	4.1:	PANDA Tran	sient Integral S	ystem Tests
	Key	Facility Charact	eristics (contin	ued)

LARAMELER	TOLERANCE FOR PANDA AS-BUILT VALUE RELATIVE TO SBWR SCALED VALUE FOR PANDA	PANDA AS-BUILT ACCURACY	
Elevation Differences			
PIV-P2V-P3V discharges	± 2 cm	±1 cm	
PIC inlet to outlet	± 10 cm	± 1 cm	
P2C inlet to outlet	± 10 cm	±1 cm	
P3C inlet to outlet	- ± 10 cm	± 1 cm	
PIV, P2V, P3V discharges relative to normal	± 5 cm	± 1 cm	
suppression pool level			
discharges relative to normal suppression pool	± 5 cm	± 1 cm	
PIV, P2V, P3V discharges relative to MV1 and MV2 discharges	± 5 cm	±1 cm	
P1F, P2F, P3F inlet relative to MS1 and MS2	+ 200 cm/-0	±l cm	

25A5764 SH NO. 10 REV. S

Table 4.1: PANDA Transient Integral System Tests

Key Facility Characteristics (continued)

PARAMETER

TER	TOLERANCE FOR PANDA AS-	PANDA AS-BUILT	
	BUILT VALUE RELATIVE TO	ACCURACY	
	SBWR SCALED VALUE FOR		
	PANDA		

Elevations (relative to TAF/Heaters)		
P1F, P2F, P3F inlet	+ 200 cm/-0	± 5 mm
P1C,P2C,P3C inlet	± 5 cm	± 5 mm
P1V,P2V,P3V discharge	± 5 cm	± 5 mm
GRT inlet	± 5 cm	±5 mm
GRT outlet	± 5 cm	± 5 mm
MV1 outlet	± 5 cm	± 5 mm
MV2 outlet	± 5 cm	± 5 mm
MSI. 1 outlet	± 5 cm	± 5 mm
MSI. 2 outlet	± 5 cm	± 5 mm
Top of RPV chimney	± 25 cm	± 50 mm

Table 4.1:	PANDA Transient Integral System Tests
Key F	cility Characteristics (continued)

PARAMETER	TOLERAN VALUE RE SCALED V	CE FOR PANDA AS BUILT LATIVE TO SBWR ALUE FOR PANDA	PANDA AS-BUILT ACCURACY
Connecting Line Flow Resistances			
RPV to DW1		± 20%	±10%
RPV to DW 2		± 20%	±10%
DW 1 to PCC1		± 20%	± 10%
DW 2 to PCC2		± 20%	±10%
DW 2 to PCC3		± 20%	±10%
DW 1 to WW 1 (LOCA vent)	-	(3)	±10%
DW 2 to WW 2 (LOCA vent)		(3)	± 10%
PCC1 to GDCS		± 20%	±10%
PCC2 to GDCS		± 20%	±10%
PCCS to GDCS		± 20%	±10%
PCC1 to WW 1		± 20%	± 10%
PCC? to WW 2		± 20%	±10%
PCC3 to WW 2		± 20%	±10%
GDCS to RPV		± 20%	±10%
WW 1 to DW 1 (bypass/vac. brkr)		± 20%	±10%

(3) LOCA vents are not scaled to SBWR

25A5764 SH NO. 12 REV. S

12

5. CONTROL SYSTEM DESCRIPTION

In order to perform the transient integral system tests, several control systems are to be used to establish initial and boundary conditions for each test. These control systems will be used to manage and regulate the key test parameters prior to the test. Following test initiation, only the RPV heater power and the vacuum breaker controllers will be used. A main control system, which includes the electronic controllers, will be used to perform the operations.

5.1 RPV Heater Power Control

The electrical power to the heaters in the RPV will be controlled automatically following test initiation, to match the decay power and RPV structural heat release specified in Section 9.

5.2 Drywell/Wetwell Vacuum Breaker Control

The operation of the vacuum breaker valve will be controlled based on the measured pressure difference between the drywell and wetwell. Drywell pressure is initially established at a value equal to or greater than the wetwell pressure to conform to the post-LOCA condition specified for the beginning of each individual test. During the course of a test if the drywell to wetwell pressure drops below a minimum value the vacuum breaker valve control will automatically open the valve. The wetwell-to-drywell differential pressure at which the vacuum breaker for Drywell 1 opens will be set at 0.47 psi (3.24 kPa), and the differential pressure at which the vacuum breaker for Drywell 1 opens will be set at 0.3 psi (2.06 kPa). The opening and closing differential pressure for the vacuum breaker in Drywell 2 will be set 0.1 psi higher than the corresponding setpoints for the Drywell 1 vacuum breaker, i.e. at 0.57 psi (3.9 kPa) and 0.4 psi (2.8 kPa), respectively.

5.8 PCC/IC POOL LEVEL CONTROL

The PCC and IC pool level control, when applicable, will be via manual operator action to line-up the auxiliary water system and feed water from the demineralized water supply system into the bottom of the pools while monitoring the pool level indication.

88

GE Nuclear Energy

25A5764 SH NO. 13 REV. 8

6. REQUIRED MEASUREMENTS

Table 6.1 gives the measurements required to meet the objectives for Tests M3,M3A, M3B, M4, and M7. With the exception of the temperature indication, no PANDA instrumentation other than that in Table 6.1 is necessary for the performance of Tots M3,M3A, M3B, M4, and M7. The sensors identified in Table 6.1 must be operable prior to initiation of these tests. It is acceptable if a senser is not operable, if the backup identified in the second column is operable.

Temperature measurements in the PCCs and the various connected vessels are desirable, but not all of these temperature measurements are required for the performance of these tests as discussed below. The temperature measurements required for these tests with an accuracy of 1.5°C are as follows:

RPV steam dome (at least one).

PCC tubes; (It is required that 50% of the tube wall and fluid sensors be available. The available sensors must include at least 40% of the probes above and at least 40% of the probes below the horizontal mid-plane of the tube bundle. Within these constraints, the test engineer has responsibility and authority to judge whether or not sufficient PCC temperature sensors are operable to initiate a test).

PCC pools: 30% of the liquid probes including one of the lowest three elevations.

DW: 50% of the fluid probes including either the lowest elevation or one thermocouple from the water-surface probe.

WW: 50% of the gas probes, 50% of the liquid probes and two out of three of the floating probes.

GDCS pool: 50% of the fluid probes and one thermocouple from the floating probe.

Vessel walls: 20% of GDCS, DW, and WW.

System lines: 50% of the gas and liquid temperature probes in each system line used for the test (if number of sensors is odd, round to lower whole number, i.e. 3 sensors total in one line means one is required).

In Table 6.1 a subset of the required instruments are identified as "top priority measurements". Time history plots of these top priority measurements are to be included in the Test File (see Section 7.3) and the Apparent Test Results (ATR) Report (see Section 10). In addition to the top priority measurements identified in Table 6.1, there are other top priority measurements. These are: 1) the total electrical power to the heaters in the RPV which is determined during post-test data processing, and 2) some temperature measurements. The top priority temperature measurements are: RPV steam dome temperature measurement, highest and lowest temperature measurement location in each drywell, highest and lowest temperature measurement location in the gas space of each wetwell, highest liquid temperature measurement location in each wetwell, and one temperature measurement in the GDCS drain line and in each of the three PCC vent lines.

25A5764 SH NO. 14 REV. S

As noted in Section 7.4, the operator will perform checks as possible to confirm instrumentation performance. These checks will include comparison of redundant measurements. In addition, the oxygen sensors will be checked out prior to transient test M3 using the PSI procedure ALPHA 502.

3

GE Nuclear Energy

INSTRUMEN	TATION RE	QUIRED* FOR	TESTS M3, M3A, M3B, M4, M7
Processid **	Backup	Accuracy	Location
CB.VB1+		N/A (On/Off)	Valve position :Vacuum Breaker Line 1
CB.VB2+		N/A (On/Off)	Valve position :Vacuum Breaker Line 2
MD.MV1	MI.MV1	0.5 kPa	pressure diff. meas. Main Vent line DW1->SC1
MD.MV2	MI.MV2	0.5 kPa	pressure diff. meas. Main Vent line DW2->SC2
MD.P1F	MV.P1F	0.5 kPa	pressure diff. meas. PCC1 Feed DW1->PCC1
MD.PIV.2	MI.PIV.1	0.5 kPa	pressure diff. meas. PCC1 Vent PCC1->SC1
MD.P2F	MV.P2F	0.5 kPa	pressure diff. meas. PCC2 Feed DW2->PCC2
MD.P2V.2	MI.P2V.1	0.5 kPa	pressure diff. meas. PCC2 Vent PCC2->SC2
MD.P3F	MV.P3F	0.5 kPa	pressure diff. meas. PCCS Feed DW2->PCCS
MD.P3V.2	MI.PSV.1	0.5 kPa	pressure diff. meas. PCC3 Vent PCC3->SC2
MD.VB1	MD.VB2	0.5 kPa	pressure diff. meas. Vacuum Breaker SCI-DWI
MD.VB2	MD.VB1	0.5 kPa	pressure diff. meas. Vacuum Breaker SC2-DW2
MI.MV1	MD.MVI	N/A(on/off)	phase indicator Main Vent line DW1->SC1
MI.MV2	MD.MV2	N/A(on/off)	phase indicator Main Vent line DW2->SC2
M1.P1V.1	MD.P1V.2	N/A(on/off)	phase indicator PCC1 Vent PCC1->SC1
41.P2V.1	MD.P2V.2	N/A(on/off)	phase indicator PCC2 Vent PCC2->SC2
41.P3V.1	MD.P3V.2	N/A(on/off)	phase indicator PCC3 Vent PCC3->SC2
AP.D1+		2.5 kPa	absol. pressure meas. Drywell 1 / DW1
AP.RP.1 +	anna an an an ann an ann an ann an ann an a	2.5 kPa	absol. pressure meas. Reactor Pressure Vessel / RPV
AP.SI .	*****	2.5 kPa	absol. pressure meas. Suppression Chamber 1 / SC1

Table 6.1:

INSTRUMENTATION EEQUIRED* FOR TESTS M3, M3A, M3B, M4, M7

Processid **	Backup	Accuracy	Location
ML.UI	ML.U0 or ML.U2 or ML.U3(0)	0.2 m ‡	PCC1 pool level
ML.U2	ML.U0 or ML.U1 or ML.U3(c)	0.2 m \$	PCC2 pool level
ML.U3	ML.U0 or ML.U2 or ML.U1 (0)	0.2 m ‡	PCC3 pool level
MIUO	ML.Ul or ML.U2 or ML.U3(o)	0.2 m	IC pool level
MIRP.1		0.2 m	RPV level
MISI	M152	0.05 m	Suppression pool level
MIDI	ML.D2	0.05 m	Drywell water level
MPG.D1_1*	MPG.D1_2 or MPG.D1_5	5.00%	air partial pres. meas. DW1 (highest probe in DW1)
MPG.D1_1+		5.00%	air partial pres. meas. Drywell 1 / DW1 (highest probe in DW1)
MPG.D1_2	MPG.D1_3	5.00%	air partial pres. meas. Drywell 1 / DW1
MPG.D2_1	MPG.D2_2 or MPG.D2_3	5.00%	air partial pres. meas. DW2 (highest probe in DW2)
MPG.102_1+		5.00%	air partial pres. meas. Drywell 2 / DW2 (highest probe in DW2)
MPG.D1_2	MPG.D1_1 or MPG.D1_3	5.00%	air partial pres. meas. DW1
MPG.D2_2	MPG.D2_1 or MPG.D2_5	5.00%	air partial pres. meas. DW2

25A5764 SH NO. 17 REV. 3

Table 6.1:

INSTRUMENTATION REQUIRED* FOR TESTS M3, M3A, M3B, M4, M7

Processid **	Backup	Accuracy	Location
MPG.D1_3	MPG.D1_2 or MPG.D1_1	5.00%	air partial pres. meas. DW1
MPG.D2_8	MPG.D2_2 or MPG.D2_1	5.00%	air partial pres. meas. DW2
MPG.S1	MPG.S2	5.00%	air partial pres. meas. WW1
MPG.S2	MPG.S1	5.00%	air partial pres. meas. WW2
MV.MS1 (1)	MV.MS2	N/A	volume flow meas. Main Steam line RPV->DW1
MV.MS2 (1)	MV.MS1	N/A	volume flow meas. Main Steam line RPV->DW2
MV.P1F (1)(2)	MD.PIF -	8.00%	volume flow meas. PCC1 Feed DW1->PCC1
MV.P2F (1)(2)	MD.P2F	8.00%	volume flow meas. PCC2 Feed DW2->PCC2
W.P3F 1)(2)	MD.P3F	3.00%	volume flow meas. PCC9 Feed DW2->PCC3

Table 6.1:

INSTRUMENTATION REQUIRED* FOR TESTS MS, MSA, MSB, M4, M7

Processid **	Backup	Accuracy	Location
MPG.D1_3	MPG.D1_2 or MPG.D1_1	5.00%	air partial pres. meas. DW1
MPG.D2_3	MPG.D2_2 or MPG.D2_1	5.00%	air parúal pres. meas. DW2
MPG.S1	MPG.S2	5.00%	air partial pres. meas. WW1
MPG.S2	MPG.S1	5.00%	air partial pres. meas. WW2
MV.MS1 (1)	MV.MS2	N/A	volume flow meas. Main Steam line RPV->DW1
MV.MS2 (1)	MV.MS1	N/A	volume flow meas. Main Steam line RPV->DW2
MV.P1F (1)(2)	MD.PIF -	3.00%	volume flow meas. PCC1 Feed DW1->PCC1
MV.P2F (1)(2)	MD.P2F	8.00%	volume flow meas. PCC2 Feed DW2->PCC2
MV.P3F (1)(2)	MD.P3F	3.00%	volume flow meas. PCC3 Feed DW2->PCC3

25A5764 SH NO. 18 REV 8

Table 6.1:

INSTRUMENTATION REQUIRED* FOR TESTS M3, M3A, M3B, M4, M7

Processid **	Backup	Accuracy	Location
MW.RP.1		8.00%	electrical power meas Reactor Pressure Vessel / RPV
MW.RP.2	an a	3.00%	electrical power meas Reactor Pressure Vessel / RPV
MW.RP.S	n par manetar an and an	3.00%	electrical power meas Reactor Pressure Vessel / RPV
MW.RP.4		3.00%	electrical power meas Reactor Pressure Vessel / RPV
MW.RP.5		3.00%	electrical power meas Reactor Pressure Vessel / RPV
MW.RP.6		3.00%	electrical power meas Reactor Pressure Vessel / RPV

- (*) Top Priority Measurements, additional high priority temperature measurements are defined in the text of this section.
- (*) It is required that temperature monitoring capability with an accuracy of 1.5°C be available for these tests as described in the text of this section.
- (**) PANDA instrumentation identification system is described in Section 5.2 of ALPHA 410
- (1) Differential accuracy over short time intervals is ±0.02m
- (o) When the pools are isolated from each other there is no backup instrument
- For volumetric flow rate measurements, all additional measurements (pressure and temperature) required to convert the volumetric flow rate to a mass flow rate are required.
- (2) 2 of the 3 volumetric flowmeters for PCC feed lines are required.
- (3) All instrumentation listed in this table is required to be operable only while the monitored process value is within the instruments operating range as defined in Table 5.8 of ALPHA-410.

25A5764 SH NO. 19 REV. 3

7. DATA RECORDING. PROCESSING AND ANALYSIS

7.1 Data Recording

During (approximately) the first two hours of the test (until the first drywell pressure peak is reached) the data for all channels will be recorded at 6 samples per minute. During the rest of the test (after the peak drywell pressure is reached) the data will be recorded at 1 sample per minute. It is necessary that the data sampling rate be sufficient to record opening and closing of the vacuum breakers between the drywells and wetwells.

7.2 Data Records

The digitally acquired data will be recorded in real time for the entire duration of the test. Immediately after the test, a copy of the data file will be created in order to have a backup record of the data file. Also to be recorded with this data file are all information required to perform subsequent processing of the data.

7.3 Data Sheets

The following data sheets will be prepared for each test for inclusion in the PANDA Test File (PTF). The unique test number will be printed on each sheet.

- print table containing the list of the measurements with their main characteristics (identification, span, calibration constants, associated error, location on the facility, measurement channel number and sampling frequency)
- 2) graphs of top priority measurements identified in Section 6 as a function of time (time histories). Graphs may show groups of up to 8 test measurements.
- 3) print table showing the position (status) of all on-off valves, just after the beginning and just before the end of the test and periodically throughout the duration of the test.

7.4 Data Processing and Analysis

During the preconditioning of the test facility and during the running of the transient tests, the operators will monitor the required instrumentation identified for these tests in Table 6.1. The operators will check whether or not redundant measurements are consistent and perform other congruency checks including zero checks as possible to verify that the instrumentation and data acquisition system are working correctly.

Following completion of the tests described in Section 9, data reduction will be performed to support preparation of the Apparent Test Results Reports (ATR). This data reduction will include a representative set of time history plots of system flows, differential pressure, vessel pressures, air

1 .

GE Nuclear Energy

25A5764 SH NO. 20 REV. 3

partial pressure (O2 sensor readout), and temperatures covering the full test duration for top priority measurements. These results will be reviewed and reported in the ATR (see Section 10).

The Data Transmittal Report (DTR) will transmit all the data for the transient integral system tests (see Section 10).

25A5764 REV. S

SH NO. 21

SHAKEDOWN TESTS 8.

8.1 Purpose

The purposes of the shakedown tests are to:

- confirm test facility ability to establish a quasi-steady state set of initial conditions
- confirm adequacy of data acquisition system
- confirm ability to achieve a smooth but rapid transition between the pre-test initial conditions line-up to the test line-up
- confirm the adequacy of the test procedures.

The PANDA facility will be configured as described in Section 4. The reference test numbers are from Section 9. The detailed test procedure with its check lists are contained in the PANDA Transient Integral System Test Procedures for Tests MS and M4 (ALPHA-520) and Test M7 (ALPHA-521).

8.2 Description

Test SDM-01 will be done per the test procedure for Test M3 using the initial conditions specified for Test M3. The focus of the shakedown test will be to evaluate 1) the procedure for achieving test initial conditions, 2) the procedures to initiate the test, and 3) the capability of the data recording system, the power control system, etc to perform as required throughout the transient test duration.

The procedure as drafted in ALPHA-520 Rev. A will be used, and modifications will be introduced as needed. These modifications will be incorporated into the final procedures, ALPHA -520 & ALPHA-521, to be issued prior to initiation of Tests M3, M4 and M7, as applicable.

25A5764 SH NO. 22 REV. 8

9. TEST MATRIX

9.1 Test Description

A series of transient integral tests will be conducted using the PANDA facility configured as described in Section 4. The tests will be performed using the detailed procedures in ALPHA-520 and ALPHA-521. The following summarizes the test procedure.

The drywells, wetwells, GDCS tank and PCC pools will be pre-conditioned and brought separately to their required initial conditions (or slightly higher temperatures and/or pressures if heat loss or stabilization is expected to bring conditions within their required range).

Once the initial conditions of the various vessels are confirmed to match the values specified in Table 9.1, the test is initiated as follows:

Start to open all valves which must be open in lines between vessels per the test configuration in Section 4, except the valves in the RPV to drywell steamlines, within a period of approximately 5 minutes.

Then, the following sequence should be performed as quickly as possible:

- 1) Open the valves in both RPV to drywell steamlines
- a) For M3, M3A, M3B & M4 place RPV heater controls in automatic operation to follow the time dependent heater powerdetermined from the specification in Table 9.2.

b) For M7 establish RPV heater power operation for a value of 1.18 MW

From this point on the only operator action regarding test facility configuration or conditions will be as follows:

For Test M3 & M7 there are no further required operator actions.

For Test M3A and M3B the only operator actions will be the maintenance of the PCC pool levels.

For test M3, M3A, M3B & M4 at the end of 20 hours data recording will be terminated, and the test performance is complete.

For test M7 continue the test for at least 5 hours.

25A5764 SH NO. 23 REV. 3

Table 9.1: INITIAL CONDITIO	NS	1.1.1.1.1.1			
INITIAL CONDITIONS FOR P	ANDA TES	STS MS, MSA,	MSB		
	RPV	Drywell	Wetwell	GDCS	PCC/IC Pools(4)
Total Pressure (kPa)	295	294	285	294	=100
Air Pressure (kPa)	0	13	240	274	N/A
Vapor Temperature (K)	406	404	\$52	333	N/A
Liquid Temperature (K)	406	404	352	888	=373
Collapsed Water Level (m) (1)	11.2	(2)	3.8	10.7 (8)	(4)
INITIAL CONDITIONS FOR P	ANDA TES	T M7		- ł	
	RPV	Drywell	Wetwell	GDCS	PCC/IC Pools(4)
Total Pressure (kPa)	181	131	191	131	=100
Air Pressure (kPa)	0	131	86	111	N/A
Vapor Temperature (K)	\$80	300	\$ 52	353	N/A
Liquid Temperature (K)	\$80	N/A	8 52	\$33	=\$73
Collapsed Water Level (m) (1)	11.2	N/A	3.8	10.7 (3)	(4)
A REAL OF A REAL PROPERTY OF A				1	

Notes: (1) Water levels are specified relative to the top of the PANDA heater bundle.

(2) The nominal DW condition is no water. However, a small amount of spill from the RPV to the DW at the start of the test is acceptable.

(S) The GDCS level should be positioned in hydrostatic equilibrium with the RPV level (including an appropriate adjustment for temperature difference).

(4) The PCC/IC pools level (as applicable) for tests M3, M3A, M3B is 23.2, for test M7 it is 23.6

1----

GE Nuclear Energy

25A5764 SH NO. 24 REV. 3

TIME FROM SCRAM (sec)	DECAY HEAT (%)	PANDA DECAY HEAT (MW)	
3600 (fest start)	0.0132	1.056	
3650	0.0151	1.048	
4000	0.0127	1.016	
5000	0.0119	0.952	
6000	0.0112	0.896	
7000	0.0107	0.856	
7200	0.0106	0.848	
8000	0.0103	0.824	
9000	0.0100	0.800	
10000	0.00972	0.778	
14400	0.00928	0.742	
18000	0.00881	0.705	
20000	0.00859	0.687	
28800	0.00788	0.680	
80000	0.00781	0.625	
86000	0.00748	0.598	
40000	0.00729	0.588	
50000	0.00689	0.551	
50000	0.00658	0.526	
70000	0.00631	0.505	
30000	0.00609	0.487	

25AE764 SH NO. 25 REV. 3

Table 9.2b: POWER FOR PANDA TESTS M3, MSA, M3B, M4; (Total Power*)/(Decay Power) vs. Time

TIME FROM SCRAM (sec)	TOTAL POWER*/DECAY POWER
3600 (Test Stari)	1.070
5000	1.058
7500	1.038
10,000	1.025
12,500	1.019
15,000	1.016
20,000	1.010
25,000	1.008
\$0,000	1.007
72,000	1.000

* Total power includes contribution from reactor structure stored energy Note: Tolerance on PANDA power throughout transient is ± 25 kW or 0.025 MW.

25A5764 SH NO. 26 REV. 3

9.2 Test Acceptance Criteria

In order to assure the objectives of these tests are met, it is necessary that:

1) the values over the 1 minute period prior to the test for the following initial conditions must be within the specified ranges referenced to Table 9.1:

	- Total Pressure (kPa) =	reference matrix value ± 4 kPa (all vessels except drywell for M3,M3A, M3B & M4)
	- Drywell Air Partial Pressure (kPa)=	reference matrix value ± 2 kPa (for Tests M3, M3A, M3B and M4)
	- Drywell Air Partial Pressure (kPa)=	reference matrix value ± 8 kPa (for Test M7)
	- Mean Vapor Temperature (K) =	reference matrix value ± 2 °K (all vessels/all tests except DW for M7)
	- Local Vapor Temperature (K) =	mean value ± 2 °K (all vessels/all tests except DW for M7)
	- Mean Liquid Temperature (K) =	reference matrix value ± 2 °K (except for PCC/iC pools)
	- Mean Liquid Temperature =	Saturation temperature at actual environmental pressure +0/4 °K (for PCC/IC pools)
	- Local Liquid Temperature (K) =	mean value ± 2 °K
	- Wetwell and GDCS Water Levels=	reference matrix value ± 0.100 m
	- RPV Water Level =	reference matrix value ± 0.200 m
	- PCC Pool Level =	reference matrix value ± 0.200 m
2)	the required instrumentation defined in Sec	ction 6 and Table 6 1 be operational
		and a more out on operational

3) at test initiation and throughout the transient (to be confirmed during post-test data analysis):

- RPV Power = reference matrix value ± 25 kW or 0.025 MW

25A5764 SH NO. 27 REV. S

4) and throughout the transient the PCC Pool Level be maintained as follows:

- For Test MS & M7 PCC Pool Level

no required level maintenance during the test

- For Test M3A PCC Pool Level= reference matrix value ± 0.8 m

- For Test MSB PCC Pool Level= reference matrix value ± 0.2 m

10. REPORTS

One brief Apparent Test Results (ATR) report will be prepared covering the results for each of the transient integral tests based on the data reduction described in Section 7. The ATR will summarize the apparent results. The format for this report will include: test number, test objective, test date, data recording period, names of data files, list of failed or unavailable instruments considered to be required for the test, list of pressure and differential pressure instruments with zero not in tolerance or over-range during test, deviations from test procedure, problems, table of actual initial conditions based on average and standard deviation over a one minute time period just before the start of the test of all parameters with a specified acceptance criteria in tection 9.1 and time history plots of top priority measurements over the test duration. The ATR report is a verified report, approved by the PSI PANDA Project 1 mager, and will be transmitted to the GE within approximately two weeks of the completion of each transient integral system test.

The Data Transmittal Report (DTR) containing all data for transient integral system tests M3, M3A, M3B, M4, M7 will be issued approximately two months after the last test is performed. It will provide detailed information on the test facility configuration, test instrumentation, test conditions and the format for the data. In addition, samples of data will be presented in tables and plots. The DTR will be verified before it is issued, approved by the PSI PANDA Project Manager, and then be transmitted to GF.

25A5764 SH NO 28 REV. 3 FINAL

11. TEST HOLD/DECISION POINTS

The Test Procedures No. ALPHA-520 and ALPHA-521 must have been reviewed and approved by GE's Project Manager, GE Site QA Representative and PSI's PANDA Project Manager before the transient testing described in Section 9 can be performed.

One additional hold/decision point will occur after the shakedown tests described in Section 8. GE's PANDA Project Manager or Site QA Representative and PSI's PANDA Project Manager must approve the test configuration, instrumentation, and conditions for the tests described in Section 9 (Tests MS, MSA, MSB, M4 and M7), after the shakedown tests (SDM-01) have been completed and the results have been reviewed.