Laboratory Studies:
 Dynamic Response of
 Prototypical Piping Systems

Final Report

ANCO Engineers, Inc.

Prepared for
U.S. Nuclear Regulatory Commission and
The Electric Power Research Institute

NOTICE

This report was prepared as an account of work sponsored by ar agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of re sponsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE
 Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federü agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries

Documents such as theses, dissertations, foreign reports and translations, and non NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Requlatory Com mission, Washington, DC 20555

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Ávenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018

Laboratory Studies:
 Dynamic Response of Prototypical Piping Systems

Final Report

Manuscript Completed: June 1984
Date Published: August 1984

ANCO Engineers, Inc.
9937 Jefferson Boulevard
Culver City, CA 90230-3591

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
NRC FIN B8907
and
The Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304

PREFACE

This research program was guided by and benefited from the support of: Dr. John O' Brien, U.S. Nuclear Regulatory Commission; and Drs. H.T. Tang and Y.K. Tang, Nuclear Power Division, Electric Power Research Institute. The project team at ANCC Engineers, Inc., and authurs of this report were Dr. George E. Howard (Project Manager), Mr. William B. Walton and Mr. Blake A. Johnson. Very substantial support during execution of the testing reported herein was received from the following ANCO staff: Mr. Thomas J. Solimeo, Mr. R. Steve Keowen, Mr. Phil Martinez, Mr. G. Bruce Taylor, and Mr. James Avery.
Page
1.0 SUMMARY 1-1
2.0 TEST APPRQACH AND CONFIGURATIONS 2-1
2.1 Piping Systems Tested 2-3
2.2 Base Motion Input 2-22
2.3 Instrumentation for Piping Systems 2-27
2.4 Testing Methods Used 2-34
3.0 PRELIMINARY TEST RESULTS 3-1
3.1 Tests Conducted and Peak Response Values 3-1
3.2 Calculated Damping for Piping Systems 3-3
3.3 Genersl Observations 3-18
3.4 Apparent Safety Margin Results 3-23
3.5 Fatigue Considerations 3-25
3.6 Data Tapes Generated 3-27
4.0 COMMENTS AND CONCLUSIONS 4-1
5.0 REFERENCES 5-1
APPENDICES A, B, AND C DELETED BY NRC
APPENDIX D: PEAR RESPONSE FOR ALL DATA CHANNELS-HIGH LEVEL EARTHQUARE FOR PIPELINE WITHOUT BRANCH LINES (TEST YEQ2, RUN C5). D-1
APPENDIX E: PEAR RESPONSE FOR ALL DATA CHANNELS-- MODERATE LEVEL EARTHQUAKE FOR PIPELINE WITHOUT BRANCH LINES (TEST YEQ3, RUN C3R3) E-1
APPENDIX F: PEAK RESPONSE FOR ALL DATA CHANNELS--HIGH LEVEL EARTHQUARE FOR PIPELINE WITH TWO BRANCH LINES (TEST XQE7, RUN C2) F-1

The U.S. Nuclear Regulatory Commission and the Electric Power Research Institute have jointly sponsored a piping research program involving the design, analysis, fabrication, erection, and dynamic testing of prototypical piping systems. Objectives of the research included the following:

1. to expand the limited data base on damping in piping systems at response levels at the Operating Bas is Earthquake (OBE) stress limit and up to the Safe Shutdown Earthquake (SSE) stress limit;
2. to stimulate recognition of safety margins implicit in ASME Boiler and Pressure Vessel Code rules for Class 2 and 3 piping by demonstrating the existence of large design nargins in piping and support systems when subject to seismic loads much greater than those acceptable according to ASME Co e; and
3. to obtain a data base for benchmarking computer methods for analysis of pressurized piping systems for varying support conditions and at response levels both below and above pipe yielding.

Two test configurations were used to achieve the project objectives. One was a three-dimensional layout of six-inch and eight-inch diameter pipe without branch lines. The second was a similar but shorter pipe run with two branch lines of three-inch diameter. All lines were water filled and pressurized to 1,150 psig at room temperature and subjected to simultaneous dynamic inputs through the supports. Very limited tests were conducted on the second configuration with one branch removed after the completion of all other tests. A total of 101 tests were conducted and included variations in support conditions, load magnitude, load direction, and load wave form.

This report presents details of the test methods, test specimens, and a preliminary assessment of results. Detailed data analysis will be conducted and reported separately. Important preliminary observations include the following:

1. at response levels below the Level D (e.g., Safe Shut down Earthquake) peak stress condition, \log decrement piping damping (based on the first two or three cycles of oscillation) appeared to vary from 2% to 4% of critical;
2. at about the Level D pipe stress condition, the damping for the configuration vith mechanical snubbers was about 5% further evaluation is needed, however, to validate this value since it is derived from difficult-to-evaluate data;
3. for the all-strut support configuration at about the Level D pipe stress condition, damping was approximately 3%;
4. the piping systems sustained no apparent damage from earthquake load testing, despite the imposition of seismic inputs which were approximately four times the input required to just achieve the Level D stress limit in the Class 2 piping system; and
5. One of the two test piping systems successfully withstood the equivalent of 5 OBEs (Operating Basis Earthquakes), 9 SSEs (Safe Shutdown Earthquakes) as well as nearly 30 severe shock tests.

2.0 TEST APPROACH AND CONFIGURATIONS

As a continuation of an earlier EPRI-sponsored, laboratory-based piping dynamic test program conducted at ANCO Engineers, Inc., (ANCO), a joint NRC/EPRI program was initiated in December, 1982, to conduct dynamic tests of prototypical nuclear piping systems with response levels above their design limits. In contrast to the earlier EPRI program [1] which was performed on a simple two-elbow, $4-\mathrm{in}$. diameter piping run (generally referred [2] to as "Z-bend pipe"), the NRC/EPRI joint effort focused on testing of more complex three-dimensional, multi-bend, multi-supported configurations. The objectives of this research effort were threefold:

1. to expand the limited controlled data base on damping in piping systems at response levels at and well above Operating Basis Earthquake (OBE) stress conditions;
2. to stimulate recognition of safety margins implicit in ASME code rules for Class 2 or 3 piping by demonstrating the existence of large design margins in piping and support systems when subjected to seismic loads producing response well above the Safe Shutdown Earthquake (SSE) stress limit; and
3. to obtain a data base for benchmarking computer methods for analysis of pressurized piping systems with representative supports and for response levels below and above pipe yielding.

The test scope included design, analysis, fabrication, erection, and dynamic testing of two moderate-size nuclear piping systems, one without branch lines, and the second with two branch lines.

The ultimate goal of this test program was to provide a controlled data base to support more realistic design and licensing evaluation of nuclecr power piping systems. Test results will be disseminated to organizations such as the Pressure Vessel Research Committee (PVRC) as supporting material for possible Code revision considerations.

The tests described herein were conducted at ANCO's test facility in Culver City, California. The test setup consisted of a reinforced concrete foundation with U -shaped, $2-\mathrm{ft}$ thick strong walls and concrete pedestals rising 5 ft to 9 ft above the foundation mat. The tested piping systems
were attached to the walls and foundation mat at selected support locations through support hardware mounted on specially designed bases (support sleds). Dynamic forces were applied to the piping supports through the motion of the bases driven by hydraulic actuators.

The hydraulic actuation system was upgraded to a total load capacity exceeding $50,000 \mathrm{lb}$, capable of driving a multi-supported piping system to an upper bound load level three or four times higher than its design limits (Level $\mathrm{D}, 2.4 \mathrm{~S}_{\mathrm{h}}$ or 36 ksi in this case), depending on the number of supports. The high-flow servo valves of each hydraulic actuator allowed a maximum displacement of $\pm 3 \mathrm{in}$. and a maximum velocity of $90 \mathrm{in} . / \mathrm{sec}$. The maximum acceleration achievable at each support depended on the number of supports in the system and the mass of the assembly.

The support sleds were designed in such a way that they could be rotated 90° horizontally between tests so that the support excitation could be applied in two directions.

The piping systems tested were three-dimensional--that is, the straight pipe sections ran in three orthogonal directions. The piping supports cousisted of struts, mechanical shock arresters, and hydraulic shock arresters. The pipelines were supported at several locations by the support sleds. The snubber (shock arrester) and strut supports were distributed along the length of the pipelines.

The piping systems were extensively instrumented to measure acceleration, displacement, strain, force, and internal pressure. The recording of the data was accomplished using a computer-based data acquisition system.

The methods of testing consisted of: (1) impulse-a sudden, uniform change in the position of the support sleds from one constant value to another; (2) sine dwell with a concentrated force--steady-state forced harmonic response; (3) earthquake--input of u.iform base motion that was representacive of an earthquake. The excitacion levels ranged from those
inducing stresses below Level B to well above Level D. (i.e., below OBE to above SSE conditions).

2.1 Piping Systems Tested

Two different piping systems were designed, fabricated, and tested. For a given pipeline, the system to be described consisted of the pipeline, end and mid-point supports, bases used to mount and move the pipeline, and the hydraulic actuat or system used to move (drive) the bases. Both systems, and a variation in one of them, will be described herein.

2.1.1 Main Pipeline Without Branch Lines

The first piping system to be tested was a single run of Al06B carbon steel (no branch lines) about 70 ft . long. It is shown in Figure 2.1. Six-inch Schedule 40 and eight-inch Schedule 40 piping was employed, with the larger diameter pipe located at the ends of the pipe run. This was done in an attempt to keep the ends of the pipeline from being the highest stressed points in the system. There was more interest in having the largest stresses occur in the pipe elbows rather than at the ends of the pipeline. The $6-i n$. and 8 -in. pipe were joined together using standard 6 x 8 reducers. The pipe elbows were 90° long radius elbows. The pipe ends were terminated using welding neck flanges. A description of the pipe sizes and pipe components is given in Table 2.1.

The materials used for the pipeline were ASTM* materials. The material properties for the pipe and pipe components are given in Table 2.2. While it was originally the intent of this program to use Class 2 nuclear grade piping systems, delivery and cost problems with ASME materials were too limiting. With sponsor approval, $A S^{\prime \prime 1}$ materials were used to fabricate the

[^0]Item
a

Item	Description
6-in. Schedule 40 Pipe	$\begin{aligned} & 6.625 \text { in. OD* } \\ & 0.280 \text { in. WI** } \end{aligned}$
8-in. Schedule 40 pipe	$\begin{aligned} & 8.625 \text { in. OD } \\ & 0.322 \text { in. WT } \end{aligned}$
6 -in. Schedule 40 90° long radius elbow	9 -in. radius of curvature ANSI B 16.9
8 -in. Schedule 40 90° long radius elbow	12-in. radius of curvature ANSI B 16.9
8-x-6 concentric reducer	Transition for 8-in./6-in. Schedule 40 pipe, ANSI B 16.9
Welding neck flange for pipeline ends	Class 600 flange ANSI B 16.5

* OD refers to the outside diameter.
** WT refers to the wall thickness.

Item	Heat Number	Yield Point (psi)	Ultimate Strength (psi)	Percent Elongation	Material
6-in. Sch. 40 pipe	67270	52,260	78,097	32	SA-106 Grade B
8-in. Sch. 40 pipe	93232	49,700	77,300	40	ASTM A-106- B-80
6-in. 90° elbow	W9255	53,290	84,380	37.5	SA-234 WPB
8-in. 90° elbow	W9487	37,900	79,500	36	SA-234 WPB
8-x-6 reducer	L21400	51,300	74,400	37	ASTM A-234
Class 600 flange	ETCT	54,230	79,605	28	ASTM A-105

pipeline. However, the pipeline parts (pipe and components) were aligned and welded according to the specifications in the ASME code; the welding material used was ASTM material. All welds vere radiographed and inspected by the fabricator and certified by the fabricator to be acceptable according to the ASME code.*

A simulated valve was installed in the pipeline. The main body of the valve was made of hot finished steel tubing and was welded to the test pipe according to the ASME Code.

The ends of the pipeline were closed by welding 1 - in. thick circular steel plates into the inside of the welding neck flanges. A threaded hole was made in both plates. The holes were closed with bolts to contain the water in the pipeline (all tests were performed with water in the pipeline). To be able to fill the pipeline with water and rewove all air in the pipe, two drain holes were inserted in the pipeline using Thread-o-Lets.**

The pipeline was supported at its two ends (Locations S1 and S4) and at two other points (Locations $\$ 2$ and $S 3$). These locations are shown in Figure 2.1. At Locations $S 1$ and $S 4$, the pipe was clamped to the base. "Clamped,"

[^1]8-in. x 6-in. Reducer

$$
120 \mathrm{in.}
$$

Figure 2.1: As-built Dimensions for Pipeline Without Branch Lines
as used here, refers to all six degrees-of-freedom of the pipe being restrained relative to the base. The attachment of the pipe ends to the bases (sleds) was accomplished by bolting the pipe flanges to mating flanges on the bases using twelve 1.125 in. diameter Grade 8 bolts.* Each bolt was given an initial torque (during tightening) of about $200 \mathrm{ft}-1 \mathrm{bf}$.

The pipeline was supported at Locations $S 2$ and $S 3$ using strut- or snubbertype supports. At both these locations, the pipe was always supported by a vertical strut. There was always a horizontal support in the global X-direction at these two support points. All supports were attached to the pipeline at one end, and to the bases at the other end. The horizontal supports varied from being struts to mechanical snubbers to hydraulic snubbers. Gaps associated with the horizontal struts were also used. The bases at the two "mid-points" are described later in this section.

2.1.1.1 Bases for Pipeline Ends

With the ends of the pipeline clamped to the bases, large forces/moments could be exerted on the bases by the pipeline. This was an essential consideration in designing the bases. It was also important to minimize the mass of i : bases. Thus, a plate and rib design approach was selected. Figure 2.2 illustrates one of the end bases (both bases were identical). The essential features of a base consist of: (1) a carriage structure made of plates and containing two hardened steel raceways for the bearings to ride upon; (2) four bearing structures, each containing three bearings riding on the raceways attached to the carriage; (3) a steel plate, to which the four bearing-containing structures are attached, and (4) a

[^2]
Linear bearing housing.
of the page.
Figure 2.2: Conceptual Picture of Pipeline End Base
thick-walled tube which extends through the base and has a mating flange (for the pipe end flange) attached to it at one end.

Each set of bearings (the three bearings in one of the four structures) has one of the bearings on the top of a raceway, one bearing on the botton of the raceway, and the other to the side of the raceway. This is shown conceptually in Figure 2.3, where an arrow represents the force the corresponding bearing can exert on the raceway. The force can be exerted in only the direction of the arrow.

2.1.1.2 Bases for Pipeline at Its Mid-Points

There were two pipe support points between the ends of the pipe-they were at Locations $S 2$ and $S 3$, shown in Figure 2.1. At each of these locations, a mid-point support base was used as illustrated in Figure 2.4. The basic features of such a base were: (1) a carriage, to which four linear bearings were attached on its underside and to which a frame was attached on its top surface; (2) two hardened circular steel shafts on which the linear bearings rode; (3) a steel plate to which the steel shafts were attached; and (4) a steel framework system attached to the carriage. The frame work served as the anchor points for the back end of the two supports (one vertical and one horizontal at each location).

The bases were designed so the pipeline could be driven in either the X or Y directions. The framework for the supports could be detached from the carriage, keeping the vertical and horizontal supports in exactly the same position. The frame could then be reattached to the carriage, keeping the vertical and horizontal supports in exactly the same position. Of course, when these bases were rotated 90 degrees, the bases at the pipe ends were also rotated 90 degrees in the same direction.

* Represents a bearing raceway.

Figure 2.3: Conceptual Representation of Base Carriage Together with Bearing Forces

(a) Top View of Base, Including Horizontal Support Frame, Horizontal Support, and Top Surface of Base

Anchor Point
for Backend of Horizontal
Support

(b) Side View of Horizontal Support Frame

Figure 2.4: Picture of a Midpoint Base

(c) Side View Showing Vertical Support

Figure 2.4 (Concluded)

2.1.1.3 Supports Used at Pipeline Mid-Points

The pipeline was supported at Locations $S 2$ and $S 3$ with the use of struts* and smubbers. The vertical supports were always struts, and the horizonal supports were various combinations of struts and snubbers, as described in Tables 2.3 and 2.4 , and Figure 2.5 . The snubbers were set at their mid-stroke position during as sembly.

2.1.2 Pipeline With Branch Lines

The second pipeline tested consisted of two 3-in. Schedule 40 branch lines tied into a mainline similar to but shorter than the first line tested. In designing the second system, the first design system was modified between Locations S2 and S4 and two branch lines added as shown in in Figure 2.6. Standard reducers and long radius 90 degree pipe elbows were used for the main line and welding neck flanges were used to terminate the ends of the main line. The branch lines were attached to the main line using standard tees and the elbows used for the branch lines were 90 degree long radius elbows. Welding neck flanges were also used to terminate the branch lines. A description of the branch line pipe and components is given in Table 2.5.

The materials used for this second pipeline were also ASTM materials, as shown in Table 2.6. The same fabrication procedures were used for the second pipeline as were used for the first pipline.

The simulated valve described previously was reused for the second pipeline. The valve end was remilled before it was welded into the second pipeline. Drain/vent holes were installed as before.

[^3]| Configuration | Support at S2 | Support at S3 |
| :---: | :--- | :--- |
| 1 | Strut | Strut |
| 2 | PSA3* | Strut |
| 3 | PSA3 | PSA3 |
| 4 | SP2525-10** | Strut |
| 5 | BR2525-10 | BP2525-10 |
| 7 | Strut/Gap 1\# | Strut/Gap 1 |
| 7 | Strut/Gap 2\# | Strut/Gap 2 |

PSA3 refers to Pacific Scientific mechanical snubber; the model number is PSA3.
** BP2525-10 refers to a Bergen-Paters on hydraulic snubber; the model number is 2525-10.
4. Gap 1 and Gap 2 refer to gaps that were milled into the clevis pins used for the horizontal struts. One clevis pin, with a milled-in-gap, was used for each strut.

TABLE 2.4: DESCRIPTION OF MECHANICAL AND HYDRAULIC SNUBBERS--BASIC PROPERTIES

Mechanical Snubber
Make: Pacific Scientific Shock Arrester
Mode1: PSA3
Stroke: 5.0 in.
A/B Load: 6,000 lbf
C/D Load: $10,380 \mathrm{lbf}$

Hydraulic Snubber

Make:	Bergen-Paterson
Model:	$2525-10$
Stroke:	6 in.
Bore:	2.5 in.
A/B Load:	$10,000 \mathrm{lbf}$
D Load:	$15,000 \mathrm{lbf}$

Hole for clevis pin. The centerlines of the two holes are 90° apart.

Strut Support	Length of Tube, L (in.)	
	X Forcing**	Y Forcing
S2, horizontal	21.1	21.1
S2, vertical	14.8	14.8
S3, horizontal	21.3	21.3
S3, vertical	13.0	13.5

(a) Strut

Figure 2.5: Struts and Gaps Used for Tests Without Branch Lines

* Modified PSA3 pin for backend of strut.

$$
\begin{aligned}
\text { Gap 1: } \quad D & =0.717 \mathrm{in.} \\
\mathrm{G} & =0.016 \mathrm{in} .
\end{aligned}
$$

Gap 2: $D=0.621 \mathrm{in}$. $G=0.064 \mathrm{in}$.
(b) Gaps in Clevis Pins

Figure 2.5 (Concluded)

90 in.

Figure 2.6: As-built Dimensions for Pipeline With Branch Lines

Item	Description
3-in. Schedule 40 pipe	$\begin{aligned} & 3.500 \text { in. OD * } \\ & 0.216 \text { in. WT ** } \end{aligned}$
3 -in. Schedule 40 90° long radius elbow	4.5 -in. radius of curvature ANSI B 16.9
Welding neck flange for branch line ends	Class 600 flange ANSI B 16.5

* $O D$ refers to the outside diameter.
** WT refers to the wall thickness.

Iter	Heat Number	Yield Point (psi)	Ultimate Strength (psi)	Percent Elongation	Material
6-in. Sch. 40 pipe (1)	L61034	52,000	78,700	38.0	ASTM A-106
6-in. Sch. 40 pipe (2)	429965	47,572	70,488	38.0	$\begin{aligned} & \text { Grade B } \\ & \text { ASTM A-106 } \end{aligned}$
$6-\mathrm{in}$. Sch. 40 pipe (3)	421803	43,200	67,200	43.6	$\begin{aligned} & \text { Grade B } \\ & \text { ASME SA-106 } \end{aligned}$
8 -in. Sch. 60 pipe (4)	27215	50,280	74,310	36.0	$\begin{aligned} & \text { Grade } 3 \\ & \text { ASTM A-106 } \end{aligned}$
$8-\mathrm{in}$. Sch. 40 pipe (5)	141158	45,400	71,800	35.5	Grade B ASTM A-106
					Grade B
3-in. Sch. 40 pipe	412121	48,200	71,800	35.0	ASTM A-106
6-in. 90° elbow	1018*	47,650	71,410	40.0	Grade B ASTM A-254
					WPB
-in. 90° elbow	4306*	51,770	76,090	50.0	$\begin{aligned} & \text { ASTM A-234 } \\ & \text { WPB } \end{aligned}$
$3-\mathrm{in}$. 90° elbow	5389*	52,630	74,680	45.0	ASTM A-234
8-x-6 reducer	413014	47,700	71,500	41.5	WPB ASTM A-234
					WPB
6/3 tee	NN27**	47,900	72,500	40.8	ASTM A-234
	ETR I				WPB
flange	ETRI	51,217	79,510	30.0	ASTM A-105
$3 \text {-in. Class } 600$ flange	GDCD	55,820	81,380	33.5	ASTM A-105

(1) Pipe between reducer and Elbow 1.
(2) Pipe between Elbows 1 and 2, Elbows 3 and 4, and Elbows 6 and 7.
(3) Pipe between Elbows 2 and 3, Elbows 4 and 5, and Elbows 5 and 6.
(4) Pipe connected to flanges at S1 and S3.
(5) Pipe between reducer and elbow 7 .

* This number is the mill work number.
** This number is the heat code.

The pipeline with branch lines was supported at its four ends (Locations S1, S3, S4, and S5) and at one other point (Locstion S2), shown in Figure 2.6 above. The ends of the 8 -in./6-in. pipeline were clamped to the previously used pipe-end bases and the ends of the branch lines were attached to bases by bolting the pipe-end flanges to a l-in. thick steel plate which in curn was then bolted to the base. Figure 2.7 describes this. The bases used for the branch line ends were the same type of base as was used for the mid-point supports for the first piping system (Figure 2.4), and the mid-point support arrangement aad base at Location $S 2$ was the same as for the first pipeline tested.

The same type of supports were used at Location $S 2$ as were used before (Figure 2.5 and Table 2.4). The horizontal support configurations tested are described in Table 2.7. The struts used at S2 are described in Figure 2.8. The same snubbers and gaps were used for these tests as were used for the first test series.

2.2 Base Motion Input

Each of the bases was driven by its own hydraulic actuator. The $11,000-1 b f$ capacity actuators were servo-coutrolled, extending or contracting in proportion to a supplied displacement signal and were driven by a $90-\mathrm{gpm}, 3,000-\mathrm{psi}$ hydraulic power supply. Eight $10-\mathrm{gal}$ lon accumulators provided smooth rates of hydraulic fluid flow and ensured adequate supply pressure during dynamic events. A flow chart of the base excitation system is shown in Figure 2.9.

The input time histories were generated on a Data General NOVA-3 minicomputer. The time history used was then transferred through a digital-to-analog ([D/A] converter) and stored on FM tape. During a test, the analog time history was reproduced by the $F M$ recorder, and the signal conditioned and filtered prior to insertion into the actuator controllers. A strip chart recorder, with built-in, medium-gain amplifiers, was used for monitoring purposes.

Notes: (1) Bolt circle radius for flange on end of banch line; $R=3.31 \mathrm{in}$.
(2) Drilled and tapped for $3 / 4-i n$. bolts.
(3) Through drill for $1 / 2-i n$. bolts.
(4) Steel plate $1-i n$. thick.
(5) Fixture plate to be placed at the center of the base.

Figure 2.7: Plate Used to Bolt Branch Line End Flanges to Bases

TABLE 2.7: HORIZONTAL SUPPORT CONFIGURATIONS TESTED
Configuration Support at S2

1
2
3
4
5

Strut
PSA3*
BP2525-10**
Strut/Gap 1 \#
Strut/Gap 2\#

* PSA3 refers to a Pacific Scientific mechanical snubber; the model number is PSA3.
** BP2525-10 refers to a Bergen-Paterson hydraulic snubber; the model number is 2525-10
\# Gap 1 And Gap 2 refer to gaps that were milled into the clevis pins used for the horizontal struts. One clevis pin, with a milled-in gap, was used for each strut.

* Hole for clevis pin. The centerlines of the two holes are 90° apart.

Strut Support	Length of Tube, L (in.)
${ } }$	20.7
S2, vertical	14.1

Figure 2.8: Struts Used for Tests With Braich Lines

Figure 2.9: Base Excitation System Flowchart

2.3 Instrumentation for Piping Systems

The test specimens were instrumented with accelerometers, displacement transducers, strain gauges, load cells, and a pipe-internal pressure transducer. There are some similarities between the instrumentation layout for the two piping systems because of the similarities between the systems. The instrumentation used for the pipe lines is described herein.

2.3.1 Instrumentation for Pipeline Without Branch Lines

The base motion input was recorded using both accelerometers and displacement transducers. A triaxial accelerometer array was placed on both pipe-ead sleds (at S1 and S4), and displacement transducers were used to measure the displacement of the pipe-end bases in the base-forcing direction (X or Y). The motion of the two mid-point bases was measured using accelerometers placed at the back end of the supports. Accelerometers were oriented in the base forcing direction-oone per support. An accelerometer was also oriented in the direction of the centerline of each support. (Sometimes, the forcing and centerline directions were the same and only one accelerometer was needed for the support).

Instrumentation placement was guided by the results of linear elastic finite element analyses of the system. The accelerometers and displacement transducers were placed to capture both the largest net responses (multiple modes) and some modal responses (single mode). The strain gauges were placed at the highest stressed locations.

Figures 2.10 and 2.11 and Tables 2.8 and 2.9 describe the instrumentation layout used for X or Y direction base in motion. All instruments were located relative to the locations indicated in Figures 2.10 and 2.11 . The instrumentation was slightly different for X and Y forcing because different modes were excited to different levels for different forcing directions. It should be noted that during testing, all the instrumentation was continually checked for (1) overloading, (2) underloading, and (3) loose transducers, i.e., accelerometers which had come loose. Care was taken to

Notes: (1) The indicated instrument locations (i.e., P61, P63) are either at the ends of the elbows or at midspan.
(2) The indicated locations for S2 and S3 correspond to the location of the vertical struts.

Figure 2.10: Instrumentation Layout for Pipeline Without Branch Lines

Figure 2.11: Midpoint Support Instrumentation Locations

Global Location	Local Location (in.) and Direction of Instrument			
	Acceleration	Displacement	Strain	Load
S1	$X, Y, z(1)$	X		
P21	+6; $\mathrm{Y}(2)$		+2; Y, $\mathrm{Z},-\mathrm{Y}(3)$	
P31	+6; X	+9; X		
P33		+9; X		
P35	-6; $\mathrm{x}, \mathrm{z}(4)$	0; X		
P41	+5; Y			
S2H	X	$x(5)$		X
S2V	X			z
P61	+5; X			
P63		0; X		
P65	-5; X	-1; X		
P71	+5; 2			
P73	+5; X			
P75	-6; Y, Z		-3; Y, $\mathrm{Z},-\mathrm{Y}$	
S3H	X	X		X
S3v	X			z
P93		+9; X		
P95	-5; X			
P105			-3; Y, Z,-Y	
S4	$X, Y, Z(1)$	X		

NOTES: (1) The X and Y direction accelerometers were located on the base flange that was bolted to the test pipe flange. The Z direction accelerometer was located on the top surface of the base. The direction X, Y, or Z refers to the direction a given transducer is oriented in--motion will be measured in the direction of orientation.
(2) The accelerometer was located 6 in. from point P21. The plus sign, + , was attached to the 6 in. because the accelerometer was on the S4 side of P21.
(3) The directions refer to the circumferential location of the strain rosettes at the specified pipe-axial location. A circumferential location is specified by indicating the direction of the outward normal vector to the pipe at the circumferential location.
(4) The accelerometers are 6 in. from P35. They are on the S1 base side of P35.
(5) These displacements were measured across the horizontal supports-the displacement of one end relative to the other end.

Global Location	Acceleration	Displacement	Strain	Load
S1	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}(1)$	7		
P21	+6; Y (2)		+2; $\mathrm{Y}, \mathrm{Z},-\mathrm{Y}(3)$	
P23		0; Y		
P31	+6; X			
P35	-6; $\mathrm{x}, \mathrm{z}(4)$			
P41	+5; Y			
P43		0; Y		
S2H	Y	$\mathrm{X}(5)$		X
S2V	Y			z
P61	+5; X			
P63		0; Y		
P71	+5; Y, Z	+14; Y		
P73	Y			
P75	-6; Y, Z	-1; Y	-3; Y, $2,-\mathrm{Y}$	
S3H	Y	$x(5)$		x
S3V	Y			2
P93		0; Y		
P95	-5; X			
P105			-3; Y, $2,-\mathrm{Y}$	
S4	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}(1)$	Y		

NOTES: (1) The X and Y direction accelerometers were located on the base flange that was bolted to the test pipe flange. The Z direction accelerometer was located on the tope surface of the base. The direction X, Y, or Z refers to the direction a given transducer is oriented in-motion will be measured in the direction of orientation.
(2) The accelerometer was located 6 in. from point P21. The plus sign, + , was attached to the 6 in . because the accelerometer was on the $\$ 4$ side of P21.
(3) The directions refer to the circumferential location of the strain rosettes at the specified pipe-axial location. A circumferential location is specified by indicating the direction of the outward normal vector to the pipe at the circumferertial location.
(4) The accelerometers are 6 in . from P35. They are on the Sl base side of P35
(5) These displacements were measured across the horizontal supports--the displacement of one end relative to the other end.
ensure that quality data was obtained. The types of transducers are described in Table 2.10.

2.3.2 Instrumentation for Pipeline With Branch Lines

The procedure for selecting types of instrumentation, and their locations, for the pipeline with branch lines was the same as for the first pipeline. he locations for the instrumentation are described in Figures 2.12 and 2.1 and Table 2.11 .

2.4 Testing Methods Used

Several items are discussed herein; they are (1) types of tests parformed, (2) the acquisition of data, and (3) data analysis methods used to produce a preliminary assessment of results.

2.4.1 Types of Tests Conducted

The types of tests performed for the piping systems, described above, are listed in Table 2.12 .

2.4.2 Data Acquisition

Data acquisition was provided by ANCO's computerized vibration test and analysis eystem. The system, based on a Data General NOVA-3 minicomputer, consisted of the following:

1. 12-slot NOVA-3/12 chassis;
2. 256-kbyte memory and CPU;
3. 10-Mbyte disk drive with adapter;
4. 9-track digital tape system;
5. CRT interactive texminal;
6. DEC Writer II printing terminal;
7. Houst on Instruments $\mathrm{DP}-11$ incremental plotter;
8. Computer Products Real Time Peripheral (RTP) System with 96 channels of A / D converters and 4 channels of D / A converters;

$\begin{aligned} & \text { Transducer } \\ & \text { Type } \\ & \hline \end{aligned}$	Manufacturer	Model Number	Response Characteristics	
			Full-Scale Output	Resolution
Accelerometer	Columbia	321-H-HT-I	$\pm 5 \mathrm{~g}$ to $\pm 1,000 \mathrm{~g}$	0.0002 g to 0.04 g
Accelerometer	Dytran	3100	$\pm 25 \mathrm{~g}$ to $\pm 100 \mathrm{~g}$	0.004 g to 0.001 g
Displacement	Celesco	PT101	$\pm 10 \mathrm{in}$.	0.01 in .
Strain gauge	Micro Measurement	CEA-06-1250R-350	$\pm 5,000 \mu \varepsilon$	$2 \mu \varepsilon$
Strain gauge	Micro Measurement	CEA-06-1250W-350	$\pm 5,000 \mu \varepsilon$	$2 \mu \varepsilon$
Load cell	Strainsert	1933-2-B	$\pm 15,000 \mathrm{lbf}$	6 lbf

Figure 2.12: Instrumentation Layout for Pipeline With Breach Lines

Figure 2.13: Instrumentation Locations for Midpoint Supports

	Local Location (in.) and Direction of Instrument		
Global Location	Acceleration	Displacement	Strain
S4	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$		
PB41			
FB61	$0 ; \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}(6)$	$+6 ; \mathrm{X}, \mathrm{Z},-\mathrm{X}$	
S5	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$		

NOTES: (1) The X and Y direction accelerometers were located on the base flange that was bolted to the test pipe flange. The Z direction accelerometer was located on the top surface of the base. The direction X, Y, or Z refers to the direction a given transducer is oriented in--motion will be measured in the direction of orientation.
(2) The directions refer to the circumferential location of the strain gauges at the specified pipe-axial location. A circumr ferential location is specified by indicating the direction of the outward normal vector to the pipe at the circumferential location.
(3) The accelerometer was located 6 in. from Point PM21. The plus sign, +, indicates that the accelerometer was on the $S 3$ side of the point (PM21).
(4) The displacement transducer was attached to the pipe 5 in . from Point PM23. The minus sign, -, indicates that the transducer was on the Sl side of the point.
(5) The accelerometer was located 13 in . from point PB21. The plus sign, + , indicates that the accelerometer was on the $\$ 4$ side of the point.
(6) The coordinate directions X^{\prime}, Y^{\prime}, are local directions defined at Point PB61. X^{\prime} is parallel to the pipe centerline at PB61. Y^{\prime} is perpendicular to X^{\prime}, and lies in a horizontal plane.

Type of Test Description

Static pressure only

Impulse

Sine Dwell

Earthquake
Static Displacement of one base

Initasl stetic displacemt..t of one base plus earthquake

The bases were locked and the pipeline was pressurized to 1,150 psi. Strain gauge measurements were made.

The bases were all given a simultaneous, sudden, step in displacement. That is, the displacement of the bases was changed from the initial value to a different constant value.

The bases were held fixed. A single harmonic force was applied to the pipeline. The forcing frequency was varied between two extreme values. At preselected values of forcing frequency (between the extreme values), the forcing frequency was held constant long enough to allow the transient response to become zero. The steady-state response was then recorded.

The bases were given in-phase earthquake-like motions.
One of the bases was moved quasi-statically to a final position. The remaining bases were held fized.

An earthquake is super-imposed on the previously defined static case. This procedure simulates a static preload followed by earthquake loading.
9. 64 channels of STI differential amplifier/anti-aliasing filters; and
10. 24 channels of Frequency Devices filters.

Analog output from the transducers was low pass filtered using the STI and Frequency Devices amplifier-filter system and then digitized using the RTP system and the program XFAST. In addition to creating a file containing the digitized test data, XFAST sets up all title, test and run information and the digitizing time step and time duration of data acquisition as part of the data file.

For both piping systems, the following digitization/filter parameters were use:

- sample rate per channel $=200$ points/s
- Low pass cutoff frequency $=42.6 \mathrm{~Hz}$

2.4.3 Data Analysis

Following execution of a test, the data was corrected for time interval shifts and, subsequently, processed to generate some of the categories of information illustrated in Table 2.13.

A few comments are appropriate regarding the calculation of the pipe cross-sectional loads and the ASME stress ratio. Various pipe crosssections were instrumented with strain gauges, an example of which is shown in Figure 2.14. For the strain gauge arrangement in Figure 2.14 (and assuming linear material behavior), it is possible to determine all six cross-sectional loads. For other arrangenents, less than six loads can be calculated. The computer code LOADS is used to calculate stresses from strains. The stresses are then used to calculate cross-sectional loads.

Of key importance is the calculation of the two bending moments, M_{y} and M_{z}, and the torsion, M_{x}, at a given pipe cross-section. LOADS does

1. Extreme values of response for each data channel.
2. Time history plots of data.
3. Pipe cross-sectional loads and ASME stress ratio as a function of time.
4. Principal strains and von Mises ratios for locations on pipe outer surface.
5. Fourier transform of transient data.
6. Plot Fourier transform of data.
7. Response spectrum.
8. Determine time history which is a linear combination of various data time histories; this can be used tc determine the relative motion (to the base motion) of the pipe.

Computer Code TIMEPEAK* searches channel by channel for maximum and minimum.

TIMEPLOT plots transducer amplitude as a function of time.

For pipe cross sections with appropriate strain gage instrumentation, LOADS is used.

For points on pipe surface with strain gage rosettes, STRESS is used.

XFILT is used to obtain transform and, also, to filter data and obtain inverse transform.

FOURPLOT plots real and imaginary components or modulus and phase.

XBETL5 5 and XCETLDP calculates and plots response spectra for accelerometer channels of interest, respectively.

LINCOM and TIMEDGEN calculates the new time history and adds header information to the new file, respectively.

[^4]

* R_{θ} refers to a strain gauge rosette configuration of gauges located at θ degrees from the y-axis. The adjacent gauges in a rosette are 45° from each other.

Figure 2.14: An Arrangement of Strain Gauges
this for each time point of a transient event. It then calculates the resultant sectional moment, $M_{i}(t)$, from the following:

$$
\begin{equation*}
M_{i}(t)=\left[M_{x}^{2}(t)+M_{y}^{2}(t)+M_{z}^{2}(t)\right]^{1 / 2} \tag{1}
\end{equation*}
$$

The resultant moment calculated by Equation 1 , includes the effects of the dynamic response. If the strain gauge settings are not nulled (zeroed) out after pressurization of the pipe, the calculated resultant moment will also include the effect of the pipe internal pressure (a sustained load).

For each test conducted, all the data was plotted, peak response values were determined for all data channels, and peak ASME stress ratios were calcuiated for particular strain-gauged locations. This report presents only preliminary observations regarding system behavior. Detailed data analysis will be performed at a later time and under a different NRC contract.

3.1 Tests Conducted and Peak Response Values

For all of the tests for both piping systems, the following test and run designators were used:

```
Test = (Direction)(Type)n
Run = (Configuration)m
where Direction = direction of base motion (X or Y)
Type = PO (pressure only loading)
    IM (base impulse motion)
    SD (sine dwell)
    EQ (base earthquake motion)
```

n = sequence number
Configuration = support configuration
$m=$ configuration number

An example of this is Test $=$ XEQ 3 and Run $=C 2$. This test and run refer to the following:

- X direction base motion
- earthquake input
- for XEQ tests of Configuration 2, the sequence number is 3
- Configuration 2

The resultant moment is calculated per Equation 1 in the prior section of this report. LOADS then calculates the ASME Code stress ratio using the following equation:

```
            SR(t)=S SL (t)/CSL = [B1 (PD / /2t) + \mp@subsup{B}{2}{}(\mp@subsup{M}{i}{}(t)/Z)]/CSL
where SR(t) = ASME stress ratio (t=time)
S
        calculated by the method described in the "ASME Boiler and
        Pressure Vessel Code."
CSL = ASME Code stress limit
P(t) = pipe internal pressure
Do = outside pipe diameter
t = pipe wall thickness
Mi
Z = section modulus
\mp@subsup{B}{1}{}}=\mathrm{ stress index for pipe pressure term
B}2=stress index for moment term
```

The 1980 edition of the ASME Code for Class 2 piping was used in the response evaluations.* An important point should be made concerning the resultant moment for Class 2 piping. The computer code LOADS calculates the resultant moment due to any effects included in the recorded strain data. Thus, if the strain gauge settings are not nulled out before a dynamic test, 2n was the case for these tests, the calculated resultant moment reflects both the pipe pressure and dynamic effects. However, the stress equation

[^5]for primary loads for Class 2 piping has its moments in the form $M_{A}+$ $M_{B}(t)$, where M_{A} and M_{B} are the resultant moments due to sustained and occasional loads, respectively. For the tests performed, the difference betveen the resultant moment calculated by both approaches was negligible, i.e., M_{i} was very similar to $M_{A}+M_{B}$. The values of the constant terms in Equation 2, used for calculating the stress ratio, are given in Table 3 .

The tests conducted for the first piping system (without branch lines) are listed in Table 3.2. The peak base input is given together with select peak response quantities. It should be noted that ASME stress ratios greater than one (1) do nct necessarily have any meaning because the moments used to calculate the ASME stress were calcrlated from strains. When the strains are in the inelastic range, it is not valid to so calculate moments. The tests conducted for the second pipeline (with branch lines) are listed in Table 3.3. Also, some select peak results are presented.

3.2 Calculated Damping for Piping Systems

Limited damping calculations were performed for the piping system without branch lines to obtain a preliminary assessment of behavior. The results of the limited calculations (using log decrement) are presented in Figures 3.1 through 3.3. For a given figure, the time histories used for the calculations are presented.

It may be seen that the selected time histories consist almost entirely of single mode response, making it possible to apply the log decrement method to calculate the damping. The results can be seen on the nomograph, which is equivalent to using the following formula:

$$
\beta^{(i)}=\ln \left(z_{0} / z_{i}\right) / 2 \pi i
$$

where z_{0} and z_{i} are the amplitude of the peaks of the oth and ith cycles, respectively.

Constant	$\begin{gathered} 8 \times 6 \\ \text { Reducer } \end{gathered}$	6-in. Straight Pipe**	$\begin{gathered} 6-\text { in. Pipe } \\ \text { Elbow** } \end{gathered}$	8-in. Pipe Elbow**
D_{0} (in.3)	6.625	6.625	6.625	8.625
t (in.3)	0.280	0.280	0.280	0.322
z (in.3)	8.50	8.50	8.50	16.81
B_{1}	0.50	0.50	0.50	0.50
B_{2}	1.00	1.00	1.70	1.83
CsL(psi)\#	36,000	36,000	36,000	36,000

* Narrow end of reducer ($6-\mathrm{in}$, end).
** Schedule 40 pipe.
\# The code stress limit is $2.4 \mathrm{~S}_{\mathrm{h}}$. All ASME stress calculations were done using the 1980 edition of the code.

TABLE 3.2: PEAK BASE MOTION AND PEAK PIPE RESPONSE FOR PIPELINE WITHOUT BRANCH LINES

Test/Run	Measured Base Motion		Measured Pipe Response			Support Condition	
	Displacement(in.)	Acceleration(g)	Absolute Dis- placement (in.)	Acceleration (g)	ASME Stress Ratio*	Support Load (kip)	Percent of $A / B * *$
YP01/C1	NA	NA	0.19 (P75Y)	NA	$0.23(\mathrm{el0})$	-0.84(S2V)	NA
YIM2/C1R1	1.23	-10.73	2.64(P71Y) ${ }^{\text {F }}$	-16.89 (P352)	0.76 (e10)	-4.21(S2H)	NA
YIMS/C1R1	3.02	-14.94	5.92 (P71Y)	-29.07 (P73Y)	1.18(e10)	-5.56 (S2H)	NA
YIM1/C2R1	1.24	-10.19	2.62 (P71Y)	-15.86(P35Z)	$0.75(\mathrm{el0})$	-3.85 (S2H)	64
YIM2/C2R1	2.13	-13.23	4.52 (P71Y)	-17.02(P35Z)	1.08(el0)	-5.33(S2V)	NA
YIM3/C2	1.06	- 9.45	2.31 (P71Y)	-14.57 (P35Z)	0.72 (e10)	-3.66 (S2H)	61
YIM2/C3R2	1.94	-13.23	4.00 (P71Y)	-17.38(P35Z)	1.04(el0)	-4.85 (S2V)	NA
YIM1/C3R1	0.59	- 7.95	1.26 (P71Y)	-11.17(P61X)	$0.57(\mathrm{elo})$	-3.07 (S2V)	NA
YEQ3/C3R1	1.18	- 3.43	-3.46 (P 63 Y$)$	- 7.87 (P71Y)	1.37(e10)	-5.77 (S3H)	96
YIM1/C2R2	0.50	- 6.58	1.08 (P71Y)	- 9.34 (P61X)	0.51 (el0)	-2.81(S3V)	NA
YIM2/C1R2	0.51	- 6.93	1.12 (P71Y)	10.00 (P61X)	$0.53(\mathrm{el0})$	-2.84(S3V)	NA
YEQ3/C3R.	1.05	- 3.36	3.21 (P63Y)	8.72(P71Y)	1.29(e10)	-5.31 (S3H)	89
YEQ3/C3R 3	0.53	- 1.45	1.79 (P63Y)	5.42(P71Y)	$0.91(\mathrm{el0})$	-2.83(S3H)	47
XIMI/C1	0.43	- 3.66	0.77 (P35X)	- 7.94 (P73X)	$0.54(\mathrm{el} 10)$	-1.66(S2H)	NA
XIM2/C1	0.30	- 3.03	0.55 (P35X)	- 5.62 (P73X)	0.40 (e7)	2.29 (S3H)	NA
X1M3/C1	0.90	4.44	1.55 (P35X)	-11.53(P73X)	0.60 (e7)	5.77 (S3H)	NA
XEQ1/C1	-0.14	0.44	0.32 (P35X)	-1.75(P35Z)	$0.38(\mathrm{el0})$	C.82 (S3H)	NA
XIM4/C1	1.50	4.89	2.38 (P35X)	-11.38(P61X)	$0.76(\mathrm{e} 7)$	6.88(S3H)	N/
XIM1/C3	0.83	4.28	1.42(P31X)	-8.44(P73X)	$0.59(\mathrm{el0})$	-5.43(S3H)	91
XIM2/C3	-0.07	5.40	3.29 (P31X)	10.54(P35Z)	$0.80(\mathrm{e} 7)$	-7.05 (S3H)	118
XEQ1/C3	0.27	- 0.72	0.49 (P35X)	- 2.87 (P35Z)	$0.45(\mathrm{el0})$	-1.40(S ? H)	23
XIMS/C1	2.52	5.36	3.89 (P31X)	-12.37(P61X)	$0.86(\mathrm{e} 7)$	-7.24(S3H)	NA
XEQ2/C1	0.27	0.80	0.60 (P35X)	3.43 (P35Z)	$0.45(\mathrm{e} 7)$	-1.48(S3H)	NA

TABLE 3.2 (Concluded)

Test/Run	Measured Base Motion_		Measured Pipe Response			Support Condition	
	Displacement (in.)	Acceleration(g)	Absolute Displacement (in.)	$\begin{gathered} \text { Acceleration } \\ (\mathrm{g}) \end{gathered}$	ASME Stress Ratio*	Support Load (kip)	Percent of $A / B^{* *}$
XEQ3/C1	-1.22	-2.24	2.47 (P35X)	13.14 (P352)	0.90(e7)	-5.80 ($\mathrm{S3} 3 \mathrm{H}$)	NA
XIM3/C3	2.57	5.59	4.15 (P35X)	11.60 (P352)	0.86(e7)	-7.20(53H)	120
XIM3/C3R1	2.56	5.51	4.17 (P35X)	11.93 (P352)	0.89(e7)	-7.51 (S3H)	125
XEQ2/C3	1.31	-2.72	2.52(P35X)	13.89(P35Z)	$0.93(\mathrm{e} 7)$	-6.10(S2H)	102
XEQ3/C3	-1.55	-3.45	3.31 (P35X)	20.84(P35Z)	0.71 (e10)	-5.59(S3H)	93
XEQ4/C3	2.17	-5.11	4.10 (P35X)	21.41 (P35Z)	0.79(e7)	-6.67(S3H)	111
XIM1/c5	0.78	3.93	1.25 (P35X)	-10.08(P73X)	0.60 (e10)	-5.55 (S3H)	56
XIM2/C5	2.74	5.56	4.21 (P35X)	-13.35(P352)	0.88(el)	-7.99(S3H)	80
XIM1/C6	0.79	4.28	1.25 (P35X)	-10.89(P73X)	0.59 (e10)	-5.65 (S3H)	NA
XIM1/c7	0.78	4.31	1.25(P35X)	-11.02(P73X)	0.58(e7)	-5.77($\mathrm{S3H}$)	NA
XIM2/C7	2.74	5.57	4.24 (P35X)	-13.14(P61X)	0.87 (e7)	-7.87(S3H)	NA
XEQ1/C5	-2.4i	-4.32	3.93 (P35X)	17.28(P352)	1.17(el)	6.84 (S3H)	68
XEQ2/C5	2.92	-4.86	-4.86(P35X)	-17.87(P35Z)	1.31(el)	6.83(S2H)	68
XEQ3/C5	3.29	5.38	-5.06 (P35X)	-21.87(P35Z)	1.32(el)	7.22 (S2H)	72
YEQ1/C5	2.11	-4.33	6.14(P63Y)	10.57 (P71Y)	1.83(e10)	5.56 (S 3 H)	56
YEQ2/C5	2.96	-5.55	7.77 (P63Y)	13.71 (P71Y)	2.07 (e10)	6.75 (S3H)	67
YEQ3/C5	0.57	1.75	4.01 (P63Y)	9.83 (P71Y)	$1.81(\mathrm{el0})$	4.18(S3H)	42
YEQ4/C5	1.76	8.38	6.93(P63Y)	>50.00(P31X)\#\#	2.32 (e10)	7.65 (S3H)	76
XSS1/C1	NA	NA					NA

* The ASME stress ratio is based on the Level D stress limit; it was calculated using the 1980 edition of the ASME Code.
** A / B refers to the A / B load for the snubber.
\# The term in parenthesis, (), designates the location of the measured quantity.
\#\# Accelerometer saturated at 50 g .

TABLE 3.3: PEAK BASE MOTION AKD PEAK PIPE RESPONSE FOR PIPELINE WITH BRANCH LINES

Test/Run	Measured Base Motion		Measured Pipe Response			Support Condition	
	Displacement(in.)	Acceleration(g)	Absolute Displacement (in.)	Acceleration (g)	ASME Stress Ratio*	Suppert Load (kip)	Percent of $A / B * *$
XP01/C1	NA	NA	0.03 (PM53X) ${ }^{\text {\% }}$	NA		-0.09(S2UP)	NA
XIM1/C1	0.32	-6.00	0.56 (PM31X)	-4.85 (PM53X)	0.44(PM55)	-1.60(S2UP)	NA
XIM2/C1	0.36	-5.95	0.61 (PM31X)	-6,13 (PM53Y)	0.53 (PM55)	-2.02(S2UP)	NA
XIM3/C1	0.56	-6. ${ }^{6}$	0.92 (PM31X)	8.12 (PM53Y)	0.57 (PM55)	2.28 (S2UP)	NA
XIM4/C1	1.04	-4.80	1.86 (PM53X)	-10.04(PM33X)	0.72 (PM55)	4.08(S2LOW)	NA
XIM5/C1	1.62	-5.32	2.68 (PM33X)	-38.19 (PM53Y)	1.08(PM55)	5.12 (S2LOW)	NA
XIM1/C2	0.18	-2.98	0.46 (PM53X)	4.98(PM33X)	0.49(PM55)	-1.91(S2UP)	NA
XIM2/C2	0.28	-3.55	0.65 (PM53X)	- 6.62(PM53X)	0.53 (PM55)	-2.16 (S2LP)	NA
XP01/C2	NA	NA	0.04 (PM31X)	NA	0.25 (PM55)	-0.03(S2UP)	NA
XIM3/C2	1.20	5.00	1.92 (PM31X)	11.89 (PM33X)	C.75(PM13)	4.13(S2LOW)	69
XIM4/C2	1.61	-5.59	2.68 (PM53X)	-14.92(PME 3X)	0.93 (PM13)	4.98 (32LOW)	83
XIM5/C2	1.04	-9.79	1.80 (PM31X)	13.47 (PM33X)	0.78 (PM55)	4.18(S2LOW)	70
XIM6/C2	1.53	-10.83	2.56 (PM31X)	-14.69 (PM53X)	0.92 (PM55)	5.37 (S2LOW)	90
XSTD/C2	0.50 (S3X)	NA	0.52 (PM63X)	NA	0.49 (PM55)	-0.22(S2UP)	4
XIM7/C2	0.44	-7.49	1.18(PM53X)	$7.75($ PM53X) -3.16 (PM33X)	0.57(PM55)	-2.4 (S2UP)	40
XEQ1/C2	0.30	0.74	0.64 (PM31X)	-3.16 (PM33X)	0.68 (PM55)	-1.08(S2LOW)	18
XEQ2/C2	0.50	1.40	-1.42(PM33X)	6.05 (PM33X)	0.94 (PM55) 0.45 (PM55)	$3.09(\mathrm{~S} 2 \mathrm{LOW})$ $-1.95(\mathrm{~S} 2 \mathrm{LOW})$	19
XIM1/C3	0.36	-6.68	0.58(PM31X)	8.17 13.01 (PM53 5)	0.45(PM55)	$-1.95(\mathrm{~S} 2 \mathrm{LOW})$ $3.88(\mathrm{~S} 2 \mathrm{UP})$	NA
XIM2/C3	1.08 0.85	-9.21 -10.62	2.28(PM53X)	13.54 (PM53X)	0.80 (PM55)	4.32 (S2UP)	NA
XEQ3/C2	-1.01	-0.59	-1.06 (PM31X)	2.29 (PM33X)	0.74 (PM55)	-1.97(S2LOW)	33
XIM8/C2	1.10	-9.39	1.91 (PM53X)	13.34(PM53X)	0.74 (PM55)	4.21 (S2LOW)	70
XEQ4/C2	-0.47	0.73	-0.50 (PM53X)	-2.39 (Pri33X)	0.46 (PM55)	-1.76(S2LOW)	29
XEQS/C2	-1.72	-1.48	-2.23 (PM31X)	-5.02 (PM21X)		-1.13(S2LOW)	19
XEQ6/C2	-2.18	2.13	-2.80 (PM31X)	-6.38(PM21X)	0.91 (PM81)	1.37 (S2LOW)	23
XEQ7 / C2	2.54	4.75	3.43 (PM31X)	-8.48(PM21X)	1.01 (PM81)	-1.88(S2LOW)	31
XIM9/C2**	-0.94	-7.25	-0.84 (PM31X)	-9.16 (PM33X)	0.75 (PM15)	-1.69(S2UP)	NA

TABLE 3.3 (Goncluded)

Test/Run	Measured Base Motion		Measured Pipe Response		ASME Stress Ratio*	Support Condition	
	Displacement (in.)	Acceleration(g)	Absolute Displacement (in.)	$\begin{gathered} \text { Acceleration } \\ (\mathrm{g}) \end{gathered}$		Support Load (kip)	Percent of $A / B^{* *}$
XEQ8/C2	0.61	0.84	0.82 (PM33X)	3.27 (PM33X)	0.61 (PM81)	-0.71(S2LOW)	12
XEQ9/C2	2.43	4.11	3.34 (PM33X)	-11.26(PM33X)	1.12(PM15)	-2.35(S2LOW)	39

* The ASME stress ratio is based on the Level D stress limit; it was calculated using the 1980 edition of the ASME Code.
** A / B refers to the A / B load for the snubber.
\# The term in parenthesis, (), designates the location of the measured quantity.
\# The last three tests were conducted with the branch line, connected to the base at $S 4$, removed.

Test/Run YIM2/ClR1	Symbo1	Peak ASME Stress Ratio (Level D)
YIMS/C1R1	\square	0.76

(c) Damping Nomograph

Figure 3.1 (Concluded)

(a) Transient Response for Lower Level Test

Figure 3.2: Log Decrement Damping for Configuration 2--First Mode

Test/Run
YIML/C2R1
YIM2/C2R1

Peak ASME Stress Ratio (Level D)
0.75
1.08
(c) Damping Nomograph

Figure 3.2 (Concluded)

TEST: YIMI
OROINATE DA
$\begin{array}{llll}21 & -0 & 121 & 17 \\ \text { DISPLACEMENT-INCHES }\end{array}$

$$
127
$$

CHANNEL 21 COT AO3343INCHES PG3
INCHES
(b) Transient Response for Higher Level Test

Figure 3.3 (Continued)

Peak ASME Stress
Ratio (Level D)
Test/Run
YIMI / C3RI
Symbol

YIM2 / C3R2
O
0.571.04
(c) Damping Nomograph

Figure 3.3 (Concluded)

The preliminary results for Configuration 1 (all-struts) indicate damping of about 2% and 3% for the tests with a peak stress ratio of 0.76 and 1.18 , respectively. The damping remained fairly constant, for a given test, over the five cycles of data shown.

The results for Configuration 2 (struts plus one mechanical snubber) show a damping of about 2% for both tests. The danping was the same for both tests for the five cycles of data shown. The damping was essentially the same for Configurations 1 and 2 for the lower amplitude test.

The results for Configuration 3 indicate a damping of about 4% and 5% for the tests with a peak stress ratio of 0.57 and 1.04 , respectively. The damping remained fairly constant for the first two or three cycles.

It was not possible to calculate log decrement damping using the test data in its present form (unfiltered) for the pipeline with branch lines.* This was due to the fact that all the test data showed the influence of two or more modes, as shown in Figure 3.4. Before it will be possible to use this method for obtaining the damping, the data will need to be filtered.

3.3 General Observations

Several things were observed and/or learned during this test series. They deal with: (1) problems that developed from the loosening of bolts in the syster; (2) the fact that separate bases can be used as an excellent method for driving a piping system with earthquake like motions; (3) a need for user-friendly, sophisticated, and effective software for calculating damping from time histories which are affected by two or more modes, and slight nonlinearities; and (4) the fatiguing of Elbow 8 to failure in the pipeline with branch lines during long duration sine dwell tests.

[^6]NRC/EPRI 2 CONFIG $1 \times$ FORCING IM $2+30$ INCH DISPLACEMENT

[^7]NRC/EPRI 2 CONFIG $2 \times$ FORCING IM $2+30^{\prime \prime}$ DISPLACEMENT
test xima
$19-3.51 / 2.93$ accelerailon - 6 's
00
9

(b) Configuration 2
NRC/EPRI 2 CONFIG $3 \times$ FORCING IM 1 +3" DISP IEST XIMI RUN: C3
ORDINAIE DATA RANGE

$\begin{array}{lll}19 & -370 / 324 & \text { acceleration - } \\ \text { 's }\end{array}$
$\stackrel{\square}{9}$
8
$-$
(c) Configuration 3

During the earliest stages of testing with the first pipeline some irregularities began to show up in the test data. Before an early earthquake test, the first natural frequency of the system was 4.3 Hz . After the test, it was 3.8 Hz . Also, the calculated damping for the first mode was unusually high. The source of these probiems were bolts in the bases which were gradually working loose. The damping increased as the bolts became looser because of the increasing Coulomb friction. The bolts were tightened and the first natural frequency and corresponding damping checked. The frequency was 4.4 Hz , and the damping was lower. At this point, a procedure was implemented dealing with the regular tightening of the bolts. Selected bolts (about one-third of the total number) were tightened after each test. All the bolts were tightened at least once each day. This procedure was adhered to strictly throughout the remainder of the program, and the tests repeated after this problem was detected and corrected.

The bases used for these tests had to be desigred to withstand the loads generated during the testing. The pipe-end bases for the mainline (8 in. pipeline) had to be especially strong, because they had to provide clamped points for the pipeline and thus, they had substantial moments exerted on them. From the design and testing process, it was demonstrated that it is possible to build a reasonably light base that will not deform substantially during testing. The peak accelerations of these bases, in the nonforcing directions, was generally about one-twentieth that of the peak acceleration in the forcing direction. It is believed that those smaller accelerations were due to noise, and reflect only very small displacements. Both the pipe-end bases and the mid-point bases withstood the loading due to the testing very well. No failures of any of the base components were experienced.

The second pipeline was tested, in part, using both single-point random and single-point sine dwell methods.* The bases were held fixed by replacing the hydraulic actuators with steel beams. During one of the sine dwell

[^8]tests, Elbcy 8 developed a series of small through-wall cracks on its underside and the pipe pressure dropped to zero (0 psig). Apparently, the fatigue usage factor, for that component, became equal to or greater than one. At this point, the pipeline was drained and the elbow was radiographed. The x-rays revealed four small cracks, one of which was barely visible on the pipe. The flaws in the elbow were then ground out, and the elbow was then x-rayed again. This indicated that the elbow was ready for welding. After the elbow was welded, the welds were checked using a dye penetrant. After this, the sine dwell testing was resumed, but at a reduced stress level--at about Level B stress for Elbow 8 . There were no noticeable problems with the elbow for the duration of the testing--the pipe internal pressure never dzopped from about 1,150 psig.

3.4 Apparent Safety Margin Results

Multiple tests were conducted of the various piping runs with dynamic inputs that exceeded those necessary to just achieve a peak stress equal to the Level D stress limit in the Class 2 systems. To obtain a preliminary assessment of the seismic safety margin apparent in the test program, the most severe earthquake test of the first pipeline (no branch lines) was examined. The pipeline was pressurized to $1,150 \mathrm{psig}$ and driven with a $20-\sec$ input time history that included a peak input acceleration of 8.4 g . To show the severity of that input, the input response spectrum is compared in Figure 3.5 to the input required to just achieve the Level D stress condition in the piping system. The Level D input was determined from previous tests employing the identical time history, but at amplitudes inducing stresses less than the Level D condition*. It may be seen that this severe test was about a factor of four greater than the input necessary to match the Level D stress limits in the frequency region of interest for

[^9]NRE/EPRI 1 CONEIG 5 Y FORCING EARTHOUAKE 2 CA 17076 S 6 Y C
CHANNEL 14 DANPING $=0.030$

Figure 3.5: Input Response Spectra Comparison
the first piping system. That is, the piping system successfully withstood an earthquake input 2 sout four times greater than the Code design rules would indicate to be acceptable. The piping system, in fact, withstood several severe dynamic tests with no gross distortion or loss of pressure retaining capacity.

Also shown in Figure 3.5 are the peak pipe strain values sensed by a single strain gauge during the earthquakes which resulter in the indicated response spectra. The listing of peak strains for the pipeline without branch lines for all gauges recorded during the two earthquake events are shown in Appendices D and E. It should be noted that the Level D spectra and strain are derived by linearly scaling up an earthquake run which resulted in a stress ratio less than 1.0 (i.e., less than Level D condition). Appendix F contains the peak strain listing for the most severe of the seismic tests for the pipeline with two branch lines. It should also be noted that the maximum strain recorded is most probably not the maximum strain that occurred in the piping system. The strain histories can be used to establish the maximum strains at a given cross-section as long as the response remains linear. Load redistribution occurs when the piping undergoes yield.

3.5 Fatigue Considerations

Any assessment of the fatigue suffered by the piping systems must await detailed data interpretation to be conducted at a later date. Such an assessment should count stress cycles and amplitudes, considering that the different input directions, load types, and amplitudes will change the location of the maximum pipe stress. However, it is possible herein to assess pipe capacity to withstand dynamic events in terms of the number of loading events.

For example, the main pipeline (no branch lines) was subjected to the number of tests shown in Table 3.4 without apparent damage. As may be seen, the pipeline suffered 9 earthquakes which produced stresses exceeding the Level D stress limits and a total of 14 earthquakes exceeding the Level B

```
TABLE 3.4: LOADING EVENT SUMMARY FOR MAIN PIPELINE (NO BRANCH LINES)
```

Event Description
Impulse Tests Above Level B,
Below Level D Stress Limit
Impulse Test Equal to or Greater 3

Than Level D Stress Limit
Earthquakes Below Level B (OBE) 5
Stress Limit
Earthquakes Above Level B (OBE),
Below Level D (SSE) Stress Limit
Earthquakes Above Level D (SSE) 9
Stress Limit

Number of Events
limit. Stated another way, the tested pipeline successfully withstood 14 earthquakes larger than that which can be interpreted as the piping system's Operating Basis Earthquake, including 9 earthquakes equal to or greater than the system's Safe Shutdown Earthquake. Additionally, the pipeline successfully withstood 27 impulse tests at stress levels above the Level B stress limit including three above the Level D stress limit. One interpretation of the system behavior is that it successfully withstood 5 OBEs, 9 SjEs and nearly 30 other strong system transients.

3.6 Data Tapes Generated

Several complete sets of data tapes have been generated. Two of them (one for the NRC and one for EPRI) have the following format and characteristics:

- 800 BPI
- ASCII
- 80 characters/record
- 40 records/block
- no label

4.0 COMMENTS AND CUNCLUSIONS

Following are some preliminary comments/conclusions for the test program:

- The piping system withstood, with no apparent damage, seismic inputs which were aproximately four times greater than that which would produce the maximum pipe stresses considered acceptable for design.
- The piping demonstrated a capacity to withstand, without gross deformation or collapse, more severe loading than 5 Operating Basis Earthquakes, 9 Safe Shutdown Earthquakes, and nearly 30 severe shock loads*.
- The observed damping values at response levels from one-half to three-quarters of yield ranged from 2% to 4% for the strut and mechanical snubber supports. The damping values for the response at about yield were from 3% to 5% for the same support configurations. The all-mechanical-snubber supports piping system were more damped than the system with all strut supports.
- When a piping system is excited to high enough levels to cause plastic deformation in various components, the load/stress distribution throughout the pipeline will change over time. This should be taken into account when strain gauging a test pipeline.
- In testing laboratory piping systems with bolts at highly stressed or vibrating locations, the buits must be tightened repeatedly. Not doing so can result in erroneous determined values for the natural frequencies and modal damping.
- Separate bases (one-dimensional shake tables) can be used very effectively for supporting and exciting piping systems with earthquake-like motions. Bases can be designed which will provide a variety of support conditions, ranging from clamped to snubber-type connections.
- There is a present need to develop software which will correctly calculate effective damping for multiple mode systems with slight nonlinearities.

[^10]1. G. E. Howard, et al., "Pipiag Extreme Dynamic Response Studies.," Paper $F 4 / 5$, Seventh International Conference on Structural Mechanics in Reactor Technology (SMIRT), Chicago, August 22-26, 1983; also, Nuclear Engineering and Desiga, 77 (1984), 405-417.
2. P. Bezler, et al., "In-Situ and Laboratory Benchmarking of Computer Codes Used for Dynamic Response Predictions of Nuclear Reactor Piping," NUREG/CR-3340, May 1983.
3. D. E. Chitty, G. E. Howard, W. B. Walton, "Dauping in Nonlinear Piping Systems," Paper $82-W A / P V P-10$, American Society of Mechanical Engineers, Winter Annual Meeting, Phoenix, November 1982.

APPENDIX D
PEAK RESPONSE FOR ALL DATA CHANNELS--HIGH LEVEL EARTHQUAKE FOR PIPELINE WITHOUT BRANCH LINES (TEST YEQ2, RUN C5)

The peak (maximum) values of response, for each data channel, are given in this appendix for Test YEQ2, Run C5 for the first pipeline tested. A description of the transducer locations can be found in Figure 2.10 and Tables 2.8 and 2.9. The strain gauge locations/orientations, given herein, are indicated by (1) elbow number, (2) direction of outward normal vector (to the pipe) at strain gauge location, ard (3) the specification of the local orientation of a gauge as being either axial (A), "vector" (V), or circumferential (C). The direction of the normal vector (to the pipe) is either X, Y, or Z. The local orientations A, V, and C refer to the strain gauge being parallel to the pipe centerline, 45° from the A-direction, or in a circumferential direction (90° from the A-direction), respectively.

```
                                    Cb - 27-83, क9 : ©cos
                                    SAG
```

DATA CHANNEL PEAK VAI.UES

APPENDIX E

PEAK RESPONSE FOR ALL DATA CHANNELS-MODERATE LEVEL EARTHQUAKE FOR PIPELINE WITHOUT BRANCH LINES (TEST YEQ3, RUN C3R3)

The peak (maximum) values of response, for each data channel, are given in this appendix for Test YEQ3, Run C3R3 for the first pipeline tested. A description of the transducer locations can be found in Figure 2.10 and Tables 2.8 and 2.9. The strain gauge locations/orientations, given herein, are indicated by (1) elbow number, (2) direction of outward normal vector (to the pipe) at strain gauge location, and (3) the specification of the local orientation of a gauge as being either axial (A), "vector" (V), or circumferential (C). The direction of the normal vector (to the pipe) is either X, Y, or Z. The local orientations A, V, and C refer to the strain gauge being parallel to the pipe centerline, 45° from the A-direction, or in a circumferential direction (90° from the A-direction), respectively.

DATA CHANNEL PEAK VALUES

NRC/EPRI 1 CONFIG 3 Y FORCING EARTHQUAKE 3 REPEAT 3 TEST- YEQ3 RUN- C3R3 DATE- 6/13/83 TIME- 7: 7: 2

MAXIMUM AT CHANNEL	TIME SEC	UALUE		
$\begin{aligned} & +1 \\ & -1 \end{aligned}$	$\begin{array}{r} 6.52 \\ 14.09 \end{array}$	$\begin{array}{r} 2.197 E \\ -2.876 E \end{array}$	G	P21 Y
+2 -2	$\begin{array}{r} 15.38 \\ +5.42 \end{array}$	$\begin{array}{r} 2.610 E \\ -2.819 E \end{array}$	G	P31 \times
+3 -3	$\begin{aligned} & 12.74 \\ & 12.42 \end{aligned}$	$\begin{array}{r} 1.811 E 00 \\ -1.759 E 00 \end{array}$	\mathbf{G} \mathbf{G}	P35 x
+4 -4	$\begin{aligned} & 15.33 \\ & 14.82 \end{aligned}$	$\begin{array}{r} 3.073 E 00 \\ -2.944 E 00 \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	P35 z
+5 -5	$\begin{aligned} & 14.46 \\ & 14.55 \end{aligned}$	$\begin{array}{r} 3.092 E \\ -3.435 E \end{array} 00$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	P41 Y
+6 -6	$\begin{aligned} & 14.23 \\ & 15.46 \end{aligned}$	$\begin{array}{r} 2.687 E 00 \\ -3.697 E 00 \end{array}$	$\begin{aligned} & G \\ & G \end{aligned}$	P61 x
+7 -7	$\begin{aligned} & 14.65 \\ & 14.36 \end{aligned}$	$\begin{array}{r} 5.417 E \\ -4.439 E \end{array} 00$	G	P71 Y
+8 -8	$\begin{aligned} & 14.64 \\ & 14.34 \end{aligned}$	$\begin{array}{rr} 2.197 E & 00 \\ -2.409 E & 00 \end{array}$	G \mathbf{G}	P71 2
$\begin{aligned} & +9 \\ & -9 \end{aligned}$	$\begin{aligned} & 19.43 \\ & 14.36 \end{aligned}$	4.536E 00 -4.062E 00	G G	P73 Y
$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & 14.43 \\ & 14.38 \end{aligned}$	$3.865 E$ $-2.859 E$	G G	P75 Y
$\begin{aligned} & +11 \\ & -11 \end{aligned}$	14.80 5.36	$\begin{array}{r} 2.750 E \\ -2.456 E \end{array} 00$	G G	P75 2
+12 -12	$\begin{aligned} & 14.42 \\ & 14.31 \end{aligned}$	$3.192 E$	G	P95 X
$\begin{aligned} & +13 \\ & -13 \end{aligned}$	$\begin{aligned} & 10.37 \\ & 11.78 \end{aligned}$	$\begin{array}{r} 5.500 E-02 \\ -1.250 E-01 \end{array}$	G 6	$51 \times$
$\begin{aligned} & +14 \\ & -14 \end{aligned}$	$\begin{aligned} & 10.73 \\ & 14.09 \end{aligned}$	$\begin{array}{r} 7.500 E-01 \\ -1.455 E 00 \end{array}$	G G	S1 Y
$\begin{array}{r} +15 \\ 5 \end{array}$	$\begin{aligned} & 6.19 \\ & 6.17 \end{aligned}$	$\begin{aligned} & -5.500 \mathrm{E}-02 \\ & -1.700 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & G \\ & G \end{aligned}$	S1 Z
+16 -16	16.37 6.18	$1.065 E 00$ $-1.200 E ~$	G	32 H Y

DATA CHANNEL PEAK UALUES

NRC/EPRI 1 CONFIG 3 Y FORCING EARTHQUAKE 3 REPEAT 3 TEST- YEQ3 RUN- CJR3 DATE- 6/13/83 TIME- 7: 7: 2

MAXIMUM AT CHANNEL	$\begin{aligned} & \text { TIME } \\ & \text { SEC } \end{aligned}$	VALUE		
+17	12.42	-1.200E 00	G	320 Y
-17	24.64	-1.560 E 00	6	
+18	14.83	$9.000 \mathrm{E}-01$	G	S3H Y
-18	13.47	-2.100E 00	G	
+19	2.53	$-1.920 \mathrm{E} 00$	G	S3U Y
-19	3.44	-2.250E 00	G	
+20	10.01	$2.450 \mathrm{E}-01$	G	S4 X
-20	6.59	$0.000 \mathrm{E}-01$	G	
+21	16.65	1.590E 00	G	S4 Y
-21	11.84	$-1.155 E 00$	G	
+22	3.14	$2.300 \mathrm{E}-01$	6	S4 z
-22	10.04	$9.000 \mathrm{E}-02$	G	
$+23$	6.18	$5.325 E-01$	INCHES	S1 Y
-23	5.81	$-4.850 E-01$	INCHES	
+24	14.11		INCHES	P23 Y
-24	19.67	-9.750E-01	INCHES	
+25	14.11	1.565E 00	INCHES	P43 Y
-25	19.67	$-1.355 E 00$	INCHES	
+26	8.26	$7.500 \mathrm{E}-02$	INCHES	S2H X
-26	12.43	-6.750E-02	INCHES	
$+27$	19.56	1.790E 00	INCHES	P63 Y
-27	12.48	-1.600E 00	INCHES	
+28	19.56	1.695 E 00	INCHES	P71 Y
-28	12.49	-1.525E 00	INCHES	
+29 -29	19.55	$1.190 E$ $-1.130 E$	INCHES	P75 Y
-29	19.66	-1.130E 00	INCHES	
+30	14.56	5.275E-01	INCHES	33 H
-30	14.44	-4.600E-01	INCHES	
- 71	19.54	1.020 E 00	INCHES	P93
-1	19.66	-9.900E-01	INCHES	
+32	6.17	4.575E-01	INCHES	54 Y
-32	5.79	-5.0505-01	INCHES	

DATA CHANNEL PEAK UALLES

DATA CHANNEL PEAK UALUES

APPENDIX F
PEAK RESPONSE FOR ALL DATA CHANNELS--HIGH LEVEL EARTHQUAKE FOR PIPELINE WITH TWO BRANCH LINES (TEST XQE7, RUN C2)

The peak (maximum) values of response, for each data channel, are given in this appendix for Test XEQ7, Run C2 for the second pipeline tested. A description of the transducer locations can be found in Figure 2.12 and Table 2.11. The strain gauge locations/orientations, given herein, are indicated by (1) node number, (2) direction of outward normal vector (to the pipe) at strain gauge location, and (3) the specification of the local. orientation of a gauge as being either axial (A), "vector" (V), or circumferential (C). The direction of the normal vector (to the pipe) is either X, Y, or Z. The local orientations A, V, and C refer to the strain gauge being parallel to the pipe centerline, 45° from the A-direction, or in a circumferential direction (90° from the A-direction), respectively.

DATA CHANNEL PEAK UALUES

DATA CHANNEL PEAK VALUES

NRC/EPRI 2 CONFIG $2 \times$ FORCING EQ 7100% MAX TEST- XEQ7 RUN- C2 DATE- 5/11/84 TIME- 11:45:15

NRC/EPRI 2 TEST- XEQ7	$\begin{aligned} & \text { CONFIG } 2 \\ & \text { RUN- C2 } \end{aligned}$	$\begin{aligned} & \text { X FORCING EQ } \\ & \text { DATE- } 5 / 11 / 84 \end{aligned}$	$\begin{aligned} & 7 \quad 100 \% \text { MAX } \\ & \text { TIME- } 11: 45: 15 \end{aligned}$		
MAXIMUM AT	TIME				
CHANNEL	SEC	VALUE			
$+33$	12.73	3.362E 00	INCHES	PM33	x
-33	13.14	-2.808E 00	INCHES		
$+34$	13.55	9.425E-01	INCHES	FM43	Y
-34	13.16	-7.875E-01	INCHES		
$+35$	12.72	2.690 E 00	INCH ${ }^{\text {P }}$	PMO3	X
-35	13.12	-2.258E 00	INCHL S		
+36	12.98	9.923E 02	MICROS TRAIN	PM13	AX
-36	13.05	-8.700E 02	MICROS KAIN		
$+37$	13.14	5.950E 02	MICROSTRAIN	FM13	UX
-37	13.06	-1.675E 02	MICROSTRAIN		
$+33$	13.05	5.900 E 02	MICROSTRAIN	PM13	CX
-38	12.97	9.250 E O1	MICROSTRAIN		
$+39$	13.25	5.200E 02	MICROSTRAIN	PM13	$A-Y$
-39	16.55	-1.650E 02	MICRCSTRAIN		
$+40$	13.13	$3.925 E \quad 02$	MICROSTRAIN	FM13	$u-Y$
-40	10.41	1.250E 02	MICROSTRAIN		
+41	16.54	$3.950 \mathrm{E} \quad 02$	MICROSTRAIN	PM13	CHY
-41	16.33	$1.900 E 02$	MICROSTRAIN		
$+42$	13.05	$1.150 E \quad 03$	MICROSTRAIN	FM13	A-X
-42	12.98	-7.850 E O2	MICROSTRAIN		
$+43$	13.05	$6.950-02$	MICROSTRAIN	PM13	$u-x$
-43	12.97	-6.250E 01	MICROSTRAIN	PM13	$u-x$
$+44$	12.98	7.125E 02	MICROSTRAIN	PM13	$C-X$
-44	13.05	$1.925 E 02$	MICROSTRAIN		
+45	15.74	4.325E 02	MICROSTRAIN	PM15	$A X$
-45	16.28	$-2.275 E$ O2	MICROSTRAIN	FH2	AX
+46	12.83	4.650E O2	MICROSTRAIN	PM15	UX
-46	16.14	-2.250E 01	MICROSTRAIN		
$+47$	17.08	3.475E 02	MICROSTRAIN	PM15	CX
-47	10.17	$2.625 E 02$	MICROSTRAIN		
+48	9.99	3.050E 02	MICROSTRAIN	PM15	$A-Y$
-48	16.14	-1.250E 02	MICROSTRAIN		

DATA CHANNEL PEAK VALUES

NRC/EFRI 2 CONFIG $2 \times$ FORCING EQ $7100 \% \mathrm{MAX}$ TEST- XEQ7 RUN- C2 DATE- 5/11/84 TIHE- 11:45:15

MAXIMUM AT CHANNEL	$\begin{aligned} & \text { TIME } \\ & \text { SEC } \end{aligned}$	VALUE				
$+49$	13.15	4.300E	02	MICROSTRAIN	PH15	$V-Y$
-49	13.54	-5.000E 0	00	MICROSTRAIN		
+50	16.15	5.000E	02	MICROSTRAIN	PM15	$C-Y$
-50	15.74	1.800 E	02	MICROSTRAIN		
+51	16.28	5.625 E	02	MICROSTRAIN	PM15	$A-X$
-51	15.74	-3.825E	02	MICROSTRAIM		
+52	16.28	4.600E	02	MICRDSTRAIN	PM15	$\underline{u}-\mathrm{x}$
-52	12.96	1.275E	02	M_CROSTRAIN		
$+53$	15.74	6.800 E	02	MICROSTRAIN	PM15	$C-x$
-53	16.15	1.850 E	02	MICROSTRAIN		
+54	16.15	4.625E	02	MICROSTRAIN	FM55	$A Z$
-54	13.63	-1.975E	02	MICROSTRAIN		
+55	9.99	5.025E	02	MICROSTRAIN	PMS5	UZ
-55	13.04	8.250 E	01	MICROSTRAIN		
+56	16.22	$6.225 E$	02	MICROSTRAIN	PMS5	C2
-56	16.15	$1.725 E$	02	MICROSTRAIN		
$+57$	16.39	5.150E	02	MICROSTRAIN	PMS5	$A X$
-57	13.39	-2.300E	02	MICROSTRAIN		
+58	12.98	4.825E	02	MICROSTRAIN	PMSS	
-58	13.05	6.252E	01	MICROSTRAIN		
+59	16.16	S. 300 E	02	MICROSTRAIN	PM5S	CX
-59	13.63	$1.625 E$	02	MICROSTRAIN		
+60	13.63	3.075 E	02	MICROSTRAIN	PMEs	$A-Z$
-60	16.15	-7.250E	01	MICROSTRAIN		
+61	9.99	$6.575 E$	02	MICROSTRAIN	PM55	$v-z$
-61	13.05	-8.750E	01	MICROSTRAIN		
+62	9.99	4.550E	02	MICROSTRAIN	PMS5	$c-z$
-62	13.05	3.400E	02	MICROSTRAIN		
463	10.13	3.700E	02	MICROSTRAIN	PM81	$A X$
-63	19.94	$-1.750 \mathrm{E}$	02	MICROSTRAIN		
+64	12.92	5.525E	02	MICROSTRAIN	FM13	ux
-64	13.62	4.500E	01	MICROSTRAIN		

DATA CHANNIL PEAK VALUES

MAXIMUM AT CHANNEL	TIME SEC	VALUE			
+65	19.94	$7.100 E \quad 02$	MICROSTRAIN	PM18	CX
-65	10.13	$2.650 E \quad 02$	MICROSTRAIN		
+66	13.17	2.650102	MICROSTRAIN	PM18	$A-Y$
-6d	13.49	7.500E 00	MICRJSTRAIN		
$+67$	12.93	6.550E O2	MICROSTRAIN	FM18	U-Y
-67	12.84	1.050 E 02	MICROSTRAIN		
+68	10.13	6.050 E 02	HICROSTRAIN	PM18	$C-Y$
-68	16.26	3.750 E 02	MICROSTRAIN		
$+69$	10.53	1.950 E 02	MICROSTRAIN	PM19	$A-X$
-69	10.49	-1.075E 02	MICROSTRAIN		
+70	16.16	6.450E 02	MICROSTRAIN	PM18	$y-x$
-70	13.62	-1.100E 02	MICROSTRAIN		
+71	19.94	4.575E 02	HICROSTRAIN	PM18	c-x
-71	16.22	3.300E 02	MICROSTRAIN		
$+72$	17.09	6.450E 02	MICROSTFIAIN	PB11	AY
-72	17.02	-2.500E C1	MICRCSTRAIN		
+73	12.98	$9.450 E \quad 02$	MICROSTRAIN	PB11	UY
-73	13.06	-7.275 E 02	MICROSTRAIN		
+74	17.02	1.377E 03	MICROSTRAIN	PB11	CY
-74	17.09	-1.537E 03	HICROSTRAIN		
+75	17.10	5.600E 02	MICROSTRAIN	PB11	$A Z$
-75	17.02	-5.500E 02	MICROSTRAIN		
+76	17.09	1.245E 03	MICROSTRAIN	PB11	$A-Y$
-76	17.02	$-9.125 E 02$	MICROSTRAIN		
$+77$	16.35	5.050E 02	MICROSTRAIN	PB11	$V-Y$
-77	16.90	-4.500E O1	MICROSTRAIN		
+78	17.02	$6.200 E^{6} 02$	MICROSTRAIN	PB11	C-Y
-78	17.09	$-1.200 E^{-1}$	MICROSTRAIN		
+79	13.63	6.300E 02	MICROSTRAIN	PE41	$A \times$
-79	12.91	$5.750 \mathrm{E}^{\text {c }} 01$	MICROSTRAIN		
+80	10.08	6.0J0E 01	MICROSTRAIN	PB41	UX
-30	16.22	-2.975E 02	MICROSTRAIN		

MAXIMUM AT	TIME			
CHANNEL	SEC	VALUE		
+81	12.92	3.050 E 02	MICROSTRAIN	PB41 CX
-81	13.63	1.600E 02	microstrain	
+82	8.97	3.025E 02	Microstrain	PB4I AZ
-82	9.07	-1.000E 02	MICROSTPAIN	
+83	16.16	-2.50CE 00	MICROSTRAIN	P84 1 A-X
-83	13.63	-6.150E 02	MICROSTRAIN	
+84	16.22	5.12SE 02	MICROSTRAIN	PB41 $u-x$
-84	16.16	2.975E 02	MICROSTRAIN	
+85	16.16	-5.000E 00	MICROSTRAIN	PB41 C-x
-85	13.63	-7.600E 02	microstrain	
+86	16.26	1.253E 03	LBS	S2 UFPER
-86	9.18	-1.000E 03	LBS	
+87	16.40	1.772 E 03	LBS	S2 LOWER
-87	12.80	-1.880E 03	LBS	
+88	14.41	-1.083E 03	PSI	P1
-88	13.55	$-1.134 \mathrm{E} 03$	PSI	

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20565

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $\$ 300$

FOURTH-CLASS MAIL

[^0]: * ASTM refers to American Society of Testing Materials

[^1]: * The assembly welding was performed according to the specifications in Sections III and IX of the "ASME Boiler and Pressure Vessel Code." The 1974 edition of the Code, together with all addenda through the Summer of 1975, was used. The pipeline was fabricated by Pullman Power Products Corporation (Piping Fabrication), 14807 South Paramount Blvd., Paramount, CA 90723.
 ** This is the trade mark name for a device used to very securely close a hole (for draining) in a pipeline. It is secured in the pipe hole using extensive welding. The wall thickness of the Thread-0-Let, at its base, is about twice that of the pipe.

[^2]: * The cross-sectional area moment for the 12 bolts was about 3.9 times the area moment for the 8 -in. Schedule 40 pipe.

[^3]: * A strut consisted of a steel tube with pin connections at each end. The pin connections prevented any moments from being transmitted to the pipe, as long as the relative displacement of the pipe, at the support point, remained small enough. The pin connections were made using Pacific Scientific snubber ends for PSA3 snubbers.

[^4]: * Words with all letters capitalized (i.e., LOADS) refer to computer codes.

[^5]: * The term ASME Code will refer to the "ASME Boiler and Pressure Vessel Code," Section III, Division 1. In the Winter Addenda, 1981, the stress equations and limits changed from those used herein.

[^6]: * Prior work has suggested that the log decrement method gives the most consistent assessment of damping in piping systems with slight stiffness nonlinearities [3].

[^7]: Configuration 1

[^8]: * Conducted in conjunction with EG\&G Idaho, at request of the Nuclear Regulatory Commission.

[^9]: * The Level L spectra was based upon test results for the unbranched system with mechanical snubbers, while the upper curve in Figure 3.5 is for the configuration with hydraulic snubbers. This was necessary because no data existed for the hydraulic configuration at less than the Level D stress condition. Because of the similarity in stress results between configurations, the comparison in Figure 3.5 is satisfactory.

[^10]: * "More severe than" refers to the fact that many of the dynamic events generated pipe loads exceeding rather than equaling the OBE and SSE stress limits.

