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iii.

Abstract

The present document describes the activities carried out at Pisa
University to assess the RELAPS/MOD2 performance in the application to the
natural circulation test A2-77A performed in LOBI/MuD2 facility.

Sensitivity calculations have been performed in this context, with the
attempt to distinguish the code limitations from the uncertainties of the
measured conditions,

The characterization of instabilities in two-phase natural circulation
and the evaluation of the user effect upon the code results are special
goals achieved in the frame of the A2-77A analysis. Both of these are
discussed in sect., 5,
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3.

Break P - ition

Upper Head

Pressurizer

High pressure Injection
System (HPIS)

Accumulator Injection System
Pump Seai Water

Simulation of Pump Locked
Rotor Hesistance

Auxiliary Feedwater (AFW)

No break assembly was used in this test
Not used in this test

Connected to triple loop hot leg (only
for steady state n® 1, see Chapter 4,2)

Not used in this test

Not used in this test
Not used in this test

Obtained via orifices inserted in a two-

way valve located at the discharge side

of the main coclant pump

Triple loop: Valve always in the "full-
open' position

Single loop: Valve always in the "resis-
tance" position

used with the "feed and bleed" procedure
controlled to maintain a constant sec-
ondary water level in the steam genera-
tors throughout the test.

Tab. 1 - LOBI/MOD2 system configuration for A2-77 test
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2.3 - 1nitial and boundary conditions

The test started with PS pressure at 14. MPa and S8 pressure at 8.65
MPa. Draining of water from LP was necessary to evaluate the loop behaviour
in several natural circulation conditions. In particular, the S8 pressure
led to a PS pressure of about 9.0 MPa when saturation conditions where
reached in PS (Fig. 2).

After each draining step the primary system was allowed to stabilize
at the rew conditions. The primary pressure decreased rapidly and after few
draining steps reached the foreseen value of 90 bar. The test continued
through saturated single-phase and two-phase natural circulation and it
terminated with reflux condenser mode. The test was finished when dry-out
phenomena in the uppermost sections of the core occurred, due to low level
(52% of primary inventory) in the RPV.

The complete list of initial conditions for the test is given in
Tab., 111.

Further boundary conditions are ad follows:

a) the heating power remained constant at about 183 Kw; the axial
distribution is given in Fig. 3.

b) the triple and single loop SGs were isolated throughout the test; ‘feed
and bleed" procedure was adopted to control the secondary pressure and
steam generator water level; the water level in the SC steam dome was
regulated to remain costant at the initial nominal elev: ion by wusing
the AP system; the S§ pressure relief valves acted at a.out B.65 MPa
for Part 1. The pressure was kept costant during each sing'! part of the
test via the secondary relief valves; the PS pressure stabilized out at
about 9.0 MPa;

¢) as already mentioned, transition between the various modes of natural
circulation (single-phase, two-phase, reflux condensation) was obtained
by reducing stepwise the primary inventory. Discrete amounts of water
were drained from the vessel lower plenum for each step, condensed and
measured in a catch tank., The system mass inventory was wvaried in
increments of about 1% to 3% of the total initial system mass. After
each draining step sufficient time was given to the primary system to
stabilize out. The time duration of each cycle (including the draining
period, the stabilization period and the steady state period} varied
between 25 and 30 minutes. The draining mass flow was about 1 kg/min
which represented a compromis between technical requirements of a slow
draining process and a limitatio. of the test time duration.

Th: PS was affected by a small amount of continuous fluid leakage.
This leakage could not be visually observed during the test.

To quantify the total amount of fluid lost by the primary loop, the
primary system was completely refilled after the end of (he test. Two
independent metrods were used to quantify this originally unknuwn mass leak
/3/. On this basis the overall mass inventory decrease from the PS (drainod
water plus leak: was estimated and the results are shown in Tab. IV /4/;
in particular the sum of the values included in columns A and B of Tab., I
have been used as input for code calculaticn (17 time steps).
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Specified

Units

Actual
Primary Syste.
Mass {low: - Triple Loop (c. 1.05) 0,95 kg/s
- Single Loop (e 0.35) 0.3 kg/s
Pressure: -~ Upper Plenum 14.0 14,0 MPa
Fluid temperatures:
Vessel outlet = Triple Loop 318 321 eC
- Single Loop 318 319 L v
Vessel inlet - Triple Loop 300 300 b ]
-~ Bingle Loop 300 296 RC
Pressurizer: 336 336 *C
Zore Power: 0.17(3%) 0.183 MW
Liquid mass without pressurizer and
upper head 373 kg
Liguid volume without pressurizer and 4
upper head 0,522 m
Secondary System
Auxiliary Feedwater mass flow:
- Traiple Loop c. 0.037 - kg/s
- Single Loop c. 0.012 - kg/s
Pressure: - Sueam Line B.6 8,69 MPa
Temperatures:
Steam Generator =~ Triple Loop c. 30 29 °C
Inlet -~ Single Loop c. 30 25 °C
ISteam Generator - Triple Loop 300 300 *C
goutlet = Single Loop 300 300 e
J
} Downcomer water - Triple Loop $.33 c. 8.6 m
€, 8.9 m

8.23

LﬁfoI: -~ Single Loop

Tab. III -+ Taitial conditions for test A2-77
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of heat structures

RS-A R5-E
QUANTITY VESSEL el B T A vesser | ob bR | ?s' ¢l 1 rota

Nodes 28 66 32 126 28 86 32 146

Junctions 35 65 32 132 35 B7 32 154

Time dependent 4 12 20 36 4 12 20 16

hydr components

and connected

valves

Heat structures 34 79 42 135 34 a9 42 175

"Active" strustures 13 2 - 1S 1 2 -- 15

Mash peints 441 567 294 1302 G4l 1601 294 1442
| Trips [normal) i - - 46 =4 -= ~= 4t

Trips {logical) - - == 10 - -~ - 1

Control variabies = e = 92 == - .- 98

Materials f = 5 == -~ - 5

General tables o < 3 3 o = 13

Overzll aumber - -~ - 294 -- e =l 136

af hydr cocponents

Overall number -- - - 170 - -- -~ 190

Tab. V - Details of the nodalization used for RFLAPS/MOD2 calculations
(R5-A and R5-F models)
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Tab. VIII - Test conditions at initiation test A2-77: compar ison between

measured and calculated data

23,

) AR e, 1 Wuite
Primary Systee '
Mass flow: = latact lLoop 0.98 1.0 kg/s

- Broken lLoop 0.31 3 ky/s
Pressure: - Upper Pleoum 14,0 14.0 Mi'a
Fluid temperatures:
Vessel outlel - Intact Loop 320 el *

= Broken Loop 20 19 0
Vessel inlet « Intact Loop 300 A0 b ¥

- Broken loop 296, 296 o
Pressurizer: 136, 140 b
Core Power. 0.183 0. 143 Hw
Liquid mass without g sssuriger: 373. c. X0 kg

3
Ligquid volume without pressorieet 0.524 0, L322 "
Pressurizer water level: 2.52 Gy €9 "
i i - ,* . —————
Secondary System
Auxiliary Feedwater mass (low:
' = Intact Loop - .

= Broken laap - [
Pressure: ~ Steam Line 8.65 t.ub My
Temperatures:
Steam Cenerator = latact Loop 2K, 2% LI
inlet - Broken Loop 2%, T o
Steam Generator = Intact Loop 300 30 sC
Outlet -~ Broken loop 300 Y °w
Downcomer Water - Intact Loop 8.58 t: B.6 m
Level: - Broken Loop 8.9 ¢, 8.9 m
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27.

The observation of los, fliwrates demonstrated that tuning on
roughness has the same effect as tuning in localized pressure losses ond
appears to be more physically based owing to uncertainties in the value of
roughness also caused by corrosion/erosion of pipes internal walls.

To better understand the results, in Fig. 12 the plotter of the wall
friction coefficient {Colebrook formula) implemented in RELAPS/MOD2 code
is ceported as a function of Reynold number.

The working points in HL and inside core are also reported with
reference to initial (measured) conditions in A2-B1 and AZ-/7A. It ghruld
be noted that the working points when going frum A2-81 to A2-77A move in ¢
transition zone of the diagram where Reynold number is important in the
evaluation of the friction coefficient. So a further explanation of the
unsatisfactory results obtained in case A (e.g. apart from experimental
uncertainties in evaluating roughness) could be the inadequancy of
Colebrook model in the zone.

4.5 - Case D (Presence of incondensible)

The objective of case D was to study if incondensible gases possibly
present in the loop at the beginning of the test /8/ could have the same
effect as an increase of localized pressure losses. To this aim a mass of
gas was given as iuput in the code equivalent to the volume occupied by the
gas at ambient conditions in the U-tubes. The gas was assumed to be
localized in the top of U-tubes. Unfortunatly the code did not work
when the incondensible gas option was requested.

4.6 - Case E (Effect of parallel U-tubes)

The objectives of case E, that is the introduction in the nodalization
of two parallel U-tubes characterized by different heights (difference in
heights is 0.25 m) are essentially two:

* to observe if the lowest U-tubes allows larger natural circulation
flowrates when steam appears in the top of the highest U-tubes;

- to observe possible links in the oscillations of velocities and densities
inside the U-tubes,

The first problem which occurred in setting up the nodalization was
the choice of the criteria by which separate the U-tubes. At least three
possibilities did exist:

a) height, but almost each of the U-tubes has a different height;
b) position with respect to HL connection to SG PS (3D effect);
¢) possible Gifferences in inlet pressure losses (no data available).

As already mentioned the choice a) was made considering two U-tubes
having equal characteristics igpart from the height. The case B input was
modified. R

Significiet resultstare showa in Tab, IX and in App. D. The main
outcoming of t.e analysis/is that natural circulation is slightiy increased
(as expected) with resffect to the reference case (case B), when wvoid
formation occurs in the top of highest U-tubes. On the »ther side no
interaction (rarallel tube oscillations) appears to exit between the two U-
tubes in both 3iCs. "

Also in§ this case begter conclusions can be achieved only if a 3D
model is avilable for the inlet plenum of SC, and a more detailed
characterizatgm is available from the experiment (measurement of
localized pre’sure losses of each tube, diameter etc.).

———
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velocity oscillation in various zones of primary loop, creates variations
in the heat transfer rate across stean generators, giving rise to
temperature f(and velocity) oscillations in the secondary side. This can
cause feedback on the oscillations of primary side variables.

As far as the accuracy of the measurements is concerned, a very
detailed procedure is adopted by the LOBl team to arrive at the definition
of uncertainty bands for any seasured signal /4/; these include congistency
checks and calibrations before and after the test run. Reported values of
accuracy should therefore be retained state-of-the-art values at least as
far as integral facilities are concerned. FExemplary valuus are ¢t 0.07 m/s,
t 15 Kg/m*, ¢ 10 KPa, and ¢ | K, with reference to velocity, densities,
pressure drops and fluid temperatures, respectively.

5.1.1 - Code-predicted scenario

The application of the tuned nodalization (case B) as already
ment ioned produced a good agreement with the experimental data trends
particularly with respect to the prediction of period and amplitude of
.scillations, Comparison of measured and calculated data of differential
pressure between the hot and cold legs of the intact loop and between the
inlet and outlet of the U-Tubes in the broken-loop steam generator are
presented in Figs. 17 and 18, respectively. Comparison of measured and
calculated densities In the cold leg and velocities at the inlet of stean
generator in broken loop are shown in Fig. 19 and 20, respectively.

The following wain aspects can be outlin 4 from the analysis of the
corresponding couple of data’
= The mean values of the reported variables are essentially the same for

Soth the experimant and the ca.iculation,

- Ligquid downflow appears in the calculation at U-Tube inlets (Fig. 20),
whereas onl; steam flow can be detected from the experiment.

< The period of reasured oscillations ranges around 130 s, while the
calvulated value is less than 100 s.

- Phase opposition occurs in the experiment (Fig. 14) between similar
variables in the two loops, whereas essentially no phuse shift is
calculated by the code,

« Phase opposition stil. occurs in tne experiment between hot and cold
legs, whereas lower values of phase shift are calculated by the code
/111,

The analysis of predicted trends of void fractions inside the U-Tubes
and of heat transfer between primary and secondary sides of steam
generators permittod us Lo conclude that condensation in the ascending legs
iz the driving force of oscillations., In particular, the scenaric depicted
in Fig. 21 is the outcome of the calculation. At t = t, the steam-liquid
mixture entere the ascending legs of U-tubes; condensation occurs on the
walls owing to the lower temperature of the secondary system. This creates
a4 rising mixture level in the ascending leg; in the descending leg the same
phenomenon may occur owing to steam passing from the top of U-tubes and
coming from the outlet plenum of the steam generator. Flooding, which
occurs essentially at the inlet of the ascending leg, prevents the draining
>f the condensed liquid into the inlet plenum (t = t,;). At t = t, the
mixture level reaches the top of U-tubes, and the liquid flow begins toward
the descending leg, the loop seal, and again to the vessel (siphon effect).
The draining of the ascending leg leads to a new cycle. It should be
pointed out that the scenario in Fig. 21 represents only a rough
estimation of the reality owing to the cne-dimensional nodalization of the
U-Tubes (only one equivalent U-Tube is nodalized).

Finally, it can be emphasized that the inception of oscillations in
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the code cviculation coincides with void formation in the horizontal part
of the co. . legs between the pump and the main vessel. In particular, the
periodic coilapse of the slug in this zone further enhances the oscillatory
behaviour of the loop.

5.1.2 - Results from the phenomenclogical study

Owing to limitations of the code model and of the exporimental data
base, two mair problems arise from the above analysis. These copneern
- ldentification of the roots or at least of the parameters affecting the
oscillations and evaluation of the realism of the proposed scenario
- Evaluation of the possibility to extrapolate the above phenomena to real
plant situations.
The two problems are dealt with hereafter by applying independent
models and performing sensitivity calculations with the code.

Behaviour of Parallel Tubes in the Case of Flooding

The behaviour of parallel U-Tubes in case of flooding has generally
been experimentally investigated by various authors in the past with air-
water mixtures,

With reference to the typical curve, giving the channel pressure drop
as a function of the steam superficial velocity, four configurations that
can occur simultaneously were measured by Wallis et al. /15/ (Fig. 22). 1t
should be noted that situation D corresponds to pure gas flow in the
experiment performed by Wallis et al., while condensation can be considered
in the present analysis. The experiment was carried out with straight
tubes.

This simple experiment shows that different configurations may occur
simultaneously for different parallel tubes having the same imposed
pressure drop when countercurrent flows of liquid and steam are involved.

Furthermore it should be emphasized that parallel U-tubes have even a
larger depree of freedom than straight tubes, thus allowing, potentially, a
larger number of simultaneous configurations with an imposed pressure
difference between inlet and outlet.

CCFL Occurrence i~ LOBI Steam Generator Broken-Loop U-Tubes

The Hawighorst et al. /16/ correlation was applied to evaluate the
CCFL occurrence in the steam generator broken-loop U-Tubes of LOB1
facility. The correlation is:

Vg.cnep)™'® = Clogloy — pI"'® (1

The coefficient C distinguishes this correlation from the Kutateladze-
type correlations.

Assuming the measured velocity and pressure in the hot leg of intact
loop and the geometry of the system as boundary conditions, Eq. (1)
demonstrates that two to four tubes (out of eight) should be in stalled
conditions (case A in Fig., 22) at a given time, depending upon the chosen
value for the velocity in hot leg (0.2 to 0.6 m/s). In particular, the
measured value of gas flow rate corresponds to a Jg value lower than the
value at the CCPL point if one considers all the U-Tubes. 1In the remaining
U-Tubes, situations B, C or D can occur, allowing a rise in level in the
asceading part,
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Condensation in U-Tubes of LOB] Steam Generator Broken Loop

The integral mass and energy balance of th> fluid volume inside the
ascending leg of U-Tubes, taking for simplicity the situvation D in Fig. 22
a# veference, yields for the time necessary to fill up a tube

iw Phnes (2)
AH g DT

In order to have a rough vstimation, the Nusselt correlation for the
condensation heat transfer coefficient and the muasured values for the
requestsd quantities have been aseumed. In this situation, t varies between
100 and 250 s depending upon the value of DT (ranging between 8 and 3 K).

The range of wvariation of ¢ is consistent with the period of
sscillations, demonstrating that condensation is a possible mechanism of
instability.

CCFL _Breakdown in U-Tubes of LOBI Steam Generator Broken Loop

1t appears worthwhile to investigate the possibility of steam entering
the U-Tubes to sustain & liquid column in the ascending leg. Looking at the
previously considered time into transient, a pressure difference across the
ascending less of the broken-loop U-Tubes of about 0.03 ¢ 0.01 MPa |is
obtained from :he experimental data/4/. This means an equivalent collapsed
level ranging between 6 m and 3 m.

As  a consequence of the above result, in order to have liguid at the
top of U-Tubes, presence of steam bubbles and/or movement of the location
of CCFL from the U-Tube inlet must be assumed.

Specific Sensitivity Caleculations

Sensitivity calculations were performed by RELAP5/MOD2 code. In
principle, several parameters affect the characteristics of the
oscillations. Some of thesu ace inherent to the structure of the code
(nodalization, time step, empirical models, etc.), others depend upon the
manner in which boundary conditions are fixed (e.g., pressure contrel
system in secondary side, draining modes), and others actually depend upon
the system configuration (distribution of heat losses and of form loss
coefficients, geometry, power, etc). Consideration of the entire set of
parameters in sensitivity calculations requires a very extended work;
attention is focused hereafter on the last class Jinherent to system
configuration.

Sensitivity analyses were performed with reference to roughness, local
loss coefficients, the length/diameter ratio (L/D) of both het and cold
legs, and core power. The last two parameters were found to be the most
significant, and the related results are outlined here. The values assumed
by the above quantities are reported in Table X and compared with typical
values of PWR plants and of LSTF facility.

It should be noted that in sensitivity calculations El and EI the
length of horizontal parts of cold leg in the LOBI facility were varied by
the same amount as those for the hot legs, maintaining the origiral
diameter.

Significant results are shown in Figs. 23 and 24, where calculated
systam variables are plotted for the considered time span at constant value
of primary-loop mass inventory. Comparison with the nominal case leads to
the following observatio::
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- The amplitude of oscillations decreases while the frequenc increases
when core power is reduced,

< The reduction of the L/D ratio creates new frequencies for the
oscillations that are superimposed to the original ones, and an increase

in L/D leads to an increase in amplitude.
The above analvsis shows a close link between the characteristics of

the siphon condensation phenomenon and the system geometry.

Consideration of U-Tube Height

As already mentioned (case E in sect. 4) the difference in heights has
been considered in the literature as a possible reason for differences in
the behaviour of U-Tubes that potentially contributes to the oscillations,

Taking this into account, parallel pipes were nodalized with
RELAFS/MODZ, splitting into two egual parts (with reference to flow area)
the orviginal pipe simulating the U-Tubes, The new pipes are characterized
by different heights and lengths.

The resulting void fractions at the top of the inverted U-bend of the
intact-loop steam generator are compared in Fig. 25 with the mean trend of
the nominal calculation. No appreciable differences can be seen from the
above trends or from a more detailed comparison. On the contrary, arbitrary
variations of inlev loss coefficient cause substantial differences in the
behaviour of the two U-Tubes,

These results demonstrate that the splitting of U-Tubes into parallel
pipes in & nodalization suitable for a onu-dimensional code is meaningful
only if a two-dimensional model is available for the inlet plenum. This
would allow differences in behavior among the U-tubes caused by f..id
dynamics inside the plenum itself. Without the availability of such a
model, differences in the behaviour of U-Tubes can be caused by different
heights (this has been shown to be irrelevant), by different values of the
inlet/outlet form loss coefficient (to be fixed _lmost arbitrarily), or by
different number of U-Tubes in each group (to be fixed arbitrarily).

Presumed Scenario

e sbove results and considerations made it possible to define a more
complex scenario for the ensemble of U-Tubes than that reported in Fig. 21.
In particular, the following additional items are takan into account:

- Groups of tibes may exhibit substantially different behaviour with
fixed boundary conditions: some tubee must be in stalled conditions in
order to hive CCFL in others.

- The height of tubes has little influence on the global evolution nf the
phenomenon; the two-dimentional fluid dynamics inside inlet plenum mainly
differentiate the U-Tubes behaviour;

- The CCFL front is likely to advance.

The scenario in Fig. 26 was contrived with these considerations in

mind.

5.2 - Influence of the code user on the rvesults

The post-test analysis of the A2<77A experiment has been carried out
independently, in the frame of an European Community research Program, by
six different users utilizing five advanced codes. An outline of codes and
users is given in Tab, X1 /13/. A detailed descriptions of the codes can be
found in ref. /17/.
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5,001 - Comparison among input parameters

The lack of reflection on the input parameters may result as the most
significant  limitation of a current code analysis: the first specific
objective pursued bhercafter is to consider this gap, .or a specific
thoraalhvdrawlic problem, by means of the comparison of the input decks
aeveloped by several users. The existence of different approaches pursued
by the involved users, dealing with a wide variety of chuices requiring
subjyective judgements, wiil be demostrated.

“he starting point in setting up the nodalization is the knewledge of
ihe following subjects:
1Y engineering of the facility and its instrumentation;

2) test specifications
1) expey iment  scenaris  when dealing with post-test calculation as in  the
case hece considered.

The tival product if a "code model", that is a compromise between the
user knowledge #f (he coue performance, of the facility hardware and of the
simulated transient gcenario; the code cabilities and (he required CPU time
also plar a role in defining the specifications of the input model.

Taking into account of the above, in order to realize a critical
comparison of the nodalizations, twenty items related to the input decks
(Tab. XI1, Figs. 27 to 3)) are compared among each other. These have been
split anto three groups:

- the elaments characterizing the degree of detail of the code model f(e.g.
tumber of nodes etc.; items 1 to S’;

~ the elements charceterizing the "nodalization fidelity" to the
geometrical data of the facility (e.g. vaive of the overall volume of the
facility, itens 6 to 11);

= the elements characterizing the inter.ace between hydraulics and geometry
(eswent fally pressure drop coefficients; items 12 to 20).

From the comparison of the above data, the following considerations
can be made:

1) elements charactevizing the nodalization detail.
In relation o (he number of nodes, on one hand RELAP and ATHLET

codes, with roughly 150 nodes, on the other hand the CATHARE code, with
more than 300 nodes, and the TRAC code, with 250 nodes, can be
distinguished.

This choice is only partially due to the wuser; instead the code
numerical structure plays an important role for establishing the degree of
detail of the code model., As an example, RELAP code, owing to the Courant
iimit, needs nodes having length greater than few tens of centimeters for
making possible the simulation of typical LOCA transients, while CATHARE
code has not scch a constraint, allowing a greater {reedom. Still, a
geometrical discontinuity cannot be modelled as it is by the CATHARE code,
but needs several components (nodes) of small dimension in the flow
direction which are characterized by different areas.

In principle, the best results for a physical simulation should be
given by a nodalization with a number of nodes ad large as possible, bdut
this idea is abruptly nullified by the majority of the current system
codes. Otherwise, an optimal number of nodes can be recognized for each
code for a given simulation problem. Directions for the attainment of this
number are not available in any code manual: only the user experience can
achieve this parameter, considering the phenomena to be analyzed, in line
with the available resources (CPU., computers, etc.) and the goals of the
study, e.g. sensitivity analyses auming at the interpretation of physical
phenomena, licensing calculations, etc. It should be noted that a large
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Fig. 33 - Mass flowrates in downcomer of steam generator intact loop
resulting f-om steady-state calculation by various users

70
kW
60 + 55
4
50 ¢ /
40
40 4 35.6 /

30 %]/

NONNNNE

NN

N\
NN

L 4

NN

NN

o
p
AN

o

.
', / e " 3
s -+ . -+ -

CEA  CENG DOMN GRS  JRC UKAEA EXP

Fig. 34 - Power losses to environment considered by various users and
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Fig. 37 - Distribution of fluid temperature along U-tubes of steam
generator intact loop resulting from steady-state calculation
by various users and comparison with experimental data
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from calculations and is in agreement with the experimental observation.
This conclusion should be obvious if one considers the limitations of the
current generation codes not discussed in the present paper.

The phenomenon is typical of U-tube geometry, 7o oscillations are
foreseeable for nuclear plant situations. A code calculation performed with
reference to the DOEL PWR supported this conclusion. Interaction between
neutronics and thermal hydraulics should be evaluated in different plant
configurations.

Finally the consideration of two parallel U-tubes in SG PS do's not
appear convenient due to the basic 1-D model implemented in the code (case
E) and owing to uncertainties in fixing the boundaries, which overshadow
the differences between calculations utilizing one or two U-tubes.
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