NUREG/CR-5732 ORNL/TM-11861

Iodine Chemical Forms in LWR Severe Accidents

Final Report

Prepared by E. C. Beahm, C. F. Weber, T. S. Kress, G. W. Parker

Oak Ridge National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

> 9205150087 920430 PDR NUREG CR-5732 R PDR

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents rilted in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Rocin, 2120 L Street, NW., Lower Level, Washington, DC 20555.
- The Superintendent of Documenta, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grant publications, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555

Copies of industry codes and standards used in a substantive manner in the NHC regulatory process are maintained at the NRC Librery, 7920 Norfolk Avenue. Bethesda, Maryland, for use by the public Codes and standards are usually copyrighted and may be purchased from the originating organization or. If they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any wind party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-5732 ORNL/TM-11861 R3

Iodine Chemical Forms in LWR Severe Accidents

Final Report

Manuscript Completed: January 1992 Date Published: April 1992

Prepared by E. C. Beahm, C. F. Weber, T. S. Kress, G. W. Parker

Oak Ridge National Laboratory Operated by Martin Marietta Energy Systems, Inc.

Oak Ridge National Laboratory Oak Ridge, TN 37831-6285

Prepared for Division of Systems Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN B0854 Under Contract No. DE-ACO5-84OR21400

Abstract

Calculated data from seven severe accident sequences in light water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (1). The radiation-induced conversion of Γ in water pools into l_2 is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, however, it may be assumed that it is not being controlled and large fractions of iodine as l_2 within the containment atmosphere may be produced.

Contents

Abs!	ract					1.4.4.4	4.9.8.4	4.4	$i \neq i$	1.4.14			é 4	(A. (A.)	1.4.4	i i i		ġ.	4 A W	e e e ja		iti
Exec	utive	Summa	агу	******			, en en		* + * *	4-4-1	. y + 1		¥ 4.4	d es	1-2.15	4 X X I		÷.,	e 12 - 12 -	Č. L.		ix
Ack	nowle	dgment	s	х х х х э э х	Ang					a a 4	5 5 <u>5</u> 5		+ + +		5 4.8				i ka	(s y)	н,	xi
1	Intro	oduction	1			-	ha sha						1.1.5			1.4.4.4	e pag		4.4.9		-	1
2	Che	mical Fe	orms of	lodine Er	ntering	Cont	ainmo	ent fr	rom t	he F	teact	or C	oola	nt Sy	ysten	a					y + +	3
	2.1 2.2	Backgr Data N	ound . Manipula	ation and	Calcul	ations	al Tec	hniq	ues .	* * * * * *			ija.e Sjere		1 9 1 1 9 1			6 (6 (6 6 (6 (6	 		1 1 1 1 1 1	3 3
		2.2.1	Adapt	ation of I	Dota fro	om Se	ource	Terr	n Co	de P	acka	ge .	a. e. a									3
	2.3	lodine	-Cesium	-Steam-H	ydroge	n Rea	action	s	****	ι.		er e e	. + •			x + y -						9
		2.3.1 2.3.2	Sampl Overa	le Calcula Il Results	tions of Cal	lculati	ions .		* * * *	+ + + + + +	e i sa n k e n							4 4 4 4 4 4				9 9
	2.4	Reacti	on of Cs	sOH with	Surfac	cs .	ia o						e + 4	(* k)								10
		2.4.1 2.4.2	Depos Other	sition of G Reaction	CsOH o is of Cs	onto S OH	Struct	ural	Surfa	ices	44) 434)	(2 9 4 (9 9 4	x x x x x 4			* * *		× + + + + +	 	* * * *		10 10
	2.5	Revap	orizatior	n of CsI f	rom R(CS Su	irfaces	s	× + +				1 (k. 4)				e e é	с. с. у	5 5 F	n is		11
		2.5.1 2.5.2	Descri Assess	iption of sment of	Revapo Revapo	orizati orizati	ion Pr	roces a Sc	s ource	of F	 {1		* * * * * *			* * *			4 4 4 4 4 4	 	4 4 4 7	11 13
	2.6	Summ	ary of Io	dine Che	mical F	Forms	s in th	ne Ro	CS.		* * *		4.4.4		i.					6.8.9.9		13
3	Iodi	ne Beha	avior in (Containm	ient .		a in a a				x + x		11.5			1.1.1	6. A (K					15
	3.1	Catego	orization	of Iodin	e Behav	vior in	n Terr	ms o	f Tin	ne In	terva	als D	urin	g an	Acci	dent						
	3.2	Import	nce tance of	pH in D	etermin	ning ti	he Ch	iemic	al Fo	orms	of le	odin	e in	Wate	er Po	ols	6 + 9 9 + 9	***	1. A A			15
		3.2.1 3.2.2	Mater Nitric	ials That Acid Fo	Detern	nine j 1 and	pH in pH C	Acc Contr	ident ol .	Seq	uenc	es .		, i 		1.1.1.1 1.1.1.1			- 9-1 - 9-1	1.4.4.9 4.9.1.9		15 16
	3.3	Proces	ses That	Alter th	e Chen	nical I	Forms	s of l	lodin	c in	Cont	tainn	nent		÷,	1 × 1			1.1.1			17
		3.3.1	Radio	olysis	****								- 4 4					. s. s	8 - N - A	i se e		17
			3.3.1.1 3.3.1.2 3.3.1.3 3.3.1.4 3.3.1.5	Descrip Mass M Gas-Lie Gas-Ph Overall	tion of fanipuk quid Pa ase Re Behav	Cal ations rtitio action	ulated s ning ns: Fo	i Mo	del	of O	rgan	ic lo	dide									17 20 21 21 21 22

	3.3.2 Results of Iodine Behavior in Containment 3.3.3 Evaporation to Dryness	23 25
4	Technical Findings	29
	 4.1 Perspective and Scope of Study 4.2 Assessment of Iodine Chemical Forms in the RCS 4.3 Assessment of Iodine Chemical Forms in Containment 	29 29 29
5	References	31
	Approdixes	
А	Data from Accident Sequence Calculations	.1
В	Kinetic and Equilibrium Calculations B	1.1

	B.1 Kinetics of Cs-I-H ₂ -H ₂ O Reactions B.3 B.2 Equilibrium Calculations in the Cs-I-H ₂ -H ₂ O System B.5	
С	Fitting of Radiolysis Data	
D	Fission Product Release Tables	
E	Fractional Release Tables	

Figures

2.1	Surry TMLB': temperatures in volumes above core	4
2.2	Flow chart of RCS control volumes and variables. Normal type = known data from STCP calculations; italics = quantities to be calculated	6
2.3	Surry TMLB': principal species concentrations in Volume 1 above core	.7
2.4	Mean residence times in volumes above core for Surry TMLB'	8
3.1	Radiolytic conversion of I to I2 [data from C. C. Lin, J. Inorg. Nucl. Chem. 42, 1101 (1980)]	18
4.1	Additional atmospheric elemental iodine released	30
C.1	Data fitting for radiolytic conversion of I to I ₂ (Data from U.S. Nuclear Regulatory Commission, Regulation Guide 1.4, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors")	4

Tables

1.1	LWR accident sequences evaluated 2
2.1	FACT system output of Grand Gulf TQUV example at 8780 s 9
2.2	Simulated core-melt tests conducted in the ORNL 1-kg facility (Boric acid addition to water
	injected below the bundle) 11
2.3	Composition of 10-kg fuel bundle 12
2.4	Estimated upper bound on the fraction of iodine as HI due to revaporization of CsI 14
3.1	Materials that affect pH in containment water pools
3.2	Concentrations of H ⁺ and NO ₃ in water due to irradiation 17
3.3	Effects of irradiation dose on pH in trisodium phosphate solution
3.4	Nuclide groupings and group-specific energy deposition rates
3.5	Data for equilibrium analysis of example sequences
3.6	Distribution of iodine species for pH controlled above 7
3.7	Distribution of iodine species for uncontrolled pH 27
3.8	Iodin, volability of 1 × 10 ⁴ mol/L Csl solutions during evaporation gryness
A.1	Grand Gulf TCMERGE output data from MARCH2 A.3
A.2	Grand Gulf TC-MARCH2 output for input to TRAP-MELT A.5
A.3	Grand Gulf TCMARCH2 output for input to TRAP-MELT A.6
A.4	Grand Gulf TOUV-MARCH2 output from MARCH2 A.7
A.5	Grand Gulf TOUV-MARCH2 output for input to TRAP-MELT
A.6	Grand Gulf TOUV-MARCH2 output for input to TRAP-MELT
A.7	Peach Bortom AE-MERGE output for input to MARCH2
A.S	Peach Bottom AE-MARCH2 output for input to TRAP-MELT
4.9	Peach Bottom AE-MARCH2 output for input to TRAP-MELT
A 10	Peach Bottom TC2MERGE output from MARCH2
A 11	Peach Bottom TC-MARCH2 output for input to TRAP-MELT
A 12	Peach Bottom TC-MARCH2 output for input to TRAP-MELT
A 13	Sequeval TR-MERGE output from MARCH2
A 14	Sequeval TB-MARCH2 output for input to TRAP-MELT
A 15	Sequerab TB-MARCH2 output for input to TRAP-MELT
A 16	Surry TMI B'_MFRGE output from MARCH2 A.20
A 17	Surry TMLB'-MARCH2 output for isput to TRAP-MELT
A 18	Surry TMLB -MARCH2 output for input to TRAP-MELT
A 10	Surry AR_MARCH2 by 'nul for input to TRAP-MELT A.22
A 20	Surry AB_MARCH2 output for input to TRAP.MELT
A 31	Surry AB_MARCH2 output for input to TRAP.MELT
A 22	Grand Gulf_Compariment volumes for sequences TC and TOUV
A.25	Perch Pottom, Compartment volumes for sequences TC and AE
PL-63	Peace Dottom-Compartment volumes for sequences TC and AL
A.20	Sequoyan-Compariment volumes for sequence 1 DA
ALC	Surry-Compartment volumes for sequences AD and TMLD
B.1	Reaction fair constants
B.2	Standard free energy of reaction 500 to 1200 K (441 to 1701 F) within as 200 - a + 01.
~ .	exothermic reaction expressed ten to right (Energy in joures)
C.1	Radiolysis data for formation of ty D.3
D.I	Prission product inventories for Selected plants
D.2	Bounding values for fractions of core prventory released into containment
1.3	Grand Guil - fractional releases and energy deposition rates
E.Z	Peach Bottom - tractional releases and energy deposition rates
E.3	Sequoyan - fractional releases and energy deposition rates
E.4	Surry IMLD - Iracuonal releases and energy deposition rates

Executive Summary

The analyses in this study were based on quantitative (calculated) results of seven severe accident sequences for light water reactor (LWR) nuclear power plants. These sequences represent a wide range of conditions that are significant risks. Both high- and low-pressure sequences were chosen for three principal plant types; a single sequence was considered for the PWR ice condenser. Each sequence was evaluated by the Source Term Code Package (STCP), and the thermal hydraulics has been documented in previous NRC reports.¹² The issue that has been addressed is the chemical forms of iodine in the reactor coolant system (RCS) and in containment — not the ultimate disposition of these chemical forms.

In an LWR accident sequence, fission products released from the core will undergo changes in temperature and concentration as they pass through regions of the RCS. A chemical kinetic model used 20 reactions to determine the control volume where an equilibrium of the iodine, cesium, hydrogen, and steam species becc us "frozen." This means that the temperatures and concentrations of species in subsequent control volumes are not sufficient to reach an equilibrium in the mean residence time available. The "frozen" equilibrium is the species distribution entering containment. Separate equilibrium calculations were performed, using the FACT system,3 to obtain the distribution of iodine species. The FACT system was chosen in this study because it can be used by anyone who wishes to examine the calculations and its data base contains only assessed data.

In six of the seven calculations, iodine entering the containment from the RCS was almost entirely in the form of CsI; the contributions of I or HI were <0.1% of the overall percentage of iodine.

During the second half of the Surry AB sequence, there is a period during which temperatures in the core region are predicted to be in excess of 2000 K (3141°F) and subsequent volumes of the upper grid plates and guide tubes are at temperatures of only -500 K (441°F). Under such conditions, the equilibrium compositions in the core region -1dbe "frozen" by the rapid decrease in temperature. For this sequence, the overall iodine distribution was 2.8% as 1, 0.4% as HI, with the remainder as Csl. Thus, a total of 3.2% as I plus HI was the largest fraction of iodine in a form other than Csl calculated to enter containment from the RCS in this study.

Once within the containment, CsI is expected to deposit onto interior surfaces and dissolve in water pools, forming iodide (1) in solution. The dissolution of HI and HNO₃ (produced by irradiation of N_2 in the atmosphere) and the hydrolysis of I_2 tend to acidify films and pools of water.

lodine behavior in containment was evaluated during the early stage of an accident sequence, up to -1200 min. If pH is controlled in containment water pools so that it stays above 7, a reasonable value for the fraction of 1 converted to l_2 is 3×10^4 . This yields a small production of volatiles for PWRs, but virtually none for BWRs. Thus, if pH is maintained at 7 or above, only a small additional amount of l_2 is indicated to enter the gas phase in PWR systems.

If the pH drops below 7 (assumed uncontrolled pH), a larger fraction of aqueous I will be converted to I_2 . Evaporation of this volatile species so as to maintain equilibrium partitioning will result in greater atmospheric I_2 , which, in turn, will yield higher organic iodide concentrations. As expected, the levels of airborne iodine volatiles are much higher than in the pH-controlled case, indicating almost complete conversion for PWRs.

The gaseous I_2 fraction is considerably higher in PWRs than in BWRs because of the large water volumes in the latter, which both lower the dose rate and retain greater quantities of dissolved I_2 .

In addition, organic iodide is present in PWRs at about 0.5% of core inventory; in BWRs, this value is closer to 0.1%. The I₂ generated by the radiolytic conversion of T in containment pools dominates the amount released directly from the RCS as I₂. In addition, due to the equilibrium assumption, the presence of some I₂ already airborne will result in less evaporation of I₂ formed radiolytically. Hence, for the case of uncontrolled pH, the cumulative total is well represented by the equilibrium amount formed within containment.

The production of I_2 in containment will be directly related to the pH levels of the water pools. There is a significant difference in the amount of I_2 between the uncontrolled-pH and the controlled-pH cases. A major uncertainty in fixing the production of volatile iodine chemical forms in containment involves the extent of evaporation to dryness. At a minimum, 2 to 20% of the iodine in water pools that have evaporated would have been converted to a volatile form, most likely as I_2 .

Acknowledgments

The authors acknowledge the aid of Michael Brown, of Thurso, Scotland, who wrote the routine used with the FACSIMILE code and performed scoping calculations for this study. We also wish to express gratitude to Betty Drake for preparing the manuscript. In addition, we appreciate the assistance of Vladimir Kogan of Battelle Columbus Laboratories in obtaining data on accident sequences.

1 Introduction

In the past 10 years, studies of iodine behavior in containment under accident conditions have identified a variety of chemical and physical interactions that will determine the forms of iodine and environments where reactions may occur.47 In general terms, the ability to predict iodine behavior is now more limited by knowledge of the environment in which the iodine is present than by deficiencies in understanding what iodine will do in a given set of environments. Thus, with only a few exceptions, the prediction of chemical form or magnitude of iodine released from containment is limited by the lack of information on the materials and environments involved in iodine reactions in the containment, as well as by uncertainty in the chemical forms and amounts of iodine that enter the containment. For example, it has been found that boric acid and borates are important in determining the chemical forms of iodine in the RCS and in the containment. However, the location, amounts, and type of borate are not well defined in severe accident sequences. A number of tests were performed to examine organic iodide formation with a variety of materials. However, it is not known what organic material will be present and in what form it will exist for a given reactor plant and accident sequence.

Some information on iodine reactions has not yet been put into models and implemented in computer codes. The disparity betwisen information on reactions and models for a computer code is best illustrated by the effect of water radiolysis on iodine chemical forms. Experimental data show that radiolysis can control the chemical forms of iodine it water. Models were developed to calculate water radiation dose rates and pH in severe accident sequences. Modeling of iodine radiolysis at a pH and dose rate in terms of individual reaction rate constants has proven to be extremely difficult because it requires expressions for (1) radiolysis of water, (2) iodine hydrolysis, and (3) the interaction of iodine species with water radiolysis products.

In summary, uncertainties in iodine chemical forms in containment stem principally from uncertainties in the (1) chemical forms and amounts of iodine that enter containment, (2) conditions and materials in which iodine interacts, and (3) lag between obtaining data and implementing it in computer models and codes.

Regulatory Guides 1.38 and 1.49 state the following:

- Fifty percent of the maximum iodine inventory of the reactor core is released to the primary reactor containment; 25% is available for leakage.
- (2) Of this 25%, 91% is in the form of elemental iodine, 5% is in the form of particulate iodine, and 4% is in the form of organic iodide.

lodine is assumed to enter containment in the forms and amounts stated above with neither physical nor chemical changes occurring in containment. However, present knowledge may not support this distribution of iodine forms and the static state throughout the duration of an accident.

It is anticipated that a more "realistic" representation of the chemical speciation of fission product iodine would likely have the following characteristics:

- an initial release of some combination of particulate iodine (CsI) and gaseous iodine (HI) or (I), with the largest proportion being particulates
- (2) a continuous re-release of molecular iodine that would arise from "revolatilization" from water repositories and would include some small complement of organic iodine

Table 1.1 lists the seven calculated LWR severe accident sequences considered in this analysis; these sequences involve a wide range of conditions that represent significant risks. Both high- and lowpressure sequences were chosen for three principal plant types; a single sequence was considered for the PWR ice condenser. Each sequence was evaluated by the STCP and has been documented in previous NRC reports.¹²

Plant	Reactor type	Accident	Accident type	Documentation [*]
Grand Gulf	BWR — Mark III	TC (ATWS)	High pressure	BMI-2104, Vol. III
		TQUV (No makeup water)	Low pressure	BMI-2104, Vol. III
Peach Bottom	BWR — Mark I	TC2 (ATWS)	High pressure	NUREG-4624, Vol. I
		AE (LOCA, no ECCS)	Low pressure	BMI-2104, Vol. II
Sequoyah	PWR - ice conúenser	ТВА	Low pressure	NUREG-4624, Vol. II
Surry	PWR - large containment	TMLB' (Station blackout)	High pressure	BMI-2104, Vol V
		AB (LOCA, no ECCS) (Station blackout)	Low pressure	BMI-2104, Vol. V

Table 1.1 LWR accident sequences evaluated

*See References 1 and 2 for complete reference description.

14

2 Chemical Forms of Iodine Entering Containment from the Reactor Coolant System

2.1 Background

The chemical forms of iodine in the RCS are closely tied to the chemical forms of cesium. The relationship between cesium and iodine in the RCS can be illustrated by the following reaction

$$CsI + H_0 = CsOH + HI$$
 (1)

The reaction of cesium iodide (CsI) with stean (H_zO), as shown in Equation 1, is the reverse of an acid-base reaction and, thus, is unlikely to proceed unless one or both products are removed. Reactions of CsOH, which tend to lower the partial pressure of CsOH, shift the equilibrium to the right and enhance the formation of HI.

At temperatures in excess of 1800 K (2781°F) and at low hydrogen pressures, iodine as I, rather than HI, is the favored product of the reaction between CsI and H₂O

$$CsI + H_2O = CsOH + I + \frac{1}{2}H_2$$
 (2)

Thus, iodine chemical forms other than CsI are favored when steam pressures are much greater than cesium hydroxide pressures.

Fission products released from the core will undergo changes in temperature and concentration as they pass through regions of the RCS. A chemical kinetic model used 20 reactions to determine the control volume where an equilibrium of the iodine, cesium, hydrogen, and steam species becomes "frozen." This means that the temperatures and concentrations of species in subsequent control volumes are not sufficient to reach an equilibrium in the mean residence time available. Separate equilibrium calculations were run, using the FACT system,³ to obtain the distribution of iodine species. The FACT system was chosen for this study because it can be used by anyone who wishes to examine the calculations and its data base contains only assessed information.

2.2 Data Manipulation and Calculational Techniques

2.2.1 Adaptation of Data from Source Term Code Package

In order to evaluate the chemistry in the RCS, it is necessary to specify the thermal-hydraulic conditions under which reactions would occur. This has been undertaken for each of the accident sequences in Table 1.1 using data from the STCP calculations. Where possible, detailed transient data were taken from the original computer output; otherwise, values were derived from tables or estimated from graphs in the sequence documentation.^{1,2} A listing of all the data used is contained in Appendix A.

The chemical equilibrium is calculated in each relevant RCS control volume for the individual sequences. This requires a description of the thermodynamic conditions that occur during various phases of accident progression and a measure of the time span over which such conditions hold.

The MARCH2¹⁰ code generates a special output file that provides input for the TRAP-MELT¹¹ code. This file was used to identify time-varying values of temperature and pressure in the RCS. Each control volume in the RCS remains constant, and the values used are given in Appendix A. Figure 2.1 illustrates the temperature history of the first two control volumes above core in the Surry TMLB' accident sequence, where time 0 is at the start of core melting. The figure shows phases of constant or slowly changing behavior in addition to periods of large swings in magnitude. Other sequences exhibit similar patterns.

In addition to T, P, and V, chemical equilibria are dependent on the molar inventories n_i of constituent species H₂, H₂O, I, and Cs. These inventories also vary during in transient and must be obtained for each control volume. Such quantities are calculated

3

Figure 2.1 Surry TMLB': temperatures in volumes above core

since they are not directly available from STCP results. Mass flows of H₂ and H₂O and release rates of CsI and CsOH from the core are converted into molar flows $(g_{i0}, i = 1, 2, 3, 4)$ of H₂, H₂O, I, and Cs. These are assumed to directly enter the first control volume above the core. A simple schematic of the system of above-core control volumes is shown in Figure 2.2. Known data are given in normal type, and quantities to be calculated are shown in italics. Although only two control volumes are shown, additional ones could be added (and were for most of the sequences in this study); treatment would be analogous to the second volume in the figure.

Within each control volume, temperature and pressure are assumed to be uniform spatially and constant over computational time intervals (time intervals must be specified small enough to make this valid). From the ideal gas law, the total molar inventory must then also be constant since n = PV/RT. This implies that the molar flow (g-mol/s) into a control volume must equal the molar flow out

$$\sum g_{il} = \sum g_{i2} = \sum g_{i0} = g$$
(3)

Since the inlet flows g_{ie} are known (cf. Figure 2.2), the total flow g can be easily obtained. The volumetric flow v_i from control volume j (m³/s) is, then

$$v_j = g \frac{RT_j}{P} \tag{4}$$

and the volume fractional flow from volume j (s⁻¹) is

$$f_j = \frac{v_j}{V_j} = g \frac{RT_j}{PV_j}$$
(5)

Assuming well-mixed control volumes, the flow (mol/s) of constituent *i* from volume *j* is represented by

$$g_{\mu} = f_{\mu} n_{\mu} \tag{6}$$

where the molar inventories n_{ij} are updated at each time step by a simple balance equation

$$n_{ij}^{new} = n_{ij}^{old} + \Delta t (g_{ij-1} - g_{ij})$$
 (7)

Using this procedure, molar inventories were calculated in each control volume downstream from the core, as were the molar concentrations $C_{ij} = n_{ij}/V_j$. As an example, Figure 2.3 shows the time variation of principal species concentrations for the first control volume above core in the Surry TMLB' sequence. These concentrations, together with temperature and pressure values, were subsequently used to estimate the equilibrium distributions of chemical species, as described in Section 2.3.1. It is important to note that the equilibrium chemistry was completely decoupled from the mass transfer processes (i.e., no chemical reactions were considered in the flow calculations).

The mean residence time (s) for flow through a control volume is simply the inverse of the fractional flow

$$j = \frac{1}{f_j}$$
(8)

Figure 2.4 shows this quantity for each of the two control volumes above core in the Surry TMLB' sequence. As described in Section 2.3.1, a mean residence time >1 s is usually sufficient to attain equilibrium for regions with a sufficiently high temperature. The mean residence time is greater than 1 s for both volumes, although control volume 1 approaches this limit briefly at about 30 min.

The simplicity of this method introduces some uncertainty into the results. However, this uncertainty is generally far less than that due to the input data itself. The time steps were chosen small enough to reduce calculational error to relative insignificance when compared with other sources of error; hence, the chemical reactions may have a slight effect on pressure and temperature, but this is not expected to be significant in altering the inventory and flow patterns. Thus, the results provide a reasonable picture of the chemical thermodynamic conditions in each control volume as the transients progress.

Figure 2.2 Flow chart of KCS control volumes and variables. Normal type = known data from STCP calculations; italics = quantities to be calculated

Figure 2.3 Surry TMLB': principal species concentrations in Volusie 1 above core

Figure 2.4 Mean residence times in volumes above core for Surry TMLB'

2.3 Iodine-Cesium-Steam-Hydrogen Reactions

2.3.1 Sample Calculations

Kinetic and equilibrium calculations were carried out at frequent intervals during the seven accident sequences. The use of these procedures can be illustrated with the Grand Gulf TQUV sequence at 8780 s. Temperatures of the control volumes are shown in Table 2.1. Kinetic calculations, using the FACSIMILF¹² code, indicated that the equilibrium was not attained in the upper annulus at 907 K (1173°F). However, equilibrium was rapidly attained in the higher-temperature regions. The results of the equilibrium calculations are given in Table 2.1. In the core region, some I and HI were indicated along with CsI. The predominance of 1 over HI here is the result of reaction 2 being dominant over reaction 1 at the relatively high temperature of this region. Very little I or HI was indicated in the steam separator volume, and essentially only CsI was present in the steam dryers. In this example, the equilibrium was "frozen" at 1180 K (1665°F) in the steam dryer volume because this is the lowest temperature where equilibrium could be attained. If the equilibrium had "frozen" in the core region by quenching from its high temperature without changing composition, then the distribution of iodine species would have been different (see Table 2.1). Calculational techniques used in the seven accident sequences are discussed in Appendix B.

Table 2.1 FACT system output of Grand Gulf TQUV example at 8780 s

Control volumes	Percent	Percent	Percent	Temp	crature
	CsI	I	HI	(K)	(° F)
Core region	91.0	7,5	1.5	2047	3225
Steam separators	99.96	0.01	0.03	1398	2057
Steam dryers	~100.0	< 0.01	< 0.01	1180	1665
Upper annulus	Not at	equilibrium		907	1173

2.3.2 Overall Results of Calculations

In six of seven calculations, the iodine was almost entirely in the form of CsI; the contribution of I or HI was <0.1% of the overall percentage of iodine.

During the second half of the Surry AB sequence, there is a period during which temperatures in the core region are in excess of 2000 K (3141°F) and subsequent volumes of the upper grid plates and guide tubes are at temperatures of only -500 K (441°F). Because of this, equilibrium compositions in the core region would be "frozen" in by the rapid decrease in temperature. For this sequence, the overall iodine distribution v is 2.8% as I and 0.4% as HI, with the remainder as CsI. Thus, a total of 3.2% as I plus HI was the largest fraction of iodine in a form other than CsI in this study.

These calculations considered only reactions involving cesium, iodine, hydrogen, and species, as shown in Appendix B, but covered a wide range of temperatures, hydrogen concentrations, steam concentrations, and fission product concentrations. However, deposition on surfaces and reactions with surfaces were not included in these calculations. Very few specific experimental data about surface

interactions of fission products are available. The effect of these interactions on iodine chemical forms must be carried out with scoping or bounding calculations rather than detailed sequence specific evaluations that were performed for the reactions of iodine and cesium species with steam and hydrogen.

2.4 Reaction of CsOH with Surfaces

2.4.1 Deposition of CsOH onto Structural Surfaces

Of the possible reactions of CsOH in the RCS, the reaction with structural surfaces is the most amenable to evaluation. Johnson et al.¹⁰ have studied the deposition of CsOH on oxidized stainless steel surfaces. They used the following simple expression to relate the thermodynamic activity of CsOH to the surface concentration

$$\alpha = 0.5 \exp\left(98.5 - \frac{3.84 \times 10^4}{T}\right)(x - 0.28)\right|_{x < 0.28}$$
(9)

where a and x are the surface activity (atm) and concentration (mg/cm²), respectively. The reaction of interest with stainless steel may be written as

Thermochemica, Jata obtained from the FACT system³ give the γ pective equilibrium constants for the reactions in Equations 1 and 9 as

$$K_1 = \frac{P_{CBOR}}{P_{R_2O}} \frac{P_{R}}{P_{Cal}} = \exp\left(-1.407 - \frac{1.626 \times 10^4}{T}\right)$$
 (11)

$$K_{9} = \frac{P_{CsOH}}{\alpha} = \exp\left\{1.189 \times 10^{1} - \frac{1.500 \times 10^{4}}{T}\right\}$$
(12)
900 \le T \le 1263

Calculations using Equations 9, 11, and 12, together with mass balances on cesium and iodine, indicate that the amount of HI formed due to the CsOH surface reaction is less than 0.6% for each of the accident sequences studied. This is because P_{CsOH} must be very small if the ratio $P_{\text{HI}}/P_{\text{CsI}}$ is large enough to be significant. However, if P_{CsOH} is very small, then so is x; hence, very little surface reaction could occur.

2.4.2 Other Reactions of CsOH

Other reactions of CsOH may a so remove it from the vapor phase, but there is gener: Ily a lack of information on the amounts and locations of other reactants. For example, several cesium borates may form in the reaction of CsOH with boric acid or boron oxide. The formation of cesium metaborate (CsBO₂) may occur by the following reaction

$$CsOH + HBO_2 = CsBO_2 + H_2O$$
 (13)

At equilibrium at 1000 K (1341°F), the pressure of CsOH may be written as

$$P_{CsOH} = -1.6 \times 10^{-11} \cdot \frac{P_{H_2O}}{P_{HBO_2}}$$
(14)

If sufficient meta-boric acid (HBO₂) were available, it could result in a lowering of the vapor pressure of CsOH.

Two simulated core-melt tests were run at ORNL to assess boric acid volatility and the potential for vapor interactions with Csl. Two different sized simulant fuel bundles were used-nominally 1 and 10 kg. The smaller, 1-kg, fuel simulant bundle consisted of 12 zirconium tubes (10.16 cm long) with 0.247 kg end caps, 0.093 kg stainless steel grids, 0.0185 kg Inconel grids, and 0.585 kg UO, pellets. There were no added Cs or I species in the small bundle test. The test was performed by inductively heating the fuel bundle while injecting feedwater containing 2000 ppm boric acid into the bottom of the bundle. In this test, it was found (see Table 2.2) that during the lowertemperature heating steps up to 1600° C, -10% of the boron was transported through the bundle and was captured downstream as boron oxide. As the temperature was increased to partial melting of the bundle, the collected B₂O₃ decreased. This decrease was

NUREG/CR-5732

		Boron colle	cied as PyO3
Heating step	'Total boron gresent' (g)	Filter (%)	Wash (%)
A (1600°C)	0.034	10.37	0.0
B (1800°C)	0.088	5.5	0.68
C (2400°C)	0.142	0.024	0.009

Table 2.2 Simulated core-melt tests conducted in the ORNL 1-kg facility (Boric acid addition to water injected below the bundle)

"As boric acid in water used for steam generation.

attributed to increased & activity of the boron oxide with the hot fuel and clad oxides.

The composition of the 10-kg fuel bundle is shown in Table 2.3. Note that in this test, CsI was added to 12 of the 60 simulant fuel tods in a limited region near the bundle centerine. Excess cesium was not added.

The 10^{-1} test was conducted at a bundle centerline temperature limit of 1/4 % C, which was reached in -30 min and maintained for an additional 30 min. During this time, 365 mL of boric acid solution containing 3.83 g of H₃BO₃ was added to the steam generator porous media below the first bundle. Hydrogen release measured 326 L, which would be equivalent to 72% conversion of the water and -30% reaction of the Zircaloy in the bundle.

Analytical results from X-ray diffraction showed that white solids observed plated out on the quartz chimney were nearly pure Csl with no detectable B2O2. Chemical analysis of the washings from the system indicated that nearly half of the CsI had vaporized and that no boron-containing materials were present. This complete failure L) find any B2O3 downstream of the bundle was somewhat unexpected since the 1-kg test had resulted in some penetration of boron oxide. It is likely that the extra length of the 10-kg system prevented penetration by the reaction of B₂O₃ with ZrO. A sample analysis of a white oxide (a thin ring of mixed ZrO, and B₂O₂) in a very highly refractory solid solution on the oxidized clad surface was estimated to account for about one-third of the total boron added. The remainder of the boron oxide

appeared to be associated with the porous ZrO_2 steam generator base at the bottom of the bundle. A test scrubber that had been operated continuously on a diverted part of the hydrogen/steam flow showed no evidence of volatile (nonparticulate) iodine.

Similar results were subsequently obtained in a test with silver vaporized in a 10-kg bundle containing Ag-In-Cd alloy control rod simulants. In the latter case, cadmium vapor was observed downstream, but the silver did not penetrate out of the bundle—presumably because of interactions with Zircaloy.

Based on these results, it is highly likely that boric acid covaporized from residual water below the core in severe accidents will be tied up by the Zircaloy in the lower regions of the core and will not be available airborne to affect the chemical form of the released iodine.

2.5 Revaporization of CsI from RCS Surfaces

2.5.1 Description of Revaporization Process

During an accident sequence, Cs1 may condense on RCS surfaces. If the temperature increases later in the sequence, the Cs1 may revaper are into a gas with very little cesium hydroxide. The revaporization of Cs1 can be expressed as

liem	Weight* (g)
60 ^{**} - Zircaloy tubes 120 - Zircaloy end caps 3 - Stainless steel grids 1 - Inconel grid 4 - Stainless steel supports and screws 2 - Stainless steel lifts and screws	2181.0 503.6 342.0 112.0 58.5 9.0
UO ₂ pellets	(N.W.) 7464.0 (E.W.) 6739.9
UO2 powder	(N.W.) 1201.9 (E.W.) 1059.5
SrCO ₃	3.00
BaCO ₃	4.05
LajO,	2.28
Eu ₂ O ₃	0.21
Sm_2O_3	1.12
CeO ₂	4.87
Mo	4.70
Te	0.82
Ru	5.16
CsI [†]	0.85

Table 2.3 Composition of 10-kg fuel bundle

*N.W. = net weight; E.W. = uranium element weight. *Twelve of these tubes had three horizontal slits each, 0.010 in wide $\times 1$ in long, and 120*apart in their midsection. *Csl mixed with 300 g UO₂, rare earths, and metal powders was added to the ~1-in. section of the 12 tubes.

The vapor pressure of Cs1, calculated with data obtained from the FACT system,3 is

$$P_{CS} = \exp\left[\frac{-2.021 \times 10^4}{T} + 1.307 \times 10^1\right]$$
(16)
$$T = 1000 - 1553 \text{ K}$$

It Equation 1, a mole of CsOH would be produced for every mole of H1. Assuming that this is the only CsOH (gas) in the system for the sake of a bounding calculation, the equilibrium constant for reaction 1 may be arranged as

$$P_{BI}^{2} = P_{Col} + P_{B_{2}O} \exp\left\{ \left(\frac{1.622 \times 10^{4}}{T} + 1.467 \right) \right\}$$
(17)
$$T \times 1000 - 1553 \text{ K}$$

2.5.2 Assessment of Revaporization as a Source of HI

From Equation 17, P_{HI} may be calculated if P_{H_2O} is known or assumed and P_{Col} is calculated from Equation 16. The calculated percentages of iodine as HI when $P_{H_2O} = 1$ atm varies from 0.5% at 1000 K to 0.25% at 1553 K. At higher steam pressures, proportionately higher percentages as HI may occur.

To assess an upper bound on the extent of HI formation by revaporization of CsI, the "lowing assumptions are made:

- The temperature of revaporization is the temperature where equilibrium was "frozen."
- (2) The steam pressures are those obtained from the seven accident sequences.
- (3) The only CsOH (gas) in the system is that produce 1 by Equation 1 and is, mole for mole, the same as AI. All other cesium was somehow removed (i.e., vented).

(4) All of the iodine deposited on the surface and was subject to revaporization as described by Equations 15 and 16.

Table 2.4 indicates the estimated upper bounds on the fraction of iodine as HI that results from these assumptions. The highest percentages as HI were obtained from chose accidents in which steam pressures were >1 atm for a significant time during the sequence. These upper bounds probably overestimate the formation of HI in several ways:

- It is not likely that all iodine would deposit as Csl and be subject to later revaporization.
- (2) The steam pressures used in the calculations were those of the accident sequences. Revaporization could occur after steam pressures had decreased.
- (3) The cesium hydroxide pressure would most likely be greater than the HI pressure. As described in Section 2.4.1, it would be difficult to reduce CsOH pressures low enough to influence HI formation by deposition of cesium on stainless steel.

2.6 Summary of Iodine Chemical Forms in the RCS

lodine entering containment from the RCS should be predominantly in the form of Cs1. The examination of Cs-I-H₂O-H₂ interactions for seven accident sequences gave a maximum of 3.2% iodine as I plus HI, with the remainder as Cs1. There are some uncertainties in the reactions of CsOH with oxides, as well as in the revaporization of Cs1, that produce uncertainties in the extent to which iodine may exist in a form other than Cs1. Cesium needs to be removed from reactions involving iodine if very much iodine is to be in a form other than Cs1.

Based on this analysis, the chemical forms of iodine entering containment from the RCS may reasonably be described as a maximum of 5% as elemental iodine and HI, with not less than 1% as either elemental iodine or HI. The remaining 95% would be Csl.

Auxident sequence	Estimated percentage of iodine as HI*
Grand Gulf TC	0.3
Grand Gulf TQUV	0.4
Peach Bottom AE	0.6
Peach Bottom TC2	3.1
Sequoyah TB	2.4
Surry TMLB	3.8
Surry AB	0.03

Table 2.4. Estimated upper bound on the fraction of iodine as H1 due to revaporization of Cs1

34

*Note: See Section 2.5.2 for a list of assumptions used in calculating these estimated values.

3.1 Categorization of Iodine Behavior in Terms of Time Intervals During an Accident Sequence

Based on TRENDS models, calculations of iodine behavior for NUREG-0956,¹⁴ and information from large-vessel tests¹⁵⁻¹⁸ as well as from the accident at TMI-2, the iodine behavior may be separated, by time, into three categories: (1) from initial release into containment up to 1000 to 1200 min following initiation of the accident, (2) from 1000 to 1200 min to -2 to 3 weeks, and (3) for times greater than -3 weeks.

<u>Category 1. Iodine Behavior</u>. In this time interval, the uncertainty in the amount and chemical forms that enter containment is most important. The u_i per time limit for this category is the time when also are aerosol concentrations have been substantially reduced from their peak values. The source term calculations in previous reports^{1,2} stopped in the range of 1000 to 1200 min.

All of the chemical and physical interactions of HI are expected to occur during this time interva! Events leading to the formation of I₂ by radiolysis would also occur in this interval and the next time interval as well. Thus, during this period, all material of importance to iodine reactions is expected to deposit in water pools or onto surfaces, all gaseous iodineaerosol interactions are expected to take place, and all HI effects, except for those related to pH, are expected to occur.

<u>Category 2. Iodine Bchavior</u>. In this time interval, vapor-phase iodine will consist of I_2 produced by radiolysis and partitioned between aqueous solution and the gas, as well as organic iodide. Iodine will also be found in aqueous solution in forms that are determined both by radiolysis and by pH and deposited on structural surfaces. In this time interval, the chemical forms of iodine should not be closely related to the chemical forms that entered containment from the RCS because the iodine would have interacted with a surface and/or dissolved in water.

Category 3. Iodine Behavior. At long times after a severe accident, gas-phase iodine is expected to be dominated by organic iodide with a small contribution from L. Approximately 15 months following the accident at TMI-2, the concentration of 1291 in containment gas was 3.3 × 10⁻¹² ± 8.9 × 10⁻¹³ mol 1/L.¹⁹ Methyl iodide is an "ubiquitous" halocarbon that is present in the atmosphere at concentrations which vary somewhat with distance from the ocean. In a study of eight locations in the United States, the overall mean concentration was -2 × 10⁴² mol CH,1/L.20 Thus, the long-term organic iodide concentration in containment will probably be on the order of 10⁴² mol I/L. lodine behavior and distribution, in the long term, are expected to have little relationship to the chemical forms or amounts released into containment because the iodine would have had time to deposit on surfaces or in water pools and the environmental conditions in containment would prevail in determining the chemical forms.

3.2 Importance of pH in Determining the Chemical Forms of Iodine in Water Pools

3.2.1 Materials That Determine pH in Accident Sequences

Results of various experiments have shown that solution pH is the major factor in determining the amount of I_2 and organic iodide formation in solution.⁴ Materials that can determine pH in containment water pools are given in Table 3.1. This list includes both acidic and basic materials. In situations in which no chemical additives are present to control pH, the amounts of HI, cesium borate or hydroxide, and boron oxides reaching a sump will initially determine pH. In some sequences, the coreconcrete interaction would produce acrosols that contain the basic oxides K_2O , Na_2O , and CaO. The influence of these oxides on pH will depend on the amount that has entered the water pool, the initial pH and buffering capacity of the solution, the quantity of

Iodipe Behavior

Table 3.1 Materials that affect pH in containment water pools

- Boron oxides (acidic)
- Basic fission product compounds such as cesium hydroxide or cesium borates (basic)
- Iodine as HI (acidic)
- pH additives (basic)
- Atmospheric species such as carbon dioxide or nitric acid (acidic)
- Core-concrete aerosols (basic)
- Pyrolysis and radiolys. products from organic materials (acidic)

water, and the extent of dissolution of the aerosol material. One of the TRENDS models calculates the pH in water pools.

3.2.2 Nitric Acid Formation and pH Control

Water that is exposed to air absorbs CO2 to form carbonic acid, which lowers pH. The pH of water approaches a limiting value of ~5.65 due to this process. In addition, nitric acid can be produced by the irradiation of water and air. Table 3.2 shows the relationship between the formation of nitrate ions and hydrogen ions from the irradiation of an air-water system. Table 3.3 shows the decrease in pH fo, an irradiated solution that contained trisodium phosphate with an initial pH of 9.0. During the irradiation, nitric acid and atmospheric CO, decreased the pH as shown. Phosphate solutions have their maximum pH buffer capacity at a pH near 7. This buffer capacity is reflected here in the length of time that the pH remained near 6.5. Once the buffer capacity was exceeded, the pH continually decreased.

Because of CO_2 and natric acid, the pH is not likely to remain at some preadjusted value. A buffer system to retard changes from the desired pH is expected to provide a more stable pH level. Two different buffer systems could be used in containment water pools: a phosphate buffer and a borate buffer. The phosphate buffer has a maximum capacity near pH 7, while the borate buffer has its maximum capacity near pH 9. Buffer capacity is often evaluated in terms of its buffer value B, which is defined by

$$B = \frac{db}{dpH}$$

where db is an increment of strong base in mol/L. With the addition of strong acids, a negative increment db is used. Bates²¹ has shown that the relatic nship between the maximum buffer value, B_{max} , and concentration of a buffer, C, can be written as:

$$B_{\rm max} = 0.576 \ C$$

Thus, a given concentration of phosphate would have the same buffer value at a pH near 7 that the same concentration of borate would have at a pH near 9. The selection of the buffer system is important in determining the pH to be maintained. From a strictly chemical standpoint, selecting a borate for the buffer to maintain a pH near 9 is just as simple as selecting a phosphate to maintain a pH near 7.

Irradiation time	[H*]	[NO ₃]
(h)	from pH	from ion electrode
6 12 22 65	$\begin{array}{r} 3.2 \times 10^{-5} \\ 6.3 \times 10^{-5} \\ 1.0 \times 10^{-6} \\ 2.5 \times 10^{-6} \\ 5.0 \times 10^{-6} \end{array}$	$\begin{array}{c} 6.5 \times 10^{3} \\ 5.7 \times 10^{3} \\ 1.0 \times 10^{4} \\ 1.8 \times 10^{4} \\ 4.0 \times 10^{4} \end{array}$

Table 3.2 Concentrations of H⁺ and NO₅ in water due to irradiation

*100 mL in closed 200-mL container at rate of 0.6 Mrad/h.

Table 3.3 Effects of irrradiation dose on pH in trisodium phosphate solution

Time (b)	pН
0	9.0
4	6.4
7	6.5
23	6.5
41	4.7
63	3.9

Dose rate, 0.53 Mrad/h.

Recently, a patent was issued for a method of pH control and gettering of iodine species which employs well-dispersed silver carbonate.²²

3.3 Processes That Alter the Chemical Forms of Iodine in Containment

3.3.1 Radiolysis

3.3.1.1 Description of Calculated Model

In the presence of radiation, the equilibrium formation of l_2 from 1 is strongly dependent on pH and weakly on temperature and concentration. Ignoring the last two effects,⁴ this dependence can be written as

$$F(pH) = equilibrium fraction = \frac{[l_2]}{[l_2] + [l_1]}$$
(18)

where [x] is the concentration of 1, or 1 (g-atom/L). Data from Lin,²³ as shown in Figure 3.1, illustrate this effect for several initial concentrations and pH values using solutions that were at ambient temperature and had been irradiated for 1 h at 4.5 Mrad/h. The final pH values were not indicated but probably decreased slightly since no ment on is made of buffering in the experiment. The values of pH > aay not be quantitatively useful since the very small conversion fractions are probably incorrect due to measurement error. As seen in Figure 3.1, F is near 0 for pH >7 and near 1 for pH <2 but experiences a drastic change in the

Figure 3.1 Radiolytic conversion of I to I2 [data from C. C. Lin, J. Inorg. Nucl. Chem. 42, 1101 (1980)]

range 3 < pH < 4. As discussed in Appendix C, this can be effectively modeled by the functional form

$$F = [1 + e^{* pH + \beta}]^{-1}$$
 (19)

Equation '9 was fit to Lin's data by minimizing the sum of least-squares residuals, which yields

$$\alpha = 1.72$$
 $\beta = -6.08$ (20)

Similar data are given by Naritami et al.²⁴ for 5 s pH s 9. They subjected borated 1 solutions of 10⁻⁷, 10⁻⁵, and 10⁻⁶ mol/L to much lower dose rates (⁶⁶Co gamma rays of 0.1 Mrad/h) for 1 h. The model of Equations 19 and 20 gives a good match to these data for concentrations of 10⁻⁴ mol/L, although the model overestimates conversion for the lower concentrations.

If the pH is maintained sufficiently high through buffering or addition of sufficient basic material, very little conversion will occur. In this case, most iodine remains dissolved as I. Lin's data generally indicate <1% conversion at pH = 7. This value declines as the total iodine concentration decreases. The data of Naritomi show a conversion of 0.2% for iodide concentrations of 10⁻⁴ mol/L and 0.01% at lower concentrations. Data measured for this study indicate that for a dose rate of 0.35 Mrad/h, an iodine concentration of 10⁻⁴ mol/L conversion was 0.003% after 4 h irradiation and 0.03% after 24 h. The last value, 0.03%, has been used in the present work.

If the pH level is not deliberately controlled, it may decrease sufficiently to allow considerable conversion of 1 to l_2 . The primary mechanism is radiolytic generation of nitric acid , .e Section 3.2.2). If the pH is neutral initially, then this effect soon dominates, resulting in

$$[H^*] = 10^4 g(HNO_3) \frac{E_{dep}}{V_L N_a}$$
 (21)

where

$$[H^*] = \text{concentration of } H^* (\text{mol/L}),$$

 $g(\text{HNO}_3) = \text{rate of HNO}_3 \text{ production} \\ \text{due to irradiation (molecules/100 eV)}, \\ E_{dep} = \text{total energy deposition due to fission} \\ \text{product decay (MeV)}, \\ V_L = \text{volume of water (L)}, \\ N_e = 6.022 \times 10^{23} \text{ (molecules/mol)}. \end{cases}$

The data in Table 3.2 indicate that at 30°C (86°F)

$$g(HNO_s) = 0.007 \ molecules/100 \ eV$$
 (22)

This relationship is based on radiation absorption by the aqueous phase. The actual mechanism for the formation of nitric acid is not known. It may occur in the aqueous phase, in the gas phase, or at the gas surface interface. The containment water volume, V_t , is usually constant over the period during and subsequent to significant fission product releases.

The energy deposition over a time Δt is

$$E_{den} = \vec{E}_{den} \,\Delta t = \Delta t \sum m_j \,\dot{e}_j \tag{2.3}$$

where

Al	38	time (h),
É		total energy deposition rate (MeV/h),
m	- 10	mass of nuclide group j in pool (g),
ė,	=	energy deposition rate per unit mass of
		nuclide group / (McV/h·g).

Various groupings of fission products and actinides have been considered in past safety studies. A grouping compatible with that used in STCP accident studies was selected for this study (see Table 3.4). The specific energy deposition rate e_{1} for each group depends on the relative distribution of radioactive nuclides, which, in turn, depends on such factors as fuel enrichment, power history, and additives or other materials in the fuel or reactor.

A detailed analysis of Browns Ferry (a large BWK with Mark I containment) accident sequences has been performed by ORNL staff members. Using the ORIGEN2 code,³⁵ nuclide inventories were determined for the highest and lowest power of each type of fuel

19

NUREG/CR-5732

lodine Behavior

Group index,	Characteristic clement	Included nuclides	Energy deposition rate, $\dot{e}_j \times 10^{10}$ (MeV/h·kg)
1	1	I. Br	425.0
2	Cs	Cs. Rb	3.971
3	Te	Te, Se, Sb	20.05
4	Sr	St	31.25
5	Ba	Ba	8.900
6	Ru	Ru, Tc, Rh, Mo, Pd	6.613
7	Ce	Ce, Pu, Np	1.540
8	La	La, Am, Cm, Y, Pr, Nd, Pm, Sm, Eu, Zr, Nb	25.46
9	Xc	Xe, Kr	2.902

Table 3.4 Nuclide groupings and group-specific energy deposition rates

Includes only fission products.

assembly in the cycle 6 fuel loading. Nuclide inventories for every assembly in the reactor were then determined by interpolation based on power history, using the high and low cases for that assembly type These inventories were subsequently combined to obtain a total core inventory for every fission product nuclide of significance either in mass or decay energy at 5 h after shutdown. Assuming all decay energy is absorbed, the total inventories were used with decay energy data for each nuclide to obtain energy deposition rates e_i for each fission product group, which are also shown in Table 3.4. Complete details of this calculation can be found in Reference 26.

The group energy deposition rates for the Browns Ferry BWR are applied to all sequences considered in the present study. This is a very legitimate assumption for the Peach Bottom plant, which is also a BWR-Mark I nearly identical to Browns Ferry in size and design. A similar assumption is also made for Grand Gulf, also a BWR. These assumptions are analogous to those made in previous reports^{1,2} using ORNL calculations for the Browns Ferry cycle 4 loading. While PWRs have many characteristics different from BWRs, the fission process results in the same distribution of fission products. Although the final distribution is somewhat affected by geometry and additives, the group energy deposition rates are assumed to be sufficiently similar to BWR values to permit use of the values in Table 3.4 for Sequoyah and Surry sequences.

3.3.1.2. Mass Manipulations

The group masses m_i are obtained by multiplying the total core inventory m_i by the estimated fractional release into containment

$$m_j = f_j \ \overline{m}_j \tag{24}$$

Total core inventories for the plants are those identified in previous reports^{1,2} and are given in Appendix D. Various estimates of the fractional releases f_j can be obtained from Nourbakhsh.²⁷ He has compiled results from many STCP accident calculations (including those mentioned in this study) and has stated bounding estimates for the fractions of core inventory released into containment due to the following effects:

- release from RCS prior to vessel failure
- (2) release at vessel breach
- (3) ex-vessel release due primarily to core-concrete interactions

NUREG/CR-5732

lodine Behavior

(4) late revolatilization from the RCS.

Categories 1, 2, and 4 can be combined to yield a total release into the containment from the primary system. The release fractions adopted from Nourbakhsh and used in this study are shown in Table D.2 of Appendix D.

Finally, Δt in Equation 23 is the time needed to reach the approximate steady state. In general, the first phase of an accident can be considered to reach steady state in 10 to 15 h (see Section 3.1), and this is the time range considered for Δt . The pH can be calculated from

$$pH = -log_{10} [H^*] = -ln [H^*]/ln 10$$

and the fractional conversion in Equation 18 then takes the form

$$F = \left[1 + e^{8} (H^{-1})^{-\frac{6}{(H-1)}}\right]^{-1} = \left[1 + 5.55 \times 10^{13} \left(\frac{V_{L}}{E_{dip}}\right)^{0.50}\right]^{-1} \quad (2.5)$$

Thus, when pH is not controlled, fractional conversion is directly dependent on the liquid volume V_L in which radiolysis occurs; the energy deposition E_{dep} , which itself depends on the amounts of radioactive species in water; and the time Δt allowed for the radiolysis process to reach steady-state conditions.

3.3.1.3 Gas-Liquid Partitioning

The equilibrium distribution of a single volatile species, such as I_2 , is represented by the partition coefficient

$$P = \frac{[I_2 (aq)]_{eq}}{[I_2 (g)]_{eq}}$$
(26)

This quantity is inversely related to the Henry's Law constant K (i.e., P = 1/K) and should not be confused with the overall iodine partition coefficients often used in reactor safety studies. Partition coefficients for l_2 were calculated from

$$\log_{10} P = 6.29 - 0.0149 T$$
(27)
T (K)

This relationship gives the experimental value reported by Eguchi et al.³⁶ and by Sanemasa et al.³⁶ at 298 K (77°F). Extrapolation of the experimental results of these investigators to 373 K (212°F) yielded a partition coefficient of 3. Furrer et al.³⁰ reported a calculated partition coefficient at 373 K (212°F) of 9.

Some of the data used in this calculation was based on estimated parameters. Equation 27 gives a partition coefficient of 5.3 at 373 K (212° F), the approximate average of the calculated value, and the extrapolation of the measured values.

While it may take considerable time to approach such equilibration in a large system such as a reactor containment, Equation 26 can still be used to estimate l₂ volatility. In fact, instant equilibration is a conservative assumption since considerable holdup could be expected in real-life situations. A rigorous analysis would consider the delay associated with the evaporation of volatile species from water pools. This phenomenon is not well understood, and only crude models are available. Thus, the escape of l₂ from water pools will be modeled by assuming that Equation 26 holds continuously as l₂ is produced radiolytically.

3.3.1.4 Uas-Phase Reactions: Formation of Organic lodides

The process of converting I_2 into organic iodides (chiefly CH₃I) is still not fully understood. Postma and Zavodoski³¹ reviewed production rates from about 70 containment tests and determined that the asymptotic steady-state conversion to CH₃I was

vercent I, converted = 0.19
$$C_{mo}^{-0.26}$$
, (20)

where $C_{mo} = initial I_2$ concentration (mg/m³). This equation was based on 69 containment experiments. In a more recent review, Beahm et al.⁵ described formation using the rate equation

1283

Iodine Behavior

$$\frac{dC_{\sigma}}{dt} = \alpha (C^* - C_{\sigma}) \tag{29}$$

where

 α = formation rate constant (s⁻¹), C_{α} = organic lodide concentration

(mg iodine/m³),

 C^* = steady-state organic iodide concentration (mg iodine/m³).

They assigned the constant value $\alpha = 0.0051$ based on empirical evidence and used

$$C^* \approx 0.0189 C_{au}^{0.82}$$
 (30)

in place of Equation 28. This equation was based on containment experiments performed with irradiated fuel rather than simulated materials. The percent conversion to organic iodide when irradiated fuel was used was somewhat g. and than that obtained from simulant materials (cf. Figure 4, Reference 5).

By converting units to g-atom/L, Equation 30 can be rewritten as

$$[CH_{3}I] = \beta [L_{3}]^{0.82}$$
 (31)

where $\beta = 0.0189 (10^6 \cdot MW)^{-0.18}$, MW being the molecular weight of 1. For MW = 130, then $\beta = 6.55 \times 10^{-4}$, which indicates that generally <1% of gaseous iodine will be organic.

3.3.1.5 Overall Behavior

As described in the previous sections, the distribution of species throughout the gas and liquid phases can be estimated from models for three basic processes: radiolytic conversion of 1 to I_2 in water, evaporation of I_2 , and gas-phase formation of organic iodides. Defining the desired quantities as concentration variables (g-atom/L)

$$\begin{array}{l} C_1 \ = \ [I_2 \ (aq)], \ C_2 \ = \ [I_2 \ (g)], \ C_3 \ = \ [I^- \ (aq)], \\ C_4 \ = \ [CH_{*}I \ (g)] \end{array}$$

Equations 26, 18, and 31 can be rewritten as

$$C_1 = PC_2$$
 (32a)

$$C_3 = \frac{(1 - \hat{F})}{F} C_1$$
 (32b)

$$C_4 = \beta C_2^{0.82}$$
 (32c)

In addition, the total iodine inventory N_T (g-atom) is equal to the initial 1 entering the containment and remains constant throughout the distribution process:

$$N_T = V_L (C_1 + C_3) + V_R (C_2 + C_4)$$
 (32d)

There are four equations (Eqs. 32a-32d) and four unknowns (C_{i} , C_{2} , C_{3} , and C_{4}); all equations except Equation 32c are linear, and its nonlinearities are very mild.

To obtain solutions to the system, Equations 32a-32c are substituted into Equation 32d, yielding

$$N_T = \frac{V_L}{F} PC_2 + V_g (C_2 + \beta C_2^{0.82})$$
(33)

which can be arranged into the form

$$C_2 = \frac{\left(N_T - V_g \beta C_2^{0.82}\right)}{\left(\frac{PV_L}{F} + V_g\right)}$$
(34)

This represents a convenient form for fixed-point iteration, which usually converges to a relative error of 10^4 within three to five iterations. Once C_2 has been determined from Equation 34, the other concentrations are obtained from Equations 32a-32c.

Because organic iodide is such a small part of the total, it is helpful to examine the distribution behavior without considering organic iodide. By ignoring Equation 32c, Equation 33 becomes

$$N_T = \frac{V_L}{F} P C_1 + V_g C_2$$

which can be rearranged to obtain

$$\frac{N_2}{N_T} = \left(1 + \frac{V_L P}{V_g F}\right)^{-1} \tag{35}$$

where $N_2 = V_g C_2 = g$ -atom of I₂ in gas. Equation 3.^o is a convenient expression of the fraction of iodine that is volatilized. (Consideration of organic iodide will increase this fraction very slightly.) For the case of uncontrolled pH, substitution of Equation 25 into Equation 3.3 yields

$$\frac{N_2}{N_T} = \left\{ 1 + \frac{V_L P}{V_g} \left[1 + 5.55 \times 10^{13} \left(\frac{V_L}{E_{dop}} \right)^{0.747} \right]^{-1}$$
(36)

which is an expression for the fraction of volatile iodine (as l_2). To use Equation 35 or 36, it is necessary to estimate the characteristics or approximate values for each of the following quantities:

> V_L , V_g = liquid and gas volumes (L), T = air-water interface temperative (which permits computation of the partition coefficient P by Equation 27).

For the case of uncontrolled pH, it is also necessary to obtain

 $m_i = masses of fission products in the containment (from which the dose term <math>E_{dep}$ is calculated by Equation 24),

<u>A</u>t = approximate duration of the radiolysis phase(s) in category 1 (see Section 3.1).

If Equation 35 or 36 is used instead of solving the nonlinear E_{3} , ation 34, then a good approximation to the airborne organic iodide inventory can be obtained

by simply using Equation 32c. Furthermore, Equations 35 and 36 are in particularly convenient form not only to estimate iodine volatility, but also to estimate the individual phenomena and their impact on overall behavior.

3.3.2 Results of Iodine Behavior in Containment

The analysis described in Section 3.3.1 has been applied to each of the seven accident sequences listed in Table 1.1. Using whole core inventories from previous reports,¹² the release fractions of Nourbakhsh²⁷ (including both vessel and core-concrete releases), and the nuclide group energy deposition rates in Table 3.4, the energy deposition rate \hat{E}_{dep} can be calculated for each plant using Equations 23 and 24. The results are shown in Appendix E.

Once the energy deposition has been computed, the remaining quantities can be calculated by solving the system of equations 32. Liquid and gas volumes and temperatures were obtained from sequence documentation.^{1,2} The gas volumes used for BWRs include all primary containment space, although it may sometimes be appropriate to use only wetwell airspace, depending on sequence considerations. Partition coefficients were calculated as functions of temperature from Equation 27. The total iodine inventory initially deposited in water as I was calculated using previously mentioned mats inventories and release fractions and assuming a molecular weight of 130.

These various data and the quantities calcul 1111 them are listed for each accident sequence is Table 3.5. From the table, it appears that PW exhibit dose rates considerably higher than do BWRs, contributing to the much higher conversion fractions. The presence of extremely large water voluties is a distinct advantage for BWRs in this regard. The conversion data of Lin2 were taken at a dose rate of 4.5 Mrad/h in the range of PWR rater. The data taken at ORNL are generally is the range of BWR dose rates (i.e., 0.35 to 0.6 Mra., h). Both sets of data indicate that conversion is dominated by pH effects. In this study, two scenarios were evaluated: (1) control of pH above 7 and (2) uncontrolled pH with resulting drops below 7 due to nitric acid. For

Plani	Accident	Volume (m ³)		-					Aqueous $I_2 (\%)^{\dagger}$	
		Liquid	Gas	(°C)	Coefficient	E _{ttop} (MeV/a)* × 10 ⁻²³	Dose rate (Mrad/h)	Total I (g-mol)	$\Delta t = 10 h$	Δt = 15 ł
Grand	ТСү	4550	39650	102	5.0	1.2778	0.45	122.5	14	18
Gulf	TQUVY	5171	39650	60	21.2	1.3020	0,40	136.2	-13	18
Peach	ΑΕγ	4000	7873	54	26.0	1.2223	0.49	127.7	16	21
Bottom	TC2	4500	7873	118	2.9	1.1997	0.43	114.9	14	19
Sequoyah	TBA	1465	36404	112	3.6	0.9267	1.01	105.2	24	30
Surry	TMLB'	115	51000	93	6.8	0.5136	7.16	57.2	59	67
	AB	172	51000	112	3.6	0.6912	6.44	85.8	58	65

Table 3.5 Data for equilibrium analysis of example sequences

^{*}Calculated /rom Equation 23. ^{**}Calculated from the expression: dose rate (Mrad/b) = $1.60219 \times 10^{-20} E_{dep}/(pV_1)$, where p = 1 kg/L is assumed. ^{*}Calculated from Equation 19.

this calculation, it was not necessary to specify the material that was used to control the pH at 7 or above.

If the pH is controlled so that it stays above 7, a reasonable value for the fraction of 1 converted to I_2 is 3×10^4 (Sc tion 3.3.1.1). Using this and the other computed quantities in Table 3.5, the system of equations 32 is solved to yield the species distributions in Table 3.6. It should be noted that data in Tables 3.5 and 3.6 refer to the total iodine in containment, not the core inventory of iodine. Table 3.6 indicates a small production of volatiles for PWRs but virtually none for BWRs.

Such results are strongly dependent on the aqueous conversion fraction of $F = 3 \times 10^{-4}$, which represents a best estimate of the maximum from ORNL data. Thus, if pH is maintained at 7 or above, only a small additional amount of I_2 is expected in the gas phase in PWR systems.

If the pH falls below 7, a system for conrolling pH is not being used and the decreased pH results in a larger fraction of aqueous I being converted to I₂. Evaporation of this volatile species so as to maintain equilibrium partitioning will result in greater atmospheric I₂. This, in turn, yields higher organic iodide concentrations. The aqueous conversion fraction itself is determined from Equation 25, which requires a value for the equilibration time Δt . As discussed in Section 3.3.1, a value of $\Delta t = 15$ h is appropriate and yields the results shown in Table 3.7 for the equilibrium species distributions. As expected, the levels of airborne volatiles are much higher than in the controlled case, indicating almost complete conversion for PWRs.

The gaseous I_2 fraction is considerably higher in PWRs than in BWRs because the large water volutaes in the latter both lower the dose rate and retain greater quantities of dissolved I_2 . This last effect also depends on the gas volume and the ratio of gas to liquid volumes. It is ironic that the relatively small gas space in the Peach Bottom reactor (generally a safety liability) permits noticeably less evaporation than other reactors, resulting in the lowest gaseous I_2 fractions.

The other principal effect is due to temperature — th. I_2 partition coefficient changes markedly over the range of temperatures used. This is most noticeable in the BWR sequences where different sequences at the same plant show large differences in the airborne I_2 fraction. Thus, an increase in containment temperature (at the gas-liquid interface) from 60 to 115° C (140 to 239° F) produces nearly an order of magnitude increase in the airborne fraction.

The organic iodide is present in PWRs at about 0.5%of core inventory; in BWRs, this concentration is closer to 0.1%. The I₂ generated by the radiolytic conversion of F dominates the amount released as I₂ from the RCS. Further, based on the equilibrium assumption, the presence of some I₂ already airborne will result in k is evaporation of I₂ formed radiolytically. Hence, for the case of uncontrolled pH, the cumulative total is well represented by the equilibrium amount formed within containment.

3.3.3 Evaporation to Dryness

Water pools or condensate puddles may evaporate in containment and provide a mechanism for the release of dissolved aqueous iodine to the gas. As with all processes involving aqueous iodine, the extent of volatile iodine produced is related to pH. Table 3.8 gives percentages of volatile iodine produced when 1×10^4 mol/L CsI solutions were evaporated to dryness at 95°C. Radiation increased the percentage of volatile iodine by about an order of magnitude. In solutions where the initial pH was 7 or below, there was a rapid decrease in pH just before dryness.

The overall impact of evaporation to drynes will depend on the extent to which it occurs in containment.

			line in containment (9	(%)	
Plant	Accident	I ₂ (g)	I ₂ (l)	I (I)	CH ₃ I (g)
	and the second s				
Grand Gulf	TC Y	0.05	0.03	99.92	0.001
	TQUV Y	0.01	0.03	99,96	0.0003
Peach Bottom	ΑΕ γ	0.002	0.03	99,97	0.0001
	TC2 Y	0.02	0.03	99.95	0.0004
Sequoyah	TBA	0.21	0.03	99.76	0.004
Surry	TMLB' y	1.9	0.03	98.0	0.03
	AB Y	2.4	0.03	97.5	0.03

Table 3.6 Distribution of iodine species for pH controlled above 7

26
Plant			Fraction of total iodi	ne in containment (%)	
	Accident	I ₂ (g)	I ₂ (1)	(1)	CH ₃ I (g)
Grand Gulf	TC y	26.6	15.3	58.0	0.2
	TQUV y	6.6	18.3	75.1	0.06
Peach Bottom	ΑΕ Υ	1.6	21.6	76.8	6.01
	ΤC2 Υ	10.9	18.0	71.0	0.07
Sequoyah	TBA	69.2	9,9	20.5	0.4
Surry	TMLB' y	97.1	1.5	0.7	0.7
	AB y	97.6	1.2	0.6	0.6

Table 3.7 Distribution of iodine species for uncontrolled pH

Test cond	itions	P	ercent volatile	
Initial pH	Borate (M)	Without radiation	With radiation (total dose, 2.1 MR)	Final pH just before dryness
	0.2	72	>99	1.8 to 2.0
4.4	0*	2.0		3.6
4.4	0.2	6.8	55	2.0 to 2.2
7.0	0.2		32	3.0
Pure water	0	1.6	21	
9.0	0.2	1.8	22	8.5

Table 3.8 Iodine volatility of 1×10^4 mol/L CsI solutions during evaporation to dryness

*Phosphoric acid added to adjust the "H to 4.4.

. .

28

4 Technical Findings

4.1 Perspective and Scope of Study

This study assumed that iodine forms in containment can be delimited by an examination of the seven severe accident sequences in LWR plants, along with an evaluation of associated processes. The associated processes include the deposition of CsOH on RCS surfaces and the effects of radiolysis. The issue is the chemical form of iodine that may be produced in the RCS and in containment — not the ultimate disposition of the various chemical forms. For example, it is likely that much of the gaseous I₂ in entainment would be removed by engineered safety features or would deposit on painted or metal surfaces.

4.2 Assessment of Iodine Chemical Forms in the RCS

The maximum iodine as I plus HI calculated for the seven severe accident sequences is 3.2%. Iodine in all forms other than I, HI, and CsI is estimated to be less than 1%. Although this analysis only considered seven sequences at four plants, it is reasonable to consider that a maximum of 5% of the iodine would be present as elemental iodine and HI for all accident sequences. A minimum value would not be expected to be less than 1%. The remaining 95% of the iodine would be as CsI.

The gaseous forms of iodine that entered containment from the RCS were given in terms of both elemental iodine and HI. There is a fundamental reason for this. The two forms of iodine are related by

$$I + \frac{1}{2}H_2 = HI$$
 (37)

In the temperature range of 1000 to 2000 K, thermochemical data for this reaction were fit to give

$$\frac{P_{HI}}{P_{I}} = (P_{H_{I}})^{-1/2} + \exp\left(\frac{1.024 \times 10^{4}}{T} - 5.645\right) \quad (38)$$

Lower temperatures and higher hydrogen pressures tend to favor HI over I, with the opposite conditions favoring I over HI. Five percent of iodine as I plus HI, with not less than 1% in either form, means that the P_{td} -to- P_1 ratio in Equation 38 would range from 0.25 to 4. With a hydrogen pressure of 1 atm, this would occur in the temperature range of 1456 to 2404 K (2161 to 3868° F); with a hydrogen pressure of 10 atm, it would occur in the temperature range of 1251 to 1893 K (1792 to 2948° F). These conditions are reasonable for situations that lead to the formation of I or HI.

The major uncertainty is the extent to which CsOH will react with oxide materials and reduce its vapor pressure. If the reaction of CsOH is to have a major impact on the iodine chemical forms, most of it (certainly more than 90%) must be fixed at a very low vapor pressure.

4.3 Assessment of Iodine Chemical Forms in Containment

The production of I₂ in containment will be directly related to the pH levels of the water pools. As iliustrated in Figure 4.1, failure to control the pH at or above 7 could result in an increase of l₂ in the atmosphere of between 4,100 and 33,000% as conipared with the case where pH is controlled for PWRs. Essentially all of the I₂ could become gaseous in the PWRs without pH control. For BWRs, the increase is between 53,000 and 80,000%, with about 25% of the I₂ becoming gaseous. "The dramatic difference in the amount of I, between the cases where pH was uncontrolled below 7 and the controlled cases speak for themselves. A major uncertainty is the extent of evaporation to dryness. From 2 to 20% of the iodine in water pools that have evaporated could be convert. I to a volatile form, most likely as I,

NUREG/CR-5732

Technical Findings

GRNL DWG 91A-683R

Figure 4.1 Additional atmospheric clemental iodine released

5 References

- Gieseke, J. A. et al., "Radionuclide Release Under Specific LWR Accident Conditions," BMI-2104, Battelle Columbus Laboratories, 1984.
- Denning, R. S. et al., "Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR-4624 (BMI-2139), Battelle Columbus Laboratories, 1986.
- FACT, a copyrighted product of THERMFACT Ltd., 447 Berwich Ave., Mount-Royal, Quebec, Canada, H3R 1Z8.
- Wisby, S. J. et al., "Iodine Behavior in Containment Under LWR Accident Conditions," pp. 6-29 in Proceedings of the Symposium on Chemical Phenomena Associated with Radioactivity Releases During Severe Nuclear Plant Accidents, Anaheim, Calif., September 1986.
- Beahm, E. C., W. E. Shockley, and O. L. Culberson, "Organic Iodide Formation Following Nuclear Reactor Accidents," NUREG/CR-4327, Oak Ridge National Laboratory, 1985.
- Lemire, R. J. et al. "Assessment of lodine Behavior in Reactor Containment Buildings from a Chemical Perspective," AECL-6812, 1981.
- Burns, W. G. et al., "The Radiolysis of Aqueous Solutions of Caesium Iodide and Caesium Iodate," AERE-R-13520, 1990.
- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.3, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Boiling Water Reactors," June 1974.
- U.S. Nuclear Regulatory Commission, Regulation Guide 1.4, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors," June 1974.

- Wooten, R. O., P. Cybulskis, and S. F. Quayle, "MARCH2 Meltdown Accident Response Characteristic Code Description and User's Manual," NUREG/CR-3988 (BMI-2115), Battelle Columbus Laboratories, 1984.
- Jordan, H. and M. R. Kuhlman, "TRAP-MELT User's Manual," NUREG/CR-4205 (BMI-2'24). Battelle Columbus Laboratories, 1985.
- Chance, E. M. et al., "FACSIMILE: A Computer Program for Flow and Chemistry Simulation, and General Initial Value Problems," AERE-R-8775, AERE Harwell, December 1977.
- Johnson, I. et al., "Downstream Behavior of Volatile Iodine, Cesium, and Tellurium Fission Products," EPRI NP-6182, January 1989.
- Silberberg, M. et al., "Reassessment of Technical Bases for Estimating Source Terms," NUREG-0956, U.S. Nuclear Regulatory Convaission, July 1986.
- Megaw, W. J. and F. G. May, "The Behavior of Iodine Released in Reactor Containers," J. Nucl. Energy, Pts. A/B, 16, 427 (1962).
- Croft, J. F. and R. S. Isles, "Experimental Release of Radioiodine in the Zenith Reactor Containment," AEEW-R-172, 1962.
- Parker, G. W., G. E. Creek, and W. J. Martin, "Fission Product Transport and Behavior in the Stainless Steel-Lined Containment Research Installation," ORNL-4502, 1971.
- Hilliard, R. K. and L. F. Coleman, "Natural Transport Effects on Fission Product Behavior in the Containment Systems Experiment," BNWL-1457, 1970.

References

- Cline, J. E. et al., "Measurements of ¹²⁹I and Radioactive Particulate Concentrations in the TMI-2 Containment Atmosphere During and After the Venting," GEND-009, April 1981.
- Lillian, D. et al., Environ. Sci. Technol. 12, 1042 (1975).
- Bates, R. G., Determination of pH, p. 99, Wiley, New York, 1964.
- Beahm, E. C. and W. E. Shockley, "Method for Gettering Organic, Inorganic, and Elemental Iodine in Aqueous Solutions," Patent ESID 518-X (April 1989).
- Lin, C. C., "Chemical Effects of Gamma Radiation on Iodine in Aqueous Solutions," J. Inorg. Nucl. Chem. 42, 1101 (1980).
- Naritami, M. et al., "Batch-Type Tests on Formation of Volatile Iodine Species from Aqueous Iodide Solutions Under "Co γ-Ray Irradiation," Proceedings of the Third CSNI Workshop on Iodine Chemistry in Reactor Safety, Sept. 11-13, 1991, Foaki-mura, Japan.
- Croff, A. G., "ORIGEN2 A Revised and Updated Version of the Oak Ridge Isotope Generation and Depletion Code," ORNL-5621, Oak Ridge National Laboratory, July 1980.
- Weber, C. F., "Calculation of Absorbed Doses to Water Pools in Severe Accident Sequences," ORNL/CSD/TM-274, Oak Ridge National Laboratory, 1991.
- Nourbakhsh, H. P., "Estimate of Radionuclide Release Characteristics into Containment Under Severe Accident Conditions (Draft for Comment)," NUREG/CR-574", Brookhaven National Laboratory, December 1991.

- Eguchi, W., M. Adachi, and M. Yoneda, J. Chem. Eng. Jpn. 6, 389 (1973).
- Sanemasa, I. et al., Bull. Chem. Soc. Jpn. 57, 1352 (1984).
- Furrer, M., R. C. Cripps, and R. Gubler, Nucl. Technol. 70, 290 (1985).
- Postma, A. K. and R. V. Zavodoski, "Review of Organic Iodide Formation Under Accident Conditions in Water-Cooled Reactors," WASH-1233, U.S. Atomic Energy Commission, 1972.
- Wren, D. J., "Kinetics of Iodine and Cesium Reactions in the CANDU Reactor Primary Heat Transport System Under Accident Conditions," AECL-7781, April 1983.
- Frost, A. and B. Pearson, Kinetics and Mechanism, 2nd ed., p. 104, Wiley, New York, 1961.
- Loronz, K., H. Wagner, and R. Zellner, Ber. Buns. Phys. Chem. 83, 556 (1979).
- Kondrat'ev, V., Kinetics of Chemical Gas Reactions, AEC-tr-4493, 1958.
- Chase, M. W., Jr. et al., JANAF Thermochemical Tables, 3rd ed., American Chemical Society, Washington, D.C., 1986.
- Barin, I. and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973.

Appendix A. Data from Accident Sequence Calculations

	Flow rate from	core (lb/s)	Core exit	Prossure
Tirac (8)	Hydrogen	Total	(°F)	(psia)
5391	0.0	0.543E+03	363	146
5301	0.0	0.591E + 02	565	117
55/14	0.319E-06	0.560E+02	578	117
\$\$99	0.109E-05	$0.480E \pm 02$	600	116
\$553	0.656E-05	$0.394E \pm 02$	641	115
5588	0.399E-04	0.333E+02	685	113
\$612	0.112E-03	$0.301E \pm 02$	710	112
5642	0.348E-03	0.270E+02	738	111
5678	0.110E-02	0.242E+02	768	110
5726	0.37015-02	$0.208E \pm 02$	803	109
5756	0.669E-02	0.193E + 02	825	108
5822	0.1772-01	0.138E+02	849	106
5858	0.181E-01	0.115E+02	851	105
5074	0.212E-01	0.956E+01	867	103
5978	0.251E-01	0.936E+01	884	102
6032	0.303E-01	0.884E+01	902	101
6080	0.360E-01	0.841E+01	920	100
6122	0.420E-01	0.822E+01	934	99
6182	0.525E-01	0.762E+01	963	98
6218	0.601E-01	0.724E+01	978	97
6284	0.772E-01	0.643E+01	1004	96
6326	0.901E-01	0.611E+01	1021	95
6380	0.110E+00	0.579E+01	1042	94
6446	0.139E+00	0.527E+01	1069	-93
6512	0.172E+00	0.472E+01	1094	92
6578	0.212E+00	0.412E / 71	1120	91
6647	0.251E+00	0.410E+01	1144	90
6691	0.270E+00	0.361E + 01	1159	- 89
6742	0.301E+00	0.310E+01	1176	89
6836	0.302E+00	0.190E+01	1206	87
6911	0.308E+00	0.162E+01	1231	87
6974	0.320E+00	0.135E+01	1252	- 86
7075	0.308E+00	0.119E+01	1283	85
7126	0.300E+00	0.113E+01	1298	84
7176	0.294E+00	0.107E+01	1313	84
7252	0.286E+00	0.983E+00	1334	83
7327	0.280E+00	0.886E+00	1355	- 82
7390	0.274E+00	0.809E+00	1374	82
7478	0.269E+00	0.692E+00	1402	81
7617	0.257E+00	0.569E+00	1444	80

Table A.1 Grand Gulf TC--MERGE output data from MARCH2

Time	Flow rate from	core (lb/s)	Core exit	
(5)	Hydrogen	Total	(°F)	(psia)
7705	0.2455.400	0.5500.100	4.420	
7831	0.2436 ± 00	0.3398 + 00	1409	79
7005	0.2187.4.00	0.5028 +00	1504	78
8150	0.206E±00	0.42182+00	1550	77
8260	0.10017+00	0.4316 +00	1393	76
8308	0.1995+00	0.4066.400	1024	75
8474	0.180E+00	0.3472+00	1037	75
8600	0.168E + 00	0.3475.400	1070	74
8688	0.160E+00	0.3026700	1703	74
8827	0.1498 + (0)	0.2192.100	1720	73
9129	$0.127E \pm 00$	0.275 + 00	1740	13
9356	0.108E+00	0.1275700	1040	12
9734	0.9208.01	0.1005+00	1074	71
10409	0.5788.01	0.52012-01	19030	70
10484	0.630E.01	0.5780-01	2019	70
10514	0.525E+01	0.0372-01	20194	70
10559	$0.796E \pm 0.0$	0.7065 + 01	2210	70
10574	0.0	0.0	2200	75.1
10769	0.0	0.0	761	70
10784	0.206E+01	0.206E+01	2206	70
10814	$0.436E \pm 01$	0.2(6)(5+0)	2347	70
10874	$0.480E \pm 01$	0.958E±01	2547	70
10904	$0.107E \pm 02$	0.166E+02	2200	125
10915	0.176E + 02	0.278E + 02	3/16	140
10924	0.0	0.513E+01	208	112
10931	0.0	0.0	801	113
10962	0.0	0.0	891	107
10969	0.0	0.837E+02	315	70
10975	0.0	0.201E+03	312	25
10987	0.0	0.219E+03	304	70
11000	0.0	0.318E+02	304	76
11027	0.0	0.420E + 02	305	70
11871	0.0	0.468E+02	303	20
13251	0.0	0.470E+02	303	71
13257	0.0	0.318E+03	309	70
13277	0.0	0.453E+02	3/13	71
15067	0.0	$0.481E \pm 02$	303	70
15095	0.0	$0.181E \pm 01$	302	20
15115	0.0	0.0	345	70
15410	0.0	0.0	345	70

Table A.1 (Continued)

	Plows from	n core (g/s)
(8)	CsJ	CSOH
6	41.5	414
96	9.81	59.3
276	11.7	70.6
444	12.3	74.si
612	11.8	73.9
780	12.0	72.5
960	11.0	66.5
1150	10.4	62.7
1340	9.69	58.5
1550	8.57	51.8
1780	8.08	48.9
2070	7.10	43.0
2440	6.17	37.3
2810	5.70	34.5
3111	12.5	75.6
3290	15.9	96.0
3490	7.06	42.7
3760	0.98	5.9
4020	0.27	1.6
5350	0.08	0.5

Table A.2 Grand Gulf TC--MARCH2 output for input to TRAP-MELT

Tinsc Press (8) (psia	Program	Average gas temperature (°F)				
	(psia)	Volume 1	Volume 2	Voiume 3	Volume 4	
0	1370	640	597	590	582	
135	1420	640	597	590	582	
405	1520	640	597	590	582	
675	1620	651	603	590	582	
945	1720	651	603	590	582	
1230	1830	651	603	590	582	
1530	1930	661	608	590	582	
1830	2030	661	608	590	582	
2160	2120	661	608	590	582	
2490	2210	669	612	590	582	
2810	2300	679	615	583	585	
3100	2960	1040	730	768	664	
3360	1740	1830	1420	1420	1170	
3630	568	1290	1420	1120	1240	
3930	567	860	1080	836	1040	
4250	567	686	812	697	832	
4580	603	669	764	668	800	
4890	613	675	755	667	805	
5400	613	675	755	667	805	

Table A.3 Grand Gulf TC-MARCH2 output for input to TRAP-MELT

100 A	Flow rate from	m core (lb/s)	Core exit
(§)	H	Total	(° F)
0	0.0441	11.6	1255
120	0.0661	9.95	1315
180	0.0799	9.26	1346
300	0.114	8.30	1411
360	0.136	7.79	1444
420	0.162	7.01	1476
480	0.156	131	1765
543	0.132	110	1848
605	0.118	93.8	1902
664	0.109	83.5	1945
725	0.104	76.1	1980
843	0.103	62.5	2047
901	0.0966	58.4	20731
10.87	0.0750	44.7	2123
1200	0.0703	37.2	2148
1260	0.0701	34 0	2159
1382	1) 0748	28.8	2190
1565	0.0957	22.9	2250
1622	0.109	21.5	2272
1809	0.225	16.0	2413
1974	0.285	15.0	2514
2222	0.756	7 73	2794
2281	0.812	6.70	2846
2642	0.863	3 30	3053
2704	0.005	0.0	0
3020	0.647	1.42	3064
3064	0.604	1.31	3072
334/	0.638	1.20	3150
3503	0.506	11710	3107
3661	0.295	0.377	3202
3004	0.0802	0.0802	3210
3060	0.0	0.0	0
4287	0.0547	0.0547	3135
4335	0.0127	0.0127	3130
4550	6.0	1.5	3120
4910	0.0	24.7	3100
5380	(11)	67.8	2080
5650	0.0	70.0	2000

Table A.4 Grand Gulf TQUV-MERGE ... utput from MARCH2

	Flow rate f	Flow rate from core (lb/s)	
(8)	H ₂	Total	(° F)
6010	0.0	47.3	2800
6350	0.0	10.3	2740
6720	0.0	3.0	2650
6843	0.0	1.4	2504
7090	0.0	0.95	500
7440	0.0	0.49	500

Table A.4 (Continued)

Note: All entries fiter t = 4335 are from TRAP-MFL3 r_{11}^{max} , with $H_2 = 0$ assumed, and most temperatures assumed (exception is point at t = 6843).

	Flows from core (g/s)		
Time (\$)	Csl	CsOH	
0	36.1	337	
130	8.76	54.1	
325	15.5	93.2	
451	17.6	106	
577	18.1	110	
704	17.8	108	
886	10.3	64.2	
1090	11.6	70.4	
1230	16.1	97.6	
1380	12.5	75.6	
1590	10.3	63.3	
1860	8.08	48.9	
2670	4.67	28.2	
3040	7.07	42.8	
3340	6.85	41.4	
3630	1.33	8.0	
3940	0.35	2.1	
4300	0.18	L	
6840	0.03	0,3	

Table A.5 Grand Gulf TQUV-MARCH2 output for input to TRAP-MELT

Ċ

1

٩

Time (\$)	Drosunro	Average gas temperature (°F)			
	(psia)	Volume 1	Volume 2	Volume 3	Volume 4
0	100	2510	1690	1430	1050
204	81.9	2680	1730	1460	1050
619	56.4	2880	1800	1520	1040
1040	45.8	2970	1840	1550	914
1470	36.3	3150	1900	1580	1040
1.890	32.4	3210	1940	1600	995
2300	31.0	3170	1948	1610	744
2690	78.2	3240	2090	1680	1300
3050	210	2670	2390	1920	1510
3420	327	422	2180	2150	1500
3790	345	431	1320	1740	1130
4150	261	407	936	1290	871
4490	84.6	321	931	1210	839
4860	39.0	268	935	1.0	829
5230	31.0	253	937	1180	819
6.300	26.0	240	938	1170	816
6900	25.0	240	938	1170	816

Table A.6 Grand Gulf TQUV-MARCH2 output for input to TRAP-MELT

8

.

Table A.7 Feach Bottom AE-MERGE output for input to MARCH2

Ø3.

a

and the

Time (s)	Flow rate fro	Core exit	
	H ₂	Total	(°F)
0	0	0	1363
510	0.227	0.354	1363
690	0.219	0.337	1476
930	0.140	0.175	1568
1170	0.196	0.226	1746
1410	0.142	0.145	1865
1650	0.710	0.833	3141
1890	1.02	161	2610
2130	0.232	173	1178
2325	0.028	1.03	1606
2370	0	0	0
7000	0	0	0

NUREG/CR-5732

10 . 2

...

•••

10

	Flows from core (g/s)		
(\$)	Csl	CsOł	
0	1.53	49.4	
270	2.59	32.5	
660	11.0	73.8	
870	17.2	116	
1050	18.5	124	
1230	16.8	113	
1410	14.8	99.6	
1560	27.0	181	
1680	28.9	194	
1890	4.13	27.9	
2340	1.92	12.9	
3390	0.89	5.9	
4500	1.56	19.5	
5250	3.04	20.4	
6300	1.47	9,9	
6990	0.055	0.37	

Table A.8 Peach Bottom AE-MARCH2 output for ieput to TRAP-MELT

10

9

1.

2

_)

.

			Average gas temperature	(°F)
(\$)	(psia)	Volume 1	Volume 2	Volume 3
0	38.2	930	265	265
60	34.6	930	707	366
180	31.8	930	504	471
300	30.9	930	496	376
420	30.5	1220	517	398
600	30.5	1445	541	432
780	30.5	1550	554	430
960	30.5	1645	560	425
1140	30.5	1750	567	442
1260	30.5	1820	582	451
1380	30.6	1900	613	475
1500	34.2	2290	1040	954
1620	68.5	3210	1990	1900
1740	104	3250	2330	2220
1880	122	2340	2200	2120
2030	44	1270	1580	1550
2180	25.2	957	127C	1250
2300	15.4	1240	1340	775
2360	15.4	1240	1340	775
7000	15.4	1240	1340	775

Table A.9 Peach Bottom AE-MARCH2 output for input to TRAP-MELT

Time	Flow rate from	core (lb/s)	Core exit	Pressure
(8)	Hydrogen	Total	(°F)	(psia)
3514	0.0	0.0	690	1105
:736	0.0	0.0	690	1104
3742	$0.180E \pm 00$	0.544E+00	1690	1104
3778	1.257E+(K)	$0.841E \pm 00$	1815	1103
3814	0.524F + 00	0.188E+01	1843	1111
3850	$0.174E \pm 0.1$	0.665E+01	1930	1124
3871	$0.482E \pm 01$	0.255E+02	2059	1118
3881	$0.680E \pm 01$	0.396E+02	2225	1109
3806	$0.411E \pm 01$	0 189E+02	2149	1079
3013	0.0	0.0	736	1099
4066	0.0	0.0	736	1098
4072	0.116E+00	0.211E+00	2089	1098
4108	0.395E+(0)	0.1178+01	2180	1100
4144	0.320E+00	0.515E+01	2276	1111
4162	0.637E+00	0.206E+01	2258	1116
4174	0.0	0.0	765	1116
4186	0.272E+00	0.647E + 00	2136	1117
4222	0347E+00	$0.854E \pm 00$	2257	1121
1258	0.391E+00	$0.957E \pm 0.0$	2270	1125
4294	0.826E+00	0.250E+01	2294	1131
4301	0414E+01	0.153E.4-02	2416	1099
4301	0.032E4.01	0.167E+03	2940	1120
4328	0.915E+01	0.418E+02	2998	1101
4351	0.378E+01	0.415 ± 02	3031	1111
4356	0.0	0.0	883	1.11
4503	0.0	0.0	883	1110
4520	0.418E ± 00	0.877E+00	2850	1110
4565	0.146E+01	0.406E+01	3061	1121
4505	0.120E+01	0.266E+01	3104	1137
4612	0.4142+01	0.134E + 02	3146	1110
4622	0.826E+01	0.127E+03	3720	1120
4638	0.835E+01	0.2758402	3748	1090
4657	0.0355.401	11/08 + 02	3010	1123
4651	0.0	0.0	1063	1123
4701	0.0	0.0	1063	1120
4703	0.617E+00	01328 -01	3651	1121
4743	0.174E+01	0.3855.40	3812	1138
4749	0.7288401	0.2316+02	3800	1110
4750	0.7168+01	0.307E+02	3055	1122
1779	0.75412+01	03015402	4079	1090

Table A10 Peach Bottom TC2-MERGE output from MARCH2

	Flow rate from	core (lb/s)	Core exit	
(\$)	Hydrogee	Total	(°F)	(psia)
4790	0.500E+01	0.1248+02	4120	1129
4794	0.0	0.0	1238	1129
4821	0.0	0.0	1238	1127
4827	0.564E+00	0.118E+01	3865	1128
4863	0.213E+01	0.470E+01	3983	1146
4869	0.787E+01	0.441E+02	3998	1124
4878	0.670E+01	0.328E+02	4053	1139
4890	0.0	0.0	2101	1119
4905	0.713E+01	0.124E+03	4004	1132
5028	0.131E+01	0.282E+01	3967	1150
5033	0.567E+01	0.171E+02	3970	1122
5041	0.6+5E+01	0.920E+02	4016	1141
5055	0.738E+01	0.608E+02	4014	1106
5071	0.40SE + 01	0.112E+02	4040	1135
5075	0.0	0.0	1644	1135
5106	0.0	0.0	1644	1133
5112	0.870E+00	0.184F+01	3868	1135
5142	0.150E+01	0.324E+01	3989	1150
5148	0.662E+01	0.232E+02	3985	1122
5156	0.6*0E+01	0.786E+02	4025	1150
5169	0.673E+01	0.300E+02	4028	1116
5186	0.776E+01	0.231E+02	3153	1135
5193	0.256E+02	0.548E+02	559	1166
5195	0.0	0.219E+02	560	1149
5209	0.0	0.303E+03	558	1122
5246	0.0	0.124E+03	563	1161
5673	0.0	0.4o6E+02	562	1,54
5709	0.0	C145E+03	563	1156
6904	0.0	0.246E+02	561	1138
7589	0.0	0.117E+02	564	1168

Table A.10 (Continued)

	Flows from	core (g/s)
(s)	CsI	CsOH
3500	0	0
3504	72.5	667.1
3548	24.6	163.4
3676	13.0	87.0
3833	15.0	100.7
3968	17.3	116.3
4132	10.7	72.3
4295	18.0	122.7
4425	15.9	108.5
4585	11.9	83.4
4735	18.0	126.4
4859	16.5	113.0
5027	10.3	70.9
5173	22.8	171.6
5248	31.2	227.7
5361	2.7	19.6
6516	0.11	0.8
7587	0.007	0.0

1

10

Table A.11 Peach Bottom TC2-MARCH2 output for input to TRAP-MELT

ø

•

Time (E)			Average gas ten	verage gas temperature (°F)	
	(psia)	Volume 1	Volume 2	Volume 3	Volume 4
3500	1290	1090	884	740	671
3700	1290	1090	884	740	671
3706	1290	1090	884	740	671
3913	1490	1190	921	779	697
4114	(470	1190	895	790	672
4315	1710	1540	1300	913	816
\$523	1940	1600	1200	936	793
4725	2380	1830	1250	1020	802
4923	2490	2140	1470	1240	955
5130	2480	2210	1640	1340	978
5329	567	968	1260	1420	1290
5535	567	764	1060	1250	1200
5738	567	65;	859	1040	1106
5938	567	607	741	887	986
6547	568	576	601	649	718
7360	569	591	607	615	703
7600	569	591	607	615	703

Table A.12 Peach Bottom TC2-MARCH2 output for input to TRAP-MELT

	Flow rate fro	m core (lb/s)	Core exit temperature
Time (8)	H ₂	Total	(°F)
	0.112	12.6	2460
19356	0.116	4.44	2637
19656	0.607	2.23	3010
19956	0.027	0.812	3352
20256	0.730	0.728	3505
20556	0.687	0.900	3617
20856	0.825	2 02	3772
21162	1.525	75.85	3288
21366	0	115.2	3210
21426	0	122.7	3135
21498	0	124.7	3070
21558	2	1426	2991
2.636	0	142.0	2964
25720	0	120.3	2813
21804	0	128.3	2728
21894	0	120.8	2667
21954	0	130.85	2607
22014	0	131.75	2528
22086	0	111.7	2.0.40
22176	0	106.1	2440
22260	0	118.4	2.30-
22238	0	117.6	2200
22416	0	100.65	2.20.

Table A.13 Sequoyah TB-MERGE output from MARCH2

Time	Flows fr	om core (g/s)
(s)	CsI	CsOH
19400	0	0
19643	16.39	146.2
19748	10.00	64.3
19913	17.00	103.8
20033	20.0	114.9
20145	20.9	121.9
20250	22.0	128.0
20355	22.5	132.3
20460	21.6	127.3
20565	20.3	119.6
20685	16.5	98.2
20828	15.0	88.9
20985	12.9	78.1
21163	10.4	63.8
21307	20.4	133.1
21481	0.67	4.3
22012	0.045	0.28
22414	0.002	0.01

Table A.14 Sequoyah TB-MARCH2 output for input to TRAP-MELT

			Average gas temperature (°F)			
Time (5)	Pressure (psia)	Volume 1	Volume 2	Volume 3	Volume 4	
	1000	183()	1100	1050	671	
19400	1223	1830	1100	1050	671	
19782	1220	1910	1120	1070	675	
19923	1254	1990	1150	1090	680	
20063	1282	2090	1170	1110	676	
20198	1305	2150	1210	1140	679	
20337	1327	2180	1240	1170	681	
20475	1345	2100	1280	1200	685	
20614	1.360	2240	1310	1240	690	
20753	1370	2290	1370	1310	694	
20891	1407	2280	1430	1370	706	
21030	1485	2310	1500	1440	714	
21167	1588	2360	1010	1040	730	
21306	1911	605	758	779	727	
21444	2102	613	120	680	721	
21584	2043	611	610	620	664	
22419	1999	608	013	020		

Table A 15 Sequoyah TB-MARCH2 output for input to TRAP-MELT

٠

n .

ġ,

Time	Flow rate from	m core (lb/s)	Core exit	
(8)	Hydrogen	Total	(°F)	Pressure (psia)
0	0.000E+00	0.298E+04	580	2250
2640	$0.000E \pm 00$	0.667E + 02	564	1500
2670	0.000E + 00	$0.369E \pm 02$	564	1610
2820	0.000E+00	0.802E + 01	573	1019
5835	0.000E + 00	0.784E + 02	660	2360
5850	0.668E-07	0.782E + 02	660	309
5955	0.567E-06	0.691E + 02	669	2309
6060	0.246E-05	0.518E+02	703	2309
6135	0.779E-05	$0.409E \pm 02$	746	2309
6195	0.236E-04	0.335E+02	766	2309
6270	0.963E-04	0.266E+02	826	2309
6330	0. 38E-03	0.224E + 02	0.20	2309
6345	0.378E-03	0.216E+02	007	2369
6390	0.840E-03	0.191E+02	035	2309
6405	0.109E-02	0.184F + 02	935	2309
6495	0.436E-02	0.149E+02	1000	2369
6570	0.105E-01	$0.129E \pm 02$	1063	2308
6645	0.207E-01	0.110E+02	1116	2508
6705	0.327E-01	$0.997E \pm 01$	1162	2368
6810	0.668E-01	0.786E+01	1241	2368
6900	0.121E+00	0.665E+01	1241	2.567
6975	0.205E+00	0.543E + 01	1313	2307
7026	0.302E+00	0.420E+01	1300	2307
7050	0.461E + 00	0.251 34.01	1415	2306
7185	0.434E + 00	0 .6+01	1920	2366
7335	0.330E + 00	0.526E+00	1027	2300
7545	0.202E+00	0.202E+00	1030	2306
7:05	0.876E-01	0.876E-01	1740	2365
8235	0.000E + 00	0.000E+00	1092	2364
8340	0.000E + 00	0.000E+00	00.3	2363
8400	0.799E+00	0.829E+00	2050	2343
8595	0.159E+01	$0.202E \pm 01$	2039	2354
8625	0.508E+01	0.206E-02	2009	2363
8685	0.387E+01	0.705E+02	3413	2363
8700	0.675E+00	0.106E+02	3032	2366
8715	0.000E+00	0.107E+03	000	2366
9045	0.000E+00	0.000E+00	944	2367 2370

Table A.16 Surry TMLB'--MERGE output from MARCH2

0

Time	Flows from core (j	n core (g/s)	
(8)	CsI		CsO
0	40.5	368	
O	25.8	130	
150	32.3	163	
240	26.2	132	
360	20.8	105	
480	16.1	80.9	
630	13.3	66.8	
810	11.4	57.3	
1020	8.1	41.0	
1320	6.1	30.6	
1650	7.2	36.1	
2070	1.7	8.3	
2340	0.7	3.7	

Table A.17 Surry TMLB'-MARCH2 output for input to TRAP-MELT

Table A.18 Surry TMLB'-MARCH2 output for input to TRAP-MELT

		Average gas ten	nperature (°F)
11mc (5)	(psia)	Volume 1	Volume 2
0	2370	1470	862
45	2365	1500	. 36
143	2360	1560	873
248	2358	1640	878
368	2356	1690	881
488	2354	1740	883
645	2353	1800	838
833	2352	1850	891
1020	2351	900	891
1240	2350	788	887
1470	2340	1780	930
1570	2360	2240	1090
1680	2365	3090	1730
1770	2370	1230	1200
1900	2370	660	758
1980	2370	660	719
2010	2370	660	756
2340	2370	660	784

-

TT	Flow rate from	Core exit	
(s)	H ₂	Total	(°F)
0	0	0	1228
246	0.392	0.392	1228
312	0.353	0.353	1280
576	0.270	0.270	1471
906	0.233	0.233	1701
1170	0	40.3	3688
1230	1.393	40.7	3661
1470	6.083	40.25	3571
2070	0	40.7	3731
2706	0	0	3500
5000	0	0	3500

Table A.19 Surry Ac-MARCH2 output for input to TRAP-MELT

Table A.20 Surry AB-MARCH2 output for input to TRAP-MELT

Time	Flows from	core (g/s)
(8)	CsI	CsOH
0	162	1100
36	35.1	178
96	37.6	190
156	34.0	172
228	29.0	146
300	26.7	135
384	22.9	115
480	19.7	99.3
588	16.5	83.3
720	13.3	66.9
900	8.68	43.8
180	4.4	22.3
450	1.1	5.3
630	0.62	3.2
880	0.35	1.8
520	0.21	1.1
030	0.04	0.22
190	0	0

-		Average gas	Temperature (°F)		
(8)	(psia)	Volume 1	Volume 2		
0	35.6	1040	724		
198	34.6	0	803		
330	34.0	1300	863		
46.	34.0	1400	920		
726	32.5	1580	1010		
858	32.1	1670	1060		
990	31.9	1920	1200		
1120	33.6	1010	974		
1250	34.5	258	517		
1390	35.5	260	410		
1520	36.8	262	374		
1650	37.6	263	352		
2040	39.6	266	321		
2280	40.9	267	32		
2340	41.1	257	32.		
5120	41.1	257	32		

Table A.21 Surry AB-MARCH2 output for input to TRAP-MELT

Table A.22 Grand Gulf-Compartment volumes for sequences TC and TQUV

	Volum	ac (ft ³)
Control volume	TC	VCDT
Core	1728	- 1728
Steam separators	3357	3357
Steam drvers	3335	3335
Upper annulus	2030	2030
Relief line	208	208

•

0

TC		AE					
Control volume	Volume (ft ³)	Control volume	Volume (ft ³)				
C #	1360	Core	1728				
Shoud head	1170	Steam separator	580				
Pipes and separators	582	Upper outer annulus	2030				
Steam dryers	3000						
Upper outer annulus	1000						
Lower outer annulus	1000						
Steam lines	1080						
Renef lines	622						

Table A.23 Peach Bottom-Compartment volumes for sequences TC and AE

1. 1. 80

Table A.24 Sequoyab-Compartment volumes for sequence TBA

volume (it)
1020
70.01
85.70
511
857

NY 2 2 . A 1961	17 JPA		- The State of the	Real Providence and the second				street, so the last	41.7
1 12 24 25 25 25	A SALEPPER A LAPPE	\$54.05 PT \$554.75 \$5 P	10.00 1 2 4 3 200 200 200	TUNE SUCH	122.25.05.25.25.25.2	A 5.7 V	5 M S 2 M		
A GALLER Production	2 CHILLY WHEN A THI	12611 01110 0111	VUHUIHES	14.11 26.2.	1116 116 8.2	PAD 2	11911 1	1003.0	67
the second second second second		the set of a set of a set of a	a sea management.		a second second			2	81

AB		TMLB	(LB		
Control volume No.	Volume (ft ³)	Control volume No.	Volume (ft ³)		
1	589	1	589		
2	100	2	100		
3	506	3	506		
4	79	4	230		
5	150	6	1301		

NUREG/CR-5732

Appendix B. Kinetic and Equilibrium Calculations

Appendix B

B.1 Kinetics of Cs-I-H₂-H₂O Reactions

Twenty reactions (ten reversible equations) were chosen to represent the kin is behavior of the sum and iodine species. In a more comprehensive study of the rates of formation of CsOH and CsI under accident conditions, Wren used 152 reactions.³⁰ In that study, he concluded that in a CANDU reactor primary heat transport system under accident conditions, CsI and CsOH would form in $<10^{-2}$ s. In the present study, the kinetic calculations are used only as a guide in determining which control volumes reached equilibrium (i.e., those control volumes in which the residence times of cesium and iodine species were sufficiently long that the species concentrations did not vary with time).

The data on equilibrium thermodynamics are generally more reliable than data on rate constants. For this reason, equilibrium thermochemical calculations were performed in addition to the rate calculations.

The rate constants for the 20 reactions given in Table B.1 is the Arrhenius form

$$K = A \exp\left(-\frac{E_{act}}{RT}\right)$$
(B.1)

where

K = rate constant,

A = preexponential or frequency factor, $E_{acr} =$ activation energy.

The rate constant equation written in this way assumes that there is little or no temperature dependence of Aor E_{act} over the temperature range of interest.

In reactions of the type C + D = E + F, the rate constants for the forward and reverse reactions can satisfy the requirements of the equilibrium constant. The requirements of the equilibrium constraint to maintain A and E_{act} independent of temperature can be obtained as described in the following manipulation. The standard free energy change can often be fitted over a temperature interval by the simple linear relation

$$\frac{\Delta G_F^{\circ}}{rxn} = a + b? \tag{B.2}$$

where

 $\Delta G_{F}^{o} =$ standard free energy change of reaction, *a*, *b* = constants fit over the same temperature interval.

If we adopt this means of expressing ΔG_F° , then

$$\Delta G_F^{\circ} = a + bT = RT \ln K_{ee} = -RT \ln \frac{K_F}{K_R}$$
(B.3)

where

 K_{eq} = equilibrium constant, K_F , K_R = rule constant for the forward and reverse reactions.

Equation B.3 can be rearranged as

$$K_F = \exp\left[-\left(\frac{a}{RT} + \frac{b}{R}\right)\right] K_R$$
 (B.4)

The rate constants for the forward and reverse reactions are expressed as

$$K_F = A \exp\left(-\frac{E_{act_F}}{RT}\right) \qquad (B \gtrsim_J)$$

$$K_R = A' \exp\left(-\frac{E_{act_R}}{RT}\right)$$
 (B.6)

Inserting Equations B.5 and B.6 into B.4 gives

$$A \exp\left(-\frac{E_{ast_p}}{RT}\right) * \exp\left[-\left(\frac{a}{RT} + \frac{b}{R}\right)\right] \cdot A' \exp\left(-\frac{E_{ast_p}}{RT}\right) \qquad (B.7)$$

or

NUREG/CR-5732

Appendix B

	Reaction	Rate constant [*] at 1000 K (1341° F)	Frequency factor	Referencea
1.	CsI + H₂O → CsOH + HI	2.12×10^{-23}	1.57×10^{12}	
2.	$CsOH + HI - CsI + H_1O$	1.00×10^{-15}	$1.00 \times 10-11$	32
3.	2HI $\sim I_2 + H_2$	2.42×10^{-20}	1.00×10^{-10}	33
4.	$I_2 + H_2 - 2HI$	3.01×10^{-19}	1.66×10^{-10}	.33
5.	$I + I + M \rightarrow I_2 + M$	$1.1. \times 10^{30}$	3.17×10^{-34}	
6.	$M + I_2 - I + I + M$	2.56×10^{17}	3.14×10^{-10}	
7,	$I + H_2 \rightarrow HI + H$	2.19×10^{47}	2.64×10^{-10}	
8.	$HI + H - I + H_2$	5.54×10^{-11}	7.4×10^{-11}	
9.	$HI + I - H + I_2$	4.66×10^{-18}	3.59×10^{-10}	34
10.	$H + I_2 - HI + I$	6.0×10^{-10}	6.0 × 10 ⁻¹⁰	34, 35
11.	$H + H + M \rightarrow H_2 + M$	1.25×10^{-33}	2.31×10^{-33}	
12.	$M + H_2 - H + H + M$	1.9×10^{29}	4.98×10^{-9}	
13.	Cs + I + M - CsI + M	3.7×10^{-33}	6.44×10^{31}	
14.	$M + CsI \rightarrow Cs + I + M$	1.6×10^{-22}	5.37×10^{-9}	
15.	Cs + Hl - Csl + H	2.00×10^{11}	2.00×10^{-11}	32, 35
16.	CsI + H - Cs + HI	2.53 × 10 ⁻¹³	2.82×10^{-13}	
17.	$Cs + H_2O - CsOH + H$	1.70×10^{-16}	1.11×10^{-9}	
18.	CsOH + H - Cs + H ₂ O	1.00×10^{10}	1.00×10^{-10}	32
19.	$Cs + I_2 \rightarrow CsI + I$	8.81×10^{10}	8.81×10^{-10}	32
20.	$CsI + I - Cs + I_2$	8.66 × 10 ²⁰	7.43 × 10 ⁻¹²	

Table B.1 Reaction rate constants

^{*}Units are s^{-1} , cm^3 molecule⁻¹ s^{+1} , and cm^6 molecule⁻² s^{+1} for first-, second-, and third-order reactions, respectively. M, the collision molecule, is the total of the H₂ and H₂O molecular concentrations (molecules/cm³).

Appendix B

$$\ln A - \frac{E_{act_{\theta}}}{LT} = \ln A' - \left(\frac{a}{RT} + \frac{b}{R}\right) - \frac{E_{act_{\theta}}}{RT}$$
(B.8)

then

$$\ln A - \ln A' = \frac{E_{acr_{p}} - E_{acr_{g}}}{RT} - \left(\frac{a}{RT} + \frac{b}{R}\right)$$
(B.9)

Assuming that $\ln A - \ln A' = -b/R$, then Equation B.9 becomes

$$\ln A - \ln A' = -\frac{b}{R} = \frac{E_{act_{g}} - E_{act_{g}}}{RT} - \left(\frac{a}{RT} + \frac{b}{R}\right) \quad (B.10)$$

which yields

$$E_{act_s} - E_{act_s} = a \tag{B.11}$$

Thus, fitting the standard free energy change of reaction to a linear form with temperature and assuming the difference in the natural log of the frequency factor for the forward and reverse reactions is equal to -b/R, then rate constants can be expressed in the Arrhenius form and satisfy the equilibrium constraint. Standard free energies of reaction in the

form of $\Delta G^{a} = a + bT$ are given in Table B.2. These data were obtained from the FACT system.³ The FACSIMILE computer program was used to perform the rate calculations.

B.2 Equilibrium Calculations in the Cs-I-H₂-H₂O System

The species considered in the equilibrium calculations include (gases) H₂, H₂O, CsOH, CsI, Cs, H, HI, I, and I₂; and (liquids) CsI, CsOH, Cs, and I₂. The calculations were performed with the EQUILIB routine of the FACT system. This method of calculation was chosen because it is readily accessible to anyone in North America and because the thermochemical data base of FACT comes from standard assessed sources such as JANAF³⁶ and Barin and Knacke.³⁷ Thermochemical data for CsOH are not part of the FACT³ data base, and values from JANAF were inserted into a user's data base for these calculations.

The 13 species used in the equilibrium calculations are the same as those used in the kinetic calculations. Iodine ratios such as HI/CsI are very similar in the equilibrium calculations and in the kinetic calculations, primarily because the bimolecular rate constants are consistent with the equilibrium constants.

Table B.2	Standard	free	energy	of	reaction	a 500	10	1200	K	(441	lo	1701°F)	written	as
	$\Delta G_F^o =$	a +	bT, en	tot	hermic r	eactio	nc	expres	isci	i left	to	right		
	rxn			1	FROTON	in in	nie	12						

Reaction	а	b
$CsO!H + HI = CsI + H_2O$	-1.31368×10^{3}	-1.54100×10^{1}
I ₂ + H ₂ = 2HI	-1.30038×10^{4}	-1.48455×10^{1}
$HI + H = I + H_2$	-1.37991×10^{5}	$+1.05761 \times 10^{1}$
$H + I_2 = HI + I$	-1.50995×10^{5}	$-4.26918 \times 10^{\circ}$
Cs + HI = CsI + H	-8.80264×10^{2}	-3.54386 × 15
$CsOH + H = Cs + H_2O$	-1.30488×10^{5}	$+2.00288 \times 10^{1}$
$Cs + I_2 = CsI + I$	-1.51875×10^{5}	-3.97080 × 10°

NUREG/CR-5732

Appendix C. Fitting of Radiolysis Data

Data from Lin^{14} are listed in Table C.1 and shown in Figure C.1. The fraction of 1 converted by radiolysis to I_2 must satisfy

$$\lim_{pH \to \infty} F = 0 \qquad \lim_{pH \to -\infty} F = 1 \qquad (C.1a,b)$$

which are identical to the conditions

$$\lim_{pH \to \infty} \ln\left(\frac{1}{F} - 1\right) = \infty \quad \lim_{pH \to -\infty} \ln\left(\frac{1}{F} - 1\right) = -\infty$$

As shown in Figure C.1, there is a highly linear relationship between $\ln(\frac{1}{F} - 1)$ and pH. Using the data in Table C.1, a linear least-squares fit of the form

$$\ln\left(\frac{1}{F} - 1\right) = \alpha \cdot pH + \beta$$

yielded the values $\alpha = 1.72$ and $\beta = -6.08$ with a correlation coefficient of 0.94.

Initial concentration (mol/L)	Initial pH	Conversion (%)
103	2	88.2
10	3	81.8
	4	8.6
	5	2.4
	6	2.4
10-4	3	93.8
	5	8.0
	6.6	1.7
10.5	2	89,1
	3	77.9
	4	44.4
	5	6.9
	63	0.3

Table C.1 Radiolysis data' for formation of l2

"Taken from C. C. Lin.14

Appendix C

Figure C.1. Data fitting for radiolytic conversion of I to I₂ (data from U.S. Nuclear Regulatory Commission, Regulation Guide 1.4, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors")

Appendix D. Fission Product Release Tables

	전 가격 일을 다	Total core inventory (kg)				
Nuclide group		Grand Guli	Peach Bottom	Sequoyah	Surry	
1 2 3 4 5	I Cs Te Sr Ba	17.7 244.8 37.1 66.7 112	16.6 230.3 34.9 62.7 105 584	15.2 184.7 31.7 60.9 77 7 470	12.4 145.7 25.4 47.6 61.2 369	
6 7 8 9	Ru Ce La Xe	621 221 1724 439	208 2404 413	167 1313 347	131 855 273	

Table D.1. Fission product inventories for selected plants*

"Taken from References 1 and 2.

D.3

. .

٠

.

Appendix D

		PWR release	s into containment	t	BWR releases into containment			
	From primary system		From core-concrete interaction		From primary system"		From core-concrete interaction	
Fission product group	High RCC pressure	Low RCS pressure	Limestone	Basaltic concrete	Higu RCS pressure	Low RCS pressure	Limestone concrete	Basaltic concrete
- T	0.45	0.77	0.15	0.15	0.70	0,77	0.15	0.15
Cs	0.42	0.77	0.15	0.15	0.65	0.76	0.15	0.15
Te	0.27	0.51	0.40	0.30	0.17	0.17	0.50	0.30
Sr.Ba	0.013	0.01	0.40	0.15	0.013	0.01	0.70	0.30
Ru	0.053	0.01	0.005	0.905	0.053	9.01	0.005	0.005
La-Ce	0.01	0.0015	0.05	0.05	0.01	0.0015	0.10	0.10
Xe	10	1.0	0	0	1.0	1.0	0	0

Table D.2. Bounding values for fractions of core inventory released into containment*

"Adapted from H. P. Nourbakhsh, "Estimate of Radionuclide Release Characteristics Into Containment Under Severe Accident Conditions (Draft for Comment)" NUREG/CR-5747, Brookhaven National Laboratory, December 1991.

** Includes releases due to in-vessel melting, vessel breach, and late revaporization.

Appendix E. Fractional Release Tables

8

ð

Madide Whole onte		Whole core Total fraction released into containment		Energy deposition rate, E_{dep} (MeV/h × 10 ⁻⁰)	
group Nucasac	inventory (kg)	Low RCS pressure	High RCS pressure	Low RCS pressure	Figh RCS pressure
I Cs Te Sr Ba Ru Ce La	17.7 244.8 37.1 66.7 112 621 1055 890	0.92 0.91 0.57 0.71 0.71 0.71 0.015 0.1015 0.1015	0.85 0.80 0.67 0.713 0.713 0.058 0.11 0.11	6.921 0.885 0.499 1.480 0.708 0.062 0.165 2.300	6.394 0.778 0.499 1.486 0.711 0.238 0.179 2.493

Table E.1 Grand Gulf - fractional releases and energy deposition rates

*From J. A. Gieseke et al., "Radionuclide Release Under Specific LWR Accident Conditions," BMI-2104, Battelle Columbus Laboratories, 1984, and "C.S. Denning et al., "adionuclide Reltase Calculations for Selected Severe Accident Socialities," NUREG/CR-4624 (BMI-2139), Battelle Columbus Laboratories, 1986.

Adapted from H. P. Nourbakhsh, "Estimate of Radionuclide Release Characteristics into Containment Under Severe Accident Conditions (Draft for Comment)," N: "REG/CR-5747, Brookhaven National Laboratory, December 1991, assuming limestone concrete. 1. 1.

Nuclide group	Whole core	Total fraction released into containment"		Energy deposition rate, \dot{E}_{dep} (MeV/h $\times 10^{20}$)	
	(kg)	Low RCS pressure	High RCS pressure	Low RCS pressure	High RCS pressure
I	16.6	0.92	0.85	6.491	5.997
Cs	230.3	0.91	0.80	0.837	0.732
Te	34.9	0.67	0.67	0.4.20	0.469
Sr	62.7	0.71	0.713	1.391	1.397
Ba	105	0.71	0.713	0.664	0.667
Ru	584	0.0*5	0.058	0.058	0.274
Ce	992	0.1015	0.12	0.155	0.168
La	836.6	0.1015	0.11	2.162	2.343
Total				12.223	11.997

Table E.2 Peach Bottom - fractional releases and energy deposition rates

From J. A. Gieseke et al., "Radionuclide Release Under Specific LWR Accident Conditions," BMI-2104, Battelle Columbus Laboratories, 1984, and R. S. Denning et al., "Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR-4624 (BMI-2139), Battelle Columbus Laboratories, 1996.

"Adapted from H. P. Nourbakhsh, "Estimate of Radionuclide Release Characteristics into Containaent Under Severe Accident Conditions (Draft for Comment)," NUREG/CR-5747, Brookhaven National Laboratory, December 1991, assuming limestone concrete.

N	Whole me	Total fraction released into containment"		Energy deposition rate, E_{dep} (MeV/h × 10 ⁻	
group	inventory (kg)	Low RCS pressure	High RCS pressure	Low RC ^c pressure	High RCS pressure
I Cs Te Sr Ba Ru Ce La	15.2 184.7 31.7 60.9 77.7 470 796 684	0.92 0.91 0.92 0.41 0.41 0.015 0.0515 0.0-15	0.60 0.57 0.67 0.413 0.413 0.058 0.06 0.06	5.943 0.675 0.579 0.780 0.284 0.046 0.063 0.897 9.267	0.418 0.426 0.786 0.286 0.180 0.974 1.045 7.091

Table E.3 Sequoyah - fractional releases and energy deposition rates

*From J. A. Gieseke et al., "Radionuclide Release Under Specific LWR Accident Conditions," BMI-2104, Battelle Columbus Laboratories, 1984, and R. S. Denning et al., "Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR-4624 (BMI-2139), Battelle Columbus Laboratories, 1986.

**Adapted from H. P. Nourbakhsh, "Estimate of Radionuclide Release Characteristics into Containment Under Severe Accident Conditions (Dealt for Comment)," NUREG/CR-5747, Brookhaven National Laboratory, December 1991, assuming limestone concrete.

: . I.

E.S

-

-

0

.

Nuclide group	Whole core	Total fraction released into containment"		Energy deposition rate, E_{dep} (MeV/h × 10 ⁻²⁰)	
	inventory (kg)	Low RCS pressure	High RCS pressure	Low RCS pressure	High RCS pressure
I	12.4	0.92	0.60	4.848	3.162
Cs	145.7	0.92	0.57	0.532	0.330
Te	25.4	0.81	0.57	0.413	0.290
Si	47.6	0.16	0.163	0.238	0.242
Ba	61.2	0.16	0.163	0.087	0.089
Ru	359	0.015	0.058	0.037	0.142
Ce	626	0.0515	0.06	0.050	0.058
La	539	0.0515	0.06	0.707	0.823
Total				6.912	5.136

Table E.4 Surry TMLB' - fractional releases and energy deposition rates

"From J. A. Gieseke et al., "Radionuclide Release Under Specific LWR Accident Conditions," BMI-2104, Battelle Columbus Laboratories, 1984, and R. S. Denning et al., "Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR 4624 (BMI-2139), Battelle Columbus Laboratories, 1986.

**Adapted from H. P. Nou-bakhsh, "Estimate of Radionuclide Release Characteristics into Containment Under Severe Accident Conditions (Draft for Comment)," NUREG/CR-5747, Brookhaves National Laboratory, December 1991, assuming basaltic concrete.

NUREG/CR-5732 ORNL/TM-11861 Dist. Category R3

INTERNAL DISTRIBUTION

- 1. W. S. Aaron
- 2. C. W. Alexander
- 3. F. Barrera
- 4-8. E. C. Beahm
- 9. J. T. Bell
- 10. D. O. Campbell
- 11. J. L. Collins
- 12. W. Fulkerson
- 13. R. K. Genung
- 14. J. R. Hightower
- 15. E. K. Johnson
- 16. M. J. Kania
- 17-21. T. S. Kress
 - 22. R. A. Lorenz

ALC: NOT A	at a many strategy at a
24.	M. F. Osborne
25-29.	G. W. Parker
30.	C. E. Pugh
31.	M. G. Stewart
32.	R. P. Taleyarkhan
33-37.	C. F. Weber
38.	Central Research Library
39.	ORNL-Y-12 Technical Librar
	Document Reference Section
40-41.	Laboratory Records
42.	Laboratory Records, ORNL R
43.	ORNL Patent Section

1 C Mailen

EXTERNAL DISTRIBUTION

- 44. Office of Assistant Manager for Energy Research and Development, DOE-OR, P.O. Box 2001, Oak Ridge, TN 37831
- Director, Division of Reactor Safety Research, U.S. Nuclear Regulatory Commission, Washington, DC 45. 20555
- Office of Scientific and Technical Information, P.O. Box 2001, Oak Ridge, TN 37831 46-47.
 - Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, 48. Washington, DC 20555
 - R. Y. Lee, Accident Evaluation Branch. U.S. Nuclear Regulatory Commission, NLN-353, 49. Washington, DC 20555
 - 50. R. O. Meyer, U.S. Nuclear Regulatory Commission, Nuclear Regulatory Research, NLS-007, Washington, DC 20555
 - 51. F. Eltawila, Accident Evaluation Branch, U.S. Nuclear Regulatory Commission, NLN344, Washington, DC 20355
 - 52. K. S. Norwood, 8 Appleford Drive, Abingdon, Oxon OX14, 2DA, United Kingdom
 - 53. S. J. Wisbey, B.220, AERE Harwell, Didcot, Oxon OX11 ORA, United Kingdom
 - T. Yamashita, Nuclear Fuel Chemistry Laboratory, Department of Chemistry, Japan Atomic Energy 54. Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan
 - S. Hagen, Bau 601, Kernforschungszentrum Karlsruhe, Postface 3640, D7500 Karlsruhe 1, Federal 55. Republic of Germany
 - 56. M. L. Brown, 15 3arrock St., Thurso Caithness, Scotland KW14 7DB
 - T. Nakamura, Reactivity Accident Laboratory, Dai-2-Genken-Shinhara-Jutaku-304, 1-23-5, Shinhara, 57. Mito-shi, 310, Japan
 - H. K. Lee, Spent Fuel Storage and Disposal Technology Section, Korea Advanced Longy Research 58. Institute, P.O. Office Box 7, De-Danji Choong-Nam, Republic of Korea
 - 59. Y.-C. Tong, Institute of Nucleai Energy Research, P.O. Box 3-6, Lung-Tan, Taiwan, Republic of China
 - 60. D. Williams, Technology Division, AEE Winfrith, Dorchester, Dorset, England
 - 61. F. C. Inglesias, AECL, Chalk River Nuclear Laboratories, Chalk River, Ontario, KOJ 1JO, Canada
 - 62. R. R. Hobbins, EG&G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83401
 - 63. D. A. Petti, EG&G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83401

64. D. J. Osetek, Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185

65. K. O. Reil, Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185

66. E. Powers, Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185

67. L. A. Neimark, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439

68. J. Rest, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439

69. Y. Y. Liu, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439

70. C. A. Alexander, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201

71. F. Panisko, Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352

72. K. Y. Suh, Fauske & Associates, Inc., 16W070 West 83rd St., Burr Ridge, IL 60521

73-322. Given distribution as shown in Category R3 (NTIS - 10)

ľ

U.S. NUCLEAR REGULATORY COMMISSION THE AND SUBTITLE Iodine Chemical Forms in LWR Severe Accidents Final Report	N 1 REPORT NUMBER (Autioned by NRC Add Vol. Subp. Rev. and Addendum Number, 1 env.) NUREG/CR-5732 ORNL/TM-11861 3 DATE REPORT PUBLISHED MONTH VEAS April 1992 A FIN OR GRANT NUMBER B0854
E. C. Beahm, C. F. Weber, T. S. Kress, and G. W. Parker	E TYPE OF REPORT Technical I PERIOD COVER", Bochaster Doros
E PERFORMING ORGANIZATION - NAME AND ADDRESS (I NAC. provide Division, Office of Region, U.S. Nocirae Regulatory Constrained address) Oak Ridge National Laboratory Oak Ridge, TN 37831-6285	oministion, and mailing attitress. It contractor, provide
9. SPONSORING DEGANIZATION - NAME AND ADDRESS in NEC. type "Same as above", if contractor, provide NEC Davidon, Or and mailing address. ¹ Division of Systems Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Convaission Washington, DC 20555	luce or Region, U.S. Nuclear Regulatory Commission,
10. SUPPLEMENTARY NOTES	(b) Contraction of Physics (Sector and Sector and S Sector and Sector and
Calculated data from seven severe accident sequences in light water reactor plants we forms of iodine in containment. In most of the calculations for the seven sequences, from the reactor coolant system was almost entirely in the form of CsI with very sma The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus H the CsI will depend $0 \le 0$ walls and other surfaces, as well as in water pools, largely in radiation-induced conversion of I in water pools into I ₂ is strongly dependent on pH was controlled above 7, little additional elemental iodine would be produced in the of When the pri falls below 7, however, it may be assumed that it is not being controlled as I ₂ within the containment atmosphere may be produced.	ere used to access the chemical , iodine entering containment ill contributions of I or HI. HI. Within the containment, in the form of iodide (I'). The I. In systems where the pH containment atmosphere. ed and large fractions of iodine
12. KEY WORDS/DESCRIPTORS /Liss worth or phrases that will assist tearanchers in Invaring the report. I	11 AVAILABILITY STATEMENT
iodine fission product behavior reactor concainment severe accidents LWRs	unlimited (A SECONYY CLASSIFICATION 7756 Feel unclassified (Tobe Report) unclassified 15. NUMBER OF PAGES 16. PRICE

THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER

NUREG/CR-5732

.

IODINE CHEMICAL FORMS IN LWR SEVERE ACCIDENTS

APRIL 1992

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

120055134531 I 12M143 US NRC+DERW DIV ECTS 5 DUBLICATIONS OVER TES-RORANIZED T-11 RIGHTNITON DE 200

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID USNRC PERMIT NO. G-67