

Tennessee Valley Authority Prid Office Hox 2000, Socialy Casty, Tennessee, 37373

J. L. Wilson Vice President, Seguovah Nucl. + Plant

May 4, 1992

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Gentlemen:

In the Matter of Tennessee Valley Authority Docket No. 50-328

SEQUOYAH NUCLEAR PLANT (SQN) - UNIT 2 STEAM GENERATOR (SG) TUBE PLUGGING

As required by SQN Technical Specification 4.4.5.5.a, this submittal provides notification of SG tube plugging during the Unit 2 Cycle 5 refueling outage. The in-service inspection of the SG tubes was completed on April 19, 1992. TVA will submit a special report of the results of this inspection on or before April 19, 1993.

Enclosure 1 contains a summary of the tubes plugged in Unit 2 during this outage. The summary statement of the commitment contained in this letter is provided in Enclosure 2.

Please direct questions concerning this issue to D. V. Goodin at (615) 843-7734.

Sincerely,

./L. Wilson

Enclosures

cc: See page 2

4001 /

U.S. Nuclear Regulatory Commission Page 2 May 4, 1992

cc (Enclosures):

4

2

Mr. D. E. LaBarge, Project Manager U.S. Nuclear Regulatory Commission One White Flint, North 11555 Rockville Pike Rockville, Maryland 20852

NRC Resident Inspector Sequoyah Nuclear Plant 2600 Igou ferry Road Soddy Daisy, Tennessee 37379

Mr. B. A. Wilson, Project Chief U.S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30323

ENCLOSURE 1

UNIT 2 CYCLE 5 REFUELING OUTAGE SIEAM GENERATOR TUBE PLUGGING SUMMARY

Steam Generator (SG) Tube Plugging List Sequoyah Nuclear Plant Unit 2 Cycle 5

<u>\$G</u>	Row	Col	Location	7.	Reason for Plugging
1	8	54	HTS - 0.57	SAI	PWSCO
	33	56	AV3 + 0.0	44	AVB wear
	33	58	AV2 + 0.0	4.2	AVB wear
			AV3 + 0.0	42	AVB wear
	34	47	AV3 + 0.0	39	AVB wear
	46	46	001 + 0.12	37	Cold leg wastage
2	3	52	HTS - 0.64	SAI	PWSCC
	3	55	HTS - 0.51	SAI	PWSCC
	8	19	HTS - 0.09	COI	PWSCC
	8	54	HTS - 0.54	SAI	PWSCC
	9	26	HTS - 1.42	SAI	PWSCC
	9	60	HTS - 2.49	MAI	PWSCC
	11	3	CO1 - 0.22	38	Cold leg wastage
	12	67	HTS - 0.05	COI	PWSCC
	13	79	HTS - 0.34	SAI	PWSCC
	25	45	HTS - 0.50	SAI	PWC JC
	26	12	HO1 + 0.0	55	O.D. indication
	29	34	AV3 + 0.0	40	VB wear
	30	51	HTS - 1.12	SAI	.WSCC
	31	13	CO1 + 0.0	37	Cold leg wastage
	32	59	AV2 + 0.0	42	AVB wear
	34	77	CO1 - 0.30	39	Cold leg wastage
	35	18	CO2 + 0.0	45	Cold leg wastage
	43	33	C01 + 0.21	57	Cold leg wastage
	43	36	CO1 + 0.0	57	Cold leg wastage
3	12	54	HTS - 0.75	SAI	PWSCC
	12	61	HTS - 2.19	SAI	PWSCC
	15	70	HTS - 1.09	SAI	PWSCC
	18	25	HTS - 0.91	SAI	PWSCC
	22	31	HTS - 0.45	SAI	PWSCC
	22	33	HTS - 2.54	SAI	PWSCC
	25	32	HTS - 2.48	SAI	PWSCC
	34	44	AV3 + 0.0	43	AVB wear
	35	77	CO1 - 0.20	66	Cold leg wastage
	36	77	CO1 - 0.20	35	Cold leg wastage
	44	36	CO2 + 0.0	39	Cold leg wastage
	30	25	HTS - 0.49	SAI	PWSCC
4	4	1	CO1 + C.O	45	Cold leg wastage
	38	22	CO2 + 0.0	45	Cold leg wastage
			200 7 210		arra rep massage

TOTALS

SG 1 - 5 (104 cumulative) SG 2 - 19 (119 cumulative) SG 3 - 12 (108 cumulative) SG 4 - 2 (103 cumulative) TOTAL - 38

DEFINITIONS

AV2	Second anti-vibration bar above hot leg	
AV3	Third anti-vibration bar above hot leg	
AVB	Anti-vibration bar	
C01	First support plate - cold leg	
CO2	Second support plate - cold leg	
H01	First support plate - hot leg	
HTS	Top of tube sheet - hot leg	
SAI	Single axial indication	
COI	Circumferential indication	
MAI	Multiple axial indication	
PWSCC	Primary water stress corrosion cracking	

ENCLOSURE 2

LIST OF COMMITMENTS

TVA will submit a special report of the results of the Unit 2 Cycle 5 steam generator ir-service inspection on or before April 19, 1993.