

$\therefore 8$ WEC PRTPRTCIARY CLASS - 3 :

$$
1
$$

$$
\begin{aligned}
& y \\
& y \\
& y \\
& y
\end{aligned}
$$ tros

Tir

$$
\begin{gathered}
\sim \\
\sim \\
\because \\
\because
\end{gathered}
$$

$$
\text { How } 14
$$

$$
\begin{array}{r}
\sim \\
\rightarrow+8
\end{array}
$$

$$
\bullet
$$

$$
\sin
$$

$$
\begin{aligned}
& 0 \\
& 7, \quad+\quad+1+1
\end{aligned}
$$

North Anna Unit 11992
Steam Generator Operating Cycle Evaluation

April 1992

WESTINGHOUSE ELECTRIC CORPORATION
Energy Systems Business Unit
Nuclear Services Division
P.O. Box 355
Pittsburgh, PA, 15230-0355

© 1992 Westinghouse Electric Corporation
All Rights Reserved

TABLE OF CONTENTS

Section Title Pase
1.0 INTRODUCTION $1-1$
2.0 SUMMARY AND CONCLUSIONS $2-1$
2.1 Overall Conclusions 2.1
2.2 Summary of Principal Results 2.3
3.0 EDDY CURRENT DATA REVIEW 3.1
3.1 Inspection Summary 3.1
3.2 Tube Plugging Summary 3.1
3.3 WEXTEX Indications 3-2
3.4 TSP Circumferential Indications 3.5
3.5 TSP Axial Indications 3.5
3.6 Multiple Circumferential Indications (MCl's) 3.6
3.7 Potential Combined Axial and Circumferential Indications 3.7
3.8 RPC Resolution Considerations 3.7
3.9 WEXTEX Circumterential Crack Growth Rates 3.9
3.10 Tube Support Plate Circumferential Crack Growth Rates 3.10
3.11 Inspection Transient Considerations 3.10
4.0 OPERATING CYCLE CONSIDERATIONS 4-1
41 Planned Operating Conditions for the Remainder of 4.1Current Cycle
4.2 Comparison of Current and Prior Operating Parameters 4-1
4.3 Relative Corrosion Rate Modeling 4.2
4.4 Relative Corrosion Rates Between First and Second Half 4.3 of Current Fuel Cycle
5.0 SUMMARY OF CRACK SIZES SATISFYING REG. GUIDE 1.121 5-1
5.1 Burst Tests for Multiple Circumferential Cracks 5-1
5.2 Fatigue Crack Growth Rate Tests for Multiple 5-2
Circumferential Cracks

TABLE OF CONTENTS

Section Iitle Froe
5.3 Acceptable Single Crack Sizes for Tube Burst 5-2
5.4 Acceptable MCI Crack Conditions for Tube Burst $5-3$
5.5 Acceptable Combined Axial and Circumferential Crack 5-4 onditions
5.6 Acceptable Single Crack Sizes for Tube Vibration 5-6
6.0 TUBE INTEGRITY ASSESSMENT 6-1
6.1 Crack Distributions for Second Half of Current Fuel Cycle 6-1
6.2 WEXTEX Tube Burst Assessment 6-3
6.3 TSP Circumferential Indication Tube Burst Assessment 6-4
6.4 TSP Axial Indication Tube Burst Assessment 6.5
6.5 Potential TSP Mixed Mode Assessment 6.6
6.6 WEXTEX Tube Vibration Assessment 6.6
6.7 TSP Tube Vibration Assessment 6.7
6.8 MCl and Mixed Mode Tube Vibration Assessment 6.8
7.0 SLB LEAK RATE ANALYSES 7.1
7.1 Crack Distributions for SLB Leak Rates 7.1
7.2 Leak Rate Analysis Methods 7-2
7.3 Leak Before Break (LBB) Capability 7-4
7.4 Limiting Crack SLB Leak Rate 7.8
7.5 SL.B Leak Rates for Crack Distributions 7.9
7.6 Conclusions 7.10

$1.0 \quad$ INTRODUCTION

This report provides a tube integrity assessment to Reg. Guide 1.121 oriteria for end-of-Cycle-9 conditions of the North Anna Unit I steam generators. The 1992 mid-cycle inspection results are adjusted to vbtain expected end-of-Cycle-9 (EOC-9) maximum crack sizes and crack distributions. Considerations of reduced $T_{\text {hot }}$ and the demonstrated effects of an initial RPC inspection (called an "inspection transient") on subsequent cycle indications are used to adjust the mid-cycle inspection results to EOC-9 conditions. Assessments are provided to demonstrate EOC-9 margins against tube burst and tube vibration-induced crack propagation. Potential leak rates under SLB conditions are also evaluated for the EOC-9 crack distributions.

The 1992 mid-cycle inspection program included full length testing with bobbin probes of 100% of the available tubes in each steam generator, RPC examination of all hot leg WEXTEX transitions and all hot leg TSP intersections, and RPC testing of all Row 2 U -bends. The results of the inspection program are evaluated along with planned changes in operating conditions for the remainder of the current fuel cycle to determine the expected end-of-cycle (EOC) crack distributions, including the number and sizes of circumferential cracks. The expected circumferential crack distribution is based on operating cycle length considerations, planned changes in operating conditions for the second half of the fuel cycle, and inspection transient considerations. Although the first and second halves of tho current fuel cycle have approximately the same number of effective full power days of operation, a reduction in $T_{\text {hot }}$ of $3^{\circ} \mathrm{F}$ for the second half of the cycle and a coastdown to lower power levels during the last four months of the cycle are expected to result in a reduction in the number and size of circumferential indications at the end of the current cycle. Furthermore, based on industry experience with inspection transients, the number and sizes of T; P ciroumferential indications at the end of the current cycle are expected to be smaller than the indications observed during the first 100% RPC inspection of the hot leg TSPS performed during the 1992 mid-cycle inspection.

The WEXTEX transition and TSP circumferential crachs can be considered "strong" for tube burst considerations in that throughwall crack angles of ! jb,c meet three times normal operating pressure differentials and throughwall angles greater than $1 \mathrm{Jb,C}$ meet SLB burst pressure conditions. North Anna inspection practices and
plugging of all circumferential cracks reduce the likelihood of tube burst at SLB conditions to extremely low levels. During the 1992 inspection program, two cracks which exceeded the 226° crack angle for $3 \Delta \mathrm{P}$ burst capability were found. Thus, one of the principal objectives of this report is to demonstrate that the EOC circumferential crack distributions will satisfy $3 \Delta P$ and $\triangle P_{S L E}$ burst pressure requirements. The EOC-9 crack distributions are developed from the 1992 mid-cycle 100\% RPC inspections of the hot leg WEXTEX and TSP regions. Evaluations of multiple circumferential oracks and mixed mode (axial and circumferertial) oracking are performed to demonstrate tube integrity for the EOC-9 conditions. The eva uation of circumferential cracks also includes an assessment of the potential for crack propagation by tube vibration under normal operating and SLE flow conditions.

Tube vibration assessments are particularly sensitive to throughwall crack angles, as small ligaments such as 10% remaining wall or ligaments between microcracks add substantially to the tube stiffness and can effectively eliminate tube vibration concerns. The RPC data provide very limited data on crack depth and generally overestin ate the length of the throughwall portien of the indicated circumterential crack length. The tube vibration analyses to assess potential propagation of corrosion cracks are most confidentiy performed for assumed throughwall cracks. Thus it is necessary to bridge the information gap between RPC crack angles and potential throughwall crack angles which, if present, would be considerably smaller than the RPC crack angles. Based on the extensive North Anna inspections for circumferential cracks, it is reasonable to expect little throughwall crack penetratir, he remainder of Cycle 9, particuiarly with operation limits on leakage of 50 g . However, it is the goal of this evaluation to provide conservative but realistic asses., ents of potential crack propagation due to tube vibration. To this end, assessments of the potential for vibration induced crack propagation in the WEXTEX and TSP regions are made using the tube vibration analysis methodology of WCAP-13034.

In the very unlikely event that throughwall or near throughwall cracks may be present that do not leak during normal operation but may leak during a postulated steam line break, SLB leak rates are calculated based on end-of-cycle crack distributions. The SLB leak rates for axial and circumferential cracks are calculated for the expected EOC crack distributions, which are based on reductions in the number and sizes o: indications expected at the EOC-9 when compared to those found in the February 1992
mid-cycle insnections. In addition, bounding SLB leak rates are calculated based on the crack distributions found in the 1992 inspections.

Section 2 of this report integrates the detailed results of this report into a summary tube integrity assessinent and provides the overall conclusions of this evaluation. The 1992 inspection results for North Anna Unit 1 are desoribed in Sention s. Changes in operating conditions are avaluated in Section 4 to determine relative corrosion rates between the first and second hall of the fuel cycle. A summary of crack sizes satistying Reg. Guide $\mathbf{1 . 1 2 1}$ is presented in Section 5. The tube iniegrity assessments for tube burst, LBB, and vioration-induced crack propagation are developed in Section 6.
Section 7 sumcnarizes the steam line break leak rate analyses.

During January - Fobruary 1992, mid-cycle inspections of the steam generator tubes were performed for Cycle 9 of North Anna Unit 1. The eddy ourrent inspestions includeo RPC testing of 100% of the hot leg TSP intersections and WEXTEX expansion transitions. The number of tubes prugged for indications at the TSPS was significantly higher than the number plugged in previous inspections. The increase in the number of TSP 'ndications and the large crack angles observed have been attributed to the initial application of RPC probes to all of the HL TSP intersections; it is judged that a significant number of the indications detected in 1992 existed during previous inspections, but weie not detected due to denting at the TSPs until the use of the more sensitive RPC probes. This report evaluates the acceptability of continued operation for the remainder of cycle 9, and updates the Cycle 9 operating cycle evaluation performed in WCAP-13034. Cyole 9 prior to the mid-cycle inspection included 254 effective full power days (EFPD) at essenually 100% power. The remainder of Cycle 9 includes 252 EFPD with about $2 / 3$ of the cycie at 95% power and the remaining time in a coastdown mode at lower power levels.

2.1 Overall Conclusions

From the results of this evaluation. it is concl:

- Operation of the North Anna Unit 1 SGs to the end of the sacond half of Cycle 9 is acceptable and Reg. Guide $1.12 i$ criteria will be met at the end of the cycle. This conclusion is based on the expected fewer and smalier indications at EOC-9 compared to the $\mathrm{r}^{\prime \prime}$. "inspection results, which satisfy Reg. Guide 1.121.
- Based on the reduced power level and four month coastdown period planned for the second hall of Cycle 9, it is expected that there will be at least a 7% reduction in both the the number of newly initiatad cracks anc the growth rates of existing cracks which were undetected during the 1992 mid-cycle inspections.
- The use of RPC probes to inspect 100% of the hot leg TSP intersections in all three SGs during February 1992 produced a significant increase in the number of tubes plugged for indications at the TSP elevations. Industry experience has shown that
during the next inspection following the initial application of more restrictive eddy current analysis guidelines of the use of the mere sensitive (at tube diametral changes such as dented intersections) RPC probe, there is a significant decrease in both the number and size of indications observed. Based on such inspection transients for the WEXTEX regions of the North Anna steam genarators and for tubesheet and TSP regions of other operating plants, the number of axial and circumferential indications at the iSPs at the end of the current cycle are expected to be reduced to about $2 / 3$ of the mid-cycle inspection resu'ts. The inspection transient is also expected to result in a reduction of about 8% in the circumferential crack angles at the TSPs. The 8\% reduction in crack angles is based on North Anna Unit 1 experience for WEXTEX indication:s.
- The 7% reduction in orack growth from the reduced power condition would apply 10 both growth in depth and in crack angle. Hokevet, the RPC probes san only measure orack angle with confidence. Thus, the 7% reduction is only applied to the crack angle growth rate. The largest crack growth rates found at the TSPs were 39° and 45° for the first half of the current fuel cycle. A 7% reduction in the largest crack growth rates would reduce growth by about 3°. Hence, the reduced power operating condrions are expected to result in a reduction in crack angles of about 3° in comparison to those measured in the 1992 mid-cycle inspection. This reduction is applied for ciroumferential indications at the WEXTEX transition and at the TSPs.
- The largest WEXTEX circumferential indication obseived in the 1992 mid-cycle inspection was 199°, which is less than the 226° and 297° required to meet $3 \Delta \mathrm{P}$ buist capabilit 'r throughwall and segmented oracks, respectively. Two circumferential indications at the TSFs had overall orack lengths (240° and 239°) which exceeded the 226°, imiting crack angle for $3 \Delta P$ for a uniform, throughwall crack. However, the deepest parts of these cracks measured 134° and 96°, much less than the 226° limiting throughwall crack angle. Furthermore, applying the 8% and 3° reductions in TS ${ }^{\circ}$ crack angles expected for the end of the current cycle results in maximum expected TSP circumferential crack angies of 218° and 217°, Therefore, all EOC circumferential indications are expected to meet the $3 \Delta \mathrm{P}$ burst capability guideline of Reg. Guide 1.121.
- The TSP intersections of the North Anna Unit 1 SGs have experienced denting to the extent that axial cracks within the TSP thickness are judged not to open, even during a postulated SLB event. The denting would pti int the TSPs from moving relative to the tubes during a SLB. Therefore, only axial cracks extending above or below the TSP edges are accounted for in the tube integrity and SLB evaluations. The meatraum axial orack length measured outside the TSPs during the 1992 mid-cycle inspection was 2.49 inch; this is less than the crack 'ength of 0.72^{*} which meets 3. P burst criteria for the segmented crack morphology. The axial crack lengths from the 1992 mid-cycle inspection are conservatively applied for the expected EOC crack distribuiion. Therefore, all EOC axial indications are expected to meet 3AP burst capability for Reg. Guide 1.121.
- Potential leakage at SLB conditions can be bounded by leakage from the estimated orack distributions at EOC conditions. The SLB leak rate for the expected EOC crack distribution is I p.c. The bounding SL.B leak raie, assuming the crack distributions from the 1992 inspection apply for the EOC, is calculated to be 1 jb,c.
- The administrative leak rate limit of 50 gpd provides large leak before braak margins against tube burst $/ 3 \triangle \mathrm{P}$ N.O for assumed throughwall cracks and against burst at SLB conditions, even for leak limiting segmented crack morphologies.
- Corrosion crack propagation due 10 tube vibration is not expected for the range of circumferential crack sizes expected at the end of the current cycle. Even in the very unlikely eveni that crack propagation should occur, the North Anna leakage monitoring system and administrative procedures would provide detection and plant shutdown prior to a large leakage event approaching tube rupture. The North Anna leakage monitoring procedures would initiate plant shutdown following leakage exceeding 50 gpd in a single SG: plant shutdown would be completed within 2 hours.

2.2 Summary of Principal Results

The January - February 1992 mid-cycle inspection at North Anna Unit 1 encompassed full length testing with bobbin probes of 100% of the avalable tubes in each steam generato., The bobbin data was used to evaluate the condition of all free length fubing.
including all U-bends with the exception of Row 2. The Row 2 U-bends were inspected with RPC probes. 100% of the available hot leg WEXTEX regions were also inspected with RPC probes; this marked the second time 100% RPC inspection of the hot leg tubesheet region was performed at North Anna Unit 1, the first being in Spring 1991 prior to Cycle 9 operation. During January 1992, comparison testing of the 8×1 arrayed pancake probe and the RPC probe on indications at the TSPs showed that in most cases, it was necessary to make conservative and probably false 8×1 calis to achieve more than 90% detection of the signals identified by RPC testing. This was attributed to the inability to discriminate effectively between liftoff signals at the dented TSP intersections and crack indications at the TSP edges. Therefore, an inspection program encompassing RPC testing of 100% of the TSP intersections was undertaken. This represented the first application of 100% RPC inspection to the TSPs at North Anna Unit 1.

Table 2 -1 summarizes the tube plugging summary for the January. February 1992 inspection program. "here tubes were plugged for free span bobbin indications. 36 tubes were plugged for axial or circumferential RPC indications in the WEXTEX transition region. 469 tubes were plugged for RPC indications at the hot leg TSP intersections. 19 tubes were plugged preventively.

Of the 36 tubes plugged for WEXTEX indications, 31 were classified as circumferential cracks and 5 were classified as axial oracks. These indications were similar in appearance and EC characteristios to itidications observed in prior inspections. The crack morphology is predominantly PWSCC. Tube pulls in prior outages have shown the cracks to be comprised of numerous microcracks with aspect ratios (lengith/depth) of $4 / 1$ to $6 / 4$, separated by nearly full depth ligaments. The segmentation of the WEXTEX cracks enhances the strength and stifiness of the tube with respect to an entirely throughwall crack; this segmentation is accounted for in the assessment for vibratic.) induced crack propagation (Section 6.6) and the SLB leak rate analyses (Seution 7.0).

A total of 212 tubes were identified with circumferential crack indications at the TSP elevations. The phase angles observed in the 1992 TSF circumferential crack population are consistent with the behavior observed in prior inspections, and are indicative of ODSCC. Pulled fube examinations during the 1991 inspection showed that 60% of the total RPC arc length was throughwall. A similar crack morphology is
expected for the 1992 TSP sircumferential indications. Since the detectable threshold depth for RPC probes is about 50% depth for OD circumterential cracks, the model for TSP circumferential oracks has 60% of the total RPC measured orack angle as thr.zugh wall and the portion of the tube circumference apparently free from degradation hap 50% deep undetected cracking. While this model is applied for SLB leakage analysis. tube burst capability for EOC-9 is conservatively demonstrated assuming the total RFO angie is throughwall.

A total of 286 tubes were identified with axial oracks at the TSP elevations. Almost half of these indications were at the first TSP. and 77% were at the first two TSPs; this distribution was similar to those found in earlier inspections when eviection was accomplist d by bobbin probes. The dominant crack morphology of the TSP axial indications is PWSCC, based on tube pulis performed in +785 and 1987. The TSP PWSCC axial cracks exhibit multiple initiation sites with erous microoracks comprising the macrocrack lengths idenitied in the RPC inspection. As observed in the WEXTEX PWSCC circumferential cracks, the microcracks comprising the TSP axial oracks exhibit aspect ratios of $4 / 1$ to $6 / 1$ and are separated by nearly full depth ligaments. Due to the presence of denting at nearly all of the TSP intersections, the axial cracks within the dented TSP crevices are not expected to open up, even during postulated SLB conditions; the denting would keep the TSPs from moving relative to the tubes during a postulated SLB event. For the tube burst and steam line break leak rate analyses, only the portions of the axial cracks extending above or below the edges of the TSP are considered. All of the axial indications detected at the TSP elevations have been plugged.

The largest WEXTEX oircumterential indication, measuring 199°, was observed in R25C36 of SG B. Throughwall crack angles of up to 226° and segmented crack angles of up to 297° are shown to meet the $3 \Delta P$ burst capability requirement of Reg. Guide 1.121. Therefore, all of the WEXTExi indications observed satisfied the $3 \Delta P$ burst requirement.

Two circumferential indications at the TSP elevations had RPC crack angles which exceeded 226° for a uniform, throughw all crack: these tubes were R34C42-2H (240 $)$ and R18C39-1H (239\%), both in SG A. The deepent parts of these cracks measured $\sim 134^{\circ}$ and -96°, respactively. Hence, the potential throughiwall port ons of these cracks were less than the 226° throughwall angle required for $3 \Delta \mathrm{P}$ burst capability.

Based isn operating cycle considerations and inspection transient considerations, the largest crack angles for the crack distribution at the end of the current operating cyole would be smaller than found at the last inspection and are expected to meet $3 \Delta \mathrm{P}$ burst capability even if the RPC orack angles are very conservatively assumed to be uniformily throughwall cracks. These considgrations are discussed below.

During the second half of the current fuel cycle, the North Anna Unit i steam generators will be operated at reduced load (95% power) with a lower primary coolant temperature than during the first half of the cycle. During the final four months of the fuel cycle, the plan: will be in a coastdown mode at progressively lower power levels to conserve fuel. The durations of the first half or the current cycle (254 EFPD) and the second half of the cycle (252 planned EFPD) are approximately the same. Sased on this data, the relative corrosion rates during each half of the current fuel cycle have been evaluated. Assuraing that the operating chemistries for the two periods are comparable the variation in reiative corrosion for normalized corrosion activation energies ranging from 1 RO koalmole to $50 \mathrm{kcal} /$ mole has been determined. For the highest activation entrgy evaluated, the total corrosion during the seoond half of the fuel cycle is expected to be 63% of that obser 'ed during the first half of the cycle. Using the lowest, most conservative activation energy evaluated, the total corrosion during the second half of the fuel cycie is expected to be approximately 93% of that observed following the first half c f the cycle. The variation in relative corrosion based on the most conservative activation energy is applied for the EOC orack distribution, even though the reduction in the number of indications with TSP elevatisil would imply a larger activation energy. Hence, the reduced power and EOC coastdown for the second half of the current fuel cycle are expected to lead to at least a 7% reduction in the number of newly intitiated cracks and in the growth rates of existing cracks which were undetected during the mid-cycle inspection. For the circumferential cracks at the WEXTEX region and TSPs, the 7% reduction in growth rates would resutt in a reduction of the largest crack angles by about 3°.

In addition to a reduction in the sizes and number of indications due to opt ating cycle considerations, the TSP crack distribution for the end of the curient cyole is also expecied to show a reduction in the number and size of TSP indications based on the first time application of RPC testing at 100% of the hot leg TSF's in 1992. Industry experience has shown that during the first use of revised EC analyst guidelines of the
initial application of the more sensitive RPC probe to 100% of the tubesheet region, the number of indications increases substantially over the indications observed during previous inspections. During the first inspection after the initial application of the revised analyst guidelines or more sensitive probe, both the number and size of indications decrease substantially when compared to the previous outage. This phenomenon is called an "inspection transiert". Section 3.11 prasents inspection transient data for the tubesheet regions of five plants, including North Anna Units 1 and 2. and for the $\quad 0$ regions of three plants, including North Anna Unit 1. Bases on the data presented, it is judged that many of the tubes plugged for indications during the inspectior, iransients had cracks which existed during prior inspections, but were not delected until the use of the more sensitive probe of revised analysis puidelines. Furthermore, it is judged that the significant level of denting in the North Anna Unit 1 SGs has contributed to the inability to detect the cracks at the TL. s until the use of the more sensitive RPC probe at all TSP intersections. The number of TSP circumferential indications at the end of the current cycle is axpected to be less than $2 / 3$ of the indications observed during the mid cycle inspections.

The first RPC inspection of 100% of the WEXTEX region at North /inna Unit 1 a curred in the Spring 1991 inspections prior to Cycle 9 operation. Hence, fi: second 100% RPC inspection of the WEXTEX transitions during January. February $1 \downarrow 92$ resulted in fewer tubes plugged for WEXTEX circumferential indications; therefore, no onsange in the number of WEXTEX indipations is expected for the end of the current cycle, other than that associated with the lower Thot as described above.

For the TSP axial indications, the crack lengths observed during the 1992 inspections are conservatively applied for the end-of-cycle crack distribution. However, based on the significant increase in the number of axial indications at the TSPs as the result of the 100% RPC inspection transient, the number of axial ir sications at the end of the current cycle is expected to be $\Omega / 3$ of that observed in the 1392 mid-cycie inspection. The crack distributions expected at the end of the current fuel cycle, based on operating cycle considerations and inspection transient considerations, are based of, modifying the 1992 mid-cycle distributions as follows:

WEXTEX Circumferential indications

- reduction in orack angles by 3°
- no change in the number of indications

TSP Circumferential Indications

- reduction in crack anoles by both 3° and 8% of the last inspection results
- number of indications reduced to $2 / 3$ of last inspection

TSP Axial Indications

- no change in crack length
* number of indications reduced to 2/3 of last inspection.

The reduction in WEXTEX indications for EOC-9 is negligibie and acceptable burst capability has been demonstrated for the indications found at the mid-cycle inspection. For the TSP ciroumferential indications, the reduced Thot and the RPC inspection transient lead to expected EOC crack angies less than 218°. Since the expected cracks are less than the 226° for $3 \triangle P$ buist capability of throughwall cracks, the EOC-9 conditions satisty Reg. Guide 1.121 even if the total RPC angle is assumed to be throughwall.

Stearn line break leak rate analyses have been perforited for the expected end-of-cycle crack distributions. The leak rate contributions from the expected WEXTEX circumferential, TSP circumferential and TSP axial orack distributions are calculated to be $0.6 \mathrm{gpm}, 12.8 \mathrm{gpm}$, and 3.4 gpm , respectively. Axial cracks in or above the WEXTEX region are not considered to contribute to the SL.B leak rate, since all axial cracks exceeding 40% through wall depth are plugged belore returning to power and throughwall cracks are not expected during the remaining one-half cycle of operation. The $10^{* *}$ SLB leak rate for the expected EOC crack disiribution is estimated to be 16.8 gpm. In addition, a bounding SLB 'eak rate is calculated by conservatively applying the1992 crack distributions for the WEXTEX and TSP regions for the end-of-cycle. The bounding SL.B leak rate would be approximately 30.5 gpm .

A tube vibration assessment has been performed to determine the potential for crack propagation driven by turbulent and fluidelastic tube vibration. The minimum crack angles for crack propagation are calculated for circumferential cracks at the WEXTEX
transition and at the TSPs. None of the WEXTE λ circumferential cracks observed affer the first half of the ourrent cycle had crack argles which were subject to crack propagation due io tube vibration. For the TSP regions, the polential for tube vibration induced crack propagation is significant only for indications at the bottom edge of the first TSP. None of the circumferential indications observed at the hoticm of the first TSP during the 1992 mid-cycle inspection program had crack angles w. hich exceeded those required for crack propagation. As previously described, the crack engles for the WEXTEX and TSP regions at the end of the cuirent cycle are expected to ho smaller than those observed during the 1992 mid-cycle inspection. Therefore, none of the nircumferential indications at the TSPs or WEXTEX transitions are expected to experience tube vibration-induced crack propagation.

Table 2.1
North Anna Unit 1 Tube Plugging Summary. February 1992

Indication	Probe Type	Number of Tubes Plugged		
		SGA	SGB	300
WEXTEX (Hot Leg)	RPC	15	10	11
TSP (Hot Leg)	RPC	143	148	178
Free Span	Bobbin	1	0	2
Preventive		7	2	10
Total 1992 Plugging		166	160	201
Cumulative SG Plugging		629	585	851
		(18.6\%)	(17.3\%)	(25.1\%)

3.0 EDDY CURRENT DATA REVIEW

3.1 Inspection Summary

The 1992 North Anna Unit 1 steam generatcr inspection program ericompassed full length testing with bobbin probes of 100% of the available tubes in each steam generator. The data from this program was used to evaluate the condition of all free length tubing, including the U-bend portions, except for Row 2 U-bends. Comparison testing of the 8×1 arrayed pancake probe and the RPC probe was conducted on indications at the TSPs. The comparison tests showed that in most cases, it was necessary to make conservative and probably false 8×1 calls to achieve more than 90% detection of the signals identified by RPC testing. This was attributed to the inability to discriminate effectively between liftoff signals at the dented TSP intersections and crack indications at the TSP edges. Utilization of the 8×1 prohes with a high overcall rate and RPC verification was judged to be less efficio : than RPC testing aione. Theretore, an inspection program encompassing RPC testing of 100% of the TSP intersections was und . ken. All hot leg (HL) WEXTEX transitions and HL tube support plate intersections, whether dented or not, were inspected with RPC probes. Additionally, all Row 2 tubes were tested through the U-bends with RPC probes.

The eddy current (EC) analysts were required to pass site specific examinations approved by the Virginia Power NDE Level III. All data was analyzed independently by two analysts. Resolutions of conflicts arising between primary a: I secondary analysts were performed by Westinghouse lead analysts, in concert with procedures jointly established with the Virginia Power NDE Level III and overseen independentily by Virginia Power Quality Assurance.

3.2 Tube Plugging Summary

Through the end of 1991, cumulative tube plugging of 15.1% (1538 tubes) had accrued; this was distributed among the steam generators as follows: SG A, 13.67\% (463); SG B, 12.54\% (425); SG C, 19.18\% (650). The incremental plugging resulting from the January-Feoruary 1992 inspection is summarized in Table 3-1. Of the 527 tubes plugged during this outage, most were identified by RPC inspection at the tube support plates (469) and the WEXTEX transition zones (36) • 3 were identificd on

Iree length tubing by bobbin probes and 19 were preventively plugged. Atter completion of the 1992 plugging, 2065 tubes (20.31%) nave been plugged cumulatively; thess are distributed among the three steam generators as follows: S3 A, 18.6\% (Є29); SG B, 17.3% (585); SG C, 25.1\% (351).

3.3 WEXTEX Indications

All flaw indications identified by RPC testing in the WEXTEX region were regarded as sutticient basis for plugging the tubes on which they were found. Of the 36 such tubes. 31 were classified as circumferential cracks and 5 as axial cracks. On five of the tubes, more than one circumferential crack was reported; these were designated MCI (multiple circumferential indication) as distinguished from SCI for single circumferential indications; there were no multipie axial indications (MAI) reported. Table 3-2 summarizes the distribution of the WEXTEX RPC indications by type for each steam generator. Figures 3-1, 3-2 and 3-3 present the plan views for stearn generators A, B, and C respectisely; these show the cistribution of the WEXTEX indications.

3.3.1 location of WEXTEX Indications

By far, the predominant location of the circumferential indications observed in the North Anna Unit 1 WEXTEX region is within the first 0.2^{*} below the top of the tubesheet (TTS): only 2 of the 31 circumferential indications reported were above this, and those were within 0.1° of the TTS. One circumferential indication was more than 0.2^{*} bslow $\left(0.28^{*}\right)$ the $T T S$. By coni, ast, 3 of the 5 axial indications were more than 0.1° above the TTS, while 2 were within the 0.1^{*} just below the TTS.

3.3.2 Crack Morphology

The WEXTEX crack indications recorded in the February 1992 inspection are similar in appearance and EC characteristics to the prior indications. The predominant aspect of these signals from EC data is the ID origin, indicated by the phase ang : data associated with the RPC signals which, were classified mainly as circumferential, with a small number appearing axial in orientation. Although the phase angles are typically oftset in combination with the transition effects, the WEXTEX phase angle observations as a group lie in the ID range of flaw behavior, distinctly different from the phase angles associated
with the TSP/dent circumferential signals which are grouped in tha OD range of flaw behavio. The ID-originated cracks in the WEXTEX zone are characterized as cracks with multiple initiation sites, with resulting numerous microcracks mmprising the macrocrack detected by the RPC probe. Tube pulls in 1985 and 1987 examined ID-originated cracks of this type and established that the individual microcracks detected have aspect ratios of $4 / 1$ to $6 / 1$ separated by nearly full depth ligaments. The deepest cracks are typically within a macrocrack or ac, acent microcracks for which the separating ligament may have been lost by corrosion. No significant cracking is found other than the essentially continuous macrocrack. As for the 1991 analysis, the PWSCC cracks are represented by a ligament model with 0.2 to 0.3 inch long, deep (assumed throughwall) segments separated by ligaments (assumed wall thickness). An elastic ligament model is used to size the width of the ligaments such that the ligaments remain elastic under normal operating pressure differentials, which results in ligaments with about 0.050 inch width for 0.2 inch throughwall segments.

3.3.3 WEXTEX Circumferential Arc Lengths

Individual SCl's exhibit lengths measurud in degrees arc length, ranging from less than 60° (very few) to 199°. By contrast, the 1991 inspection results included WEXTEX crack arc lengths up to 247° and the 1989 inspections included arc lengths up 10300°. Figure $3-4$ compares the size distributions for the 1991 and 1992 inspections. The smaller number of circumferential cracks reported in 1992 (31) compared to 1951 (216) reflects the shorter operating period prior to shutdown but more importantly, the effect of the 1991 inspection transient; i.e., the 100% RPC inspection performed in the WEXTEX region in 1991 was the first such inspection applied in North Anna Unit 1 (see Section 3.11).

3.4 TSP Circumferential indications

RPC examination of the assumed dented TSP's in the North Anna 1 steam generators resulted in identification of 212 tubes with circumferential crack indications (SCI \& $\mathrm{MCl})$ Table 3-3 provides a breakdown of the distribution of these cracks for each of the sleam generators with respect to TSP elevation. Figures 3-5, 3-6 and 3-7 display the planar composite cistribution of these indications for steam generators A, B and C respectively.

The arc length distribution of the observed TSP circumferential crack population is presented in Figure 3-8, together with the comparabie 1991 distribution. It is seen that the 1992 population is much larger than that observed in 1991; this is a manifestation of the inspection transient resulting from the first application of 100% RPC testing to the support plate intersections. The 1991 population (93 fubes) represents only those cracks confirmed by RPC examination atter detection by bobbin or 8×1 probe testing. Because prior detection by bobbin or 8×1 probes was required before RPC testing. only ~ 540 irdersections were tested with RPC. This excludes those 7th support plate locations RPC tested in conjunction with NRC Bulletin 88-02 concerns. The 1992 inspection on the affected support plates (1-5) encompassed more than 50,000 intersections, a nearly 100 -rold increase in RPC scope.

The 1992 inspection transient resulted in increased numbers of indications as well as longer aro lengths. Cracks which were previously undetected ware reported in the 1992 initial 100% RPC inspection, including some with long aro lengths. The largest aro lengths found were in SG A at R34C42.2H and R18 $139-1 \mathrm{H}$, with RPC crack angles of 240° and 239°, respectively; these were the only two indications exceeding 226° tor 3AP burst capability. The characterization of 8×1 signals observed in 1991 was apparentily unable to discriminate effectivel; between liftoH signals at the dented intersection and crack indications at the TSP edges. This effect was confirmed in 8x1 vs. RPC corr.parison tests pertormed at North Anna 1 in January 1992. In these tests, it was necessary to make conservative and probably false 8×1 calis 10 achieve 290% detection of the signals identified by APC testing.

3.4.1 Crack Morphology for Tube integrity Assessments

The TSP circumferential crack population observed in 1992 exhibits phase angles usually associated with OD origin degradation. This is consistent with the behavior of the 1991 population, as well as the finclings of the tube examination (R11014-1H) for the circumferential cracks. In that examination, it was observed that 60% of the total arc length associated with the main crack at the upper edge was throughwall. For the 1992 evaluation, it is assumed that the observed circumferential cracks are similar to those found in 1991, i.e., ODSCC consisting of macrocracks formed by linkup of individual microcracks followed by corrosion of the separating ligaments. The portion of the tube
circumference apparently free from degradation based on RFC results is assumed to have 50% deep undetected cracking.

3.5 TSP Axial Indications

The RPC examination of 100% of the hot leg suppori plate intersections in S/G's A, 8 and C resulted in identification of 286 tubes with axial cracks, with 98,87 and 101 indications in each SG, respectively. As indicated in Table 3-4, these indications were distributed with almost halt at the 1 H level and 77% at the first two plates. This distribution is similar to those found in earlier inspections (e.g. 1985, 19t ${ }^{7}$. 1989, 1991) when detection was accomplished by bobbin probes. Figures 5.9, 3-10 and 3.11 display the planar composite distributions for the TSP axial indications. Again, the pattern is similar to those observed in prior inspections. Neither the circumferential ODSCC indications nor the axial (PWSCC) indications display any preference for localized clustering at the TSP elevations. Comparing 1992 inspection results with those from 1991 shows that the tubes plugged for axial cracks in 1992 arise mainly (63%) from cracks not detected by bobbin at the edges of dented intersections while cracks in this category accounted for only 13% of 1991 's tube plugging for axial cracks. Therefor- it is likely that the 286 tubes plugged in 1992 for axial cracking reflect the RPC inspection transient described above rather than accelerated PWSCC during the 9 month operating interval just prior to the inspection. Cracks undetected by the bobbin probe are masked by denting at the TSP and the RPC probe is better suited to detect them because its surface-riding feature reduces the influence from the dent interference. It is estimated that the "new' axial crack population identifiable by bobbin in the 1992 inspection accounts for -120 of 287 tubes, approximately , alf the number plugged on that basis in 1991, during an inspection that followed an uninterrupted oparating cycle.
3.i. Crack Morphology

Tube pulls performed in 1985 and 1987 have characterized the dominant morphology associated with axial cracks in the dented TSP intersections of North Anna 1 as PWSCC with multiple initiation sites and numerous microcracks adding up to the macrocrack lengths typically identified in RPC inspections. Aspect ratios (length/depth) of $4 / 1$ to $6 / 9$ are associated with the individual microcracks which are separated by nearly full
thickness ligaments. The deepest cracks are typically within a macrocrack or adjacent microcracks for which the separating ligament may have been lost by corrosion. No significant cracking is found other than the essentially continuous macrocrack. For analysis, tf- EWSCC cracks can be represented by a ligament model with 0.2 to 0.3 inch long, deep (assumed throughwall) segments separated by ligaments (assumed full thickness). An elastic ligament model is used to size the width of the ligaments such that the ligaments remain elastic under normal operating pressure differentials, which results in ligaments of about 0.050 inch width for 0.2 inch throughwall segmetil.

3.6 Multiple Circumferential indictions (MCl's)

3.6.1 WEXTEXMCI's

Of ibn 31 tubes identified with circumferential cracks in the WEXTEX expansion zone, there were 5 which exhibited MCl's. Table 3.5 provides a listing of the individual tubes, aiony with the elevation of indications, the are lengths and ligaments observed, ard the total crack are lengths. The smallest ligament observed was 12° on S / GA R24C33 which adjusted for RPC resolution capability (sue Section 3.8), represents -42° separalior between cracks. The apparent total crack arc length is $234^{\circ}\left(149^{\circ}\right.$ * 85°) : with resolution corrections for coil lead-in and lead-out effec's assuming deep cracks, this is reduced to about 174°. On this basis, all MCI ligaments observed exceed the $30-35^{\circ}$ ligament size required for MCI burst capability to exceed that of a single crack with a 70° ligament (see Section 5.4). All the observed WEXTEX MCl's meet the $3 \Delta \mathrm{P}$ burst capabiilty (see Section 6.2).

3.6.2 TSP MCl's

A total of 212 tubes were plugged for TSP circumferential cracks; of these 13 9xhibited MCl signals on the same elevation (i.e. support plate edge). Table $3-6$ provides a list of these tubes, the elevations, and the crack and ligament lengths observed. The minimum ligament observed in these MCls was $\sim 41^{\circ}$, which amounts $10-71^{\circ}$ after RPC resolution adjustment for lead-inleas-out coil effects. Thus the observed ligaments exceed the $60-70^{\circ}$ size required to establish MCI burst capability at $3 \Delta \mathrm{P}$ conditions (Section 5.4); hence, all of the TSP MCl's meet the $3 \Delta P$ burst capability requirements (Section 5.3).

3.7 Potential Combined Axial and Circumferential Indications

Of the 469 tubes piugged for axial and circumferential indications at support piates, there were 13 tubes (14 TSPs) which displayed both axial and diroumtrential indications at the sama TSP. Seven (7) of these instences involved axial cracks either entirely within the TSP dimensions or on the upposite edge from the circumferential indication. The other seven (7) occurrences involved situations in which the axial crack intersected the same elevation cil which the circumferential indication was observed; the locations of these tubes are shown if Table 3-7 and Figure 3-12. The data for all 14 TSP locations is summarias in Table 3-8: given are the fube, the elevation, the aro length of the circumferential indication, the distance between the indications' centers (expressed in degrees), the derived ligament arc length, and the sum of ligament angle measured plus $1 / 2$ of the axial indication arc length. The derved ligament angle is obtained irom the senter line to center line separation minus half the circumferential angle: atis provides a ligament angle comprised of the ligament plus half the RPC resolutich capability for the single axial crack. The actual measured ligament plus hal the FPC resolution capability for the axial crack provides a check against the derived arc length. It is seen that either the derived or the measured arc length provides sufficiently long ligaments even before adjusiment for fipC lead-inlead-out eflects, except for R30C67; atter adjustment this tube also is shown to possess sufficient ligament separating the two crack modes to meet the burst pressure requirements. All the ligaments in the potential mixed mode degradation cases observed exceed 30° and are expected to meet $3 \triangle \mathrm{P}$ burst capability requirements (see Section 6.5).

3.8 RPC Resolution Considerstions

Limitations on RPC resolution do not permit accurate sizing of ligaments between closely spaced cracks. RPC resolution tests performed for a ligame 1 between two throughwal circumferential indications were described in WCAP-13034 and are summarized in this section for application to the structural assessment of MCls. RPC resolution tests were also performed for the ligament between a throughwall circumferential crack and a throughwall axial crack to support the assessment of potential combined circumferential and axial indications at TSP intersections (Section 3.7).

RPC resolution for a ligament between two circumferential indications was evaluated using EDM notch simulations for circumferential cracks. Ligament sizes of 0.125 and 0.250 inches between throughwall EDM notches were inspected with an RPC probe. The results are showti in Figure 3-13. It is ssen that a ligament of 0.125 inch between the EDM circumferential notches cannot be resolved by the RPC probe. A licament of 0.25 inch, corresponding to an angle of about 35°, is required to clearly separate the circumferential indications based on the RPC amplitude returning to the "null point" for which the amplitude returns to the background ievel.

The North Anna RPC data analysis guidelines require the amplitude to return to the null point to call a circumferential indication a MCl . The ligament size or angle is then defined as the width of the null point response between two circumferential indications. Secause of the limited resolution, the RPC measured ligament at null point response significantly underestimates the actual ligament between two deep circumferential cracks. The actual ligament between two closely spaced, throughwall circumferential cracks can be expected to exceed the measured RPC ligament plus 30°. This RPC resolution limitation results from the RPC coil lead-in and lead-out effects on measuring a crack size such that the crack angles for deep indications are overestimated. The RPC lead in or lead-out effects are each typically found to be about a RPC coil diameter of about 0.1 inch diamete: or about 15° each. Theretcre, if it is assumed that the measured RPC crack angles are deep or throughwall cracks, the measured angles should be decreased by 30° and the measured ligaments betwsen cracks should be increased by 30°.

RPC resolution tests were also performed tor a ligament between a circumferential anid an axiai crack. Again the cracks were simulated by throughwall EDM notches. Ligament sizes of $0.125,0.250$ and 0.400 inch were evaluated. The RPC inspection results for these tests are shown in Figure 3-14. For a 0.125 inch ligament, the ligament between the axial and circumferential indications cannot be resolved iy RFC. For the 0.250 inch $\left(-37^{\circ}\right)$ ligament, the RPC amplitude retums to the null point with a 0.040 inch $\left(-7^{\circ}\right)$ ligament detectable by RPC. Thus the ligament angle is underestimated by about 30°, For the 0.400 inch ligament, the RPC measured li, ament is between $0.110\left(16^{\circ}\right)$ and 0.150 inch $\left(22^{\circ}\right)$ compared to the actual ligament angle of 59°. Thus the ligament size is underestimated by $>35^{\circ}$ and at least 30° must be added to the RPC measured ligament to obtain the minimum actual ligament size.

The ligament size between axial and oircumferential cracks can also be estimated by alternate methods which ignore the RPC crack angle oblained for axial indications, as given in Table 3-8. In Table 3-8, two methods are applied to estimate the ligament size. The first method derives the ligament angle as the centerline to centerline distance between the axial and circumferential cracks minus haif the ciroumferential angle. The second method utilizes the RPC measured ligament size plus half the RPC measured angle for the axial crack. Both of these methods tend to underestimate the ligament size by the overestimate of the circumferential angle resulting from the RPC lead-in or lead-out effect. Thus the ligament sizes of Table $3-8$ are general conservative underestimates of the actual ligament compared to adding 30° to the RPC measured ligament size.

3.9 WEXTEX Circumferential Crack Growth Rates

Tubes reported with WEXTEX circumferential cracks in 1992 were re-analyzed from the 1991 EC data, in order 10 establish an estimate of azimuthal crack propagation; the 1992 inspection represented the secoild consecutive in-service inspection of the WEXTEX transitions with RPC probes. Of the 31 tubes found with WEXTEX circumferential indications (see Table 3-2), 24 were evaluated on the basis of the 1992 data 10 exhibit visibie circumferential features which were attributed to the precursor cracks. For these cases, the apparent azimuthal arc was calculated and compared to the arc lengths reported at the corresponding locations in 1992; these differences yielded an average change for WEXTEX crack growth of $12.8^{\circ} \pm 12.2^{\circ}$ for the operating interval (see Table 3-9). To compare with the prior cycles growth rate delermined from $8 \times 1 /$ RPC correlations, the observed value is doubled to account for the shortened operating interval to yield a cycle average growth rate of approximately 26° for 1991-1992 compared to the 1989-1991 growth rate of 30°. Figure $3-15$ compares the cumulative and interval growth rates for 1991 and 1992. The 95\% cumulative growth rate value for twice the 1992 result (66°) oompares favorably with the 1991 value $\left(73^{\circ}\right)$ which was based on the $8 \times 1 /$ RPC correlation. The operating interval completed prior to the 1992 inspection was 254 EFPD versus 506 EFPD preceding the 1991 inspection.

3.10

 Tube Suppori Plate Circumferential Crack Growth RatesThere were 23 TSP circumferential indications reported in 1992 which had been RPC tested in 1991. Comparing the arc lengths from the 1992 calls with the curiesmonding features in the 1991 data (Table 3.10) yieided comparisons which amounted to $10.5^{\circ} \pm 12.2^{\circ}$ growth for the shorl cycle: doubling this estimate to enable comparison with the previous, full cycle average growth rate again esults in a favorable comparison - 21% for the 1991 - 1992 period vs. 30\% for the 1989-1991 jeriod. Similarly the 95% cumulative probabilities for these periods were 63° and 67° respectively. Figure $3-16$ presents the cumulative and interval orowths oompared between the 1992. RPC and 19918×1 data.

3.11 Inspection Transient Considerations

During the December 1990 and February 1992 inspection programs at North Anna Unit 1. RPC probes were used more extensively than in previous outages: this resulted in one time occurrences of a large number of tubes plugged due to indications in the WEXTEY transition region (1990) and at the TSP intersections (1992). This behavior is typical of plants which experience inspection transien is. Specifically, the number of indications found during the first inspection using new NDE guidelines or a more sensitive probe type are typically much larger than in the preceding inspections. During the next inspection following the application of the revised guidelines or new probe, the number and size of indications have been observed to decrease substantially Experience has shown that many cracks detected during the first application of more stringent guidelines or with a more sensitive probe would also have been found in the preceding inspection, had the guidelines or probe been applied at that time.

Inspection transients for the tubesheet and TSP regions have been observed in several plants in recent years, following the implementation of 100% RPC inspection in the hot leg tubesheet or the use of revised EC analysis guidelines for the TSP regions. The levels of tube plugging at North Anna Unit I have been consistent with the inspection transient behavior ouserved at other plants. Industry experience with inspection transients at several plants are compared to that of North Anna Unit 1 in the fullowing sections.

3.11.1 WEXTEX Region inspection Transient at Plant L

The frst application of the RPC probe 10100% of the hot leg tubesheet regions in all four SGs at Plant Loccurred during the 1989 inservice inspections. 100\% RPC inspections of the hot leg fubesheet regions were also periormed during subsequent inspections in 1990 and 1991. Table 3-11 summarizes the tube plugging results for fubesheet region oracking from 1987 through 1991. Prior to 1989, nine tubes were plugged for ODSCC in the tubesheet region. Upon implementation of 100\% RPC inspection of the hot leg tubesheet in 1989, a total of 90 tubes were plugged for axial and circumferential indications in the WEXTEX transition region. Of this total, 41 tubes were plugged for axial cracks on the OD of the tubes, and 56 tubes were plugged for ID oircumferential oracking. During the second 100% RPC inspection of the hot leg tubesheet region in 1990, a total of 29 tubes were plugged for cracking in the WEXT EX transition region; all but two of these tubes were plugged for axial indications. 28 tubes were plugged for tubesheet indications in 1991.

Similar to the trend in numbers of indications for inspection transients, crack sizes tend 10 be the largest in the first RPC inspection and smaller in subsequent inspections. For Plant L. the iargest circumferential orack angles in the three sequential inspections were $263^{\circ}, 20^{\circ}$ and 158°.

> The above results for Plant L. clearly demonstrate the inspection transient experienced during the initial application of 100% RPC to the WEXTEX expansion region, when a significant increase in the number of both axial and circumferential indications occurred. Subsequent inspections using RPC to inspect 100% of the hot leg tubesheet have resulted in significantly lower numbers of tubes and smaller crack sizes for axial and circumferential cracking in the WEXTEX expansion region, compared to the first RPC inspection.

3.11.2 Inspection Transients at Plant A.1

Table 3-12 shows the tube plugging history for Plant A-1 from 1985 through 1991. A significant increase in the number of tubes plugged for tubesheet and TSP indications oocurred in 1991. For the tubesheet region, this increase is the result of the first application of RPC to 100% of the tubesheet hot leg. The significant increase in the
number of tubes plugged for indications at the TSPs is the result of a change in EC analyst guidelines. These inspection transients are described in detail below.

Prior to 1991, a modest number of tubes were plugged for $O D$ indications above the fubesheet; sixteen of the 20 tibes plugged from 1985 to 1988 for ODSCC in the tubesheet region were for indications on the hot liga side in the sludge deposition region. During the October 1989 inspection program, 100% of the available tubes were inspected full iength using a standard bobbin probe. Supplemental MRPC inspections were performed for distorted indications (DI's) at the TSPs and above the fubesheet. In addition, a random sampling of 9% of the tubes in one SG were inspected with an 8×1 probe for possible circumferential cracking in the WEXTEX transition repion. A total of 22 tubes were plugged for ODSCO in the sludge deposition region.

In order to increase the detectability of circumferential indications in the WEXTEX region, 100% of the available tubes in the hot leg tubesheet region were inspected by RPC probes in April 1991; in addition, the bobbin inspection guidelines for indications above the tubesheet were altered (i.e., the voltage threshold for RPC inspection was eliminated). The resulting number of tubes plugged for ODSCC at the toD of the tubesheet more than doubled, tolalling 46 tubes plugged. Although no tubes had been plugged for PWSCC in the tubesheet in prior outages, 72 tubes were plugged for PWSCC in the WEXTEX expansion zone (37 axial indications and 35 circumferential indications). This behavior is typical of the inspection transients observed during first time application of 100% RPC or ather changes in bobbir interpretation guidelines.

The number of tubes plugged for indications at the TSPs during April 1991 aiso increased as a result of the elimination of the bobbin voltage cutoff for requiring RPC inspection. The more stringent analyst guidelines and increased use of the RPC probe resulted in the plugging of 102 tubes for indications of ODSCC at the TSP elevations; only four tubes had been plugged for such indications during all prior inspections. Again, this clearly demonstrates the inspection transient effect of changes in analyst guidelines and more extensive use of the RPC probe.

The next inspection program for the Plant A-1 sleam generators will occur during the September 1992 refueling outage: hence, there is no data to demonstrate a decrease in the number of indications observed during the first outage following the inspection
transient. However, the steam generators at Plant A-2 recently completed the first inspection after a similar inspection transient: the results for Plant A-2 are described below.

3.11.3 Inspection Transients at Plant A.2

Table 3.13 shows the tube plugging history for Plant A-2 from 1985 through 1992. A significant increase in the number of tubes plugged for tubesheet and TSP indications occurred in 1990. For the tubesheet region, this increase was the result of the first application of RPC to 100% of the tubesheet hot leg. The significant increase in the number of tubes plugged for indications at the TSPs was the result of a changs in bobbin coil analyst guidelines. These inspection transients are described in detail below.

At Plant A-2, PWSCC has been observed in the hot leg mechanical expansion region since January 1985. Prior to 1990. 86 tubes were plugged for PWSCC indications in the expanded tegion. During the inspection programs prior to $1990,100 \%$ of the avallable tubes were inspected full iength using a standard bobbin probe. Supplemental MR.PC inspections were performed for distorted indications (Dl's) at the TSPs and above the lubesheet. During the December 1990 inspection program, 100% of the available tubes in the hot leg tubesheet region were inspected using RPC probes; 328 tubes wer F nugged for indications of PWSCC at the roll transitions. 100% RPC inspection of the roll transition regions in March 1992 resulted in only 60 pluggable tubes, all with axial indications in the roll transitions.

From 1985 to 1989, a total of 112 tubes were plugged for ODSCC at the TSP elevations of Plant A-2. In December 1990, revised inspection guidelines for the TSP regions eliminated bobbin coil thresholds and 243 tubes were plugged for ODSCC at the TSP elevations. These revised guidelines were also responsible for the April 1991 inspection transient described above for Plant A.1. Again, this clearly demonstrales the inspection transient effect of changes in analyst guidelines and more extensive use of the RPC probe. In March 1992, only 18 tubes were plugged for ODSCC at the TSPs. However, this inspection implemented an atternate tube plugging criteria; thus, the reduction in plugging from 243 to 18 is a combination of the inspection transient and plugging criteria.

3.11.4 Inspection Transients and Conclusions for North Anna Units 1 and 2

Tabie 3.14 summarizes the tube plugging due to circumferential indications in the tubesheet and TSP regions of North Anna Units 1 and 2 through 1992. The table demonstrates that the No. th Anna steam generators have experienced similar inspection transient behavior to that seen in the other plants described above.

The first application of RPC to inspect 100% of the WEXTEX transitions in North Anna Unit 1 occurred in December 1991. The resulting inspection transient roduced 216 circumferential indications. For the inspection following the first 100\% RPC inspections, only 31 circumferential indications were found at Unit 1 ; hence, the number of indications were reduced by a factor of 7 . The first application of RPC to inspect 100% of the WEXTEX transitions in North Anna Unit 2 occurred in September 1990. The resulting inspection transient produced 26 circumferential indications, up from 4 indications in the preceding outage. For the inspection following the first 100% RPC inspections, 13 indications 'vere found at Unit 2. For Unit 1, the maximum circumferential crack angle found in the first RPC inspection was -247°, compared to 199° in the subsequent inspection. Except for a large circumferential indication identified in the first Unit 2 RPC inspection but not called for plugging based on lack of phase angle response, the largest Unit 2 circumferential crack was reduced from 238° to 128° in the outage following the RPC inspection transient.

The first application of the RPC probe to 100% of the hot leg TSP intersections of North Anna Unit 1 occurred in February 1902 A total of 212 tubes were olugged for circumferential indications at the TSP elevations. This represented a significant increase over the number of tubes plugged during any of the prior outages. This behavior is consistent with the inspection transient behavior observed for the TSP axia indications of Plants A-1 and A-2.

Based on the data presented above for inspections following an outage in which revised inspection guidelines or more sensitive probes are used, it is judged that mainy of the tubes plugged for indications during the inspection transients had cracks which existed during prior inspections, but were not detected until the use of the more sensitve probe of revised analysis guidelines. The significant level of denting in the North Anna 1 steam generators has contributed to the limited detectability of the cracks at the TSP
intersections until the use of the more sensitive RPC probe at all TSP intersections.
Therefore, it is judged that the number and size of indications which will exist at the end of the current operating cycle will be smaller than the cracks found during the $2 / 92$ inspection program.

Table 3.1

North Anna \#1
 February 1992

Tube Plugging Summary

A B
\uparrow
Through 1991 463
425 650
WEXTEX (HL) (RPC) 15 10
11
TSP (HL) (RPC) 143
148 178
Other (Bobbin) 1 0 2
Preventive 7 2 10
Total 1992 166
160 201
Cumulative 629
585 851
\& Plugged 18.6 f 17.38 25.18

Table 3-2

Horth Anna 11
February 1992
WEXTEX Inspection Results
Steam Generator
\# Tubes

$$
A
$$

B

$$
30
$$ 2

Multiple Axial 0 0 0
Single Circumferential 10 9 7
Multiple Circumferential 2 1 2

- There were Q tubes with mixed mode degradation
identified in the wextex transitions.

Tabis 3-3

North Anka $\$ 1$
February 1992

TSP Circumferzntial Cracks

Elevation	Steam Generatcr				
	A	$\begin{array}{c}8 \\ \text { SCI/MCI }\end{array}$	SCI/MCI	$]$	SCI/MCI
:---:					
$1 H$					

SCI - SINGLE CIRCUMFERENTIAL INDICATION
MCI - MULTIPLE CIRCUMFERENTLAL INDICATIONS

Table 3-4

North Anna 11
February 1992

TSP AXIAL P : : AKs

Elivation
Steam Generator

B

1H
2 H
3 H
4 H
36/0
24/2
SAI/MAI
SAI/MAI

$1 H$	$36 / 0$	$53 / 4$	$37 / 5$
$2 H$	$24 / 2$	$14 / 3$	$41 / 1$
$3 H$	$7 / 0$	$6 / 0$	$5 / 1$
$4 H$	$5 / 0$	$5 / 0$	$8 / 0$
$5 H$	$21 / 0$	$1 / 0$	$1 / 0$
$6 H$	$3 / 0$	$1 / 0$	$2 / 0$
$7 H$	$0 / 0$	$0 / 0$	0.0

SAI - SINGLE AXIAL INDICATION
MAI - MULTTPLE AXIAL INDICATVUNS

Table 3-5

North Anna-1
 WEXTEX MCIS

Steam Generator 8

R9C36	$T S+.00$	81°	$17^{\circ}\left(47^{\circ}\right)(1)$	82°	180°	163°

Steam Generator G

R1OC72	TS. 5.02	76°	38°	76°	170°	151°
R25C50	TS. .04	67°	46°	59°	178°	126°

Note 1. RPC measured 11 gament increased by 30° for resolution 1 imitations (coil lead-in and lead-out effects) and each circumferential indication decreased by 30°.

Table 3.6

North Anna-1
TSP Multiple Circumferential Indications (MCIs)

Iube	Lecation		Liq. 1	Circ.	L17. 2
		Steam Gerarator A			
R6C6 R17C10 R29C30					
	$1 \mathrm{Ht} .50$	90°	86°	98°	110° -890°
	$1 \mathrm{H}+26$	131°	75°	87°	-890 -670
		Steam Generator B			
R1IC8	$2 H-.21$	$\begin{aligned} & 114^{\circ} \\ & 108^{\circ} \end{aligned}$	68°	117°	
	$2 \mathrm{H}+.23$				
R12C8R22C24	3 HH .23 2 H .23	$\begin{array}{ll}128^{\circ} & 75^{\circ}\end{array}$		811° 980	$\begin{array}{r} 106^{\circ} \\ 59^{\circ} \end{array}$
	2H-. 30	$132^{\circ} \quad 73^{\circ}$		101°	$\begin{aligned} & 59^{\circ} \\ & 54^{0} \end{aligned}$
$\begin{aligned} & \text { R22C24 } \\ & \text { R2C41 } \end{aligned}$	$3 \mathrm{H}+29$	138°	$66^{\circ}\left(96^{\circ}\right.$; 1)	115°	$\begin{aligned} & 54^{\circ} \\ & 41^{\circ}\left(71^{0},(1)\right. \end{aligned}$
	$3 \mathrm{H}-25$	$\begin{aligned} & 91^{\circ} \\ & 83^{\circ} \end{aligned}$	$\begin{aligned} & 88^{\circ} \\ & 69^{\circ} \end{aligned}$	101°	$\begin{array}{r} 80^{\circ} \\ 101^{\circ} \end{array}$
R36C62	$2 \mathrm{H}-23$			$107{ }^{\circ}$	
		Steam Generator C			
R20C9	3H-. 27	130°	54°	79°	87°
K<t. 10	$3 \mathrm{H}+28$	105°	98°	88°	- 75°
R10C29	$2 \mathrm{H}+35$	80^{6}	83°	107°	90°
R18C44	$2 \mathrm{H}+35$	99°	90°	$109{ }^{\circ}$	- 62°
R27C71	$2 \mathrm{H}-30$	79°	96°	82°	103°

Note 1. RPC measured ligament angles based on return of signal amplitude to backgrourd or null point. For deef circumferential inoications, the actual ligament exceeds the measured 1 igament by about 30° or more (see Section 3.11 and Figure 3-15) due to RPC coil lead-in and lead-out resolution limits on crack angles.

North Anna \#1
FEbruary 1992
TSPs with Both Circumferential and Axial Cracks

No cases of mixed mode degradation were detected in S/G A AND S/G 8 .

Seven (7) locations with mixed mode degradation at the same TSP edge were observed in S/G C.

Minimum
Elevation Tube Edge* Circum. Separating Ligament**
TSP \#1: R29C18 + $75^{\circ}>25^{\circ}$
R3C43 $+730>390$

R18C46 $+690>690$
TSP \#2: R10C29 - $119^{\circ}>113^{\circ}$
R8C33 $+76^{\circ}>370$
R29C64 - $91^{\circ}>27^{\circ}$
R30C67 + $133^{\circ}>20^{\circ}$
Data was acouired with 2 X RPC probe; for closest AXIAL-CIRCUMFERENTIAL PROXIMITY 3 COIL ZETEC PROBE WAS USED; NO APPARENT IMPROVEMENT IN RESOLUTION.

ALL THESE INTERSECTIONS WERE JUDGED TO BE ACCEPTABLE AGAINST TUBE BURST CRITERIA.

+ Upper Edge
- Lower edga

Hot adjusted for RpC RESOLUTXON CONSIDERATIONS

North Anna - 1

Mixed Mode Evaluation

Tube	Lecation	circ. Angle	C.L. 10 C.L.	$\begin{aligned} & \text { Derived }{ }^{(1)} \\ & \text { Liq. Anqle } \end{aligned}$	$\begin{gathered} \text { Measured } \\ \text { (2) } \\ \text { Liq. }+0.5 \text { Axial } \theta \end{gathered}$	Resolution
				Generator C		
R29C9	3H-. 27	$130^{\circ} / 79^{\circ}$				Opposite Edges, No Concern
Ri4il0	$2 \mathrm{H}+20$	$101{ }^{\circ}$				Opposite Edges, No Concern
R5C11	1H-. 27	96°				Axial Inside ISP. No Concern
229 C 16	$1 \mathrm{H}+.26$	75°	62°	25°	$6^{0}+28^{0}$	Acceptable, large ligament
P10C29	2H-. 29	119°			$90^{\circ}+23^{\circ}$	Acceptable, large 1 igament
k6C33	1H-. 30	85°				Opposite Edges, Wo Concern
R8C33	CH+. 18	16°	82^{0}	44^{0}	$10^{\circ}+27^{\circ}$	Acceptable, large ligament
R6C40	3H-. 26	104°				Opposite Edges, No -oncera
R3C 43	$1 \mathrm{H}+31$	13°	75°	39°	$17^{\circ}+20^{\circ}$	Acceptable, large ligament
RIEC46	$1 \mathrm{H}+33$	69°			$36^{\circ}+33^{\circ}$	Acceptable, large ligament
R29C64	$2 \mathrm{H}-.33$	91°	75°	30^{6}	$10^{\circ}+17^{\circ}$	Acceptable, large 1 igament
	$2 \mathrm{H}+.47$	63°				Opposite Edges, No Concern
$830 C 67$	$2 \mathrm{H}+26$	$133^{\circ}\left(103^{\circ}\right.$;	86°	$20^{\circ}\left(35^{\circ}\right)^{3}$	$5^{\circ}+19^{\circ}$	Acceptable, large ligament
R39C70	$2 \mathrm{H}+.31$	95°				Opposite Edges, \%o Concern

Notes:

1) Ligament angle obtained as circumferential crack centerline to axial crack centerline distance * us one-half the circumferential ançle.
2) Ligament angie obtained as the measured ligament angle plus one half the axial crack angle.
3) RPC measurements adjusted for resolution (coil lead-in and lead-out) in measuring deep crack angles. Resolution typirally -1 coil diameter $\left(0.105^{\circ}, 15^{\circ}\right)$ at each end of crack.

Table 3-9
WEXTEX Circumferential Crack Grewth from RPC Data (1991-1992)

SG \begin{tabular}{cccc}

Iuhe \& Lecation \& | Growth |
| :---: |
| per Cycle: |
| (degrees) |

A \& R21C23 \& TSH \& 30

A \& R15C26 \& TSH \& 1

A \& R24C33 \& TSH \& 16

A \& R24C33 \& TSH \& 21

A \& R20C45 \& TSH \& 1

A \& R25C55 \& TSH \& 21

A \& R15C56 \& TSH \& 29

A \& R19C32 \& TSH \& 7

A \& R10C71 \& TSH \& 11

A \& R20C23 \& TSH \& 15

B \& R9C36 \& TSH \& 0

B \& R9C36 \& TSH \& 7

P \& R25C36 \& TSH \& 24

B \& R28C41 \& TSH \& 2

B \& R14C54 \& TSH \& 5

B \& R16C56 \& TSH \& 30

B \& R16C22 \& TSH \& 0

B \& R25C8 \& TSH \& 48

B \& R12C74 \& TSH \& 0

C \& R21C27 \& TSH \& 7

C \& R19C45 \& TSH \& 10

C \& R27C46 \& TSH \& 12

C \& R25C50 \& TSH \& 11

\& \& TSH \& 0
\end{tabular}

Avereg. Change*: $\quad 12.8^{\circ} \pm 12.2^{\circ}$

All negative changes set to zero

Table 3-10

TSP Circumferential Crack Growih from RPC Data (1991 - 1792)

SG			
Sg	U	Lecation	Der Cycle: (degrees)
A	R22C24	2 H	6
A	R30C24	2 H	10
A	R7C27	2 H	20
A	R39C41	1 H	0
B	R15C9	1 H	13
C	R6C3	1 H	1
c	R5C11	3 H	39
c	R5C11	3 H	29
0	R24C27	2 H	14
C	R24, 27	2 H	0
C	R24C36	1 H	13
C	R41C42	3 H	11
C	R37C49	2 H	4
c	R37C49	2 H	0
c	R36C52	3 H	5
c	R18C54	2 H	12
c	R29C64	2 H	0
c	R29C64	2 H	12
c	R9C55	3 H	
c	R27C71	2 H	5
c	R27C71	2 H	0
C	R17c62	2 H	3
C	R27C75	2 H	45

Average Change*: $10.5^{\circ} \pm 12.2^{\circ}$

[^0]Table 3-11
Inspection Transient for WEXTEX Expansion Region of Plant L

Date of Inspection	Axial indications	Circ. Indications	Iotal
April 1986	1	0	1
May 1987	0	0	0
May 1988	8	0	8
May $1989(1)$	41	56	97
May $1990\left(2^{\prime}\right.$	27	2	29
May $1^{\circ}+1(2)$	17	11	28

(1) First a, tication of RPC to 100% of active tubes in hot leg tubesheet region.
(2) $\mathbf{1 0 0 \%}$ of active tubes in hot leg lubesheet region inspected with RPC.

Table 3-12
Tube Plugging History for Plant A-1 (1985 - 1991)

Dats	Tubesheet EWSSC:	Number of Tubes Plugged Tubesheet OLSSC	TSP Cosco	Other
$5 / 85$	0	0	0	1
$10 / 86$	0	3	2	1
$4 / 88$	0	17	0	0
$10 / 89$	0	22	2	0
$4 / 91(1)$	72	46	102	47

(1) Inspection transient resulting from first time application of RPC to 100\% of available tubes in hot leg tubesheet region, as well as revised EC analyst guidelines and more extensive use of RPC at TSP elevations.

Table 3-13
Tube Plugging History for Plant A-2 $(1985$ - 1992)

Lata
1/85
4/86
40
Number of Tubes Plugged

Lath	Tubesheet PWSCE	Number of Tubes Plugged Tubesheet cosea.	TSP coeco	Qther
$1 / 85$	1	0	0	13
$4 / 86$	40	0	28	2
$11 / 87$	29	1	74	5
$4 / 89$	16	0	10	1
$12 / 90$	$328(1)$	0	243	0
$3 / 92$	$51^{(2)}$	0	$188^{(3)}$	1

(1) Inspecion transient resulting from first time application of RPC 10 100\% of available tubes in hot leg tubesheet region, as well as revised EC aralyst guidelines and more extensive use of RPC at TSP eievations.
(2) Second application of RPC to 100% of avaiiable tubes in hot leg tutesheet region (nard roll expansion).
(3) Tube plugging reflected atternate tube plugging criteria and thus was not nly dependent on inspection transient.

Turos Plugging for Tubesheet and TSP Circumferential Indications at North Anna Units 1 and 2

	North Anna Unit 1 WEXTEX Iransitien	ISP		North Anna Unit 2 WEXTEX Iransition
$4 / 89$	31	\ldots	Date	Irate
$12 / 90$	$2.16^{(1)}$	93	$2 / 89$	4
$2 / 92$	31	$212^{(2)}$	$9 / 90$	$26(1)$
			$3 / 92$	13

(1) Inspection transient resulting from first time application of RPC to 100\% of available tubes in hot leg tubesheet region.
(2) Inspection transient resulting from first time application of RPC to hot leg TSP intersections in ${ }^{\circ} 0 \%$ of available tubes.
Figure 3-1

NORTH ANNA UNIT 1 ALL S/G's WEXTEX CIRCUMFERENTIAL INDICATIONS

1991 HISTOGRAM
1992 HISTOGRAM -1991 CPDF
E 1992 CPDF
Figure 3-5

Figure 3-6

Figure 3-7

3.76

NORTH ANNA UNIT 1 ALL S/G's SUPPORT PLATE CIRCUMFERENTIAL IND.

Figure 3-10

Figure 3-11

Figure 3-13

Figure 3-14

Figure 3-15

WEXTE,i Cumulative and Interval Crack Growth Distributions

Figure 3-16

TSP Cumulative and Interval Crack Growth Distributions

The North Anna Unit i steam generators wull be sperated at reduced load and primary coolant temperature conditions for the rest of the operating cycle. The reduced load and temperaiuras favor lower corrosion rates. The planred operating conditions, a comparison with prici values, and thair impact on tabe degradation are c.scussed below.

4.1 Planned Operating Conditinns for the Remainder of Current Oycle

The remaining half of the current fuel cycle of Unit I operation will extend 10 months from early March, 1932 to early Janutry, 1993. Unit 1 operation will be limited to a maximurr: load. Per this lirnit, the maximum load on the unit will not exceed 95% of the durrent rating. In addition to the 95% operating limit, the ouput will be further restrained by unit ouast down, which is projected to start in September, 1992. The projected load protie is shown in Figure 4-1. Thus, operation at/near 95% load is expected fer only a six month period.

The first half of the current Unit 1 fuel cycle was completed with 254 effective full mwer days (EFPD) of operation at 100% ioad. The remaining part of the Unit 1 fue cycle will have 252 EFPD of operation. Of these EFPD, about $2 / 3$ will be avbelow 95% load and the remaining will in the coast down mode at even lower loads.

At the steam generator iniet, the primary coolant ismperature (T hot corresponding to the 95% load operation will be $6126^{\circ} \mathrm{F}$. This is $3^{\circ} \mathrm{F}$ lower than the $615.6^{\circ} \mathrm{F}$ Thot used during the recently completed, first half of the fuel cycle. The primary intat and average temperatures are also displayed in Figure 4-1. Table 4-1 lists the projected steam generator primary and secondary side parameters at 95% load.

4.2 Comparison of Current and Prior Operating Parameters

Table 4-2 shows the full load operating conditions during the first half of the current fuel cycle. Comparing this with Table 4-1, it is observed that the projected primary inlet temperature has decreased by $3^{\circ} \mathrm{F}$ from the 1991 full load operating condition. Because of changes in the number of plugged tubes and adjustments to the turbine governot valve, the steam pressuie is about the same as in the first half of the cycle.

4.3 Relative Corrosion Rate Modeling

Since the type of tubing corrosion found at North Anna Unit 1 has not been systematically studied in the laboratory, the most relevant means of determining the effect of operating conditions on the corrosion rate is to use the variation in the number of eddy current indications with tube support plate elevation. This variation is a function of the tubing temperature, the avsilatie superheat (as it affects the maximum chemical concentration in the orevices), and the applied stress (resulting from denting corrosion). The number of eddy current indicationis at a given tube support plate eleva,ion follows:

HL ISP	Ciroumferential Cracks	Axial Cracks	Iotal
1	74	126	200
2	90	79	169
3	28	18	46
4	6	18	24
5	2	23	25
6	0	6	6
7	0	0	0
Total	200	270	470

The estimate dhes not include multiple crack indications. An equivalent Arrhenius activation energy can be calculated by estimating the tubing temperature in the crevices. Using laboratory test data for packed tube support plates, tubing temperatures of 585 , 579 , and $574^{\circ} \mathrm{F}$ were calculated for the first three tube support plate elevations, respectively. Applying these temperatures to the above data produces a very high activation energy, in the vicinity $160 \mathrm{kcal} / \mathrm{mole}$.

As mentioned previously, this activation energy reflects possible contriuutions from temperature, chemical concentration, and stress on the variation in the number of indications. Since indications are only identified atter the corrosion has progressed some distance through the tubing, the value also includes both initiation and propagation effects. Previous evaluations of the denting distribution indicate reiatively little variation between the hot leg tube support plate elevations, with the average edd; current signal voltags at the bottom support plate teing slightly lower than at the others; consequently, variations in stress are unli, ely to be important.

The operating characteristics of the previous and current operating periods are presented in Table 4-3. The current operating cycle reflects 6 intonths of operation at 95% power, followed by a 4 -monta coastdown to 45% power. This operating history is shown in Figure 4-1. The sffect of this operating history on corrosion tates can be determined by comparing the time-at-temperature of the current and previous operating periods for various Arrhenius coefficients. This prediction assumes that the operating chemistries during the two periuds are comparable, as is the extent of corrosion at the beginning of each period.

The predictions are presented in Table 4-3 for Arrhenius coefficients varying between 50 and $160 \mathrm{kca} /$ /mole. The $160 \mathrm{kcal} /$ mole value was derived from the variation in corrosion with tube suppori plate elevation, and includes both temperature and superheat effects. The 50 kcalmole value is representative of laboratory test data collected under isothermal conditions. As should be expected, the relative corrosion during the eecond half of the operating cycle increases as the Arrhenius coeflicient decreases.

The lower bound coefficient of $50 \mathrm{kcai} /$ mole has been salected for conservatively estimating reductions in crack initiation and growth. Since the superheat for the first six months of the current operating period is only slightly below that in the tirst half of the cycle, the calculate coefficient of $160 \mathrm{kcal} /$ mole may be ton high. During the coastdown, the superheat decreases as the power decreases, so that a high coefficient is likely more appropriate. Consequently, the calculated normalized corrosion rate of 0.933 should exceed the actual rate.

Table 4.1

Projected Operating Conditions at 95% Load

Thermal load, Percent 95
Thermal load, MWI 920
Primary pressure, psia 2250
Pinnary inlet temperature (T hot), ${ }^{\circ} \mathrm{F}$ ©12.6
Primary outiet temperature (${ }^{\top}$ cold). ${ }^{\circ} \mathrm{F}$ 546
Steam pressure, psia 777
Steam temperature, ${ }^{\circ} \mathrm{F}$ 515
Circulation ratio 4.84

Tatle 4.2

Full Load Operating Conditions During 1991

Thermal load, Percent 100
Thermal load per sieam generator, MWI 068
Primary pressure, psia 2250
Primary inlet temperature (Thot), ${ }^{\circ} \mathrm{F}$ 616
Primary outiet temperature (Tcold), "F 546
Steam pressure, psia 783
Steam temperature. ${ }^{\circ} \mathrm{F}$ 516
Circulation ratio 4.58

Table 4-3

Variation in Relative Corrosion with Activaticn Enersy

Operating sycle.	Power (\%)	$\frac{\text { Duration }}{\text { (days) }}$	Hot Leg Iemp (${ }^{\text {F }}$)	Tube Iemp (${ }^{\circ} \mathrm{F}$)	Normalized Corrosion Activation Energy (kcav/mole)			
					2.2	102	B2	50
Previous	100	254	615.6	584.6	$1.00 E+00$	$1.00 E+00$	1.00E+00	$1.00 \mathrm{E}+00$
Current	95	182	612.6	582.2	$5.20 \mathrm{E}-01$	5.87E-01	6.11 E.01	6.48E-01
Current	88	31	608.0	580.0	6.60E.02	8.31E.02	8.98E.02	1.01E-01
Current	70	30	595.0	572.7	2.38E-02	4.34E-02	$5.31 \mathrm{E}-02$	7.16E-02
Current	58	31	586.0	567.5	1.21 E .02	2.88E-02	$3.64 \mathrm{E}-02$	5.93E.02
Current	45	30	580.0	565.7	9.13E-03	2.39E-02	$3.28 \mathrm{E}-02$	5.31E.02
Total for	:-at	ycle			0.631	0.766	0.825	0.933

Figure 4-1
Prele-'+ + Hoit Load Profile

(2723

5.0 SUMMARY OF CHACK SIZES SATISFYING REG. GUIDE 1.121

The fube integrity limits for single valal and circumferential cracks have been developed previously in Section 6.0 of WCAP-13034. The following sections summarize burst tests and orack propagation tests for multiple circumferential cracks. The acceptable crark conditions for multiple circumferential indications (MCls), as well as for combined axial and circumferential (mixed mode) indications are presented. The acceptable sing crack sizes which satisty the tube burst requirements of Reg. Guide 1.121 are also summarized, from WCAP-13034, along with the acceptable single crack sizes which are expected to preclude vibration induced crack propagation.

5.1 Burst Tests for Multiple Circumferential Cracks

Room temperature tests of tubes with multiple coplanar circumferential EDM slits were conducted to verify the caiculational methodology used to compute the pressure capR: in if tubes with multiple circumferential stress corrosion cracks (MCls). At very large crack sizes, the bursi pressure previously (YCAP-13034) was found to be proportional to the net remaining area. In this case a conservative burst pressure is obtained by setting the net section stress equal to the flow strength of the material.
Figure 5.1 shows sketches of the large coplanar E.DM slits and small ligament geometries of the present test series. Note that some ligaments are only partial wall thickness ligaments simulating a 50% deep crack in the rsmaining ligaments. The burst pressure lest results for two repeats of each configuration are also shown in Figure 5-1.

When results are plotied in terms of the sum of all ortesimferentia! crack angies, ine burst pressures for the sum of the multiple slits excasd those for the single circumferential slits. This is illustrated in Figure 5-2. Note that at large total crack angles, the lower bound burst pressure is simply this nint ares times the flow sire. yth of the material. Ligament location and bending tendetrcy imultijle ligaments reduce the bending tendency compared to a single slot) have shy a sec. ind order effect on the burst pressure. This is logical given that the presence of the thite tupport plate restricts lateral motion and severely inhibits bending of the shes at the cracked section. Application of these test iesults to acceptable MCi contigusations is addressed in Section 5.4.

5.2 Fatigue Crack Growth Rate Tests For Multiple Circumferential Cracks

Just as the burst pressure calculational methodology was benchmarked with test data for multiple copianar circumferential cracks, the fatigue crack orowth analysis procedure was benchmarked also. Figure $5-3$ shows sketches of the EDM starter notches used in the fatigue crack growth rate tests. Under fatigue loading due to turbulence or fluidelastic vibration, the central issue is whether of not growth will oocur. If the applied stress intensity range is above the threshold value, fatigue crack growth will occur and high vibration frequencies can lead to extensive growth in a relatively short period of time compared to the operational cycle. Rather than attempting time consuming fatigue crack growth threshold tests, the fatigue analysis was benchmarked by demonstrating that the fatigue crack growth rates measured on several ligament geometries correlated with results on a conventional geometry using stress intensity range as the correlating parameter; that is, the agreement of fatigue crack growth results of ligament and conventional geometries demonstrates the acceptability of stress intensity factor calculations for ligament guometries. For smail liyaments, there are several limiting cases for stress intensity solutions for iension and bending. These were applied to the present case and worked well. For worst case service conditions, a minimum of three 35° ligaments are needed for tatigue stability and the largest crack angle between ligaments must not exceed the single circumferential crack limit for initiating crack propagation. Experimental work shows that the presence of the third ligament converts the behavior of the t.ito 10 essentially the single crack case and the minimum size for the third ligament is very conservative.

Figure 5.4 illustrates a plot of measured faligue crack growth rates versus the computed strass intensity range obtained by applying the small ligament solutions. The good agreement of results for a variety of crack geometries supports the acceptability of the stress intensity range calculations and their comparison with fatigue crack growth threshold values.

5.3 Acceptable Single Crack Sizes for Tube Burst

The burst strengtic of tubing with single circumferential cracks and single axial cracks have been evaluated previously in WCAP-13034. Sections 6.1 and 6.2 of WCAP-13034 summarize the burst tests performed for single circumferential and
axial cracks. The burst test data are compared with analytical predictions, and the burst capabilities of tubes with axial or circumferential oracks are estabilished in Section 6.4 of WCAP-13034.

Table 5.1 summarizes the acceptable crack sizes for single circumferential and axial cracks with either single throughwall crack or segmented crack morphnoogies. The limiting circumferential crack angle for a single crack is 226° for $3 \Delta \mathrm{P}$ burst capability; a segmented crack satisfies $3 \triangle \mathrm{P}$ for orack angles up to 297°. The maximum acceptable orack angles for $\Delta P_{\text {SLB }}$ are substantially higher: thus, the $3 \Delta \mathrm{P}$ burst capability requirement provides the limiting oircumferential crack angles for tube burst considerations. Single throughwall axial cracks of up to 0.435 inch in length will satisty 3 3 ; for segmented orack morphologies, single axial cracks of up $100.72^{\prime \prime}$ long are expected to meet $3 \Delta P$. The acceptable single axial crack lengths for $\triangle P_{\text {SLR }}$ burst capability are substantially higher; hence, $3 \Delta \mathrm{P}$ is also the limiting condition for single axial cracks.

5.4 Acceptable MCl Crack Conditions for Tube Burst

As developed in Section 3.8, the RPC inspection definition of an MCl requires $\mathrm{t}:$ a amplitude to return to the null point, and FPC resolution limitations imply a ligament size of the measured RPC liyament plus 30°. Thus, an MCl would have at least 35° ligaments, which were burst tested as described in Section 5.1. As shown in Figure 5.2, the burst pressure for two 35° full thickness ligaments exceeds that for a singie 290° crack. Thus, the burst pressure for an MCl exceeds SLB pressure differentials which correspond to a 321° throughwall single crack with full wall thickness ligaments. Thus an MCI for WEXTEX indications, for which cracxing in the renlaining ligaments is not expected, would inherently exceed SLB burst capability. The burst test results of Figure $5-2$ for 35° ligaments are equivalent to burst pressures for single throughwall cracks of less than the 226° crack angle for $3 \triangle P$ burst capability. However, not enough tests were performed to strongly support $3 \Delta \mathrm{P}$ burst capability for 35° ligaments. For the present study, it is conservative atid acequate to evaluate WEXTEX MCI burst capability as tiat for a single crack equal to the sum of the MCI crack anglas atter reduction of the RPC crack angles by 30° for coill lead-in and lecd-out effects (see Section 3.8); that is, WEXTEX MCI RPC crack angles tola ${ }^{\prime \prime}$ - - about 286° $\left(226^{\circ}+30^{\circ}+30^{\circ}\right)$ or ligaments totalling 74° would meet $3 \Delta P$ burst capability. This
analysis assumes that the cracks are very deep or throughwall, such that the RPC lead-in and lead-out reductions of RPC angles are applicable. If orack depths at the edges of the crack are less than about 50% depth, the actual crack angles can be equal to or greater than the RPC angle. In this case, the burst capability would also exceed that associated with the RPC angle so that it would be appropriate to reduce the RPC angle for comparisons with throughwall burst pressures. Thus, total RPC orack angles of 286° for MCl or ${ }^{5}, 6^{\circ}$ for an SCl would be expected to meer $3 \Delta \mathrm{P}$ burst capability.

For ODSCC cirournferential cracks, for which a 50% deep crack is assumed in the remaining ligaments, the ligament sizes mus: be larger than the 35° for WEXTEX MCIs. The tests of Secion 5.1 were performed for two 70° ligaments with 50% deep slots in the ligaments. The burst pressures for this case exceeded that of a 220° single throughwall crack which meets $3 \triangle \mathrm{P}$ burst capability. For the present report, it is conservative and adequate to require the RPC ligaments for TSP MCIs to total 80° (resolution adjusted $=140^{\circ}$) or the RPC crack angles totalling <280 for $3 \Delta P$ burst capahility. More simply, if the minimum measured RPC ligament for TSP MAC.is is 40° or larger, the indication would nieet tho burs: capability.

5.5 Acceptable Combined Axial and Circumferential Crack Conditions

As noted in Section 3.7, no intersecting circumferential and axial indications have been found in the North Anna Unit 1 SGs at either WEXTEX or TSP locations. An RPC dr'9ctable ligament separating ar'al and circumferential indications has been identified for all mixed mode indications at the same edge of a TSP. No axial and circumfe.ential indications have been found at the same e'gvation in the WEXTEX expansions, so that mixed mode cracking is nof a concern for the North Anna Unit 1 WEXTEX expansions.

Based on the R.OC resolution tests of Section 3.8 for mixed mode indications, the actual ligament size corresponds to the FRC measured ligament plus $30^{\circ}\left(-j .2^{*}\right)$. Scoping analyses indicate that a minimum ligament of about three wall thicknesses $\left(0.15^{\circ}\right.$ or -22°) is expected to be sufficient to provite burst capability comparable to the axial crack alere. This is supporteci by tests for small ligaments (EPRI NP-6368-1, Rev. 1) that show that ligaments approaching the tuhe wall thickness between throughwall circumferential and axial (L-shaped) cracks begin recovery of the mixed mode burst pressure loss compared to the axial crack alone. Thus, it is reasonable to expect that
about a 22° ligament is adequate to obtain burst capability equivalent to the more limiting of the axial or circumferential crack.

Since the presence of an RPC measured ligament between deep axial and circumferential cracks implies a $>30^{\circ}$ ligament, the presence of an RPC ligament is sufficient to preclude significant reductions in burst pressures due to mixed mode oracking. Alten iately stated, if a RPC ligament is found, the burst capability can be evaluated separately for the axial or circumferential crack and no mixed mode burst assessment is necess ify.

Even if intersecting mixed mode cracking should occur, the burst capability is not affected uniess the hroughwall axial crack length e ceeds 0.24 inch. Test results have shown that the average burst pressure of 270° throughwall circumferential cracks with intersecting 0.24 inch long axial cracks falls on the burst ourve for single circumferential cracks. Since the circurnferential cracks of interest ocour near the surface oi support plates, the axial crack length in the support plate crevice need not be considered due to deniulg within the TSPs. Only the axial crack length ou side of the tube support plate will affect the burst pressure and this crack length must be preater than 0.24 inch before any significant degradation in burst pressure is observed.

With respect to fatigue crack growth under turbulence and fluidelastic vibration loadings, the limiting small ligament case is useful. As a circuinferential crack approaches an axial crack, the stress intensity factor will increase. This effect can be bounded by considering the axial crack as another circumferential crack. Hence, from previous results, if ihe ligament bjtween a circumferential crack and an axial crack is greater that 35°, the cracks can be considered non-intaracting in terms of a tatigue crack growth threshold.

Besed on the above, the presence of an RPC measured ligament implies a $>30^{\circ}$ ligament which permits the axial and circumferential cracks to be evaluated separately as non-intoracting cracks for either tube burst or fatigue considerations. Thus, the RPC ligament precludes the need for more detailed mixed mode cracking evaluations.

5.6 Acceptable Single Crack Sices for Tube Vibration

The analysis methods and models used for the tube vibration assessments for Noith Anna Unit 1 have been presented in Section 7 of WCAP-13034. This section presents the limifing ciroumferential crack sizes for the WEXTEX expansion transitions and the TSPs with respect to vibration induced crack propagation.

The tube vibration assessment given in WCAP- 13034 was perforned for each tube lacation in the SG. The analysus determif.ed the uniformly throughwall crack angle at which a circumferential corrosion orack siuld potentially propagate by tube vibration. Minimurn crack angles for propagation were developed for both turbulent and fluidelastic induced tube vibration. For TSP intersections, orack angles for propagation were obtained for a throughwall crack only (TW-oniv) and for a throughwall orack with a 50% deep crack in the remaining ligament (TW+50\%). Tabie 5-2 summarizes the minimum crack angles for initiating propagation for conservative uniformly throughwall cracks and for the expected orack morphology. The expected crack morphology for WEXTEX PWSCC cracks is segmented cracks (shant, deep cracks separated by uncorroded ligaments). For ODSCC at TSPs, it is expected that less than 60% of an RPC-measured crack angle would be througtiwall. It can be seen from Table 5-2 that the potential for crack propagation is minimal for the expected crack morphology. WEXTEX segmented cracks at all tubu locations and TSP ODSCC indications in central regions would not propagate even for 360° RPC crack angles. Only TSP circumferential cracks at the bottom of the first TSP at the periphery of the tube bundle would propagate tor the expected morphology at RPC angles of ! Jb,C, it should be noted that the circumferential cracks at the upper edge of the top TSP were not evaluated, as circumferential indications have not been iound above the fith TSP, although Gal TSFs were 100% inspectew.

The tube vibration assessment for tubes with circumferential cracks near the WEXTEX transition region can be summarized for sensitivity assessments by dividing the tubesheet region into zones with varying degrees of susceptibility to vibration-induced crack propagation. Figure $5-5$ shows a tubesheet map with the various zones identified. The zones are described as follows:

Zone 1. Tubes with potential for initiation of vibration-induced crack propagation for throughwall crack angles of I jb,c.

Zone 2. Tubes with potential for initiation of vibration-induced crack propagation for throughwall crack angles of ! jb, c.

Zone 3. Tubes with potential for initiation of vibration-induced crack propagation for throughwall crack angles of I $\mathrm{jb,c}$

Zone 4. Tubes for which initiation of vibrettion-indu red crack propagation requires throughwall crack angles of I Jb,c;Zone 4 corresponds to the low flow, sludge deposition area.

Zone 1 contains 620 tubes. Zune 2 contains 344 tubes, Zone 3 contains 940 tubes, and Zone 4 contains 1484 tubes. The minimum angles fot crack propagation apply to only a few limiting tubes in each zone.

For the most limiting peripheral tube locations in Zone 1 , for a crack at the WEXTEX transition, the initiatiot, of turbulence driven propagation occurs for a throughwall orack angle of [$\mathrm{p}^{\mathrm{b}, \mathrm{c}}$; in this condition, the tube t, mains stable and turbulence driven propagation occurs until the crack angle reaches I Jb,c, which is the crack ngle associated with fluidelastio instability. The limiting total growth time auring the urtulence propagation phase is I Jb,c. Once the orack has reached I jb,0, the tube vibrates in a fluidelastic manner and fluidelastic orack propagation is initiated. The additional fluidelastic driven growth time to tube rupture is caiculated to be I
p,c. The crack angle vs. time piot showing the turbulence and fluidelastic driven growth times is provided in Figure 5.6. For Zone 1 with crack angles $<169^{\circ}$, all crack propagation would be initiated by turbulence induced vibration. Thus. Zone 1 defines all fubes which would initiate vibration below the crach angle for fluidelastic crack propagation.

For the limiting tube in Zone 2 with a crack at the WFXTEX transition, the initiation of turbulence drive oropagation occurs for a throughwall crack angle of ! $\quad p^{b, c}$: in this condition, the tube remains stable and turbulence driven propagation occurs until the crack angle reaches the critical angle for fluidelastio vibration, after which orack
propagation is driven by fluidelastic instability. For the limiting tube in Zone 3 with a crack at the WEXTEX transition, the initiation of turbulence driven propagation ocours for a throughwall crack angle of [jb,c; in this condition, the tube remains stable and turbulence driven propagation occurs until the crack angie reaches the crack angie required for fluidelastic instability. For the limiting tube in the central sludge deposition area (Zone 4) with a crack at the WEXTEX tratatuvit, the initiation of furbulence driven propagation will not occur unless the throughwall crack angle exceeds $1 \mathrm{jb}, \mathrm{c}$; however, a tube in Zone 4 vibrating if a fluidelastic manner would experience vibration induced crack propagation if the throughwall crack angle exceeds I jb,c. Zone 4 was found to include $>90 \%$ of the WEXTEX indications observed during the 1992 mid-cycle inspections.

For circumfer, nitial oracks at the TSPs, only oracks at the bottom enge of the first TSP have significant potential for vibration induced propagation up to the largest angle of 244° throughwall that was evaluated. Above the firsi TSP, cross flow velocities and tube vibration amplitud. are sufficiently low as to be insufficient to cause tube vibr-tion induced crack propis.ation. The TSP circumferential cracks have an ODSCC orack morphology. The RPC threshold for detecting ODSCC circumferential cracks is about 50% depth. For the tube vibration assessment of ODSCC cracks at the TSPs, the portion of the tube apparently free from degradation is conservatively assumed to have 50% throughwall degradation.

The tube vibration assessment for tubes with circumferential cracks at the TSPs utilizes the same zones with varying degrees of suscept'bility to crack propagation as described for the WEXTEX region. Figure 5.5 shows the various zones used. Although the tubes within each zone are unchanged from the WEXTEX tube vibration assessment, the
limiting crack angles for the onset of vibration induced propagation are different than in the WEXTEX tube vibration assessment. The zones for the TSPs are defined as foiviws:

Zone 1 - Tubes with potential for initiation of vibration-induced crack propagation for throughwall cra k angles $\geq 122^{\circ}$

Zone 2. Tubes with potential for initiation of vibration-induced crack propagation for throughwall crack angles $\geq 170^{\circ}$

Zona 3. Tubes with potential for initiation of vibration-induced crack propagation for throughwall crack angles $\geq 230^{\circ}$

Zone 4. Tubes for which initiation of vibration-induced crack propagation requires throughwali crack angles of greater than the 244° minimum throughwall orack analyzed for crack propagation.

For the most limiting peripheral tube iocations in Zone 1, for a circumferential crack at the bottom sf the first TSP with 50% throughwall degradation assurned in the region apparently free from degradation (TW+50\%), turbulence driven propagation iritiates at a throughwall orack angle of $1 \quad \mathrm{j}, \mathrm{c}$; in this condition, ihe fube remains stable and turbulence driven propagation oocurs until the throughwall crack angle reaches the 244° crack angle $4:$ sociated with fluidelastic instability. Figure 5.7 shows the time thistory of crack propayation tor the limiting peripheral tube. If the most limiting Zone 1 tube location is assumed to have a throughwall crack with no odegradation in the remaining ligament, the limiting crack angle for the onset of vibration-induced crack propagation increases to $1 \quad$ jo.c.

For the limiting tube in Zone 2 with a circumfs:etial crack at the TSPs, the initiation of turbulence driven propagation occurs at ! bb,0 (TW+50\%): in this condition, the tube remains stable and turbulence driven propagation oocurs until the crack angle reaches the point of fluidelastic instability ! jb,c. For the limiting fube in Zone 3 with a crack at the TSPs, the initiation of turbulence driven propagation occurs for a throughwall crack angle of ($\quad \mathrm{b}, \mathrm{c}(\mathrm{TW}+50 \%)$. For the limiting tube in the central sludge deposition area (Zone 4) with a circumferential crack at the TSPs, the initiation of vibration-induced crack propagation will not occur unless the throughwall crack angle exceeds the I \quad 0.0 maximum orack angle analyzed; this is true for both the TW-only and TW $+50 \%$ conditions.

Table 5.1
Sin e Circumferential and Axial Orack Tube Bursi Capability Summary

Table 5-2
Acceptable RPC Crack Angles for Tube Vibration WEXTEX PWSCC TSP ODSCC ${ }^{(1)}$ TW ONLY TW+ 50% (2)
Conservative TW Cracks

- Peripheral Region
- Turbulence
- Fluidelastic

0 Central Region

- Turbulence
- Fluidelastic

Expected Crack Morphology
o PWSCC Segmented Cracks

- Turbulence
- Fluidelastic

- ODSCC Model
- Peripheral:

Turbulence
Fluidelastic

- Central:

Turbulence
Fluidelastic

Notes:

1. Limiting crack angles at TSPs appilicable to bottom of 1st TSP only. Higrer elevations yo BOTTOM OF TOP YSP REQUIRE TW CRACK ANGLES [EVALUATED FOR CRACK PRUPAGATION DUE TV: vibration.
2. Throughwall crack [
3. MOST LIMITING PERIPHERAL TUBE I.OCATIONS
4. OdSCC Model assumes [
$]^{\mathrm{a} . \mathrm{c}}$

Figure 5-1
Burst Test ECM Siit Geometries and Test Results for MCIs (Cross-sectional views; shaded areas are remaining ligaments)

Figure 5-2

Burst Pressure vs. Total Circumferential Crack Angle
Multiple Cracks Compared with Single Crack Case

BURST PRESSURE VERSUS TOTAL CRACK ANGLE 7/8×0.050 INCH TUBING WITH TSP RESTRAINT

Figure 5-3
Fatigue Test EDM Slit Geometries
(Cross-sectional views; shaded areas are remaining ligaments)

70°

50% of Wall Remaining two 70° Ligaments

Figure 5-4
Measured Fatigue Crack Growth Rate Vs. Stress Intensity Range Conventional and Ligament Geometries
Figure 5-5

O.
$\stackrel{0}{0}$
?

Figure 5-6
a, b, c

Figure 5-7

6.0 TUBE INTEGRITY ASSESSMENT

6.1 Crack Distributions for Second Half of Curient Fuel Cycle

The second half of the current fuel cycle is planned for 252 EFPD compared to 254 EFPD for the first half of the cycle. Thus, if inspection methods and operating conditions (Thot) were the same for both halves of the cycle, the last (mid-cycle, 2/92) inspection results on number and size of indications would be typical of that expectud at the end of the current cycle. However, the operating interval fo: the second half of the fuel cyole (henceforth, current operating cycl J) is expected to result in both fewer and smaller indications than found at the last inspection (Section 3.0). The following two of . rations lead to the reduced crack severity anticipated for the current operating cycle:

- As described in Section 4.0, the reduced power and end of cycle coastdown planned for the current operating interval lead to an approximately 7% reduction in the number of newly initiated cracks and in the growth rates of existing cracks undetected at the last inspection.
- As described in Section 3.11, the "inspection transient" introduced by the first 100% RPC inspection at the TSP intersections would lead to a reduction in the number and size of indications at the end of the next operating interva!.

Due to the relatively low growth rates fuund for circumferential cracks at both the TFFs and WEXTEX transitions, newly initiated indications are not a significant concern to: tubs integrity in the current operating cycle. More important are the indications already present, but undetected, and their growth over the operating cycle. Thus the influence of the reduced power conditions on crack growth is more important to the tube integrity assessment than their influence on crack initiation.

The 7\% reduction in crack growth from the reduced power conditions would apply to both growth in depth and in crack angle. However, only crack angle is measured with confidence by the RPC inspection. Thus the growth redustion is applied only to the crack angle. The largest crack angle growth rates can be expected to result in the limiting orack angles. This is particularly relevant following an inspection transient, such as

Based on the above discussion, the expected EOC crack angles at TSP intersections are assumed to be teduced by 8% due to the RPC inspection transient and by about 3° due to the reduced power conditions. For example, the largesi TSP orack angle of 240° at the last inspestion would be expected to be $\left(240^{\circ} \times 0.92\right) \cdot 3^{\circ}=218^{\circ}$ at the next EOC.

Table 6-1 summarizes the above influence of reduced temperatures and the TSP inspection transient on the expected number of indications and crack angles for the current ivorth Anna-1 opfiating cycle. The expected maximum crack angles are used for the fube integrity assessment given in the following sections.

Prior to the last outage, axial indications outside the TSP were detected by bobbin coil inspection and confirmed by RPC. The 100% RPC inspection increased the number of detected axial indications from 126 to 286 or close to a factor of 2.2 increase. Thus it is reasonable to apply the factor of 1.5 reduction is number of indications for the TSF' circurnferential indications to the axial indications. The maximum crack length found in the 1992 inspection was shorter than found in ine 1991 inspection, which was likely due to the shorter operati- cycle. For conservatism in the tube integrity and SLB leak rate analysis, the effect or reduced temperatures and the RPC inspection transient arignored for axial crack lengths. The axial lengths found in the 1992 inspection are applied for the end of the current cycle.

6.2 WEXTEX Tube Burst Assessment

The largest RPC circumferential, single crack angle found in the last outage was 199° (Sec Figure 6-1). From Table 6-1, the inwer temperature conditions for the current cycle would be expecred to reduce crack grorth and result in a crack angle of abuut 196°. In either case, the laigest RPC crack angle found in the last cycle or oxpected for the current cycle is less than the acceptable 226° through wall crack angl that meets $3 \Delta \mathrm{P}$ tube burst capability.

The MCI burst test resulis given in Section 5.1 and evaluated in Section 5.5 show that MCl separated by ligaments of $30-35^{\circ}$ or more result in burst pressures exceeding that for an SCI having the same total crack ingle. As noted in Section 3.6.1, the most limiting MCl found in the last inspection was tube R24C33 in S/G A (See Figure 6-2.) This indication had RPC crack angles of 149° and 85° separated by a measured 12°
ligament. After adjusting for RPC resolution (See Section 3.8), the minimum ligame-would be 42°. Thus the smallest ligament exceeds the 35° minimum ligament to support acceptable MCI burst capatility. Ths total RFC crack angle of $234^{\circ}\left(174^{\circ}\right.$ adjusted for RPC rasolution) is less than the 286° developed in Section 5.5 for $3 \triangle P$ burst capability. Thus the WEXTEX MCIs found in the last inspection exceed $3 \triangle \mathrm{P}$ burst capability and "epresent an upper bound on indications expectec' in the current oycle.

6.3 TSP Circumferential Indication Tube Burs' Assessment

Two TSP circumferential indications were identified in the last outage with RPC angles exceeding the $3 \triangle P$ burst capability of 226°. The associated RPC angles were 240° and 239° as shuwn in Figures 6-3 and 6-4. As discussed in Section 6-1, indications at the end of the current cycle would be less than the last cycle as a consequence of the 100% RPC inspection transient and the reduced temperature conditions of the current operating cycle. As developed in Table 6-1, the expected maximum TSP crack arigle at the EOC would be 218° corresponding to a 240° crack in the prior cycle. Thus the limiting crack angle at the currei :OC would be less than 226° and satisty $3 \triangle \mathrm{P}$ burst capability.

It can be noted that even the 240° indications found at the last outage would meet $3 \triangle \mathrm{P}$ burst capability. The 226° angle for $3 \Delta P$ capability is based on a uniformly through wall crack. From Figures $f .3$ and $6-4$, it is seen that the high amplitude responses for the indications correspond to angles of about 134° and 96° for the two indications. The deepest part of the cracks correspond to the largest amplitudes. Thus, even if the indications i.ad through wall penetration, the through wall angle would $b e<60 \%$ of the RPC crack angle. Thus these indications would meet $3 \triangle P$ tube burst capability.

The MCI burst test results (Sections 5.1 and 5.5) for through wall cracks pius a 50% deep crack in the remaining ligaments show that MCls separated by ligaments of 70° meet $3 \Delta P$ tube burst capability. The maximum sum of crack angles in this case would be $22 n^{\circ}$, or less than the 226° for $3 \Delta P$ burst capability. From Table 3-6, the limiting TSP MCI was at TSP 3H in Tube R2C41 (See Figure 6.5). The RPC measured ligaments for this indication were 66° and 41° which, after the adjustment for RPC resolution developed in Sections 3.8 and 5.5 , would exceed the 70° ligaments required for $3 \Delta \mathrm{P}$ tube burst capability. In addition, the MCl crack engles would b e educed by about 30° or
regions for all steam generators during the February 1992 inspections. Zone 4 contains 90% of the WEXTEX circumferential indications.

The throughwall crack angles required for the initiation of turbulence and fluidelastic Jriven crack propagation are given in Section 5.6. The WEXTEX region circumferential cracks at North Anna Unit 1 are comprised of PW'SCC segmented cracks. Crack propagation due to turbulent or fluidelastic vibration does not occur for the expected segmented PWSCC crack morphology, even for crack network angles of 360°. Wevertheless, the crack angles observed during the 1992 mid-cycle inspection are compared to the acceptabie crack ancies from Section 5.6 below.

Only one WEXTEX circumferential indication was observed in Zone 1, in R25C8 of SG B, with an arc length of 142° measured in the field: latoratory reanalysis of the field data produced a measured arc length of 157°. The throughwall extent of this crack was less than the minimum (Jb,c necessary for furbulence driven crack prcpagation in Zone 1; furthermora, the calculated throughwall angle necessary for furbuient crack propagation at the location of R25C8 is I Jb.c. No circumferential indications were observed in Zone 2. Two WEXTEX circumferential indications were observed in Zone 3: both had RPC angles less than the ! jb,c angle necessary for initiation of furbulence driven propagation (the maximum crack angle was 118° in R21C23 of SG A). The maximum crack angle in Zone 4 was 199°, in R25C35 of SG B. All WEXTEX region circumferential indications in Zone 4 had RPC crack angles less than the ! jb.e minimum through wall angle required for crack propagation. Therefore, it is concluded that no WEXTEX indications are subject to crack propagation due to tube vibration.

6.7 TSP Tube Vibration Assessment

The tube vibration assessment for tubes with circumferential cracks at the TSPs is performed by dividing the tubesheet region into zones with varying degrees of susceptibility to crack propagation caused by tube vibration, as described in Section 5.6. Figure s-5 shows a tubesheet map with various zones identified. The zones for the TSP tube vibration assessment are the same as the zones used for the WEXTEX assessment: however, the acceptable crack angles for $T^{n D}$ circumferenial cracks are somewhat different, as summarized in Section 5.6. Tescribed in Section 5.6, only the circumferential cracks at the bottom edge of the first TSP have significant potential for
vibration-induced fatigue. Therefore, the following discussion addresses only the indications in the first TSP region.

Figure 6-7 shows the distribution of circumferential indications at the bottom edge of the first TSP in all SGs. Of the 31 circumferential indications observed at the bottom edge of the first TSP, 7 indications were within Zone 1. The longest, 167° in R45C50 of SG A, had weli defined, deep crack angles of $\sim 93^{\circ}$; this is less than the I jb,c through wail angle required for vibration induced crack propagation ior the most limiting Zone 1 tube location and the I Jb,C required angle for the R45C50 tube iocation. The remaining six circumferential indications, all had orack angles of 104° or less. All three of the circumferential indic. ns in Zone 2 were less than the ! jb,c minimum throughwall crack angle necessan for vibration induced propagation. All six of the circumferential indications in Zone 3 were less than the I jb.c minimum wro ighwall crack angle necessary for vibration induced propagation. All fitteen of the circumferential indications in Zone 4 were less than the 244° maximum throughwall crack angle analyze for vibration induced propagation. Only the 31 indications at the bottorn edge of the first TSP were potentially susceptible to vibration induced propagation. Therefore, none of the circumferential indications at the TSPs are expected to experience tube vibration. - 0 crack propagation.

6.8 MCl and Mixed Mode Tube Vibration Assessment

All of the MCIs in the WEXTEX region were observed in Zone 4, where the minimum throughwall crack angle necessary for vibration induced crack propagation was 275°. Accounting for the segmented crack morphology, in this region, the circumferential cracks would be required to reach 380° for crack propagation. None of the MCls observed in the February 1992 inspections were sufficiently long to reach these limiting crack angles. In addition, there were no occurrences of mixed mode cracking observed in the WEXTEX region.

As described previously, only cirumferential cracks at the bottom edge of the first TSP were found to have the potent: al for vibration induced propagation during the ISP tube vibration assessment. There were no occurrences of MCls or mixed mode cracking at the bottom edge of the f. it TSP.
the current cycle due to the RPC inspection transient and reduced temperature onnditions.

In summary, the current EOC indications can be expected to meet $3 \Delta P$ tube burst capability. Indications found in the last inspection meet $3 \triangle P$ capability and the jffects of the RPC inspection transient and reduced temperatures would further increase the tube burst margins.

6.4 TSP Axial Indication Tube Burst Assessment

Only the axial crack lengths above and below the edges of the TSPs are considered for the tube burst and leakage evaluations; the extensive denting at the TSPe is considered to prevent axial cracks within the crufines of the TSPs from opening. The axial crack lengths were measured by RPC, rather than by bobbin as in provious outages; EPRI cocument NP-6368-L demonstrates that there in good agreement ct RPC-measured crack lengths with pulled tuhe data. The axial crack lengths measured by RPC during the 1992 inspections were shorte: than crack lenoths measured in previous bobbin inspections, likely due to the reduced operating cycle time and to reduced lead-in and lead-out effects for RPC compared to the bobbin coil. During the 1992 mid-cycle inspection program, the longest axial crack length ortside the TSPs was 0.49 inch; this was less than the axial crack lengths of up to $\sim 0.9^{7}$ observerf in prior outages.

As described in Section 5.3, the exposed axial crack length resulting in burst at $3 \Delta P$ is I po.e and the length for burst at Δ SSLB Is I phersased on the Eolgian burst equation. However, examination of pulled tubes at North Anna Unit 1 has shown a presence ct small ligaments in the axial crack networks (WCAP-12349). Accounting for the segmented crack burst capability as described in Section 5.3, the longest macrocrack with elastic ligaments to meet $3 \Delta P$ is i $\quad \mathrm{b}, \mathrm{c}$ and macrocracks up to $1 \quad \mathrm{~b}, \mathrm{c}$ in lengith mnet $\triangle \mathrm{P}$ SL.B.

As described in Section 6.1, the effect of reduced temperatures and the RPC inspection transient are ignored for axial crack lengths, and the axial lengths found in the 1992 inspection are applied for the end of the current cycle for conservatism. For exposed lengths of axial cracks above or below the TSP edges, the mavimum expected length is 0.49 inch. On a segmented crack basis, this is well below both the $1 \quad 1 \mathrm{~b}, \mathrm{c}$ length
for $3 \Delta P$ burst capability and the I
p, c length iequired for $\triangle P_{S L B}$ burst capabilily. Therefore, the current EOC axial indications can be expected to meet both ie $3 \Delta P$ and $\triangle P$ SLE burst requirements.

6.5 Potential TSP Mixed Mode Assessment

Of the 469 tubes plugged for axial and circumferential indizations at TSPs, there were 14 occurrences of circumferential and axial indications at the same TSP. Table 3.8 summarizes the locations, circumferential crack angles a y ligament angles of all potential mixed mode indications. Seven of these occurrences involved axial cracks either inside the TSP or on the opposite edge from the circumferential cracks; these occurrences are not a concern for mixed mode considerations. The other seven occurrences involved axial indications at the same edge of the TSPs as the circumfer llindications.

From Table 3-8, all TSP indications with axial and circumferential indications at the same edge of the TSF hui a measured RPC ligaments. Tube R30C67 has the smalles: RPC-measured ligament of 5°, which implies (Sections 3.8 and 5.5) a minimum ligament of $>35^{\circ}$ when adjusted for RPC resolution of deep crack indications. This ligament size is also obtained using the derived ligament angle of Table 3-8.

As developed in Section 5.5, the sresence of an RPC ligament permits both tube burst and fatigue evaluations to be performed based on separate, non-interacting cracks. Thus, none of the TSP indications of Table 3-6: - quire a more detailed mixed mode evaluation. The axial and circumferential indications given in Trble $3-8$ meet $3 \Delta P$ burst capability when evaluated as non-interacting indications.

6.6 WEXTEX Tube Vibration Ássessment

The tube vibration assessment for tubes with circuinferential cracks near the WEXTEX transition region is performed by dividing the tubesheet region into zones with varying dearees of susceptibility to crack propagation caused by tube vibration, as described in Section 5.6. Figure $5-5$ shows a tubesheet map with various zones identified. Figure 6.6 shows the locations of all 31 circumferential indications found in the WEXTEX

Table 6-1
Expected Reductions in Circumferential Crank Angles for Current Cycle

Causative Factor	ISP Circ.Indications		WEXTEX Circ. Indications	
	Noind.	Crack Angles	Nolnd.	Crack Angles
Reduced Temp. \&	Ignored	-3°	Ignored	. 3°
Power Conditions				
RPC inspection	56\%*	8\%	No	licat 'e
Transient				
Influence on C tent Uperating Cycle				
Max Crack Angle	-..	240°	-	199°
Last Cycie				
Resulting Expected	...	218°	...	196°
Maximum Crack				
Angle in Current				
Cycle				
No. Indications	212	--	31	-
Last Cycle				
Expected No. Ind.	140	\cdots	31	...
in Current Cycle				

[^1]Figure 6.1
Largest WEXTEX Circumferential Indication: R25C36, SG B

Figure : 1

Figure 6-5
Lir (ing TSP MCl: R2C41, SG B

Figure 6-2
Limiting WEXTEX MOl: R24C33, SG A

Figure 6-3
Largest TSP Circumferential Indication: R34C42, SG A

Figu:e 6-6
North Anna Unit 1 WEXTEX Circumferential Indications - All SGs

Figure 6-7
North Aana Unit 1 Circumferential Indications at Bottom Edge of TSP 1 - All SGS
$8-2+$
Figure 6-7
North Anna Unit 1 Circumferential Indications at Bottom Edge of TSP 1 - All SGS
MAR د IAIISHCS . -

© 4 04 1
$\begin{array}{r}2 \\ 2 \\ 0 \\ 0 \\ 8 \\ 8 \\ 8 \\ \hline\end{array}$

[^2] crorre

∞
$5=$
880 90
()

\square

6 $+\square$

 $+$

A Figure 6-7的 7 ज N
=
distributions for the hot leg WEXTEX and TSP regions are conservatively projected to be the same as those found duritig the 100\% RPC inspections of those regions performed in January - February 1992. This assumpticn is based on similar lengths of operation (254 EFPD for the first half of the current cycle vs. 252 EFPD for the second half of the cycle). Changes in operating co.nditioris (Section 4.0) and inspection transient considerations (Section 3.11) dictate at the number and size of indications at the end of the current fuel cycle are expected 2 be less than those found at the and of the first half of the fuel cycle. Therefore, use of the crack distributions shown in Tables 7-4 and $7-5$ for the limiting $S G$ is judgen to provide a conservative, bounding leak. rate.

7.2 Leak Rate inalysis Methods

7.2.1 Leakage Modol for Axial Cracks

An analytical model han been developed for predicting primary-lo-secondary leak rates through cracked steam qenerator tubes. The model is based on !
$j^{a, c}$. The model predictions are shown to exhibit acceptable agreement with laboratory and pulled tube test data. The leakage mode' for axial cracks has been described in detall in Section 6.3 of WCAP-13034. A comparison of the crack model resnts with experimental results is provided below.

The crack data base consists of field (pulled tubes) and Westinghouse laboratory formed stress corrosion cracks. Crack model results are compared with the test data in Figures 7.1 and 7.2 for normal plant operation and steam-line break conditions, respectively. The crack model results are also compared to other experimental data (labeled crack data base in the figures). As indicated in the figures, good agreement between prediction and measurement is shown. Data scatter is attributed to crack geometry parameters which are difficult to define with any degree of precision. Crack geometry parameters which affect flow are $1 \quad J^{\text {a,c. }}$

An error analysis of the measuremenis versus predictions was performed to obtain the standaic deviation for uncertainty analysis. The standard deviation of the prediction is
$1 \quad \mathrm{p}^{\mathrm{b}, \mathrm{C}}$ for normal operation and 1 $\quad \mathrm{p}_{\mathrm{b}, 0}$ for steam linn break for the $\log -\log$ comparisons of Figures 7.1 and $7-2$. For an uncertainty factor, t , the predicted leak rate would be factored by I jb,0 for normal operation and by $1 \quad j^{b, c}$ for steam line break.

7.2.2 Leakage Relationship for Circumferential Cracks

The semi-empirical relationship for leakage through circumferential cracks is given by

I
where Q is the leak rate in gallons per day (gpd), $\Delta \mathrm{P}$ is the differential pressure in psi and the crack length is the total crack length in inches. This relationship is benchmarked by selected data points on measured leak rates and the fact that for small cracks, |

$$
j^{0, c} .
$$

7.3 Leak Betore Break (LBB) Capability

The leak-before-break rationale is to limit the maximum allowable primary to secondary leak rate during normal operation such that the associated crack lengin is less than the critical crack length corresponding to tube burss during a postulated steam line break event. Thus, on the basis of leakage monitoring during normal operation, it is assumec that unstable crack growih leading to tube burst would not occur in the unlikely

7.0 SLB LEAK RATE ANALYSES

The SLB leak rate analyses are performed for two sets of crack distributions. Expecied leak rates are calculated based on expected reductions in the number and size of indications at the end of the current fuel cycle as compared to those found at the end of the first half of the current cycle in February 1992. Bounding leak rates are calculated based on the actual number and size of indications from the Febryary 1992 inspection program; since both halves of the current fuel oycle are expected to have approximately the same duration in effective full power days, the 1992 crack distributions are judged to produce conservative leak rates based on inspection transient considerations.

7.1 Crack Distributions for SL.B Leak Rates

For the SLB leak rate analyses, the number and size of indications are required for the WEXTEX and TSP circumferential indications as well as the TSP axial cracks. Tables $7-1$ through $7-3$ summarize the crack distributions found in February 1992 at the end of the first hail of the current fuel cycle. Table 7.1 presents the 1992 WEXTEX crajk distributions for all three SGis. (Although shown in Table 7.1, axial cracks in or above the WEXTEX region are not considered in the SLB leak rate analyses, since all axial racks exeeding 40% through wall der e plugged before returning to power and throughwall cracks are not expected in one cycle of operation). The TSP circumferential and axial crack distributions for all three SGs are sumniarized in Tables $7-2$ and $7-3$, respectively.

The SLB leak rates are calculated basea on the crack distributions for the most limiting steam generator. Although SG C has the fewest number of tubes with WEXTEX circumferential cracks (9 in SG C vs. 12 in SG A and 10 in SG B), SG C has the most tubes with circumferential and axial cracks at the TSP elevations. The calculated leak rates for the TSP circumferential cracks are substantially larger than for the same crack sizes in the WEXTEX ragion due to the occurrence of segmented PWSCC cracks in the WEXTEX region. Based on the number of tubes with TSP circumferential and axial cracks in each SG, SG C is therefore selected as the most limiting SG for the SLB leak rate analyses. The numbers and sizes of WEXTEX and TSP circumferential cracks for SG : are shown in Table7-4. The number and sizes of TSP axial cracks tor SGC are shown in Table 7.5. The values shown in Table 7.5 are for crack lengths outside of the

TSPs; since the North Anna 1 TSP intersections are dented, only the cracks extending outside of the TSPS are considered to leak ciuring SLB.

7.1.1 Crack Distributions for Expected SLB Leak Rates

The expected reductions in the number and size of indications at the end of the current fuel cycle, compared to those found hi. February 1992 after the first half of the ourrent cycle, were developed in Section 6.1. For the SL.B leak rate analyses, the number and size of indications are required for the WEXTEX arid TSP circumferential indications as well as the TSP axial cracks.

From the evaluations given in Section 6.1, the current EOC indications can be obtained by the following adjustments to the inspection results of February 1992:

WEXTEX Circumferential Indications

- reduction in crack angles by 3°
- no change in the number of indications

TSP Circumferential Indications

- reduation in crack angles by both 3° and 8% of the last inspection results
- reduction in the number of indications by a factor of 0.67

TSP Axial Indications

- no change in crack length
- reduction in the rumber of indications by a factor of 0.67.

The above adjustments are applied to the crack distributions from the February 1992 inspection program to obtain the expected EOC SLB leak rate for the second half of the current fuel cycle. Tables $7-6$ and $7-7$ show the crack distributions used to ubtain the expected SLB leak rate for the most limiting SG.

7.1.2 Crack Distributions for Bounding SL.B Leak Rates

A bounding SLB leak rate is also calculated based on the actual crack distributions found at the end of the first half of the $2 m$ ant fuel cycle. The envelopinc sOC crack
event of a limiting accident. Leak before break provides protection against z " uplad steam line break and tube rupture event which is outside of the dusign basis th he nant. The edministrative leak rate limit for normal operation is 50 gpd far steam of or ator.

The leak-before-break rationale for a single through wall crack, growing in an irderly fashion is straightforward. However, typical cracking patterns are more compliex. Crack networks rather than single isolated cracks appear most often. Pulled thibe examination results and laboratory cracked samples provide examples of crack networks. As discussed above, ligaments of materia! between through wall uracks in a crack network increase tube strength relptive to that of a single through wall craik of the same total length. While ligaments incriase strength, they also decrease the laak rate relative to the same length for a ingle through wall crack.

7.3.1 Tubes with Axial Cracku

The leakage rnowel for tubes with axial cracks, described in Section 7.2.1, was applind using North Ar:ia 1 SG conditions to oblain the following predicted leak rales for nomial operaiion and SLB as a function of cr \& length:

Consideration has been given to the error of the predictions of leak rate compared to measured leak rates. In Section 7.2.1.3, the error is given as !

a, c .

During normal operation, the in at rate limit is $\mathbf{5 0}$ gpd for North Anna Unit 1. Reterring to the tabulations above and the mean curve of Figure 7.7 of leak rate versus axial crack length, the allowable ieak rate of 50 g pd will limit the through wall axial crack length to I $\mathrm{b}, 0$. Since the through wall $3 \Delta \mathrm{P}$ crack length (Section 5.3) is I

Jb,C, LBB is assured on a mean leak rate basis. Cons'dering the prediction error for $* 95 \%$ certainty, the axial crack length will be no longer than [jb,c. At this length, $\triangle P$ SLB is satisfied with margin since I $\quad j^{b, 0}$ is acceptabie.

For segmented cracks, the conservetive assumption is that the ligaments are elastic a: normal operation ΔP and the leak is therefore a minimum equal to the sum of the leakage of the individual cracks. The macrocrack length is therefore maximized and strength minimized or this basis. The leak rates for segmented cracks are plotted in Figure 7.4 with the points for the typical $5 / 1$ aspect ratio crack shown as the 0.25^{*} segments line. For this typical aspect ratic, on a mean predicted leak rate bas: the 50 gpd limit corresponds to a macrocrack containing [
Erom Section 5.3, the macrocrack length needed for 3ムP burst capablity is less than or equal to [Jb,c, which is less than the leak limit permitted, I Jb,c. However, LBB is assured for segmented cracks for APSLB since a [jb,C macrocrack would have $\Delta P_{\text {SLE }}$ burst capability

7.3.2 Tubes with Circumferential Cracks

The leak rate model of Section 7.2 .2 for tubes with circumferential cracking results in the following predictions of leak rate for North Anna 1 SG normal operating and SL8 conditions as a function of arc length:

With the 50 gpd leak rate limit, the corresponding aro length of a single circumferential crack is slightly less than I Jb,c. Considerable margin is available versus the single crack that lowers tube burst capability to $3 \Delta \mathrm{P}$, I $\quad \mathrm{jb}, \mathrm{c}$, and to $\triangle \mathrm{P}$ SLB. [\quad], c (Section 5.3).

For WEXTEX cicuniferential indications, the expected crack morphology is segmented cracks. Segmented cracks are also present for ODSCC in the initial stages of crack formation, although the limited pulled tube data indicates that the ODSCC ligaments may be lost by corrosion for throughwall cracks. Figure 7.5 shows the leak rates for segmented circumferential cracks. For aspect ratios of $5 / 1$ and $4 / 1$, the 50 gpd leak limit corresponds to 110° and 180°, respectively. Since these angles are less than the 297° segmented angle for $3 \triangle P$ burst, LBB capability is obtained for segmented, circumferential cracks.

Establishing the operating leak limit of 50 gpd based on segmented crack morphologies, for which axial PWSCC cracks are most limiting for LBB considerations, recognizes the expected crack morphology and provides substantially greator LBB margin than obtained assuming uniformly throughwall cracks. North Anna Unit 1 has had small operating leak rates although measured RPC crack angles are significant. This reflects the presence of ligaments (segmented and remaining wall thickness) that reduce leakage ano increase tube burst capability.

7.4

This section develops estimated leak rates under SLB conditions based on maximum leakage from the limiting crack leaking at 50 gpd under normal operation. Leak rates for the EOC crack distributions are developed in Section 7.5. Use of the EOC crack distributions is highly conservative in that the EOC distribution would be expected to leak at well in excess of 50 gpd under normal operation based on application of the leak rate and crack models used in this report.

The potential for leakage from a single crack during SLB is limited by the 50 gpd normal operation leak rate limit. Assuming operation at the 50 gpd limit, it is 95% certain that a single through wall axial crack (a conservative assumption) is shorter than I
$\mathrm{j}^{\mathrm{b}, \mathrm{c}}$ (Figure 7-3). It is also a 95% certainty that a ! $\mathrm{b}^{\mathrm{b}, \mathrm{c}}$ axial crack would leak less than ! $\quad j^{\mathrm{b}, 0}$ based on nominal $\mathrm{S}_{-} B$ leakage of I $\mathrm{j}^{\mathrm{b}, \mathrm{c}}$ for 95% certainty (Section 7.3.1). The assumption of -95% uncertainty or: normal operating leakage r9sulting in $+95 \%$ uncertainty at SLB leakage is extremely conservative. This process leads to an SLB to normal operating leak rate ratio of 275 compared to the nominal ratio of about 10. Extensive testing of leak rates on corrosion cracks in WCAP. 13187 has resulted in SL.B/N.O. leak rate ratios of 1 to about 80 with 95% of the 33 specimens tested having a ratio of <20. Fr a ratio of 20 , the 50 gpd normal operating leak rate would correspond to a SL.B leak rate of about [jb.c.

Applying the same rationale to the limiting circumferential crack of a [jb,c (see Table 6.1), assumed to be uniformiy through wall, leads to an expected leak rate of about I b,c. If it is more realistically assumed that 60% of the 218° crack angle is through wall, the SLB leak rate reduces to about [b, c.

Overall, the ratio of 20 for SLB to N.O. leak rate rates is more representative of measured leak rates and the limiting crack causing plant shutdown at 50 gpd would result in an SLB leak rate of about !
$1^{\mathrm{b}, \mathrm{c}}$.

7.5.1 Expected SLB Leak Rates

In the very unlikely event that all indications have through wall or near through wall cracks that do not leak during normal operating conditions but open up to leak during a postulated SLB, the expected SLB leakage under this assumption can be obtained based on calculated leakage for the EOC crack distributions described in Section 7.1.1. This calculation utilizes norminal leak rates for the entire distribution on the basis that an average leak rate would result for the large number of indications in service. The EOC distributions utilized are the EOC axial crack disitribution of Table 7.7 and the circ iferential crack distributions of Table : 6. The segmenied crack model is applied for th: ojected TSP PWSCC axial cracks and WEXTEX PWSCC circumferential crack distributions. For ODSCC circumferential cracks at the TSPS, it is assumed that the through wall crack length is ! jb,c of the RPC crack angles of Table $7-6$ based on the pulled tube examination results for North Anna Unit 1, R11C14 (see WCAP-13034). The resulting total SLB leak rate is estimated at about ! Jb,C including contributions of about [jb,C from WEXTEX cracks, I jb,c from circumferential cracks at TSPs and about [\quad b,C from Axial cracks at the TSPS.

7.5.2 Bounding SLB Leak Rates

In order to bound potential leakage in the unlikely event that through wall or near through wall cracks that do not leak during normal operating conditions but may leak during a posiulated SLB exist, a SLB leak rate can be obtained based en calculated leakage for the February 1992 crack distributior.3, as discussed in. Section 7.1.2. This calculation utilizes nominal leak rates for the entire distribution. The EOC distributions utilized are the 1992 axial crack distribution of Table 7.5 and the 1992 circumferential crack distributions of Table 7-4. The segmented crack model is applied for the projected TSP PWSCC axial cracks and WEXTEX circumferential crack distributions. For ODSCC circumferential cracks at the TSPs, it is assumed that the through wall crask length is I $J^{b, C}$ of the RPC crack angles of Table 7-4. The resulting total SLB leak rate is nstimated at about [$\mathrm{j}^{\mathrm{b}, \mathrm{c}}$ including contributions of about !]b,c from WEXTEX cracks, I jb,c from circumferential cracks at TSPs and about I jb, 0 from axial cracks at the TSPs.

7.6 Conclusions

The test and analysis basis for burst capability and leakage of tubes with axial or circumferential cracking provides a justification of structural integrity and LBB per Reg. Guide 1.121. Margin is demonstrated for burst capability during accident pressure loadings (\triangle PSLB) as single and segmented cracks are limited by the normal operation leak rate limit of 50 gpd . The 50 gpd leak limit provides confidence that a $3 \triangle P$ burst capability is obtained in an cases for tubes with circumferential cracking and for single axial cracks. Segmented cracks up to I Jb,c in length provide $3 \triangle P$ burst capability but segmented cracks limited only by the 50 gpd normal operation leak rate limit may be longer. The strength of segmented cracks has conservatively been minimized consistent with a minimum leakage model (elastic ligaments).

The potent al SLB leak rate is expected to be limited by the 50 gpd operating leak limit to about 0.7 gpm based on SLB leak rates of about a factor of 20 (at $\sim 95 \%$ cumulative probability) higher than normal operating leak rates. Very conseivatively, the potential SLB leak rate would be bounded by approximately ! jb,c for a single through wall axial crack. In the vary unlikely event that all indications have through wall or near through wall non-leaking cracks during normai operating conditions and that these cracks all open up ior SLB leakage, the SLB leak rate can be conservatively estimated for the distribution of RPC crack angles arid lengths at EOC conditions. For the February 1992 mid-cycle inspection crack distributions, the bounding leak rate would be approximateiy: $\quad j^{b, C}$ The expected SL.B leak rate calculated from the projected EOC orack distributions which account for expected reductions in the number and size of indications at the end of the current fuel cycle as compared to those from the mid-cycle inspection would be approximatley |
jb,c.

Table 7-1

North Anna Unit 1 February 1992 WEXTEX inspection Resills

	Number of Tubes		
Iype of Indication	SSiA	SSB	SGC
Single Axial (SAl)	3	0	2
Multiple Avial (MAI)	0	0	0
Single Circumferential (SCI)	10	9	7
Multiple Circumferential (MCI)	2	1	2

Note: There were no tubes with mixad mode degradation identified in the WEXTEX transitions.

Table 7-2

North Anna Unit \& Tubes With TSP Circumferential Cracks - February 1992

Elexation	SGA SCIMCl	$S G B$ SCIN:	$\begin{gathered} \text { SGC } \\ \text { SCLMCI } \end{gathered}$
1 H	25/3	22/0	27/0
2 H	15/0	33/3	$42 / 3$
3 H	$2 / 0$	$7 / 2$	19/2
4 H	$3 / 0$	0.0	1/0
5 H	1/0	$0 / 0$	$1 / 0$
6 H	00	$0 / 0$	00
7 H	$0 / 0$	$0 / 0$	00
Yotal	46/3	$62 / 5$	$92 / 5$
$\mathrm{SCl}=$	ntial indica		

Table 7.3

North Anna Unit 1 Tubes With TSP Axial Oracks - February 1992

Table 7.4

Steam Generator C WEXTEX and TSP Circumferen.tial Cracks - February 1992

	Numbe	tions
Angle (deg.)	WEXTES	JSPS
45	0	0
55	1	4
65	1	12
75	4	28
85	2	27
95	1	32
105	0	23
115	0	6
125	0	10
135	0	2
145	0	4
155	1	2
165	1	3
175	0	1
195	0	1
195	0	0
205	0	1
215	0	0
225	0	0
235	0	1
245	0	0
Total	11	157

[^3]Table 7.5

Steam Generator C TSP Axial Cracks. February 1992

Crack Length (inch)	Number of Observations
0.05	25
0.15	25
0.25	20
0.35	9
0.45	6
0.55	0
0.65	0
0.75	0
0.85	0
0.95	0
	85

- Mid-point of crack length range; for example, 0.15 is mid-point of $0.11-0.20$ range.

Table $7-6$

Steam Generator C WEXTEX, and TSP Circumferential Cracks . Expected Distribution at EOC

Crack*	Number	tions
Angle (deg.)	WESTEX	ISPs
45	1	6
55	1	14
65	4	26
75	2	22
85	1	17
95	0	6
105	0	4
115	0	3
125	0	3
135	0	2
145	1	1
155	1	1
165	0	0
175	0	1
185	0	0
195	0	\bigcirc
205	0	1
215	0	0
225	0	0
235	0	0
245	0	0
Total	11	107

* Mid-point of crack angle range; for example, 55° is mid-point of $51^{\circ}-60^{\circ}$ range.

Table 7.7

Steam Generator C TSP Axial Cracks - Expected Distribution at EOC

Crank Length (inch)	Number of Observations
0.05	17
0.15	17
0.25	14
0.35	6
0.45	4
0.55	0
0.65	0
0.75	0
0.85	0
0.95	0

- Mid-point of crack length range; for example, 0.15 is mid-point of 0.11-0.20 range.

Figure 7.1
Measured vs. Predicled Leak Rate (Normal Plant Operation)

Figure 7-2
Measured vs. Predicted Leak Rate (Steam Line Break Conditions)
$\left[\begin{array}{l}\text { [} \\ \hline\end{array}\right]$

Figure 7-3
Leak Rale Versus Axial Crack Length

Figure $7-4$
Leak Rate Versus Axial Crack Length
(Leak Rate With Elastic Ligaments)

Figure 7.5
Leak Rate Versus Circumferential Crack Angle

[^0]: * All negative changes set to zero.

[^1]: * Also applied for TSP axial indications.

[^2]: sos (

[^3]: - Mid-point of crack angle range; for example, 55° is mid-point of $51^{\circ}-60^{\circ}$ range.

