Table of Contents

18.0	Aging Management Programs and Activities
18.1 18.1.1	Introduction References
18.2 18.2.1 18.2.1.1	Aging Management Programs and Activities Alloy 600 Aging Management Review Susceptibility Ranking
18.2.1.2 Inspection	Control Rod Drive Mechanism Nozzle and Other Vessel Closure Penetration
18.2.1.3	Pressurizer Inspection
18.2.2	Borated Water Systems Stainless Steel Inspection
18.2.3	Bottom-Mounted Instrumentation Thimble Tube Inspection Program
18.2.4	Chemistry Control Program
18.2.5	Containment Inservice Inspection Plan - IWE
18.2.6	Deleted Per 2005 Update
18.2.7	Crane Inspection Program
18.2.8	Fire Protection Program
18.2.8.1	Sprinkler Branch Lines
18.2.8.2	Main Fire Pump Strainer
18.2.8.3 18.2.8.4	Jockey Pump Strainer Tank and Connected Piping
18.2.8.5	Turbine Building Manual Hose Stations
18.2.9	Flood Barrier Inspection
18.2.10	Flow Accelerated Corrosion Program
18.2.11	Boric Acid Corrosion Control Program
18.2.12	Galvanic Susceptibility Inspection
18.2.13	Heat Exchanger Activities
18.2.13.1	Component Cooling Heat Exchangers
18.2.13.2	Containment Spray Heat Exchangers
18.2.13.3	Diesel Generator Engine Cooling Water Heat Exchangers
18.2.13.4	Control Area Chilled Water
18.2.13.5	Pump Motor Air Handling Units
18.2.13.6	Pump Oil Coolers
18.2.14	Ice Condenser Engineering Inspection
18.2.15 18.2.16	Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program Inservice Inspection Plan
18.2.16.1	McGuire Unit 1 Cold Leg Elbow
18.2.16.2	Small Bore Piping
18.2.17	Inspection Program For Civil Engineering Structures and Components
18.2.18	Liquid Waste System Inspection
18.2.19	Non-EQ Insulated Cables and Connections Aging Management Program
18.2.20	Pressurizer Spray Head Examination
18.2.21	Preventive Maintenance Activities
18.2.21.1	Condenser Circulating Water System Internal Coating Inspection
18.2.21.2	Refueling Water Storage Tank Internal Coating Inspection
18.2.21.3	Nuclear Service Water System Strainer Elements Inspection
18.2.21.4	Auxiliary Feedwater Storage Tank Internal Coating Inspection
18.2.22	Reactor Vessel Integrity Program
18.2.23	Reactor Vessel Internals Inspection
18.2.24 18.2.25	Selective Leaching Inspection Service Water Piping Corrosion Program
10.2.20	dervice vialer riping condition rrogialli

(13 OCT 2018) 18 - i

18.2.26	Sump Pump Systems Inspection	
18.2.27	Treated Water Systems Stainless Steel Inspection	
18.2.28	Underwater Inspection of Nuclear Service Water Structures	
18.2.29	Ventilation Area Pressure Boundary Sealants Inspection	
18.2.30	Waste Gas System Inspection	
18.2.31	References	
18.3	Additional Commitments	
18.3.1	Battery Rack Inspections	
18.3.2	Steam Generator Surveillance Program	
18.3.3	Additional Chemistry Commitment – Visual Inspection of Auxiliary Feedwater and	
Main Feedwater Piping		
18.3.4	Fuse Holder Program	
18.3.5	Boral Monitoring Program	
18.4	Newly Identified SSCs	
18.4.1	MNS Reviews for Newly Identified SSCs	
18.4.1.1	Nuclear Service Water System Strainer Elements	
18.4.1.2	Liquid Waste System Piping - Control Room Air Handling Unit Drains	
18.4.1.3	Boral Spent Fuel Rack Neutron Attenuation Material	
18.4.1.4	Earthen Dike on the North Perimeter of the McGuire Nuclear Station Site	
18.4.1.5	Auxiliary Feedwater Storage Tanks	

(13 OCT 2018) 18 - ii

List of Tables

Table 18-1. Summary Listing of the Programs, Activities and TLAA

Table 18-2. Deleted Per 2014 Update

(13 OCT 2018) 18 - iii

THIS PAGE LEFT BLANK INTENTIONALLY.

(13 OCT 2018) 18 - iv

18.0 Aging Management Programs and Activities

THIS IS THE LAST PAGE OF THE TEXT SECTION 18.0.

UFSAR Chapter 18 McGuire Nuclear Station

THIS PAGE LEFT BLANK INTENTIONALLY.

18.0 - 2 (13 OCT 2018)

18.1 Introduction

Duke Energy Corporation prepared an Application for Renewed Operating Licenses of McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 (Application) [Reference 1]. The application, including information provided in additional correspondence, provides sufficient information for the NRC to complete their technical and environmental reviews and provides the basis for the NRC to make the findings required by §54.29 (Final Safety Evaluation Report – Final SER) [Reference 2]. Pursuant to the requirements of §54.21(d), the UFSAR supplement for the facility must contain a summary description of the programs and activities for managing the effects of aging and the evaluation of time-limited aging analyses for the period of extended operation determined by §54.21 (a) and (c), respectively.

As an aid to the reader, <u>Table 18-1</u> provides a summary listing of the programs, activities and time-limited aging analyses (TLAA) (topics) required for license renewal. The first column of <u>Table 18-1</u> provides a listing of these topics. The second column of <u>Table 18-1</u> indicates where the topic is located in the Application. This is an historical reference. The third column of <u>Table 18-1</u> identifies where the description of the Program, Activity, or TLAA is located in either the McGuire UFSAR or in the McGuire Improved Technical Specifications (ITS).

Section <u>18.2</u> contains summary descriptions of the aging management programs and periodic inspections that are ongoing through the duration of the operating licenses of McGuire Nuclear Station.

Station documents will be established, implemented, and maintained to cover the aging management programs and activities described in Chapter 18.

The Corrective Action Program (AD-PI-ALL-0100) provides a structured approach for a formal corrective action program which facilitates the prioritization, evaluation, and correction of conditions adverse to quality, as defined by 10 CFR Part 50, Appendix B. This same corrective action program is credited for systems, structures, and components whose aging will be managed by the aging management programs and activities described herein.

McGuire Nuclear Station has completed reviews meeting the requirements of 10 CFR 54.37(b), and determined that the following systems, structures and components are in the scope of license renewal and are newly identified:

- Nuclear Service Water System Strainer Elements
- Liquid Waste System piping draining Control Room Air Handling Units, in the Control Building
- Boral Panels in High Density Spent Fuel Pool Storage Racks
- Earthen Flood Control Dike running along the northern perimeter of the McGuire Nuclear Station site
- Auxiliary Feedwater System Elevated Storage Tanks

Section <u>18.4</u> presents the evaluation of these newly identified systems, structures and components, as well as the aging management review development and the aging management activities that have been prescribed to ensure that intended functions will be maintained through the period of extended operation.

18.1.1 References

- 1. M. S. Tuckman (Duke) letter dated June 13, 2001, to Document Control Desk (NRC), Application to Renew the Operating Licenses of McGuire Nuclear Station, Units 1 and 2, and Catawba Nuclear Station, Units 1 and 2, Docket Nos. 50-369, 50-370, 50-413, and 50-414.
- 2. NUREG-1772, Safety Evaluation Report Related to the License Renewal of McGuire Nuclear Station, Units 1 and 2, and Catawba Nuclear Station, Units 1 and 2, Docket Nos. 50-369, 50-370, 50-413, and 50-414, March 2003.

THIS IS THE LAST PAGE OF THE TEXT SECTION 18.1.

18.1 - 2 (13 OCT 2018)

18.2 Aging Management Programs and Activities

18.2.1 Alloy 600 Aging Management Review

The original Alloy 600 Aging Management Review was proposed during the license renewal review process for McGuire Nuclear Station, which was completed with the issuance of renewed operating license on December 5, 2003. This program description is being revised to reflect requirements imposed and commitments made subsequent to issuance of the renewed operating license. Unless otherwise noted, the intent of the original Alloy 600 Aging Management Review is met by the more comprehensive Alloy 600 Aging Management Program.

The purpose of the Alloy 600 Aging Management Program is to ensure that high strength nickel alloy materials used in pressure boundary applications are adequately examined, mitigated, or replaced on a selective basis prioritized utilizing operating experience, examination requirements, and a temperature based susceptibility ranking. The program will facilitate the general oversight and management of degradation due to primary water stress corrosion cracking (PWSCC).

Deleted paragraph(s) per 2018 update.

The Alloy 600 Aging Management Program will be updated as necessary to reflect any new or revised commitments made by Duke Energy in response to industry operating experience or NRC generic communications related to Alloy 600.

Deleted Per 2012 Update.

18.2.1.1 Susceptibility Ranking

As part of the Alloy 600 Aging Management Program all of the Alloy 600/82/182 and Alloy 690/52/152 locations have been identified and ranked based on each location's susceptibility to PWSCC. The Alloy 600 susceptibility ranking is a qualitative ranking determined by temperature, type of weld in the component, post weld heat treatment, and industry operation experience. The susceptibility ranking is documented in calculation DPC-1201.01-00-0009. The Alloy 600 susceptibility ranking was initially created to ensure nickel based alloy locations were adequately inspected through the Inservice Inspection, Steam Generator, and Reactor Vessel Internals Programs. However, the Alloy 600 susceptibility ranking was never used independently to augment the ISI program or any other inspection program. The Alloy 600 susceptibility ranking in conjunction with mandatory inspection and evaluation guidelines issued by NEI, ASME Code Cases made mandatory by the NRC, and other NRC bulletins were all applied to ensure Alloy 600 degradation was monitored appropriately.

One of the commitments made as part of the original Alloy 600 Aging Management Review was for Duke to submit to the NRC the results of the susceptibility ranking for pressurizer surge and spray nozzle thermal sleeves attachment welds prior to the extended period of operation. This commitment was met by a letter submitted by Duke on June 26, 2018, providing the required information. The letter noted that the pressurizer spray nozzle thermal sleeves attachment welds were not fabricated from Alloy 82/182 material and were thus removed from the susceptibility ranking. Duke understands that the staff will review these results and may request additional information to gain an understanding of the results [Reference 26].

For McGuire, the results for the pressurizer surge and spray nozzle thermal sleeves attachment welds will be submitted to the NRC following issuance of renewed operating licenses for

McGuire Nuclear Station and prior to June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.1.2 Control Rod Drive Mechanism Nozzle and Other Vessel Closure Penetration Inspection

Scope – The scope of the Control Rod Drive Mechanism and Other Vessel Closure Penetration Inspection includes the control rod drive mechanism nozzles, head vent penetrations and carbon steel head surface of each reactor vessel as described in the ASME Section XI Code, including applicable Code Cases, subject to the conditions imposed by 10CFR Part 50.55a. These penetrations include 78 Control Rod Drive Mechanism (CRDM) type penetrations, and one head vent penetration.

The four auxiliary head adaptors (AHAs) are located on the outer portion of the reactor vessel head at 0°, 90°, 180°, and 270°. The AHAs shall be volumetrically inspected on a 7-year inspection frequency in accordance with the ASME Section XI Code, including applicable Code Cases, subject to the conditions imposed by 10 CFR Part 50.55a.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The Control Rod Drive Mechanism and Other Vessel Closure Penetration Inspection monitors cracking of nickel based alloy nozzles with partial penetration welds in the reactor vessel closure head and associated borated water leakage onto the closure head carbon steel surface.

The AHA inspection monitors cracking of nickel based alloy nozzles with full penetration butt welds in the reactor vessel closure head and associated borated water leakage onto the closure head carbon steel surface.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending below, The Control Rod Drive Mechanism and Other Vessel Closure Penetration Inspection will detect cracking of nickel based alloy reactor vessel head penetrations prior to loss of component intended function.

Monitoring & Trending – The Control Rod Drive Mechanism and Other Vessel Closure Penetration Inspection will inspect all Reactor Pressure Vessel (RPV) head pressure-retaining partial-penetration weld nozzles and the RPV head surface. This program will consist of both visual and volumetric examinations.

The McGuire RPV heads are composed of PWSCC-susceptible materials. The following is a brief summary of the inspections required by the ASME Section XI Code, including applicable Code Cases, subject to the conditions imposed by 10CFR Part 50.55a, for heads with UNS N06600 nozzles and UNS N06082 or UNS W86182 partial-penetration welds:

- A bare metal visual examination of the entire outer RPV head surface including essentially 100% of the intersection of each nozzle with the head each refueling outage in which a volumetric or surface examination is not performed. If the Effective Degradation Years (EDY) are less than 8 and there are no PWSCC flaws, the reexamination frequency may be extended to once every 5 calendar years, only if a wetted surface examination of all partial penetration welds was performed during the previous volumetric examination.
- A volumetric and/or surface examination of all partial-penetration weld nozzles, every 8 calendar years or before the Reinspection Years (RIY) is equal to 2.25, whichever is less.
 These examinations should cover essentially 100% of the required volume or equivalent

18.2 - 2 (13 OCT 2018)

surfaces of the nozzle tube. A demonstrated volumetric or surface leak path assessment through all J-groove welds shall be performed.

The AHAs contain two Alloy 600/82/182 full penetration butt welds per AHA and operate at the cold leg operating temperature, these welds are required to be inspected on a periodic basis to comply with the requirements of 10CFR Part 50.55a.

Acceptance Criteria – The visual and volumetric/surface examinations will use acceptance criteria set forth in the ASME Section XI Code, including applicable Code Cases subject to the conditions imposed by 10CFR Part 50.55a.

Corrective Action & Confirmation Process – For the bare metal visual inspection, if leakage is detected, the source of leakage and leakpath will be determined and repairs completed. Specific corrective actions and confirmation are implemented in accordance with the Corrective Action Program, PD-EG-PWR-1611, "Boric Acid Corrosion Control Program" and AD-EG-PWR-1611, "Boric Acid Corrosion Control Program - Implementation".

Any indications detected during the volumetric examinations of the AHAs and cannot be justified for continued service by analysis shall be repaired in accordance with ASME Section XI. Indications which can be justified for continued service shall be managed by the station's Corrective Action Program and in accordance with the ASME Section XI Code, including applicable Code Cases subject to the conditions imposed by 10CFR Part 50.55a.

For the volumetric examination, indications detected during volumetric examination which can not be justified for continued service by analysis will be repaired in accordance with ASME Section XI. Flaws which can be justified for continued service will be managed by the station Corrective Action Program and in accordance with the ASME Section XI Code, including applicable Code Cases subject to the conditions imposed by 10CFR Part 50.55a.

Administrative Controls – Inspections will be controlled by site specific procedures. Engineering evaluations are performed in accordance with the station Corrective Action Program.

Deleted paragraph(s) per 2018 update.

18.2.1.3 Pressurizer Inspection

Scope – The scope of the Pressurizer Inspection includes pressurizer connections that utilize Alloy 600 wrought or Alloy 82/182 weld materials. This inspection ensures that commitments made in response to NRC Bulletin 2004-01 are satisfied (References 15, 16 and 17). The manway diaphragm plate seal welds were originally a part of the Pressurizer Inspection Program, but both diaphragms and seal welds have since been replaced with materials that are highly resistant to PWSCC [Reference 30]. Examination of the gap between the pressurizer manway cover and the manway for diaphragm plate seal weld leakage is no longer required under the program.

Preventive Actions – Perform structural weld overlays on Alloy 600 wrought or Alloy 82/182 weld materials using materials that are highly resistant to PWSCC.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending below, the Pressurizer inspection will detect cracking of pressurizer connections containing Alloy 600/82/182 materials prior to loss of component intended function.

Monitoring and Trending -

The following inspections will be performed each refueling outage:

- 1. A bare metal visual inspection around 100% of each pressurizer connections that utilize Alloy 600 wrought or Allow 82/182 weld materials (except those penetrations subject to volumetric or surface ISI during that RFO) and
- 2. Deleted per 2018 update.

Additionally, perform volumetric examination of any structural weld overlays per ASME Section XI and Code Case N-504-2 requirements.

Acceptance Criteria – Any boron detected on the outside of the vessel due to leakage is unacceptable.

Corrective Action and Confirmation Process – Evidence of leakage will be addressed in accordance with the Boric Acid Corrosion Control Program, including evaluation by engineering to determine extent of condition and applicability to other locations. The station Corrective Action Program will be utilized to evaluate the need for additional NDE methods and increased inspection scopes, including like locations and other Duke units (Reference 16).

If circumferential cracking is observed in either the pressure boundary or non-pressure boundary portions of any locations covered under the scope of NRC Bulletin 2004-01, Duke will develop plans to perform an adequate extent-of-condition evaluation and Duke will discuss those plans with cognizant NRC technical staff prior to restarting the affected unit (Reference 17).

Administrative Controls – Inspections results will be documented according to applicable procedures. Engineering evaluations are performed in accordance with the Duke Corrective Action Program and Boric Acid Corrosion Control Program.

18.2.2 Borated Water Systems Stainless Steel Inspection

Scope – The scope of the Borated Water Systems Stainless Steel Inspection is stainless steel components exposed to an alternate wetting and drying borated water environment in the following McGuire systems:

- Containment Spray
- Refueling Water

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameters inspected by the Borated Water Systems Stainless Steel Inspection are pipe wall thickness, as a measure of loss of material, and evidence of cracking.

Detection of Aging Effects – The Borated Water Systems Stainless Steel Inspection is a one-time inspection that will detect the presence and extent of loss of material or cracking of stainless steel components.

Monitoring & Trending – The Borated Water Systems Stainless Steel Inspection will inspect stainless steel components, welds, and heat affected zones, as applicable, in the Containment Spray System in the area of the internal air/water interface. The borated water environment found downstream of valves NS-12, 15, 29, 32, 38, and 43 in the Containment Spray System at McGuire is stagnant and isolated from the remainder of the system, and therefore, not controlled by the Chemistry Control Program. Water from the refueling water storage tank is introduced during valve testing with level in the piping reaching the same elevation as the tank. Since the pipe is open to containment, evaporation occurs and concentration of contaminants

18.2 - 4 (13 OCT 2018)

could occur at the air/water interface. This concentration of contaminants could lead to loss of material or cracking. Therefore, a one-time inspection around this water line is warranted.

One of twelve possible locations at McGuire will be inspected using a volumetric technique. If no parameters are known that would distinguish the susceptible locations, one of the twelve available at McGuire will be examined based on accessibility and radiological concerns. The results of this inspection are considered to be bounding, will serve as a leading indicator and can be applied to the specific stainless steel components exposed to an alternate wetting and drying borated water environment in the Refueling Water System.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The acceptance criteria for the Borated Water Systems Stainless Steel Inspection is no unacceptable loss of material or cracking that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, then the aging management review is complete and no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Borated Water Systems Stainless Steel Inspection will be implemented in accordance with controlled plant procedures.

18.2.3 Bottom-Mounted Instrumentation Thimble Tube Inspection Program

Duke has submitted a revision to the McGuire Reactor Vessel Internals Inspection Program based on the requirements of MRP-227-A [References <u>28</u> and <u>29</u>]. Once this submittal is approved by the NRC, inspection of bottom-mounted thimble tubes will be performed in compliance with this updated program, and the description of the McGuire Bottom-Mounted Instrumentation Thimble Tube Inspection Program will be updated accordingly.

Scope – The scope of the Bottom Mounted Instrumentation Thimble Tube Inspection Program includes all accessible thimble tubes installed in each reactor vessel.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Bottom Mounted Instrumentation Thimble Tube Inspection Program monitors tube wall degradation of the BMI thimble tubes. Failure of the

thimble tubes would result in a breach of the reactor coolant pressure boundary; however, this breach is isolatable via the thimble cutoff valve.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending below, the Bottom Mounted Instrumentation Thimble Tube Inspection Program will detect loss of material due to wear prior to loss of component intended function.

Monitoring & Trending – Inspection of the BMI thimble tubes is performed using eddy current testing. All accessible thimble tubes are inspected. The frequency of examination is based on an analysis of the data obtained using wear rate relationships that are predicted based on Westinghouse research that is presented in WCAP-12866, Bottom Mounted Instrumentation Flux Thimble Wear [Reference 2]. These wear rates, as well as the results of the eddy current examinations, are documented in site specific calculations. The eddy current results are trended and inspections are planned prior to the refueling outage in which thimble tube wear is predicted to exceeding the Acceptance Criteria, below. This ensures that the thimble tubes continue to perform their pressure boundary function.

Acceptance Criteria – The acceptance criterion for the BMI thimble tubes is 80% through wall (thimble tube wall thickness is not less than 20% of initial wall thickness). This acceptance criterion was developed by Westinghouse in WCAP 12866, "Bottom Mounted Instrumentation Flux Thimble Wear," and reported to the NRC by Duke [Reference 1.]

Corrective Action & Confirmation Process – Thimble tubes that are predicted to exceed the acceptance criterion may be capped or repositioned. Specific corrective actions and confirmatory actions are implemented in accordance with the corrective action program.

Administrative Controls – Data are collected and evaluated using written procedures. The data are evaluated and the timing for the next inspection is determined using engineering calculations using methodology based on the information Westinghouse developed in WCAP-12866 [Reference 2].

18.2.4 Chemistry Control Program

The purpose of the Chemistry Control Program is to manage loss of material and/or cracking of components exposed to borated water, closed cooling water, fuel oil, and treated water environments. This program manages the relevant conditions that lead to the onset and propagation of loss of material, cracking, and fouling which could lead to a loss of structure or component intended functions. Relevant conditions are specific parameters such as halogens, dissolved oxygen, conductivity, biological activity, and corrosion inhibitor concentrations that could lead to loss of material and/or cracking if not properly controlled.

The Chemistry Control Program contains system specific acceptance criteria that are based on the guidance provided in EPRI PWR Primary Water Chemistry Guidelines, EPRI PWR Secondary Water Chemistry Guidelines, and EPRI Closed Cooling Water Chemistry Guideline.

18.2.5 Containment Inservice Inspection Plan - IWE

The Containment Inservice Inspection Plan – IWE was developed to implement applicable requirements of 10 CFR 50.55a. Section 50.55a(g)(4) requires that throughout the service life of nuclear power plants, components which are classified as either Class MC or Class CC pressure retaining components and their integral attachments must meet the requirements, except design and access provisions and preservice examination requirements, set forth in Section XI of the ASME Code and Addenda that are incorporated by reference in §50.55a(b). Furthermore, §50.55a(g)(4)(v)(A) requires that metal containment pressure retaining

18.2 - 6 (13 OCT 2018)

components and their integral attachments must meet the inservice inspection, repair, and replacement requirements applicable to components which are classified as ASME Code Class MC. These requirements are subject to the limitation listed in paragraph (b)(2)(vi) and the modifications listed in paragraphs (b)(2)(viii) and (b)(2)(ix) of §50.55a, to the extent practical within the limitations of design, geometry and materials of construction of the components [Reference 3].

18.2.6 Deleted Per 2005 Update

18.2.7 Crane Inspection Program

Scope – The scope of the Crane Inspection Program includes seismically restrained cranes.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Crane Inspection Program inspects the crane rails and girders for loss of material.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending, the Crane Inspection Program will detect loss of material due to corrosion prior to loss of structure or component intended function.

Monitoring & Trending – The Crane Inspection Program detects aging effects through visual examination of the crane rails and girders. No actions are taken as part of this program to trend inspection or test results. Examination and assessment of the condition of a structure is performed using guidance provided in codes and standards such as:

- ANSI B30.2.0, "Overhead and Gantry Cranes," American National Standard, Section 2-2, Safety Standards for Cableways, Cranes, Derricks, Hoists, Hooks, Jacks and Slings, The American Society of Mechanical Engineers, New York.
- ANSI B30.16, Overhead Hoists (Underhung), The American Society of Mechanical Engineers, New York.
- 29 CFR Chapter XVII, 1910.179, Occupational Safety and Health Administration, Overhead and Gantry Cranes.

Acceptance Criteria – The acceptance criterion is no unacceptable visual indication of loss of material. The acceptance criterion is specified in the crane and hoist inspection procedures.

Corrective Actions & Confirmation Process – Structures and components that do not meet the acceptance criteria are evaluated by engineering for continued service and repaired as required. Structures and components which are deemed unacceptable are documented under the corrective action program. Specific corrective actions and confirmatory actions are implemented in accordance with the corrective action program.

Administrative Controls – The Crane Inspection Program is implemented by plant procedures and through the work management system using model work orders.

18.2.8 Fire Protection Program

Elements of the Fire Protection Program that serve to manage aging are implemented in accordance with Selected Licensee Commitments (See <u>Table 18-1</u>).

18.2.8.1 Sprinkler Branch Lines

The integrity of the sprinkler branch lines is assured by sprinkler flow tests performed by procedure every 18 months. Additionally, fouling of sprinkler branch lines that do not receive flow during periodic testing will be managed. Since these lines do not receive flow, it is believed that they are less susceptible to fouling than the lines that receive flow during testing. To validate this belief, branch lines of a few representative sprinkler systems will be volumetrically examined. Subsequent examinations for the period of extended operation will be determined based on the initial examination results. For McGuire, this volumetric examination will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

Additionally, a sample of sprinklers are either inspected or replaced at 50 years of operation in accordance with NFPA 25.

18.2.8.2 Main Fire Pump Strainer

The Main Fire Pump Strainer Inspection will identify any loss of material of each main fire pump strainer. The raw water flow could result in loss of material. The acceptance criteria for the Main Fire Pump Strainer Inspection is no unacceptable loss of material that could result in a loss of component intended function(s) as determined by engineering. For McGuire, the initial Main Fire Pump Strainer Inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.8.3 Jockey Pump Strainer

The Jockey Pump Strainer Inspection will identify any loss of material of each jockey pump strainer basket. The raw water flow could result in loss of material. The acceptance criteria for the Jockey Pump Strainer Inspection is no unacceptable loss of material that could result in a loss of component intended function(s) as determined by engineering. For McGuire, the initial Jockey Pump Strainer Inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.8.4 Tank and Connected Piping

The purpose of the Tank and Connected Piping Internal Inspection is to manage loss of material of the internal surfaces of the carbon steel fire protection system pressure maintenance accumulator tank and connecting piping and valves supplying high-pressure air. The internal carbon steel surfaces of the tank are coated with an epoxy coating. Continued presence of an intact coating precludes loss of material of the internal surfaces of the carbon steel tank. This preventive maintenance activity inspects the internal coating of the fire protection system pressure maintenance accumulator tank to check the condition of the coating to identify coating failures and the condition of the connecting piping supplying high-pressure air to identify loss of material. The Tank and Connected Piping Internal Inspection is a condition monitoring activity. The initial Tank and Connected Piping Internal Inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2 - 8 (13 OCT 2018)

18.2.8.5 Turbine Building Manual Hose Stations

For the period of extended operation associated with license renewal, all of the hose stations in the Turbine Building within the scope of license renewal will be periodically tested as follows: Every three (3) years, open each hose station valve partially to verify no flow blockage. For McGuire, the Turbine Building Manual Hose Station Flow Test will be implemented following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.9 Flood Barrier Inspection

The Flood Barrier Inspection manages cracking and change in material properties of the elastomeric flood seals to ensure that safety-related equipment is protected from floods and flooding flow paths such that no equipment safety-related intended functions or station safe shutdown capability are adversely impacted. This activity includes periodic visual inspections of the flood seals to identify degradation that could result in loss of the intended function of the flood seals. The Flood Barrier Inspection is a condition monitoring program.

18.2.10 Flow Accelerated Corrosion Program

Scope – For license renewal, the Flow Accelerated Corrosion Program manages loss of material due to flow accelerated corrosion of carbon steel piping, valves, and cavitating venturies within susceptible regions of systems within the scope of the program.

Preventive Actions – Component replacement with a non-susceptible material is initiated as part of the Flow Accelerated Corrosion Program. Opportunities to replace components are evaluated when related modifications are being performed on a susceptible location or when economic benefit is realized.

Parameters Monitored or Inspected – Loss of material due to flow accelerated corrosion of carbon steel components is detected by inspection of susceptible component locations. The Flow Accelerated Corrosion Program inspections focus on piping. These inspections provide symptomatic evidence of loss of material due to flow accelerated corrosion of other components within the susceptible piping runs. Inspection methods include volumetric examinations using ultrasonic testing and radiography to measure component wall thickness. Visual examinations are also employed when access to interior surfaces is allowed by component design.

Detection of Aging Effects – In accordance with the information provided in Monitoring & Trending, the Flow Accelerated Corrosion Program will detect loss of material due to flow accelerated corrosion prior to loss of component intended function.

Monitoring & Trending – The program is consistent with the basic guidelines or recommendations provided by EPRI document NSAC-202L [Reference 5]. Component wall thickness is measured using volumetric examinations such as ultrasonic testing and radiography. Visual examinations are also employed when access to interior surfaces is allowed by component design. Component wall thickness acceptability is judged in accordance with the McGuire component design code of record.

Deleted per 2018 update.

Inspection frequency varies for each location, depending on previous inspection results, calculated rate of material loss, analytical model review, changes in operating or chemistry conditions, pertinent industry events, and plant operating experience. Inspection results are monitored and trended to determine the calculated rate of material loss, to detect changes in operating or chemistry conditions, and schedule for the next inspection.

Acceptance Criteria – Using the inspection results and including a safety margin, the projected component wall thickness at the time of the next plant outage must be greater than the allowable minimum wall thickness under the component design code of record.

Corrective Action & Confirmation Process – If the calculated component wall thickness at the time of the next outage is projected to be less than the allowable minimum wall thickness with safety margin under the component design code of record, then the component will be repaired or replaced prior to system start-up. The as-inspected component can also be justified for continued service through additional detailed engineering analysis.

Specific corrective actions are implemented in accordance with the Flow Accelerated Corrosion Program or the corrective action program. These programs apply to all components within the scope of the Flow Accelerated Corrosion Program.

Administrative Controls – Engineering Program Manuals for McGuire Units 1 and 2 and control the Flow Accelerated Corrosion Program.

18.2.11 Boric Acid Corrosion Control Program

Scope – The scope of the Boric Acid Corrosion Control Program includes electrical, mechanical, and structural components within the scope of license renewal that are located in the Auxiliary and Reactor Buildings where exposure to leaks from borated water systems is possible. Mechanical and structural components constructed of carbon steel, low alloy steel, and other susceptible materials are included within the scope of the program.

Preventive Actions – The programmatic implementation of the Boric Acid Corrosion Control Program is accomplished through visual surveillance and systematic trending of findings. Walkdowns of the Auxiliary and Reactor Buildings are conducted at the start of each refueling outage for the purpose of identifying leakage or evidence of leakage from borated water systems. All active leaks are monitored on an appropriate frequency depending on accessibility and rate of leakage. Furthermore, walkdowns of the Reactor building are conducted at the end of each outage prior to startup.

Parameters Monitored or Inspected – Systems, structures and components within the Auxiliary Building and Reactor Building are inspected for indications of leaks from systems containing borated water. Indications include, but are not limited to, the presence of boron crystals, pitting, and any other degradation beyond normal rust and surface discoloration that may indicate a loss of material.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending below, the Boric Acid Corrosion Control Program will detect boric acid intrusion and/or loss of material due to boric acid wastage prior to loss of structure or component intended function(s).

Monitoring & Trending – Walkdowns of the Auxiliary and Reactor Buildings are conducted at the start of each refueling outage for the purpose of identifying leakage or evidence of leakage from borated water systems. Information on leaks (e.g., equipment, system, leakage type and rate) is captured in the Fluid Leak Management Database to facilitate trending of leakage, if necessary. The Fluid Leak Management Database is periodically reviewed to identify adverse trends and opportunities to improve maintenance, engineering, and operational practices.

Acceptance Criteria – The external surfaces of structures and components within the scope of the Boric Acid Corrosion Control Program, including surroundings (e.g., insulation and floor areas), are expected to be free from pitting and corrosion, abnormal discoloration or accumulated residues that may be evidence of leakage from proximate borated water systems.

18.2 - 10 (13 OCT 2018)

Corrective Action & Confirmation Process – When the programmatic activities described in the Boric Acid Corrosion Control Program lead to detection of an unacceptable condition, the following corrective actions are required:

- Locate leak source and areas of general corrosion.
- Evaluate pressure-retaining components suffering loss of material for continued service, repair or replacement.
- Evaluate other affected components such as supports and other structural members for continued service, repair or replacement.

Specific corrective actions are implemented in accordance with the Boric Acid Corrosion Control Program or the corrective action program. These programs apply to all structures and components within the scope of the Boric Acid Corrosion Control Program.

Administrative System NSD Controls Nuclear Directive 104. Materiel Condition/Housekeeping, Foreign Material Exclusion and Seismic Concerns [Reference 6] establishes high level expectations in the areas of Materiel Condition/Housekeeping, Foregin Material Exclusion and Seismic Concerns at Duke Energy's nuclear plants. The Fluid Leak Management Program is described and controlled by Nuclear Fleet Procedure AD-MN-ALL-0006, Fluid Leak Management [Reference 7]. Guidance for the disposition of boric acid leakage is provided in PD-EG-PWR-1611, Boric Acid Corrosion Control Program (Program Description) and AD-EG-PWR-1611, Boric Acid Corrosion Control Program-Implementation (Administrative Procedure) [References 19 and 25].

18.2.12 Galvanic Susceptibility Inspection

Scope – The scope of the Galvanic Susceptibility Inspection includes galvanic couples exposed to gas, unmonitored treated water, and raw water environments in the following McGuire systems:

- Condenser Circulating Water
- Containment Ventilation Cooling Water
- Diesel Generator Room Sump Pump
- Exterior Fire Protection
- Interior Fire Protection
- Nuclear Service Water
- Waste Gas

The galvanic couples within these systems are carbon steel, cast iron, and ductile iron (anodes) coupled to copper alloys or stainless steel (cathodes) and copper alloys (anodes) coupled to stainless steel (cathode). In galvanic couples, the loss of material occurs in the anodes. Copper alloys are copper, brass, bronze, and copper-nickel.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameter inspected by the Galvanic Susceptibility Inspection is pipe wall thickness, as a measure of loss of material, of carbon steel-stainless steel couples exposed to raw water environments.

Detection of Aging Effects – The Galvanic Susceptibility Inspection is a one-time inspection that will detect the presence and extent of any loss of material due to galvanic corrosion.

Monitoring & Trending - The Galvanic Susceptibility Inspection will inspect a select set of carbon steel-stainless steel couples at McGuire using a volumetric examination technique. Visual examination will also be used should access to internal surfaces become available. The susceptibility and aggressiveness of galvanic corrosion is determined by the material position on the galvanic series and the corrosiveness of the surrounding environment. Since inspection of all couples is impractical, certain locations will be inspected where galvanic corrosion is more likely to occur. These more susceptible locations are where the materials are the farthest apart on the galvanic series surrounded by the most corrosive of the three environments identified above. For the couples noted above, carbon steel and stainless steel are the farthest apart on the galvanic series and raw water is the most corrosive environment. An inspection of selected locations of carbon steel-stainless steel couples in raw water will determine whether loss of material due to galvanic corrosion will be an aging effect of concern for the period of extended operation. A sentinel population of carbon steel-stainless steel couples located in raw water systems will be inspected. Engineering practice at Duke for the past several years has been to use stainless steel as a replacement material in raw water systems. Since engineering practice will continue to use stainless steel as an acceptable substitute material, the size of the sentinel population will be dependent on the number of susceptible locations at the time of the inspection. The results of this inspection will be applied to all galvanic couples in the systems listed in the Scope attribute above.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The acceptance criterion for the Galvanic Susceptibility Inspection is no unacceptable loss of material that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional informations will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Galvanic Susceptibility Inspection will be implemented in accordance with controlled plant procedures.

18.2 - 12 (13 OCT 2018)

18.2.13 Heat Exchanger Activities

18.2.13.1 Component Cooling Heat Exchangers

The purpose of the Performance Testing Activities – Component Cooling Heat Exchangers is to manage fouling of admiralty brass and stainless steel heat exchanger tubes that are exposed to raw water. The Performance Testing Activities – Component Cooling Heat Exchangers is a performance monitoring program that monitors specific component parameters to detect the presence of fouling which can affect the heat transfer function of the component.

The purpose of the Heat Exchanger Preventive Maintenance Activities – Component Cooling is to manage loss of material for parts of the component cooling heat exchanger exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Component Cooling is a condition monitoring program that monitors specific component parameters to detect the presence and assess the extent of material loss that can affect the pressure boundary function. The program is credited with managing loss of material for admiralty brass, carbon steel, and stainless steel materials. Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions.

18.2.13.2 Containment Spray Heat Exchangers

The purpose of the Performance Testing Activities – Containment Spray Heat Exchangers is to manage fouling of stainless steel and titanium heat exchanger tubes that are exposed to raw water. The Performance Testing Activities – Containment Spray Heat Exchangers is a performance monitoring program that monitors specific component parameters to detect the presence of fouling, which can affect the heat transfer function of the component. Heat exchanger 2NSHX0004 has been replaced with a design having raw water on the tube side, which can be readily inspected and cleaned. Accordingly, heat transfer of this heat exchanger is maintained by a regular program of cleaning and inspection, consistent with the requirements of GL 89-13.

The purpose of the Heat Exchanger Preventive Maintenance Activities – Containment Spray is to manage loss of material for parts of the containment spray heat exchanger exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Containment Spray is a condition monitoring program that monitors specific component parameters to detect the presence and assess the extent of material loss that can affect the pressure boundary function. The program is credited with managing loss of material for stainless steel and titanium materials. Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions.

18.2.13.3 Diesel Generator Engine Cooling Water Heat Exchangers

The purpose of the Performance Testing Activities – Diesel Generator Engine Cooling Water Heat Exchangers is to manage fouling of copper and brass heat exchanger tubes that are exposed to raw water. The Performance Testing Activities – Diesel Generator Engine Cooling Water Heat Exchangers is a performance monitoring program that monitors specific component parameters to detect the presence of fouling, which can affect the heat transfer function of the component.

The purpose of the Heat Exchanger Preventive Maintenance Activities – Diesel Generator Engine Cooling Water is to manage loss of material for parts of the diesel generator engine

cooling water heat exchanger exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Diesel Generator Engine Cooling Water is a condition monitoring program that monitors specific component parameters to detect the presence and assess the extent of material loss that can affect the pressure boundary function. The program is credited with managing the subject aging effects for brass and copper heat exchanger tubes. Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions.

18.2.13.4 Control Area Chilled Water

The purpose of the Heat Exchanger Preventive Maintenance Activities – Control Area Chilled Water is to manage fouling and loss of material of parts of the control room area chillers exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Control Area Chilled Water is a condition monitoring program that monitors specific component parameters to detect the presence and assess the extent of material loss that can affect the pressure boundary functions and periodically cleans the chiller tubes to manage fouling. The Heat Exchanger Preventive Maintenance Activities – Control Area Chilled Water is credited for managing loss of material or fouling for admiralty brass, carbon steel, copper-nickel alloy, and stainless steel materials. Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions.

18.2.13.5 Pump Motor Air Handling Units

The purpose of Heat Exchanger Preventive Maintenance Activities – Pump Motor Air Handling Units is to manage loss of material and fouling of copper heat exchanger tubes that are exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Pump Motor Air Handling Units is a new condition monitoring program that will detect the presence and assess the extent of material loss that can affect the pressure boundary function and will periodically clean the heat exchanger tubes to manage fouling. While fouling is managed currently by cleaning, this comprehensive program to manage both loss of material and fouling is a new plant program for license renewal. The scope of Heat Exchanger Preventive Maintenance Activities – Pump Motor Air Handling Units is the tubes in the following McGuire heat exchangers of the Auxiliary Building Ventilation System:

- Containment Spray Pump Motor Air Handling Units
- Residual Heat Removal Pump Motor Air Handling Units
- Fuel Pool Cooling Pump Motor Air Handling Units

Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions. A destructive or non-destructive examination will be performed on one of the twelve cooling units within the scope of the program following issuance of renewed licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.13.6 Pump Oil Coolers

The purpose of Heat Exchanger Preventive Maintenance Activities – Pump Oil Coolers is to manage loss of material and fouling of copper-nickel heat exchanger tubes that are exposed to raw water. The Heat Exchanger Preventive Maintenance Activities – Pump Oil Coolers is a new condition monitoring program that monitors specific component parameters to detect the presence and assess the extent of material loss that can affect the pressure boundary function

18.2 - 14 (13 OCT 2018)

and periodically cleans the heat exchanger tubes to manage fouling. While fouling is managed currently by periodic cleaning, this comprehensive program to manage both loss of material and fouling is a new plant program for license renewal. The scope of Heat Exchanger Preventive Maintenance Activities – Pump Oil Coolers is the tubes in the following McGuire heat exchangers of the Nuclear Service Water System:

- Centrifugal Charging Pump Bearing Oil Cooler
- Centrifugal Charging Pump Speed Reducer Oil Cooler
- Reciprocating Charging Pump Bearing Oil Cooler
- Reciprocating Charging Pump Fluid Drive Oil Cooler
- Safety Injection Pump Bearing Oil Cooler

Criteria such as ASME Code requirements, additional inspection results, and operating experience may be used to assess the severity of the degradation and the need for corrective actions. A non-destructive examination will be performed on 100% of the tubes of one of the sixteen coolers within the scope of the program following issuance of renewed licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.2.14 Ice Condenser Engineering Inspection

The Ice Condenser Engineering Inspection manages loss of material due to corrosion of the steel structural components in the ice condenser environment. The Ice Condenser Engineering Inspection includes periodic visual inspections of the ice condenser upper plenum, lower plenum, and top deck blankets to identify degradation that could impact the ability of the ice condenser to perform its intended function. The Ice Condenser Engineering Inspection is a condition monitoring program.

18.2.15 Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program

Scope – The scope of the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program includes inaccessible non-EQ medium-voltage cables within the scope of 10 CFR 54.4 that are exposed to significant voltage and to standing water (for any period of time).

Key Definitions and Assumptions: Inaccessible cables are those that are not able to be approached and viewed easily, such as in conduits or cable trenches; all others are accessible. A cable that has a portion of the cable routing that is inaccessible is an inaccessible cable. Non-EQ means not subject to 10 CFR 50.49 Environmental Qualification requirements. Medium-voltage cables are those applied at a system voltage greater than 2kV. Significant voltage is defined as exposure to system voltage for more than twenty-five percent of the time. Cables that are direct buried, run in horizontally-run buried conduit or run in outside cable trenches are assumed to be exposed to standing water.

Preventive Actions – Preventive actions are not included in the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program.

Parameters Monitored or Inspected – Medium-voltage cables within the scope of the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program are tested to provide an indication of the condition of the conductor insulation. The specific type of test performed will be determined before each test and will be a proven test for providing an indication of the condition of the conductor insulation related to aging effects caused by moisture and voltage stress. Each test performed for a cable may be a different type of test.

Detection of Aging Effects – Medium-voltage cables within the scope of the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program are tested at least once every 10 years. This is an adequate frequency to preclude failures of the conductor insulation.

Monitoring & Trending – Trending actions are not included in the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program.

The first test of the Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

Acceptance Criteria – The acceptance criteria for each test is defined by the specific type of test performed and the specific cable tested.

Corrective Actions & Confirmation Process – Further investigation through the corrective action program is performed when the acceptance criteria are not met. When an unacceptable condition or situation is identified, a determination is made as to whether the same condition or situation is applicable to other medium-voltage cables within the scope of this program. Confirmatory actions, as needed, are implemented as part of the corrective action process.

Administrative Controls – The Inaccessible Non-EQ Medium-Voltage Cables Aging Management Program is controlled by plant procedures.

18.2.16 Inservice Inspection Plan

The McGuire Inservice Inspection Plan, implements the requirements of 10 CFR 50.55a for Class 1, 2, and 3 components and Class 1, 2, 3, and MC component supports. The examinations are performed to the extent practicable within the limitations of design, geometry and materials of construction of the component. The period of extended operation for McGuire will contain the 5th and 6th ten-year inservice inspection intervals.

The Inservice Inspection Plan includes the following inspections and activities:

- ASME Section XI, Subsection IWB and IWC (secondary side of steam generators) Inspections
- ASME Section XI, Subsection IWF Inspections
- McGuire Unit 1 Cold Leg Elbow
- Small Bore Piping
- A VT-1 examination of the reactor vessel internals clevis insert fasteners will be performed
 in lieu of VT-3 examination currently required by ASME Section XI. (Note Duke has
 submitted a revision to the McGuire Reactor Vessel Internals Inspection Program based on
 the requirements of MRP-227-A [References 28 and 29]. Once this submittal is approved by
 the NRC, inspection of reactor vessel internals clevis insert fasteners will be performed in
 compliance with this updated program, and the UFSAR description of the McGuire Inservice
 Inspection Plan will be updated accordingly.

18.2.16.1 McGuire Unit 1 Cold Leg Elbow

Reduction in fracture toughness due to thermal embrittlement can be an aging effect for certain types of cast austenitic stainless steel in locations where temperatures continuously exceed 482°F. In a May 19, 2000 letter to NEI, Christopher I. Grimes, Chief License Renewal and Standardization Branch clarified that not all cast austenitic stainless steels are subject to thermal embrittlement [Reference 8]. The piping components and reactor coolant pumps

18.2 - 16 (13 OCT 2018)

fabricated from cast austenitic stainless steel were evaluated using the acceptance criteria set forth in the above letter. For those components requiring evaluation, only the McGuire 1, 27 ½-inch ID Loop B cold leg elbow exceeds the NRC-established threshold and is susceptible to thermal embrittlement which requires aging management for license renewal.

The McGuire Unit 1 27 ½-inch ID Loop B cold leg elbow is fabricated from SA-351 CF8, was statically cast, and contains no niobium. The elbow is the only piping item that exceeds the delta ferrite screening criterion, therefore, reduction of fracture toughness by thermal embrittlement is an aging effect requiring aging management for this elbow. The ferrite number is calculated at 22% using Hull's equivalent factors.

An augmented inspection with elements from Code Case N-481 will be used to manage reduction of fracture toughness by thermal embrittlement for the affected elbow during the period of extended operation. The inspection will be added to the Inservice Inspection Plan:

- 1. A VT-2 visual examinations will be performed each outage of the exterior of the affected elbow during the system leakage test.
- 2. A VT-1 visual examination will be performed of the external surfaces of the welded joints that connect the affected elbow to adjacent piping segments prior to entering the period of extended operation. VT-1 inspections of the welded joints will be repeated in the fifth and sixth inspection intervals.

A detailed evaluation to demonstrate the safety and serviceability of the elbow has been performed. This evaluation concluded that, for the maximum predicted fatigue crack growth for McGuire Unit 1 Loop 2 cold leg elbow, the postulated flaw will not grow beyond the tolerable flaw size after 60-years of crack growth [Reference 27].

18.2.16.2 Small Bore Piping

Small bore piping is defined as piping less than 4-inch NPS. Cracking has been identified as an aging effect requiring programmatic management for Reactor Coolant System small bore piping for the period of extended operation.

A set of susceptible small bore piping locations will be volumetrically examined on each unit. Locations to be examined will be determined based on consideration of damage mechanisms. Damage mechanisms to be considered include fatigue, stress corrosion, and flow assisted corrosion/flow wastage. Cracking due to thermal fatigue resulting from stratification of fluids and turbulent penetration flow is an aging effect that will be addressed.

For McGuire, Small Bore Piping Examinations will be performed during each inservice inspection interval during the period of extended operation following issuance of renewed operating licenses for McGuire Nuclear Station.

18.2.17 Inspection Program For Civil Engineering Structures and Components

The Inspection Program for Civil Engineering Structures and Components is intended to meet the requirements of 10 CFR 50.65, Requirements for monitoring the effectiveness of maintenance at nuclear power plants (the Maintenance Rule). This program:

 monitors and assesses mechanical components, civil structures and components and their condition in order to provide reasonable assurance that they are capable of performing their intended functions in accordance with the current licensing basis;

(2) includes nuclear safety-related structures which enclose, support, or protect nuclear safety-related systems and components, non-safety related structures whose failure may prevent a nuclear safety-related system or component from fulfilling its intended function, and non safety-related structures which support equipment relied on during certain regulated events.

NEI 96-03, Industry Guideline for Monitoring the Condition of Structures at Nuclear Power Plants, has been used as guidance in the preparation of the Inspection Program for Civil Engineering Structures and Components. Examination and assessment of the condition of a structure is performed using guidance provided in codes and standards such as:

- NRC Regulatory Guide 1.127, Inspection of Water-Control Structures Associated with Nuclear Power Plants
- ACI 349.3, Evaluation of Existing Nuclear Safety-Related Concrete Structures

Specific corrective actions are implemented in accordance with the Corrective Action Program. The Corrective Action Program applies to all structures and components within the scope of the Inspection Program for Civil Engineering Structures and Components.

18.2.18 Liquid Waste System Inspection

Scope – The scope of the Liquid Waste System Inspection is cast iron, stainless steel and carbon steel components exposed to unmonitored treated and borated water environments or raw water environments in the following McGuire systems:

- Component Cooling System The WL Evaporator equipment is drained and out of service.
 Although the equipment is still in place it cannot be put back in service without extensive maintenance. Should the WL Evaporator equipment be placed back in service, the associated portions of the Component Cooling System will be subject to appropriate inspections.
- Liquid Waste Recycle System stainless steel components exposed to an unmonitored borated water environment;
- Liquid Waste System piping draining the Control Room Air Handling Units, up to the point the piping exits the Control Building

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameters inspected by the Liquid Waste System Inspection are wall thickness, as a measure of loss of material, and visible signs of cracking and loss of material.

Detection of Aging Effects – The Liquid Waste System Inspection will detect the presence and extent of loss of material due to crevice and pitting corrosion and cracking due to stress corrosion/intergranular attack in stainless steel components exposed to unmonitored borated and treated water environments.

In addition, this activity will detect the presence and extent of loss of material due to crevice, pitting, microbiologically influenced corrosion and cracking due to stress corrosion in stainless steel components exposed to raw water environments.

Finally, this activity will detect the presence and extent of loss of material due to crevice, general, pitting, and microbiologically influenced corrosion in carbon steel and cast iron components exposed to raw water environments.

18.2 - 18 (13 OCT 2018)

Monitoring & Trending – The Liquid Waste System Inspection will use a volumetric technique to inspect the material/environment combinations located in each system listed above. As an alternative, visual examination will be used should access to internal surfaces become available. Selection of the specific areas for inspection for the system material/environment combinations will be the responsibility of the site's program owner.

Component Cooling System

The WL Evaporator equipment is drained and out of service. Therefore, the associated heat exchangers are beyond the scope of license renewal. Should the WL Evaporator equipment be placed back in service, three of the four heat exchangers would be within the scope of license renewal and one of the required heat exchangers would then be inspected. The inspection results would be applied to the other three stainless steel heat exchanger components exposed to unmonitored treated water environments.

Liquid Waste Recycle System

At McGuire, the Liquid Waste System Inspection will use a combination of volumetric and visual examination of a sample population of subject components. For stainless steel components exposed to unmonitored borated water environments, the sample population will include components located in stagnant or low flow areas near collection tanks where contaminants are likely to collect and concentrate to create an environment more corrosive than the general system borated water environments. The inspection results will be applied to the stainless steel components in the unmonitored borated water environments.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Liquid Waste System Drain Lines from Control Room Air Handling Units

The Liquid Waste System Inspection will use a combination of volumetric and visual examination at sample locations on the subject drain lines. Inspection locations will include the loop seal piping where contaminants are likely to collect and concentrate to create an environment more conducive to corrosion, and other locations deemed to be representative / bounding. Given the limited extent of the piping in question, it is considered that no more than two or three inspection locations will be needed to characterize its material condition. Results from localized piping inspections will be applied to the balance of piping, as appropriate.

Acceptance Criteria – The acceptance criterion for the Liquid Waste System Inspection is no unacceptable loss of material and cracking of stainless steel components and loss of material of carbon steel and cast iron components that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, then no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further

engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Liquid Waste System Inspection will be implemented in accordance with controlled plant procedures.

18.2.19 Non-EQ Insulated Cables and Connections Aging Management Program

Scope – The scope of the Non-EQ Insulated Cables and Connections Aging Management Program includes accessible (able to be approached and viewed easily) non-EQ (not subject to 10 CFR 50.49 Environmental Qualification requirements) insulated electrical cables and connections (power, instrumentation and control applications) installed in the Reactor Buildings, Auxiliary Building and Turbine Building. The non-EQ insulated cables and connections within the scope of this program includes non-EQ cables used in low-level signal applications that are sensitive to reduction in insulation resistance such as radiation monitoring and nuclear instrumentation.

Preventive Actions – No actions are taken as part of the Non-EQ Insulated Cables and Connections Aging Management Program to prevent or mitigate aging degradation.

Parameters Monitored or Inspected – Accessible non-EQ insulated cables and connections installed in the Reactor Buildings, Auxiliary Building and Turbine Building are visually inspected per the Non-EQ Insulated Cables and Connections Aging Management Program for cable and connection jacket surface anomalies such as embrittlement, discoloration, cracking or surface contamination. Cable and connection jacket surface anomalies are precursor indications of conductor insulation aging degradation from heat or radiation in the presence of oxygen and may indicate the existence of an adverse localized equipment environment. An adverse localized equipment environment is a condition in a limited plant area that is significantly more severe than the specified service condition for the insulated cable or connection.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending, the Non-EQ Insulated Cables and Connections Aging Management Program will detect aging effects for accessible non-EQ insulated cables and connections caused by heat and radiation prior to loss of intended function.

Monitoring & Trending – Accessible non-EQ insulated cables and connections installed in the Reactor Buildings, Auxiliary Building and Turbine Building are visually inspected per the Non-EQ Insulated Cables and Connections Aging Management Program at least once every 10 years. EPRI TR-109619, Guideline for the Management of Adverse Localized Equipment Environments [Reference 9], is used as guidance in performing the inspections.

Trending actions are not required as part of the Non-EQ Insulated Cables and Connections Aging Management Program.

For McGuire, the first inspection per the Non-EQ Insulated Cables and Connections Aging Management Program will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

Acceptance Criteria – The acceptance criterion for inspections performed per the Non-EQ Insulated Cables and Connections Aging Management Program is no unacceptable visual indications of cable and connection jacket surface anomalies that suggest conductor insulation degradation exists, as determined by engineering evaluation. An unacceptable indication is

18.2 - 20 (13 OCT 2018)

defined as a noted condition or situation that, if left unmanaged, could lead to a loss of the intended function.

Corrective Actions & Confirmation Process – Further investigation through the corrective action program is performed when the acceptance criteria are not met. When an adverse localized equipment environment is identified for a cable or connection, a determination is made as to whether the same condition or situation is applicable to other accessible or inaccessible cables or connections. Corrective actions may include, but are not limited to, testing, shielding or otherwise changing the environment, relocation or replacement of the affected cable or connection. Corrective actions should consider the potential for moisture in the area of degradation. Confirmatory actions, as needed, are implemented as part of the corrective action program.

Administrative Controls – The Non-EQ Insulated Cables and Connections Aging Management Program will be controlled by an engineering support program.

18.2.20 Pressurizer Spray Head Examination

The McGuire Nuclear Station transition to a fire protection program based on NFPA 805 removed the licensing requirement to attain cold shutdown within a prescribed time frame in the event of a fire, instead requiring the plants to attain and maintain "safe and stable conditions", which can be achieved at hot standby. Accordingly, the pressurizer spray heads are no longer functionally required for compliance with fire protection regulations. Since the pressurizer spray heads are not credited in other regulated events in 10 CFR 54.4(a)(3), or for any design basis events, and have no potential adverse interactions with safety related SSCs or safety functions, it follows that they no longer perform an intended function, and therefore are no longer within the scope of license renewal. Since the pressurizer spray heads are no longer in the scope of license renewal, there are no ongoing aging management requirements under 10 CFR 54, and the Pressurizer Spray Head Examination activity has been deleted.

18.2.21 Preventive Maintenance Activities

18.2.21.1 Condenser Circulating Water System Internal Coating Inspection

The Preventive Maintenance Activities – Condenser Circulating Water System Internal Coating Inspection manages loss of material and cracking that could lead to loss of pressure boundary function. The program has two purposes for license renewal. The first purpose of this inspection is to manage loss of material of the internal surfaces of the large diameter intake and discharge piping in the Condenser Circulating Water System. The internal carbon steel surfaces of the large diameter intake and discharge piping in the Condenser Circulating Water System are coated to prevent the raw water environment from contacting the internal surfaces. Continued presence of an intact coating precludes loss of material of the internal surfaces of the carbon steel intake and discharge piping. This inspection will periodically check the condition of the coating and look for coating degradation.

The second purpose of the Preventive Maintenance Activities – Condenser Circulating Water System Internal Coating Inspection is to manage loss of material and cracking of the external surfaces of components in the underground environment by providing symptomatic evidence of the condition of the piping external surfaces. The external surfaces are coated with a coal tar epoxy that prevents the underground environment from contacting the external surfaces. Continued presence of an intact coating precludes loss of material and cracking of components whose external surfaces are exposed to the underground environment. Inspection of the

internal surfaces will provide symptomatic evidence of the condition of the external surfaces of buried components.

18.2.21.2 Refueling Water Storage Tank Internal Coating Inspection

The purpose of the Preventive Maintenance Activities – Refueling Water Storage Tank Internal Coating Inspection is to manage loss of material of the internal surfaces of the carbon steel refueling water storage tanks. The internal carbon steel surfaces of the refueling water storage tank are coated with a phenolic epoxy paint that prevents borated water and air from contacting the internal surfaces. Continued presence of an intact coating precludes loss of material of the internal surfaces of the carbon steel refueling water storage tank that could lead to loss of pressure boundary function. This preventive maintenance activity inspects the internal coating of the refueling water storage tanks to check the condition of the coating and to identify coating failures. The Preventive Maintenance Activities – Refueling Water Storage Tank Internal Coating Inspection is a condition monitoring program.

18.2.21.3 Nuclear Service Water System Strainer Elements Inspection

The purpose of the Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is to manage loss of material / fouling of the stainless steel Nuclear Service Water System strainer elements. This preventive maintenance activity periodically inspects the strainer elements tanks to verify physical integrity is not degraded by age related degradation and fouling is not occurring. The Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is a condition monitoring program.

18.2.21.4 Auxiliary Feedwater Storage Tank Internal Coating Inspection

The purpose of the Preventive Maintenance Activities - Auxiliary Feedwater Storage Tank Internal Coating Inspection is to manage loss of material of the internal surfaces of the carbon steel Auxiliary Feedwater Storage Tanks. The internal carbon steel surfaces of the Auxiliary Feedwater Storage Tanks are coated with an epoxy paint that prevents air from contacting the internal surfaces. Continued presence of an intact coating precludes loss of material of the internal surfaces of the carbon steel Auxiliary Feedwater Storage Tanks that could lead to loss of pressure boundary function. This preventive maintenance activity inspects the internal coating of the Auxiliary Feedwater Storage Tanks to check the condition of the coating and to identify coating failures. The Preventive Maintenance Activities - Auxiliary Feedwater Storage Tank Internal Coating Inspection is a condition monitoring program.

18.2.22 Reactor Vessel Integrity Program

Scope – The scope of the Reactor Vessel Integrity Program includes all reactor vessel beltline materials as defined by 10 CFR 50.61(a)(3).

Preventive Actions - No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Reactor Vessel Integrity Program monitors reduction of fracture toughness of reactor vessel beltline materials by irradiation embrittlement.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending the Reactor Vessel Integrity Program will detect the effects of reduction of fracture toughness prior to loss of the reactor vessel intended functions.

18.2 - 22 (13 OCT 2018)

Monitoring & Trending – Each reactor vessel had six specimen capsules located in guide baskets welded to the outside of the neutron shield pads and were positioned directly opposite the center portion of the core. McGuire Unit 1 capsules contain reactor vessel steel specimens oriented both parallel and normal (longitudinal and transverse) to the principal rolling direction of the limiting shell plate located in the core region. McGuire Unit 2 reactor vessel specimens are oriented both parallel and normal to the major working direction of the limiting core region shell forging. Associated weld metal and weld heat affected zone metal specimens are also included in each capsule. Capsule withdrawal schedules for the McGuire Units are provided in Table 5-33. The limiting weld material is not contained in a McGuire Unit 1 surveillance capsule, but is contained in a sister plant surveillance capsule and integrated into the McGuire Unit 1 surveillance program.

Surveillance capsule specimens are tested in accordance with approved industry standards. The test results from the encapsulated specimens represent the actual behavior of the material in the vessel. Data from testing of the surveillance capsule specimens are used to analyze Pressurized Thermal Shock, Upper Shelf Energy and to generate pressure-temperature curves for future operation of each unit. Additional information that is used to perform these analyses is as follows:

Fluence Received by the Specimens – Dosimeters such as Ni, Cu, Fe, Co-Al, shielded Co-Al, Cd shielded Np-237 and Cd shielded U-238 are contained in the capsules. The dosimeters permit evaluation of the flux seen by the specimens. In addition, thermal monitors made of low melting point alloys are included to monitor the temperature of the specimens. A description of the methodology used to evaluate fluence received by the specimens using dosimetry measurements and fluence calculations, assuming the same neutron spectrum at the specimens and the vessel inner wall, is described in McGuire UFSAR, Sections 5.4.3.7.1 and 5.4.3.7.2 [Reference 10]. The correlations have indicated good agreement and form the bases for ensuring that the calculations of the integrated flux at the vessel wall are conservative WCAP-14040 [Reference 11]. Projections of neutron exposure at the vessel wall to end of life are based on the assumption that irradiation data from three previous fuel cycles are representative of all future fuel cycles.

Effective Full Power Years – The effective full power years of plant operation are based on reactor vessel incore power readings. The Operator Aid Computer collects incore instrument data and reactor engineers determine effective full power year values by comparing burnup to the thermal power to calculated burnup. This data is collected continuously for all four units.

Cavity Dosimetry –The cavity dosimetry provides a method for verification of fast neutron exposure distribution within the reactor vessel beltline region and establishes a mechanism to enable long term monitoring of neutron exposure once all of the capsules have been removed from the vessel.

Monitoring of Plant Changes – Actions will be taken to ensure that the capsule data tested during the current term of operation remains valid during the period of extended operation by monitoring changes to design and operation such as the neutron spectra relative to the conditions of existing capsule data or the reactor vessel inlet temperature. These types of changes will be assessed and the applicable analyses will be updated as necessary.

Acceptance Criteria – The acceptance criteria for the Reactor Vessel Integrity Program are:

 Charpy specimens removed from the surveillance capsules will be laboratory tested to ensure reactor vessel fracture toughness properties exhibit upper shelf energy greater than 50 ft-lbs.

- Calculations of reference temperature for pressurized thermal shock (RT_{PTS}) must be below the screening criteria of 270°F for plates, forgings, and longitudinal welds and 300°F for circumferential welds, respectively.
- Acceptable pressure-temperature curves for heatup and cooldown of the units must be maintained in Technical Specifications
- Capsules included in the Reactor Vessel Integrity Program must be withdrawn as scheduled.

Corrective Action & Confirmation Process – Specific corrective action and confirmation will be implemented as follows:

- If the Charpy upper-shelf energy drops below 50 ft-lbs, it must be demonstrated that
 margins of safety against fracture are equivalent to those of Appendix G of ASME Section
 XI.
- If the projected reference temperature exceeds the screening criteria, licensees are required to submit an analysis and/or schedule for such flux reduction programs as are reasonably practicable to avoid exceeding the screening criteria. If no reasonably practicable flux reduction program will avoid exceeding the screening criteria, licensees shall submit a safety analysis to determine what actions are necessary to prevent potential failure of the reactor vessel if continued operation beyond the screening criteria is allowed.
- If the pressure-temperature curves are not maintained current, actions are taken as required by Technical Specifications.
- If a capsule is not withdrawn as scheduled, the NRC will be notified and a revised withdrawal schedule will be updated and submitted to the NRC.

Administrative Controls – The administrative controls that apply to the Reactor Vessel Integrity Program are:

- Submittal of reports required by 10 CFR Part 50 Appendix H which include a capsule withdrawal schedule, a summary report of capsule withdrawal and test results within one year of capsule withdrawal and if needed a date when a Technical Specification change will be made to change pressure-temperature limits or procedures to meet pressuretemperature limits.
- RT_{PTS} analysis will be updated as required by 10 CFR 50.61.
- Pressure-Temperature curves are maintained in the plant Technical Specifications.
- As surveillance capsules are withdrawn and either tested or stored, documentation will be updated accordingly and submitted to the NRC in accordance with 10 CFR 50, Appendix G.

18.2.23 Reactor Vessel Internals Inspection

Note: The Reactor Vessel Internals Inspection affects both McGuire and Catawba and is being provided in each station's UFSAR to provide added assurance that both stations are aware of the commitment to perform the examination, initially at McGuire.

Reactor Vessel Internals Inspection commitments arising from license renewal were developed based on industry knowledge available at that time. These commitments included an allowance that permits Duke Energy to modify or eliminate these inspections based on industry data or other evaluations if plant specific justification is provided to demonstrate the basis for the modification or elimination. Since that time, industry led efforts have been in progress by the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) Reactor Internals

18.2 - 24 (13 OCT 2018)

Issues Task Group and, later, by the MRP Reactor Internals Focus Group (RI-FG). The EPRI MRP RI-FG has developed MRP-227, Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227- Rev. 0), which was submitted to the NRC for approval by EPRI letter dated January 12, 2009, and approved by the NRC as MRP-227-A in December of 2011. By letter dated December 13, 2017 [Reference 28], Duke Energy submitted the Aging Management Program and Inspection Plan for the McGuire Nuclear Station Units 1 and 2 Reactor Vessel Internals to implement MRP-227-A. This submittal includes the information identified in Section 3.5.1 of the NRC Safety Evaluation on MRP-227, Revision 0, and therefore meets the requirement for application of MRP-227-A as a strategy for managing age-related material degradation in reactor vessel internal components. Once this document is approved by the NRC, the UFSAR description of the McGuire Reactor Vessel Internals Inspection will be updated as required.

Scope – The scope of the Reactor Vessel Internals Inspection consists of the reactor vessel internals stainless steel items that may be separated into three groups – (1) items comprised of plates, forgings, and welds, (2) bolting (baffle-to-baffle, baffle-to-former, and barrel-to-former), and (3) items fabricated from cast austenitic stainless steel (CASS).

Preventive Actions – No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Reactor Vessel Internals Inspection monitors the following parameters:

Visual inspections will be performed for items comprised of plates, forgings, and welds to detect cracking which could be initiated by irradiation assisted stress corrosion, enhanced by reduction of fracture toughness due to irradiation embrittlement.

Volumetric inspections will be performed for bolting to detect cracking due to irradiation assisted stress corrosion enhanced by reduction of fracture toughness due to irradiation embrittlement, and loss of preload by stress relaxation due to irradiation creep.

For items fabricated from CASS, crack propagation of existing flaws caused by reduction of fracture toughness by thermal embrittlement and irradiation embrittlement will be monitored.

Dimensional changes due to void swelling will be monitored in lead components for items comprised of plates, forgings, welds, and bolting.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending, the Reactor Vessel Internals Inspection will detect cracking, reduction of fracture toughness, dimensional changes, and loss of preload prior to loss of the reactor vessel internals intended function(s).

Monitoring & Trending – The Reactor Vessel Internals Inspection includes the following inspection activities:

For plates, forgings, and welds, a visual inspection will be performed to detect the effects of cracking by irradiation assisted stress corrosion cracking enhanced by reduction of fracture toughness by irradiation embrittlement. The visual inspection method selected for the inspection of RV internal plates, forging, and welds will be sufficient to detect cracks in the components prior to any growth to a size that is greater than the critical crack size (critical crack length) for the material.

For baffle bolts, a volumetric inspection will be performed at McGuire Unit 1 to assess cracking.

For items fabricated from CASS, an analytical approach to assess the effect of reduction of fracture toughness on the applicable reactor vessel internals items will be performed. The specific inspection method will depend on the results of these analyses.

McGuire Unit 1 will be inspected in the fifth inservice inspection interval. McGuire Unit 2 will be inspected early in the sixth inservice interval (prior to the last year of the 20-year period of extended operation).

With respect to dimensional changes due to void swelling, McGuire will rely on the results of inspections to be performed at Oconee. Items comprised of plates, forgings, and welds will be inspected at all three Oconee Units to assess the effects of void swelling. Activities are in progress to develop and qualify the inspection method. The results of the Oconee inspections will be used to determine if change in dimensions due to void swelling is a concern for the reactor vessel internals of McGuire Unit 1 and McGuire Unit 2, and if additional inspections are necessary.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The Reactor Vessel Internals Inspection includes the following acceptance criteria:

For the items comprised of plates, forgings, and welds, critical crack size will be determined by analysis and submitted for review and approval to the NRC staff prior to the inspection.

For baffle bolts, any detectable crack indication is unacceptable for a particular baffle bolt. The number of baffle bolts needed to be intact and their locations will be determined by analysis.

For items fabricated from CASS, critical crack size will be determined by analysis. Acceptance criteria for all aging effects will be developed and submitted for review and approval to the NRC staff prior to the inspection.

For items subject to dimensional changes due to void swelling, activities are in progress to develop and qualify the inspection method. Acceptance criteria will be developed and submitted for review and approval to the NRC staff prior to the inspection.

Corrective Action & Confirmation Process – If the results of the inspection are not acceptable, then actions will be taken to repair or replace the affected items or to determine by analysis the acceptability of the items. Specific corrective actions and confirmation are implemented in accordance with the corrective action program.

Administrative Controls – The Reactor Vessel Internals Inspection will be implemented by plant procedures and the work management system.

18.2.24 Selective Leaching Inspection

Scope – The scope of the Selective Leaching Inspection is the brass and cast iron components exposed to raw water in the following McGuire systems:

- Conventional Wastewater Treatment
- Diesel Generator Room Sump Pump
- Exterior Fire Protection
- Groundwater Drainage
- Interior Fire Protection

18.2 - 26 (13 OCT 2018)

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameter inspected by the Selective Leaching Inspection is the hardness of the wetted surface of cast iron pump casings and brass valve bodies. Selective leaching (a form of galvanic corrosion) is the dissolution of one metal in an alloy at the metal surface which leaves a weakened network of corrosion products that is revealed by a Brinnell Hardness check or equivalent as reduction in material hardness.

Detection of Aging Effects – The Selective Leaching Inspection is a one-time inspection that will detect the presence and extent of any loss of material due to selective leaching.

Monitoring & Trending – Of the cast iron components in the systems above, the Selective Leaching Inspection will perform a Brinnell Hardness Test or equivalent test on one cast iron pump casing in the Exterior Fire Protection System at McGuire. The Brinnell Hardness Test or equivalent test is most easily performed on a pump casing and will be indicative of all cast iron components in the systems listed above. The Exterior Fire Protection System contains a raw water environment that is susceptible to selective leaching and will be bounding for the other environments in the other systems. If no parameters are known that would distinguish among the pump casings, one of the three cast iron pump casings in the Exterior Fire Protection System at McGuire will be examined based on accessibility and operational concerns. The results of this inspection will be applied to the other cast iron components exposed to raw water environments in the systems listed above.

The Selective Leaching Inspection will also perform a Brinnell Hardness Test or equivalent test on a sample of brass valves at McGuire in the Interior Fire Protection System. Valves selected for inspection should be continuously exposed to stagnant or low flow raw water environments. If no parameters are known that would distinguish the susceptible locations at McGuire, a select set of susceptible locations will be examined based on accessibility, operational, and radiological concerns. The results of this inspection will be applied to the brass components exposed to raw water environments in the systems listed above.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this program to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The acceptance criteria for the Selective Leaching Inspection is no unacceptable loss of material due to selective leaching that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effect will not cause a loss of the component intended function(s) under any current licensing basis design conditions for the period of extended operation, no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the applicable aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the

period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Selective Leaching Inspection will be implemented in accordance with controlled plant procedures.

18.2.25 Service Water Piping Corrosion Program

Scope – For license renewal, the Service Water Piping Corrosion Program is credited with managing loss of material for components in the following systems:

- Containment Ventilation Cooling Water
- Exterior Fire Protection
- Condenser Circulating Water
- Interior Fire Protection
- Nuclear Service Water

Additionally, the Service Water Piping Corrosion Program is credited with managing loss of material for heat exchanger sub-components in the following systems:

- Containment Spray
- Diesel Generator Cooling Water
- Control Area Chilled Water

Preventive Actions – No actions are taken as part of the Service Water Piping Corrosion Program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The Service Water Piping Corrosion Program inspections are focused on carbon steel piping components exposed to raw water. Among the installed component materials, carbon steel is the more susceptible to general loss of material and serves as a leading indicator of the general material condition of the system components. Inspection of carbon steel piping provides symptomatic evidence of loss of material of other components and other materials exposed to raw water. The specific parameter monitored is pipe wall thickness as an indicator of loss of material.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending below, the Service Water Piping Corrosion Program will detect the more uniform loss of material such as that due to general corrosion as well as particulate erosion that may occur in areas of higher flow velocity. The program will also detect loss of material due to localized corrosion due to crevice, pitting, and microbiologically-influenced corrosion (MIC).

Monitoring & Trending – The Service Water Piping Corrosion Program manages all of the system components within license renewal that are susceptible to the various corrosion mechanisms and is not focused on individual components within each specific system. The intent of the Service Water Piping Corrosion Program is to inspect a number of locations with conditions that are characteristic of the conditions found throughout the raw water systems above. The results of these inspection locations would then be applied to similar locations throughout all the raw water systems within the scope of license renewal. This characteristic-based approach recognizes the commonality among the component materials of construction and the environment to which they are exposed. Inspection results are used to determine and expand, as necessary, the number of inspection locations in a given characteristic set.

18.2 - 28 (13 OCT 2018)

Monitoring under the Service Water Piping Corrosion Program focuses on carbon steel pipe. For components constructed of cast and ductile iron, galvanized steel and copper alloys, experience has shown that loss of material for these components will occur at a rate somewhat less than the carbon steel pipe. Therefore, the results of the carbon steel pipe inspections will provide a leading indicator of the condition of these materials.

For the carbon and galvanized steel, cast and ductile iron, and copper alloy component materials that can experience loss of material from both uniform and localized mechanisms, it is the gross material loss due to uniform mechanisms that is of primary concern under the Service Water Piping Corrosion Program. Gross wall loss can lead to structural instability concerns and could directly impact component intended function. Monitoring for degradation, including general and localized corrosion, is accomplished using ultrasonic test techniques. Monitoring for general and localized corrosion is supplemented by visual inspections of the inside of the piping if access to the interior surfaces is allowed such as during plant modifications. Monitoring of localized corrosion is additionally supplemented by exterior piping inspections that reveal pinhole leaks caused by localized corrosion. Additional detail concerning exterior piping inspections is provided below.

When pipe wall thickness is determined by volumetric wall thickness measurements using ultrasonic testing, several measurements are taken around the circumference of the piping. These measurements are then assessed in relation to the specific acceptance criteria for that location. Because the phenomena is slow-acting, inspection frequency varies for each location. The frequency of re-inspection depends on previous inspection results, calculated rate of material loss, piping analysis review, pertinent industry events, and plant operating experience. Refer to Acceptance Criteria for additional details. Component results are catalogued, and future inspection or component replacement schedules are determined as a part of the program.

Supplemental visual inspection detect localized corrosion due to pitting and microbiologically-influenced corrosion (MIC) that reveals itself through pinhole leaks in the piping components. The geometry of the pinholes means that they are not a structural integrity concern. Further, these pinhole leaks cannot individually lead to loss of the component intended function, since sufficient flow at prescribed pressures can still be provided by the system. These localized concerns will lead to structural integrity concerns only when a significant number of pinholes are present. When indications of a pinhole are found, volumetric wall thickness measurements are taken in the area. A trend of indications of through-wall leaks due to pitting corrosion or MIC provides evidence when localized corrosion may become a structural integrity concern and will trigger corrective actions by the Service Water Piping Corrosion Program. Methods in place to identify incidents of through-wall leaks are system walkdowns, operator rounds, system testing, and maintenance activities.

While the emphasis of the Service Water Piping Corrosion Program remains on potential areas of severe degradation, including general and localized corrosion, the management of loss of material due to localized corrosion of component materials exposed to raw water is supplemented by the monitoring and trending of relevant plant operating experience of non-structural, through-wall leaks identified during various plant activities.

Acceptance Criteria – The Service Water Piping Corrosion Program manages loss of material for nuclear safety related and non-nuclear safety related components.

For nuclear safety-related components designed to ASME Section III, Class 3 rules, acceptance criteria are defined as meeting ASME code requirements [Reference 12] in order to assure structural integrity. Several factors are used to determine structural integrity at an inspection location. These factors include consideration of actual as-found wall thickness, calculated rate of material loss, use of the piping stress analyses to determine a minimum required thickness

and projected time to reach the minimum wall thickness which, in turn, will establish the reinspection interval or component replacement schedule.

For the non-nuclear safety related components that have no seismic design requirements, the acceptance criterion is the minimum wall thickness calculated on a location-specific basis. These minimum values have been determined based on design pressure or structural loading using the piping design code of record and then applying additional conservatism.

Corrective Action & Confirmation Process – Specific corrective actions and confirmation are implemented in accordance with the corrective action program.

Administrative Controls – The Service Water Piping Corrosion Program is governed by site specifications and implemented using controlled plant procedures and work orders. The procedures and work processes provide steps for performance of the activities and require the documentation of the results.

18.2.26 Sump Pump Systems Inspection

Scope – The scope of the Sump Pump Systems Inspection is a limited set of mechanical components constructed of carbon steel, cast iron, and stainless steel exposed to sump environments in the following McGuire systems:

- Diesel Generator Room Sump Pump System
- Conventional Waste Water Treatment System
- Groundwater Drainage System

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameter inspected by the Sump Pump Systems Inspection is wall thickness as a measure of loss of material.

Detection of Aging Effects – The Sump Pump Systems Inspection is a one-time inspection that will detect the presence and extent of loss of material due to crevice, general, pitting, and microbiologically influenced corrosion.

Monitoring & Trending – The Sump Pump Systems Inspection will inspect sump components at McGuire located within the Diesel Generator Room Sump Pump System using a volumetric examination technique. The Diesel Generator Room Sump Pump System was selected for inspection because the system contains a representation of all of the materials present within the other sump environments. The sump environment in the Diesel Generator Room Sump Pump System is a potential combination of leakage of raw water, fuel oil, and treated water. Inspection of the Diesel Generator Room Sump Pump System will provide a representative review of the condition of mechanical component materials subject to a sump environment.

Inspection locations will be at piping low points, pump casings, and valve bodies where materials are continuously wetted by the raw water environment or subject to alternate wetting and drying. The results of this inspection will be applied to the mechanical components in the Conventional Waste Water Treatment and Groundwater Drainage System.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection or test results.

18.2 - 30 (13 OCT 2018)

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

The Groundwater Drainage System contains raw water that is considered to be relatively pure and not subject to mixing with treated water or contaminants from other plant systems. This environment is considered to be less severe than the other sump pump environments. Additionally, the system contains a limited selection of materials within the system boundaries at McGuire. Therefore, the results of the Sump Pump Systems Inspection are encompassing and will be applied to the Groundwater Drainage System components subject to a raw water environment.

Acceptance Criteria – The acceptance criteria for the Sump Pump Systems Inspection is no unacceptable loss of material that could result in the loss of the component intended function(s), as determined by engineering evaluation.

Corrective Action & Confirmation Process – If the engineering evaluation determines that continuation of the aging effect will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, no further action is required. If the engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Sump Pump Systems Inspection will be implemented in accordance with controlled plant procedures.

18.2.27 Treated Water Systems Stainless Steel Inspection

Scope – The scope of Treated Water Systems Stainless Steel Inspection is stainless steel components exposed to unmonitored treated water environments in the following McGuire system:

Nuclear Solid Waste Disposal

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameters inspected by the Treated Water Systems Stainless Steel Inspection are pipe wall thickness, as an indicator of loss of material, and evidence of cracking.

Detection of Aging Effects – The Treated Water Systems Stainless Steel Inspection is a one-time inspection that will detect the presence and extent of any loss of material or cracking of stainless steel components exposed to unmonitored treated water environments.

Monitoring & Trending – The Treated Water Systems Stainless Steel Inspection at McGuire will inspect stainless steel components, welds, and heat affected zones, as applicable, in the McGuire Nuclear Solid Waste Disposal System. The McGuire Nuclear Solid Waste Disposal System components within the scope of license renewal is a mixture of unmonitored treated water and spent resins sluiced from demineralizers in various systems. The environment is expected to contain contaminants in excess of the limits below which a concern would not exist for cracking and loss of material in stainless steel. A concentration of any contaminants present

would occur in areas of low flow or stagnant conditions. As a result, inspections will be performed in stagnant and low flow lines around the spent resin storage tanks using volumetric techniques. In addition to the volumetric examination, a visual examination of the interior of a valve will be conducted to determine the presence of pitting corrosion.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The acceptance criterion for the Treated Water Systems Stainless Steel Inspection is no unacceptable loss of material or cracking that could result in the loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Treated Water Systems Stainless Steel Inspection will be implemented in accordance with controlled plant procedures.

18.2.28 Underwater Inspection of Nuclear Service Water Structures

Scope – The scope of the Underwater Inspection of Nuclear Service Water Structures includes the following structures:

Standby Nuclear Service Water Discharge Structures

Standby Nuclear Service Water Intake Structure

Preventive Actions – No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Underwater Inspection of Nuclear Service Water Structures requires examination of the structure for the following parameters: loss of material of steel components and loss of material and cracking of concrete components.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending, the Underwater Inspection of Nuclear Service Water Structures will detect loss of material of steel components and loss of material and cracking of concrete components prior to loss of structure or component intended functions.

Monitoring & Trending – The Underwater Inspection of Nuclear Service Water Structures detects aging effects through visual examination. The inspection is performed every five years at McGuire. No actions are taken as part of this program to trend inspection or test results.

18.2 - 32 (13 OCT 2018)

Examination and assessment of the condition of a structure is performed using guidance provided in codes and standards such as:

- NRC Regulatory Guide 1.127, Inspection of Water-Control Structures Associated with Nuclear Power Plants
- ACI 349.3, Evaluation of Existing Nuclear Safety-Related Concrete Structures
- ACI 201, Guide for Making a Condition Survey of Concrete in Service

Acceptance Criteria – The acceptance criteria are no unacceptable visual indication of (1) loss of material for steel components and (2) loss of material and cracking for concrete components, as determined by the accountable engineer. The qualifications of the accountable engineer are in accordance with the guidance provided in NRC Regulatory Guide 1.127.

Corrective Action & Confirmation Process – Structures and components which do not meet the acceptance criteria are evaluated by the accountable engineer for continued service and repair, as required. Structures and components which are deemed unacceptable are documented under the corrective action program. Specific corrective actions and confirmatory actions, as needed, are implemented in accordance with the corrective action program. All prior inspection reports are reviewed to ensure implementation of recommended corrective actions.

Administrative Controls – The Underwater Inspection of Nuclear Service Water Structures is implemented by plant work management system using model work orders.

18.2.29 Ventilation Area Pressure Boundary Sealants Inspection

Scope – The scope of the Ventilation Area Pressure Boundary Sealants Inspection is the pressure boundary structural sealants installed in the ventilation pressure boundary of the Control Room, ECCS Pump Room, Annulus, and Fuel Handling areas. Pressure boundary structural sealants include, but are not limited to, sealants in the interface between a structural wall, floor or ceiling and a non-structural component such as duct, piping, electrical cables, doors, and non-structural walls.

Preventive Actions – No actions are taken as a part of this one-time inspection to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – Ventilation Area Pressure Boundary Sealants Inspection is a visual inspection for cracking or shrinkage of the structural sealants.

Detection of Aging Effects – In accordance with the information provided in Monitoring & Trending, Ventilation Area Pressure Boundary Sealants Inspection will detect cracking or shrinkage of the ventilation area pressure boundary structural sealants.

Monitoring & Trending – The Ventilation Area Pressure Boundary Sealants Inspection will visually inspect a representative sample of structural sealants at each station. Locations of inspections will be based on severity of the local ambient conditions taking into consideration temperature and radiation. The sample locations selected will provide a leading indication of the condition of all structural sealants within the scope of this activity.

No actions are taken as part of this program to trend inspection results.

For McGuire, this one-time inspection will be completed following issuance of the renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1)

Acceptance Criteria – The acceptance criterion for the Ventilation Area Pressure Boundary Sealants Inspection is no unacceptable cracking or shrinking that could result in the loss of the intended function of the structural sealant as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of structural sealant intended function, under any current licensing basis design condition for the period of extended operation, no further action is required. If the engineering evaluation determines that continuation of the aging effects could cause a loss of structural sealant function under current licensing design conditions for the period of extended operation, then programmatic oversight will be defined by engineering. Specific corrective actions, including repair or replacement of the ventilation area pressure boundary structural sealants, will be implemented in accordance with the corrective action program.

Administrative Controls – Ventilation Area Pressure Boundary Sealants Inspection surveillances will be implemented by written procedure.

18.2.30 Waste Gas System Inspection

Scope –The scope of the Waste Gas System Inspection is carbon steel and stainless steel materials that are exposed to unmonitored treated water environments and carbon steel materials that are exposed to gas environments within the license renewal boundaries of the McGuire Waste Gas Systems.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The parameters monitored or inspected by the Waste Gas System Inspection are wall thickness, as a measure of loss of material, and evidence of cracking.

Detection of Aging Effects – The Waste Gas System Inspection is a one-time inspection that will detect the presence and extent of any loss of material due to general, crevice, or pitting corrosion or cracking due to stress corrosion in brass, carbon steel, and stainless steel materials subject to an unmonitored treated water environment. The Waste Gas System Inspection will also detect the presence and extent of any loss of material due to general corrosion in carbon steel materials subject to a gas environment.

Monitoring & Trending – The Waste Gas System Inspection will use a volumetric technique to inspect three sets of material/environment combinations. As an alternative, visual examination will be used should access to internal surfaces become available. The Waste Gas System is primarily a gas environment with unmonitored treated water environments from condensation of entrained water vapor and effluent from the recombiners and separators. Specific component/environment inspection combinations will include carbon steel, and stainless steel components exposed to an unmonitored treated water environment. Also, carbon steel components exposed to a gas environment will be inspected. Selection of the specific areas for inspection for the above material/environment combinations will be the responsibility of the site program owner.

(1) For carbon steel components exposed to unmonitored treated water environments at McGuire, inspections will be performed on the lower portions of decay tanks and associated drain lines where condensate is likely to accumulate. One of eight possible locations at McGuire will be examined. If no parameters are known that would distinguish the susceptible locations at McGuire, one of the eight available at McGuire will be examined based on accessibility and radiological concerns. The results of this

18.2 - 34 (13 OCT 2018)

inspection will be applied to the remainder of the Waste Gas System carbon steel components within the scope of license renewal exposed to unmonitored treated water environment.

- (2) For stainless steel components exposed to unmonitored treated water environments at McGuire, inspections will be performed on the seal water path of the waste gas compressor. One of two possible locations at McGuire will be examined. If no parameters are known that would distinguish the susceptible locations at McGuire, one of the two available at McGuire will be examined based on accessibility and radiological concerns. The results of this inspection will be applied to the remainder of the Waste Gas System stainless steel components within the scope of license renewal exposed to unmonitored treated water environment.
- (3) For the carbon steel components exposed to a gas environment at McGuire, an inspection will be performed on components within the scope of license renewal located between the volume control tanks and the waste gas compressor phase separators. If no parameters are known that would distinguish the most susceptible locations at McGuire, one location at McGuire will be examined based on accessibility and radiological concerns. The results of this inspection will be applied to the remainder of the Waste Gas System carbon steel components within the scope of license renewal exposed to gas environments.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection or test results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

The Waste Gas System is primarily a gas environment composed of nitrogen, hydrogen, oxygen, and fission product gases. The section of the Waste Gas System between the volume control tanks and the waste gas compressors phase separators will contain a warm, moist gas that could result in the cooler internal surfaces of the carbon steel components being wet due to condensation. As a result, corrosion of the carbon steel surfaces is more likely due to the presence of moisture and would serve as a leading indicator for the remainder of the carbon steel components within the scope of license renewal exposed to the gas environment in the Waste Gas System. Therefore, the results of the inspection can be applied to the remainder of the carbon steel components exposed to gas environments.

Acceptance Criteria – The acceptance criteria for the Waste Gas System Inspection is no unacceptable loss of material or cracking that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, no further action is required. If the engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the applicable aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight is required to be defined by

engineering. Specific corrective actions will be implemented in accordance with the Corrective Action Program.

Administrative Controls – The Waste Gas System Inspection will be implemented in accordance with controlled plant procedures.

18.2.31 References

- 1. M. S. Tuckman (Duke) letter dated July 30, 1991, NRC Bulletin 88-09, Thimble Tube Thinning in Westinghouse Reactors, McGuire Nuclear Station, Docket Nos. 50-369 and 50-370; Catawba Nuclear Station, Docket Nos. 50-413 and 50-414.
- 2. WCAP-12866, Bottom Mounted Instrumentation Flux Thimble Wear, January 1991.
- 3. 10 CFR Part 50, §50.55a, Codes and Standards.
- 4. W. T. Russell (NRC) letter dated November 19,1993 to William Rasin, (NUMARC), Safety Evaluation for Potential Reactor Vessel Head Adapter Tube Cracking.
- 5. EPRI NSAC-202L-R2, Recommendations for an Effective Flow Accelerated Corrosion Program, Revision 2, April 1999.
- 6. Nuclear System Directive 104, Materiel/Condition/Housekeeping, Foreign Material Exclusion and Seismic Concerns, Revision 33.
- 7. Procedure AD-MN-ALL-0006, Fluid Leak Management, Revision 0.
- 8. C. I. Grimes (NRC) letter dated May 19, 2000 to D. J. Walters (NEI), License Renewal Issue No. 98-0030, "Thermal Aging Embrittlement of Cast Austenitic Stainless Steel Components," Project No. 690.
- 9. Guideline for the Management of Adverse Localized Equipment Environments, EPRI, Palo Alto, CA: 1999. EPRI TR-109619.
- 10. McGuire Nuclear Station Updated Final Safety Analysis Report, as revised.
- 11. WCAP-14040, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves, June 1994.
- 12. ASME Boiler and Pressure Vessel Code, Section III Nuclear Power Plant Components, Subsection ND Class 3 Components, 1971 edition.
- 13. NRC Bulletin 2003-02, "Leakage from Reactor Vessel Lower Head Penetrations and Reactor Coolant Pressure Boundary Inegrity," August 21, 2003.
- 14. Deleted per 2018 update.
- 15. NRC Bulletin 2004-01, "Inspection of Alloy 82/182/600 Materials Used in the Fabrication of Pressurizer Penetrations and Steam Space Piping Connections at PWRS," May 28, 2004.
- 16. Barron, Henry B. (Duke) to U. S. Nuclear Regulatory Commission, Duke Response to NRC Bulletin 2004-01, July 27, 2004.
- 17. McCollum, William R. (Duke) to U. S. Nuclear Regulatory Commission, Supplement to Response to NRC Bulletin 2004-01, September 21, 2004.

18.2 - 36 (13 OCT 2018)

- 18. Barret, R. (NRC) to Marion, A. (NEI), Flaw Evaluation Guidelines, April 11, 2003.
- 19. PD-EG-PWR-1611, Boric Acid Corrosion Control Program (Program Description), Rev 0.
- 20. Deleted per 2018 update.
- 21. Deleted per 2018 update.
- 22. Federal Register, 10 CFR Part 50, Industry Codes & Standards; Amended Requirements; Final Rule; September 10, 2008 Pages 52742 and 52749.
- 23. Deleted per 2018 update.
- 24. Federal Register, 10 CFR Part 50, Incorporation by Reference of American Society of Mechanical Engineers Codes and Code Cases; Final Rule July 18, 2017.
- 25. AD-EG-PWR-1611, Boric Acid Corrosion Control Program-Implementation (Administrative Procedure), Rev. 0
- 26. Ray, Thomas D. (Duke) to U.S. Nuclear Regulatory Commission, Submittal of Information Related to Pressurizer Surge and Spray Nozzle Thermal Sleeves Attachments Welds for License Renewal, June 26, 2018
- 27.MCM 1201.01-1352.001, Flaw Tolerance Evaluation for Loop Two Cold Leg Elbow at McGuire Nuclear Station, Unit 1, Revision 0
- 28. Ray, Thomas D. (Duke) to U.S. Nuclear Regulatory Commission, Review Request for the Aging Management Program and Inspection Plan for the McGuire Nuclear Station Units 1 and 2 Reactor Vessel Internals to Implement MRP-227-A, December 13, 2017
- 29. Ray, Thomas D. (Duke) to U.S. Nuclear Regulatory Commission, Resolution of Comments related to the Review Request for the Aging Management Program and Inspection Plan for the McGuire Nuclear Station Units 1 and 2 Reactor Vessel Internals to Implement MRP-227-A, May 9, 2018
- 30.EC 114606, Modifications to the Pressurizer Manways Due to Leakage Including (Optional) Use of Studs Instead of Bolts

THIS IS THE LAST PAGE OF THE TEXT SECTION 18.2.

UFSAR Chapter 18 McGuire Nuclear Station

THIS PAGE LEFT BLANK INTENTIONALLY.

18.2 - 38 (13 OCT 2018)

18.3 Additional Commitments

18.3.1 Battery Rack Inspections

Battery rack inspections conducted in accordance with ITS SR 3.8.4.3, SLC 16.8.3.3, SLC 16.9.7.12, and SLC 16.9.7.16 shall include the structural supports and anchorages.

18.3.2 Steam Generator Surveillance Program

The inspections of the Steam Generator Surveillance Program follow the requirements of Technical Specification 5.5.9 "Steam Generator (SG) Program".

18.3.3 Additional Chemistry Commitment – Visual Inspection of Auxiliary Feedwater and Main Feedwater Piping

Visual inspections of the interior surfaces of Auxiliary Feedwater System and Main Feedwater System components and piping will be performed when available. The inspection results will be documented in writing and available for inspection following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1.)

18.3.4 Fuse Holder Program

For McGuire, Duke commits to implement the final version of the fuse holder interim staff guidance (initially provided to NEI by NRC letter dated May 16, 2002 and when finalized by the staff) by June 12, 2021 (the end of the initial license of McGuire Unit 1).

18.3.5 Boral Monitoring Program

The Boral Monitoring Program is implemented to assure that degradation of the Boral neutronabsorbing material used in McGuire spent fuel pools that could compromise the criticality analysis will be detected. The applicable aging management program relies on periodic inspection, testing, monitoring, and analysis to assure that the required 5% sub-criticality margin is maintained during the period of extended operation.

THIS IS THE LAST PAGE OF THE TEXT SECTION 18.3.

UFSAR Chapter 18 McGuire Nuclear Station

THIS PAGE LEFT BLANK INTENTIONALLY.

18.3 - 2 (13 OCT 2018)

18.4 Newly Identified SSCs

18.4.1 McGuire Nuclear Station Reviews for Newly Identified SSCs

Pursuant to the requirements of 10 CFR 54.37(b), McGuire Nuclear Station has performed reviews for newly identified SSCs, to be included in the scope of license renewal. These reviews have determined that newly identified SSCs do exist, subjected them to aging management reviews, and identified aging management programs to ensure that intended functions are maintained through the period of extended operation.

Consistent with the NRC's guidance in RIS 2007-16, the information that follows includes a description of newly identified SSCs at McGuire Nuclear Station, presents summary tables of aging management reviews, and then prescribes the aging management programs that will be used to manage the effects of aging. Where new McGuire aging management program activities are prescribed, a description is provided addressing the 10 elements of an effective aging management program, consistent with the information provided in Appendix B of the McGuire Nuclear Station License Renewal Application. Where an existing McGuire aging management program is credited for aging management of newly identified SSCs, but requires revision, the 10 element description of the program from the McGuire Nuclear Station License Renewal Application is provided, with revisions associated with newly identified SSCs incorporated in bold. If an existing McGuire aging management program is prescribed and no revision to the program is necessary to address newly identified SSCs, the program is identified in the aging management review summary, but the 10 element description of the program is not reprinted in this section.

18.4.1.1 Nuclear Service Water System Strainer Elements

The Nuclear Service Water System Strainer Elements function to protect downstream safety-related SSCs from the effects of flow blockage due to fouling, and loss of heat transfer as a result of fouling. These strainer elements were considered non safety-related at the time the combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application was approved, but have since been upgraded to safety-related to resolve site operating experience pertaining to biofouling. These strainer elements are now considered to perform an intended function, and are included in the scope of license renewal under 10 CFR 54.4(a)(1).

Results from a Mechanical aging management review identified that these strainer elements perform a filtration intended function, and could be susceptible to age related degradation due to loss of material and fouling. A new Preventive Maintenance Inspection Activity was prescribed to manage the effects of aging. A description of that program activity follows the aging management review summary table below.

An interdisciplinary review determined that there are no newly identified Civil / Structural or Electrical / I&C features associated with the Nuclear Service Water System Strainers.

A summary of the Mechanical aging management review for the Nuclear Service Water System strainer elements is provided in the following table:

Component Type	Component Function	Material	External Environ.	Aging Effect	Aging Mechanism	Aging Management Program
					Crevice Corrosion	
Nuclear Service Water System Strainer Elements	FI	SS	Raw Water	Loss of Material	Micro- biologically Influenced Corrosion	Preventive Maintenance Activities (Nuclear Service Water
					Pitting Corrosion	System Strainer Elements Inspection)
				Fouling	Macro- Organisms	
					Silting	

The Preventive Maintenance Activities – Nuclear Service Water System Strainer Elements Inspection is a new aging management program activity. The purpose of the Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is to manage loss of material and fouling of the Nuclear Service Water System strainer elements. This activity periodically inspects the strainer elements tanks to verify the physical integrity is not degraded by age related degradation and fouling is not occurring. The Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is a condition monitoring program.

Scope – The scope of the Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is the strainer elements inside the McGuire Units 1 and 2 Nuclear Service Water System Strainers.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection inspects the strainer elements for signs of corrosion and fouling.

Detection of Aging Effects – In accordance with the information provided under Monitoring & Trending below, the Preventive Maintenance Activities - Nuclear Service Water System Strainer

18.4 - 2 (13 OCT 2018)

Elements Inspection will detect loss of material and fouling prior to loss of the component intended function.

Monitoring & Trending – The Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection will perform direct physical inspections of the strainer elements at least once every ten years, and looks for signs of corrosion and fouling that provides evidence of age related degradation. Identification of significant defects / degradation is referred to the Corrective Action Program for further investigation.

Acceptance Criteria – The acceptance criteria for the Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is no unacceptable loss of material or fouling of the stainless steel strainer elements that could result in the loss of component intended function as determined by engineering evaluation.

Corrective Action & Confirmation Process – Engineering evaluation is performed to disposition any significant degradation and determine continued acceptability. Specific corrective actions and confirmation are implemented in accordance with the Corrective Action Program.

Administrative Controls – Preventive Maintenance Activities - Nuclear Service Water System Strainer Elements Inspection is controlled by plant procedures and work processes. The procedures and work processes provide steps for performance of the activities and require documentation of the results.

Operating Experience – Operating experience has shown the potential for fouling of the McGuire Nuclear Station Nuclear Service Water System Strainers. Modifications have been performed to increase the reliability / efficacy of the straining / backwash function, including upgrading the strainer element material to stainless steel, providing an assured source of air to operate the backwash valve, and installation of a safety grade backwash pump / piping to ensure sufficient backwash flows. These modifications are relatively recent, hence, operating experience with the current system configuration is limited. Nonetheless, periodic physical inspection of the strainer elements is a reliable means to verify the physical condition of the strainer element and ensure that its function is not impaired.

18.4.1.2 Liquid Waste System Piping - Control Room Air Handling Units Drains

The Liquid Waste System piping draining the Control Room Air Handling Units was not included in the scope of license renewal by the combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application. It has since been determined that a break before the loop seals in this piping could allow unfiltered (possibly contaminated) air to enter the control room, and a break in the Control Building space could damage safety related electrical equipment below it. Accordingly, McGuire Nuclear Station has implemented design changes to upgrade this piping to Duke piping class F (non safety-related, seismic). This piping is now considered to perform an intended function and has been included in the scope of license renewal under 10 CFR 54.4.(a)(2).

Results from a Mechanical aging management review of the Liquid Waste System Piping for the Control Room Air Handling Units identified that this piping performs a pressure boundary intended function, and may be susceptible to the age related degradation due to loss of material. The aging management review prescribed the existing Liquid Waste System Inspection program, which has been revised to include additional inspection activities for the subject piping. A description of revisions to that program follows the aging management review summary table below.

An interdisciplinary review of supporting features determined that there are no newly identified Civil / Structural or Electrical / I&C features associated with the Liquid Waste System Piping for the Control Room Air Handling Units.

A summary of the Mechanical aging management review for the Liquid Waste System piping draining the Control Room Air Handling Units is provided in the following table:

Component	Component Function	Material	Internal Environ.	Aging	Aging Mechanism	Aging Management Program
Type			External Environ.	Effect		
Pipe	РВ	SS	Raw Water	Loss of Material	Crevice Corrosion	Liquid Waste System Inspection
					Pitting Corrosion	
					Micro- biologicallly Induced Corrosion	
			Sheltered	None	None	None Required

The Liquid Waste Inspection Program is an existing program described in Section 18.2.18 of the McGuire UFSAR. This program has been revised to include additional inspections specific to the Liquid Waste System piping draining the Control Room Air Handling Units. The following discussion reflects the program attributes described in Appendix B, Section B.3.22 of the McGuire Nuclear Station License Renewal Application, as modified to address aging management of the Liquid Waste System piping draining the Control Room Air Handling Units (new text in bold):

Scope – The scope of the Liquid Waste System Inspection is cast iron, stainless steel and carbon steel components exposed to unmonitored treated and borated water environments or raw water environments in the following McGuire systems:

- Component Cooling System the portion of the Component Cooling System of concern is the stainless steel waste evaporator package exposed to an unmonitored treated water environment of the Liquid Waste Recycle System.
- Liquid Waste Recycle System stainless steel components exposed to an unmonitored borated water environment:
- Liquid Waste System piping draining the Control Room Air Handling Units, up to the point the piping exits the Control Building.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The parameters inspected by the Liquid Waste System Inspection are wall thickness, as a measure of loss of material, and visible signs of cracking and loss of material.

18.4 - 4 (13 OCT 2018)

Detection of Aging Effects – The Liquid Waste System Inspection will detect the presence and extent of loss of material due to crevice and pitting corrosion and cracking due to stress corrosion / intergranular attack in stainless steel components exposed to unmonitored borated and treated water environments. In addition, this activity will detect the presence and extent of loss of material due to crevice, pitting, microbiologically influenced corrosion and cracking due to stress corrosion in stainless steel components exposed to raw water environments.

Finally, this activity will detect the presence and extent of loss of material due to crevice, general, pitting, and microbiologically influenced corrosion in carbon steel and cast iron components exposed to raw water environments.

Monitoring & Trending – The Liquid Waste System Inspection will use a volumetric technique to inspect the material/environment combinations located in each system listed above. As an alternative, visual examination will be used should access to internal surfaces become available. Selection of the specific areas for inspection for the system material/environment combinations will be the responsibility of the system engineer.

Component Cooling System

At McGuire, the waste evaporator package consists of four heat exchangers. One of the four heat exchangers will be inspected. The inspection results will be applied to the other three stainless steel heat exchanger components exposed to unmonitored treated water environments.

Liquid Waste Recycle System

At McGuire, the Liquid Waste System Inspection will use a combination of volumetric and visual examination of a sample population of subject components. For stainless steel components exposed to unmonitored borated water environments, the sample population will include components located in stagnant or low flow areas near collection tanks where contaminants are likely to collect and concentrate to create an environment more corrosive than the general system borated water environments. The inspection results will be applied to the stainless steel components in the unmonitored borated water environments.

Liquid Waste System Drain Lines from Control Room Air Handling Units

At McGuire, the Liquid Waste System Inspection will use a combination of volumetric and visual examination at sample locations on the subject drain lines. The inspection population will include the loop seal piping where contaminants are likely to collect and concentrate to create an environment more corrosive, and other locations deemed to be representative / bounding. Given the limited extent of the piping in question, it is considered that no more than two or three inspection locations will be needed to characterize its condition. Results from localized piping inspections will be applied to the balance of piping, as appropriate.

For McGuire, this new inspection will be completed following issuance of renewed operating licenses for McGuire Nuclear Station and by June 12, 2021 (the end of the initial license of McGuire Unit 1).

No actions are taken as part of this activity to trend inspection results.

Should industry data or other evaluations indicate that the above inspections can be modified or eliminated, Duke will provide plant-specific justification to demonstrate the basis for the modification or elimination.

Acceptance Criteria – The acceptance criterion for the Liquid Waste System Inspection is no unacceptable loss of material and cracking of stainless steel components and loss of material of

carbon steel and cast iron components that could result in a loss of the component intended function(s) as determined by engineering evaluation.

Corrective Action & Confirmation Process – If engineering evaluation determines that continuation of the aging effects will not cause a loss of component intended function(s) under any current licensing basis design conditions for the period of extended operation, then no further action is required. If engineering evaluation determines that additional information is required to more fully characterize any or all of the aging effects, then additional inspections will be completed or other actions taken in order to obtain the additional information. If further engineering evaluation determines that continuation of the aging effects could cause a loss of component intended function(s) under current licensing basis design conditions for the period of extended operation, then programmatic oversight will be defined. Specific corrective actions will be implemented in accordance with the corrective action program.

Administrative Controls – The Liquid Waste System Inspection will be implemented in accordance with controlled plant procedures.

Operating Experience – The Liquid Waste System Inspection is a one-time inspection activity for which there is no operating experience.

18.4.1.3 Boral Spent Fuel Rack Neutron Attenuation Material

McGuire Nuclear Station installed spent fuel racks containing Boral Neutron Attenuation Material while the combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application was under review. However, the License Amendment to take credit for the Boral in these racks was not approved until after the renewed license was approved. As a result, the Boral Neutron Attenuation Material in these racks was not initially accorded an intended function, nor was it included in the scope of license renewal under 10 CFR 54.21(b). Since that time, McGuire Nuclear Station License Amendments 207 and 225 have been issued, allowing McGuire to take credit for the neutron attenuation capability of Boral in complying with sub-criticality margin requirements. Therefore, the Boral Neutron Attenuation Material in the McGuire Nuclear Station Spent Fuel Pool Racks is now considered to perform an intended function, and is included in the scope of license renewal under 10 CFR 54.4.(a)(1).

Results from a Civil / Structural aging management review identified that the Boral panels in the McGuire Nuclear Station spent fuel racks perform a neutron attenuation intended function, and could be susceptible to age related degradation due to reduction of neutron absorbing capacity, change in dimensions, and loss of material. A new Boral Monitoring Program has been prescribed to manage the effects of aging. A description of that program activity follows the aging management review summary table below.

An interdisciplinary review of supporting features determined that there are no newly identified Mechanical or Electrical / I&C features associated with the Boral Neutron Attenuation Material.

A summary of the Civil / Structural aging management review for the Boral Neutron Attenuation Material is provided in the following table:

18.4 - 6 (13 OCT 2018)

McGuire Nuclear Station Aging Management Review Results – Other Structures								
1	2	3	4	5	6			
Component Type	Component Function	Material	Environment	Aging Effects	Aging Management Programs and Activities			
	Other Structural Components							
Boral Panels	Absorb Neutrons	Boral Neutron- absorbing sheets	Treated Water	Reduction of neutron absorbing capacity; change in dimensions and loss of material due to effects of SFP environment	Boral Monitoring Program			

The Boral Monitoring Program is a new aging management program based on the guidance in NUREG-1801, XI.M40, Monitoring of Neutron-Absorbing Materials Other than Boraflex. The purpose of the Boral Monitoring Program is to assure that degradation of the neutron-absorbing material used in spent fuel pool storage racks that could compromise the criticality analysis will be detected. The applicable aging management program (AMP) relies on periodic inspection, testing, monitoring, and analysis of the criticality design to assure that the required sub-criticality margin is maintained during the license renewal period of extended operation.

Scope - The Boral Monitoring Program manages the effects of aging on Boral neutronabsorbing components/materials used in McGuire Nuclear Station spent fuel racks.

Preventive Actions - This Boral Monitoring Program is a condition monitoring program; therefore, there are no preventative actions.

Parameters Monitored/Inspected - Gamma irradiation and/or long-term exposure to the wet pool environment may cause loss of material and changes in dimension (such as gap formation, formation of blisters, pits and bulges) that could result in loss of neutron-absorbing capability of the material. The parameters monitored include the physical condition of the neutron-absorbing materials, such as geometric changes in the material (formation of blisters, pits, and bulges) as observed from coupons or in situ, and decreased boron areal density, etc. The parameters monitored are directly related to determination of the loss of material or loss of neutron absorption capability of the material(s).

Detection of Aging Effects - The loss of material and the degradation of the neutron absorbing material capacity are determined through coupon and / or direct in-situ testing. Such testing includes periodic verification of boron loss through areal density measurement of coupons or through direct in-situ techniques, which may include measurement of boron areal density, geometric changes in the material (blistering, pitting, and bulging), and detection of gaps through blackness testing. The frequency of the inspection and testing depends on the condition of the neutron-absorbing material and is determined considering plant specific and industry operating experience, not to exceed 10 years.

Monitoring and Trending - The measurements from periodic inspections and analysis are compared to baseline information or prior measurements and analysis for trend analysis.

Acceptance Criteria - Although the goal is to ensure maintenance of the required sub-criticality margin for the spent fuel pool, the specific acceptance criteria for the measurements and analyses are plant specific.

Corrective Actions - Corrective actions are initiated if the results from measurements and analysis indicate that the required sub-criticality margin cannot be maintained because of current or projected future degradation of the neutron-absorbing material. Corrective actions may consist of providing additional neutron-absorbing capacity with an alternate material, or applying other options, which are available to maintain the sub-criticality margin.

Confirmation Process - Site quality assurance (QA) procedures, site review and approval processes, and administrative controls are implemented in accordance with the requirements of 10 CFR Part 50, Appendix B.

Administrative Controls - As discussed in the Appendix for GALL, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address administrative controls.

Operating Experience - Industry operating experience reflects that degradation of neutron absorbing material is possible, with resulting decrease in neutron attenuation ability. The Boral Monitoring Program combines monitoring of coupons to verify physical condition and dimensional stability, and periodic verification of boron loss through areal density measurement of coupons or through direct in-situ techniques. These measures provide reasonable assurance that the program is able to detect degradation of the Boral neutron absorbing material in the McGuire Nuclear Station spent fuel pool prior to loss of intended function.

18.4.1.4 Earthen Dike on the North Perimeter of the McGuire Nuclear Station Site

The combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application concluded that neither the Cowan's Ford Dam or the dike extension to the dam performed an intended function and therefore were not within the scope of license renewal. During a review of the McGuire response to Fukushima Near Term Task Force requirements, license basis, it was determined that the dike extension to the dam is credited with protecting safety related systems and structures from flooding from Lake Norman. Accordingly, the Earthen dike on the north perimeter of the site is considered to perform an intended function, and is included in License Renewal scope under 10 CFR 54.4(a)(2).

Results from a Civil / Structural aging management review identified that the Earthen Dike at the McGuire Nuclear Station could be susceptible to age related degradation due to loss of material and cracking. The aging management review prescribed the existing Inspection Program for Civil Engineering Structures and Components to manage the effects of aging; this program has been revised to incorporate inspection guidance for the earth dike as described below.

An interdisciplinary review determined that there are no newly identified Mechanical or Electrical / I&C features associated with the Earthen Dike.

A summary of the Civil / Structural aging management review for the Earthen Dike on the north perimeter of the McGuire Nuclear Station site is provided in the following table:

18.4 - 8 (13 OCT 2018)

McGuire Nuclear Station Aging Management Review Results – Other Structures							
1	2	3	4	5	6		
Component Type	Component Function	Material	Environment	Aging Effects	Aging Management Programs and Activities		
Other Structural Components							
Earthen Flood Control Dike	Provides shelter / protection to safety- related equipment	Soil	External	Loss of Material Cracking	Inspection Program for Civil Engineering Structures and Components		

The Inspection Program for Civil Engineering Structures and Components is an existing program described in Section 18.2.17 of the McGuire UFSAR. This program has been revised to include additional information specific to aging management of the McGuire Nuclear Station Earthen Dike. The following discussion reflects the program attributes described in Appendix B, Section B.3.21 of the McGuire Nuclear Station License Renewal Application, as modified to address aging management of the Earthen Dike (new text in **bold**):

Scope – The scope of the Inspection Program for Civil Engineering Structures and Components includes the following structures and the exposed external surfaces of mechanical components located within them:

McGuire Nuclear Station

- Auxiliary Building Structures (including the Control Building, Diesel Generator Buildings, Fuel Buildings, Main Steam Doghouses)
- Reactor Buildings (including Unit 1 and 2 internal structures, and Station Vents)
- Standby Nuclear Service Water Intake/Discharge Structures
- Standby Shutdown Facility
- Condenser Cooling Water (RC) Intake Structure (fire pump rooms only)
- Turbine Building (including Service Building)
- Yard Structures (including Refueling Water Storage Tank and Reactor Make-up Water Storage Tank foundations, Refueling Water Storage Tank missile wall, trenches, and Earthen Flood Control Dike)

Preventive Actions - No actions are taken as part of this program to prevent aging effects or mitigate aging degradation.

Parameters Monitored or Inspected – The Inspection Program for Civil Engineering Structures and Components inspects the structures and the exposed external surfaces of mechanical components within them for the following:

Concrete spalling, cracking, delaminations, honeycombs, water in-leakage,

chemical leaching, peeling paint, or discoloration

Masonry Walls significant cracks in joints, unsealed penetrations, missing or

broken blocks, or separation from supports

Structural Steel corrosion, peeling paint, beam/column deflection, loose or

missing anchors/fasteners, missing or degraded grout under

base plates, twisted beams, and cracked welds

Equipment Foundations settlement, cracked concrete

Equipment Supports cracked concrete, loose connections, corroded steel

Cable Tray Supports loose connections, corrosion, distortion, and excessive deflection

Roof Systems structural integrity, deteriorated penetrations (i.e., drains, vents,

etc.), signs of water infiltration, cracks, ponding and flashing

degradation

Seismic Gaps gaps are present

Siding structural integrity and visible damage

Windows/Doors missing panes, cracks, deteriorated glazing, broken or cracked

frames, missing or damaged hardware, and seal integrity

Trenches cracks, mis-alignment or damage of covers, may spot check

trenches by removing covers and inspecting walls and bottoms

for cracks

Earthen Structures/Dams erosion, settlement, slope stability, seepage, drainage systems,

integrity of rip-rap, and environmental conditions

Mechanical Components loss of material for exposed external surfaces (program will be

enhanced to add this)

In addition, certain structures and structural components may be exposed to environments which make them more susceptible to degradation. Examples include, but are not limited to:

Chemical attack Sumps and chemical use areas

Freeze/thaw Trench covers

Excessive heat Pipe penetrations, degradation of caulking, sealants and waterstops

Abrasion High traffic areas
Settlement Expansion joints.

Detection of Aging Effects – In accordance with information provided in Monitoring & Trending, the Inspection Program for Civil Engineering Structures and Components will detect loss of material, cracking, and change of material properties prior to loss of structure or component intended functions.

Monitoring & Trending – Each structure or component is inspected from the interior and exterior where accessible. Some structures (or portions of structures) may be inaccessible because of radiological considerations, obstructions or other reasons. Plant specific characteristics, industry experience, and/or testing history of such structures under similar environmental conditions may be evaluated in lieu of actual inspection of the inaccessible areas. Whenever normally inaccessible areas are made accessible (i.e., by excavation or other means) an inspection is

18.4 - 10 (13 OCT 2018)

performed and the results are documented as part of the Inspection Program for Civil Engineering Structures and Components. Inspections are performed by a team of at least two people. Inspectors are qualified by appropriate training and experience and approved by responsible plant management.

The Inspection Program for Civil Engineering Structures and Components is nominally performed every five years with the exact schedule being established with consideration of refueling outages for each unit. The interval may be increased to a nominal ten-year frequency with appropriate justification based on the structure, environment, and related inspection results. The inspection will be completed in phases as necessary based on the accessibility of each structure, with the goal of completing the inspection and issuing the report within twelve months of starting the inspection. Structures are monitored in accordance with §50.65 (a)(2) provided there is no significant degradation of the structure. Structures which are determined to be unacceptable are monitored in accordance with the provisions contained in §50.65(a)(1) of the Maintenance Rule.

The Earthen Dike on the north perimeter of the site will be inspected at least once every 5 years, and will also be subject to special inspections immediately following the occurrence significant natural phenomena, such as large floods, earthquakes, hurricanes, tornadoes, and intense local rainfalls, consistent with the guidance of RG 1.127.

Trending is performed in accordance with §50.65, the Maintenance Rule. Guidance for trending per the Maintenance Rule is provided in EDM-210, Engineering Responsibilities for the Maintenance Rule, Section 210.10.

Acceptance Criteria – The acceptance criteria are no unacceptable visual indications of loss of material, cracking or change of material properties for concrete, and loss of material for steel, as identified by the accountable engineer. Acceptable structures or components are those which are capable of performing their intended function(s) until the next scheduled inspection and are considered to meet the requirements contained in §50.65(a)(2) of the Maintenance Rule. Unacceptable structures or components are those which are damaged or degraded such that they are not capable of performing their intended function, or if degradation is to the extent and were allowed to continue uncorrected until the next normally scheduled inspection, such that the structure or component may not meet is design basis.

Corrective Actions & Confirmation Process – Structures and components not meeting the acceptance criteria are evaluated by the accountable engineer for continued service, monitoring, repair, or replacement as required. Structures and components determined to be unacceptable are required to meet the provisions contained in §50.65(a)(1) of the Maintenance Rule. Structures and components which are deemed unacceptable are documented under the corrective action program or corrected using the work management system. Specific corrective actions and confirmation actions, as needed, are implemented in accordance with the corrective action program. Subsequent inspections confirm that the corrective action was implemented and was effective.

Administrative Controls – The Inspection Program for Civil Engineering Structures and Components is implemented in accordance with a department directive.

Operating Experience - Previous inspections noted several minor degraded conditions; however, the conditions did not adversely affect the ability of the structures or components to perform their intended functions. Findings have been addressed by the corrective action program or by station work requests. Items that were noted that required additional investigation, repair or other corrective actions included: missing grout under base plates;

degraded coatings on steel, concrete, and pipe supports; minor corrosion of steel; deterioration of expansion joints; and minor cracking and spalling of concrete. Corrective actions included repair or replacement of the affected structure or structural component. The determination of specific corrective actions, including whether or not additional inspections are warranted, were made using the corrective action program.

18.4.1.5 Auxiliary Feedwater Storage Tanks

McGuire Nuclear Station installed elevated Auxiliary Feedwater Storage Tanks in Units 1 & 2 while the combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application was under review. The Auxiliary Feedwater Storage Tanks were initially installed to provide additional margin of condensate grade water for the Auxiliary Feedwater System. The Auxiliary Feedwater Storage Tanks are free standing elevated storage tanks, and are not seismically installed or provided with missile protection. They were not initially credited with compliance with regulated events in 10 CFR 54.4(a)(3), and not included in the scope of license renewal in the combined McGuire Nuclear Station, Units 1 and 2 and Catawba Nuclear Station, Units 1 and 2 License Renewal Application. Subsequently, the Auxiliary Feedwater Storage Tanks have been credited with providing the required supply of water to the Auxiliary Feedwater System for the 4 hour coping period under Station Blackout Conditions, as well as providing the initial supply of water for safe shutdown in the event of fire prior to switchover to long term sources. Therefore, the Auxiliary Feedwater Storage Tanks now perform an intended function, and are included in the scope of license renewal under 10 CFR 54.4(a)(3).

Results from Mechanical aging management review identified that the Auxiliary Feedwater Storage Tanks could be susceptible to age related degradation due to loss of material. The existing Inspection Program for Civil Engineering Structures and Components was prescribed to manage external surfaces of the tanks against the effects of aging. The existing Chemistry Control Program was prescribed to manage internal surfaces. Additionally, a new Preventive Maintenance Inspection Activity was prescribed to manage internal surfaces against the effects of aging. A description of that program activity follows the aging management review summary table below.

An interdisciplinary review of supporting features determined that there are also newly identified Civil / Structural features associated with the Auxiliary Feedwater Storage Tanks. Specifically, the Auxiliary Feedwater Storage Tanks are founded on piles that provide structural support, therefore perform an intended function and are also in the scope of license renewal. No newly identified Electrical / I&C features were found in association with the Auxiliary Feedwater Storage Tanks.

A summary of the Mechanical aging management review for the Auxiliary Feedwater Storage Tanks is provided in the following table:

18.4 - 12 (13 OCT 2018)

McGuire Nuclear Station Auxiliary Feedwater System								
Component Screening and Aging Management Review Results								
Component Type	Component Function	Material	Internal Environ.	Aging Effect	Aging Mechanism	Aging Management Program		
			External Environ.					
CA Storage Tanks	РВ	CS	Treated Water	Loss of Material	Crevice Corrosion	Chemistry Control		
					Galvanic Corrosion	Program		
					General Corrosion	Preventive Maintenance		
					Pitting Corrosion	Activities (Auxiliary Feedwater Storage Tank Internal Coating Inspection)		
				Loss of	General Corrosion	Inspection Program		
			External (Yard)	Material	Pitting Corrosion	for Civil Engineering Structures and		
					Crevice Corrosion	Components		

The Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is a new aging management program. The purpose of the Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is to manage loss of material of the internal surfaces of the carbon steel CA storage tanks. The internal carbon steel surfaces of the CA storage tanks are covered with an epoxy coating that prevents air from contacting the internal surfaces. This preventive maintenance activity inspects internal surfaces of the Auxiliary Feedwater Storage Tanks to assess the condition of the coating and to verify the absence of age related degradation. The Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is a condition monitoring program.

Scope – The scope of the Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is the internal surfaces of the McGuire Units 1 and 2 carbon steel CA storage tanks in the Auxiliary Feedwater System.

Preventive Actions – No actions are taken as part of this program to prevent aging effects or to mitigate aging degradation.

Parameters Monitored or Inspected – The Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection inspects the internal epoxy coating for signs of blistering, chipping, peeling, and missing coating as well as signs of corrosion of the underlying carbon steel tank.

Detection of Aging Effects – In accordance with the information provided under Monitoring & Trending below, the Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection will detect loss of material prior to loss of the component intended function.

Monitoring & Trending – The Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection visually inspects the internal epoxy paint at least once every ten years. The inspection looks for signs of blistering, chipping, peeling, and missing coating as well as signs of corrosion of the underlying carbon steel tank.

Acceptance Criteria – The acceptance criteria for the Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is no visual indications of coating defects that have led to corrosion of the underlying carbon steel tank surfaces.

Corrective Action & Confirmation Process – Engineering evaluation is performed to determine whether the coating and base metal continue to be acceptable. Specific corrective actions and confirmation are implemented in accordance with the corrective action program.

Administrative Controls – Preventive Maintenance Activities – Auxiliary Feedwater Storage Tank Internal Coating Inspection is controlled by plant procedures and work processes. The procedures and work processes provide steps for performance of the activities and require documentation of the results.

Operating Experience – The internal surfaces of the carbon steel refueling water storage tanks for McGuire Units 1 and 2 were inspected during outage EOC13 and EOC12, respectively, using an underwater camera. Video results showed some coating blistering, so the tanks were drained, visually inspected, and repainted in the necessary locations. No bare metal was exposed as a result of the blistering. A layer of the coating remained in the blistered location. The submerged portion of the tanks showed little to no degradation. However, the roof, which is not a part of the pressure boundary of the tank, did show evidence of coating concerns and was blasted and repainted in several locations. This operating experience demonstrates that this activity is capable of detecting degradation prior to loss of intended function, and will be effective in managing loss of material of the carbon steel tank by maintaining the effectiveness of the epoxy coating.

Results from a Civil / Structural aging management review identified that the Auxiliary Feedwater Storage Tanks were founded on piles, which could be susceptible to age related degradation due to loss of material. The existing Inspection Program for Civil Engineering Structures and Components was prescribed to manage the effects of aging. A summary of the Civil / Structural aging management review for the Auxiliary Feedwater Storage Tanks is provided in the following table:

18.4 - 14 (13 OCT 2018)

McGuire Nuclear Station Aging Management Review Results – Other Structures									
1	2	3	4	5	6				
Component Type	Component Function	Material	Environment	Aging Effects	Aging Management Programs and Activities				
Other Structur	Other Structural Components								
Foundation Piles (CA Storage Tank)	7	Steel	Below Grade	Loss of Material	Inspection Program for Civil Engineering Structures and Components				

Note 7 - Provides structural and/or functional support to non-safety related equipment where failure of this component could directly prevent satisfactory accomplishment of any of the required safety-related functions.

THIS IS THE LAST PAGE OF THE TEXT SECTION 18.4.

UFSAR Chapter 18 McGuire Nuclear Station

THIS PAGE LEFT BLANK INTENTIONALLY.

18.4 - 16 (13 OCT 2018)