TEXAS UTILITIES GENERATING COMPANY

SKY*VAY TOWER * 400 NORTH OLIVE STREET, L.B, B1 • DALLAS, TEXAS 75201

August 17, 1984

Director Nuclear Reactor Regulation
Attention:
Mr. B. J. Youngblood
Licensing Branch No. 1
Division of Licensing
U. S. Nuclear Regulatory Commission
Washington, D.C. 20555

SUBJECT: COMANCHE PEAK STEAM ELECTRIC STATION DOCKET NOS. 50-445 and 50-446 CONTAINMENT SUMP PERFORMANCE

REFERENCES: a. Meeting of June 7, 1984 - NRC \& TUGCO (Containment Sump Performance)
b. TUGCO letter \# TXX-4239 dated $7 / 26 / 84$

Schmidt to Youngblood
Dear Mr. Youngblood:
Reference a. above transmitted our consolidated report regarding Containment Sump Performance. Reference b. supplemented that report with additional information from Westinghouse. This letter transmits additional information developed as a result of matters discussed in public meetings with your staff to clarify selected sections of the report. Specifically, the following information is provided:

1. Gibbs \& Hill letter GTN-69312 dated August 3, 1984 with responses to NRC questions, addenda, and errata in the June 29 report.
2. G\&H letter GTN-69345 dated August 15, 1984, with revisions to Section 6 and Section 8 of the report.
3. G\&H letter GTN-69355 dated August 16, 1984, with revised pages 3-2, 6-6, 6-7, and 6-8.

We will incorporate the above information, along with that contained in reference b. into a complete revision of the report after you have completed your review. If you need more information, please advise.
H. C. Schmidt

Manager, Nuclear Services

Gibbs E Hill, Inc.

11 Pen Plaza
 New York. New York 10001
 $212760-4438$
 Telex:
 Domestic: 127636/968694
 International: 428813/234475
 A Bravo Company

CTN- 69355
August 16, 1984
Texas Utilities Generating Company Skyway Tower
400 North Olive Street
LB 81
Dallas, Texas 75201
Attention: Mr. H. C. Schmidt Manager of Nuclear Services

Gentlemen:

> TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION
> G\&H PROJECT NO. 2323
> GIBBS \& HILL PAINT REPORT

Per your request, we are attaching the following revised paces regarding the Report on "Evaluation of Paint and Insulation Debris Effects on Containment Emergency Sump Performance" June 1984:

Pages: 2-2, 6-6 thru 6-8
You are requested to submit the above information to the NRC after review.

REBa-MC:1c
1 Letter + 1 Attachment oe: ARMS (B\&R Site) OL

Very truly yours,

Robert E. Ballard, Jr Director of Projects
J.T.Merritt (TUSI Site) 1L
R.Tolson (TUSI Site) 1L 1A
R.Iotti (Ebasco, NY) 1L 1A
H.C.Schmidt (coo Westinghouse Bethesda) $12 \mathrm{~L}+12 \mathrm{~A}$ T.R.Puryear/L.Berkowitz (Westinghouse PA) 1L 1A

Bravo

Paint impurities for the steel coatings are presented in 38
Decomposition temperatures for all the containment coatings are 40
2350 F . They are thermally stable for continuous exposure at 41
750 . Carbozinc is thermally stable for continuous exposure at 42
750 F. The characteristics of all coating systems used at CPSES 43
are summarized in Table 3.1-2.
Paint Failure Modes45
Faint can fail by two general modes: chalking and 48
flaking/peeling. Chalking is loss of the paint film by powdering 49
to small (micrometer-size) particles. Flaking/peeling is loss of 51the paint film by flakes of small (usually cone inch) particles.Field and laboratory observations of the containment coatings
52
used at Comanche Peak confirm that the failure modes are by 53
54Carbozinc 11. The Carbozinc 11 failure mode is by chalking
55(powdering). Phanoline 305 , NUTEC 11, NUTEC 115

when cured, form a strong adherent bond with the substrate. The paint forms rigid and hard crust of protective layer. The f the mode for these coating systems will be by flaking of small failure in the size range of $1 / 8-1$ inch. Delamination of large sections of coatings is not likely when the paint is cured.
Other terminologies to explain coating failure used in the industry, such as blistering, intercoat delamination, cracking, undercutting (lifting of the paint film by substrate corrosion), checking, mud-cracking. 58 pinpoint rusting and, alligatoring, erosion, wrinkling, 59 plaking/peeling. rusting and pitting, lead to either chalking or 60
62
faining/peeling of small size ($<1 / 2$ inch) particles ("Good 63Painting Practice, Vol. 1, Steel Structures Painting Manual,"SSPC 1982, Chapter 23; ASTM D772-47, "Standard Method of
65Evaluating Degree of Flaking (Scaling) of Exterior Paints," ASTMVol. 06.01, 1984; ASTM E714-56, "Standard Method of EvaluatingDegree of Blistering of Paints," ASTM Vol. 06.01, 1984. ASTM
D660-44, "Standard Method of Evaluating Degree of Checking ofExterior Paints," ASTM Vol 06.01, 1984).
assumed to be transported towards the sumps. Table 6.2-23 summarizes the results presented in Tables 6.2-1 through 6.2-18. The data presented in Table 6.2-23 is for very conservatively assumed containment water temperature of 200 F (higher temperatures give higher critical velocities for transport). The lowest critical velocity for transport of $0.27 \mathrm{ft} / \mathrm{sec}$ is for 1/8-in.-size particles of the Phenoline 305 and Reactic 1201 coatings. The critical velocity for $1 / 8-i n$. size, Carbozinc 11 particles exceeds $0.57 \mathrm{ft} / \mathrm{sec}$. Also, the critical velocity for transport increases with increase in particle size. The transport velocity for one-in. size particles varies from 0.75 to $1.62 \mathrm{ft} / \mathrm{sec}$.

The particle size distribution from failed paint is not known with any degree of certainty, since experience with failures of the coatings used in the containment is almost non-existent. As stated in Section 3, there is information that the range of particle sizes is between $1 / 8$ in. and 1 in., but the distribution within that range is unknown. In the interest of conservatism, it was assumed in paint transport calculations that all paint particles are $1 / 8 \mathrm{in}$. in diameter. This is the smallest size that can block the screen. Any larger size will be less easily transported, as can be seen by inspection of any column from Tables 6.2-1 through 6.2-20. It was also assumed in paint transportation calculations that the specific gravity of paint was 1.5 (90 pounds per cubic foot). From the same tables, inspection of any row shows that lower paint density yields the most easily transported paint. Also, as shown in Table 3.1-2, the minimum specific gravity of any paint used in the containment is 1.5 .

Using these assumptions, it can be seen from Tables 6.2-1 through 6.2-20 and 6.2-23 that the minimum velocity required to transport paint is at least $0.27 \mathrm{ft} / \mathrm{sec}$.

Using this critical velocity and the existing velocities in Table 5.3-2, it can be seen that all paint initially on floor elevations 905,860 and 832 , and paint which falls an these levels (e.g., paint from the containment dome), if it fails, will be transported to openings in the floor and thence to the 808 floor level.

The distribution of the paint debris was evaluated based on the flow paths available for transport from the upper floors. The flow paths correspond to the open areas in the upper floors where the curbing is not present. The quantity of paint transported through each opening will be proportional to the water flow through the opening. Tables 6.2-24 and $6.2-25$ give the flow openings, their locations and the quantity of paint debris transported from each of the upper floors. Paint from the containment liner below the dome will be washed by spray water
directly to the 808 level. It will be distributed uniformly around the periphery at the bottom of the containment.

The amount of paint thus transported to the 808 level is shown in Table 6.2-25.

The transport of paint debris on the $808^{\prime}-0^{\prime \prime}$ elevation where the sumps are located is discussed in the following section.
6.2.4 Paint Trensport at $808^{\prime}-0^{\prime \prime}$ Elevation

Based on the critical velocities for paint transport discussed in Sections 6.2.1 and 6.2.3 and the available water velocities at the 808'-0" elevation, the transport potential for paint particles was evaluated. As discussed in Section 6.2.3, a very conservative critical velocity of $0.27 \mathrm{ft} / \mathrm{sec}$ was used for this evaluation.

Paint particles in any given zone of the containment were considered to have a potential for transport with the water flow zowards the containment sumps if the available water velocity exceeded the critical velocity for transport. Figures 6.2-3 and 6.2-4 show the critical areas on the $808^{\prime}-0^{\prime \prime}$ elevation of the containment, where the paint particles have a potential for transport. The critical areas are marked cross-hatehed. Figure 6.2-3 is based on the low water level and Figure 6.2-4 is for the high water level.

For the purpose of this evaluation the following assumptions were used to determine paint transport at the $808^{\prime}-0^{\prime \prime}$ elevation:
a. All the paint at the $808^{\prime}-0^{\prime \prime}$ elevation and the paint deposited from the upper levels (discussed in Section 6.2.3) is available for transport to the near sump zone Azimuth 30-0-315 .
b. Paint particles transporicd from critical areas continue to move from the critical areas until either the particle reaches the sump or enters a zone where the available flow velocity is less than the critical velocity for transport.
c. The water velocities used are based on the low water level in the containment.
d. No credit was taken for possible paint debris hideout at obstructions, corners and curbs.

Applying the above assumptions and using Figure 6.2-3, the quantity of paint that can be transported to the sumps is summarized as follows:
a. All the paint in the Azimuths $60-0-315^{\circ}$ between Elevations
$808^{\prime}-0^{\prime \prime}$ and $832^{\prime}-10^{\prime \prime}$.
b. All the paint on the coritainment liner in the Azimuths 60-0-315 from Elevation $808^{\circ}-0^{\prime \prime}$ to the spring line.
c. All the paint transported from the upper floors to Elevation 808' $0^{\prime \prime}$ between Azimuths 60-0-315 ${ }^{\circ}$ (see Table 6.2-25).

Table 6.2-26 gives the quantity of paint debris that can be transported to the sumps. The remainder of the paint shown in Table 6.2-25 remains on the 808 level at locations away from the sumps. Paint that reaches the BOB level between Azimuths 100° and 80° will accumulate near Azimuth 80° (see Figure 6.2-3). The remainder of paint which reaches the 808 level at locations distant from the sump (Azimuths 60° to 315°) will accumulate approximately where it falls.

GTN- 69345

```
Texas Utilities Generating Company
Skyway Tower
400 North Olive Street
LB }8
Dallas, rexas 75201
Attention: Mr. H. C. Schmidt
    Manager of Nuclear Services
```

Gentlemen:
TEXAS UTILITIES GENERATING COMPANY
COMANCHE PEAK STEAM ELECTRIC STATION
G\&H PROJECT NO. 2323
GIBBS \& HILL PAINT REPORT
Per your request, we are attaching the following information
regarding the Report on "Evaluation of Paint and Insulation
Debris Effects on Containment Emergency Sump Performance"
June 1984:

1. Page 6-7-Revised to include additional information requested by NRC.
2. Table 6.2-25 - This Tible is revised. This Table is now divided into two (2) separate Tables with additional data. The second Table is designated as Table 6.2-26.
3. Table 6.2-26 - see Item 2 above.
4. Section 8.0 - This Section is revised to incorporate the new analysis performed for near field effects. This analysis was presented to the NRC at the July 27, 1984 meeting on this subject.

Gibbs \& Hill, Inc.

5. Section 9.0 - This Section is revised to incorporate the methodology and the results of calculations for combining the far field effects and the near field effects discussed at the July 27, 1984 meeting with the NRC.

You are requested to submit the above information to the NRC after review.
MC.

$$
\begin{aligned}
& \text { Very truly yours, } \\
& \text { GIBBS \& HILL, Inc. } \\
& \text { Robert E. Ballard, Jr. } \\
& \text { Director of Projects }
\end{aligned}
$$

REBa-MC: 1c
1 Letter + 1 Attachment
CC: ARMS (B\&R Site) OL
J. T. Merritt (TUSI Site) 1 L
R. Tolson (TUSI Site) $1 \mathrm{~L}+1 \mathrm{~A}$
R. Iotti (Ebasco NY) $1 \mathrm{~L}+1 \mathrm{~A}$
H. C. Schmidt (c/o Westinghouse Bethesda) $12 L+12 \mathrm{~A}$
T. R. Puryear/L. Berkowitz (Westinghouse PA) iL 1 A

Figure 6.2-3 is based on the low, water level and Figure 6.2-4 is for the high water level.

For the purpose of this evaluation the following assumptions were used to determine paint transport at the 808'-0" elevation:
a. All the paint at the 808'-0' elevation and the paint deposited from the upper levels (discussed in Section 6.2.3) is available for transport to the near sump zone Azimuth $30-0-315^{\circ}$.
b. Paint particles transported from critical areas continue to move from the critical areas until either the particle reaches the sump or enters a zone where the available flow velocity is less than the critical velocity for transport.
c. The water velocities used are based on the low water level in the containment.
d. No credit was taken for possible paint debris hideout at obstructions, corners and curbs.

Applying the above assumptions and using Figure 6.2-3, the quantity of paint that can be transported to the sumps is
summarized as follows:
a. All the paint in the Azimuths $60-0-315^{\circ}$ between Elevations
$808^{\prime}-0^{\prime \prime}$ and $832^{\prime}-\ldots 0^{\prime \prime}$.
b. All the paint on the containment liner in the Azimuths 60-0-315 from Elevation $808^{\prime}-0^{\prime \prime}$ to the spring line.
c. All, the paint transported from the upper floors to Elevation $808^{\prime}-0^{\prime \prime}$ between Azimuths $60-0-315^{\circ}$ (see Table 6.2-25).
Table $6.2-26$ gives the quantity of paint debris that can be
transported to the sumps.

TABLE 6. 2-25

COATINGS CONTRIEUTION FROM UPFER ELEVATIONS

AZ IMUTH RANGE	905 ELEV	$\begin{aligned} & 860 \\ & \text { ELEV } \end{aligned}$	$\begin{aligned} & 832 \\ & \text { ELEV } \end{aligned}$	TOTAL AT 808 ELEV. (NOTE 1)
COATINGS AVAILABLE	87800	128200	128200	76480
0-45	-	-	26805	46743
45-60	0	\bigcirc	\bigcirc	6579
60-90	0	\bigcirc	-	13358
90-135	0	-	16316	36254
135-180	4248	10395	6993	41573
180-225	50981	34649	32633	138200
225-270	32571	45043	23309	120861
270-315	\bigcirc	38114	\bigcirc	58051
315-360	-	0	22144	42081
NOTE 1. CONTRIBUTION FROM LINER PLATE UF TO THE SPRING LINE AND PAINT AT THE 808 ELEV. ARE INCLUDED.				

FAINT DEBRIS TRANSFORTABLE TO THE SUMP SCREENS (NOTE 1)

SOURICE OF THE FAINT DEBRIS (NOTE 2)	QUANTITY OF DEBRIS SO.FT. (NOTE 3)	CU. FT. (NOTE 4)
FAINT AT AZIMUTH 0-45	-46743	-139
FAINT AT AZIMUTH $45-60$	6579	16
FAINT AT AZIMUTH 315-360	42081	$-\cdots$

NOTES

1. QUANTITY OF FAINT INCLUDES:
a. FAINT TRANSPORTED FROM UPPER LEVELS
b. FAINT ON LINER PLATE FROM 808 TO SFRING LINE c.PAINT BETWEEN 808 AND 832 FT . ELEVATIONS.
2. ALL FAINT LOCATED IN AZIMUTHS 60-0-315 IS ASSUMED TO BE AVAILABLE FOR TRANISFORT.
3. FAINT DEBRIS IS BASED ON QUANTITIES FRESENTED IN TABLE 6. 2-25.
4. DEBRIS VOLUME IS DETERMINED USING AN AVERAGE FAINT THICKNESS OF 10 MILS FOR STEEL AND 30 MILS FOR CONCRETE. A BULK DENSITY FACTOR OF 0.5 WAS USED.

section 8.0
 REVISED

AUGUST 14, 1984

This eecijon of the report summarizes the results of analyses cornuted to study the betaviao of paint fragment which bice dislodged in the event of paint failure and fall to the surface of the pool of water existing at the containment lower floor during the post-LOER recirculation mode.

As will be evident from the results cf these analyses, oily fin which is located near the ECES sumps or can be washed to the poo? surface in the vicinity of the sumps (including the pain: or the containment inez segment defined between the azimuthal angles cf 30 and 330° winch can be washed down. by the action cf the containment spray water) has the potential for ajvezseiy affecting the performance of the sump.

This section. of the report is subdivided into two subsections.
 the rot: ion. of the faint particles through. the pool of wet: The sezche suitseztion. considers the propensity for particles reaching the screen. tc sicict to $2 t$ and result ir. partial or full ciogヲing of the ELこS surf fine screens.

a. Introduction.

Notion of paint f:ayents thrcuet the poi water is affer:ef by many paza-e:ezs including fragtert size, shape, density, an bier veiozity in general, however, the finnzipa characteristics of the f:aytent notice are related to the local? Feynoids number and the fragment res moment of inertia.

For very low local Reynolds numbers ($\mathrm{N}_{\mathrm{G}}<1.0$), taint fracteris (herein idealized as thin disks) will move through the water mazritairing their original orientation., ice., the fitch angie with which they begin their descent through water. This
 rairiairs the initial angie of the fragment constant throughout= its descent through the water. Since the local feynoics riu-jer Ls on fine as:

$$
N_{R}=\frac{V \dot{\varepsilon}^{\prime}}{r}
$$

Where w is the particle relative velocity (relative to the water), d $2 s$ the fragment (disk) diameter, and γ is the kinematic viscosity of water, values of N_{p} less equal to one exist only ir regions of low fragment velocity and/oz virtually stagnant peel conditions. These conditions would not simultaneously exist fec: fragents which exceed $1 / 8$ inch diameter (particles having diameters less than $1 / \varepsilon$ inch will not clog the ECCS $s L_{\bar{r}}$ screens).

For higher Reynolds numbers ($1<N_{R}<100$), the motion of the fragment is characterized by damped pitching oscillations about a diameter. For low Reynolds numbers the damping is very large and the disk would immediately assume horizontal face-down attitude without oscillations. As the Reynolds numbers approaches 100 the damping is very small. Reference 14 notes that the type of motion that would be expected is also influenced by the mass moment of inertia of the fragment. The latter is given by

$$
I=m d^{2} / 16
$$

where m is the fragment mass which equals $\rho_{P} \pi d^{2} t / 4$ ($p_{P}=f r a g m e n t ~ d e n s i t y$, $d=$ fragment (disk) diameter and $t=f r a g m e n t ~ t h i c k n e s s) . ~$

A dimensioniess mass moment of inertia of the fragment defined as

$$
I^{*}=I / P_{v} d^{5}
$$

where $\rho_{w} d^{5}$ is proportional to the mass moment of inertia of a rigid sphere of water about its diameter d, is used as second independent parameter governing the frasment motion.

For $N_{R}>100$ the amplitude of the pitching oscillations increases and depending on the dimensionless mass moment of inertia, the Reynolds number and the height of the water, can eventually overturn and start tumbling. For the $1 / 8$ - inch fragment the dimensionless moment of inertia is approximately 3×10^{3} and $N_{R}=250$, from reference 14 this corresponds to a region where the fragment can efther tumble or oscillate with increased amplitudes.

Because of the uncertainty inherent in the behavior of the fragment as it travels through the water, all of the motions described above have been studied, so that the most conservative type of motion, ie that resulting in the longest horizontal distance travelled, could be selected. The theory and results for each type of motion are described below.
b. Analysis of Motion. With Constant Angle

This analysis assumes that the paint fragment is idealized as a disk which hits the pool surface at any incident angie. Conservatively, and because of surface tension effects (particles smaller than $1 / 8^{r}$ will break through the surface with difficulty), small paint fragment (ice., 1/6-inch diameter, 5 mils thick) are assumed to be momentarily arrested at the wiser surface, then to start their travel through the water at the angle of impart with zero initial velocity. Any angie of irfa=t is assumed to be equally probable since for travel in air (or together with spay droplets) the local Reynolds number is high. and the dirensaoniess mass merent of inertia (with respect to air) is also large and hence turning motion would be expected.

Fefe:zing to Figure E. 1-1, the equations describing the robson of the paint frạ̄ent through we:ez when. the fiche angie :s essu-é costar: are the following:

$$
\begin{aligned}
& f_{F} V_{P} \frac{d u}{d t}=F_{P} V_{F} E-F_{Q} V_{P} E-\frac{C_{D}(f)}{2} f_{V} A_{F} \operatorname{Toj} \sin E . W^{2} \\
& -\frac{C_{1}(\xi)}{2} \quad P_{\omega} \operatorname{Aproj} \cos \xi \quad \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=u^{2}+\left(v_{0}-v\right)^{2} \\
& A_{\text {proc }}=\frac{\pi d^{2}}{4} \cdot \ln (\varphi)
\end{aligned}
$$

-

Herein $u=v e r t a c a l$ component of the figment velocity
defined as positive downward
$v=$ horizontal component of the fragment velocity
$f_{f}=$ paint density (assumed to be the ririmiar - $902 b / f^{3}$)
$f_{w}=$ water density $\left(60 \mathrm{lb} / \mathrm{Et}^{3} \mathrm{a}: 200^{\circ} \mathrm{F}\right)$

$V_{0}=v e l o c i t y$ of pool water toward the screen
$C_{D}=$ Drag coefficient which varies with ©
$C_{L}=$ Lift coefficient which varies with \varnothing
β =angie from pool surface to the velocity vector
$V_{p}=$ fragment volume
The evictions describing the motion of the paint particle rave been wiitien for a two dimensional frokier only stiactiy

 sideways with respect to the direction. of the posed draft velocity. However, if one assures that lift is negiagibie, ho side motion car. be considered negiigibie, and the frotier redu ts a two cirerisional problem.

The value of C_{D} for the circular disk is described as a sine function of the incident angie of the disk relative to flow. It has maximum value of 1.9 when the disk is oriented neral to the relative velocity vector and a minimum value of $C_{p}=.074 \kappa_{g} 02$ when. the disk is parallel to the flow (Reference 15). The lift coefficient, C_{h}, is, conservatively assumed to be negiagible for consistency with the observations of References 14 and 16 , which found it to be $s 0$ for low Reynolds numbers. However, cor-ents by W.W. Willmarth to Reference 16 point out that if the motion is accorfaried by large oscillation, appreciable lift is developed. Hence, neglect of lift may not be entirely justifiable.

As will be shown later inclusion of lift results in lesser horizontal distance travelled by the fraçment.

The results of the constant angle analysis, indicated on Figure 8.1-2, show that if the initial incident angle assured for the disk approaches 90°, the relatively large downward vertical velocity dominates over the pool "drift" (recirculated pool velocity) velocity so this the fragment does not travel horizontally a significant distrance.

While mathematically this result is correct, physically it may be unrealistic because the actual behavior at the local Reynolds
riubers $\left(N_{R}=250\right)$ is expected to result in ar．adjustment of the pitch．angie．
As Reference 14 indicates，it the local Reynolds numbers of interest，the fragment will tend to orient itself in the mos： stable equilibrium state（unless large oscillations are present）． This state is defined as that which would have the largest dimension being normal，to the relative velocity，i．e．，the disk will move in a perpenticular position to the velocity that propels it（or drags it）a
The results of this ane lysis show that only paint contained within a distance of $\boldsymbol{E} \in \mathrm{f}$ feet of the edge of the screens has the potential for reaching the screen（ice．，bot tor of screen from 9.5 ft ．pool surface）．Moreover，since the angie remains constant，not all paint within this area will reach the sores．， but only a certain fraction．

That fraction is related to the angle with which the paint f：ageert hits the surface since，as will be discussed late：， th：is is not the incest conservative mode of paint transport． d：scuseicn of the quantity of paint transported ir．this fashacr． is deferzeut th a ia：ez su上serさion of this section．
c．Csciliatory Notion．of Ezagrent
The second analytical rethoderploys the save equations as the rethod described in liter b above，but adds one additional： elia：ion which describes the rotation of the particin fragment．
This ez－aさion is

$$
8-5
$$

$$
I \frac{d^{2} \theta}{d t^{2}}=-L\left(\frac{C_{D}}{2} P_{w} A_{\text {prof }} w^{2} \sin \phi+\frac{C_{L}}{2} \rho_{w} A_{p r o j} w^{2} \cos \phi\right)-\frac{C_{R}}{2} \rho_{w} A R^{3}|\dot{\theta}| \dot{\theta}
$$

Here R is the disk radius, $\dot{\theta}=\frac{d \theta}{d t}$ is the angular velocity, C_{R} is the rotational drag coefficient, and L is the distance from the fragment center of mass to the center of applied pressure. This distance is given by (Reference 16).

$$
L=\frac{0.44 d}{\pi^{2}}\left(90^{\circ}-|\Phi|\right)
$$

Using the two equations given in Item b, plus the third equation given above, the maximum horizontal distance travelled by the fragment does not vary with the initial angle of descent as shown in Figure 8.1-2. However, proportionately more paint located within this distance away from the edge of the screen can reach the screen, since paint which begins its travel at angles near 90° can now reach the screen from distances further away than calculated in the prior method.

In the results shown in Figure B.1-2 1:f: has been neglected. As Reference 17 indicates, lift may be present when large oscillation occur. Analyses performed with consideration of lift distance that in general lift wall reduce the maximal horizontal uncertainty tisociated with the choice. Because of the large coefficients, no credit car the choice of a value for lift However, one no credit car. obviously be taken for the effect. visualizing that since the the understand this effect by with its face aligned normal to its mo will travel substantially the particle oscillates about this position) average since angle of attack to lift which causes if ft position), it presents an motion.

$$
8-6
$$

 every of a 1/E-ineh paint of 0.8 fPs. Wo - 0 water with a drift veiosiたy no lift, and the other are shown. One trajectory assumes previously stated, liter assumes a large lift coefficient. As aceazacy of the later. However, its can be placed on the Never, its behavior tends to confirm horizontal distance travelled.
The frequency of oscillation of the particle iliusinazec in Fiorire $\varepsilon .=-3$ is 4.17 sec -1. Reference 16 provides an equation: from which the expected frequency of oscillation of disks falling through a medium can be predicted from the equation.

$$
n(f r e q u e n c y \text { of oscil1a:10n })=0.169 \mathrm{k}\left(\rho_{w} C_{D} / \pi c_{p}: d\right)^{\frac{1}{2}} \sec ^{-1}
$$

herein all symbols rave beer previously defined, one computes that for a particle $1 / E$ inch in diameter Ealing with a veloc: approximately equal, to 0.8 fps, its frequency of oscillation. should te about $4.53 \mathrm{sec}^{-1}$.

The last terf in the equation describing the rotation of the paint particle about its diameter is the damping term. Similar to the drag force it represents the inertia term which opposes the rotation of the fragment.

Since no literature was found for the rotational drag coefficient of a disk rotating about its diameter, a sensitivity study conducted by reproducing Reference 14 experimental results showed that $C_{R} \gg 0.1 C_{D}$ corresponds to damped 0 :cillations and $C_{R} \ll 0.1 C_{D}$ corresponds to tumbling. Figure 8.1-4 illustrates the effect of C_{R} on the damping of the oscillations.

d. Tumbling Fragments

The third analysis performed assumes that the fragment tumbies us it descends through the water. For tumbling. the fragment is idealized as sphere having an equivalent rass as the disk (a sphere having diameter equal to the disk would travel a mush shorter distance horizontaily).
Under this assumption the equations of motion are considerably simplified since there is no preferred orientation. This sphere corresponding to the $1 / E-i n c h$ paint fragment is corputed to travel horizontally maxirur cistance of $2-1 / 2$ feet.
Drag for the sphere in the range of Reynolds nurbers of interest is app:oximated by

$$
C_{D}=\frac{24}{N_{R}}\left(1+\frac{3}{16} N_{R}\right)^{\frac{2}{2}}
$$

E. 2 Analysis of Fotertial for Surp Clogaing

If cne conservaidvely essures tha any faint frajent iavgez the: the rinirur screen cpening which reaches the screen surfare sticks to the surface, anc further conservatively assumes that no fragrent overlays ancther fragrient, then results of the analysis erpioying method a) (Iter (b) above indicate that a lazge area of the fine screens car. be blocked.

The precise arount of screen blockage depends or many factors, including the amount of paint debris which
may have been transported to the screen by mechanisms destribed in other sections of this report. This section however, demonstrates that regardless of mechanism of transport, i.e.. global transport from other containment areas as addressed in the other sections of this report, which clogs the lower portion of the screens, or local transport through. the pool in the imnediate vicinity of the sumps, as adressed in this section, which clogs a significant area of the ufper portion of the screens. there will rerain on the top portion of the screer band estimated to be minimur of 2 inches wide, which will be free of paint. This is not the only area of the screen free of paint, debris. . The minimum amount of sump free area resulting fror failure of all paint in containment will be 24 sq . ft. Results of the full scale test conducted by Western Canada Ltd. have shown that this level of blockage is acceptable from the standpoint of sump performance and NPSH requirements of the ECCS pumps.
The 24 sq . ft. is a conservativefigure, since as will be shown later there are other areas of the screen which will only be partly blocked. To understand how the 24 sq . ft. composite figure is derived, it is necessary to understand the precise
geometry of three cop portion of the sump. This geometry is shown in Eagre B.2-1.

The top of the sump rack is solid steel plate which ex: ends more than 1 foot outward from the fine screen, and approximately B inches outward from the course screens.

A distance of $5-3 / 8$ inches separates the fine and coarse screens (5.5 inches frow outer edge); and solid plate connects the fine screen frame to the coarse
screen frame.
The top of tiv fine screens is solid plate extending downward approximately $=$ delve inches. Likewise, the coarse screens are separated from the top plate by a gap, which is approximately ten inches. The $t=p$ of the coarse screen consists of a solid plate 2-11/16 inches wide.

The results of the analyses in this section indicate that at the beginning, when: the screens are relatively free and the inlet velocity it the fine screen is $0 . O E$ fps, the descent of the smallest paint particles through the pool (leE inch, 5 mils

in pool regions far away from the screens where the pool drift velocity is also about 0.08 fps , but at steeper angles in nearer regions where the pool drift velocity falls to about 0.04 fps . As particles
accu-jiate against the screen $12 n c a u a i n g$ oedras from the other transport mechanism described 2π other sections), the inlet velocity at the fine screen itself will increase, although fy:ther away from the fane screen (ie., just outside the coarse screens) the velocity will not charge nearly as mach. Ultimately, as the fine screens become blocked to the maxima. extent, the inlet velocity reaches value of about 1.18 fps at the fine screens.

Two dimensional models were constructed to simulate the flow of water into blocked and unblocked trash racks, A section of the region around the trash rack was modeled using the BEACON/MOD3 code which was run to steady state conditions. The section measures sixty inches wide by 114 inches high (the pool height). The region is subdivided into a 9 by 14 matrix of cells. The fine screen is assumed to be a rigid boundary for the
case, where parts of the screen are assumed blocked to progressively higher degrees. The upper structure of the rack is simulated by layers of obstacle cells, and the pressure drop across the coarse screen is modeled with a loss coefficient.

BEACON is a best-estimate, advanced containment analysis code which provides two-dimensional flow modeling capability for the solution of two-component two-phase fluid problems. The basic solution procedure used in BEACON is based on the K-FIX code developed by Los Alamos Scientific Laboratory. Each phase is described in terms of its own density, velocity and temperature. The six field equations for the two phases are coupled through mass, mementum and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to the determination of the pressure, density and velocity fields. The implicit solution is accomplished iteratively.

The details of che model analyzed are shown in Figures 8.2-2 to 8.2-4 show the flow field for each specific case. Outflow (sinks, i.e. flow into the sump) and inflow (sources) into the model (i.e. the boundary conditions) were adjusted to satisfy the equation of continuity for the sump screen as a whole.

The results of the BEACON models are shown in Figures 8.2-2, 8.2-3 and 8.2-4 for a free fine screen, a fine screen blocked so that only a 5.63 inch band remains free at the top, and for a $2^{\prime \prime}$ band being free at the top of the screen respectively. The 5.63 inch free band is shown since it reveals that the maximum distance away from the sump top plate edge from which paint flakes can reach the screen is only about 4 feet for steel paint and 11.5 inches for concrete paint. The distances would also be obtained for the case of a free screen and hence represent the maximum extent of the region within which paint falling to the surface of the

$$
8-9
$$

pool can ultimately result in screen blockage.
In Figure 8.2.3 the trajectories of steel paint particles and concrete paint particles are shown superimposed on the flow f.eld. Also shown are the trajectories which divide the particles into two categories: those which will be sucked into the screen open area and clog it further, and those which will settle into already blocked areas. These trajectories (for either kind of paint particles) are defined as the separatrix. Also shown in the separatrix in the case of the free screen. Figure 8.2-5 shows in more detail the trajectories of concrete and steel particles which can reach the screen in the vicinity of 2 inch free area band. The concrete paint flakes, which possess a specific gravity of 1.65 and a thickness of 20 mils , fall at a terminal velocity of approximately $0.2 \mathrm{ft} / \mathrm{sec}$. Assuming that these flakes do not tumble and considering the geametrical considerations on the top of the trash rack, this velocity if sufficient to insure that the concrete paint flakes would fall at a trajectory which would be unaffected by the suction fram the two inch free area. Thus the concrete paint flakes would be unable to cause additional blocking since they couldn't reach the screen near the open area.

A steel paint chip would have a minimum specific gravity of about 1.5 and a thickness of 5 mils . If a paint chip of the minimum size capable of blocking the fine screens, about 1.8 inch, is assumed to originate at the top of the trach rack at the worst possible location dictated by gecmetry, the untumbling particle can be calculated to reach approximately the lower quarter of the 2 inch free area if a maximum drag coefficient of 1.9 is assumed. The terminal falling velocity for this case is about 0.08 fps . However, the effect of the drag coefficient, particle size, and tumbling mode assumed is important in detemining trajectory. If a drag coefficient of 1.2 is used (corresponding to the higher Reynolds number) the resulting terminal velocity would be increased to about . 1 fps . An untumbling steel paint flake at this terminal velocity would be calculated to reach an even lower portion of the 2 inch free area.

Moreover, in the free flow orifice of two inches, the velocity at the fine screen is about 1.18 fps and the velocity at the coarse screensinnlet is about $0.4 \mathrm{fps}_{\mathrm{A}} \mathrm{N}^{t}$ these higher velocities the particles will tumble and bahave more as an equivalent sphere than flakes. For the lighter particle, the $1 / 8$ inch steel paint chip with a specific gravity of 1.5 and thickness of 5 mils, the terminal velocity of an equivalent sphere would be about 0.28 fps . Tumbling particles at this velocity would be unaffected by the 2 Inch free area.

In reality the particle will behave somewhere between the case of the untumbling flake and the tumbling flake, and hence it is expected that an approximate $2-1 n c h$ bani of screen at the top will remain free. It must also be stated that the assumption of all particles of paint having a specific gravity of 1.5 is conservative, as is the assumption that all will have an equivalent diemeter of $1 / 8$ of an inch. The uncertainty in this type of analysis is discussed later in this section.

In oddition, the free band of fine screens that vould rerain on all sides of the sump, there is some odditioral area of the screer. whici. will not be blocked.

The screer facing the stear generator wall is corputed to be not corpietelyblosked. Nost of the paint on conszeie vilis is computed not to reach the sireen bezause of its reiativeiy larye thickess $(=25-30 \pi i l s)$. Of the reainder of the paint a fraction corsisting of apjroxirately 35 ft of paint frof the ceiling plus about 30 ft of faint or pipes, eufperte, etc., ie corp-tij to reach. the sereer. over about half ize width. The rereincer of the vidth is corpletely clogged by the ceiling paint and support paint. If there vere no other debris egainst that Eide of the sump, the screer oper area would be about $25 \mathrm{ft}^{2}$. With debris covering the bottor half of the screer, only about $12.5 \mathrm{ft}^{2}$ would rerair open. This figure is equally applicable to edther sump. Together with the free area at the very top of the sereen, the total free area vould be approximately $24 \mathrm{ft}^{2}$. This blockage would not irjair the capacity of the ECCS sump to function, since es statedir. Section 4, $19 \mathrm{ft}^{2}$ is sufficient.

The precise amount of fine screen area that can become clogged as a result of paint fragments raining to the surface of the water in the vicinity of the sumps (near-field effect) depends on several factors, some of which can be determined with good precision, while others have more uncertainty associated with them.

For the kind of analysis reported above the two factors influencing the results in the most direct manner are the drift velocity of the water in the pool and the settling (vertical) velocity of the paint fragment. is primarily a function of the water depth, the geometry of the pool (whether there are any obstacles) in the immediate vicinity of the sumps, and the flow through the ECCS pumps. Continuity (conservation of mass) enables the precise determination of the drift velocity of the water in the region of the pool close enough to the fine screens so that no obstacles are impeding flow to the screen, yet far enough away from it so that the screen effect is not felt; regardless of how much blockage may exist. Thus the pool velocity at the boundary of the "near field" is accurately known.

As seen in the preceding, it is about 0.04 fps at a distance of more than four feet away from the fine screen. The water velocity fields in the pool in the near-region up to the screens can be computed for different amounts of screen blockage by means of finite difference,two dimensional computer models (which solve all of the conservation equations), as is shown in the preceding analyses. For the relatively simple geometries of sump and pool, the results obtained by these computer models are expected to be accurate.

The second factor, the settling (vertical) velocity of the paint fragment, depends on the local Reynolds number and the drag coefficient (and lift coefficient) assumed for the particle. The local Reynolds number depends on the relative velocity between fluid and particle, and this in turn depends on the settling velocity which depends on the drag and lift coefficients (in turn these are functions of the local Reynolds numbers). The largest amount of uncertainty
in the preceding calculations is associated with the value of drag coefficient assumed to represent the behavior of the paint particle. This affects the settling velocity and therefore the particle trajectory in water.

Uncertainty in the drag factor does not influence the extent of the region sway from the screen from which any paint that can clog the screen wust originate (ie. 11.5 inches for concrete paint and about 4 feet for steel paint) since the local Reynolds number near the pool surface is known with good precision. It can however, affect the trafectory computed for the paint particle near the screens. There, if the paint iragments are corquited to tumble and behave as equivalent spheres, then one is led to the $2^{\prime \prime}$ minimum free gap at the screen top. If larger drag coefficients are employed then one could conclude that less of a gap could remain, since trajectories would be affected.

In recognition of the uncertainty in the precise trajectory of the paint fragments, the amount of fine screen area that can become clogged by "near field" paint has also been evaluated in a differert manner as described hereinafter.

A third very important factor not discussed so far, but one which can be precisely determined, is the total amount of paint which is in the ragion above the surface of the pool of water, close enough to the sumps, so that when falling to the pool, it can be cransported to the screen. From the preceding that region is defined as an area surrounding each sump which extends 11.5 inches away from the edge of the sump top overhang for concrete paint and 4 feet for steel paint.

Teams of TUGCO personnel have inspected these areas and determined the quantity (in ft^{2}) of paint of either kind contained in an imaginary volume defined from the surface of the pool to the floor above (or further up if grating is piesent).

The quantities of paint determined to be present in the region of interest are shown in the following plan view. There the cross hatched region is the region
of interest for concrete paint while the dashed plus cross hatched region is the region of interest for steel paint. The figures showlı are for cambined steel and concrete paint surface area available.

Clearly the traditional amount of sump area blocked, in the absence of any other effect, will be the ratio of the available paint surface area to the screen surface area an a section by section basis. Since 4 feet defines the region of influence for steel paint, each screen has been divided into 4 foot segments and the fractional blockage of each segment has been corquited as the ratio of the paint available per segment of screen segment area. Where the ratio is larger than 1, the particular screen segment is assumed to be totally blocked. Excess paint can also move laterally to help block adjacent segments. However, lateral movement cannot be more than about 4 feet for steel paint or 11.5 inches for concrete paint (for the same trajectory cansiderations given previously). Figure 8.2-6 shows the results of these calculations.

Fram Figure 8.2-6 it is clnar : the sump screen area exceeds the amount of paint that can be deposited on it (fram near field effects).

One of the important results of the finite difference analyses if the definition of the near sump flow field. As can be seen fram the results, velocities near the sump are insufficient to transport debris or paint fram other areas of the containment. Velocities corputed in different locations of the containment lower elevation are on occasion sufficiently high to transport paint and debris along the floor. However, as the flow reaches the vicinity of the sump proper (i.e. within four to five feet) the flow velocities reduce to approximately 0.04 fps .

Any material or debris capable of clogging the sump screens which is carried by the fluid would thus be settling to the floor without further transport. Hence it is unlikely that any degree of accumulation of debris or paint transported along the floor from far regions of containment would occur right againt the sump (e.g. accumulation at angle of repose against the screens). Therefore the far-field paint accumulation and near-field paint cloggings are not additive in realty even though they have been considered so, in the initial analysis which led to the $2^{\prime \prime}$ open area at the top of the fine screens.

DRIFT VELOCITY $=0.08 \mathrm{FT} / \mathrm{SEC} 7$

FIGURE 8.1-2

FiguaE 8.1-4

Flow Field for Fully Open Screen - Figure 8.2-2

Flow Field for Screen with 2"Opening - Figure 8.2.4

EQUIVALENT SPHERE - VERTICAL VELOCITY:	$0.284 \mathrm{ft} / \mathrm{sec}-$
STEEL FRAGMENT - VERTICAL VELOCITY:	$0.084 \mathrm{ft} / \mathrm{sec}-$
STEEL FRAGMENT - VERTICAL VELOCITY:	$0.10 \mathrm{ft} / \mathrm{sec}-\ldots$
CONCRETE FRAGMENT - VERTICAL VELOCITY:	$0.2 \mathrm{ft} / \mathrm{sec}-\cdots$

FIGURE 8.2-5

REFERENCES

1) ANSI N101.2 - 1972 Protective Coatings (Paints) for Light Water Nuclear Reactor Containment Facilities
2) SSPC, Volume 1, Steel Structures Painting Manual, Chapter 23
-1982
3) ASTN D772-47, Standard Method of Evaluating Degree of Flaking (Scaling) of Exterior Paints, Volume 06.01-1984
4) ASTN E714-56, Standard Method of Evaluating Degree of Blistering of faints, Volume 06.01 - 1984 Evaluating Degree of
5) ASTM D660-44, Standard Method of Evaluating Degree of Checking of Exterior Faints, Volume 06.01-1984
6) NUREG/CR -2791
7) Regrilatory Guide 1.82
B) Western Canada Hydraulic Laboratory Report, Dated Noverbe:
1961
8) Open Channel Hydraulics, Vente Chow, NeGraw Hill, 1959
9) Handbook of Hydraulics, Grater King, NcGraw Hill, Eth
10) Design of Small Dams, U.S. Department of Interior, Bureau of Reclamation, U.S. Government Printing Office, 1974
11) NJREG - 0897, Rev. I (Draft), June 1984
12) NJREG/CR - 3616
13) W.W. Willmarth, N.E. Hawk, and R.L. Harvey, "Steady and Unsteady Motions and Wakes of Freely Falling Disks," The Physics of Fluids, 7, 2, 197-208 (1964).
14) B. McCormick "Aerodynamics, Aeronautics, Mechanics," John Wiley \& Sons, New York, 1979, and Fight
15) E.K. Marchildon, A. Clamen, W.H. Gavin, "Oscillatory Motion of Freely Falling Disks," Physics of Fluids, 9, 2018 (2964).
16) A.W.W. Willmarth "Reply to Comments by E.K. Marchildon, A. Clamen, and W.H. Gavin," The Physics of Fluids, 9, 2019
(1964).
SECTION 9.0
REVISED
AUGUST 14, 1984

9.0 DEBRIS EFFECTS ON EMERGENCY SUMPS

Each of the two containuent recirculation sump screens has a total through-flow area of 386 sq ft . The sump screen design is in accordance with the requirements of Regulatory Guide 1.82 with a through-screen velocity of 0.11 fps . Figure $3.2-2$ shows the arrangement of the Emergency Sumps.

The NPSH for RHR/SI pumps and containment spray pumps during the recirculation phase is given in Table 4.1-2.

Blockage of the sumps by debris will tend to increase the pressure losses across the sump screens. The increase in pressure losses will depend on the extent of the blockage and the porosity of the debris. The increase in pressure losses will reduce the available pump NPSH. This can have an adverse effect on the operation of the recirculation pumps, if it exceeds the margin between available and required NPSH.

For totally-impermeable debris, the pressure loss across the sump screens was calculated based on the area available for flow, excluding the projected blockage area.

The evaluation of fibrous insulation debris generation shows that there are no zones inside the containment where such insulation can fail and cause debris coincident with a demand for the emergency sump operation.

The insulation debris transport analysis discussed in Section 7.3 determined that the high efficiency insulation and metallic insulation will not be transported to the sump screens.
The only debris that has any potential for sump screen blockage is the paint debris. The quantity of paint that can be transported to the near sump zone is discussed in Section 6.2 (Paint Transport). Table 6.2-26 gives the quantity of paint that can be transported to the near sump zone. The sump screen blockage due to this paint debris was determined and combined with the sump screen blockage due to near sump effects discussed in Section 8.0.

9.1 Sump Screen Blockage by Far-Field Effects

Any paint debris that is transported to the sump by sliding along the concrete surface will accumulate on the floor. This is because the water velocity at the screens is much lower than the velocity required to put the debris into suspension. However, for a conservative first approximation, to determine if pressure losses are excessive, it was assumed that the screens will be blocked by the paint particles, forming a heap next to the screens with an angle of repose of 45 degrees.

For the purpose of this evaluation, the sump screens were divided into several sections. Figures $9.1-1$ and $9.1-2$ show the two sump screens and the designations for each screen section.

Paint debris transported to the near sump zone was discussed in Section 6.2 and quantified in Table 6.2-26. This paint debris was postulated to accumulate at each section of the sump screens.
The distribution of paint accumulation at each screen section depends upon:

- The proximity of the source of debris to the screen section.
- The direction of water flow.

For all screen sections the quantity of paint between $808^{\prime}-0^{\prime \prime}$ and 832'-0" Elevations is equally distributed to each screen section. In addition the paint debris distribution is performed for various screen sections as shown in Table 9.1-1.
Tables 9.1-2 and 9.1-3 show the calculated paint debris accumulation at each sump screen section and the area of the screen that can be blocked.

9.2 Sump Screen Blockage by Near-Field Effects

Section 8.0 of this report evaluates the sump screen blockage potential by various mechanisms involving direct impingement of paint particles on the screen without settling to the containment floor. This evaluation shows that:
a. A band of 2-in. screen openings will always be available for flow.
b. The sump screen Sections B1, B6, B7, F4, F5, F6, H3 and H4 will only be partially blocked. This is because the available paint for these sections is less than the required quantity for maximum blockage (all the screen below 2 in. from the top of the screen).

9.3 Overall Debris Effects on Emergency Sumps

The combined blockage of the emergency sump screens due to farfield and near-field effects were calculated in order to assess the performance of the emergency sumps. Tables 9.3-1 and 9.3-2 summarize the results of the calculations for the screen blockage from far-field and near-field effects.

The blockage from far-field transport of paint debris was determined as discussed in Section 9.1 and presented in Tables 9.1-2 and 9.1-3.

The blockage from near-field effects was based on evaluations presented in Section 8.0 and Figure 8.2-6. The area blocked by near-field effects is limited by the available quantity of paint and its trajectory for impingement on the screen as discussed in Section 9.2 . Also, the near-field blockage cannot occur in the top $2-i n$. sections of the screens. In Tables $9.3-1$ and $9.3-2$, the near-field blockage is presented based on the values given in Figure 8.2-6. The open area of the screen available flow was calculated and presented in Tables $9.3-1$ and $9.3-2$. This information shows that about 24 sq ft of open screen area will be available for sump at Azimuth 15° and an open screen area of about 58 sq ft will be available for sump at Azimuth 330°. The open areas for the two sumps is considerably larger than the minimum required screen free area of 19 sq ft discussed in Section 4.0 of this report.

9.4 Emergency Sump Pressure Drop

The performance eriteria for the emergency sumps are discussed in Section 4.0 of this report. Based on the summary of Western Canada Hydraulic Laboratories' test data presented in Table Q. 1-3, the maxivum head loes through the screens is about 0.4 ft with a screen opewing of 24 sq ft . Accounting for this loss and using the data on ECCS pump characteristics given in Table 4.1-2, the NPSH margjxa for these pumps is as presented in Table 9.4-1. Th: s table shows that the spray pumps have an NPSH margin of 5.81 ft and the RHR pumps have an NPSil margin of 4.23 ft . Thus, there is no degradation in the performance of the sumps or the ECCS pumps.

Based on the above evaluations for insulation and paint debris effects on the emergency sump performance, the following conclusions were aryived ut:
A. Insulation has no potential for forming debris which can block the sump screeng.
b. Paint debris accumulating in the near sump area resulting from all the gnating systems failing in the containment cannot result in unacceptable sump screen blockage.

TABLE 9.1-1
SOURCE OF PAINT DEBRIS ON
SUMP SCREEN SECTIONS

DEBRIS SOURCES (NOTE 1)

SCREEN SECTION	LINER PLATE AZIMUTH RANGE	UPFER FLOOR (NOTE EQUIV. LENGTH,FT.	
A_{1} \& $A 2$	0	0	NOTE 3
B1 TO B7	0	0	
C1 \& C2	353-358	7.0	
D1 \& D2	358-12	9.5	
D3 T0 D5	12-23	11.5	
D6 \& D7	23-35	\bigcirc	NOTE 3
E1 \& E2	348-353	2.5	
F1 TO F7	0	0	
G1 \& G2	0	0	
H1 TO H5	315-337	\bigcirc	
H_{6} \& H_{7}	337-348	11.5	

NOTES:

1. PAINT DEBRIS IN AZIMUTHS 30-0-315 BETWEEN ELEVATIONS 808'O" AND 832'O" IS UNIFORMLY DISTRIBUTED FOR EACH SECTION OF THE SCREEN.
2. PAINT DEBRIS FROM THE UFPER ELEVATIONS IS DISTRIBUTED BASED ON THE OPENING LENGTH (GRATINGS) AT THE 832'0" ELEVATION IN THE 60-0-315 AZIMUTH RANGE.
3. ALL PAINT DEBRIS IN SUBCHANNEL 4B (INCLUDING LINER PLATE) IS DEPOSITED ON SCREENS A1, A2, D6 AND D7. THE DEBRIS FROM THE STEAM GENERATOR SIDE GF THE SUB-CHANNEL 4B IS DEPOSITED GN SECTIONS A1 AND A2. THE BALANCE (LINER SIDE) IS DEPOSITED ON SECTIONS DG AND D7.

TABLE 9.1-2
PAINT DEBRIS TRANSFORTED TO THE SUMP AT AZIMUTH 15

SCREEN SECTION	LENGTH FT.	DEBRIS CU.FT.	DEBRIS HEIGHT, FT	AREA BLOCKED SQ.Fi.
A1	3.34	5.07	1.74	5. 82
A2	3.34	5.07	1.74	5.82
B1	3.86	1.63	0.92	3.55
B2	3.86	1.63	0.92	3.55
B3	3.86	1.63	0.92	3.55
E4	3.86	1.63	0.92	3.55
85	3.86	1.63	0.92	3.55
B6	3.86	1.63	0.92	3.55
B7	3.86	1.63	0.92	3.55
C1	3.34	15.96	3.09	10.32
C2	3.34	15.96	3.09	10.33
D1	4.29	23.49	3.31	14.19
D2	4.29	23.49	3.31	14.19
D3	4.29	17.94	2.89	12.40
D4	4.29	17.94	2.89	12.40
D5	4.29	17.94	2.89	12.40
26	4.29	14.01	2.56	10.96
17	4.29	14.01	2.56	10.96

TABLE 9.1-3

PAINT DEBRIS TRANSPORTED TO THE SUMP AT AZIMUTH 330

SCREEN SECTION	LENGTH FT.	DEARIS CU.FT.	DEBRIS HEIGHT, FT	AREA BLOCKED SQ.FT.
E1	3.34	6.33	1.95	6.50
E2	3.34	6.33	1.95	6.50
F1				
F_{2}	3.86	1.48	0.88	3.38
F3	3.86	1.48	0.88	3.38
F4	3.86	1.48	0.88	3.38
F5	3.86	1.48	0.88	3.38
Ft	3.86	1.48	0.88	3.38
F7	3.86	1.48	0.88	3.38
	3.86	1. 48	0.88	3.38
G1				
G2	3.34	2.56	1.24	4.13
	3.34	2.56	1.24	4.14
H1				
H2	4.29	26.95	3.55	15.20
H3	4.29	26.95	3.55	15.20
H4	4.29	3.30	1.24	5.32
H5	4.29	3.30	1.24	5.32
H6	4.29	3.30	1.24	5.32
H7	4.29	3.30	1.24	5.32
	4.29	3.30	1.24	5.32

TABLE 9.3-1
SUMMARY OF SCREEN BLOCKAGE FOR SUMP AT AZIMUTH 15

SCREEN SECTIOH		AREA ELOCKED		AREA FREE TOTAL. SO.FT.
	SCREEN	FAR	NEAR	
	AREA, SOFT	FIELD	FIELD	
A1	19.18	5.82	12.81	
A2.	19.18	5.8?	12.81	
E1	22.18			
B2	22.18	3.55	17.9	4.6
E3	22.18	3.55	17.99	0.64
B4	22.18	3.55	17.99	0.64 0.64
E5	22.18	3.55	17.99	4
E6	22.18	3.55	14.00	0.64
E7	22.18	3.55	14.00	4.63
				4.63
C1	19.18	10.32	8.30	0.56
C2	19.21	10.33	8.32	0.56
D1	24.64	14.19	9.74	0.71
D2	24.64	14.19	9.74	0.71
D3	24.64	12.40	11.53	0.71
D4	24.64	12.40	11.53	0.71
D5	24.64	12.40	11.53	0.71
D6	24.64	10.96	12.97	0.71
D7	24.64	10.96	12.97	0.71
TOTAL FREE AREA, SO.FT. =				

TABLE 9.3-2
SUMMARY OF SCREEN ELOCKAGE FOR SUMP AT AZIMUTH 330

SCREEN SECTION		AREA BLIOCKED		AREA FREETOTAL.
	SCREEN	FAR	NEAR	
	AREA, SOFT	FIELD	FIELD	Q.FT.
E1	19.18	6.50	12.12	56
E2	19.18	6.50	12.12	0.56
F1	22.18	3.38	18. 16	0.64
F2	22.18	3.38	18.16	0.64
F3	22.18	3.38	18.16	0.64
F4	22.18	3.38	12.00	6.80
F5	22.18	3.38	0.00	18.80
F6	22.18	3.38	5.00	13.80
F7	22.18	3.38	18.16	0.64
61	19.18	4.13	14.49	0.56
G2	19.21	4.14	14.51	0.56
H1	24.64	15.20	8.73	0.71
H_{2}	24.64	15.20	8.73	0.71
H3	24.64	5.32	14.00	5.32
H4	24.64	5.32	14.00	5.32
H5	24.64	5.32	18.61	0.71
H6	24.64	5.32	18.61	0.71
H 7	24.64	5.32	18.61	0.71
TOTAL FREE AREA, SO.FT. $=58.39$				

> TABLE $9.4-1$ SPRAY AND RHR PUMP NPSH

Pump

Parai.eter	CSS	RHR
Loss through screen with $24 \mathrm{ft}^{2}$ area, ft	0.4	0.4
Water elevation to supply required NPSH, ft'1)	1.02	2.6
Water elevation available, ft'1)	6.83	6.83
NPSH margin, ft	5.81	4.23

Loss through screen0.40.4
Woter elevationft supply required NPSH,Water elevation available,NPSH margin, ft5.814.23

11 Pem Plaza
New York. New York 10001
$\begin{array}{ll}212 & 760-4438 \\ \text { Telex } & 44\end{array}$
Domestic 127636/968694
International 428813/234475
A Dravo Company

AUG 61984

August 3, 1984
H. C. SCHMIDT

```
GTN- 69312
```

Texas Utilities Generating Company
Skyway Tower
400 North Olive Street LB 81
Dallas, Texas 75201
ftention: Homer C. Schmidt
Project Manager - Nuclear Power Plants

Gentlemen:

> TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION
> G\&H PROJECT NO. 2323
> GIBBS \& HILL PAINT REPORT

Per your request we are attaching the following information for your review and transmittal to the NRC:

1. Responses to NRC Questions
2. Addendum-1 to the report
3. Errata for the report.

> Very truly yours,
> GIBBS \& HILL, INC.
> \& कn marano
MEBA MC
REBa-MC-DCP: sce
1 Letter + Attachments
CC: ARMS (B\&R Site) OL
J.T. Merritt (TUSI Site) 1L
R. Tolson (TUSI Site) 1L + Attachments
R. Iotti (TUSI Site) $1 \mathrm{~L}+$ Attachments

Draño

RESPONSE TO QUESTIONS

Question 1:

Provide a detailed analysis to verify the velocities presented in Table 5.4-11 using the area surrounding Sub-Channel 4 A as a typical case where flow sticeams from Channels 5 and 8 mix. Evaluate the possibility of flow variations which may result in velocities greater than those presented in the report.

Response:

Attached Figure-1 shows the area in question in more detail than shown in the report. Flows at Sub-Channel 4A come from door 4 (Channel 5) and the containment annulus (Channel 8).

Table 5.4-11, "Total Velocity - Two Trains, Low Level", shows that the flow rate (Q) in Channel 5 is 5.26 cubic feet per second (cfs). At the top of a short fliaht of steps (section 5G), the water depth is 2.8 feet and the w dth (W) of the channel is 5 feet. Since this area is free of obstructions, the velocity (V) is 0.38 feet per second (fps). A the bottom of the steps the water depth is 6.8 feet and the v locity drops to 0.16 fps , well below the critical velocity of 0.47 fps required for transport. Thus all the debris would be retained upstream of Channel 5 H prior to entering the mixing zone. At the exit from this region, section 5 H , the velocity increases to 0.23 fps , still below the critical velocity.

The flow coming around the annulus (Channel 8) is 10.79 cfs , from Table 5.4-11. Section $8 C$ is a choke point with a width of 5 feet. The resulting velocity is 0.30 fps. This flow decreases between section 8 C and 8 D , to a velocity of 0.20 fps . Thus, the velocity drops below critical approximately half way between these two sections and the debris would be retained upstream of Sub-Channel 8D. Entering Sub-Channel 4A, there are two streams of approximately equal velocity, both below the critical velocity. The velocities will decrease further as they enter the free space at Sub-Channel 4 A , and will be below critical. As the water enters the narrow area approaching Sub-Channel 4B1, its velocity will increase, reaching an average of 0.32 fps .

In addition to the velocity distribution analysis of Sub-Channel $4 A$, Sub-Channel $3 A$ and $3 B$ were also analyzed for completeness. Figure-2 attached shows Sub-Channel 3A in more detail. The flows to Sub-Channel 3B come from Door 1 ('Channel 6) and the containment annulus (Channel 2). From Table 5.4-11 of the

```
report, the flow rate in Channel 6 is 6.19 cfs and the flow rate
``` in Channel 2 is 15.08 cfs .

As shown in Figure-2, the Channel 6 flow from steam generator compartment 11 passes through the door opening (Sub-Channel 6G) with a water depth of 2.8 feet and a clear length of 4.75 ftet . This flow passes over few steps to 808 feet elevation (SubChannel 6 H) and continues through Sub-Channel \(6 I\). The flow length at Sub-Channel 6I is 5 feet and the water velocity is 0.19 fps. Similarly, the velocity at Sub-Channel \(3 A\) in the containment annulus is 0.10 fps .

Thus the two streams are at velocities less than the critical velocity required to transport debris. Entering Sub-Channel 3Al, these two streams mix to give an average velocity of 0.19 fps . Thus for Channel 3, the velocity throughout the path will be considerably less than the critical velocity required to transport debris.

In Table 5.1-1, the source of water from reactor coolant is specified as \(12,740 \mathrm{cu} . \mathrm{ft}\). for both maximum and minimum water inventories in the containment sump. Quantify the difference it may have between maximum and minimum and its effects to minimum water level, and water velocities in the flow channel.

\section*{Response:}

The minimum quantity of reactor coolant inventory is calculated to be \(12,000 \mathrm{cu} . \mathrm{ft}\). The corresponding minimum water level will be \(6.73 \mathrm{ft} .\), instead of 6.8 ft . The variation in the level is less than 2 percent and is well within the accuracy of this evaluation. The results of the calculations for velocities are based on conservative field measurements of obstructions and flow openings which have a margin of 2 to 10 percent on the conservative side. In addition the water levels in the containment are calculated without taking credit for submerged piping, supports and equipment. For this evaluation, it is estimated that the actual water levels will be higher than the conservative values presented in the report.

Based on this, the flow velocities in the report will not change.

\section*{Question 3:}
```

Justify the use of flow resistance term used in Table 5.4-2 to
5.4-10 as L/A instead of (L/A) PW, where iWW is the wetted perimeter.

```

\section*{Response:}

The use of L/A for flow resistance was based on the NUREG/CR-2791 Table C-8 calculations. This approach was used to maintain the paint transport analysis, similar to the NUREG methodology for insulation. The flow distribution determined from use of \(L / A\) and L/D are generally in agreement; see attached Tijle 5.4-11 (ALT) corresponding to Table 5,4-11, where L/D was used for flow distribution. The velocities calculated by either approach give very low values for Sub-Channels \(3 A\) and \(4 A\) (near sump areas) which are significantly below the critical velocity of 0.27 fps required for transport.

\title{
TABLE \(5.4-11\) (ALT)
}
total velocity-two trains, low level

\section*{Question 4:}

Justify the conservatism of the assumption in Section 6.2-4 that the source of all the spray flow will be at azimuth 225 degrees.

\section*{Response:}

The bulk of the containment spray flows from upper elevations to the 808 ft . elevation from the openings in the floors which do not have curbs. Referring to Table \(6.2-24\), it can be seen that most of these openings are in the zone between azimuth 180 degrees to 270 degrees resulting in an average location of 225 degrees. In assuming that all the spray flow originates at azimuth 225 degrees the calculated velocities at all points downstream of azimuth 225 degrees, will be maximized. Thus, the source of water farthest from the sumps and the maximized velocities provide the worst case for paint transport. Therefore this approach is conservative.

\section*{Question 5:}

Provide the bases of the assumption that paint debris at 808 degrees elevation is available for transport within the near sump zone azimuth 45-0-315 degrees.

Response:
(Later. The response needs coordination with Section 8.0 results)

\section*{Question 6:}

The application of leak before break has not been found acceptable for the purpose of calculating debris generation. The assumption of leak before break was used in Chapter 7. Revise the assumption in accordance with the current acceptable spectrum of breaks.

Response:
See attached Addendum-1 to the report.

\section*{ADDEIVLUR: 1}

July, 1984
selected for further investigation. The evaluation concentrates on the breaks which generate the maximum amount of debris and where debris transport to the sump is relatively direct. Two of the breaks release reflective metallic insulation and also cause activation of safety injection and containment sprays. The other breaks release fibrous insulation. The quantity of fibrous insulation used inside containment is limited to component cooling water and chilled water piping. This type of insulation is not located in any of the containment areas where high energy large breaks can release this insulation material to form debris. None of the breaks in the vicinity of the fibrous insulation are of the magnitude which would cause the activation of the safety injection or containment sprays. Therefore, the availability of the safeguards sumps is not required and sump blockage is not a concern. The quantities of debris generated are presented in Tables 7.2-1 through 7.2-5 for information purposes only.

High efficiency insulation was also evaluated. This insulation, which is a mineral wool type, \(1 / 4-\) inch thick, is fully encapsulated in \(1 / 8\)-inch thick sheeting of type 304 SS . The insulation is located at pipe whip restraints and in the gap between the restraints and the pipe.

\subsection*{7.2.2 Quantity of Insulation Debris}

The quantities of fibrous insulation generated from various postulated breaks are shown on Tables 7.2-1 through 7.2-5. Short term transport of fibrous insulation was not analyzed because it was assumed to be transported to the sumps.

In the case of high efficiency insulation, it was conservatively assumed that insulation from five pipe whip restraints of safety injection pipes would be dislodged as a result of jet impingement from a pipe bruak. This resulted in the generation of about 40 square feet of high efficiency insulation.

The quantities of metallic insulation generated from the postulated breaks are shown on Tables 7.2-6 and 7.2-7. Table 7.2-6 is for primary coolant hot leg break. Although reactor coolant loop breaks are not postulated as credible in view of the generic work done by Westinghouse regarding alternate pipe break criteria, for the furposes of this evaluation for debris effects, metallic insulation quantities given in Table 7.2-6 were used. These quantities are based on worst case break in the reactor coolant loop. The metallic insulation debris generated by this break produced the maximum quantity of debris. NUREG-0897 Rev 1 (Draft) and NUREG/CR-3616 discuss the transport of metallic insulation materials. This information is based on experimental work done at Alden Research Laboratories during the second half of 1983. Based on these experiments, it
is postulated by Alden Research that metallic insulation inner foil can be transported at very low velocities.

In view of this new information, further evaluations were made for metallic insulation debris, its damage potential, and transport to the sump screens. In accordance with the recommendations of NUREG-0897 Revision 1 (Draft), it was postulated that all insulation within 7 pipe diameter lengths from the break will be completely destroyed to open up the metallic insulation. Figure 7.2-1 shows a typical metallic insulation section with all the sub-components. For the postulated reactor coolant hot leg break, it is conservatively assumed that all the affected metallic insulation will be damaged to release the inner foils. The maximum quantity of foil is calculated and presented in Table 7.2-6. For the postulated break outside the reactor coolant loop. Table 7.2-8 gives the quantities of insulation that will be damaged in this manner and the area of the inner foil that will be released.

The short term transport of metallic insulation for this break does not have a direct pathway to the door openings in the steam generator compartments. However, for a conservative evaluation, it was assumed that all the insulation released in this manner will be propelled by the jet through the doorway for steam generator compartment \#1.
\begin{tabular}{lcccccc}
TABLE & LINE COLUMN & & CHANGE FFOM & & CHANGE TO \\
\hline \(3.1-2\) & 8 & 4 & NA & \(95-120\) \\
& & 5 & NA & \(95-120\) \\
\(5.1-1\) & 10 & 2 & 87.370 & 87.870 \\
\(6.2-21\) & 19 & 1 & .005 & .006 \\
\(6.2-23\) & 10 & 2 & 6200 & 200 \\
& 12 & 2 & 100 & 100 \\
\(7.2-7\) & 7 & 2 & 132.47 & 13.72 \\
& & & & 4.23
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FAGE & LINE & CHANGE FROM & CHANGE TO \\
\hline vii & 16 & Breack & Breal \\
\hline ix & 9 & for 10-Inch pipe & DELETE \\
\hline 2-1 & Bottom & margin & \\
\hline & 2 & coatings & \begin{tabular}{l}
Add page \# as 2-1 \\
Paint and insulation
\end{tabular} \\
\hline & 36 & ten feet of & \begin{tabular}{l}
paint and insulation \\
DELETE
\end{tabular} \\
\hline 2-2 & ttom & margin & Add page \# as \(2-2\) \\
\hline 3-4 & 17 & shut & shuts \\
\hline 3-5 & 9 & panels & paint \\
\hline 4-1 & 19 & is & are \\
\hline \(5-2\) & 8 & cooler & \\
\hline \(5-4\) & 12 & upper flows & \begin{tabular}{l}
water \\
upper floor
\end{tabular} \\
\hline & 17 & wil & upper floors will \\
\hline & 36 & within the contaiment & outside the shield wall. \\
\hline 6-2 & 27 & F & \\
\hline \(6-4\) & 11 & point & F subseript N
paint \\
\hline 6-6 & 16 & at & \\
\hline 7-7 & 24 & Table 5.2-1 and & \\
\hline & 25 & 5.3-1 & Table 5.1-1. The
\[
5.4-2
\] \\
\hline & 26 & 5. 4-12 and 5.4-1 & 5.4-14 \\
\hline 7-1 & 36 & Table 7.2-8 & Tables 7.2-6 and 7.2-8 \\
\hline & 41 & compartment E & compartment 4 \\
\hline \(8-2\) & 10 & & \\
\hline & 21
24 & \[
m d^{2}
\] & \[
\operatorname{md}^{2} \text { / } 16
\] \\
\hline & 40 & inches & fragment \\
\hline 8-3 & 25 & & inch \\
\hline & 27 & \(d^{2} / 4\) & \(\Pi d^{2}, 4\) \\
\hline 8-4 & 10 & B & \\
\hline & 21 & 1.9 when & 1.9 for NFi < 250 when \\
\hline 8-5 & 29 & given by & given by (Reference 14) \\
\hline 8-7 & 21 & may & many by (keference 14 \\
\hline 8-6 & 26
36 & 1.3 & 1.18 \\
\hline 8-9 & 2 & angle
1.3 & angle \(\alpha\) \\
\hline & 20 & 35 ft & \(3.18 \mathrm{ft}^{2}\) \\
\hline & 21 & 30 ft & \(30 \mathrm{ft}^{2}\). \\
\hline
\end{tabular}```

