TABLE 3.3-4 (Continued)

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS

Fund	ctional Unit	Total Allowance (TA)	Z	<u>s</u>	Trip Setpoint	Allowable Value
5.	TURBINE TRIP AND FEEDWATER ISOLATION					
	a. Steam Generator Water Level - High-High	5.0	2.18	1.5	<pre><82.4% of narrow range instrument span</pre>	<84.2% of narrow range instrument span
6.	EMERGENCY FEEDWATER					
	a. Manual	NA	NA	NA	NA	NA
	b. Automatic Actuation Logic	NA	NA	NA	NA	NA
	c. Steam Generator Water Level - Low-Low	12.0	9.18 3	1.5 0.0 %	>12% of span from 0% to 30% RTP increasing linearly to >\$4000 of span from 30% to 100% RTP	>10.2% of span from 0% and 30% RTP increasing linearly to >%4% I of span from (30% to 100% RTP 20.2%
	d & f. Undervoltage - ESF Bus				>5760 volts with a <0.25 second time delay	>5652 volts with a <0.275 second time delay
	8408280114 840824 PDR ADDCK 05000395 P PDR				>6576 volts with a <3.0 second time delay	>6511 volts with a <3.3 second time delay

TABLE 2.2-1 (continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

Eun	ctional Unit	Total Allowance (TA)	ž	<u>s</u>	Trip Setpoint	Allowable Value	
13.	Steam Generator Water Level Low-Low	12.0	9.18	1.5	>12% of span from 0 to 30% RTP increasing lin- early to >545% of span from 30% to 100% RTP 30.0%	>10.2% of span from 0 to 30% RIP increasing linearly to >63%% of span from (30% to 100% RIP _18.2.%	
14.	Steam/Feedwater Flow Mis- Match Coincident With	16.0	13.24	1.5/ 1.5	<40% of full steam flow at RTP	<42.5% of full steam flow at RTP	
	Steam Generator Water Level Low-Low	12.0	9.18	1.5	>12% of span from 0 to 30% RTP increasing lin- early to >5% 9% of span from 30% to 100% RTP 30.0 %	>10.2% of span from 0 to 30% RIP increasing linearly to >5%%%% of span from 30% to 100% RIP 28.2%	
15.	Undervoltage - Reactor Coolant Pump	2.1	1.28	0.23	≥4830 volts	≥4760	
16.	Underfrequency - Reactor Coolant Pumps	7.5	0	0.1	≥57.5 Hz	≥57.1 Hz	
17.	Turbine Trip A. Low Trip System Pressure B. Turbine Stop Valve Closure	NA NA	NA NA	NA NA	≥800 psig ≥1% open	≥750 psig ≥1% open	

RIP = RATED THERMAL POWER

2-6

ц, 🕬

12

TABLE 2.2-1 (Continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION

NOTE 1: OVERTEMPERATURE AT

 $\Delta T \left(\frac{1 + \tau_1 S}{(1 + \tau_2 S)} \left(\frac{1}{1 + \tau_3 S}\right) \leq \Delta T_0 \left\{K_1 - K_2 \left(\frac{1 + \tau_4 S}{(1 + \tau_5 S)} \left[T \left(\frac{1}{1 + \tau_6 S}\right) - T'\right] + K_3(P - P') - f_1(\Delta I)\right\}$

Where:	ΔT	=	Measured ΔT by RTD Manifold Instrumentation
	$\frac{1+\tau_1 S}{1+\tau_2 S}$	=	Lead-lag compensator on measured ΔT
	τ ₁ , τ ₂	=	Time constants utilized in lead-lag controller for ΔT , $\tau_1 = 8$ sec., $\tau_2 = 3$ sec.
	$\frac{1}{1+\tau_3}$	=	Lag compensator on measured ΔT
	τ3	=	Time constants utilized in the lag compensator for ΔT , $\tau_3 = 0$ secs.
	ΔT.	=	Indicated AT at RATED THERMAL POWER
	K1	=	1.090
	K ₂	=	0.01450
	$\frac{1+\tau_4S}{1+\tau_5S}$	=	The function generated by the lead-lag controller for T avg dynamic compensation
•	×4, & τ ₅	=	Time constants utilized in the lead-lag controller for T_{avg} , $\tau_4 = \mathbf{x}$ secs., $\tau_5 = 4$ secs.
	T	=	Average temperature °F
	$\frac{1}{1 + \tau_6 S}$	=	Lag compensator on measured T avg
	τ ₆	÷	Time constant utilized in the measured T_{avg} lag compensator, $\tau_6 = 0$ secs.
			\mathcal{C}

2-8

SUMMER - UNIT 1