

Entergy Operations, Inc.

150, 80% d Klogna, 1:A, 70066 16: 403, 139,6774

R. F. Burski

Planter faint valuetari 5

W3F1-92-0140 A4.05 QA

1625

April 23, 1992

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Subject: Waterford 3 SES Docket No. 50-382 License No. NPF-38 Annual Radiological Environmental Operating Report

Gentlemen:

Attached is the subject 1991 annual report on radiological environmental monitoring which covers the period of January 1 through December 31, 1991. This report is submitted per Section 6.9.1.7 in the Waterford 3 Technical Specifications (NUREG-1117).

If there are any questions, please contact C.J. Thomas at (504) 739-6531.

Very truly yours,

RA Bunki

RFB/CJT/ssf Attachment

ee:

1

(w/Attachment) R.D. Martin, NRC Region IV NRC Resident Inspectors Office

cc:

(w/o Attachment) D.L. Wigginton, NRC-NRR R.B. McGehee N.S. Reynolds

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR WATERFORD 3 STEAM ELECTRIC STATION JANUARY 1 THROUGH DECEMBER 31, 1991

Docket Number: 50-382

License Number: Ni F-38

ABSTRACT

This report is issued pursuant to Waterford 3 Technical Specification 6.9.1.7. Its purpose is to discuss the Waterford 3 Radiological Environmental Monitoring Program (REMP), present the results of the program for the year of 1991, and evaluate the radiological impact on the environment resulting from plant operation.

The Waterford 3 REMP collected data on environmental radioactivity levels around the Waterford 3 nuclear power plant. These levels were determined by analyzing samples of air, water, shoreline soil, fish, vegetation, and milk from various locations around the facility. Based on the evaluation of the environmental data collected, the operation of Waterford 3 exhibited no discernable impact on the levels of radioactivity in the environment during 1991.

TABLE OF CONTENTS

ABST	RACT		ii
TABL	E OF	CONTENTS	ij
LIST	OF TA	BLES	V
LIST	OF FI	SURES	ii
1.0	INTR	DDUCTION	1
	1.1	Program and Report Objectives	1
	1.2	Plant and Site Description	1
2.0	PROC	RAM DESCRIPTION	2
	21	History and Development	З
	2.2	Responsibilities	3
	2.3	Sample Collection and Handling Procedures	3
		2.3.1 Direct Radiation Exposure Pathway Samples	4
		2.3.2 Airborne Exposure Pathway Samples	4
		2.3.3 Waterborne Exposure Pathway Samples	5
		2.3.4 Ingestion Exposure Pathway Samples	6
	2.4	Analytical Procedures	7
	2.5	Laboratory Quality Assurance	7
3.0	DISC	USSION OF RESULTS	5
	3.1	Direct Radiation Exposure Pathway	2
	3.2	Airborne Exposure Pathway	100
		3.2.1 Airborne Particulates	in the
		3.2.2 Airborne Iodine	6
		3.2.3 Gamma Isotopic Analysis	6
	3.3	Waterborne Exposure Pathway	6
		3.3.1 Drinking/Surface Water	6
		3.3.2 Groundwater	17
		3.3.3 Shoreline Sediment	7
	3.4	Ingestion Exposure Pathway	28
		3.4.1 Milk	28

LIST OF TABLES

٩

TABLE 2.1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) SUMMARY	8
TABLE 2.2	DESCRIPTION OF REMP SAMPLING STATION LOCATIONS	9
TABLE 2.3	DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS, LOWER LIMIT OF DETECTION (LLD)	21
TABLE 3.1	1991 DIRECT RADIATION DATA ORGANIZED BY COMPASS DIRECTION AND DISTANCE FROM WATERFORD 3 SES	33
TABLE 3.2	STATISTICAL COMPARISON OF 1991 TLD MEASUREMENTS FROM STATIONS GROUPED BY DISTANCE FROM WATERFORD 3 SES	34
TABLE 3.3	STATISTICAL COMPARISON OF GROSS BETA ACTIVITY ON AIR PARTICULATE FILTERS FOR 1991	35
TABLE 3.4	STATISTICAL COMPARISON OF GROSS BETA ACTIVITY IN MONTHLY DRINKING WATER COMPOSITES FOR 1991	36
TABLE 3.5	SUMMARY OF 1991 REMP DEVIATIONS	37
TABLE 3.6	1991 ANNUAL LAND USE CENSUS RESULTS	38
TABLE A-1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	44
TABLE B-1	QUARTERLY TLD DOSE RATES	52
TABLE B-2	AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES	53
TABLE B-3	AIR PARTICULATE FILTERS: GAMMA ISOTOPIC ANALYSIS ON QUARTERLY COMPOSITES	68

. .

TABLE OF CONTENTS (CONTINUED)

-

-

		3.4.	2 Fis	sh	28
		3.4.	3 Br	oad Leaf Vegetation	28
		3.4.	4 Fc	od Products	28
	3.5	Stat	istical A	nalyses	29
		3.5.	1 Ca	alculation of the Mean and Standard Deviation	29
		3.5.	2 C(omparing Two Sample Population Means	29
		3.5.	3 TL	D Measurements	31
		3.5.	4 Gi	oss Beta on Air Particulate Filters	31
		3.5.	5 G	oss Beta in Monthly Drinking Water Composites	31
	3.6	Dev	iations	from the REMP	31
		3.6.	1 UI	navailable Samples	31
		3.6.	2 M	ssed Lower Limits of Detection	32
	3.7	Ann	iual Lan	d Use Census Results	32
4.0	CON	CLU	SIONS	* * * * * * * * * * * * * * * * * * * *	39
	-				
APPI	ENDIX	A -	REMP	DATA SUMMARY	43
ADD		D	DEMO	DATA	
AFF	LINDIA	0 -	NEWP	UATA	51
APP		C .	SUMM	ALY OF INTERLARORATORY COMPARISONS	101
		~	SOIVIIV	AT OF INTERCABORATORY COMPARISONS	101
APP		D -	SYNO	PSES OF ANALYTICAL PROCEDURES	104
		-	D-10	ANALYSIS OF SAMPLES FOR GROSS	104
			0 1.0	BETA ACTIVITY	105
				D-1 1 Air Particulates	105
				D-1.2 Water	105
			D-20	ANALYSIS OF WATER SAMPLES FOR TRITILINA	105
			D-30	ANALYSIS OF SAMPLES FOR TRITION	105
			0.0.0	D-3.1 Milk and Water	105
				D-3.2 Broad Leaf Vegetation	105
			D-4 0	GAMMA SPECTROSCOPY ANALYSIS	105
			D.F.O	ENVIRONMENTAL DOGINETRY	106
			the wild	LITTINGINICIAINE DUGINEINT	106

PAGE

0

.

LIST OF TABLES (CONTINUED)

TABLE B-4	DRINKING WATER: IODINE-131 ANALYSIS	69
TABLE B-5	DRINKING WATER: GROSS BETA ANALYSES ON MONTHLY COMPOSITES AND GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES	72
TABLE B-6	DRINKING WATER: TRITIUM ANALYSIS ON QUARTERLY COMPOSITES	78
TABLE B-7	SURFACE WATER: IODINE-131 ANALYSIS	79
TABLE B-8	SURFACE WATER: GAMMA ISOTOPIC ANALYSES AND GROSS BETA ANALYSES ON MONTHLY COMPOSITES	82
TABLE B-9	SURFACE WATER: TRITIUM ANALYSIS ON QUARTERLY COMPOSITES	88
TABLE B-10	GROUNDWATER: TRITIUM AND GAMMA ISOTOPIC ANALYSES	89
TABLE B-11	SHORELINE SOIL: GAMMA ISOTOPIC ANALYSES	90
TABLE B-12	MILK: IODINE-131 AND GAMMA ISOTOPIC ANALYSES	91
TABLE B-13	FISH: GAMMA ISOTOPIC ANALYSES	95
TABLE B-14	BROAD LEAF VEGETATION: IODINE-131 AND GAMMA ISOTOPIC ANALYSES	97
TABLE B-15	VEGETATION - FOOD PROBUCTS: IODINE-131 AND GAMMA ISOTOPIC ANALYSES	100
TABLE C-1	EPA CROSS-CHECK RESULTS	102

3

LIST OF FIGURES

PAGE

a)

FIGURE 2.1	REMP SAMPLE LOCATIONS WITHIN 2 MILES OF WATERFORD 3	22
FIGURE 2.2	REMP SAMPLE LOCATIONS WITHIN 10 MILES OF WATERFORD 3	23
FIGURE 2.3	REMP SAMPLE LOCATIONS WITHIN 50 MILES OF WATERFORD 3	24
FIGURE 3.1	DIRECT RADIATION DOSE COMPARISON	40
FIGURE 3.2	GROSS BETA - AIR PARTICULATE COMPARISON	41
FIGURE 3.3	GROSS BETA - DRINKING/SURFACE WATER COMPARISON	42

e i

mo-

1 Vel

1.0 INTRODUCTION

This report describes the Radiological Environmental Monitoring Program (REMP) for the Waterford 3 Steam Electric Station and discusses the results obtained chiring the calendar year 1991. The results discussed in this report were used to evaluate the radiological environmental impact resulting from the operation of Waterford 3. The submission of this report to the Nuclear Regulatory Commission (NRC) fulfills the requirements pursuant to Waterford 3 Technical Specification 6.9.1.7.

1.1 Program and Report Objectives

The objective of the monitoring program is to evaluate the radiological environmental impact of the plant. In order to conduct this evaluation, the data analyses and interpretations contained in this report fulfill the following specific objectives:

- a. to identify any radioactive materials or radiation in the environment associated with plant operation,
- to compare the results obtained during the reporting period with past operational and pre-operational data and identify any trends associated with accumulation of radioactivity in the environment, and
- c. to verify compliance with federal regulatory requirements.

1

1.2 Plant and Site Description

Waterford 3 employs a pressurized water reactor for the production of approximately 1153 gross (1104 net) megawatts of electricity. The station uses a flow of water obtained from and discharged to the Mississippi River for condenser cooling. On March 4, 1985, the unit achieved initial criticality.

The plant is located on the west bank of the Mississippi River at River Mile 129.6 between Baton Rouge and New Orleans, Louisiana. The site is in the northwestern section of St. Charles Parish approximately 3 miles southeast of the St. John the Baptist Parish boundary between the towns of Killona and Taft. The Mississippi River is the closest prominent natural feature; other features include Lac des Allemends, about 5.5 miles southwest of the site, and Lake Ponchartrain, about 7 miles northeast of the site.

Most of the man-made features are located on the narrow strip of land between the Mississippi River and the wetlands. Specifically, several industrial facilities including Waterford 1 and 2 Steam Electric Stations (0.4 miles northwest), Little Gypsy Steam Electric Station (0.8 miles northeast), Agrico, a fertilizer manufacturer (0.6 miles east southeast), Occidental Chemical Company (0.8 miles east southeast), and Union Carbide, a chemical manufacturer (1.2 miles east southeast) are operating in the area.

Major urban centers in the region include New Orleans (approximately 25 miles east) and Baton Rouge (approximately 50 miles west northwest). Communities near the site in St. Charles Parish include Killona (0.9 miles west northwest), Montz (1.0 miles north), Norco (2.5 miles east), Hahnville (3.7 miles east southeast), and Destrehan (6.3 miles east southeast). Laplace (4.7 miles north) is located in St. John the Baptist Parish.

2.0 PROGRAM DESCRIPTION

A general summary of the REMP is given in Table 2.1; brief descriptions and locations of the sampling stations are presented in Table 2.2. In addition, station locations are illustrated in Figures 2.1 through 2.3. A more detailed description of the REMP is provided below.

2.1 History and Development

The Waterford 3 REMP evolved from the Pre-operational Environmental Radiological Surveillance (PERS) program (1978-1982) and was initiated in April of 1983. Equipment, procedures, techniques, and sampling locations used during the pre-operational survey were incorporated into the operational program. Further, the environmental data collected during the first two years of the REMP (1983 and 1984), prior to initial criticality, were used to supplement the baseline established during the PERS Program.

2.2 <u>Responsibilities</u>

Waterford 3 personnel are responsible for implementing and insuring that the REMP complies with federal regulatory, Technical Specification, and Offsite Dose Calculation Manual (ODCM) requirements. Responsibilities of Waterford 3 personnel include collecting (with the exception of fish samples), preparing, and shipping of environmental samples; conducting environmental dosimetry measurements; reviewing analytical results reports; and preparing and submitting the annual Radiological Environmental Monitoring and other relevant reports to the Nuclear Regulatory Commission.

The primary contractor, the Environmental Services Department of Arkansas Power & Light (AP&L) located in Little Rock, Arkansas, is responsible for performing radiological analyses; conducting initial data review; preparing results reports; and overseeing laboratory quality assurance and control. Additionally, a separate contractor, the Fisheries Co-operative Extension Service of Louisiana State University, is responsible for the collection of fish samples.

2.3 Sample Collection and Handling Lucedures

Sample types, location, collection frequency, and the analyses performed are summarized in Tables 2.1 and 2.2. The information contained in these tables is based on requirements specified in Table 5.8-1 of the Waterford 3 ODCM. Location maps of the sampling stations are illustrated in Figures 2.1 through 2.3. Any deviations (i.e., unavailable samples and missed lower limits of detection) or changes made to the REMP during 1991 are discussed in Section 3.6.

The environmental samples collected are classified into four general categories according to exposure pathways: direct radiation, airborne, waterborne, and ingestion. Sample collection and handling procedures are described in the following sections. The descriptions are intended to provide a concise procedural overview rather than a step-by-step description.

2.3.1 Direct Radiation Exposure Pathway Samples

Integrated external gamma exposure, determined using Panasonic Multi-element thermoluminescent dosimeters (TLDs), was measured at thirty-one locations as follows:

- an inner ring of stations, one in each of the sixteen meteorological sectors, in the general area of the site boundary;
- an outer ring of stations, one in ten of the sixteen meteorological sectors, in the six to eight kilometer range from the site; and
- the balance placed in areas of special interest (e.g., population centers, schools, etc.) with one area serving as a control.

The TLDs were exchanged and analyzed quarterly by Waterford 3 personnel.

2.3.2 Airborne Exposure Pathway Samples

Samples of airborne particulates and radioiodines were collected at four indicator stations (APP-1, APQ-1, APG-1, APC-1) and one control station (APE-30). Low-volume air pumps and flow totalizers in weather proof shelters provided continuous air sampling.

Using the sampling device described above, airborne particulate samples were obtained on a filter and collected weekly by Waterford 3 personnel for shipment to the contract laboratory for gross beta analysis. The filters were composited quarterly by the contract laboratory for isotopic analysis by gamma spectroscopy.

Airborne iodine sampling was uone in conjunction with air particulate sampling using a charcoal cartridge to collect iodine. The cartridges were collected weekly by Waterford 3 personnel and sent to the contract laboratory for iodine-131 analysis by gamma spectroscopy.

2.3.3 Waterborne Exposure Pathway Samples

Because the plant discharges into the Mississippi River, the major source of drinking water in the vicinity of Waterford 3, water samples taken from the Mississippi River were designated as both drinking and surface water samples.

Composite drinking/surface water samples were obtained biweekly from the Mississippi River using automatic composite samplers placed at one upstream (DWP-7/SWP-7) and two downstream (DWG-2/SWG-2, DWE-5/SWE-5) locations. Hydrochloric acid was added to each sample prior to shipment. The contract laboratory analyzed the biweekly samples for iodine-131, composited them monthly for gross beta and gamma spectroscopy, and composited them quarterly for tritium analysis.

Due to the high water table resulting from shallow aquifers in the vicinity of the site, drainage canal sampling represents groundwater discharge. Groundwater was obtained quarterly by grab sampling from one sampling location (GWK-1). Again, hydrochloric acid was added to the sample prior to shipment to the contract laboratory for tritium and gamma spectroscopy analyses.

Shoreline sediment samples were obtained semi-annually from a sampling station at each plant discharge point. Station SHWE-3 is located downstream on the shoreline of the Mississippi River; station SHWK-1 is on the shoreline of the 40-Arpent canal. The samples were shipped without further processing.

2.3.4 Ingestion Exposure Pathway Samples

Milk samples were collected semi-monthly from one indicator location (MKQ-5) and one control location (MKQ-45). Sampling of the control station was performed by Louisiana Radiation Protection Division personnel. Although one additional indicator location was identified (MKE-4), no samples were available from this location during 1991 (see Section 3.6). Formaldehyde was added as a preservative to all samples prior to shipment. Iodine-131 and gamma spectroscopy analyses were performed.

Fish samples were collected bi-annually from the Mississippi River upstream (FH-1) and downstream (FH-2) from the plant. A contractor performed the sampling by netting. Subsequently, the fish were segregated by species and location prior to delivery to Waterford 3. The samples were shipped frozen for analysis by gamma spectroscopy.

The Waterford 3 ODCM, Section 5.8.1, requires broad leaf vegetation to be sampled from 3 locations within 5 miles of the plant in the event milk samples are unavailable. Since milk samples were collected from only one sampling location within five miles of Waterford 3, broad leaf vegetation was sampled monthly at two indicator locations (BLQ-1 and BLB-1) and one control location (BLX-15). The samples were shipped without further processing.

Food product sampling was not required because no areas surrounding the plant were irrigated with water in which plant wastes are discharged. However, food products grown within the site boundary were collected to demonstrate the absence of radionuclide accumulation. These food product samples (sugarcane and soybeans) were collected at the time of harvest from three locations (FPP-1, FPG-1, and FPQ-1) by normal harvesting techniques and shipped without further processing. Iodine-131 and gamma spectroscopy analyses were performed.

2.4 Analytical Procedures

A brief synopsis of the analytical procedures used by AP&L and Waterford 5 are given in Appendix D to provide an overview of the program.

The minimum sensitivities for the analytical procedures are reflected by the Lower Limits of Detection (LLD) values presented in Table 2.3 from Table 5.8-3 of Waterford 3 ODCM. The LLD's are <u>a priori</u> estimates based on assumed sample volumes, counting times, detector efficiencies, etc. Analyses that could not achieve these lower limits of detection are discussed in Section 3.6.

2.5 Laboratory Quality Assurance

During 1991, AP&L performed between 5% and 10% of all analyses for quality assurance purposes. Spiked and blank samples were prepared inhouse. In addition, AP&L participated in the EPA Radiological Interlaboratory Comparison (cross-check) Program.

This quality assurance program satisfies the requirements of the Waterford 3 ODCM, Section 5.8.2, for participation in an interlaboratory comparison program. The program involved analyses on various sample media typically found in the REMP. As a result of participation in the program, an objective measure of analytical precision and accuracy was obtained. In the event that results obtained by AP&L were not within control limits (3 standard deviations), an investigation was conducted to determine the cause, and corrective action was taken to prevent a recurrence. Appendix C lists the 1991 results of AP&L's participation in the cross-check program.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) SUMMARY[®]

SAMPLE TYPE	LOCATION	ANALYSIS	FREQUENCY
Direct Radiation	A-2, B-1, C-1, D-2, E-1, F-2, C-2, H-2, J-2, K-1, L-1, M-1, N-1, P-1, Q-1, R-1, A-5, B-4, D-5, E-5, F-4, G-4, H-6, P-6, Q-5, R-6, G-9, E-15, J-15, E-30	TLD gamma	Quarterly
Radiolodine and Particulates	APP-1, APQ-1, APG-1, APC-1, APE-30	Gross beta, I-131 gamma isotopic	Weekty Quarterly composite
Drinking Water ^b	DWG-2, DWE-5, DWP-7	H-3 Gross beta, gamma isotopic, I-131	Quarterly composite Monthly composite Bi-weekly composite
Surface Water ^b	SWG-2, SWE-5, SWP-7	H-3 gamma isotopic	Quarterly composite Monthly composite
Ground Water	GWK-:	gamma isotopic, H-3	Quarterly
Shoreline Sediment	SHWE-3, SHWK-1	gamma isotopic	Semi-annually
Milk	MKE-4, MKQ-5, MKQ-1, MKQ-45	gamma isotopic, I-131	Semi-monthly/monthly
Fish	FH-1, FH-2	gamma isotopic	In season or semi-annually
Food Products	FPG-1, FPP- , FPQ-1	gamma isotopic	At harvest time
Broad Leaf	BLQ-1, BLB-1, BLK-15	gamma isotopic, I-131	Monthly When milk samples

a. Based on requirements in Table 5.8-1 of Waterford 3 SES Offsite Dose Calculational Manual, Section 5.8-1.

b. Drinking and surface water samples are identical.

8

not collected

DESCRIPTION OF REMP SAMPLING STATION LOCATIONS

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR DIRECTION
DIRECT RADIATIO	N (TLD)		
A-2	(Eastbank) On fence enclosure surrounding water tower west of Little Gypsy opposite Etienne St. Access from River Road (LA 628). The TLD's are located on tha (S) fence opposite the entrance gate to the water tower.	1.1	Ν
B-1	(Eastbank) On fence enclosing the transmission tower 0.3 miles west (up-river) from Little Gypsy. Access from River Road (LA 628). TLD's are located at SW corner of fence enclosure.	0.8	NNE
C-1	(Eastbank) On fence enclosing the Little Gypsy Cooling Water Intake. Access is from River Road (LA 628) across from Little Gypsy Steam Electric Station entrance. TLD's are on the south side (inside) of the Cooling Water Intake fence enclosure, directly opposite the entrance gate.	0.8	NE

Constant Section

(CONTINUED)

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR DIRECTION
D-2	(Eastbank) Located approximately 0.3 miles east of Little Gypsy Power Station. Access from River Road (LA 628) near the west end of the Bonne Carre Spillway. TLD's are on the fence at the west entrance to the Spillway (located on levee).	1.1	ENE
E-1	(Westbank) Located on utility pole along River Road (LA 18) approxi- mately 0.3 miles east of Waterford 3 SES plant entrance. Access from LA 18. TLD's are on the third utility pole east of the construction entrance road.	0.2	E
F-2	(Westbank) Located on fence enclosure surrounding the LP&L substation on LA 3142. Access from LA 3142 approximately 0.2 miles south of LA 18. TLD's are on the southeast corner of the fence enclosure.	1.1	ESE
G-2	(Westbank) Located on utility pole on East side of LA 3142 near Witco entrance gate (Next to Union Carbide Star Plant Gate 3). Access from LA 3142 approximately 0.2 miles north of railroad overpass.	1.2	SE

-

(CONTINUED)

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR DIRECTION
H-2	(Westbank) Located on fence enclosure to shell road off of LA 3142. Access from LA 3142 south of railroad overpass on east side of LA 3142. TLD's are on the south side of the gate for shell road. (Just south of Texaco pipeline station)	1.2	SSE
J-2	(Westbank) Located on northeast corner of fence enclosing Texaco valve station south of LA 3127. Access from LA 3127, approximately 0.5 miles west of LA 3127/3142 intersection.	1.3	S
K-1	(Westbank) Located behind "Private Road" sign at Gate 8 entrance off of LA 3127. Access from LA 3127, approximately 1.3 miles west of LA 3127/3142 intersection. (Gate 8 is the access to the Waterford 3 SES switchyard station)	1.0	SSW
L-1	(Westbank) Located behind "Private Road" sign at LP&L Gate 9 entrance off of LA 3127, approximately 1.6 miles west of LA 3127/3142 inter- section. (Gate 9 is an access road for Waterford 3 SES)	1.0	SW

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR DIRECTION
M-1	(Westbank) Located on south gate into the Waterford 1 and 2 SES fuel oil storage tank enclosure. Access is either thru LP&L Gate 8, Gate 9 off of LA 3127, the shell access road from LA 18 between Waterford 3 SES, or thru the Waterford 1 and 2 SES access road.	0.7	WSW
N-1	(Westbank) Located behind the "No Trespassing" sign off of Silori Street, in Killona, just south of the entrance to Killona Elementary School.	0.9	W
P-1	(Westbank) Located off Short Street, in Killona. TLD is on fence at air sample station APP-1.	0.8	WNW
Q-1	(Westbank) Located on fence enclosing air sample station approximately 0.5 miles west of Waterford 1 and 2 on River Road (LA 18).	0.8	NW
R-1	(Westbank) Located on fence enclosure for Waterford 1 and 2 Cooling Water Intake Structure. Access is from River Road (LA 18) opposite Waterford 1 and 2. TLD's are on the southwest corner of fence.	0.5	NNW

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	JECTOR
A-5	(Eastbank) Located on utility pole just east of the Shady Nook Trailer Park on Hwy 61 in LaPlace. TLD's are on second utility pole east of trailer park on north side of Hwy 61 (eastern end of LaPlace).	4.5	N
B-4	(Eastbank) Located on utility pole just east of shell access road to South Central Bell transmission tower on south side of Hwy 61. Transmission tower is just east of Weigh Station at St. John/St. Charles Parish line. TLD's are on the first utility pole east of access road.	3.8	NNE
D-5	(Eastbank) Located on fence gate on shell access road to Big 3 Chemical Plant. Shell access road is approximately 0.1 miles west of Hwy 61/48 intersection (at black and yellow gate). TLD's are on fence gate 0.1 miles north on shell access road from Hwy 61.	4.2	ENE
E-5	(Eastbank) Located on the Norco Substation fence enclosure. Access from River Road (LA 48) onto Wesco St. (adjacent to Norco Shell Chemical Plant), take Wesco St. to the dead end. TLD's are loca 3d on sixth fence post south of the north substation gate.	4.2	E

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR DIRECTION
F-4	(Westbank) Located on utility pole behind blonde brick house on Aquarius St. in Hahnville. Access from River Road (LA 18) and turn onto Oak St. Follow Oak St. to Hickory St., turn right on Hickory St. and follow to Aquarius St. and turn left. Blonde brick house is second house on right (west) side of Aquarius St. Feading south.	3.5	ESE
G-4	(Westbank) Located on railroad sign northwest side of LA 3160/railroad track intersection. Access from either LA 3127 or River Road (LA 18) onto LA 3160.	3.2	SE
H-6	(Westbank) Located on a road sign on the northwest side of the second canal bridge east of LA 3160 along LA 3127.	5.7	SSE
P-6	(Westbank) Located on utility pole at southwest corner of LA 640/ railroad track intersection. Utility pole is just west of LA 640 and east of radio transmission tower.	5.5	WNW
Q-5	(Westbank) Located on fence post surrounding (green) river marker on levee just east of Edgard. Fence post is located along River Road (LA 18) across from the Webre's house.	5.0	NW

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM SECTO PLANT DIRECTION		
R-6	(Eastbank) Located on fence enclosing LP&L Laydown Yard on LA 3223 in LaPlace. Access from hwy 61 onto Elm St. (LA 3223), take Elm St. to the northeast corner of LA 3223/railroad intersection. TLD's are located on the southeast corner of fence enclosure.	5.3	NNW	
F-9	(Eastbank) Located on entrance gate to Destrehan Substation Access from River Road (LA 48), approximately 0.3 miles east of Luling-Destrehan Ferry, onto Destrehan Road (west of Bunge Corp. Grain Elevator), and proceed to substation gate.	8.2	ESE	
G-9	(Westbank) Located on back fence of LP&L District Office in Luling. Access via Ellington St. from either River Road (LA 18); or Second or Third St. from Paul Mallard Rd. (LA 52) to Ellington St.	8.1	SE	
E-15	(Eastbank) Located on Kenner Substation fence enclosure. Access from either River Road (LA 48) or Hwy 61, turn onto Alliance Ave. TLD's are located on the north side of the fence enclosure, near a light pole.	11.8	E	

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM	SECTOR
J+15	(Westbank) Located on fence enclosure surrounding LP&L switchyard at LA 631/Hwy 90 intersection in Des Allemands. TLD's are on the northwest corner of fence. Access from LA 631 via shell road.	12.0	S
E-30*	(Westbank) Located on fence at LP&L General Office on Delaronde St. in Algiers. TLD's are on the fence, facing the Mississippi River, in the passageway to the transformer shop.	27.0	E
AIRBORNE			
APP-1	(Westbank) Located in soybean field at northwest corner of Short St. in Killona.	0.8	WNW
APQ-1	(Westbank) Located at northwest corner of soybean field on east side of Killona. Access from River Road (LA 18) approximately 0.6 miles east of LA 18/3141 intersection.	0.8	NW
APG-1	(Westbank) Located at the north side of the Secondary Meteorological Tower	0.5	SE

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM SECTOR PLANT DIRECTION	
APC-1	(Eastbank) Located inside the Little Gypsy Cooling Water Intake Structure fence enclosure.	0.8	NE
APE-30*	APE-30* (Westbank) Located on the roof of the LP&L General Office building on Delaronde St. in Algiers.		E
WATERBORNE			
DWG-2 SWG-2	DWG-2 (Westbank) Located at the Union SWG-2 Carbide drinking water canal. Access from LA 3142 through Gate 28.		SE
DWE-5 SWE-5	DWE-5 (Eastbank) Located at the SWE-5 St. Charles Parish Waterworks off of River Road (LA 48) near New Sarpy.		E
DWP-7* SWP-7*	(Westbank) Located at the St. John Parish Waterworks off of LA 18 in Edgard.	6.5	NNW
SHWE-3	(Westbank) Located at the Foot Ferry Landing off of LA 18 in Taft.	3.0	E
SHWK-1	(Westbank) Located at the 40 Arpent Canal south of the Plant. Access from LA 3127 through Gate 8.	0.5	SSW

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM SECTOR PLANT DIRECTIC	
GWK-1	GWK-1 (Westbank) Located at 40 Arpent Canal south of the plant. Access from LA 3127 through LP&L Gate 8. The canal is northwest of the shell access road/railroad track intersection.		SSW
INGESTION			
MILK			
MKE-4	(Westbank) Located 0.8 miles west of the Time Saver in Hahnville off of River Road.	4.0	E
MKQ-1	(Westbank) 1.0 miles west of Waterford 3 SES at the corner of River Road and Post Street in Killona.	1.0	NW
MKQ-5	(Westbank) Located at the Webre's house, just across LA 18 from river marker, at the eastern end of Edgard.	4.9	NW
MKQ-45*	(Eastbank) Located off of I-12 in Denham Springs, take LA 3002 south to LA 1034, then right to LA 1032, then left. Farm is 1 mile on the right.	42	NW

LOCATION NUMBER	LOCATION DESCRIPTION	MILES FROM PLANT	SECTOR
FISH			
FH-1*	Upstream of the plant intake structure.	NA**	NA**
FH-2	Downstream of the plant intake structure.	NA**	NA**
BROAD LEAF			
BLQ-1	BLQ-1 (Westbank) Located between LA 18 and soybean field on eastern edge of Killona, near air sample station APQ-1. BLB-1 (Eastbank) Located at wooded area		NW
BLB-1	8-1 (Eastbank) Located at wooded area at the southwestern corner of the LP&L Little Gypsy plant along River Road.		NNE
BLK-15*	(Westbank) Located 3.5 miles SSW of Des Allemands on Hwy. 90.	15	SSW
FOOD PRODUCTS***			
FPP-1	(Westbank) Located in sugarcane field on eastern edge of Killona, between air sample station APP-1 and APQ-1.	0.8	WNW
FPG-1	(Westbank) Located in a sugarcane field adjacent to the plant near the meteorological towers.	0.4	SE

(CONTINUED)

* DENOTES CONTROL LOCATION

** NA - NOT APPLICABLE

*** Food products are not required since no areas surrounding the plant are irrigated with water into which plant wastes are discharged. Food products grown within the site boundary were collected however, in order to demonstrate the absence of man-made radionuclides.

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANAYLSIS

LOWER LIMIT OF DETECTION (LLD) [8]

ANALYSIS	WATER (pCi/l)	AIRPORNE PARTICULATE OR GAS (pC:/m ³)	FISH (pCI/kg-wet)	MILK (pCi/l)	FOOD PRODUCTS ^{bi} (pCi/kg-wet)	SEDIMENT (pCI/kg-dry)
gross beta	4	0.01				
H-3	2000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-Nb-95	15					
1-131	1	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15			15		

a. From Table 5.8-3 of Waterford 3 SES Offsite Dose Calculation Manual.

b. Applicable to broad leaf vegetation.

23

5.0

3.0 DISCUSSION OF RESULTS

Analytical results for the year 1991 are discussed in this section by exposure pathway, sample type, and analysis performed. Further, analytical results focusing only on man-made radioactivity are summarized in Appendix A; data for the individual analyses are presented in the tables of Appendix B.

3.1 Direct Radiation Exposure Pathway

The average exposure rates measured by thermoluminscent dosimeters (TLDs) at both control and indicator stations were 12, 13, 12, and 13 mrem/standard quarter for the first, second, third, and fourth quarters of 1991 respectively. The average exposure rate of the 117 indicator TLD locations was 13 mrem/standard quarter compared to 12 mrem/standard quarter average exposure rate at the control location. The lowest and highest individual exposure rates were 7 mrem/standard quarter (C-1, 2nd and 3rd quarters) and 19 mrem/standard quarter (G-9, 1st quarter), respectively, for all locations. Table 3.1 compares the indicator TLD results by directional sector and distance from the facility. A comparison of 14 mrem/standard quarter directional sectors indicates the highest average exposure rate to be in Sectors A, G and Q.

The average exposure rates during 1991 are consistent with those from the pre-operational program and the previous five years of operation (Figure 3.1). Specifically, the pre-operational survey indicates that exposure rates ranged between 11 and 33 mrem/standard quarter. Similarly, the range indicated during the previous five years of operation was from 6 to 30 mrem/standard quarter with an average exposure rate of 14 mrem/standard quarter.

3.2 Airborne Exposure Pathway

3.2.1 Airborne Particulates

Gross beta activity ranged from 0.005 pCi/m³ (APQ-1 and APP-1, 8/26-9/3) to 0.039 pCi/m³ (G-1) (APG-1, 11/5-11/11) with an average of 0.018 pCi/m³ for 260 measurements from all five locations. The average gross beta activity for both control (APE-30) and indicator (APG-1, APQ-1, APP-1, APC-1) locations was 0.018 pCi/m³.

The gross beta activity results obtained during 1991 are consistent with those from the pre-operational program and the previous five years of operation (Figure 3.2). Specifically, the pre-operational survey indicates that in periods not significantly influenced by nuclear weapons testing the gross beta activity ranged between 0.006 and 0.08 pCi/m³ with an average of .02 pCi/m³. Similarly, the range indicated during the previous five years of operation was from 0.003 to 0.05 pCi/m³ with an average activity of 0.02 pCi/m³.

3.2.2 Airborne lodine

All of the 264 airborne iodine-131 results were below the calculated lower limit of detection (LLD). The sample LLD variability (0.011 to 0.040 pCi/cubic meter Table B-2) was due primarily to the difference in air sample volumes.

3.2.3 Gamma Isotopic Analysis

Gamma spectroscopy results of the twenty air sample quarterly composites indicate that no man-made radionuclides were detected above their respective lower limits of detection.

3.3 Waterborne Exposure Pathway

3.3.1 Drinking/Surface Water

As mentioned previously, drinking water samples also serve as surface water samples for Waterford 3. Therefore, monthly and quarterly gamma spectral analyses of drinking water and quarterly tritium analyses also satisfy the surface water sampling requirement.

Seventy-eight composite drinking/surface water samples were analyzed by a radiochemical procedure for iodine-131 (Table B-4). Results from these analyses indicate that no activity was detected above the calculated LLD for iodine-131.

Gross beta activity was detected in thirty-five of the forty-two composites with a range of 1.1 (DWP-7, 11/5-12/3) to 9.5 (DWG-2, 7/29-8/26) pCi/l and an average activity of 3.8 pCi/l. The average activity for the control location, DWP-7, was 3.9 pCi/l compared to the averages of 4.2 and 3.3 pCi/l for indicator stations DWG-2 and DWE-5 respectively.

The gross beta activity results obtained during 1991 are consistent with those from the pre-operational program and the previous five years of operation (Figure 3.3). Specifically, the pre-operational survey indicates that in periods not significantly influenced by nuclear weapons testing the gross beta activity ranged between 3 and 14 pCi/l with an average of 7.0 pCi/l. Similarly, the range indicated during the previous five years of operation was from 2 to 60 pCi/l with an average activity of 6.1 pCi/l.

Tritium analysis of drinking/surface water samples indicate that eleven of the twelve measurements were below the respective LLD. Tritium was detected in the first guarter of 1991 at a concentration of 260 pCi/l (DWE-5, an indicator station). Tritium is man-made and cosmogenically produced and levels detected during 1991 are consistent with the pre-operational program and the previous five years of operation. Specifically, the pre-operational survey indicates that tritium activity ranged between 60 and 220 pCi/I with an average of 136 pCi/I. Similarly, the range indicated during the previous five years of operation was from 170 to 545 pCi/I with an average activity of 265 pCi/I.

3.3.2 Groundwater

Four groundwater samples were collected from one sampling location, GWK-1, and analyzed for tritium and gamma emitters. Gamma emitters were not detected; however, tritium was detected in two of the four samples at concentrations of 200 and 340 pCi/l.

Tritium is man-made and cosmogenically produced and levels detected during 1991 are consistent with the pre-operational program and the previous five years of operation. Specifically, the pre-operational survey indicates that tritium activity ranged between 50 and 180 pCi/l with an average activity of 121 pCi/l. Similarly, the range indicated during the previous five years of operation was from 249 to 650 pCi/l with an average activity of 336 pCi/l. Although the concentrations detected in 1991 are slightly higher than the pre-operational data, they are within the same range as those reported during the previous five years and well below the reporting levels and LLD (2000 pCi/l) required by the Waterford 3 ODCM.

3.3.3 Shoreline Sediment

Four shoreline soil samples were collected from the following sampling locations: two samples from the Mississippi River shoreline downriver of the plant (SHWE-3) and two samples from the shoreline of a drainage canal (SHWK-1).

Naturally occurring radionuclides including potassium-40, radium-226, and actinium-228 were detected in all of the samples. Cesium-137, a man-made nuclide was detected in samples from station SHWK-1 and SHWE at concentrations of 49 and 32 pCI/kg(dry) respectively. No other man-made radionuclides were detected in any of the samples.

The cesium-137 results obtained during 1991 are consistent with those from the pre-operational program and the previous five years of operation. Specifically, the pre-operational survey indicates that cesium-137 was detected in 13 of 18 soil samples at concentrations ranging between 30 and 890 pCi/kg(dry) with an average concentration of 138 pCi/kg(dry). Similarly, the range indicated
during the previous five years of operation was from 21 to 142 pCi/kg (dry) with an average activity of 51 pCi/kg (dry) respectively. Further, studies in Louisiana indicate that cesium-137 is commonly found in soils and sediments as a result of atmospheric weapon testing. Because the cesium-137 levels are consistent with pre-operational values and cesium-137 has been shown to be present in most Louisiana soils, these cesium-137 levels are more than likely attributable to weapon testing fallout.

3.4 Ingestion Exposure Pathway

3.4.1 Milk

Forty-eight milk samples were collected from two sampling locations and analyzed by gamma spectroscopy. Naturally occurring potassium-40 was detected in all samples and cesium-137 was detected in two samples (MKE-45 9/3 and 11/18) at levels of 3 and 4 pCi/I respectively from the control location. The samples were also analyzed by a radiochemical procedure for iodine-131. Results from these analyses indicate that no activity was detected above the calculated LLD for iodine-131.

The cesium-137 results obtained during 1991 are consistent with those from the pre-operational survey and the previous five years of operation. Specifically, the pre-operational survey indicates that cesium-137 activity ranged between 3 and 7 pCi/l with an average activity of 4.8 pCi/l. Cesium-137 was detected in 1986 at 4 pCi/l.

3.4.2 Fish

Twenty fish samples, ten upstream and ten downstream of the plant were collected and the edible portions analyzed by gamma spectroscopy. Only naturally occurring potassium-40 was detected above the lower limits of detection in any samples.

3.4.3 Broad Leaf Vegetation

Thirty-six broad leaf vegetation samples were collected and analyzed by gamma spectroscopy and a radiochemical procedure for iodine-131. Naturally occurring radionuclides were detected in all of the samples; however, no man-made radionuclides were detected above their lower limits of detection.

3.4.4 Food Products

Three food products samples were collected and analyzed by a radiochemical procedure for iodine-131. Results indicated iodine-131 concentrations to be below the lower limit of detection.

Further, the samples were analyzed by gamma spectroscopy. Naturally occurring potassium-40 was the only radionuclide detected in all the samples. All man-made gamma emitters were below their respective lower limits of detection.

3.5 Statistical Analyses

3.5.1 Calculation of the Mean and Standard Deviation

The mean and standard deviation for different groups of analyses are calculated using the following equations:

(F-1)
$$\overline{X} = \sum_{i=1}^{n} \frac{X_{i}}{n}$$

(F-2) $S = \left(\frac{\sum_{i=1}^{n} X_{i}^{2} - (n) (X)^{2}}{(n-1)}\right)^{0.1}$

 $\overline{\mathbf{x}}$ = mean of sample population.

s = standard deviation of sample population,

n = number of samples in sample population, and

x, = value of the i'th sample.

0.5.2 Comparing Two Sample Population Means

The means of two sample populations are compared for statistical difference using the standard "t" test. The use of the test requires the assum, on that the data within the populations are normally distributed and that the true standard deviations of the mean are equal for both populations. The standard "t" test tests the hypothesis that the true means of both populations are equal. The "t" value can be calculated from the equation below (obtained from the CRC Standard Mathematical Tables, 26th Edition (1981)):

(F-3)

$$f = \frac{(X-Y)}{\left(\frac{(n_x-1)s_x^2 + (n_y-1)s_y^2}{n_x + n_y - 2}\right)^{0.5} \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{0.5}}$$

where:

t = calculated "t" value,

x = mean of first data set.

y = mean of second data set.

- n x = number of variables in first data set,
- s = standard deviation of first data set,

n y = number of variables in second data set, and

 $s_y = standard deviation of second data set.$

If the data from both sample populations are treated as correlated pairs, the difference between individual measurements can be examined using the statistical "t" test. In this case, if the true means and true standard deviations for the sample populations are equal, the difference between the correlated data points should be normally distributed about a mean of zero. The "t" value can be calculated from the following equation (obtained from the CRC Standard Mathematical Tables, 26th Edition (1981)):

$$(\tilde{r}-4) \qquad t = \frac{d'(n)^{0.5}}{s_d}$$

where:

d = the average of the difference between the correlated data points from the two sample populations:

$$d' = \sum_{i=1}^{n} \frac{(x_i - y_i)}{r_i}$$

 x_{i} = the i'th data point from population x_{i}

 y_{i} = the i'th data point from population y_{i}

N = the number of correlated pairs of data points.

n = degrees of freedom, for equation F-4, n=N-1, and

s d= the standard deviation of the difference between the correlated data points.

The calculated "t" value in both cases is used to test the hypothesis that the true mean of the first population (μ_x) is equal to the true mean of the second population (μ_y) assuming that the true standard deviations of both populations are equal ($\mu_x = \mu_y$). The calculated "t" value is compared to a tabular "t" value such that:

a. If t > t \propto ,, then reject the hypothesis when μ , > μ ,,

b. if t < -t $\propto_{_{10}}$ then reject the hypothesis when μ , < μ ,

c. if t > t $\alpha_{12,n}$ then reject the hypothesis when $\mu_x = \mu_y$.

where t $\propto_{12.5}$ and t $\propto_{1.6}$ are the tabular "t" values, with a preselected error (5 percent in this case), confidence level (1 - \propto) or (1 - \propto /2), and degrees of freedom n (n=n + n - 2 for Equation F-3 and n - N-1 for F-4, respectively). Tabular values of the "t" were

obtained from the <u>CRC Standard Mathematical Tables</u>, 26th Edition (1981).

3.5.3 TLD Measurements

TLD stations were categorized by distance into three groups: 0-2 miles, 2-5 miles, and >5 miles from the plant. A statistical analysis using the standard "t" test (described above) was performed comparing the average exposure rates from 0-2 miles and 2-5 miles to the average exposure rate at >5 miles. In short, the results of the analyses show the average exposure rate at 0-2 miles to be statistically lower than at >5 miles and the average exposure rate at 2-5 miles. Table 3.2 summarizes the results of this analysis.

3.5.4 Gross Beta Activity on Air Particulate Filters

Additionally, the standard "t" test was used to compare average gross beta activity from each indicator station to the average gross beta activity at the control station. The results from this test show average activity detected at all indicator locations to be statistically the same as the activity detected at the control location. Table 3.3 summarizes the result of this analysis.

3.5.5 Gross Beta Activity in Monthly Drinking Water Composites

Finally, the standard "t" test was used to compare average gross beta activity from the two indicator stations to the average gross beta activity from the control station. The results from this test show average activity detected at both indicator locations to be statistically the same as the average activity detected at the control location. Table 3.4 summarizes the result of this analysis.

3.6 Deviations from the REMP

3.6.1 Unavailable Samples

Deviations from the REMP associated with missing TLDs resulted from theft of the dosimeters and were beyond the control of Waterford 3. Three TLDs were discovered missing from locations A-2, D-5, and R-6 during dosimeter change-out at the end of the third quarter. Consequently, the missing TLDs were replaced and the deviation noted.

Milk samples were not available during 1991 from the animal owners at station MKQ-1 since the cows are not currently producing milk for human consumption. With the absence of milk samples at these stations, broad leaf vegetation sampling was performed. Mechanical malfunction of a sample pump resulted in low sample volume for one air sample. Although the sample volume was sufficient to complete analysis, the requirement for continuous sampling was not met for this sample period. A routine sampler maintenance schedule is currently in effect to reduce instances of malfunction.

Additionally, three water samples failed to meet requirements for sample continuity. Tubing problems were responsible for two of the failures, while the third was a result of a power failure at the sample site. As a result, the routine maintenance schedule will be modified to address sampler tubing problems. Sample volumes in all instances were sufficient to complete analysis.

A list of deviations and associated explanations is provided in Table 3.5.

3.6.2 Missed Lower Limits of Detection

All lower limit of detection requirements were met for 1991.

3.7 Annual Land Use Census

In compliance with Waterford 3 ODCM, the annual land use census was conducted on October 1 and 2, 1991. The nearest residence, garden, and milking animal in each sector within a five mile radius of the plant were located by visual inspection and verbal inquiry.

Although residence and garden locations remained unchanged from the 1990 census, three new milk goat locations were identified. Upon inquiry, it was discovered that the animals are not currently producing milk for human consumption. The results of the 1991 census are summarized in Table 3.6.

1991 DIRECT RADIATION DATA ORGANIZED BY COMPASS DIRECTION AND DISTANCE FROM WATERFORD 3 SES

		BY COMPASS DIR	ECTION	
SECTOR	COMPASS DIRECTION	AVERAGE DOSE RATE (mrem/std qtr)	STANDARD DEVIATION (mrem/std qtr)	NUMBER IN GROUP
A	N	14	1.0	
В	NNE	13	1.6	7
C	NE	0	0.8	8
D	ENE	44	0.8	4
E(a)	E	10	1.7	
F	ESE	40	1.7	12
G	SE	10	1.2	12
н	SSE	40	2.4	12
J	8	10	0.8	8
ĸ	SSW	10	1.0	8
1	SW		0.5	4
M	WOW	12	0.8	4
N	W	12	0.8	4
P	ATATATA	13	0.7	4
0	ALVA/	12	2.4	8
R	TVYV ALAUA/	14	1.0	8
	INIMAA	12	1.8	7
CONTROL	E	12	1.7	4
		BY DISTANCE FROM	PLANT	
DISTANCE	AVEF	AGE	STANDADD	
FROM PLANT	DOSE	RATE	DEVIATION	NUMBER
(MILES)	(resem)	(etc) -(c)	DEVIATION	IN
		and and	(mrem/std dtr)	GROUP
0 - 2				and the read interaction of the second second
2 - 5	14		2.0	63
5(a)			1.3	27
			1,7	27
CONTROL	12		1.7	4

a. Does not include control station dans

STATISTICAL COMPARISON OF 1991 TLD MEASUREMENTS FROM STATIONS GROUPED BY DISTANCE FROM WATERFORD 3 SES

	Stations Located 0-2 Miles from the Plant	Stations Located 2-5 Miles from the Plant	Stations Located more than 5 miles from the Plant
Mean (mrem/std. qtr.)	11.95(12)	13.22(13)	13.15(13)
Standard Deviation (mrem/std. qtr.)	1.96	1.29	1.74
Number in Sample	63	27	27
Calculated "t" Value to Comparisons with Stations Located more than 5 miles from the Plant	2.79	0.23	NA
Fabular "t" Value at 95% Confidence (t _{russo})	1.990(a)	2.008(a)	NA

a. Results indicate that the mean for stations located 0-2 miles from the plant is lower than those greater than 5 miles and for 2-5 miles from the plant means are statistically identical to stations located more than 5 miles from the plant.

STATISTICAL COMPARISONS OF GROSS BETA ACTIVITY ON AIR PARTICULATE FILTERS FOR 1991

SAMPLE STATION	APC-1	APG-1	APP-1	APQ-1	APE-30	
Mean (10 [°] pCi/m [°])	19.0	18.0	18.1	17.1	18.1	
Standard Deviation (10 ⁻³ pCi/m ³)	7.02	6.71	7.07	5.49	6.70	
Number in Sample	52	52	52	52	52	
Calculated "t" Value Comparing Control Station (AFE-30) to Indicator Station	0.70	0.06	0.04	0.85	NA	
Tabular "t" Value at 95% Confidence (t _{oceso})	1.986	1.986	1.986	1.986	NA	

STATISTICAL COMPARISON OF GROSS BETA ACTIVITY IN MONTHLY DRINKING WATER COMPOSITES FOR 1991

SAMPLE STATION	DWG-2	DV*5-5	DWP-7	
Mean (pCi/l)	4.2	3.3	3.9	
Standard Deviation (pCi/l)	2.5	2.0	2.3	
Number in Sample	9	7	9	
Calculated "t" Value Comparing Control Station DWP-7) to Indicator Station	0.32	0.49	NA	
abular "t" Value at 5% Confidence	2.120	2.145	NA	

SUMMARY OF 1991 REMP DEVIATIONS

	SAMPLE TYPE	ANALYSIS	LOCATION	DATE	EXPLANATION OF DEVIATION
1.	Milk	I-131, Gamma	MKQ-1	01/01/91-12/31/92	No samples available; cows did not supply milk for human consumption
2.	Water	I-131	DWP-7	01/14/91-01/28/91	First week sample not obtained due to power failure.
3.	Water	I-131	DWG-2	01/14/91-01/28/91	Second week sample not obtained due to faulty tubing connection.
4.	Air	I-131, Gross Beta	APQ-1	01/14/91-01/21/91	Pump motor found not operating due to mechanical failure.
5.	Water	I-131	DWG-2	03/25/91-04/08/91	First week sample not obtained due to tubing obstruction.
6.	Direct Radiation	NA	A-2	Third Quarter	TLD Missing
7.	Direct Radiation	NA	D-5	Third Quarter	TLD Missing
8.	Direct Radiation	NA	R-6	Third Quarter	TLD Missing

SECTOR	DIRECTION	DISTANCE FROM PLANT (MILES)					
		BEEF	MILK	MILK	GARDEN	RESIDENCE	FOOD
A	N	3.5		3.9"	1.0	0.9	4.1
В	NNE			*	1.3	1.3	*
С	NE	1.3	1. K. (0.9	0.9	* *
D	ENE			1.0°	0.9	0.9	a de pa
E	E	2.3	* •	* 2	2.2	2.2	0.3
۴	ESE	2.3			2.2	3.1	0.3
G	SE	2.4		÷	2.3	4.0	0.3
н	SSE				*	*.	0.3
J	S			*		·	0.7
К	SSW			+	1.5		0.5
L	SW						0.5
М	WSW	1.0			1.5	19 1 - 19	0.7
N	W			a di	1.1	1.0	0.7
Ρ	WNW	0.9		말한	0.9	0.9	0.6
Q	NW	0.9	4.9 ^{6,b}	4.9°	0.9	0.9	0.6
R	NNW	2.3			3.0	3.0	2.6

1991 ANNUAL LAND USE CENSUS RESULTS

None found in sector within five mile radius of the plant.

a Samples are being taken at 4.9 miles (MKE-5) for the Waterford 3 REMP.

b Cows at Location MKQ-1 are currently not producing milk for human consumption. The owner will be contacted on a periodic basis to determine if milk will be used for human consumption and for the availability of samples.

c Goats located in Sectors A, D, and Q are currently not producing milk for human consumption. The owners will be contacted on a periodic basis to determine if milk will be used for human consumption and for the availability of samples.

4.0 CONCLUSIONS

The radiological environmental data collected during 1991 are consisted, with the data obtained during the previous five years of plant operation (1986-90), the Preoperational Environmental Radiological Surveillance (PERS) Program, and the first two years of the REMP prior to Waterford 3 initial criticality (1983-84). The only man-made radionuclides detected in the environmental samples analyzed during 1991 were cesium-137, and tritium.

Cesium-137 was detected in two milk and shoreline soil samples. Studies in Louisiana indicate that cesium-137 is commonly found in soils and sediments as a result of weapons testing. Further, the detected activity in all instances was at levels less than the required lower limit of detection and well below levels requiring notification. In addition, the detected concentrations were consistent with pre-operational levels. Therefore, it is unlikely that the presence of cesium in these samples can be attributed to Waterford 3 operation.

Tritium was detected in one drinking/surface water sample at levels below the required lower limit of detection and well below levels requiring notification. Tritium is man-made and cosmogenically produced and was frequently detected in samples taken prior to Waterford 3 operation. Due to the absence of tritium in drinking/surface water samples located at a closer downstream location and the presence of tritium in pre-operational samples at comparable levels, it is not likely that the tritium detected in the drinking water samples in 1991 was a result of plant operation.

Tritium activity in the groundwater samples was slightly higher than preoperational levels but consistent with levels detected during the previous five years of operation. Additionally, the high statistical errors associated with the indicated concentrations are higher than would be expected with true activity. Further, the amounts released were well below regulatory limits, and the concentrations detected in the groundwater were well below both the required LLD and the reporting level.

In conclusion, based on the evaluation of the REMP data collected during 1991 the operation of Waterford 3 had no discernable radiological impact on the environment.

40

YEAR

FIGURE 3.3

YEAR

APPENDIX A REMP DATA SUMMARY

TABLE A-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility _____ Waterford 3 SES ____ Docket No. ____ 50-382

Location of Facility <u>St. Charles, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State)

January 1 to

MED (UNIT	IUM OR PATHWAY SAMPLED OF MEASUREMENT)	ANALY TOTAL OF AN PERF(SIS AND NUMBER ALYSES ORMED	LOWER LIMIT OF DETECTION* (LLD)	ALL INDICATOR LOCATIONS MEAN* (RANGE)*	LOCATION WITH HI NAME DISTANCE AND DIRE	GHEST ANNUAL MEAN MEAN* CTION (RANGE)*	CONTROL LOCATION MEAN* (RANGE)*	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
1.	Direct Radiation (mrem/Std. Qtr.)	TLD	121	4c3	13(117/117) (8-19)	G-9 8.1 miles SE	14(4/4) (13-19)	E-30 12(4/4) (11-13)	0
2.	Airborne Particulates (10-3pCi/m3)	Gross Beta	260	٥٢	15(208/208) (6-39)	APG-1 0.5 miles SE	19(52/52) (6-39)	APE-36 18(52/52) (8-37)	0
3.	Airborne lodine	Gamma	20	(d)	<uld (0="" 16)<br="">(-)</uld>	NA	NĂ	APE-30 <lld (10="" 4)<br="">{-}</lld>	0
NOTE	(10 ⁻³ pCi/m ³) Footnotes at end of	table.	200	70	<1LD (0/208) {-}	NA	NA	APE-30 <lld (0="" 53)<br="">{-}</lld>	0

1 E A-1 (Cont.)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility _____ Waterford 3 SES _____ Docket No. _____ 50-382

January 1 to

Location of Facility <u>St. Charles, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State)

MED	IUM OR PATHWAY SAMPLED OF MEASUREMENT)	ANALY TOTAL OF AN PERFO	SIS AND NUMBER ALYSES DRMED	LOWER LIMIT OF DETECTION* (LLD)	ALL INDICATOR LOCATIONS MEAN® (RANGE)®	LOCATION WITH HIGH NAME DISTANCE AND DIRECTI	EST ANNUAL MEAN MEAN ⁶ ION (RANGE) ⁶	CONTROL LOCATION MEAN* (RANGE)*	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
4.	Drinking Water (pCi/l)	Gross Beta	42	đ	3.8(21/28) (1.1-9.5)	DWG-2 2.0 miles ESE	4.2(12/14) (2.3-9.5)	DWP-7 3.9(9/14) (1.1-7.6)	0
		1-131	78	1	<lld (0="" 52)<br="">(-)</lld>	NA	NA	DWP-7 <110 (0/26) (-)	0
		Gamma	39	(d)	<lld (0="" 26)<br="">{-}</lld>	NA	NA	DWP-7 <llo (0="" 13)<br="">{-}</llo>	0
		Tritium	12	2000	260(1/8) (-)	DWE-5 4.5 miles E	NA	DWP-7 <lld (0="" 4)<br="">(-)</lld>	0

NOTE: Footnotes at end of table.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility _____ Waterford 3 SE3 ____ Docket No. _____ 50-382

January 1 to Location of Facility <u>St. C. arles, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State)

MED	UM OR PATHWAY SAMPLED OF MEASUREMENT)	ANALY TOTAL OF AN PERFO	YSIS AND NUMBER ALYSES DRMED	LOWER LIMIT OF DETECTION* (LLD)	ALL INDICATOR LOCATIONS MEAN [®] (RANGE) [®]	LOCATION WITH HIGH NAME DISTANCE AND DIRECT	IEST ANNUAL MEAN MEAN* TION IRANGEJ*	CONTROL LOCATION MEAN* (RANGE)*	NUMBER OF NONROUTINE REPORTED
5.	Surface Water (pCi/l)	Gross Beta	42	4	3.6(21/28) (1.1-9.5)	SWG-2 2.0 miles ESE	4.2(12/14) (2.3-9.5)	SWP-7 3.9(9/14)	0
		1-131	78	1	<1LD (0/52) {-}	NA	NA	SWP-7 <lld (0="" 26)<="" td=""><td>0</td></lld>	0
		Gamma	39	(d)	<11D (0/26) (-)	NA	NA	SWP-7 <lld (0="" 13)<="" td=""><td>0</td></lld>	0
		Tritium	12	2000	260(1/8) (-)	SWE-5 4.5 miles E	NA	SWP-7 <lld (0="" 4)<br="">{-}</lld>	с

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility _____ Waterford 3 SES ____ Docket No. _____ 50-382 _____

Location of Facility <u>St. Charles, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State) January 1 to

MED (UNIT	SAMPLED SAMPLED OF MEASUREMENT)	ANALY TOTAL OF AN PERF(SIS AND NUMBER ALYSES DRMED	LOWER LIMIT OF DETECTION* (LLD)	ALL INDICATOR LOCATIONS MEAN* (RANGE)*	LOCATION WITH H NAME DISTANCE AND DIR	HGHEST ANNUAL MEAN MEAN [®] IECTION (RANCE) [®]	CONTROL LOCATION MEAN ⁶ (RANGE) ⁶	NUMBER OF NONROUTINE REPORTED
6.	Groundwater (pCi/l)	Gamma	4	(d)	<ud (0="" 4)<="" th=""><th>NA</th><th>NA</th><th>NONÊ</th><th>0</th></ud>	NA	NA	NONÊ	0
7		Tritium	4	2000	270(2/4) (200-340)	GWK-1	270(2/4) (200-340)	NONE	0
	Shoreline Sediment (pCi/kg-dry)	<u>Gamma</u> Cs-137	4	180	41(2/4) (32-49)	SHWK-1 1.0 miles S	49(1/2) (-)	NONE	o

NOTE: Footnotes at end of table.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMM. RY

Name of Facility Waterford 3 SES Docke: No. 50-392

Location of Facility: <u>St. Charles, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State)

NN NUMBER OF NONROUTINE REPORTED MEASUBCHARA	0	ø	0
CON TROL LOCATIO MEAN [®] (RANGE) [®]	MK0-45 <11.0 (0/24)	() MAQ-45 (2/24)	() () () ()
HIGHEST ANNUAL MEAN MEAN IRECTION (RANGE)*	NA	3 5(1/24) 1.1	W
LOCATION WITH NAME DISTANCE AND DI	VN	MKO-45 42 miles NW	MA
ALL INDICATOR LOCATIONS MEAN® (RANGE)*	(1.D (0/24)	<lld (0="" 24)<br="">(-1</lld>	101/01 (TT1>
LOWER LIMIT OF DETECTION* (LLD)	-	8	(2)
ANALYSIS AND TOTAL NUMBER OF ANALYSES PERFORMED	1-131 48	Garma 48 Cs-107	Gamma 20
EDIUM OR PATHWAY SAMPLED NIT OF MEASUREMEN ()	8. Milk (pCi/l)		9. Fish tpCi/kg-wet)

NOTE: Footnotes at and of table.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility Vaterford 3 SES Docket No. 59-292

Location of Facility <u>St. 67 artes, Louisiana</u> Reporting Period <u>December 31, 1991</u> (Parish, State)

NUMBER OF NONROUTINE REPORTED MEASUREMENTS	0	0	0
CONTROL LOCATION MEAN [®] (RANGE) [®]	BUK-15 <uld (0="" 12)<br="">U1</uld>	BLK-15 <lld (0)12!<br="">(-)</lld>	NONE
VITH HIGHEST ANNUAL MEAN MEAN" D DIRECTION (RANGE)"	МА	MA	٧٧
LOCATION V NAME DISTANCE AN	NA	NA	NA
ALL INDICATOR LOCATIONS MEAN* (RANGE)*	<lld (0)24)<br="">(-)</lld>	<ud (0="" 24)<br="">{-}</ud>	(F) (F)
LOWER LIMIT OF DETECTION* (LLD)	60	(2)	69
ANAL VSIS AND TOTAL NUMBER OF ANALYSES PERFORMED	1-131 36	Gamma 36	Gamma 4
MEDIUM OR PATHWAY SAMPLED UNIT OF MEASUREMENT)	10. Broad Leaf Vegetation (pCi/kg-wet)		11. Food/Garden Crop (pCi/kg-wet)

NOTE: Footnotes at end of tabla.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

FOOTNOTES

^aNominal Lower Limit of Detection (LLD) as defined in the Waterford 3 Offsite Dose Calculation Manual.

^bMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parenthesis.

^CLower Limit of Detection (LLD) not defined in Waterford 3 Offsite Dose Calculation Manual.

^dLower Limit of Detection (LLD) for individual radionuclides using gamma spectroscopy are given in Waterford 3 Offsite Dose Calculation Manual.

APPENDIX B REMP DATA

TABLE B-1

QUARTERLY TLD DOSE RATES

LOCATION	1ST QUARTER (01/12-04/06) DOSE RATE (mrem/std qtr)	2ND QUARTER (04/06-07/06) DOSE RATE (mrem/std qtr)	3RD QUARTER (07/06-10/05) DOSE RATE (mrem std qtr)	4TH QUARTER (10/05-01/04) DOSE RATE (mrem/std qtr)	AVERAGE DOSE RATE (mrem/std qtr)
A-2	14	15	N/A*		
A-5	13	14	12	14	10
B-1	13	14	12	14	13
8-4	13	14	12	14	13
C-1	08	09	08	10	10
D-2	09	10	09	11	09
D-5	11	13	N/A*		10
E-1	10	11	10	11	10
E-5	15	13	14	12	14
E-15	09	13	41	13	12
E-30	11	11	13	12	10
F-2	12	12	11	12	12
F-4	14	15	13	15	14
F-9	13	13	12	14	19
G-2	15	16	14	16	15
G-4	12	11	11	11	11
G-9	19	14	13	13	15
H-2	13	14	13	14	14
H-6	12	13	14	12	13
J-2	14	11	14	13	13
J-15	12	13	12	13	13
K-1	10	20231	10	11	11
L-1	12	13	11	13	12
M-1	11	12	13	13	12
N-1	13	14	12	13	13
P-1	09	11	09	10	10
P-6	14	15	13	15	14
Q-1	12	14	13	12	13
Q-5	14	15	14	14	14
R-1	10	12	11	10	11
R-6	14	15	N/A*	11	13
erage	12	13	12	13	

* - TLD stolen, replaced - See Table C-5

A

TABLE 8-2

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APC-1

6te 1
101/14/91
1 01/28/04
16/07/14
1 02/04/91
16/11/20
02/18/95
65/22/01
03/04/91
63/11/01
0118/01
01126104
1 A lentes
1-2/101/51
04/08/91
04/12/01
04/22/91
16/62/90
05/06/91
05/13/01
161.267.01
DE L'HE MAN
16/92/cn
06/03/91
06/10/01
06/17/01
DK.124.701
1 & Jaco Inc.

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APC-1

Lab No.	Begin De	te End Date	Gross-Beta	1-131
911145	06/57/01	10/10/20	CON 0.1+ 110.0	- 10 017
911260	07/01/91	16/66/10	20010 1. 1110	10.0.0
911275	10/00/10	07/15/91	SUN UTIT YEU G	0.000
911313	07/15/91	07/22/91		A10.0 >
911342	15/22/20	07/29/91	0.018 +/-0.002	< 0.015
011382	10/120/01	08/35/91	CON 0-1+ 4CU U	- 0 - 01
911406	16/50/80	16 1/80	20010 / 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	010.0
111451	08/12/91	C3/19/91	200.0-1- 210.0	110.9 2
067116	16/61/80	08/26/91	0.020 +/-0.003	× 0.017
911530	08/26/91	09/03/91		
911559	16/20/60	09/00/91	200-0-1+ 000-0	210-6 ×
911607	16/60/60	10/19/100	500.0-/* Jon.0	< 3.025
911649	16/9:/60	09/26/91	2007-1+ JIU.D	< 0.012
911660	09/24/91	09/36/91	0.016 +/-0.003	< 0.029 < 0.029
911735	16/05/60	10/08/91	COD 0-1+ 810 0	200 0 0
911781	10/08/91	10/14/01	30010 / CLU 0	000.0 4
911836	10/14/91	10/22/91	CINO 1- 1- 00000	4 0 0.00
9:1900	10/22/91	10/28/91	0.013 +/-0.002	< 0.014
91:958	10/28/91	11/05/91	COD 0-/+ 200 0	C 0 017
611999	11/05/91	14/11/11	100 U-1+ C10 0	110.0 4
912033	11/11/91	11/19/91	COO 0-/* 020 0	1 0 0 0 0
912067	11/19/91	11/25/91	0.022 +/-0.003	< 0.013
912089	11/25/91	12/03/91	0.016	
912135	12/03/91	12/10/91	20010-14 01010	× 0.014
912186	12/10/91	12/17/91	0.016 +/-0.002	× 0.026
				ALL

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APC-1

Leb ¥o.	Begin Date End Date	Gross-Seta	1-131
912217	12/17/91 12/23/91	0.016 +1-0.002	< 0.040
920017	12/23/91 12/31/91	0.526 +/-0.002	× 0.040

A:R PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APQ-1

UNITS: pci/cubic METER

0644 12/31/90 01/07/91 01/16/79 01/16/79 01/16/79 01/16/79 0.015 4.0.002 4.0.013 0105 01/16/79 01/16/19 01/16/19 01/16/19 01/16/19 0.015 4.0.013 4.0.013 0105 01/12/191 01/12/191 01/12/191 01/12/191 0.016 4.0.002 4.0.013 0264 01/12/8/91 02/11/91 02/11/91 02/11/91 0.016 4.0.003 4.0.013 0201 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 0.014 4.0.003 4.0.013 0201 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 0.012 4.0.013 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 0.012 4.0.013 0501 02/12/91 03/11/91 03/11/91 03/11/91 03/11/91 0.012 4.0.013 0501 02/12/91 03/11/91 03/11/91 03/11/91 0.012	sb Ko.	Begin Da	te End Date	Gross-Beta	1-131
0107 01/07/091 01/12/191 01/11/191 01/	0044	12,31/90	01/07/91	NON A 12 BCD D	
0155 01/14/01 01/12/01 <th< td=""><td>10107</td><td>01/07/01</td><td>01/14/9:</td><td>CONTR- /+ 030-0</td><td>< 0.019</td></th<>	10107	01/07/01	01/14/9:	CONTR- /+ 030-0	< 0.019
0192 01/28/91 01/28/91 01/28/91 01/28/91 01/28/91 01/28/91 01/18 -/-0.002 < 0.016 0380 02/14/91 02/14/91 02/14/91 02/14/91 02/14 -/-0.002 < 0.016	0155	01/14/91	01/21/91	200-0-1-110-0	< 0.019
0.017 0.017 */-0.002 < 0.016 0.204 0.1/28/31 02/11/91 02/11/91 0.015 */-0.002 < 0.020 0.010 0.2/04/91 02/11/91 02/11/91 02/11/91 02/11/91 02/02 < 0.020 < 0.020 0.010 0.2/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/02 < 0.020 < 0.020 < 0.020 0.010 0.2/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/13/91 02/02 < 0.012 0.011 0.2/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 0.012 < 0.012 0.011 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 0.013 < 0.012 0.011 03/13/91 03/13/91 03/13/91 03/13/91 0.013 < 0.012 < 0.012 0.011 03/13/91 03/13/91 03/13/91 0.013	0102	10/12/10	04 /38 /04	Q00 "n-/+ 010"0	× 0.013
024. 01/28/31 02/16/91 02/16/91 02/16/91 02/11/91 02/16/91 02/11/91 02/11/91 02/11/91 02/11/91 02/11/91 02/12/91 02/022 < 0.002 < 0.020 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	-	14/13/10	16/02/10	200-0-/+ 2:0-0	< 0.018
0300 02/16//y1 02/11/y1 02/16//y1 02/11/y1 02/16//y1 02/16	0244	01/28/91	02/04/91	0 045 - 1 0 000	
0309 02/11/91 02/18/91 02/18/91 02/18/91 02/18/91 02/18/91 02/18/91 02/18/91 02/02 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.013 <0.012 < 0.013 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <th< td=""><td>0300</td><td>02/04/91</td><td>02/11/91</td><td>20010-14 61010</td><td>× 0.920</td></th<>	0300	02/04/91	02/11/91	20010-14 61010	× 0.920
0351 02/18/01 02/25/01 03/04/07 02/25/01 03/04/07 0.012 4.0.003 4.0.012 0464 03/04/07 03/14/07 03/14/07 03/14/07 03/14/07 4.0.012 4.0.012 0464 03/04/07 03/14/07 03/14/07 03/14/07 03/14/07 4.0.012 0465 03/11/07 03/18/07 03/18/07 03/18/07 0.012 4.0.012 0521 03/11/07 03/18/07 03/18/07 03/18/07 4.0.012 0511 03/25/07 04/01/07 04/08/07 04/01/07 4.0.002 4.0.014 0511 03/25/07 04/01/07 04/08/07 04/01/07 0.011 4.7-0.002 4.0.014 0512 04/01/07 04/08/07 04/01/07 04/01/07 4.0.014 4.0.014 0512 04/01/07 04/01/07 04/01/07 04/01/07 4.0.014 4.0.014 0512 04/01/07 04/01/07 04/01/07 04/01/07 4.0.014 0513 04	0309	02/11/91	02/18/91	200.0-14 610.0	< 0.620
6402 02/25/91 03/16/91 03/16/91 03/16/91 03/11/91 03/01/91 <th< td=""><td>0351</td><td>02/18/91</td><td>02/25/91</td><td>0.012 +/-0.002</td><td>< 0.021 < 0.016</td></th<>	0351	02/18/91	02/25/91	0.012 +/-0.002	< 0.021 < 0.016
66.6 63/04/91 03/11/91 03/11/91 03/11/91 03/11/91 03/11/91 03/11/91 03/11/91 03/11/91 03/02/1 +/-0.003 < 0.012 < 0.012 5527 03/11/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 0.011 +/-0.003 < 0.011	20%05	16/52/20	03/104/01	C100 0.7.4 210 0	
5527 03/11/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 0.011 +/-0.003 < 0.013 -/-0.003 < 0.013 -/-0.003 < 0.011 6511 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 03/13/91 0.013 +/-0.003 < 0.013	0464	03/04/91	03/11/91	20010-1- 010-0	210'0 ×
5527 03/18/91 03/25/91 04/01/91 03/25/91 04/01/91 0.019 +/-0.002 < 0.021 6611 03/25/91 04/01/91 03/25/91 04/01/91 0.019 +/-0.002 < 0.022	5670	03/11/01	03/18/01	0.027 +/-0.003	< 0.012
04/10/17 05/15/91 04/01/91 05/15/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/05/91 04/01/91 05/01/91 0 01/91</th	1527	11118/01		0.015 +/-0.005	< 0.013
6/11 03/25/91 64/01/91 0.019 +/-0.602 6.022 654 04/01/01 04/01/01 04/01/01 04/01/01 04/01/01 + 0.013 +/-0.602 0.014 658 04/01/01 04/01/01 04/01/01 04/01/01 04/01/01 + 0.014 658 04/01/01 04/15/91 04/15/91 04/15/91 04/15/91 04/01/01 + 0.011 +/-0.002 0.014 780 04/12/91 04/12/91 04/12/91 04/12/91 04/12/91 04/01/91 0.011 +/-0.002 0.011 780 04/12/91 04/12/91 04/12/91 04/12/91 04/01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <td></td> <td>14/01/00</td> <td>16/C2/cn</td> <td>0.021 +/-0.03</td> <td>< 0.021</td>		14/01/00	16/C2/cn	0.021 +/-0.03	< 0.021
654 04/01/01 64/08/01 64/08/01 64/08/01 64/08/01 64/08/01 64/08/01 64/01/01	111	03/25/91	16/10/70	0.019 +/-0.002	CC0 0 ×
698 04/15/91	1654	15/10/70	04/08/91	0.013 +/-0.003	× 0.014
737 04/15/91 04/22/91 04/22/91 04/22/91 04/22/91 04/22/91 04/22/91 04/22/91 04/012 4.0.012	898	16/80/70	04/15/91	CUU U-1+ 510 0	*10°0
783 64/22/91 04/22/91 04/22/91 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/22/92 04/01/2 <th0 01="" 2<="" th=""> 04/01/2</th0>	737	04/15/91	04/22/91	COC 7-24 110 0	110.0 4
613 04/29/91 05/06/91 05/13/91 05/13/91 0.017 +/-0.003 < 0.014	082	04/22/91	04/29/91	0.013 +/-0.002	< 0.015
861 05/106/91 05/13/91 01/01 +/-0.002 01/012 043 05/13/91 05/12/91 05/13/91 05/13/91 05/11/91 01/012 +/-0.003 01/029 05/10/11/91 06/110/91 06/110/91 06/117/91 06/117/91 06/117/91 05/117/91 05/117/91 01/012 +/-0.002 01/019	613	15/62/*0	05/06/91	TOO 0-7+ 2:00	10 011
882 05/13/91 05/28/91 05/27/91 05/27/91 05/17/91 05/17/91 05/022 4 0.023 020 06/110/91 06/117/91 06/117/91 06/22 4/-0.002 4 0.019	861	05/06/91	05/13/91	COD 0-7* 51.70	2 0 0 M
943 05/28/91 05/28/91 05/28/91 05/28/91 05/28/91 06/03/91 06/03/91 0.010 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.029 ×/-0.002 × 0.019 ×/-0.019 × 0.019 ×/-0.023 × 0.019 ×/-0.023 × 0.019 ×/-0.023 × 0.023 × 0.019 ×/-0.023 × 0.019 ×/-0.019 × 0.019 ×/-0.019 × 0.019 ×/-0.019 × 0.019 ×/-0.019 × 0.019 × 0.019 × 0.019 × 0.019 × 0.019 × 0.01	882	10/21/20	05/20/91	COD 0-74 0101 0	010"A 4
959 05;28/91 06/03/91 06/03/91 0.016 +/-0.003 < 0.029	543	16/02/50	05/28/91	0.010 +/-0.002	< 0.021
M6 06/13/91 06/10/91 06/11/91 0	654	05/28/91	06/03/91	100 0.1. X10 0	- 0.000
364 06/13/91 06/17/91 06/17/91 06/17/91 06/02 4 0.023 102 06/17/91 06/24/91 0.022 * 0.002 × 0.019	346	16/20/90	06/10/91	COD-0-1-010-0	A20.0 ×
102 06/17/91 06/24/91 0.022 +/-0.002 × 0.015	364	06/10/91	06/17/91	20010-14 2000 B	< 0.025
	102	16/11/91	06/24/91	0.022 +/-0.002	< 0.016

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APO-1

UNITS: pCi/CUBIC METER

Lab %o.	Begin Da	ste End Date	Gross-Beta	1-131
911143	06/24/93	101/01	0 030 - 020	
911258	07/01/01	10/00/10	200.0 /* 020.0	< 9.017
\$11273	16/60/20	07/15/91	200°0-14 110'0	< 9.020
911311	07/15/91	07/22 101	0.016 */-0.003	* 0.019
011340	07/22/04	17 / / / / /	0.022 +/-0.002	< 0.011
		12/23/10	0.017 +/-0.002	× 0.016
091:380	16/62/26	08/05/91	500 0 TT 250 0	
911404	08/02/91	16/2:/00	20010-14 02010	4 U.016
911449	05/12/91	19/91	200.0-/+ 210.0	* 0.011
911488	08/19/91	08/26/91	200.0 /* <0.00	< 0.018
			200.0-/+ 410.0	+ 0.017
911528	08/29/91	09/03/91	10 00 T T T T T	
211557	16/20/60	16/60/60	20010 1 000 0	CI0.0 >
911605	16/60/60	09/16/91	300.0-1+ 800.0	\$26.0 >
911647	09/16/91	09/24/01	200.0-1+ 150.0	< 0.012
911678	10/7/00	00.130.034	200.0-/+ /10.0	< 0.015
	14 fam fam	1 & Joe Jan	0.016 +/-0.003	< 0.029
911733	16/02/60	10/08/91	CON 0.1. 1.0 0	
6/1116	10/08/91	10/14/91	20010-14 1010	< 0.026
911834	10/14/91	10/22/01	0.067 +/-0.003	< 0.024
911538	10,22/01	10,000	0.027 +/-0.002	< 0.029
	101 665 91	10/25/01	0.015 +/-0.002	< 0.014
311956	19/28/91	11/05/91	P 0.24 1.24	
100110	11/05/11	11/11/01	20010-1- 540 0	110.0 >
912031	11/11/01	11/10/01	500°0-/+ ocoro	< 0.021
OT 20AS	65 re0 ros		0.023 +/-0.002	+ 0.014
(000)	14/41/11	16/52/11	0.334 +/-0.003	< 0.013
912087	11/2/11	12/03/91	0.016 L L D D	
912133	12/03/91	12/10/01	200.0-1- 010.0	* 0.014
912184	12/10/01	10/11/01	00°0-/+ ccn.n	< 0.021
		11/11/21	0.016 +/-0.002	< 0.026

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APQ-1

Lab No.	Begin Date End Date	Gross-Beta	1-131
912215 920015	12/17/91 12/23/91 12/23/91 12/31/91	0.019 +/-0.003	< 0.040

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APG-1

UNITS: poi/cubic METER

Lab No	. Begin D	ate End Date	Gross-Beta	1-131
910043	\$2/31/9	0 01/07/91	AND A 1. MEN D	
910106	01/01/10	1 01/14/01	500'0-/4 ICD-0	< 0.019
910154	01/14/9	1 01/21/01	0.013 */-0.002	< 6.019
910191	0112110	Mirbane .	0.014 +/-0.002	× 0.013
	A JEWINA	14/07/10 1	0.024 +/-0.002	< 0.018
910243	01/28/91	02/04/91		
910299	02/04/91	02/11/01	200.0-/+ \$10.0	< 0.020
910308	02/11/41	02/18/01	0.020 +/-0.003	< 0.020
910350	02/18/01	12 / 26 / 04	0.022 +/-0.003	< 0.021
	A 101 7-00	16/63/30	0.013 +/-0.002	< 0.016
910401	02/25/91	03/04/91	. 644 A	
910463	03/04/91	01/11/01	200-0-/* /10-0	+ 0.012
910496	03/11/01	012/158/04	0.928 +/-0.003	< 9.012
910526	03/18/01	02/36/04	0.017 +/-0.003	< 0.011
	a los res	1A/CJ/cn	0.020 +/-0.003	< 0.021
910610	03/25/91	04/01/92	0 017 - 1 0	
910653	04/01/91	04/08/91	200.0-1+ 110.0	× 0.022
769016	04/08/91	04/15/01	50C 510-0	* 0°014
910736	04/15/91	10/ 22/ 70/	0.015 +/-0.002	< 0.011
910779	04/22/01	14/20/06/70	0.075 +/-0.002	< 0.012
	a free as a	14/63/24	0.014 +/-0.002	< 0.015
910812	16/62/90	15/90/50	0.010 L 0 L 0 M	
910860	05/06/91	05/13/91	500 m / 400 0	< 0.014
910881	05/13/91	05/20/01	200.0-1+ 610.0	< 0.016
010042	10/120/01		0.012 +/-0.002	< 0.012
	14 Invites	14/07/00	0.011 +/-0.002	+ 0.021
910958	05/28/91	06/03/91	A 744	
911045	06/03/91	06/10/91	200.0-1+ 0:0.0	< 0.029
911063	06/10/91	06/17/51	200'0-/+ /10'0	< 0.023
911101	06/17/01	10/ 20/ 20	V-010 +/-0.002	× 0.019
		14/53/00	0.022 +/-0.073	< 0.016

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APG-1

Lab No.	Begin Da	te End Date	Gross-Betz	1-131
911142	06/24/91	07/01/5	LUN 0-7* 660 0	- 0 014
911257	07/01/91	07/09/91	CON.O. 1. 330.50	110.0 >
911272	16/60/10	07/15/91	200-0-5-010-0	070"0 >
911310	07/15/91	07/22/91	COD. D- J+ 010.0	× 0.317
911339	07/22/01	07/20/01	200.0-1+ 110.0	< 0.011
	-	01127791	0.017 +/-0.003	< 0.016
911379	16/62/10	06/05/91	100.0-1+ 220.0	× 0 014
911403	08/02/91	05/12/91	COO 0-1+ 310.0	****
911468	08/12/91	08/19/91	200 0-14 810 0	110.0 2
911487	08/19/91	08/26/91	0.025 +/-0.003	< 0.017
911527	08/26/91	00/04/01		
911556	10/10/100		200.0-1+ 800.0	< 0.015
014501	14/60/40	16/60/60	0.012 +/-0.003	< 0.025
11004	16/60/00	16/31/60	0.022 +/-0.003	< 0.012
911646	10/191/60	15/ 72/ 60	0.020 +/-0.002	< 0.015
911677	09/24/91	16/02/60	0.020 +/-0.003	< 0.029
911732	16/22/60	10/08/91	Cho 0-1+ 210.0	760 0 1
811778	10/08/91	16/14/91	20010 277 020 0	030.0
911833	10/14/01	10/22/91	200 0-7+ 520 0	* 0.05M
911697	10/22/01	10/28/91	6.013 +/-0.002	< 0.014
911955	10/28/91	11/05/71	COD 0-1+ CCO 0	2 0 0 1
911996	11/05/91	11/11/01	200 0-1+ 320 0	- 0 C34
912030	10/11/11	11/19/91	COU 0.14 0CD 0	12010
912064	11/19/91	11/22/91	0.037 +/-0.003	< 0.013
912086	11/25/91	12/03/01		
912132	12/03/91	12/10/01	200.0-1. 410.0	< 0.014
912183	12/10/01	1311111	0.035 */-0.003	+ 0.021
	1 4 Post 191	14/11/26	0.015 +/-0.002	< 0.926

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SMPLE LOCATION: APG-1

LED No.	Begin Date End Date	Gross-Beta	1-131
912214	12/17/91 12/23/91	0.016 +/-0.002	
920014	12/23/91 12/31/91	0.029 +/-0 002	< 0.040

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APP-1

UNITS: pCi/CUBIC METER < 0.619 < 0.019 < 0.013 < 0.018 < 0.020 < 0.020 < 0.021 < 0.016 < 0.612 < 0.012 < 0.011 < 0.021 < 0.022 < 0.014 110.0 . < 0.012 < 8.015 510.0 < 0.014 < 0.015 1-131 0.021 < 0.029 < 0.023 < 0.019 < 0.016 200.0-1+ 1:0.0 0.014 +/-0.002 0.030 +/-0.003 0.016 +/-0.002 0.014 +/-0.002 0.012 +/-0.002 0.022 +/-0.003 0.714 +/-0.002 0.016 +/-0.002 0.032 +/-0.003 0.016 +/-0.002 0.023 +7-0.005 0.519 47-0.002 0.016 +/-0.003 0.014 +/-0.002 0.012 +/-0.002 0.013 +/-0.002 0.015 +/-0.002 0.017 +/-0.002 0.012 +/-0.002 0.009 +/-0.002 0.016 +/-0.003 0.012 +/-0.002 0.006 +/-0.002 0.019 +/-0.002 Gross-Betc Begin Date End Date 01/14/10 01/07/01 01/21/91 01/28/91 19/20 02/11/91 02/18/91 02/25/91 03/18/91 03/04/91 03/11/91 16/22/20 04/01/91 04/08/91 04/15/91 16/22/2 16/62/70 15/00/50 05/13/91 05/20/91 16/82/50 06/03/91 06/10/91 16/11/90 06/24/91 12/31/90 19/14/10 01/21/91 10/10/10 01/28/91 19/20/50 10-11/20 03/04/91 02/18/91 16/52/20 03/11/91 03/18/91 03/25/91 16/10/90 16/80/90 04/22/91 04/29/91 04/15/91 15/90/50 05/20/91 05/13/91 16/82/20 06/03/91 06/10/91 16/11/90 Leb No. 910045 910156 910193 910108 910245 510301 910310 910496 910352 610403 910465 910528 910612 910655 910699 910733 910781 910814 910862 910883 910944 511103

910960 911047

911065

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APP-1

UNITS: pCi/CUBIC METER

Leb No.	Begin De	tte End Date	Grose-Beta	1-131
911144	06/24/91	07/01/91	THE R PT UCU U	
911259	10/10/20	07/09/91	10010-1+ 02010	110.0 >
311274	16/60/20	07/15/01	200"0-14 400"0	20.0 >
911312	07/15/91	07/22/91	200.0-14 1:0:0	< 8.015
911341	07/22/91	16/02/20	0.010 +/-0.002	< 0.011 < 0.016
911361	07/29/91	08/05/91		
911405	08/05/91	08/12/91	200.0-1- 200.0	× 0.016
911450	08/12/91	08/19/91	200.0-14 210.0	< 0.011
011480	19/91/90	08/26/91	0.023 +/-0.002	< 0.018 < 0.017
911529	08/55/80	09/03/91	COO 0-7+ 300 0	- 0 -
911558	10/03/00	09/09/91	20010 1- 00010	CLN"N >
911606	16/60/60	09/16/91	200-0-/+ 0:0-0	\$20.0 >
911648	10/11/00	09/24/91	200-0-/+ 020-0	< 0.012
011679	09/24/91	09/30/91	0.017 +/-0.003	< 0.029
911734	16/02/60	10/08/91	0.015	
911780	10/08/91	10/14/51	200'0-1+ CLOTA	< 0.026
911835	16/11/01	10/22/91	500.0-1+ NC0.0	< 0.024
911899	10/22/91	10/28/91	0.013 +/-0.002	< 0.014
911957	10/28/v1	11/05/91	COD 0-1+ 750.0	- 0 000
911998	11/05/91	11/11/91	200 0-1+ 920 0	110.0 2
912032	14/11/11	11/19/91		170.0 >
912066	11/19/91	11/25/91	0.033 +/-0.003	< 0.013
912088	11/25/91	12/03/91	CON 0-1+ 010 0	
912134	12/63/91	12/10/91	0 021 + - D 001	*10"n -
912185	12/10/91	12/17/91	0.016 +/-0.002	< 0.026
AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APP-1

UNITS: pCi/CUBIC METER

Leb Mo.	Begin Date End Date	Gross-Bets	1-131
912216	12/17/9* 12/23/91	0.019 +/-0.003	< 0.040
920016	12/23/91 12/31/91	0.026 +/-0.002	< 0.010

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APE-30

UNITS: pCi/CUBIC METER

-		ste End Date	Gross-b-ta	I-131
~	12/31/90	16/20/10	N 014 4.1.0 10	
0	01/02/91	01/14/91	500'0 /	< G, 019
-	10/11/10	01/21/01	700.0-1- 0:0:0	< C-039
10	19/12/10	01/28/01	200°0-/+ 9:0.0	< 0.013
			10.021 +/-0.091	< 0.018
	01/28/91	02/06/91		
	02/04/91	02/11/91	200.0-1> %10.0	< 070°0 ×
	02/11/91	02/18/01	0.016 */-0.002	× 0.320
	02/18/91	02/25/91	0.017 +/-0.062	< 0.021
	02/25/01	POL JOL VOA	600° 0 1	910.0 >
	10170120	UT res ins	0.015 */-0.002	< 0.012
	011110	iAlts for	9.023 */-0.003	< 0.012
	14111100	16/01/cn	0.018 +/-0.003	< 0.011
	14/01/00	16/67/cn	0.013 +/-0.003	× 0.021
	16/52/50	04/01/91	**** 0 / T 0CU U	
	15/10/70	04/08/91	COD*0 / 020*0	< 0, U22
	16/60/90	04/15/91	50°.0-/* *10°.003	< 0.014
	04/15/91	04/22/01	200°0-/+ 910°0	+ 0.011
	04/22/91	16/62/%0	0.012 +/-0.000 0.011 +/-0 000	< 0.012
	16/62/90	05/06/01		610°0
	05/04/01	PR. FEZ. YOA	0.015 +/-0.003	< 6.014
	12/12/04	24 101 100	0.016 +/-0.003	* 0.016
	14/61/00	16/n2/cn	0.013 +/-0.002	< 0.012
	LAJASICA	15/92/00	0.013 +/-0.003	+ 0.021
	05/28/91	26/03/91	#00 0-7* SEC 0	
-	06/03/91	16/10/91	500.0 / CIO:0	× 0.029
-	M6/10/91 0	10/11/01	20070 +/-0700	× 0.023
-	6/17/01 0	+0/9//W	200° a- /+ ata a	< 0.019
		1 ± 1 = 2 = 2	0.016 +/-0.002	< 0.016

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APE-30

UNITS: pCi/CUBIC METER

Leb Ko.	Segin 0st	te End Date	Gross-Seta	1-131	
911146	06/24/91	16/10/10	C.015 +/-C.002	* 0.017	
911261	07/01/91	15/06/21	0.014 +/-0.002	A 0.620	
911276	10/00/10	16/21/20	0.018 +/-0.70	× 0.010	
911214	07/15/9:	16/22/26	0.017 +/-0.002	× 0.011	
911343	07/22/91	16/62/20	3.012 +/-0.003	< 0.015	
911383	07/29/91	05/05/91	0.021 +/-9.003	< 0.016	
11407	16/02/80	08/12/91	0.012 +/-0.002	< 0.011	
911452	08/12/91	08/19/91	0.017 +/-0.002	× 0.018	
911491	08/19/91	08/26/91	0.023 +/-0.003	× 0.017	
911531	08/26/91	16/03/91	0.003 +/-0.002	× 0.015	
911560	16/03/61	16/00/60	0.009 +/-0.003	< 0.025	
911608	16/60/60	09/16/91	0.922 +/-0.003	< 8.012	
911650	16/91/60	09/24/91	0.021 //-0.002	< 0.015	
911681	09/24/91	16/30/91	0.020 +/-0.003	< 0°026	
911736	16/02/60	19/06/91	0.018 +/-0.002	< 0.026	
911782	10/08/91	10/14/91	0.037 +/-0.003	< 0.024	
911837	10/11/01	19/22/91	0.030 +/-0.002	< 0.029	
\$11901	10/22/91	10/28/91	0.014 +/-0.092	× 0.014	
656116	10/28/91	11/05/91	0.024 +/-0.002	< 0.017	
912000	11/05/91	11/11/91	0.034 +/-0.003	< 5.021	
912034	16/11/11	16/61/11	0.027 +/-0.002	< 0.014	
912068	11/19/91	11/25/91	0.624 +/-0.003	< 0.015	
912090	11/25/91	12/03/91	CON 0.14 790 0	. 0 011	
912136	12/03/91	12/10/91	200.0 1- 1- 0.00	10.0 4	
912187	12/10/91	12/17/91	0.017 +/-0.002	< 0.026	

AIR PARTICULATE FILTERS AND CHARCOAL CARTRIDGES GROSS BETA AND IODINE-131 ANALYSES

SAMPLE LOCATION: APE-30

UNITS: pCi/CUBIC METER

Lab No.	Begin Date End Date	Gross-Beta	1-131
912218	12/17/91 12/23/91	0.020 +/-0.003	< 0.040
920018	12/23/91 12/31/91	0.032 +/-0.005	× 0.040

Ø

AIR PARTICULATE FILTERS GAMMA ISOTOPIC ANALYSIS ON QUARTERLY COMPOSITES

SAMPLE LOCATION: ALL SAMPLE GTES

UNITS: pCI/CUBIC METER

Location	Leb No.	Begin De	te End Date	Cs-134	Cs-137
APC-1	910586	12/31/90	16/10/10	< 0.0011	< 0.0000
APC-1	691116	14/10/30	07/01/91	< 0.0013	< b. 0012
APC-1	011840	02/01/01	16/30/31	× 0.0011	* 0.0009
APC-1	920134	16/30/60	12/31/91	< 0.0019	< 0.0015
APE-30	102012	QC/112/21	04/01/91	< 0.0008	× 0.0006
APE-30	021116	14/10/30	07/01/91	× 0.0008	× 0.3007
AFE-30	011850	19/10/70	16/05/60	< 0.3012	× 0.3010
APE-30	920135	09/30/91	12/31/91	< 0.0013	× 0.0013
APG-1	010583	12/31/90	16/16.790	\$100.0 >	< 0.0007
¥PG-1	911166	16/10/%0	07/01/91	< 0.0013	< 0.0011
APG-1	911846	10/10/70	10/30/01	< ^,0010	* 0.0005
APG-1	920131	09/30/91	12/31/91	< 0.0019	< 0.0018
APP-1	910585	12/31/90	15/10/10	< 0.0016	< 0.0013
i-ddt	911168	14/10/10	16/10/20	< 0.0015	< 0.0015
1-day	911848	10/10/20	16/30/60	< 0.0006	× 0.0005
1-oda	920133	16/05/60	12/31/91	< 0.0013	< 0.0011
8PQ-1	910584	12/31/90	04/01/91	< 0.0020	* 0.0014
1-bev	2911167	04/01/91	07/101/91	* 0.0008	× 0.0907
APQ-1	911847	10/10/20	16/30/91	< 0.0010	× 0.0000
APO-1	920132	16/02/60	12/31/91	< 0.0011	< 0.0011

.

89

7

11 .

TABLE 8-4

DRINKING WATEP IODINE-131 ANALYS:S

SAMPLE LOCATION: DWG-2

UNITS: pCi/LITER

Lab. No	bete .	Date	+121+	[ab. wo	Begin	End	
910105	12/31/90	01/14/91	< 0.5 < 0.7	011140	06/17/91	S" (01/01	I-137
255012	01/28/91	16/11/50	< 0.5	911279	10/21/20	19/25/20	- 0
9104.70	02/25/91 03/11/91	03/25/91	6.0 ×	767116 907115	16/21/20	08/12/91 08/26/91	< 0.2 < 0.2
910659 910742	03/22/91	16/22/190	2.0 × 2.0 × 0.3	911563	19/26/91	16/00/60	< 0.2 < 0.2
910618 910888	04/22/91 05/06/91	05/20/91	< 0.3 < 0.3	911739	10/08/91	10/08/91	< 0.3 < 0.4
910967	16/02/90	06/03/91	< 0.2 < 0.3	1195119	10/22/91	19/05/91	< 0.3 < 0.2
			1	912093 91219 920021	11/19/91 12/03/91 12/17/91	12/03/91 12/17/91 12/31/91	< 0.2 < 0.6

Ì

.

R

DRINKING WATER IODINE-131 ANALYSIS

SAMPLE LOCATION: DWE-5

4

UNITS: pCi/LITER

121

0 9 2 0 0 0

+

	Begin	End			Begin.	Erd	
Lah. Ro.	Date	Date	-131+	L80. 80.	Date	Date	1-13
910104	12/31/90	15/91/10	× 0.4				
				011400	16/62/20	08/12/191	× 0.
910305	01/28/91	62/11/91	× 0.5	25-12.26	06/12/91	16/29/80	× 0.
\$10356	02/11/91	65/22/20	× 0.3				
				911562	08/26/91	14/60/60	× 0.
\$104.69	02/25/91	12/11/20	< 0.3	211652	16/60/60	16132100	* 0.
910531	03/11/91	16/52/50	< 0.2				
910660	03/25/91	04/08/91	< 0.3	911738	09/24/91	10/08/91	× 0.
910743	16/90/90	04/22/91	< 0.3	ACD114	14/201/01	14/22/01	0 v
9,0819	04/22/91	10/09/01	< 13	011950	10/22/91	11/02/11	* 0.
910887	05/06/91	15/12/20	< 0.3	940216	11/05/91	16/61/11	× 0.
996015	05/20/91	06/03/91	< 0.2	260216	11/12/91	12/03/91	× 0.
911059	06/03/91	16/21/90	* 0.3	91216	12/03/91	12/531/91	× 0.1
171110	16/11/90	14/10/20	< 0.3				
911278	16/10/20	10/51/20	× 0.2				
911345	14/51/10	16/62/20	< 0.2				

1

22

1. A.

8.00

Û

٩

17

•

DRINKING WATER IODINE-131 ANALYSIS

SAMPLE LOCATION: DWP-7

UNITS: pCi/LITER

	Begin	29			Begin	End	
Lab. Wo.	Date	Date	1-131*	Lab. No.	Date	Date	-131-
910103	12/31/90	01/14/01	0.2 +/-0.2				
				011116	16/62/20	08/12/91	× 0.2
910304	01/28/91	02/11/91	< 0.5	267116	08/12/91	08/26/91	× 0.2
910355	02/11/91	02/25/91	< 0.3				
				911561	0, _6/91	16/60/60	× 0.2
910468	02/25/91	C3/11/91	< 0.3	911651	16/60/60	09/24/91	× 0.2
910533	03/11/91	03/25/91	< 0.3				
910658	16/52/20	16/30/70	× 0.2	252116	16/72/60	10/08/91	< 0.3
610741	04/08/91	16/22/91	< 0.3	911538	10/08/91	10/22/91	× 0.4
218016	04/22/91	05/06/91	× 0.3	911949	10/22/91	11/05/91	< 0.3
910686	16/90/50	05/20/91	< 0.3	612035	11/02/01	16/61/11	× 0.2
910965	16/02/50	06/03/91	< 0.2	012001	10/01/11	12/03/91	< 0.2
911068	16/63/90	16/11/91	< 0.3	912180 924.019	12/13/91	12/11/91	< 0.5 < 0.5
911139	16/11/90	16/10/20	× 0.2				
911277	16/10/20	16/51/20	< 6.2				
911344	07/15/91	16/62/20	< 0.2				

Sec. B.

Ju.

i.

1

TABLE 8-5

3

GROSS BETA ANALYSIS ON MONTHLY COMPOSITES DRINKING WATER

SAMPLE L. ATION. DWG-2

6

UNITS: pCI/LITER

	Bets	< 3.0	8.1-1+ 2.8	6.5 +/-2.2	2.3 +1-2.2	< 3.7	2.3 +/-2.3	< 3.4 < 2.9	9.5 +1-2.1	< 3.4	2.3 +/-1.0	0.1-1+ 0.	8 +/-1.1 5 +/-1.0	
End	Date	16/92/10	16/52/20	03/25/91	04/08/91	16/90/50	06/03/91	16/10/20	16/92/80	19/24/91	10/08/91	11/05/91 3	12/03/91 2	
Begin	Date	12/31/90	61/28/91	02/25/91	14/52/20	04/08/91	05/06/91	06/03/91	16/62/20	08/26/91	16/27/64	10/03/01	13/03/91	
	Lab. Wo.	010100	010360	910535	910659	910821	910970	911137 911347	911497	911656	911739	911954	912096 920624	

1

GROSS BETA ANALYSIS ON MONTHLY COMPOSITES DRINKING WATER

SAMPLE LOCATION: DWE-5

UNITS: pCi/LITER

	Bets	< 3.0	6.7 +/-1.8	3.2 +/-2.0	* *	< 3.6	< 3.6	€ 7 ×/	5.8 +/-2 ·	× 3.4	2.2 +/-1.0	1.6 +/-0.9	+ 1.5 1.1 +/-1.0	
tool i	Date	01/28/91	16/52/20	14/52/60	14/00/140	16/90/50	16/20/90	16/10/20	16/92/80	10/32/00	10/08/01	16/50/11	12/03/91	
Bacin	Dat	12/31/90	01/28/91	65/22/91	15/2/60	16/90/100	16/90/50	06/03/91 07/01/91	16/62/10	08/26/91	16/32/60	10/06/91	11/05/91 12/03/91	
	ab. 80.	910200	910359	\$10534	010660	910522	090010	011138	907114	211655	85/110	211953	220023	

23

GROSS BETA ANALYSIS ON MONTHLY COMPOSITES DRINKING WATER

SAMPLE LOCATION: DWP-7

UNITS: pCi/LITER

	Beta	1.9 +/-1.9	6.1-1+ 6.6	7.6 +1-2.1	2.6 +1-2.2	2.2 +1-2.2	< 3.6	< 3.2 < 2.9	6.7 +1-2.0	* 3.4	2.8 +/-1.0	3.2 +/-1.0	1.1 +/-0.9 * 1.5
End	Date	16/92/10	02/25/91	16/2/10	04/08/91	14/90/50	16/03/91	16/62/20	16/32/80	10/37/00	10/08/91	14/20/11	12/03/91
Begin	Dete	12/31/90	01/28/91	02/25/91	03/25/71	04/08/91	16/90/50	16/10/20	10/62/20	38/26/91	10/22/01	16/98/0	1/05/91
	Lab. No.	910201	910358	\$10536	910658	910620	910968	911136	547116	911654	182115	911952	912094

DRINKING WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: DWG-2

	Begin	End																								
Lmb. No.	Date	Date	Hr	-54	C	9-58	Fe	-59	Ca	-60	Zn	-65	ND	-95	Zr	-95	1-	131	Cs	-134	C.	-137	84	- 140		- 140
910199	12/31/90	01/28/91		z		< 2		2		z	<	3		2		3		2		2		2				
910360	01/28/91	02/25/91	*	3		c 2		3	*	3	<	5		z		5									8	~
910535	02/25/91	03/25/91	*	z		2		3	<	z	*	5		2							1	č .				2
910659	03/25/91	04/08/91	<	z		2	*	2		2		4		2	1							2		8		3
910821	04/08/91	05/06/91		4		4		5		4		0		1				÷		2	<	2	×	6	*	z
910970	05/06/91	06/03/91	*	z		2	<	3		2		1	1				<pre></pre>		×	-	×	-		15	1	5
911137	06/03/91	07/01/91	×	2		2					10			÷	, î			3	*	z	1	2	×	9		3
911347	07/01/91	07/29/91	~	z	<	2	*	2	×	2	e 	4	* *	z	< 	4	* *	z	× ×	z z	к к	z z	* *	8	× .	2
911497	07/29/91	08/26/91	*	z	<	z	*	z	×	2	×	3	~	z	<	3	<	z	2.	2		2	÷,			
911656	08/26/91	09/24/91	*	2	*	z	×	3	*	2	ĸ	4		2	<	5	4	3	1	2		<u>,</u>			1	
911739	09/24/91	10/08/91	*	z	×	2	×	3	<	z		4	<	2		1							ŝ	0		
911954	10/08/91	11/05/91	<	z	<	2	<	3	×	z	×	5		2			í,		0	e .		2	×	10	×.	3
912096	11/05/91	12/03/91	<	4			1			1				3	-	1		٩.	1	°	~	z		8	*	3
920024	12/03/91	12/31/91	×	3	•	3	*	4	*	3	*	6	*	3	× ×	8	* *	4 5	*	4	× .	4 3	*	14	*	4

DRINKING WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: DWE-5

	Begin	End																								
Leb. No.	Date	Dete	Mn	-54	Ce	-58	Fe	-59	20	-60	Zm	-65	#b	-95	Zr	-95	1-	131	Cs	134	Ca	-137	8.	- 140		e-140
910197	01/14/91	01/28/91																								
910200	12/31/90	01/28/91	*	3		3	<	3	<	3	<	6	<	z		6		3	<	3	1					
910359	01/28/99	02/25/91	<	2		z	×	4	<	z	<	7		z	*	4		2		2		2	1			
910534	02/25/91	03/25/91	<	z	<	2	<	3	<	z		4	<	z		5		3			1					
910660	03/25/91	04/08/91	<	z			*	3	¢	2		5	<	z		5			1							. 2
910522	04/08/91	05/06/91	*	4		4	<	5	<	4	1	8	<	4					12						1	3
910969	05/06/91	06/03/91	~	z	<	2	<	z	×	2			e	2					÷			2		14		
0111118														1		×	12	e		÷		2	1	6	12	6
0113/8	00;03/91	07/01/91	~	2	<	S	<	2	<	2	<	4	~	2		4		2		2	1.					1.1
711340	01/01/41	07/29/91	*	4	<	3	*	4	<	3	<	8	4	4		8	÷	5		4		2		14		
911496	07/29/91	08/26/91	×	s	*	z	<	2	<	z	*	÷.	×	z		4	~	z		2	1	2		-		
911655	08/26/91	09/24/91	×	2	<	z	*	2	<	3	•	4		2	×	4		2	1	2						~
911738	09/24/91	10/08/91	<	1	<	z	<	z	÷	,		3	ĸ	z	1	3		2		2		2				~
911953	10/08/91	11/05/91	¢	z	<	z	~	z	<	2	e		e	z				2	I,							3
012005	11/05/01	12:07:01						512								6		3.4		2		÷		0		×.
020023	12/02/01	12/03/91	1	*	*	S	<	3	<	2	<	5	<	2	~	4	e	3		3	14	2				
- Covers	102191	12/31/91		2	<	3	~	3	<	S	<	5	*	3	×	5	<	4	~	3	e	2	<	11		5

DRINKING WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: DWP-7

Begin End

Lsb. No	. Date	Date	N	1-54	Ce	-58	Fe	-59	Co	-60	Zr	-65	45	-95	Zr	-95	1-	131	Ca	-134	Cs	-137	8.	- 140		- 141	i.
910196	01/14/91	01/28/91																							-1		
910201	12/31/90	01/28/91		3	É.P	4		5	*	4		8	*	3	*	8		4		4		3		12	١.		
910358	01/28/91	02/25/91		z		2		3		z		4		2	÷.,	4		2		2	1						
910536	02/25/91	03/25/91	*	4		4	4	5	<			9	*	4								Ĵ.				ć	
910658	03/25/91	04/08/91	*	z		2		z	×	z		4		2		1				<u>_</u>		÷.		14		-	
910820	04/08/91	05/06/91	×	2	<	z	<	3	¢	2		6		2					1	~		2		ē	ſ	.3	
910968	05/06/91	06/03/91	<	4	<	4	*	5		4		8			- 2			Ĵ.		1		2		11	. *	3	
011124	04.07.091																	2	1.1		. *	4	1	16	×	4	
0117/0	00/03/91	07/01/91	<	3	<	3	<	4	<	3	~	ő		3	-	7		4	÷., "	1.1	1.2	÷ .					
911349	07/01/91	07/29/91	*	2	<	2	<	S	<	z	~	3	÷	2		3	*	2		2	- Q	2	1	6		2	
911495	07/29/91	08/26/91	۲	z	<	2	×	3	*	z	ĸ	4	÷	z		4	*	3		2		2		8			
911654	08/26/91	09/24/91	×	4	<	4	×	5	*	4	×	9	ĸ	4	*	9		5		4	ୁ			11			
911737	09/26/91	10/08/91	<	z	ĸ	2	*	3	*	z	<	4	<	z		4		3		2						Ĩ	
911952	10/06/91	11/05/91	×	4	ĸ	4	<	5	×	4	×	9	e	4		9		5	1	5		2	1	17		ŝ	
912094	11/05/91	12/03/01																							1	-	
920022	12/03/01	12/31/05		-		6	<	3	<	3	<	6	κ.	3	~	5	<	3	~	3	1	3	~	0		3	
	101 001 7 1	161 31/41	-	2	<	3	<	4	~	4	×.	5	~	3		7	~	4	1.0	4			1.00			1	

TABLE 8-6

TRITIUM ANALYSIS ON QUARTERLY COMPOSITES

SAMPLE LOCATION: ALL SAMPLE SITES

UNITS: pCi/LITER

-

8-3	260 */-180 < 490 < 550 < 660	0999 > 0655 > CoX >	 300 4.900 350 660
Date End Date	/90 04/08/91	790 04/08/91	90 04/08/91
	/91 07/01/91	191 07/01/91	91 07/01/91
	/91 10/08/91	91 10/08/91	91 10/08/91
	/91 12/31/91	91 12/31/91	21 12/31/91
Lab No. Begin	910663 12/31,	913662 12/31/	910661 12/31/9
	911135 06/08()	911134 04/08/	911133 04/06/9
	911742 07/01,	911743 07/01/	911741 07/01/9
	920129 10/08/	920130 10/08/4	220128 10/08/9
Location	DWE-5 DWE-5 DWE-5	DWG-2 DWG-2 DWG-2 DWG-2	Due-7 Due-7 Due-7

78

9

. .

IODINE-131 ANALYSIS SURFACE WATER

SAMPLE LOCATION: SWG-2

UNITS: pCi/LITER

1-131+

< 0.2 < 0.2

08/12/91

× 0.2 × 0.2

16/60/60 16/142/60 < 0.3 × 0.4 × 0.3 × 0.2

× 0.6 × < 0.2

	Begin	End			Begin	End
Leb. No.	Date	Date	1-131*	Lab. No	. Date	Date
910105	12/31/90	01/14/91	< 0.5			
910198	01/14/91	01/28/91	× 0.7	911408	07/29/91	06/12/91
910306	01/28/91	19/11/50	< 0.5			
910357	16/11/20	16/52/20	* 0.3	911563	16/00/60	16/92/60
910470	16/22/20	03/11/91	< 0.3			
910532	10/11/50	03/25/91	× 0.2	611739	19/26/91	10/03/01
910659	16/52/50	10//08//01	× 0.3	911840	10/08/91	10/22/01
210742	04/08/91	04/22/91	< 0.3	156116	10/22/01	11/05/01
910818	16/22/30	16/99/50	< 0.3	912037	16/50/11	15/61/11
510885	14/90/50	05/20/91	+ 0.3	200210	11/19/91	12/03/01
296016	16/02/50	16/03/91	< 0.2	912182	12/03/91	16/21/21
011070	14/20/90	06/17/91	< 0.3	920021	12/17/79:	12/31/91
071 140	06/11/91	16/10/20	× 0.2			
911279	15/10/20	12/21/70	< 0.2			
911546	07/15/91	10/63/10	< 0.2			

2

19

•

0

SURFACE WATER IODINE-131 ANALYSIS

SAMPLE LOCATION: SWE-5

UNITS: pCi/LITER

2.

NN

NN

=

14

min

-0 ==

and i

	Begin	End			Begin	End	
Lab. No.	Date	Date	-131+	Lab. ¥o.	Date	Date	1-13
910104	12/31/90	16/91/10	× 0.4 × 0.4	911409	19/29/91	08/12/91 08/26/91	5 × 0
910356	01/28/91	02/22/91	< 0.5 < 0.3	911562	16/32/80	16/60/60	.0 ×
910469	02/25/91	03/25/91	+ 0.3 + 0.2	911738	10/2/01	10/06/91	× 0.
910660	03/25/91	04/08/91	< 0.3	911839	10/08/91	10/22/01	× 0.
910743	04/08/14	04/22/91	< 0.3	911950	10/22/01	11/05/91	* 3.
910819	04/22/91	05/06/91	< 0.3	\$12036	11/02/01	14/61/11	× 0.
910887	16/90/50	16/02/50	< 0.3	200210	19/01/11	12/03/91	+ 0.
910966	05/20/91	06/03/91 06/17/91	< 9.2 < 0.3	912181 920020	12/13/91	12/11/91	, 0 ×
911141	06/17/95	07/01/91	< 0.5 < 0.2				

80

911345 07/15/91 07/29/91 < 0.2

SURFACE WATER IODINE-131 ANALYSIS

SAMPLE LOCATION: SWP-7

UNITS: pCi/LITER

Leb. Wo.	Begin Date	End Date	1-131*	Lab. No.	Begin Date	End	1.13
910103	12/31/96	16/71/10 0	6.2 +1-0.2				
910196	15/71/10	01/28/91	< 0.7	911410	16/62/20	08/12/91	× 0.
910304	01/28/91	02/11/91	× 0.5	267116	08/12/91	16/52/91	÷ 0.
910355	02/11/91	02/25/91	+ 0.3	911561	18/29/01	16/60/60	× 0,
910446	02/25/91	63/11/91	< 0.3	911651	16/60/60	16/72/60	× 0.
910533	03/11/91	03/25/91	< 0.3				
				252110	16/32/60	10/08/91	× 0,
910658	03/25/91	:6/90/70	× 0.2	911638	10/08/91	10/22/01	× 0.
191016	04/08/91	04/22/91	< 0.3				
				011940	10/22/91	10/50/11	× 0.
910617	34/22/91	05/06/91	× 0.3	\$10210	11/05/01	11/10/01	* 0.
910836	05/06/91	05/20/91	+ C.3				
				912091	16/61/31	12/03/91	× 0.
910965	05/35/30	06/03/91	< 0.2	012180	12/03/91	101,1/21	× 0.
911065	06/03/95	06/11/91	< 0.3	920019	12/11/01	12/31/91	× 0.
911139	16/91/90	16/10/20	< 0.2				
911277	16/10/20	16/51/10	× 0.2				
911344	16/21/10	10/52/10	< 0.2				

1

SURFACE WATER GROSS BETA ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWG-2

UNITS: pCi/LITER

	Seta	< 3.0	6.5 +/-1.	6.6 +/-2.	2.3 4/-2.	< 3.7	2.3 +1-2.	< 3.4 < 2.9	9.5 +1-2.	< 3.6	2.5 +/-1.1	3.0 +/-1.0	2.8 +/-1.1
Free	Date	01/28/91	02/22/91	16/22/20	04/06/91	02/09/20	16/20/90	10/10/70	08/25/91	16/72/60	10/08/91	11/02/01	12/03/91
Regin	Date	12/31/90	01/28/91	02/25/91	16/52/60	16/08/70	05/06/91	06/03/91	16/62/20	16/92/90	10/32/00	10/08/91	11/05/91
	Leb. Wo.	910199	910360	\$10535	910659	910821	010010	1751116	11497	911656	66/116	11954	920026

82

.

8

00

0

1

4

SURFACE WATER GROSS BETA ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWE-5

UNITS: pCi/LITER

10

0

.

	Beta	< 3.0	-1+ 1.9	3.2 +/-3	m v	× 3.6	× 3.6	2.7 +/-2	5.8 +/-2	÷ 3.4	2.2 +/-1	1.6 +1-0	× 1.5 1.1 +/-1.
End	Date	01/28/91	16/22/20	15/2/20	16/80/10	15/90/50	16/20/90	16/10/20	10//92/90	69/24/91	10/09/01	11/05/91	12/03/91
Begin	Date	12/31/99	01/28/91	16/22/20	03/25/91	04/08/91	16/90/50	04/03/01	16/62/20	08/26/91	36/72/60	10/90/01	11/05/91
	Leb. No.	910200	910359	710534	910660	910822	910969	911138 911348	911496	911655	911738	911953	912095

88

14. 16

- a

SURFACE WATER GROSS BETA ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWP-7

UNITS: pCi/LITER

	Begin	End	
Leb. No.	Dete	Date	Seta
910201	12/31/90	01/28/91	1.9 +/-1.9
910358	01/28/91	02/25/91	6.6 +/-1.8
910536	02/25/91	03/25/91	7.6 +/-2.1
910658	03/25/91	04/05/91	2.6 +/-2.2
910820	04/08/91	05/06/91	2.2 */-2.2
910968	05/06/91	06/03/91	< 3.6
910968	05/06/91	06/03/91	< 3.6
911136	06/03/91	07/01/91	< 3.2
911349	07/01/91	07/29/91	< 2.9
911495	67/29/91	08/26/91	6.7 +/-2.0
911654	08/26/91	09/24/91	< 3.4
911737	09/24/91	10/08/91	2.8 +/-1.0
911952	10/08/91	11/05/91	3.2 */-1.0
912094	11/05/91	12/03/91	1.1 +/-0.9
920022	12/03/01	12/31/01	215

SURFACE WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWG-2

UNITS: pCi/LITER

0

	Begin	End																										
Leb. No	. Date	Date	*	n-56	0	o-58	F.	-59	Co	-60	z	n-65		6-95	2	r-95		1-13	15	Ce	-134	Cs	-137		- 140	L	- 140	
973199	12/31/90	01/28/91		z		< Z		z	*	z		. 3		< 2		< 3		<	z		z		z		6		z	
910360	01/28/91	02/25/91		3		< 2		3	*	3		5		2		< 5		e	3	*	3		2		8		2	
910535	02/25/91	03/25/91	<	z		2	*	3	*	2	1	5		2		< 5		e	3	÷	3		z		8	1	3	
910659	03/25/91	04/08/91	~	z	4	2		2	e	г	1	4		2	3	< 3		¢.	z	e	z		2		6		2	
910821	(4/08/91	05/06/91	<	4	<	4	~	5	*	4		9		4		ç		e .		k	4	~	4	×	15		5	
910970	05/06/91	06/03/91	<	2	~	z	×	3	<	2		5		2		5		•	5		z	*	z		9		3	
911137	06/03/91	07/01/91	<	z	<	2	<	3		2		2	÷.,	2	18.			5.		÷,		12						
911347	07/01/91	07/29/91	<	2	*	2	<	2	<	2	<	4		2		3		è, i		÷	2	~	z	i e	6		2	
911497	07/29/91	08/26/91	<	2	<	z	*	z	e	2	<	3	×	2		3	Ċ,		÷,	×	z	*	2	~	6		z	
911656	08/26/91	09/24/91	×	z	*	z	<	3	<	г		4		z		5		< 3	ě.,	e	ż	ĸ	z	*	8	×	3	
911739	09/24/91	10/08/91	*	2	×	z	<	3	<	2	~	4	¢	z	<	4		- 4		÷	z		z	~	10	*	3	
911954	10/08/91	11/05/91	*	z	*	z	e	3	<	z	×	5	÷	2	<	5		3		×	3	~	z	×	8		3	
912096	11/05/91	12/03/91	<	4	*	3	*	5		4	<		1	4				l.		÷.,								
720024	12/03/91	12/31/91	*	3	~	3	<	4	e	3	<	6	*	3		7		5		*	4	~	3	-	15		5	
																											-	

SURFACE WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWE-5

1

	Begin	End																								
Lab. No	. Date	Date	*	n-54	C	-58	Fe	-59	Co	-60	z	n-65	*	5-95	Z	r-95	1	-131	Ce	-134	Ca	-137	8.0	-140	Le	-140
910200	12/31/90	01/28/91		3		3		3	*	3		< 6		< z		< 6		< 3		3		3		9	<	3
910359	01/28/91	02/25/91	*	z		2		4	<	2		7		2		< 4		< 2		2		z	<	7		2
910534	02/25/91	03/25/91	×	2		z		3	<	2		4	1	2	ij.	5		: 3		3		z		7	e	2
910660	03/25/91	04/08/91	×	z	<	z	<	3	<	2		5		2		5		3	<	3	4	2	<		*	3
910822	04/08/91	05/06/91	<	4	<	4	*	5	*	4		8		4		8	٠.			4		3	*	14		4
910969	05/06/91	06/03/91	<	z	~	2	<	z	*	z		4	4	г		3		2	×	2	~	2		6		4
911138	06/03/91	07/01/91		z	<	2		2		2				2			÷.,	2	12		έ.			2		
911348	07/01/91	07/29/91	*	ŵ.	<	3	*	4	4	3	<	8	~	4		8	-	4		4	~	4	*	14	~	4
911496	07/29/91	08/26/91	×	2	*	2	<	z	<	2		4		ż		4	ĸ	z	<	2	*	2	×	7	*	z
911655	08/26/91	09/24/91	*	2	<	z	<	z	*	3		4	<	2	~	4		z	*	z	~	z		6	×	2
911738	09/24/91	10/08/91	*	1	~	z	×	z	÷	1		3	×	2	e	3	×	z	×	z	×		×	7	×	3
911953	10/08/91	11/05/91	*	z	e	2	×	z	×	2	e	4	*	z	<			z	×	z	÷	z		6	4	z
912095	11/05/91	12/03/91	*	2	~	2				2	1					1		1			18		-	11		
920023	12/03/91	12/31/91	~	2	<	3	*	3		2		ŝ	-	-	1	~		4		3		2	-	6		2
																100			-	1		5		B. B	~	3

SURFACE WATER GAMMA ISOTOPIC ANALYSIS ON MONTHLY COMPOSITES

SAMPLE LOCATION: SWP-7

UNITS: pCi/LITER

	Begin	End																								
Leb. No.	Date	Date	Mn	-54	Co	-58	Fe	-59	Co	-60	Zn	-65	#b	-95	Zr	-95	1-	131	Cs	134	Cs	137	Sa	-140	Le	-40
910201	12/31/90	01/28/91	*	3	<	4	*	5	*	4	*	8	*	3	*	8	<	4	*	4	×	3	×	12	×	5
910358	01/28/91	02/25/91	<	2	<	z	<	3		z	<	4	<	2	<	4	<	z	×	2	<	2	<	7	*	2
910536	02/25/91	03/25/91	×	4	<	4	<	5	<	4	¢	9	<	4	<	9	~	4	×	5	<	4	*	14	*	4
910658	03/25/91	04/08/91	<	z	<	z	×	z	*	z	*	4		z	*	4	<	z	۲	z	. «	2	*	6	×	3
910820	04/08/91	05/06/91	<	z	*	2	×	3	<	2	<	4	<	2	~	5	۲	4	¢	2	*	2	<	11	×	3
910968	05/06/91	06/03/91	*	4	×	4	<	5	*	4	<	8	×	4	×	9	×	5	٠	4	e	4	~	16	*	4
911136	06/03/91	07/01/91	<	3	~	3	~	4	<	3	<	6		3	~	7	•	4	*	4	÷	3		13		6
911349	07/01/91	07/29/91	<	2	<	z	×	2	<	z	<	3	۲	z	<	3	•	z	<	Z	*	2	٠	6	. *	z
911495	07/29/91	08/26/91	<	2	*	z	<	3	<	г	<	4	¢	z	×	4	<	3	×	z	<	2	<	8	*	3
911654	08/26/91	09/24/91	*	4	<	4	*	5	×	4	*	8	×	4	×	8	٠	5	*	4		4	×	15	*	4
911737	09/24/91	10/08/91	×	2	¢	2	<	3	×	z	×	4	ĸ	z	*	4	٠	3	<	z	¢	z	<	9	*	6
911952	10/08/91	11/65/91	*	4	<	4	*	5	×	4	*	9	×	4	<	9	¢	5	×	5	×	4	×	17	×	4
912094	11/05/91	12/03/91	<	3	<	2	*	3	<	3	*	6	<	3	<	ł.	•	3	<	3	<	3		9	~	3
920022	12/03/91	12/31/91	~	3	~	3	<	4	<	4	~	5	<	3	~	7	<	4	<	4	<	3	~	13	<	4

TABLE 8-9

1000

SURFACE WATER TRITIUM ANALYSIS ON QUARTERLY COMPOSITES

SAMPLE LOCATION: ALL SAMPLE SITES

UNITS: pCi/LITER

8-3	260 +/-180	067 >	< 350	< 660	× 300	067 ×	< 350	× 660	< 300	< 490	< 350	< 660	
e End Date	16/30/30	10/10/20	10/00/01	12/31/91	16/08/01	16/10/20	10/08/91	12/31/91	04/08/91	15/10/20	10/08/01	12/31/91	
Begin Dat	12/31/90	19/08/91	16/10/20	10/08/91	12/51/90	04/08/91	16/10/20	16/00/0t	12/31/90	16/30/30	15/10/20	10/08/91	
Lab No.	910663	911:35	272116	920129	910662	911134	911743	920130	910661	911133	172226	920128	
Location	5-34E	SLE-5	SHE-5	SAE-5	2-5MS	Suic-2	Suc-2	Su6-2	1-015	7-946	2-m-1	2-975	

88

GROUNDWATER TRITIUM AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: GWJ-1

UNITS: pCi/LITER

	Collecti	on												
Leb. No.	Date	H-3	Mn-54	Co-58	Fe-59	Co-60	Zn-65	2r-95	Nb-95	1-131	Cs-134	Cs-137	88-140	Le-148
910048	01/07/91	< 350	< 2	* 3	< 4	< 3	< 6	* 6	< 3	* 5	* 3	< 3	* 11	~ 4
910615	03/31/91	200 */-1	80 < 2	* 2	< 3	< 2	< 5	< 5	< Z	< 3	* 3	< 2	< 9	< 3
e11147	07/01/91	< 490	< 2	< Z	< 3	< 3	< 5	* 6	< 3	< 3	< 3	< 2	< 9	× 3
911740	10/08/91	340 +/-2	20 < 2	* 2	< 3	* 2	< 5	* 5	< 3	< 5	• 3	* 2	* 12	. 4

SHORELINE SOIL GAMMA ISOTOPIC ANALYSIS

SAMPLE LOCATIONS: ALL SAMPLE SITES

UNITS: pCi/Kg

LOCIECTOR	Leb Ho.	Collection Date	Mn-54	Co-58	Co-60	Cs-134	Cs-137
SHWE-3	910615	03/51/91	< 13	< 13	< 13	< 16	< 11
SHWE-3	911745	10/08/91	< 15	< 15	< 14	< 20	32 +/-10
SHWJ-1	910617	03/31/91	< 11	< 11	< 11	< 14	40 +/-9
SHWJ-1	911764	10/08/91	< 16	< 15	< 15	< 19	< 15

MILK IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: MKQ-5

UNITS: pCi/LITER

Lab No.	Collection Date	1-131*	Cs-134	Cs-137	8e-140	Le-140
910016	01/02/91	< 0.4	< 3	< 3	< 12	
910133	01/15	< 0.5	< 6	< 3	< 10	< 4
910228	02/05/91	< 0.5	< 3	< 3	< 9	< 3
910325	02/19/91	< 0.5	< 3	< 2	< 9	< 3
910425	03/05/91	< 0.5	< 3	< 2	* 8	< 3
910500	03/19/91	< 0.3	< 3	< 2	< 8	< 2
910625	04/02/91	< 0.2	< 2	< 2	< 7	< Z
910707	04/16/91	< 0.3	< 3	< 3	< 9	< 2
910836	05/07/91	< 0.5	* 2	< 2	< 7	* 2
910904	05/21/91	< 0.3	< 5	< 5	< 19	< 5
910963	06/04/91	< 0.29	< 3	< 3	* 9	< 3
911071	06/18/91	< 0.25	< 3	< 3	< 9	< 3
911154	07/02/91	< 0.3	< 4	< 4	< 15	< 6
911280	07/16/91	< 0.3	* 2	< 2	< 5	< 2
911384	08/06/91	< 0.2	* 2	< 2	< 6	< 2
911453	68/20/91	< 0.2	< 4	< 3	< 10	< 3
911525	09/04/91	< 0.3	< 4	< 3	< 10	< 8
911614 .	09/17/91	< 0.2	< 3	< 2	× 9 ×	< 2
911730	10/09/91	< 0.4	< 2	< 2	< 7	< 3
911873	10/24/91	< 0.5	< 3	< 3	< 10	< 3

MILK IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: MKQ-5

.

Lab No.	Collection Date	1-131*	Cs-134	Cs-137	Ss-140	Le-140
911965	11/06/91	< 0.6	< 2	< 2	< 7	< 2
912,728	11/20/91	< 0.3	* Z	< 2	۰ ۵	< 2
912099	12/04/91	< 0.3	* 5	< 4	< 15	< 6
912188	12/18/91	< 0.6	< 3	< 2	< 7	× 2

MILK IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: MK0-45

UNITS: pCi/LITER

071	N	10		105	21	11	64	m	m	m	0	N	-	#13	20	~	4	-	-	11	
	×	¥.	×	¥.	٧	v	×	×	$\hat{\boldsymbol{w}}$	4	v	*	¥	×	*	÷	×	*	¥	×	
					•																
071	80	Pu	-	**	0.	0	0	60	0	0		80	-0	0		80	-	80		~	
-12	¥	v	¥	¥.		v	v	v	¥	v	Y	v	v	v	v	v	¥	*	~	~	
-																	-				
- 13	eu	N.	ev.	**	- 20	m	N	14	m	14	-2	ru.	en.	**	91	rv -	m	~	841	-	
3	×	Č.	×	× .	v	×	ľ	*	v	*	. *	× .	×	۲	۷	۲	ħ	*	v	۷	
13	N	14	14	85	11	19	m	~	67	т		15	÷.	**	875	~	85	**	**	N	
3	×	Y	۲	۷	٧	×	¥	v	Y	۷	۷	۲	×	٧	۷	٧	۷	٧	۷	۲	
31*	0.4	0.6	0.4	0.7	0.3	0.3	0.3	0.3	4.0	2.3	0.30	0.27	2	2	~	~	17	*2	32	2	
1	×	۷	٧	۷	۷	¥	¥	¥	4	¥	Y	¥	×	v.	¥	×	v	*	v 0	× 0	
Date																					
8																					
Kti	15/	16	10	16/	10/	16/	101	5	161	16	5	5	5	5	5	5	5	5	5	5	
olle	1/02	1/12	10%	138	10%	118	/01	/15	1981	120	/03/	111	110/	1151	105/	101	103/	16/	180	221	
0	0	5	05	05	03	63	8	0%	53	95	8	8	07,	01	08)	08)	60	66	10/	101	
NO.	11	il.	8	22	92	5	22	8	25	8	*	N	10		10	4	10	5			
2	01100	1014	102	103	104	105	106	101	108	100	100	1103	1195	1128	138	145	152	161	173	187	
1	Sec. 1	100	8.00	6×	0	0	0	0	Ch.	0	40	0	O.	0	0	0	0	0	-	5	

11.

66

C

MILK IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: MKQ-45

6.7

UNITS: pCi/LITER

- 9

Leb No.	Collection Date	1-131*	Cs-134	Cs-137	Ba-140	La-140
911961	11/04/91	< 0.6	< 4	* 4	< 12	< 4
912029	11/18/91	< 0.3	< 2	4+/-1.5	< 7	* 2
912100	12/03/91	< 0.3	< 2	* ?	< 8	× 3
912189	12/17/91	< 0.6	< 3	< 3	< 10	× 4

FISH GAMMA ISOTOPIC ANALYSIS

SAMPLE LOCATION: FH-1

UNITS: pCi/Kg

...

Lab No.	Collection Date	Sample type	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Ca-134	Co.117
910895 910897 910898 910899	05/17/91 05/17/91 05/17/91 05/17/91	CATFISH SHAD DRUM MULLET	< 10 < 6 < 6 < 11	< 10 < 6 < 7 < 12	< 15 < 9 < 10 < 16	< 10 < 6 < 7 < 12	< 24 < 12 < 16 < 30	< 12 < 6 < 7 < 16	< 11 < 5 < 7
911825 911826 911827 911828	10/11/91 10/11/91 10/11/91 10/11/91	CATFISH MELLET	< 6 < 5 < 5 < 4	* 6 * 7 * 6 * 5	< 10 < 11 < 9 < 7	* 6 * 6 * 6 * 4	< 15 < 15 < 13 < 10	< 7 < 7 < 6	< j < 6 < 5

FISH GAMMA ISOTOPIC ANALYSIS

SAMPLE LOCATION: FH-2

.

. . .

•

• 14

UNITS: pCi/Kg

Lsb ₩o.	Collection Pate	Sample type	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Ca-134	Cs-137
									. 11
910900	05/17/91	CATFISH	< 11	< 10	< 16	< 12	* 20	~ 16	
910901	05/17/91	SHAD	< 29	< 30	< 40	< 26	< 66	< 31	< 30
910902	05/17/91	DRUM	< 14	< 13	< 20	< 15	< 31	< 18	< 12
910903	05/17/91	MALLET	< 19	< 17	< 23	< 18	< 39	< 20	< 18
911829	10/11/91	CATFISH	< 9	< 10	< 15	< 9	× 24	< 11	< 10
911830	10/11/91	M." LET	< 4	< 4	< 7	< 4	< 10	< 6	< 4
911831	10/11/91	SHAC	< 6	< 7	< 11	< 6	< 18	< 7	< 6
911832	10/11/91	BASS	< 4	< 5	< 8	< 5	< 11	* 5	< %

BROAD LEAF VEGETATION IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: BLQ-1

UNITS: pCi/Kg

Leb No.	Collection Date	1-131	Cs-134	Cs-137
910179	01/25/91	× 8	< 7	< 7
910344	02/21/91	* 1	< 13	< 11
910514	03/21/91	< 14	< 17	< 15
910764	04/25/91	< 5	< 6	< 5
910916	05/23/91	< 17	< 13	< 11
911088	06/20/91	× 10	< 9	< 7
911329	07/25/91	< 18	< 18	× 17
911477	08/22/91	< 23	× 22	< 19
911671	09/26/91	< 18	< 16	< 16
911882	10/25/91	< 40	< 34	< 32
912069	11/26/91	< 34	< 24	< 19
912219	12/26/91	< 12	< 13	< 12

BROAD LEAF VEGETATION IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: BLB-1

UNITS: pCi/Kg

Lab #o.	Collection Date	1-131	Cs-134	Cs-137
910180	01/25/91	< 9	* 3	< 6
910345	02/21/91	< 21	< 15	< 16
910515	03/21/91	< 11	< 12	< 10
910765	04/25/91	< 6	* 7	< 6
910917	05/23/91	< 16	* 12	< 11
911089	06/20/91	< 12	< 9	< 8
911330	07/25/97	< 27	< 24	< 26
911478	05/22/91	< 20	< 16	* 15
911672	09/26/91	< 20	< 16	* 15
911883	10/25/91	* 16	< 14	< 13
912070	11/26/91	< 35	* 22	< 20
912220	12/26/91	< 9	< 12	< 10

BROAD LEAF VEGETATION IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: BLK-15

UNITS: pCi/Kg

Lab No.	Collection Date	1-131	Cs-134	Cs-137
910181	01/25/91	< 12	< 12	< 1U
910346	02/21/91	< 14	< 10	< 10
910516	03/21/91	< 11	< 14	< 11
910766	04/25/91	< 12	< 16	< 12
910918	05/23/91	< 14	< 13	< 11
911090	06/20/91	< 23	< 18	× 16
911331	07/25/91	< 15	< 18	< 16
911479	08/22/91	< 20	< 16	< 15
911673	09/26/91	< 12	< 12	< 11
911884	10/25/91	< 27	< 24	< 20
912071	11/26/91	< 28	< 24	< 18
912221	12/26/91	< 12	< 11	< 11
TABLE B-15

VEGETATION - FOOD PRODUCTS IODINE-131 AND GAMMA ISOTOPIC ANALYSES

SAMPLE LOCATION: ALL SAMPLE SITES

UNITS: pCi/Kg

13

Location	Lab Mo.	Collection Date	Sample type	1-131	Cs-134	Cs-137
FPG-1	911564	09/09/91	SUGAR CANE	< 6	* 5	< 5
FPP-1	911566	09/05/91	SUGAR CANE	< 4	< 3	< 3
FPQ-1	911565	09/05/91	SUGAR CANE	< 4	< 3	< 3

APPENDIX C SUMMARY OF INTERLABORATORY COMPARISONS

100

.

EFA CROSS CHECK RESULTS

EPA PREP DATE	DATE EPA ISSUED RESULTS	MEDIA	NUCLIDE	EPA RESULTS	AP&L RESULTS	NORM DEV KNOWN
4th Otr				******		
1190						
CC36036-7~	1/11/91	Auglutio Tra				
	-//	Indine Cartris	1-131	3.18E-2	3.43E	-2 1.08
		(uCi/cc)	iye			Ratio
02/08/91	04/15/01					
	A4172121	water				
		(pc1/L)	Co~60	40.0	40.67	0.23
			2n=65	149.0	145.67	-0.38
			Ru-106	186.0	196.67	0.97
			Cs-134	8.0	9.00	0.35
			Cs-137	8.0	9.00	0.35
			Ba-133	75.0	85.33	2.24
02/22/91	04/16/91	Water	N-3	4410 0	11.11.11	
		(pCi/1)	n-5	4418.0	4613.33	0.77
		1500 41 41				
03/29/91	07/19/91	Air Filter	Beta	124 0	100.00	0.40
		(pCi/Filter)	Cs=137	40.0	466.33	-0.40
				40.0	23.23	0.70***
05/17/91	07/22/91	Water	Beta	46.0	47.00	0.25
		(pCi/L)			47.00	0.00
04/11/01						
04/10/91	07/25/91	Water	Beta	115.0	73.33	+4.25**2
		Blind B	Cs-134	24.0	23.33	-0.23
		(pCi/L)	Cs-137	25.0	25.67	0.23
05/07/01						
00/01/91	09/11/91	Water	Co+60	10.0	10.33	0.12
		(pCi/L)	Zn=65	108.0	106.00	-0.31
			Ru-106	149.0	146.00	-0.35
			Cs-134	15.0	14.67	-0.12
			Cs-137	14.0	14.67	0.23
			Be-133	62.0	63.67	0.48
08/30/91	11/15/91	Air Filter	Data			
		(mi/Filter)	Deca	92.0	93.67	0.29
		(bor) + tret)	CS-131	30.0	30.00	0
09/09/91	10/25/91	Water	I-131	20.0	17 67	0.00
		(pCi/L)		20.0	11.01	-0.67
10/04/91	12/02/91	Water	Co-60	29.0	28.00	=0.35
		(pCi/L)	2n-65	73.0	73 33	0.00
			Ru-106	199.0	194 00	-0.43
			Cs-134	10.0	9.67	-0.43
			Cs-137	10.0	10.33	0.12
			Ba-133	98.0	100.00	0.35

EPA CROSS CHECK RESULTS

EPA PREP DATE	DATE EPA ISSUED RESULTS	MEDIA	NUCLIDE	EPA RESULTS	AP&L RESULTS	NORM DEV KNOWN
		an dan digi kin din din din din din din din din din d	n me in ne me de ne in me an an	10° 10° 10° 80° 80° 80° 80° 80° 80° 80° 80° 80°	t die verheit die eerse aan van vers ver	
10/18/91	12/05/91	Water (pCi/L)	H-3	2454.0	2336.67	-0.58
09/27/91	01/03/92	Milk (pCi/L)	I-131 Cs-137 K	108.0 30.0 1740.0	102.00 30.33 1570.00	-0.94 0.12 -3.38**3
10/22/91	01/24/92	Water Blind B	Beta	65.0	52.00	-2.25
		(pCi/L)	Cs-134 Cs-137 Co-60	10.0 11.0 20.0	11.00 11.00 20.33	0.35 0.00 0.12

- **1 A new efficiency curve was constructed using a blank EPA plastic air filter. Efficiencies calculated using this air filter geometry were approximately 30% higher than previous geometries using air particulate filters.
- **2 Blind water samples contain several isotopes which have different beta energies. The efficiency curve for beta in water was constructed using Cs-137. Because the strontium isotopes have different beta energies than Cs-137, the results may not always agree with the standard beta in water efficiency using only Cs-137.
- **3 The results submitted by System Chemistry for Total Potassium (K) were less than the lower control unit established by EPA for this sample. System Chemistry will investigate possible sources of error within the gamma spectrometer efficiency curves and the calculations used to convert K-40 measurements into Total Potassium results. The results of these investigations will be included in the next monthly report.

It should be noted that the mean result submitted by 63 laboratories whose results were included in the Grand Average was 1.5 standard deviations below the value used by the EPA as the "known value" for Total Potassium for this cross-check sample. Of the results classified as outside the control limits by EPA, 17 were outside of the lower control limit set by the EPA while only 3 results were outside of the higher co rol limit. The submitted results were drastically shifted below the EPA established "known value". A request will be made to EPA to recheck the published "known value" for Total Potassium of this sample. Results of this inquiry will be included in the next monthly report after receipt of a reply from the EPA.

The U.S. EPA was contacted and confirmed that the "known value" for Total Potassium was correct. An independent experiment was developed to measure Total Potassium using a known mass on Potassium Nitrate dissolved in 3.5L of water. The experimented value was calculated to be 0.993 of the theoretical value.

APPENDIX D SYNOPSES OF ANALYTICAL PROCEDURES

D-1.0 ANALYSIS OF SAMPLES FOR GROSS BETA ACTIVITY

D-1.1 Air Particulates

After allowing for the radon-222 and radon-220 daughter products to decay, the particulate filters were counted in a gas-flow proportional counter.

D-1.2 Water

A known volume of water, usually 200 milliliters, was reduced by evaporation, transferred to a two inch diameter planchet, and evaporated to dryness. The planchet was counted for 100 minutes in an automatic alpha-beta counter.

D-2.0 ANALYSIS OF WATER SAMPLES FOR TRITIUM

A known volume of water, 5 milliliters, was added to 15 milliliters of liquid scintillation solution in a 25 milliliter vial. The sample was counted for 500 minutes in a liquid scintillation counter.

D-3.0 ANALYSIS OF SAMPLES FOR IODINE-131

D-3.1 Milk and Water

Up to four liters of sample were mixed with a stable iodine carrier solution and eluded through an anion exchange resin column to remove iodine from the sample. The iodine was stripped from the resin with sodium hypochlorite solution, reduced with hydroxylamine hydrochloride, and extracted into carbon tetrachloride as free iodine. It was back-extracted as iodide into sodium bisulfite solution and precipitated as palladium iodide. The precipitate, palladium iodide, was weighed for chemical yield and mounted on a nylon planchet level beta analysis. The chemical yield was corrected by measuring the stable iodide content of the milk or water with a specific ion electrode.

D-3.2 Broad Leaf Vegetation

Iodine analysis was performed using gamma spectroscopy. The time between sample receipt and analysis, the sample size and count times were adjusted in order to attain the required lower limit of tection. Refer to Section E-4.2 for a description of gamma spectroscopy procedure.

D-4.0 GAMMA SPECTROSCOPY ANALYSIS

Air particulate filters and iodine cartridges, water, milk, broadleaf vegetation, sediment, food products and fish samples are analyzed by gamma spectroscopy. Initially, the samples are prepared in containers, using the appropriate geometry for its sample type. Secondly, the sample is counted in a shielded high purity germanium (HPGE) or germanium lithium (GeLi) detector coupled to a computer based data acquisition system that performs pulse height analysis.

The computer software program defines peaks by changes in the slope of the spectrum. Additionally, after comparing each specific peak energy with a library of peaks for isotopic identification the program performs the radioactivity calculation using the appropriate fractional gamma ray abundance, half life, detector efficiency and net counts in the peak region.

D-5.0 ENVIRONMENTAL DOSIMETRY

Thermoluminescent Dosimeters (TLDs) manufactured by Panasonic (model UD-814AQ) were used for environmental dosimetry. Although the Panasonic TLDs contain one lithium borate and three calcium sulfate phosphor elements, only the calcium sulfate phosphor elements were used. For placement in field, two annealed dosimeters are placed inside a plastic bag and mounted in an aluminum frame. The dosimeters are checked monthly and exchanged for analysis each quarter using an automatic TLD reader manufactured by Panasonic (Model UD-710).