NUREG/CR-3818 SAND84-0374 RV Printed May 1984

Report of Results of Nuclear Power Plant Aging Workshops

N. H. Clark, D. L. Berry

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Prepared for U. S. NUCLEAR REGULATORY COMMISSION

8408240320 840831 PDR NUREG CR-3818 R PDR

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereot, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

4 0

Available from GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555 and National Technical Information Service Springfield, Virginia 22161

.

NUREG/CR-3818 SAND84-0374 RV

REPORT OF RESULTS OF NUCLEAR POWER PLANT AGING WORKSHOPS

N. H. Clark and D. L. Berry

May 1984

Sandia National Laboratories Albuquerque, NM 87185 Operated by Sandia Corporation for the U.S. Department of Energy di.

Prepared for Electrical Engineering Branch Division of Engineering Technology Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission Washington, DC 20555 Under Memorandum of Understanding DOE 40-55-75 NRC FIN NO. A-1357

Abstract

Two workshops were conducted to identify whether there is any evidence of component or structural aging problems in nuclear power plants, and, if so, what problems are of greatest importance. Fifteen representatives from national laboratories, architect/engineers, nuclear steam supply system vendors, research firms, and a university participated in the workshops. Based on completed questionnaires and group discussions which screened over 112 components believed to be susceptible to excessive aging, pressure/temperature sensors, valve operators, and snubbers emerged by consensus as the most important aging issues. Potential aging problems related to off-normal common mode effects or aging problems which are just now developing were found to be outside the scope of the workshops, because little or no first hand experience is available for these off-normal or yet to develop circumstances. Recommendations are made for a systematic approach to rate components in terms of overall safety and for a cooperative effort between industry research groups and regulatory research groups to resolve known aging problems and to identify off-normal or yet to develop aging issues.

TABLE OF CONTENTS

1.	Introductionl
2.	Objectives of the Workshops2
3.	Organization and Running of the Workshops 3
4.	Findings and Observations from the Workshops5
5.	Tables 1-5
6.	Appendices 1-4

.

.

Introduction

Several research efforts are being pursued by the United States Nuclear Regulatory Commission (NRC) and industry to investigate time-related degradation (or aging) of nuclear power plant safety components. Most of this work was started because of some well known type of aging mechanism (e.g., neutron embrittlement of pressure vessels) or because of problems that have manifested themselves as equipment failures (e.g., steam generator tube degradation). There is a concern that other types of aging problems may be developing as nuclear power plants get older, and that some aging problems could eventually impact power plant availability or safety.

The workshops described in this report were conducted to help identify whether there is any evidence of aging problems, and if so, what issues are of greatest importance.

The report is organized in three sections: (1) Objectives of the Workshops, (2) Organization and Running of the Workshops, and (3) Findings and Observations from the Workshops.

Objectives of the Workshops

The primary objectives of the workshops were to identify if there is any evidence of aging problems and if so what aging issues are of the greatest importance. In order to meet these objectives, the workshop participants were asked to answer four basic questions:

- (1) What are believed to be potential aging problems in nuclear power plants?
- (2) What is the relative ranking of the problems in terms of their impact on safety and what is the basis for the ranking?
- (3) What has been or could be done to detect, prevent and cope with significant aging issues?
- (4) What is the best mechanism to address and solve each problem?

影

The primary result of meeting these objectives was a list of components that merit concern as aging issues.

.

Organization and Running of the Workshops

Since the goal of the workshops was to identify aging issues for an entire nuclear plant, twelve participants covering a wide range of backgrounds were chosen to work with the organizers of the workshops from Sandia. The participants came from utilities, nuclear steam supply system vendors, architect/engineering firms, universities, national laboratories and consultants. Their backgrounds included material science and phenomena, power plant systems, power plant operations, and structural, electrical and mechanical engineering. A list of the participants is included in Table 1.

Because of the volume of material to be covered, two separate workshops were held. The first workshop addressed the first two basic aging questions:

- 1. What are believed to be potential aging problems, and
- 2. What is the relative ranking of the problems in terms of their impact and what is the basis for the ranking?

The second workshop extended the findings of the first workshop and addressed the third and fourth aging questions:

- What has been or could be done to detect, prevent and cope with significant aging issues, and
- 4. What is the best mechanism to address and solve each problem?

In order to use the workshop participants' time most effectively, a structured questionnaire was sent to each person before the first workshop. (The questionnaire is included as Appendix 1). Each participant completed the questionnaire before the first workshop. The results of the individual questionnaires were then compiled. The compilation resulted in a list of 112 components which the workshop participants believed to be susceptible to aging problems (Appendix 2). The first workshop involved two days. On the first day each participant used a set of 10 questions (Table 2) to guide him in rating the 112 components in terms of their overall importance. The participants were also asked to judge which five of the ten questions they felt were of the greatest importance to aging issues and which five questions they were most knowledgeable answering. The summary of those results can be seen in Table 3.

Using the ratings of overall importance, the 112 component issues were ranked by the workshop participants. Based on a compilation of the ranking results, 14 generic types of components receiving the highest percentage of votes were selected for further review at the second workshop (Table 4). In addition, discussions were held at the first workshop to speculate on the importance of other component aging issues not listed with the original 112. This resulted in a supplementary group of new issues for consideration at the second workshop. Before the second workshop, the compilation of 14 generic types of components was sent to each workshop participant to consider the final two basic aging questions.

At the second workshop for each of the 14 generic issues, a table was developed that listed first how one detects each issue and second how one prevents/copes with/handles each issue. The resulting table is shown in Appendix 3. For each of the speculative issues identified during the first workshop as going beyond the 14 generic component types, a five minute brainstorming session was conducted to solicit comments and recommendations. Using the results of these sessions, plus the written input provided by some participants, Appendix 4 was developed which lists each speculative issue, some pertinent comments on each issue, and an assessment of the perceived importance of the issue.

As a final step at the second workshop, each participant was asked to rate the safety importance of each of the 14 generic safety issues as high, medium or low. For those issues which a participant rated high, he was asked to state a reason and to suggest a mechanism for resolving the issue. The results of that rating are included in Table 5. If one looks at only those issues which have a high number of "high" ratings only three components (pressure/temperature sensors, valve operators and snubbers) are of most importance.* If one looks at the data concerning a mechanism for resolving each aging issue, it appears there is no consensus. For each issue, at least three different mechanisms have been suggested.

*Steam generator tubes, BWR stainless steel pipe cracking, radiation induced embrittlement have been excluded from consideration here because of the already high level of research and engineering attention which these issues are receiving.

Findings and Observations from the Workshops

The workshops identified a wide range of components (as evidenced by the 112 components listed in Appendix 2) whose aging may affect plant safety. Using the ranking technique of the workshops, three components emerge as the most important aging issues (pressure/temperature sensors, valve operators, and snubbers).

There are several observations to be made before one states that the three components identified are in fact the most important ones.

- 1. Although the participants did not feel knowledgeable about systems safety, most felt that aging problems relating to component effects on safety systems are most important. Despite this feeling, however, there is a concern that participants, knowledgeable about components and component problems, may be expected to rate particular components as important simply because of an awareness of component troubles, not necessarily because of the overall safety significance of the components.
- 2. Most participants considered aging in terms of how it can affect the performance of a component's normal operation. However, during any off normal conditions such as a loss of coolant accident or earthquake, aged components that may meet performance specifications for normal conditions may fail. The major concern here is that a common-mode type failure could occur.
- 3. Component aging issues identified as important, also appear to be well known, as evidenced by the fact that some aging work could be cited for most of the components listed in Table 5. Since these components are known to be troublesome, utilities should be taking steps on their own to prevent them from being a safety issue.
- 4. The priorities were identified by a method of the participants voting. A real concern is that a problem which has been seen only once or twice and thus is not now of general concern may not receive a proper rating because of lack of knowledge by the participants of the potential significance of this one failure.

Based on these observations, several recommendations on work that should be done can be made.

- Work should be done to provide utilities and regulators a systematic approach to rate components in terms of overall safety system significance.
- Work should be done to see if the aging of components affects safety differently under accident conditions as compared to normal operating conditions.
- Work should be done to evaluate the importance of failures that have only been seen once or twice.
- 4. Work should continue on the three components (pressure/temperature sensors, valve operators, and snubbers) identified by the participants as important to safety until a better system is identified to rate safety importance.
- 5. Work should continue to assure that utilities are in fact taking steps to insure that components that are known to be potential aging concerns are adequately being handled by utilities.

The workshops not only concerned themselves with what work needs to be done, but who is best qualified to do that work. Table 5 shows recommendations by the group of who should resolve a specific concern. It is clear that no one group can solve all concerns, but that each concern must be carefully analyzed and then industry, vendors, utilities and NRC must work together to develop an appropriate solution. The recommendations of work that should be done are all of the nature which require cooperative efforts as well.

In some cases, for example insuring known aging concerns are adequately being handled, an industrial utility standards group may take the lead to resolve the concerns. In other cases, such as evaluating the importance of failures that have only been seen once or twice or seeing if aging of components affects safety differently under accident conditions a lack of immediate economic return to industry may dictate the need for NRC to play an active role in resolving the concern.

Finally, work of the sort that has broad uses for both industry and the NRC, such as providing a systematic approach to rate components in terms of overall safety and work on components already identified as potential concerns, might best be resolved with cooperation between an industry research group such as EPRI and the NRC research groups in the national laboratories.

-6-

Workshop Attendees

Bill Andrews ²	Pacific Northwest Laboratories
Dennis Berry	Sandia National Laboratories
Lloyd Bonzon	Sandia National Laboratories
Sal P. Carfagno	Franklin Research Center
Nancy Clark ²	Sandia National Laboratories
William G. Conn	Burns & Roe
Jim Donovan	University of Massachusetts
John H. Ferguson ¹	Connecticut Yankee Atomic Power Company
Jerry Glazman	Combustion Engineering
Pat Higgins	General Electric Company
Bob Kennedy	Babcock & Wilcox
George M. Langford	Bechtel Power Corporation
Dinker Mehta	Burns & Roe
George Murphy	Oak Ridge National Laboratory
Bobby A. Terwilliger	Arkansas Power & Light
John W. Wanless	NUS Corporation

Attended 1st workshop only.
 Attended 2nd workshop only.

۰.

-7-

.

0

Component Ranking Questions

1.	Have examples of the problem been observed?
2.	Is the problem potentially widespread?
3.	Does or could the problem involve safety system components?
4.	Can the problem jeopardize an entire safety function?
5.	Is the resulting component degradation rapid?
6.	Can the problem occur with little or no warning?
7.	Can the problem escape current T&M practices?
8.	Can a frequently challenged safety function be affected?
9.	Can the problem resul? in common-mode failure during design-basis events?
10.	Is little or no work being done to address the problem?

-8-

The Six Component Questions Judged to be cf Greatest Importance to Aging Issues and the State-of-Knowledge of the Voters¹

		Importance	State-of- Knowledge
1.	Can the problem jeopardize an entire safety function?	10	2
2.	Can the problem escape current T&M practices?	8	5
3.	Does or could the problem involve safety system components?	8	7
4.	Can the problem result in common-mode failures during design-basis events?	8	4
5.	Is the problem potentially widespread?	6	6
6.	Can the problem occur with little or no warning?	6	8

¹Based on the number of people who rated questions as the five most important questions and the five questions they felt most comfortable answering based on their State-of-Knowledge. Because of a tie between the questions rated 5 and 6, the overall six highest rated questions are listed here.

-9-

	Questionnaire Item # (From Appendix 2)	Component	Actual or Potential Failure Mode	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems
1.	2,32,44,62, 87,91	Pressure/temp sensors	Decalibration	Mech. aging of bellows, springs	Vibration, connector cabling degradation
			Insufficient/	Binding	Waterhammer
			no output	Electronics drift or sensor degradation	Thermal degradation, voltage transients, impurity introduction
				Brittle connector	High temperatures
			Open circuits	Set point drift	High temperatures
			Decalibration	Moving narts wear	
2.	11,30,90	Electrical connectors/	Open circuit	Oxidation of contact surface	Normal cabinet environment
		Terminal blocks	Spurious response	Tracking (carbonizing)	Dirt/dust/salt
			Open circuit	Worn screws and parts	Too much surveillance
3.	15,33	Valves/solenoid valves	Seat leakage	Wear and wire drawing	Normal design environment
			Hampered operation	Flow blockage	Oil in airline, failure of seals

List of Generic Components

Table 4 (Con't)

	Questionnaire Item # (From Appendix 2)	Component	Actual or Potential Failure Mode	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems
4.	16,39,50,80	Valve operators	Punction impaired	Hardening of lubricant, pneumatic seal failure	Normal design environment
			Loosening of components	Spring type lock washers allow chafing of surfaces and loosening bolts	Vibration
		- 20 영화 20	Excessive torque	Packing too tight	Overtightening to handle leaks
			Failure to operate	Lubricant hardens	Temperature variations
5.	28,35,36,40, 53,54,68	Switch/relay/ circuit breaker	Open circuit	Fatigue of spring	Vibration
			Failure to trip	Grease binding	Normal design environment
				Wear-induced friction	Lack of periodic lubrics on
			Opening/clogging wrong contacts	Cam wear and coupling wear	Normal design environment
			Failure to operate in required time	Fatigue of spring	Wear/dirt impartment
				Pitting/thinning of contacts	Environment corrosion of voltage areas
			Spurious response	Binding	Dirt/dust
6.	29,92	Diesel generator	Piping failure	Cracking	
			Structure failure	Wear	
7.	46,47,103	Motors/pump motors	Bearing failure of pump	Wear	High temperature wear
			Insulation failure	Turn-to-turn short	Thermal/voltage degradation

.

-11-

Table 4 (Con't)

	Questionnaire Item # (From Appendix 2)	Component	Actual or Potential Failure Mode	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems
8.	48	Transformers	Insulation failure	Turn-to-turn short	Thermal/voltage degradation
9.	49/55	Cables	Insulation failure	Short to ground	Corrosive fluids Voltage stress
			Strand breakage	Open circuit	Vibration, corrosion at interface, temperature cycles, radiation
10.	51	Snubbers	Leakage or nonfunction	Seal embrittlement or blockage	Thermal/radiation/overstress
11.	58,75,83	Piping	Leakage	Wall thinning	Erosive silt in water
12.	66	Steam generator tubes	Leakage	Denting, cracking	Chemistry-induced corrosion
13.	67	Relief valves	Leakage	Erosion	Normal design conditions
14.	26	Concrete/anchors tendons	Loss of pretension	Inadequate torque, grout creep	Vibrations, excess stress

Rating of Generic Component Issues

COMPONENT		R&D_PRIORITY				REASONS FOR HIGH		NHO 2000 0 00 0103	
	High	Medium	For		PRIORITY	WHO	ZHOULD DO BEDI		
1.	Pressure/Temp Sensors	8	3	0	u	eed to fundamentally nderstand drift limits, eed historical data	а.	EPRI and National Labs	
					f a	eed to assess if they will unction under additional dverse conditions that ome from TMI and Appendix R	b.	Industry with EPRI assistance	
						ER experiences and common- ode failure potential	с.	NRC/National Labs/ sometimes owners or users groups	
						ide use in plants and afety systems	d.	EPRI or NRC with vendor/ industry involvement or utilities by use of incentives and/or INPO	
2.	Electrical connectors Terminal Blocks	3	3	5	s 1	ften composed of age ensitive materials whose ife is short compared to lant life	а.	Industry program coordinated by National Labs or BPRI	
					8	biquitous use, failures een in LER's and common ode failure potential	b.	NRC/AE/National Labs and manufacturers	

đ

Table 5 (Con't)

	COMPONENT		RED PRIORITY		REASONS FOR HIGH PRIORITY	WHO	SHOULD DO RED?
		High	Medium	Low			
3.	Valves/Solenoid	3	7	1	 Elastometric components do not meet environmental aging demands 	a.	EPRI/industry
					b. Large numbers of systems sensitive to their failure and failure not apparent until too late	b.	Manufacturers with industry group or National Labs
					c. Maintenance problems	с.	Utilities
4.	Valve Operators	7	4	0	 Need to develop packing standards-specs./quality control 	а.	EPRI
					b. Concerned about heat and temperature degradation of lubricant, packing, etc.	þ.	Utility/manufacturer
					c. Large sumbers of systems sensitive to their failure and failure not apparent until too late	c.	Manufacturers with industry group or vendor with EPRI that could result in IEEE Standards
					d. Significant number of problems seen	d.	Utilities
5.	Switch/Relay/ Circuit Breakers	4	6	1	a. Possible safety concern	a.	Manufacturers/industry or utilities via incentives and/or INPO, vendors consultants

表

.

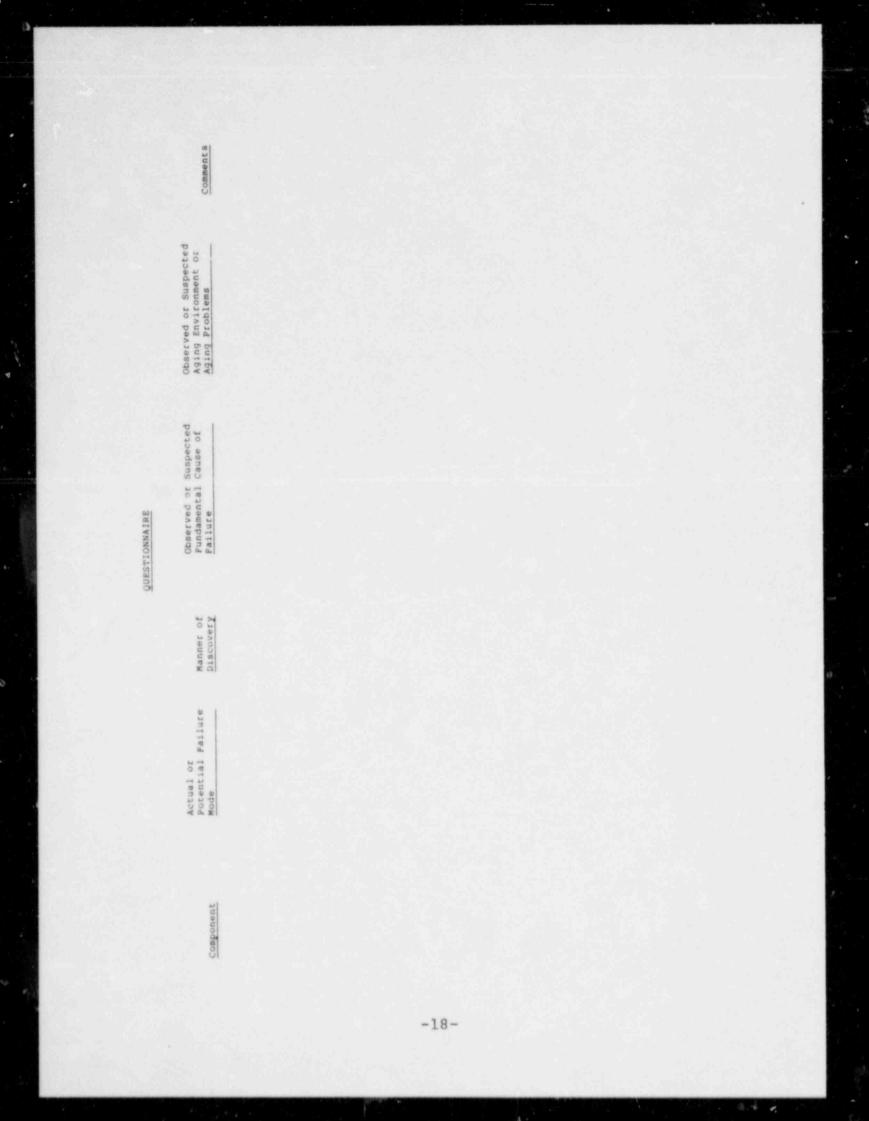
Table 5 (Con't)

1

COMPONENT		R6D PRIORITY				REASONS FOR HIGH PRIORITY		WHO SHOULD DO RED?	
		High	Medium	Low					
б.	Diesel Generator	4	3	4	a.	Problem real and related to safety	â.	DG manufacturers and owners group/EPRI or industry/NRC	
7,	Motors/Pump Motors	2	6	3	a.	Need to establish standards for lubrication and relation- ship to wear	a.	EPRI/pump vendors	
					b.	Need to quantify and specify testing	þ.	ASME with EPRI	
8.	Transformers	0	3	8	a.	No reason given			
9.	Cables	3	4	4	a.	Need test specifications to predict failure	a.	NRC driven	
					b.	Potential of common-mode failure and ubiquitous use	b.	NRC/National Labs/ manufacturers	
10.	Snubbers	5	6	0	a.	Cause of failures not established	a.	EPRI	
					þ.	Potential for common-mode failure	b.	EPRI	
					с.	Need to establish technical basis for seal replacement or select new seal materials	c.	National Labs	
					d.	Significant known problems	d.	Snubber manufacturers	

-15-

Table 5 (Con't)


	COMPONENT		R&D PRIORITY		REASONS FOR HIGH PRIORITY	WHO SHOULD DO RED?	
		High	Medium	Low			
11.	Piping	1	٠	6	a. Continue to develop leaks/cracks that could not be predicted	 Research organization such as EPRI with vendors, manufacturers, and utilities 	
12.	Steam Generator	7	2	2	a. Economic concerns	a. Owners group/EPRI	
	Tuhes				b. Widespread problem that has significant impact on plant operability	b. NSSS Suppliers with EPRI	
13.	Relief Valves	4	5	2	 Known drift off set points and leakage 	a. Manufacturers and NRC/ASME	
					b. Problem is widespread/few valves function properly	 Manufacturers with industry group or National Labs 	
					 c. Affects primary safety, TMI experiences, known to leak, and the need for appropriate testing and design specification 	c. EPRI/Manufacturers NRC/National Labs	
14.	Concrete Anchors	0	2	9	No reasons given		

SAMPLE QUESTIONNAIRE

APPENDIX 1

\$

-

QUESTIONNAIRE (HYPOTHETICAL EXAMPLES)*

٠

System	Component	Actual or Potential Pailure Mode	Manner of Discovery	Observed of Suspected Pundament/il Cause of Pailure	Observed or Suspected Aging Environment or Aging Problems	Comments
HVAC	High pressur- injection pump room unit cooler	Insufficient output	Failure during operation	Air flow blockage through cooler	Dist/dust	(
Component Cooling Water	Piping	Pressure boundary	Routine walk through	Wall thinning	Liquid Erosion	Bigh flow rate
Component Cooling Water	Heat exchange:	Inoufficient output	Operational parameter change (T)	Poor heat transfer coefficient	Corrosive service water	Organic growth buildup
Ecergency DC	MCC's for low pressure injec- tion valves	Delayed response	Routine testing	Binding of switches	Corrosive vapors	Salt moisture in air
Service Air	Air compressor foundations	Poundation failure	Special surveillance	Cracking of concrete	Vibration	
Emergency AC	Cabling	Insufficient Fire Protection	Routine maintenance	Cracking of fire retardant coating	Insufficient moisture and high temperatures	Coatings separated frog cabling
dVAC	Fire damper	Insufficient fire protection	Special surveillance	Binding of damper	Dirt/dust	

*QUESTIONNAIRES NEED NOT BE TYPED

.

١ş.

EXAMPLES OF PWR SYSTEMS

AUXILIARY FEEDWATER SYSTEM HIGH PRESSURE COOLANT INJECTION CHEMICAL AND VOLUME CONTROL SYSTEM LOW PRESSURE COOLANT INJECTION SYSTEM RADIOLOGICAL WASIE CONTROL SYSTEM REACTOR PRIMARY COOLANT SYSTEM-PORVs and SRVs POWER CONVERSION SYSTEM SECONDARY COOLANT SYSTEM-RELIEF VALVES, BY-PASS REACTOR PROTECTION SYSTEM

VALVES, AND BLOCK VALVES RESIDUAL HEAT REMOVAL SYSTEM EMERGENCY AC AND DC POWER SYSTEMS COMPONENT COOLING WATER SYSTEM HVAC SYSTEM INSTRUMENTATION AND CONTROL SERVICE AIR SYSTEM INSTRUMENT AIR SYSTEM SERVICE WATER SYSTEM

CONTAINMENT SPRAY SYSTEM CONTAINMENT HEAT REMOVAL SYSTEM FUEL HANDLING SYSTEM

1

EXAMPLES OF BWR SYSTEMS

REACTOR CORE ISOLATION COOLING SYSTEM HIGH PRESSURE COOLANT INJECTION/SPRAY EMERGENCY DIESEL GENERATOR SYSTEM LOW PRESSURE CORE SPRAY AUTOMATIC DEPRESSURIZATION AND RPV OVERPRESSURE PROTECTION SYSTEM ESSENTIAL SPACE COOLING SYSTEM RESIDUAL HEAT REMOVAL SYSTEM EMERGENCY AC AND DC POWER SYSTEM HVAC SYSTEM INSTRUMENTATION AND CONTROL SERVICE AIR SYSTEM INSTRUMENT AIR SYSTEM EMERGENCY SERVICE WATER SYSTEM ISOLATION CONDENSERS FUEL HANDLING SYSTEM RADIOLOGICAL WASTE CONTROL SYSTEM POWER CONVERSION SYSTEM REACTOR PROTECTION SYSTEM

EXAMPLES OF COMPONENTS OF CONCERN

```
Switchgear
Motor control centers
Valves
Valve operators
Motors
Logic equipment
Cable
Diesels
Diesel generator starting and control equipment
Sensors (pressure, pressure differential, flow, level,
  temperature, and neutron)
Limit switches
Heaters
Coolers
Fans
Control boards
Transformers
Instrument racks and panels
Connectors
Electrical penetrations
Splices
Terminal blocks
Equipment supports or foundations
Piping, orifices, flanges
Tanks
Heat exchangers
Ducting
Filters
Building structures or foundations
Cranes
```

AGING-RELATED INFORMATION CATEGORIES FOR COMPONENTS

Actual or Potential Pailure Mode

Delayed response Slow response Premature response Fast response Spurious response Insufficient/no output Excessive output Pressuring boundary failure Structure failure Foundation failure Other

Manner of Discovery

Routine maintenance Foutine walk through Spacial surveillance Failure on demand Failure during operation On-line diagnostics Operational parameter change Routine testing Other Observed or Suspected Fundamental Cause of Failure

Short circuits (inc. partial) Open circuits (inc. partial) Binding Excessive free play Cracking Ductile failure Brittle failure Flow blockage Wall thinning Other Observed or Suspected Aging Environments or Aging Problems

Radiation Excessive moisture Insufficient moisture Corrosive liquids Corrosive vapors/gases Abrasion (internal/ external) High temperatures Low temperatures Temperature cycles Liquid erosion Vapor/gas explosion (inc. steam) Material incompatibilities (e.g. lubricants) Galvanic effects Excessive test/maintenance cycles Dirt/dust Other

APPENDIX 2

COMPILATION OF INDIVIDUAL RESPONSES TO QUESTIONNAIRES

QUESTIONNAIRE RESPONSES

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
1.	Neutron sensors	Decalibration	Comparison/ calculations	Burnup/loss of gas/ unknown behavior in radiation	Misapplied/unknown correlation factors	
2.	Press/temp sensors (RTD/TC)	Decalibration	Maintenance	Mech. aging of bellows/ springs/GDS	High freq. vibrations/ environment - connectors/ cabling degradation	
3.	Analog amps.	Loss of function decalibration	Maintenance	Moisture/temp. of components	Degradation over time of noise filter capacitors common-mode susceptibility	
4.	Digital comp. software	Decalibration	On-line test	Loss of response time	Fundamental changes in algorithm structure due to compounded changes in equipment response times	
5,	Instrument ground grid	Common-mode faults	None	Station design changes on piecemeal basis	Addition of instrument without fundamental design review causes violation of good grounding practices	
6.	Replacement parts	Do not meet design specs	Installation audit	Stress original designs now aged	Systematic upgrade of static documentation, replacement of obsolescence parts with "best available"	
7.	High pressure injection water nozzle	Crack at pipe- to-valve weld	Visual	Low cycle fatigue (thermal)	Periodic temperature variation 400°F	
۴.	Reactor vessel internal bolting	Crack under head	Visual and UT	Stress corrosion cracking	RC system	
9.	Reactor coolant pump motor	Lubricating oil degradation	Oil examination	Air entrainment	Air pockets on lubri- cating surface resulted in excessive temp.	

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Pundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems <u>Co</u>	mments
10.	RC system letdown coolers	Primary to secondary side leakage	Increased radiation on secondary side	Low cycle fatigue (thermal)	Periodic start/stops of primary (RCS) flow	
11.	Electrical connectors and contacts	Loss of plating material	Open circuit	Oxidation of contact surface	Normal electrical cabinet environment	
12.	Decay heat system pump	Wear of close fit assembly surfaces	Visual	Maintenance (numerous disassembly activities)	Normal system environment	
13.	Orifice	Frosion	High flow	High ΔP for extended period of time	Normal design environment	
14.	Valve	Leaking packing	Viscal	Hardens with age and extrudes with operation	Normal design environment	
15.	Valve	Leaking seat	Visual or test	Wear and wire drawing	Normal design environment	
16.	Valve operator	Function impaired	Improper response to manual/auto demand	Hardening of lubricatio»; pneumatic seal failure	Normal design environment	
17.	Concrete structs.	Disintegration of concrete	Routine	Freeze-thaw cycles	Weather changes	
18.	Concrete structs.	Expansion and disruption of concrete	Routine inspection	Sulphate-cement reaction	Sulphates in groundwater	
19.	Concrete structs.	Random (map) cracking	Routine inspection	High-alkali cement and aggregate reaction	Reactive aggregates (opaline silica coating on aggregate, silicious limestones, and rocks)
20.	Concrete structs.	Concrete spalling	Routine inspection	Corrosion of reinforcing steel	Salt and chloride pentr.	

e

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
21.	Concrete structs.	Abrasion	Routine inspection	Sand or gravel particles in flowing water	Suspended rarticles in flowing w.	
22.	Concrete structs.	Irregular, jagged, and pitted surface	Routine inspection	Cavitation damage caused by water flow	Flowing water	
23.	Concrete structs.	Disintegration of concrete	Routine inspection	Leaching of calcium hydroxide by water leaking through joints and pores	Exposure to water	
24.	Building struct. steel	Loss of structural integrity	Routine inspection	Corrosion of steel	Salt, moisture, and oxidizing agents	
25.	Tendons	Loss of prestress	Routine in inspection walk-through	Failure of anchors, tendons, and accessories	Stress and general corrosion, fatigue loads, and time- dependent losses	
26.	Concrete anchors	Loss of pretension	Routine inspection and walk-through	Vibrations and inade- quate initial torque	Normal plant opera- tion and inadequate constr. practices	
27.	Epoxy product	Loss of structural integrity and adhesion	Product tests	Loss of structural strength	High temperature and radiation exposure	Suitable pro- duct testing minimizes
28.	Control switch	Switch contacts inoperative	Failure during operation	Open circuits	Vibration	ratigue failure of spring
29.	Diesel generator	Structural failure	Routine testing	Cracking	Fatigue hardening	Cooling water jumpers from header failed
30.	Terminal block	Spurious response	Failure during operation	Tracking (carbonizing)	Dirt/dust/salt	Junction boxes - connection

points

#

	Component	Actual or Potential Pailure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Envirement or Aging Problems	Comments
31.	Penetration	Spurious response	Pailure during operation	Short circuits	Radiation/moisture	Epray seal degraded
32.	Sensor (pres. transmitter)	Insufficient/ no output	Operational parameter change	Binding	Waterhammer	Excessive pres. spikes distorted bellows
33.	Solenoid valve	Pressure boundary failure	Routine maintenance	Flow blockage	Material incompatibilities	Oil in airline - failure of seals
34.	RHR motor	Bearing and winding failure	Motor tripped during operation	Bearing failed causing winding damage and electrical failure	Pump-motor vibration is believed to have caused bearing failure	
35.	Reactor trip circuit breaker	Pailure to trip on undervoltage trip operation	Pailure of special test	Aging of trip mechanism grease increased trip force requirement	Normal aging of grease used (mild environment)	
36.	Reactor trip circuit breaker	Pailure to trip on undervoltage trip operation	Pailure in service	Mechanical wear and increased friction of latch components	Lack of periodic lubrication and maintenance	
37.	ECCS pumps	Reduced output	Surveillance test	Impeller wear	Impeller wear from operation	
38.	BWR reedwater and CRD nozzles	Stress corrosion cracking	In-service inspection (ISI)	Temperature shock from high frequency bypass flow cycling, followed by start-up/shutdown temperature swings	High frequency temperature swings initiate crack, start-up/shutdown swings propogate cracks	

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
39.	Valve operators	Loosening of com- ponents during operation	Vibration testing	Vibration causes wearing of mounting components	Spring type lockwashers allow chafing of mount- ing surfaces and loosen- ing of screws and bolts	
40.	Rotary control switches	Closing or opening of wrong contacts	Evaluation of failed device	Cumulative effects of cam and coupling wear	Operation of switch	
41.	Low voltage circuit breakers	Pailure of control cable	Inspection	Chafing of cable insula- tion at compartment door	Mounting of cable allowed compartment door to wear cable insulation when opened and closed	
42.	Batteries	Loss/reduction of output voltage	Metering/ electrolyte testing	Plate swell due to increased moisture absorption	Voltage discharge/ chemical change in plases	
43.	Batteries	Loss of electrolyte	Visual inspec- tion/failure to operate	Case cracking due to embrittlement or H ₂ generation	Thermal/chemical embrat- tlement due to hot electrolyte	
44.	Transmitters	Failure to produce correct output	Surveillance calibration/ cross check with other instruments	Electronics drift or sensor degradation	Thermal degradation/ voltage transients/ impurity introduction into component	May be able to predict by trending
45.	Active/passive solid state devices	Failure to operate or produce correct output	Surveillance calibration/ cross check with other instruments	Electronics drift	Thermal/voltage degrada- tion or impurity intro- duction into component	May be able to predict by trending or self testing

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cr se of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
46.	Motors	Bearing failure	Audible noise or vibration monitoring	Wear of bearing surface	Thermal/wear	Also pump bear- ings dominant motor failure mode
47.	Motors	Insulation failure	Failure to operate/RF monitoring	Turn to turn short circuit	Thermal/voltage degradation	
48.	Transformers	Insulation failure	Failure to operate/internal pressure rise/ RF Monitoring	Turn to turn short circuit	Thermal/voltage degradation	
49.	Cables	Insulation failure	Fault locator/ failure to operate/low	Short to ground	Corrosive fluids thermal/ volt stress	
			insulation resistance	Open circuit	Strand breakage due to excessive movement/vibration corrosion at interface	
50.	Valve operator	Excessive open/ close torque	Torque switch trip/surveillance testing	Valve stem packing deterioration binding	 Wear causes leakage Packing tightened to control leaks Motor fails because torque switch set too high to prevent excessive tripping 	
51.	Snubbers (hydraulic)	Leakage	Fluid observation	Seal embrittlement	Attributed to radiation/ thermal degradation	Could be due to over-stress rather than degradation - also may be caused by vibration

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
52.	Pump seals	Leakage	Fluid observation	Seal embrittlement or loss of strength	Thermal/radiation/ vibration degradation	
53.	Relays	Failure to open/ close in required time	Calibration testing/opera- tion testing	Relaxation of spring tension	Fatigue or dirt impairing spring	May be predict- able by trending
54.	Relays	Failure to make/ break contact	Operation testing	Pitting/thinning of contacts	Corrosion from environ- ment and voltage arcs	May be predict- able by trending
55.	Cabling	Insulation failure	Leakage/ insulation breakdown testing	Short/open circuit	Temp, cycles and radiation	
56.	Diesel generators	Fail to start	Failure on demand	Piping connection cracking	Vibration	Cold start requirements
57.	Safety related pump	Bearing failure	Degraded flow on surveillance testing	Erosion Corrosion	High temperature vibration	
58.	Piping systems	Leakage	Fluid/observation inspection	Erosion corrosion	Turbulent flow vibration	
59.	Central valves	Leaking	Routine testing	Erosion		
60.	Battery cases	Structural failure	Routine walk-through	Plate swelling	Chemical reaction	
61.	Demister baskets	Structural failure	Inspection	Ductile failure	Vibration	
62.	R.T.D.s	Incorrect response	On-line Diagnostics	Open circuits (partial) Brittle Connector	High temperature	
63.	NIS cables	Spurious response	Operational parameter change	Cracking open circuits	High temperature radiation	

-31-

-

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems Comments
64.	Thermocouple leads	Spurious response	Operational parameter change	Open circuits	High temperature radiation
65.	Condenser tubes	Steam generator chemistry	Routine surveillance	Cracking	Chemistry of circ. water or
66.	SG tubes	Pressure boundary	ISI inspection	Denting; cracking	Chemistry crud buildup
67.	Pressurized safety valves	Pressure boundary	Inspection failure during operation	Leaking; erosion	Stress
68.	Pelays	Spurious response	Failure during operation	Open circuits	Dirt/dust
69.	Valve positioner (air operated)	Spurious response	Failure during operation	Brittle failure cracking	Vibration
70.	Baffels impingement plates	Structural failure	Special testing	Cracking ductil failure	Excessive moisture vibration
71.	Control rod drive shaft	Disconnected	Low power physics testing	Handling throughout years	Bumping
72.	Control rod drive cable connectors	No contact	Dropped rod	Handling throughout years	Wear
73.	Valve diaphrams	Cracking	Leak	Too much torque	Time
74.	Dampers on contain- ment recirc. fans	Cracking; breaking of actuator arms	Position indication	Vibration	Vibration; rough usage
75.	Service water piping	Leak	Foutine inspection	Wall thinning	Erosion; silt in water

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Proplems	Comments
76.	Control switches vital bus	No contact	Open circuits	Worn out	Material	
77.	Diaphrams in controllers	No response	Failures during operation	Brittle failure	High temperature	
78.	Station battery	Decreased D.C. voltage and power	Walk-through	Leaking cell tanks	Expansion and construction	
79.	AC power transformers	Possible loss of power	Refueling PMs	Insulation breakdown	Heat	
80.	MOV lubricants	Failure to open or close valve	Refueling PMs	Lubricant breakdown	Temp. variations	Grease hardens
81.	M.C.C. motor protection	Failure to protect motor from overload	PMs destroy motor	Failure to open under overload; destroy motors; fire	Constant temp. old age	
82.	Valve(s)	Pressure boundary	Failure during operation	Failed body to Bonneni gasket(s)	Liquid erosion	
83,	Service water piping	Pressure boundary	Routine walk-through	Wall thinning	Liquid erosion	
84.	Charging pump recirc. line orifice isolation value	Pressure boundary	Routine walk-through	Wall thinning	Liquid erosion	
85.	Emerg. diesel heat exchanger inlet line	Pressure boundary	Routine walk-through	Wall thinning	Liquid erosion	

C

In Subsection

	Component	Actual or Potential Failure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments
86.	Capacitors electrolytic	Open or short circuited	Set point drift or calibration shift	Drying out of electrolyte	From being constantly energized	Replace with tantalum capacitors
87.	Reactor coolant R.T.D.s	Mostly open circuit	Indication off scale or alarm	Vibration, due to flow of coolant	Flow of coolant system causes vibration	Replace with military spec. components
88.	Amplifiers in general	Open resistors, capacitors, coils, transistors	Many times poor or no indication	Alarm, set, point drift poor or no indication	In reactor containment, heat is usually the culprit	Repair with military spec. components
89.	Neutrons sensors ${\rm BF}_3$ and ${\rm B}_{10}$	Depletion of BF3 and B10; short circuit of connectors	Erratic or loss of indication	Neutrons deplete B ₁₀ and BF ₃ , causing low, high, or erratic readings	Neutrons deplete BF_3 and B_{10} , heat and/or neutrons break down connector material	Replace detectors
90.	Terminal blocks	Worn screws and parts which cause open circuits	Surveillance, alarms, poor indication low or high, or no indication	Loss of protection, or trip signal, loss of control	Too much surveillance	Replace connectors
91.	$\Delta P,$ and pressure	Worn moving parts due to system or process dynamic characteristic	Low, high, erroneous, or no reading. alarms	Loss of protection, calibration drift, alarms	Natural characteristic of process or controlled variable	Replace or repair transmitter
92.	Diesel starters	Structural failure	Routine surveillance	Wear	Excessive test cycles	
93.	Engineered safety features equipment	Structural failure	Routine surveillance	Wear	Excessive test cycles	

5

		Actual or		Observed or Suspected	Observed or Suspected Aging Environment or	
		Potential Failure	Manner of	Fundamental Cause of		
	Component	Mode	Discovery	Failure	Aging Problems	Comments
94.	Valve	Through wall leakage	Water on floor	Cavitation	High vacuum; valve returns feed water to condenser	
95.	SW pump	Degraded output	Testing	Erosion	Silt in water	
96.	RHR heat exchanger	Tube failure	Conductivity	Vibration	Loose tube support	
97.	Condenser	Tube failure	Conductivity	High steam velocity	High vacuum (low CW temp.)	
98.	trump	Seal failure	Observation	Abrasion	Dirty water	
	turbine aux. oil	set point	turbine trip	vibration	switch mounted on	
	pressure switch	change			turbine pedestal	
99.	MOV CS min. flow	Motor failure	Failure during operation	Change to torque switch settings	Vibration	
100.	Containment fan	Bearing/shaft	Shutdown		High temperature, high	
	coil unit	failure	inspection		speed, low quality	
101.	Stainless steel	Cracks	ISI or leak	Intergranular stress	Normal service in	Resolved by
	recirculation		detection	corrosion cracking	earlier plant designs	improved
	system piping			(IGSCC)		material or stress/envir.
						modification
102.	Recirc. flow	Wear	Test for	Bearing failure	Material	Redesign
	control valves		function		incompatibility	
103.	Pump motors	Insulation deteriora-	Probably during	High dry well/motor	Temperature	
	(continuous duty)	tion (postulated)	maintenance checks	temperatures leading to shorts		
104.	Valves (recirc.)	Cracks in valve stem	Test for	Fatigue	Normal service	Redesign
			function			

50

	Component	Actual or Potential Pailure Mode	Manner of Discovery	Observed or Suspected Fundamental Cause of Failure	Observed or Suspected Aging Environment or Aging Problems	Comments	
105.	CRD system	Wear (postulated) of CRD indexing	Test for function	Wear due to crud in CRD	Normal service		
106.	Core spray spargers	Cracks in sparger arms	ISI	IGSCC (postulated)	Normal service	Replace with improved material/design	
107.	Jet pump beams	Cracks	Test for function (surveillance)	IGSCC	Stress and heat treatment of beam material	Replace material and stress reduction	
108.	Steam dryer assembly	Cracking	ISI	Patigue	Limited to early designs/ may be unique		
109.	Feed water sparger assembly	Cracking	ISI	Fatigue (thermal and high cycle)	Early plant design features		
110.	Sensors	Signal loss	Test for function	Degradation/	Impurities in component		
111.	Feed water sparger nozzles	Cracks	ISI	Thermal fatigue	Startup cycles and hot/ cold cycling during normal operation due to thermal sleeve leakage	Limited to early designs	
112.	Earthen dikes	Rupture; collapse; erosion	Leaks; wet	Erosion; piping, seepage	Soil compaction		

APPENDIX 3

6

\$

TABLE OF GENERIC ISSUES (How to Detect and How to Prevent/Cope/Handle Them)

PRESSURE SENSORS

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Insufficient/No Output or Open Circuits DETECT

- · Anomalous signals
 - Comparative outputs
 - Known signal (devise check)
 - · Loop check

.

*

.

4

Annunciators

PREVENT/COPE/HANDLE

.

1

.

 \mathcal{F}_{i}

κ.

- Protect against entry of moisture and chemicals
- Use higher quality electronics with more fatigue-resistant materials
- Use drift information with historical data to recalibrate or replace

Preventive maintenance

- · Failsafe design
 - Use redundancy

Less exercise

Recalibrate

Change springs

· Change material

 Decalibration by Mechanical Aging of Bellow Springs

Anomalous signal Comparative outputs Known signal

· Trending analysis

- (devise test)
- Loop check

Comparative Channel

3. Decalibration by Binding · Same Method as 2

 Avoid extreme ranges in cycles by flow limiting orifice or accumulators

PRESSURE SENSORS (Cont.)

FAILURE MODE AND/OR MECHANISM OF FAILURE DETECT PREVENT/COPE/HANDLE

4. Decalibration by · Same methods as 2 · Environment protection Electronic Drift or Sensor Degradation

5

als.

8

- · Environment control

· Use nonelectronics transmitter

· Recalibrate routinely

5. Decalibration Because · Same methods as 2 · Check set point drift Brittle Connector

6. Decalibration Because · Same methods as 2 · Lubricate of Wear in Moving Parts

· Change clearances

Use different material

.

TEMP SENSORS (RTD & TC)

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Decalibration by Mechanical Aging of Springs and Bellow

DETECT

- · Anomalous signal
 - Comparative outputs
 - Devise test
- Loop test

*

.

Annunciators

Same methods as 1

TC Junction Failure

2. Decalibration by

34

 Insufficient/No Output or Open Circuits because of Junction · Same methods as 1

PREVENT/COPE/HANDLE

Use product that is appropriate to functional requirement

- Use product that is appropriate to functional requirements
- Minimize vibration from insulation
- Minimize thermal cycles that can cause junction failure
- Replace thermal conductivity lubricant or use different material or protect from environment
- Gold plate RTD, change RTD, use custom fitted pair

INTERCONNECTIONS

(Electrical Connectors and Terminal Blocks)

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Fail to Operate on Demand

.

DETECT

- check
- No operation when required
- corroded, rusted) . . . Minimize use in · Visual (worn,
- · Infrared temperature sensors
 - Time domain reflectometer

*

.

2. Spurious Response (Usually Restricted to Terminal Blocks Only)

- . Spurious signal . Improved conformal Trips .
- Blown fuses (Circuit * interruptions)
 - Visual

PREVENT/COPE/HANDLE

- · Circuit continuity · Don't change leads if possible, if not minimize changes
 - Better material (gold)

- coatings
- Tighter seals on enclosures

*

· Use ceramic materials

. Revise mounting to reduce thermal stress

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Seat Leakage of Containment Isolation Valves

p.

DETECT

- (Containment penetration test)
- Downstream • temperature
- Inventory measurements
 - Acoustic

÷.,

.

Visual

- . . Operational (cannot get isolation)
 - Hydro test

PREVENT/COPE/HANDLE

- · 10CRF50 Appendix J · Resurface seats at each outage (MSIV) -BWRs
 - · Routine maintenance including relap seats and resurface with stellite (welding)

· Use correct valve for application

VALVES SOLENOID

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Valve Fails to Operate · Operational (valve · Switch to more stable due to Hampered Operation of Pneumatic Valve Controllers

DETECT

doesn't move)

Moisture detector for H₂O

PREVENT/COPE/HANDLE

4

÷

- seal materials such as VITON or EPDM
- Ensure oil free and dry air supply
- · Choose more stable valve solenoid material

Use right "Dope" \mathbf{x}

. Use different pipe material, i.e., ensure use of nonrusting materials

•

VALVE OPERATORS - MOTOR

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Function of Motor Impaired due to Lubrication Hardening

.

a di

 Function of Motor Impaired due to Loosening of Parts

 Function of Motor Impaired due to Excessive Torque

DETECT

- Trips due to high torque
 - Stroking time increased
 - Analyze lubricant
- Electrical current draw on motor
- Use torque wrench compare new to aged
- Check operation of valve
- Electrical current checks
- Stroking time increased
- Trips due to high torque
- Stroking time increased
- Electrical current draw on motor
- Use torque wrench compare new to aged

PREVENT/COPE/HANDLE

- Integrate maintenance of electrical/ mechanical parts
 - Periodic lubrication change
- · Use a different lubricant

- Monitor vibrating systems for signs of wear
- Periodic torque check
- · Packing too tight
 - Design to prevent over-tightening
- Integrate maintenanceelectrical/mechanical
- Check packing so does not go due to "over-torque"
 - Educate operator
 - Redesign packing materials
 - Follow manufacturer's instructions

PNUEMATIC VALVE OPERATORS

FAILURE MODE AND/OR MECHANISM OF FAILURE

DETECT

.

.

.

1. Failure due to too Tight Packing Non operational

Erratic stroke

Slow stroke

PREVENT/COPE/HANDLE

. . .

Good maintenance practices by educating operator

Redesign packing methods, shape or material

Establish required torque values for various packing systems/configurations

Improved quality control of packing

SWITCH/RELAY/CIRCUIT BREAKERS

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Nonoperation due to Open Circuit or Fatigue of Spring

DETECT

- Nonoperation/slow operation
- Failure of downline equipment
 - Measure spring tension (likely impractical except for circuit breaker)

Visual inspection

2. Nonoperation due to Grease Binding Nonoperation/slow response on periodic testing

3. Nonoperation due to Wear-Induced Friction

Nonoperation/slow response on periodic testing

PREVENT/COPE/HANDLE

- Use some solid state circuits
- Cause may be in quality control-know how and not heeding vendor recall notices

Correct lubrication

÷.

.

Choose compatible lubricate

Circuit redundancy change

Periodic cleaning

Assure relay is in the correct application

Mount correctly

Reduce testing and/or consider design and lubrication change based on testing

 Nonoperation due to Dirt/Dust/Corrosion Inspection

Nonoperation/slow response on periodic testing Do regular preventative maintenance to keep clean

Use carbon paper to determine surface irregularities such as pitting

DIESEL GENERATOR

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Nonoperation due to Piping Failure Such as Cracking

DETECT

.

.

а.

Visual inspection for discolorization of copper on carbon . steels

Visual leakage

PREVENT/COPE/HANDLE

.

Use flexible piping

.

8

Reduce stress concentration by using welded fittings, not threaded fittings, or use rolled, not cut, threads

Use something besides copper

2. Nonoperation due to Structural Failure, i.e., Wear Breakage

÷

Fail to start on demand

- Strain gauges
- Compression test
- Exhaust gas analyzer
- Analyze lube oil for water glycol and metal

Reduce testing

Better dynamic balancing to protect from vibration

Improved testing sequence, e.g., reassess requirements

ROTATING EQUIPMENT (Motors/Pump Motors, Fans, Blowers)

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Fails to Operate due to Bearing Failures

DETECT

- · Acoustic
- · Vibration
 - Audio

4

- Temperature (direct or _ubricant)
 - Oil analysis (sludge)

PREVENT/COPE/HANDLE

.

- Periodic replacement based on manufacturer's specs
- · Lubrication quality control
- Periodic alignment checks

Oil analysis . Reduce start loads

ħ

TRANSPORMERS

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Turn-to-Turn Shorts Caused by Insulation Failures

DETECT

- · IR hot spot scope
- High frequency voltage test
- · Oil analysis
- High pressure indicator for oil
- Off-gasing (oilfilled) transformers

PREVENT/COPE/HANDLE

*

- Operate within design limits
- Better insulation material, design
- Replace aged transformers

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Failure to Operate due to Insulation Failure DETECT

 Meggar (insulation · Control and/or test) · Control and/or

- Polarization index
- Dielectric measurements
- Time domain reflectometer
- Visual

.

.

. .

Sacrificial sample physical tests electrical tests

PREVENT/COPE/HANDLE

- Control and/or characterize environmentscemperature, heat, radiation (on a plant basis, if possible)
- Devise accelerated tests to predict end-of-life
- Don't use PVC, Teflon, EPR, Polyethylene
 - Minimize mechanical stress

-

Replace cabling if important to safety basis

Use better insulation

* *

Keep cables clean

2. Failure to Operate due to Strand Breakage

Ø

Basically connector problem (see connector data sheet)

SNUBBERS

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Nonfunction due to Leakage Caused Seal Embrittlement

DETECT

- · Visual inspection
- Use sacrificial . material to predict problems

PREVENT/COPE/HANDLE

- · Change materials, e.g., Butyl, to EPR
- · Perform seal life to temperature fluid sensitivity study
 - Go to mechanical system

so use clean oil

· Design change or tack

2. Nonfunction due to Orifice Blockage

· Periodic cycling · Contaminants in oil, · Oil purity checks

3. Nonfunction due to Lank Met Loose

· Visual inspection

SNUBBERS (Mechanical)

1. Nonfunction due to binding

Cycling . . . Visual

Bind by corrosion, overstress, too many cycles

Redesign

weld

*

14

Υ.

Control corrosion

FAILURE MODE AND/OR MECHANISM OF FAILURE

1. Leakage/Potential Leakage of Pipes and Welds

DETECT

- · Inventory balance
 - NDT

.

- a. X-Rays b. Acoustics
- · Level detection causing bends systems
- · Humidity measurements

PREVENT/COPE/HANDLE

- · Visual inspection · Reduce velocities/ turbulence
 - · Maintain water purity
 - · Reduce 90° bends
 - · Reduce cavitation

-52-

STEAM GENERATOR TUBES

FAILURE MODE AND/OR MECHANISM OF FAILURE

1 Leakage

DETECT

PREVENT/COPE/HANDLE

 Much work already in progress, therefore, not considered in this workshop FAILURE MODE AND/OR MECHANISM OF FAILURE

 Nonoperation due to Leakage and/or Sticking

DETECT

- · Visual
 - Acoustical

×.

- · Downstream temperature
- High dry well temperature
- High environmental temp/humidity/ radiation
 - Inventory balance (good for PWR only)

PREVENT/COPE/HANDLE

- Use block valves where allowed
- For wire drawing reduce tests and seat erosion
- Use better seat and seal materials

FAILURE MODE AND/OR MECHANISM OF FAILURE

 Loss of Pretension due to Wrong Torque DETECT

*

.

Visual gap inspection ·

Torque wrench tests by IEEE/7902 (Base Plate) and IEEE/ 7914 (system) tests

PREVENT/COPE/HANDLE

Give initial torque correctly and assure by better QA during construction

Reduce vibration

.

*

· Use lug nuts to solve vibration problems

 Loss of Pretension due to Grout Disintegration Then Creep

REPERTOR

Visual inspection

Use materials with higher stress limits

Replace with cement/ sand grout or other radiation- and temperature-resistant grouts

CONTAINMENT TENDON ANCHORS/TENDONS

FAILURE MODE AND/OR MECHANISM OF FAILURE

DETECT PREVENT/COPE/HANDLE

1. Tendon Anchors and/or · Pressure test · Use good design Tendons Fail · Deriodically by

Appendix J

· Structure integrity test

APPENDIX 4

COMMENTS ON ISSUES GENERATED IN WORKSHOPS BUT NOT INCLUDED IN 14 GENERIC ISSUES

POTENTIAL ISSUES IDENTIFIED BUT NOT FINALLY ANALYZED

Issue or Component

- Marine fouling of heat exchangers and systems
- 2. Anchor/Tenuon Failures
- Concrete degradation by sumpwater, irradiation, salt attack, or high temperature
- Transformer and electrical failures due to salt
- Corrosion under pipe insulation
- Sludge buildup in diesel generator fuel tanks

 Sulfur in lubricants

Comments

Flow blockage is possible, but most feel problem is or has been solved by appropriate cleaning intervals or addition of additives

Already considered in generic issues

Loss of structural integrity possible, but choice of appropriate compositions can resolve problem

Corrosion may cause arcing but solutions as sealed containers known

In older plants stress corrosion cracking possible, but expect leak before break

Algae growth could result in blockage but solutions to problem known such as filtering and additives to kill algae

If appropriate knowledge of lubricants used with QA not a problem Considered Important and An Aging Issue

Not considered this a high priority item

Not considered a high priority item

	Issue or Component	Comments	Considered Important and An Aging Issue
8.	Sensitive elec- tronics under high heat loads	Problem may occur if instrument cabinets overheated in con- trol room - but known methods to control	Not considered a high priority item
9.	Epoxies and similar sealants	Problems with crack- ing in containment penetrations, due to cracking and solvent effects	May be a high priority item, is an aging consideration
10.	Fire protection equipment (seldom used)	Possible to have problems with dampers and doors that won't close, sprinklers that corrode, pene- tration seals, (Block- out seals), and smoke detectors (not enough experience exists to judge these problems)	May be important
11.	Drains seldom used	Some data exists that drains may plug up and cause flood; issue, however, between INPO recom- mendations and Appendix R not felt to be a problem	Not considered a high priority item
12.	Cable insulation degraded by water absorption	Migration of water into insulation occurs, but appro- priate choice of materials will solve problem	Not considered a high priority item
13.	Core support structures	High fluxes may change ductility; problem will be in seismic events	May be important since possible containment loss may occur

Distribution: U. S. Nuclear Regulatory Commission Distribution Contractor (CDSI) 7300 Pearl Street Bethesda, MD 20014 375 copies for RV

U. S. Nuclear Regulatory Commission 5640 Nicholson Lane Rockville, MD 20852 Attn: J. Vora

Mr. William Andrews Battelle Pacific Northwest Laboratories P. O. Box 9999 Battelle Boulevard Richland, WA 99352

Mr. Sal Carfagno Franklin Research Ctr. 20th & Race Streets Philadelphia, PA 19103

Mr. William Conn Burns and Roe, Inc. 1601 Williams Blvd Richland, WA 99352

Mr. James Donavan Mechanical Engineering Dept. University of Massachusetts Amherst, MA 01003

Mr. John H. Ferguson Connecticut Yankee Atomic Power Co. RR-1 Box 127 E East Hampton, CT 06424

Mr. Jerry Glazman Combustion Engineering 1000 Prospect Hill Rd. Windsor, Connecticut 06095

Mr. J. P. Higgins General Electric Corporation 175 Cutner Ave. San Jose, CA 95125

Mr. Kennedy Mr. George Langford Bechtel Power Corporation 15740 Shady Grove Road Gaithersburg, MD 20877 (30)

Mr. George Langford Bechtel Power Corporation 15740 Shady Grove Road Gaithersburg, MD 20877

Mr. Dinker Mehta Burns and Roe, Inc. 185 Crossways Park Drive Woodbury, NY 11797

Mr. Richard E. Morgan Shearon Harris Nuclear Power Plant P. O. Box 165 Newhill, N.C. 27562

Mr. George Murphy P. O. Rox Y Oak Ridge National Laboratory Building 9764 Oak Ridge, TN 37830

Mr. R. Terwilliger Arkansas Power & Light Co. P. O. Box 608 Russellville, AR 72801

Mr. John Wanless NUS Corporation 2740 Sand Hill Road Menlo Park, CA 94025

6400	Α.	W.	Snyder
6440	D.	Α.	Dahlgren
6446	L.	L.	Bonzon
6447	D.	L.	Berry
5118	Ν.	Η.	Clark
3141	L.	J.	Eriskson
3151	W.	L.	Garner

(20) (5) (3)

NRC FORM 336 U.S. NUCLEAR REGULATORY COMMISSION (2.84)	
BIBLIOGRAPHIC DATA SHEET	NUREG/CR-3818
	SAND84-0374
SEE INSTRUCTIONS ON THE REVERSE	1
2 TITLE AND SULTITLE	3 LEAVE BLANN
REPORT OF RESULTS OF NUCLEAR POWER PLANT	
AGING WORKSHOPS	
NOTING WORKSHUPS	4 DATE REPORT COMPLETED
	MONTH YEAR
S AUTHORISI	Nou
	May 84
N. H. CLARK	MONTH YEAR
D. L. BERRY	May 84
7 PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	8 PROJECT TASK WORK UNIT NUMBER
SANDIA NATIONAL LABORATORIES	
P.O. BOX 5800	9 FIN OR GRANT NUMBER
ALBUQUERQUE, NM 87185	A-1357
impogentigen, ini av 105	A-1357
10 SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zig Code)	11. TYPE OF REPORT
ELECTRICAL ENGINEERING BRANCH DIVISION OF	 States (States and States)
ENGINEERING TECHNOLOGY	Technical
	- MARCA ADVINCTOR
OFFICE OF NUCLEAR REGULATORY RESEARCH	5 PERIOD COVERED Inclusive detest
U. S. NUCLEAR REGULATORY COMMISSION	김 승규는 이상 것이 잘 가지 않는다. 영화 위
WASHINGTON, DC 20555	
12 SUPPLEMENTARY NOTES	
13 ABSTRACT (200 words or less)	
V	그는 그는 것 같은 것을 가장 말을 넣었다.
A CONTRACTOR OF	
	 A set of the set of
and the second	
14 DOCUMENT ANALYSIS - + KEYWORDS DESCRIPTORS	
a second to determine a net transfer descriptions	15 AVALABILITY STATEMENT
	16 SECURITY CLASSIFICATION
	IThis pagel
D. IDENTIFIERS/OPEN ENDED TERMS	
	(This report)
	17 NUMBER OF PAGES
	in roman or rades
	18 PRICE
	And the second

.

4

.

.

		Hec'd by	Qrg.			
			1			
	1205550788 US NRC ADM-DIV OF POLICY S P W-501 WASHINGTON	TIDC UB MG	I IAN T BR-	IRV PDR N DC	UREG 20555	

Sandia National Laboratories