
_ _ . -_ . _ _. . - - - - - . .

~
, ,

. -
.

NUREG/CP dO53 )
'

'

|

|! LA-10127-C -
,

I
"

CCnference ,
.-

. ..
,, ,, , . , , , , , , , , . . . , , , ,. , , .,...,..,~,...,,,,,n,,, , , ,t , , o, . e s, m w~ . . , , , ,,-,,;.,e.... ,

,

- 4 > = , .m. - ,-.- _ m , , ,_ ,,, ,g

s

'

L

e

<

Proceedings of the Ninth Annual Statistics 4
Symposium on National Energy Issues,

October 19-21,1983 .

(
;

- . . . , , . , , ,

4.-.

- 1 J

4 , ,, p''

, ,,- _.
..~ ,,,s,,

,

A
..

O T rq @'*1" M @9 los Alamos National Laboratory
_ . % Los Alamos,New Mexico 87545 |=)m -

,g. ., . , , , ,

" * ~ , . # ,Rp'
.

,

,

'
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ . _ _ _ _ _ _ . _ _ _ _ . . _ _



.w. i
,

.. *

Aa ANI.insehe AcenwTh Oppursumey Emyknet

es

.

1 hew papers are reproduced at submitted by the authors.

l

.,n e
r .. .. s . soi..- .4

.-.4s ...-,4,.........s.,-..
pe .ete.d . e s.g 6 . vuyse e. os 63 a.>. .e,4 p.m. ee e4.uk g. pm e, seg.d .gae.

- . _ - . - _ _ -



- .

NUREG/CP-0053
LA-10127-C
Conference

AN

Proceedings of the Ninth Annual Statistics
Symposium on National Energy issues,

October 19-21,1983

Compiled by
Maurice C. Bryson

Manuscript submitted: May 1984
Date published: June 1984

Prepared for
Divisen of Risk Analysis

Office of Nuclear Regulatory Research
_

US Nuclear Regulatory Commission
Washington, DC 20555

_

NRC FIN No. A7225
~

-

t .

..

|

.

\

(nl@ d m /:h@ LosAlamos NationalLaboratory
_
d

_

_ _(UG Los Alamos,New Mexico 87545
,

'

,U s
1

|,

|-

^ '

_ _ _ -__ ___ _ --._ - . - -



CONTENTS

Page i

Abstr-act 1

Introduction 3

' Summary List of Papers Presented 4

ABSTRACTS AND PAPERS

6Tanner and Wong, Estimation of the Hazard Function
Baghelai, Combining Econometric and Time Series Forecasts 33

Anderson, Collaros, and Enlow, Statistical Prediction of

Instantaneous Electric Demand 58

Vesely and Rasmuson, PRA Uncertainties and the Roles of
Sensitivity'and Uncertainty Analyses 74

Beckman and Whiteman, Uncertainty Analysis: Good News and
Bad News 103

Iman, Recent Developments in Sensitivity Analysis (Abstract) 113

Silvers, Ricci, and Wyzga, Toxicokinetics and Risk Assess-
ment (Abstract) 115

Bowen and Chick, Statistical Methods Used in Developing an
,

Optimum Glass for Vitrification and Storage (Abstract) 118

Cox and Kurth, Probabilistic Fracture Mechanics , 120

Dennig, Hester, and Gentillon, Trend and Pattern Analysis
of Operating Reactor Data from LER's 146

Harris, Government and Statistics: The ASA/NRC Experience. 171
,

Ernst, PRA and Decisionmaking Under Uncertainty 176

List of Attendees 190

|

iv

|

|
-- _



I

.

PROCEEDINGS OF THE NINTH ANNUAL STATISTICS SYMPOSIUM ON NATIONAL ENERGY ISSUES,
OCTOBER .19-21, 1983 -

Compiled by

Maurice C. Bryson

ABSTRACT

The Ninth ' Annual Statistics Symposium on National Energy Issues was
held in Rockville, Maryland, at the Holiday Inn Crowne Plaza, October 19-21,
under the joint sponsorship of Los Alamos National Laboratory and the Nuclear
Regulatory. Commission. Sessions included two contributed-paper sessions, two
tutorial sessions, and one discussion group. Included in these proceedings
are those papers for which final copy was provided by the authors, together
with a list of papers presented and a . list of attendees.
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' INTRODUCTION

The Ninth Annual Statistics Symposium on National Energy Issues (formerly,
DOE Statistics Symposium) was held .in Rockville, MD at the Holiday Inn
Crowne Plaza on October 19-21, 1983. Co-hosts ' for the . symposium were the .

,

Los Alamos National Laboratory and the Nuclear Regulatory Comission. The
symposium has been held annually since 1975 under the auspices of a Steering
Comittee with' membership drawn from the several national . laboratories of-

: the Department of Energy. Members of the.1983 Steering Comittee.were:'

Maur. ice Sryson, Los Alamos National Laboratory - chairman
David Gosslee, Oak Ridge National. Laboratory
Ronald'Iman, Sandia National Laboratories
Samuel Kao, Brookhaven National- Laboratory

.

David Margolies, Lawrence Livermore. National Laboratory-
Donald Stevens, Pacific Northwest Laboratory.

.

The 1983 symposium included both contributed-paper sessions and tutorial.

{!
sessions with invited participants, as well as an invited-participant panel:
discussion. Because of the informal nature of some sessions, several par-
ticipants did not feel that it was appropriate to submit papers or. remarks
for these proceedings. A. comprehensive list of papers is included here,
identifying those that are; included either in full or in abstract. form. Con-

,

tributed papers were selected from abstracts submitted.to a Program Committee,
; whose membership included the following:

Lawrence Bruckner, Los Alamos National Laboratory - chairman
Cory Atwood, EG&G - Idaho
Daniel Carr, Pacific Northwest Laboratory#

Ronald Glaser, Lawrence-Livermore National Laboratory
.

Irving Hall, Sandia' National Laboratories
| Max Morris, Oak Ridge National Laboratory.

Local arrangements assistance was provided by Dale Rasmuson, Nuclear-Regula-

p tory Comission.
j .- Fifty-one persons attended the symposium. A complete list of attendees is

included at the end of the Proceedings.
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THE ESTIMATION OF'THE-HAZARD FUNCTION
FROM RAND 0MLY CENSORED DATA BY THE KERNEL METHOD

;
~ by

Martin A. Tanner and Wing Hung Wong

SUPMARY

We obtain a direct kernel estimate of the hazard function from censored'

data by convolution smoothing of the empirical hazard. By exploiting a
conditional independence property (the lemma in Section 2) of the random
censorship model, it.is possible to obt'ain expressions for bias and variance
in small' samples. Under regularity conditions, the bias is asymptotically

; equal to the error resulting from approximating the death hazard function by
its convolution with the kernel. The estimator is shown to be mean square
consistent as the window' size shrinks to zero. Asymptotic nonnality is also

. . established, the proof of which is based on.Hajek's projection approach. The
1 understanding of these properties is prerequisite to the understanding of more

~

complicated procedures based on kernels. The results also give insights to
bias correction procedures as well as to the difference-between hazard

i estimation and density estimation.

| 1. Introduction

1.1 The problem-

! In lifetesting, medical follow up, and other studies, the observation of
: the occurrence of the event of interest (called a failure, or a death) may be

prevented for some of the items of the sample by the previous occurrence of
some other event-(called a loss, or a censoring event). Thus, if T ,n .,T

i n
: are life times (time to failure) for the n items under study and C ,... C the1 n
! corresponding censoring times, then it is not possible to observe both Tj and

C. Instead, we can only observe Xj and o where Xj = min (Tj,Cj) andt j g

g = I[Tj < C ]'.
6

9

In this paper, T ,m .,T are assumed to be 1.1.d. from a life distribution1 n
F . We are interested in estimatingT

(a) the survival function:
f (t) = dF (t)T(t)-
S (t) = 1 - FT
T T /dt = -dS (t)/dt(b) the density function: T

(c) the failure rate (or hazard) function:

A (t) = f (t)/S (t) = -d log S (t)/dt.
T T T T

( AMS Subject Classification: Primary 62G05, 62P10; Secondary 62E20, 65D10
|

|' Key words and phrases: censored data, hazard, survival, kernel method,
Hajek's projection method

!-
~
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' Theoretically, knowing any one of these functions, we can easily obtain the
other two. In practice, when these functions have to be estimated, it is not
always possible to directly convert the estimate of one function to estimates
of the other two. In this paper,~ we will focus on the estimation of the
failure rate function.

1.2 Kaplan-Meier estimate of survival function

Let Xrg),...X be the order statistics of the X's, and 6 ...,6 the
corresponding 6's(n)TheKaplan-Meterestimator(KaplanandMetfr),1958)(NrS1

T-
. ,

is

1
if x < X(1)

S*(x) = { j) if X(9) < x < X(9,1)j-| n- +1

0
if x > X(n) *

This estimator is applicable if the lifetime T -can be assumed to be
i

independent of the (potential) censoring time cj.

1.3 The hazard estimates

- log S*(x) is a step function with

-6(4) log (n $ 1) i = 1,...,n-1

jump at X(j) = {
i=n=

.

An ad hoc way to remove the awkward infinity is to always treat the last
observation as if it were censored,_ i.e., the survival estimate has no jump at
X(n). If this ad hoc convention is adopted, then formal differention of
- log S* produces the (formal hazard estimate)

n

-6(9) log (1 - n-+1)6(x-X(j))I

| where 6(x - X refers to the Dirac Delta function. The infinite spikes at
' the data poinO)a)re obviously undesirablg. One way to smooth then out is to

convolute with a peaking kernel K (*) " E K(j), yielding the hazard estimateh

n x-X
I(x) = I -6(9) log (1- n-+1) K( - h } *

8

\
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Another natural way to obtain hazard estimate is to consider the estimate
of the cumulative hazard:

.

H(y' E a where=

X(1) <x 'j

g = contribution of X(j) to the cumulative hazarda

= 6(j) (1/No. of items at risk) = 6[9)(1/n-i+1) .

The corresponding hazard function is

n

9[i - +1 6($) 6(x - X[9))
'

.
n

Smoothing this, we obtain the hezard estimate

n x-X

A(x) = 9[ n- +1 6($) f Q
.

*

h

If there is no censoring, this reduces to the second estimator in Watson and
Leadbetter.(1964a)._ It 'is not hard to see that if n + = and h + 0, then the
estimates A(x) and A(x) will be equivalent in the limit. Thus the asymptotic
properties of the two estimators are similar. In small samples, A is
analytically more tractable than A, and in this paper we will only investigate
properties of the former. Rice and Rosenblatt (1976) give asymptotic bounds
for the difference between A and A in the uncensored case. Figure l' presents
A and A obtained from 200 pseudo-random variates in the case of exponential
death times and exponential censoring. The two estimates are seen to be quite
similar. In fact, Monte Carlo results indicate that they are quite similar
for a sample size as small as 20.

1.4 The randon censorship assumption

The theoretical properties of the hazard estimate $ will be developed in
this paper under the assumption of random censorship which stipulates that the

, censoring times C ,...,C also form a random sample, independent of the life1CwilldenotethecommondistributionfunctionofC,...,C| times. F
f , A , the corresponding survival, density, and hazard functions. n, and S '1 C

| C In
Secti8ns 2 and 4, A is shown to be consistent and asymptotically normal under'

the random censorship assumption. Although we have not obtained concrete
theoretical results outside the random censorship model, we think that A (and j;

its modifications) is also relevant for other types of censoring schemes. |
'

|

9



1.5 Relation to other work

. The Kaplan-Meier estimate for survival function is first discussed in
Kaplan and Meier (1958). Meier (1967) emphasizes that this function plays a
role in the censored situation similar to the empirical function .in the
uncensored case. Recently Foldes, Rejto, and Winter (1981) propose estimating

the density from censored data by Ew.K (x-X ), where the wf's are the jumps inthe Kaplan-Meier curve.. This is a dlr$ct gdnerali{ation o the usual kernel
density estimate in the uncensored case when wg = - is the jump of the
empirical cdf. A smooth survival estimate can be obtained by integration and
the hazard estimate is obtained by forming the ratio of density and survival
estimates. Foldes et al. established strong consistency under certain
assumptions. No finite sample results are presented. McNichols and Padgett
(1981) examine the same kernel density estimate under a proportional hazard
assumption and give expressions for expected value and variance in small
samples.,

Alternatively, one can use the kernel method directly on the hazard scale,
using the weights provided by the jumps of the empirical estimate of the
cumulative hazard function given in Nelson (1972) and Aalen (1978). This is
the approach taken in this paper.

In the uncensored case, the estimation of the hazard function is
considered in detail in Watson and Leadbetter (1964a,b). They examine both
approaches, that is, estimation of the hazard function via density estimation,
or directly by smoothing empirical hazards. As is clear in their paper, the
second approach is analytically more tractible, and they are able to give
finite sample bias and variance expressions and conditions for consistency.
Our results in Section 2 and Section 3 are generalizations of their results to
the censored case. The calculations in Section 2 are conditional and they
depend on the crucial observation that E(6 X ) is independent of J. As
for the consistency, the direct generaliza $ b ) Watson and Leadbetter's
argument requires conditions which are dependent on the censoring distribution
and this dependency may be undesirable. We have therefore presented
alternative conditions which avoid this difficulty. More detailed asymptotic
results on hazard estimation in the uncensored case are given in Rice and
Rosenblatt (1976).

'

The results in Section 4 concerning asymptotic normality have no analog in
the literature. Even in the uncensored case, Watson and Leadbetter cannot
obtain asymptotic normality for the direct kernel hazard estimate (the second
approach). Our result in Section 4 is a novel application of the projection
method (Hajek,1968) which has traditionally been applied to the asymptotic
theory of U-statistics, linear combination of order statistics, and linear
rank statistics. It is hoped that our calculations may be useful for the

1

asymptotic theory of sums where each term-involves both the rank and magnitude
of an individual sample point.

In practice, different degrees of smoothing are needed in different
regions. Moreover, it seems natural to use the observations to determine the
degree of smoothing. Section 5 contains further comments on these '

,

methodological developments, numerical examples, as well as remarks on the
significance of the present study.

10
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Finally, we cite works of general interest for the nonparametric
estimation of density or hazard functions from censored data. Kimura (1972),
Tarter fl979) investigated the~ Fourier series expansion approach.
Bartoszynski, Brown, McBride, and Thompson (1981) apply penalized maximum
likelihood methods. Lo (1980) proposes Bayesian nonparametric kernel

_

methods. Finally, the work on piecewise smooth survival function estimation,
Friedman (1978), can be regarded as giving piecewise smooth density estimates.

2. Calculation of mean and variance

In this and the next two sections we assume the random censorship model:
,

T ,T ,...,T ~ ifd T , independently of1 2 n T

C ,C ,... C - iid F *y 2 n C

We observe Xj = min (Tj,Cj), og = I[Ti < C ] . We will investigate theproperties of i

n y.

A(x) = 6(3) K (x-X(j))hn-j+1
3

1

pointofinterestxisfixedthroughoutthestudy,andasku(y)=ksa(isfythe
as an estimate of A (x), where K is a symmetric kernel, K K ). The

T med t
'

condition S (x)S (x) > 0. (Without this condition the problem is either
trivial or Imposkible.) We also assume that fT is a continuous and boundedfunction.

2.1 The mean

Thecalculationofthemeanof5(x)requiresaconditionalargumentwhich
is made possible by the following lemma. The lemma says that given the value

of X(en) dent of the ordering j.4 , the probability that this corresponds to a censored observation isindep This result may be surprising at f|irst sight
because the unconditional probability of the above event certainly depends on
J.

i

f (Y)S (Y) d fT C
.E(6(j)|X(j)=y)= =$= m(y)Lemma:

f

independent of the value of J.

| Proof: We need to show, for any Borel set A, that

f (Y)3 (Y)T C N* 6(3)@'# (y) (j-1) n-j ) ! X
.

A X y(j)cA

,

11
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Now, the_ right hand sida -)

n
P(T <-C , rank (X{} = j, X c A) |I=

g g $
i=1 l

l

c A)1 < C , rank (X ) = j, X1= n P(T 1 1
-

= n f P(Ty < C , rank (X )'= j, X =y)dy
1 3 1

= n f P(T1<C,X1 = y, j - 1 out of X ,...,X <y)dy
1 2 n

= n f P(Tg<C,X1 = y)P(j - 1 out of X ,...,X <y)dy
1 2 n

A

X(y))" dy= n f f (Y)3 (Y) (J-1} ( }( ~

T C

as required.
,

With the help of this lemma, the calculation of the mean is
-straightforward.

n
1.

(2.1.1) EA(x) =f E(6(3)|X[j)=y)n-j+1 X(3) (Y) h(x - y)dy
I

; =f[ Ff-1(y)(1-F(Y)n-j)]f(y)m(y)K(x-y)dyn- +1 (j-1 (n-j)! X x h
3

=f(1-F"(y))y,X(Y)
f

y) m(y)K (x - y)dyh

=f(1-F"(y))A(Y)K(x-y)dy'

T h

|

| Hence
j

|
Bias = [fA (Y)K (x - y)dy - A (x)] + [- fF"(y)A (Y)K (x - y)dy] .

T h T T h
I

The first component of the bias is the error of approximating A (x) by the
convolution A *K The econd tenn
will be seen [o ho(x), this can be made small by decreasing h.

,

:

to zero as n increases. This bias expression is important
for the purpose of bias correction, see Section 5.2.

,

12
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2.2 The variance )

n
1 2

.

E(A(x))2 = E ( I 6()Kj(x-X{j)))j=1 (n-j+1)2

6(r)6(s)K (x - X(r) h(x - X(s)))+2E(E E hn- 1 n-s+1p p

=-(I) + (II) .

n

(y)E(6(j)|X(j)=y)]Kj(x-y)dy(I)=f[ (n- +1)2 X
I

j g

F (y)d-I(1 - F IY))n-j]f (y)m(y)K (x - y)dy= f[ Ij y (n-j 1)2 (j-1) n-j)! X X x

.n-1 I (Y) I IY)3 IY)1 X T C

k 0 (n-k) (k) F (y)k(1 - F (y))"-k] 1-F IY)" /E y y # (y) h(x - y)dy
X X

=[I(F(Y))A(y)Kj(x-y)dyn x T

where

k -F (p,x)n , pn

I (F) d!f n k (") F (1 - F)n-k ,n k

a notation introduced by Watson and Leadbetter (1964b). To calculate (II), first
note that for r < s, y < z,

E (6(r)6(s) (r) " Y' (s)=z)= (6(r) = 1, 6(s) " (r) " Y' (s)"*)'

= P(61 = 1, 62*I!X1 = y, X2 = z)

=P(6=1|Xg = y)P(62*I!X2 = z) = m(y)m(z),1

by the same kind of argument used in establishing that E(6g)|Xg) = y) is
independent of j. Thus, letting

X(r),X(s) ( ' }Y'*} " In- 1 n-s+1rsr
f

13
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for y _4 z, we have

(II)=2.f t(y,z)m(y)m(z)K (* - Y) h(x - z)dydzh

t(y,z) = E F[-I(y)fIY)EI(z)-F(y)]s-M1
,gi -r+1 n-s+1 (r-1)! - r-1 ) t ( n- s) ! X X yny,

. f (z)(1 - F (z))n-sX X

f (*) I (y) 1-F II)X X X

1-F (z) * 1-F (y) x(Y) F (z)-F (y) Y*= - - *

y y y y

Thus

1-F IY)X
(II)=2f {1 - F"(y) F z)-Fgy) [F"(z) - F"(y)] } A IY) A (z)T T

. K (* - Y) h(x - z)dydzh

1-F (y)y
= [ JA (y)K (x - y)dy32 - 2- f {F"(y)+Fgz)-Fgy)[F"(z)-F"(y)]}T h

. A (Y)A (z)K (* - Y)K (x - z)dydz .

T T h h

flow

(ES(x))2 = [fA (y)K (x - y)dy)2

-2(fAIY)K(x-y)dy)(fF"(y)A(Y)K(x-y)dy)
T h T h

+[fF"(y)A(Y)K(x-y)dy]2
T h

[fAIY)K(x-y)dy]2
T h

-2 f F"(y)A IY)A (z)K (* - Y)K (x - z)dydz
T T h hy,z

,

f F"(y)F"(z) A (Y)A (z)K (* - Y)K (x - z)dydz+ .

T T h h
y,z

{
i

14
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Hence finallyi

IVar($(x)) = (I) + (II) -((ES(x))2

'

= f|If(F (y))Aj(y)K|(x y)dy-
X

'

1-F (y)y; +2'f {F"(z') --F"(y)F"(z) F p )-F g ) [F"(z) - F"(y)])

. A (Y) A (z)K (* ~ Y)K (x - z)dydz .-
T T h h

t

3. Consistency in mean square
~

3.1 Asymptotic unbiasedness
'

First consider the con'voluation. error fA(y)Ku(x - y)dy . A(x), where A 1s
any hazard function. If ' A is continuous and bounded, or integrable, then.-this'-
error vanishes as-h + 0. Inpractice,however,'hazardfunctiogsmightnot-

i satisfy these conditions (e.g., Weibull with y > 1 : A(t) =.yt 1). The
crucial factor'is, of course, how fast K falls off at infinity.' The following
condition, given by Watson and Leadbetter (1964b), seems close to the minimal

.

condition needed for' the convolution error. to vanish -in the limit. We say
that K is compatible with F if the.fol' lowing condition'(A) is satisfied:

(A) :1For- fixed M > 0, there exists h small enough such
~

that p ( 1/(1~-F(y))isuniformlyboundedfor|y-x|>M.K

(Let us d ote this bound by G .)M
I

If K decreases exponentially, or varies regularly with exponent < -1, then a
! sufficient condition for (A) is that K(x)/(1 - F(x)) + 0 as-x + =. In

particular, a kernel with compact support always satisfies (A).

Theorem 1: Let K be compatible with F , and n + , h + 0, nh + =,T.

' then EA(x) + A (*)*T

4 Proof: !

)
:

|' |EA(x)-A(*)!' A (Y)K (x - y)dy - A (x) + F"(y)A (Y)K (x - y)dy
T T h T T h

i

F Firstterm<f|y-x|<M h(Y ~ *) T(Y) - T(x)|dy
!

+f|y_x|3g K (Y - *)A (y)dy + |y-x|>M A (*)K (y - x)dy -jh T T h

= (I) + (II) + (III),
,

15 ;
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this is-true for any M.

(III) < A I*) K (y - x)dy = A (*) K(t)dt+0h T MT |y-x|>M |t|)y
'(II): the integrand is dominated by Ggf (y) which is integrable;T

further, the integrand + 0 for each y as h + 0. Thus
(II) + 0 as h + 0 by_the dominated convergence theorem.

(I) can be made arbitrarily small by choosing M small, since A is
Tcontinuous at x.

Second term < (f +f )F"(y)A(Y)K(x-y)dy=IV+V,y T h

IV + 0 exponentially if F (x + M) < 1, V + 0 again by the dominated
Xconvergence theorem.

3.2 Asymptotic expression for the variance

It turns out that the conditions in Theorem 1 are not sufficient to obtain
a useful limiting expression for Var A(x). More conditions need to be
imposed, and this can be done in two different ways, as the following theorem
explains. The proof of this theorem can be skipped without loss of
continuity.

Theorem 2: If the conditions of Theorem I hold and

either(i) K is also compatible with FC

or (ii) f K(t)dt = o(M-0) as M + = and

2

h = o(n 0*I), 8 > 1*

then
M

Var (5(x)) = f + o (h)
where

A (*)T
M * 3 (x)3 (*)x

C

Proof: In the case (i), K is compatible with both FC and F , theTi

| arguments used by Watson and Leadbetter (1964b) to derive their asymptotic
! formula (theorem 2 of that paper) also apply here, with obvious modifications,

to produce the above result. Thus we will only prove the above theorem for
thecase(ii).

16
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' Var ($(x))'=fI(F(y))A(y)K{(x-y)dyn y T

1-F (Y)X+2'f (F"(z) - F"(y)F"(z) p IZ)-f IY) [F"(z).- F"(y)])y
X X

. A (Y) A (z)K f * ~ Y)K (x - z)dydz
T T h h

where

n-1
n k (") F (1 , y)n-kkI (F) = I ,

n k=0

The theorem is proved if we can show that

A (x)
fI(F(y))A(y)Kj(x-y)dy+y, , and(a): n y T

1-F (Y)X
(b): f {F"(z) - F"(y)F"(z) F p )-Fg d [F"(z) - F"(y)]}

. A (Y) A (z)K (* ~ Y)K (x - z)dydz + 0 -
T T h h

where

h = f Kj(t)dt = f (f K (t)dt)2a .

Proof of (a): rewrite the left hand side as
li

" I(F(y))A(y)K$(x-y)dy(f|y-x|<M +f|y-x|>M)n y T
h

For the first integral, choose M s.t. F.,(x+M) < 1; then

n (F (Y)) * l-F y)uniformlyinyfor|y-x|<M(Lema 6ofWatsonandnI
X

|. Leadbetter,1964b). Thus the first integral is asymptotically equivalent to
;

|
A (y) K$(x-y)T

l~f (Y) "h|y-x|<M X

A (*)T,

This converges to 1-F (x) since if Kh is a peaking kernel, then so|
doesKj/a. X'

h

| 17
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,

For'the second integral . -it 'is bounded by
.

- n-1

(r n!r)A(Y)K$(*-Y)dYf|y-x|>M Tr=0h

(in n + 0(1))'A (y)Kj(x - y)dy .."

f|y-x|>M
=

T
h:

Thus it suffices to observe that
4

""0
A(Y)Kk(*~Y)dY'""h - M.(supfIY)) ~K (x-y)dy"

""'f|y-x|>M
'

hT T'
y. |y-x|>M."h'

= constant.(ninn).h.[|t|>p K(t)dtM
'

=o(ninn.h+1)8
,

.

f

Proof of (b): Let us decompose the integral according to the partition:
,

{y < zl-= region 1 u region 2 u region'3 with

i region 1: y < z, |y - x| < M, z > zg

! region 2: y<z,|y-x|<M,z<z
_ g

. region 3: y<z,|y-x|>M i-

where m, z is chosen such thato

(F(x+M)=a<1,zo > x+M, F (z ) < 1X y g
.

(F(z)-F(x+M)=6>0 .X g y

In region 1:
.,

i 1-F (Y)XF"(z) - F"(y)F"(z)
Ff z)-F p )

(F"(z)-F"(y))

1-F(y) F"(z)(F (z)-F (y))-(1-F (y))F"(z)
X X X X

(. (# (Y +* ~

.F (z)-F (y) F (z)-F II)
X y y X

i

- 1-F (*)X< 1-a+6 "n * F"(z) .

6 6

18;_.
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Thus the absolute value of the integral -in (b) over region 1 is < |

{(1 - a + 6) " + (1 - F (z))Fj(z)) A (z) A (Y)K (x - y)K (x - z)dydz"
.

X T T h h6a .h . region 1

The first term clearly + 0,

nd
term = f " f (1 - F (z))F"(z)A (Y)f (z)K (x - z)K (x - y)dydz2

C T T h h
n- region 1

(sup f (z)) "T A(Y)K(x-y)dy)(f K(x-z)dy)
(|y-x|<M

<
T h h6

z>zh g
(sup f (z)) "T A(Y)KI*-Y)dY)(f K(t)dt)(|y-x|<M

<
T h M6

h t> p

= o (n h 8+I) .

In region 2: F (y) < F (z) < F (a ) = a < 1 .
X y y g

1-F IY)XF"(z) - F"(y)F"(z)
Fg z)-Fg y)

[F"(z) - F"(y)]

F"(z)-F"(y)
X

< F"(z) [1 - F"(y)] + (1 - F (Y)) F (z)-F (y)X y

< a" + n a"- .

Hence the absolute value of the integral in (b) over region 2 is
<

<" (a" + n a -1) f A (y) A (z)K f* - Y)K (x - y)dydzn

h h
h region 2

<" (a" + n a -1) gfy(y)g(x-y)dy]2+0n
.

h
h

In region 3:

1-F IY)XF"(z) - F[(z)F"(y) F (z)-F (y)
(F"(z)-F"(y))

y y

(1-F(y))[F"(z)(1+F(y)+...+F"-1(y))-(Fn-1(z)+Fn-2(z)F(y)+...+Fn-1(y))3<
X y X

! < 2n(1 - F (Y)) *

X

|

|
:
'
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4

Hence; the ab' solute value of'.the integral 'in (b): over region 3 is

'

<2
(fA(z)K(x-z)dz)(f|y-x|>M

ffY)E(x.-y)dy)
h T h

h

> o (n h +1)2 B'
,

This completes the proof of_ Theorem 2.

i- _ 3.3 Remarks
.-

First we make the obvious remark that Iheorems 1 and 2 together give the
conditions for mean square consistency of A(x).

Next we coment on conditions-(i) and (ii) of Theorem 2. Condition (1);=

has the advantage that it imposes no further constraint on h besides those'

! stated 'in Theorem 1. . On the other hand, since Fv(x) < 1 and F (x) < 1, wee
: - will eventually observe a number of deaths arouna the time pofMt x, from which

.we should be able to accurately estimate A (x). Thus it seems undesirable that7
the tail behavior of FC should_ impose conditions on K for the estimation
of A (x). In this respect, condition (ii), which imposes further conditions

Ton K and h, but removes the ' dependence -of K on F , is a useful alternative toC
(1).

.

L Finally, the approximate variance given by Theorem 2 agrees with 'our
'

intuition that, as the point of interest x goes to infinity, the variability
of the estimate increases without limit.

4. Asymptotic normality t

! 4.1 The projection method
;

.

i A(x) is obtained from the data in a complicated way, involving functions
of X 's and their ranks, as well as 6's. None of the central limit theorems,; i

: theorems about combinations of order statistics nor theorems about linear rank
i statistics can be applied directly in this situation. But as.will be shown in

the following section, the calculation of the expectation of A(x) conditional,

on (X,he projection method (Hajek', 1968) is most effective in investigating
,6 ) is nevertheless possible. It is exactly in this type of' situation

9
that t
asymptotic normality. Let us first summarize the basics of this method.

Suppose Y ,...,Y are f.i.d., W a statistic based on J. . The key idea ofi n
I Hajek's method is that, even though the central limit theorem is concerned

with sums of independent random variables, its scope may be extended to,

| statistics asymptotically equivalent to such sums. Thus we can try to
approximate W by its projection W on the subspace of all such sums of

_

||
independent terms. Hajek gave the following formulae;

20
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n.

E(W|Y ) - (n - 1)EW
'

W= I
g

i=1

E = EW

E(W h)2 = Var (W) - Var (h) ..

The projection method consists of finding conditions such that (a) the
standardized forms of W and W have the saine asymptotic distribution.
(b) the central limit theorem can be applied to establish asymptotic normality
for W.

4.2 Calculation of h

LetW=5(x),Y = (X 6 i = 1,....n. Theprojectionhwillnowbe
calculated accordinh to H1)ek)'s formula.ForthisweneedEWandEW|Y).
The former is already given in Section 2.1. The calculation of E(W Y )g is

g

simplified by the fact that W can be expressed as a sum of identica'ly
distributed terms:

"
1

K (x - X)),W), WW= I
3 = n-R +1 j h

j

where Rj is the rank of Xj in the sample 1(. ~Thus

n

E(W|Y)= E(W|Y)=E(W|Y)+(n-1)E(W)|Y),j*1,I j j j gj
j=1

where E(W |Y ) and E(W |Y ) is given in (4.2.1) and (4.2.2) below.j j j j

(i) E(W|Y)=6 K I* - 1) (n-R +1 i' ij g 9 h j

But given (X ,6 ), R$ - 1 + Binomial (n - 1;F (Xj))9 9 X
4

Hence

X'i}"k=0 n-k(k X( f) (1 - F (X ))n-k-1E(n-R+1 i X j
i

i

" nu- g ;) (1 - F (X )") .y jj

|

|
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1-F (X )"X 4
E(W|Y)=El-FIX)) K (x - X )(4.2.1) j j i h j

X i
.

(ii)' For-j * i,

6K( )
E(W)|Y ) = E ( 3 h *~ jg n-R +1 i' ij

K (x - X )E (n-R +1 i' i' j' j} l' i}= E(6 *

3 h 3

Now given X , X), 6 , 6),$ 9

1 + Binomial (n - 2, F (X )) if X) < X9y 3
{R3- 2 + Binomial (n 2, F (X )) if X) < X9

.y 3

Thus, for X3<X,j

F (X )k[i , p (X ))
E ( n-R +1 i'i'X'j}* O (n-k) k! n b)!

;X 3 X 3j

for X3>X,4

F (X )k(1 - F (X ))"E ( n-R +1 i' i'X ' j} " O (n-k-1) k! n- b)!
~

J X 3 y 3

(n-1)( -F (X )) [1 - F (X )"~1]
* .y 3y 3

The above expressions can be combined into

E (n-R +1 X'i,X),6)=(n-1)(-F{X)) X(i 3 X j

n(n-1)(1 F (X ))' [1 - F (X))"-nF (X )"~I(1-F (X ))]~ y X 3 X 3y 3

t[x,<x,3

22
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. . . .



Hence

1-I (Y)"1 X
(4.2.2) E(W|Y)= 'I *(Y) h(* - Y)f (y)dyj 9 n-1 l-F (y) Xy

[1-F (y)"-nF (y)" (1-F IY))3X X Xy

n(n-1)I (1-F (y))' [y<X ]*(Y)-

X 9

. K (* - Y)f (y)dy .
h X

Finally,theexpressionforhisobtainedbyputting(2.1.1),(4.2.1),(4.2.2)
into

* n.

-W = I ,[E(W|Y).+(n-1)E(W|Y)]-(n-1)EW
9 9 j 9i=1

wherej*iinE(W|Y).
j 9

Thus, we can write

^

W - EW = E {E(W|Y)+(n-1)E(W|Y)-EW}9 9 d 9i=1

{f V (Y ) + f U (Y ) + a lI=
n 9 n j ni=1

= -f F[1[y),(y)g I* - Y)f (y)dywhere a
h Xn

1-F"(X )X i
6 K (* - 1)VI i) " 1-F (X ) 9 hn y 9

,

[1-F (Y)"-"I (y)" (1-F (Y))3
X X X

| U (Y )_= - [y(X ]*(Y)f (y)K (* - Y)dYn 9 (1-F (y))'
*

X h
9X

4.3 Asymptotic nonnality

Theorem 3: If X is compatible with both F T and F , then the standardizedC
| form of W = A(x) has an asymptotic normal distribution, as n + , h + 0,

| h =.n 7,-0 < y < 1.

23
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Proof: _ The main steps of the proof are as follows: (i obtain bounds for
|U and A (ii) obtain approximate moments for V , (iii check that i,

VS (W)/ VAR ( ) + 1, this will guarantee that W and W"have the same. type of
distribut1on asymptotically, (iv) check Lyapounov's condition for W, thus
proving asymptotic normality.

.(1) |U|=0(Ann), |A|=0(n(n+1)) *~g n

|

Proof of (i): choose M such that F (x+M) < 1,
X

)[1-F(y)"-nF(y) (1-F(Y))3x X X

0 < -U (Y ) = (f|y-x|<M |y-x|>M *(Y)I IY)n j X1-F (y)
X

K (*~Y)h
* 1-F (y) dYy

<C+Gf (1+FfY)+***+I(y)" -nF(y)n-1)dF(y)g X X X xy_

<C+Ggfh(1+F+F2 + ,,, + p -1 -nF"'I)dFn

= 0(in n) .

< 0 (F -1(x,g)) , g fy -1(1 - F (y))dF (y) = 0 (n(n+1))
n nO < -A

M x x *n

(ii) E | V I'''i) ""r,h(1-F(x)) (*) X *) + ( r h)In
X

r,h = K (y)dy = /K(t)dt; r = 1,2,3,...where a
r-1

,

Proof of (ii):;

E|V (Y )|r = f (1-F"(y))rm(y)K (x - y)f (y)dyn 9
,

X(1-F(y))7
x

(1-F"(y))r

| <f|y-x|<M(1-F(y))r m(y)K[(x-y)f(y)dy.
_

X

x

+G f (1-F"(y))r m(y)f (y)dy
x

|

r,h(1-F(h) "(*}X(*} "("r,h=a *

X

24
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- Here we have used the fact that K{/arhis also a peaking kernel and M is
chosen such that F (x+M) < 1.X

-(iii) Var (h)/ Var (W) + 1.
'

, Proof of (iii): making use of (1) and (ii) above, we have

Var (U IY )) = 0-((An n)2),n i

Var (V (Y )) = a2,h(1-F(x)) "(*)I (*) + ( 2,h)n g X

T *} 1I
| , (lK (t)dt)2

h 1-F I*) ,g[H) ,

X
,

Hence,.-

Var (h) = n Var (f V (Y ) + f U (Y ) + A }n g n j n

I [ Var (V ( i)) + 2 cov(V ( i),U ( i)) + ar(U (Y ))]=
n n n g $

IT *) 1 An n,(fg2(t)dt)
1-F (x) , g[IiE) , g[[) + 0 (-(#" "I )nh y n

T *) 1_
I, (fK (t)dt)2

;

1-F (x) , o [_h)nh
,

n
X

Comparing with expression for Var (W) in Theorem 2, we have (iii).

The fact that + 1 guarantees that

A A A

E ( "" E-EW 1J2 , E(h-W)2-
.

Var (h) Var (h) Var (W)# #

| I [ Var (h) - Var (W)] (by Hajek's fonnula)=
.

Var (W)
'

; +0 '
.

'y,
W-EW

.
., 4 - . i

| But has the same asymptotic distribution as - '- , hence it has the
'

(Var (W) h-Eh ' Var (h)same asymptotic distribution as ,

i i
'

[ Var (W) 25 i,,

\,
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E(iv) Finally iti remains to show that + N(0,1). Since a is
n

negligible, by Lyapounov's theorem, a Nkbentconditionwillbe:

fV(Y)+fUIY)} EE +0 .n g n i
Var (W)3/2 i=1

To check this, rewrite the left hand side as

LHS = } E|V (Y ) + U (Y )n 9 n i
Var (W)3/2 n

) [E|V|3+3(E|V U ) + 3 (Ehn !U ) |U+= *

Var (W)3/2
nn n n

n

Now

m(x)f IX)X
E|V|3= (fK(t)dt)(1-F(x)) +o(

)n
h h

X

E|V | = 0 (n h~

E|U | = 0((in n)r)n

T(*) 1
Var (W) = (fK (t)dt) 1-F (*) , , [III) ,

nh
X

Thus

I I I

LHS < 0 ((h) 3/2(nh) ) = 0 ( J ,.

Inh

verifying the condition.

5. Discussion

5.1 Bias correction near the origin

In calculating the estimate $ in Figure 1, a bias correction procedure was
used for points near the origin. Figure 2 presents A without bias
correction. The effect is seen to be quite large for points close to the
origin. The reason for the bias is apparent in the dominant terms of the
expression for the expected value:

!
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EA(x)= f" A(y)K (x - y)dy
h

f"A(x+ht)K(t)dt=

T

A(x) f"K(t)dt+R= .

T
The remainder term R is negligible either when h is small or when A'(t) is
small around x. Forxlargecomparedtoh,f" K(t)dt = 1, and even in this
case the convolution approximation will be go6dhonly if the remainder R is
small. Thu,s, in doing bias correction, we will only correct for the leading

tenn A(x){f K(t)dt. For x small compared to h this leading tenn is

estimate A( h less than A(x) {. The bias correction procedure is to divide the
significan

x) by the factor K(t)dt./h
5.2 Significance of the present study

Our ultimate goal is to establish the theoretical properties of the fully
data adaptive procedures. However, this is c difficult problem. We regard
the present paper as solving a significant component problem. One must
understand how these estimators behave when the parameters are chosen
deterministically as a prerequisite to the analysis of the behavior of the
data adaptive procedure. Another component of this problem, dealing with the
nearest neighbor hazard estimator, is solved by Tanner (1982).

The present study provides several insights to the relation between
density and hazard estimation. The leading term of the bias expression
presented in Section 2 is the convolution approximation

density esNimatg 1[(also a convolution approximation error f *K I*) - I I*)*
error A *K (x) - A x). In the uncensored situation the bias of the kernel

T
r h TBecause fT is L , the convolution error is guaranteed to vanish in the

limit. However, A need not be L1 and hence kernel hazard estimation is at a
7disadvantage on this point. Convolution is an approximation of the value of a

function by a weighted average (according to the kernel) of values at other
points. We must therefore ensure that function values at points far away must
not be so large that the down-weighting by the kernel is insufficient. This
is the essence of the compatibility condition between the kernel and FT in
Sections 3 and 4. We point out that if a kernel with compact support is used
then the above difficulty cannot arise. In this case, the asymptotic mean
square error behavior of the kernel is exactly the same as that of the kernel
density estimate, and all the familiar convergence rate results (in MSE) for
kernel density estimates carry over to kernel hazard estimates.

;
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'Itmustnowbeemphasize[that,withcensored; data,itisnolonger'

_

.possible'to express the bias -in the kernel density estimates.as a convolution
^' approximation eFror (see next_ section for a description of kernel density -

estimates from censored data, and relevant references). It appears that in the
case of censoring, the hazard function is a more natural entity to analyze
thah the density.- One directly observes.X .= min (T,C), -and 6 = I While

7+kT<hn.the hazard functions a.e related in a very simple way A =A dergy

independence of T and C), the densities are related in 8 more complicated
way f =tf3 IS Thus, it is not surprising <that in this context the
estimtiono9+thehIz.T C ard A is a more tractible problem than the estimation of

T
the density f *

T
_ T

-The consideration of the convo[ution error in the bias also~ gives us a3

guide'as.to wh'n hazard estimation is to be preferred over densitye
estimation. Namely, if over the region of-interest we expect stability on the

~

hazard scale, then hazard estimation is' preferred since the convolution error
will be very small. Conversely, if the density scale is more stable',' then

~ density' estimation,is to be preferred.

In'the area of reliability 'and survival analysis, it is usually the hazard
t

scale which is more . stable. Fcr example,-the exponential hazard is a
constant, and'it is the exponential life time which is fundamental to much of
reliability and survival analysis. 'In practice, an exponential model might be
too restrictive, but there are often situation where we do not expect the
hazarti to vary drastically over the region of interest. The kernel hazard
estimate .sho.uld perform well in these situations; since in these cases the
window width h need not;be very small in order to achieve g good convolutionapproximation, hence>the variance, which is of order (nh) , can be made much
smaller than otherwise possible.

,s
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ABSTRACT
{

The combination. forecast methodology is useful because in selecting the
"best" single model the analysts may discard' independent information of

i' interest, which exists in the rejected models. The methodology of combining
forecasts is faunded on the axiom of maximum.information usage. This paper
considers three alternative approaches--econometric, Box-Jenkins, and

: Winters--to forecasting short-term demand for non-utility residual fuel oil. .

| In the paper,-various combinations of these three approaches are used to. yield
; combined forecasts, using the Bates-Granger Technique, applied to monthly data
! on non-utility residual fuel oil. It is demonstrated that the optimum method-
| propo'cd is superior to the existing single equation econometric model. '

|:
: 1. INTRODUCTION
!-
| The essential objective of most forecasting is to provi_de decisionmakers
i with the information necessary to permit confidence in the. decision made.
4 Since no one forecast includes all the available information or all possible
i specifications multiple forecasts are often prepared for the same variable.
! These multiple, forecasts are then examined within the context of the decision
{ objectives, and one forecast is selected as most pertinent to the . question at

hand. Selecting a single forecast may not make the best use of available
I information, however, for.'several reasons. Although there is likely to be

some coninon information among forecasts, rejected forecasts may contain some:

i information not available in the selected forecast. Rejected forecasts could
i be based on different assumptions, different variables, or different

relationships between' variables. Thus, combined forecasts may provide a
better forecast than any indivioual forecast. The methodology of combining

| forecasts is founded on the axiom of maximum information usage. ,

!
' Improvement and refinement of the demand forecast using time-series (e.g.,

box-Jenkins) and combination. forecasts-(e.g., econometric and Box-Jenkins)
would enable analysts-to produce more accurate short-term projections of the
demand for non-utility residual fuel oil. This paper summarizes the findings ;

for non-utility residual fuel oil. It includes: (1) estimation of an
econometric model to project the demand; (2) development of alternative
approaches-(Box-Jenkins and Winters) to the short-term demand forecasting; and
(3) development of approaches to combine the econometric and the alternative
approaches to the short-term demand forecasting.

~
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Structure of the Paper

-This paper consists of five sections, including this introduction.
Section 2 describes the data used for the analysis. Section 3 presents and
discusses specification of the models and empirical techniques used. The
findings are discussed in Section 4, and Section 5 is a summary with
conclusions of the paper.

2. DATA

To develop forecasts for non-utility residual fuel oil demand, it was
necessary to identify monthly data sources for this variable and the other :

variables used in the estimation of an econometric model. These data were
supplied by the Analysis Branch of the Short-Term Information Division in the
U.S. Department of Energy, Energy Information Administration.

The most common data sources identified and used in this paper were:

e Monthly Energy Review, U.S. Department of Energy, Energy Information
Administration

e Industrial Production, Board of Governors, U.S. Federal Reserve System

o Monthly State. Regional, and National Heating Degree-Days Weighted by
Population, U.S. Department of Commerce, National Oceanic and
Atmospheric Administration.

Table 1 presents a summary of all variables, sources of data, and units
for the variables used in this paper.

:

3. METHODOLOGY

This section presents the methodological approaches used to forecast and
to evaluate the demand forecasts of non-utility residual fuel oil. To provide
an understanding of the findings presented later in this paper, the discussion
that follows focuses on:

e Empirical specification and techniques

e Evaluation of model performance.

| The purpose of this section is to describe each of these phases and to provide
I a framework for the analysis and discussion of findings.

|

!
i
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TABLE 1: 'VARIABLEDEFINITIONS, SOURCES,TANDUNITS

Variable. Definition Source Unit

XDRSt Non-utility residual Monthly Energy Review Million barrels
fuel oil demand at and EIA, FPC Form 423 per day
time t.

XDRS -1 Non-utility residual Monthly Energy Review Million barrelst
fuel oil demand at and EIA, FPC Form 423 per day
time t-1.

XPRSt Real wholesale price U.S. Department of 1967 cents per
,

of residual fuel oil Energy, FEA Form gallon
at time t. P302-M-1, " Petroleum

Industry Monthly Report
for Product Prices"

INDMt Industrial production Board of Governors, Index, 1967=1.0
index of all manufac- Federal Reserve
tured articles at time System, Industrial
t(1967=1.00). Production, Monthly,

G-12.3

EH00t Heating degree-days U.S. Department of Average daily
at time t national Commerce, National degrees above
1980 population Oceanic and Atmospheric Fahrenheit 65
weighted. Administration (NOAA)

GASPRt Real price of natural Monthly Enerqy Review 1967 cents per
gas at time t. million Stu

DUM7677t A binary variable for Dimensionless--

natural gas curtail-
ments during the 1967-
1977 winters; coded 1
in November 1976 to;

|
March 1977, O otherwise.

DUM0EC A binary variable for Dimensionlesst
--

period following total
decontrol on January
1981; coded 1 in
February 1981
forward, 0 otherwise.

OUMWINt A binary variable for Dimensionless--

warm winter, coded 1 in
November'1981 to March
1982, 0 otherwise.
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Empirical Specification and Techniques

Two alternative models are used in the forecasts of non-utility residual
fuel oil demand:

e An econometric model

e Time-series models, specifically

Box-Jenkins method--

Winters method--

Combination methods.--

In this section, the ' empirical specification of these four methodological .
approaches to forecasting are briefly described.

Econometric Model
4

-The econometric demand model for non-utility residual fuel oil is
specified as a linear function of eight variables:

e The real price of No. 6 residual fuel oil to retail consumers
j in time t--XPRS . This variable is included in the demand model tot~

measure the impact of residual fuel oil price on the demand for
residual fuel oil.

,

,
i

; e The industrial production index of all manufactured articles
in time t--INDM . This is expected to have an effect on the demand'

t
i for residual fuel oil because it is closely related to consumption of

total non-utility residual fuel oil.
4

| e The real price of. natural gas in time t--GASPR . Since natural gast
is a substitute for residual fuel oil, the price of natural gas is!

also included in the specification.

e The national population-weighted heating degree-days in time t--
ENDD . It is included in the specification to explain seasonalt
variation.

e DUM7677 . This is a binary variable and included in thet
specification for natural gas curtailments during the winter of 1976
and 1977.

e DUMDEC . This is a binary variable and included in thet
specification for the period following total decontrol on January 28,
1981. ,

1

e DUMWIN . This is a binary variable indicating an unusually warmt

j winter.

XDRS -]ication to allow the last observed value to influence the
This is a lagged dependent variable included in theo t .

specif
forecast more directly.
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The econometric demand model for non-utility residual fuel oil is:
~

l'

t 5 0 * 0 XPRSt+OINDMt 0 "t 0EHDD (1)XDRS
0 1 2 3 4 t

+-S N7677t+06 MDEC~*0 Nt + 0 #3t-1 ' 't*S t 7 8

I Equation (1) is estimated using the Cochrane-Orcutt.1) procedure with monthly
~

i data from July 1975 to December 1981.

~ Box-Jenkins Method

The Box-Jenkins method is a forecasting technique that seeks to develop, in
a systematic manner, the forecasting model that is best suited to each time'

series under investigation.2/ This method can' lead to a-forecast that is~
better than those produced Iy other smoothing models. At the outset, a:

: ' statistical analysis on the data series is conducted to find the forecast model
that gives the best fit. The forecast model is then selected from a collection

, -

of models that represent the Box-Jenkins family of models.,

1

; Four basic stages are necessary to develop a Box-Jenkins forecast; the -
i. first three stages construct the Box.Jenkins model and the last stage produces
! . forecasts. The four stages are:
1

1. ' Identification -- The objective of this stage is to select the
j forecast model that seems most appropriate to the time series under

study. The data are used to generate a series of sample,

autocorrelation functions and partial autocorrelation. These are then
: compared to certain theoretical autocorrelation and partial

autocorrelation functions from known forecast models to seek the best
; match. The forecast model is then identified and selected. The-

!
'

.

j principle of parsimony is applied: the model with the smallest number
of coefficients suitable for the series is the model that is selected.,

4

4 2. Estimation -- Upon selecting the model, the second stage is initiated
i whereby the coefficients are estimated. The estimates are found so
i they yield the fit of past observations which produces the minimum
j sum of squared residual errors.

3. Diagnostic Checkina -- Using the fitted results, the residual errors
i are examined to determine the adequacy of the fit. A good fit will
! yield residual errors that are randomly distributed with mean zero

and a constant variance. TN check is made by way of the
autocorrelation functions of the residual errors.

4. Forecasting -- Once an appropriate model has been identified, it may
be used to generate a forecast of future values that are optimal in a
minimum mean-squared-error sense..

Should the diagnostic check fail, the first three stages are repeated
until a model is founa that gives acceptable results. Once the model and the
corresponding coefficients are selected, the model is then used to forecast

|
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future observations. ~ The forecasts are updated in each time period as each
.

new observation entry becomes available. In the event that the-time series
. seems.to be changing, the coefficients of the model may be re-estimated or an '

entirely new model may~be selected. When the appropriate model and.

coefficient estimates are found, an equation is developed from the model to
forecast future values.

Winters Method

Linear and seasonal exponential smoothing as developed by Winters 3_/ is
based on the assumption that the time series is adequately represented by the'

model:

t+Tr)It + et. (2)Xt * (S t

where:

St * Base signal or permanent component-

Tt = Linear trend component

It = Multiplicative seasonal factor

et = Random error component

T = Lead time for the forecast.

There are three basic equations involved in the Winters model:

X

St*G t + (1-a) (St-1 + Tt-1), o<a<1 (3)
I t-1

,

Tt*O(S'St-1) + (1-0) T -1t t O <0<1 (4)

X

I *0 * II-d)I <d<1 (5)t S t-L,
t

where:

L = Length of seasonality

a, S, and d = Smoothing parameters.

Equation (5) is comparable to a seasonal index. This index is the ratio
i of the current value of the series, X , divided by the current singlet

smoothed value for the series, S . If Xt is larger than S , the ratiot twill be greater than 1; if it is smaller than S , the ratio will be less
t

than 1. Equation (4) is used for smoothing the trend because it weights the

incremental trend (S -S -1)is used to obtain the smoothed value; the first termt t with $ and the previous trend value T -1; t

with(1-S). Equation (3)
(' is divided by the seasonal value I -1 to eliminate seasonal fluctuationst

from X -t

39
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In addition to these equations, a forecast is obtained by Equation (6):

X +r* (St + T r) I -L+r. (6) l
t t t

Combination Methods (One Step-Ahead Forecasts)

Bates and Granger propose a-technique of producing a forecast by combining
the forecasts from two alternative methods in their 1969 seminal paper. 4/ Let*

FfandF be two unbiased one-step-ahead forecasts of X with errors2
t

ef = X -Ffande=X -Ff,respectively.2 Then the combined forecast is
t t

Xc,g Ff+(1-W)F, (7)
2

t t

where Wt is a combining parameter and is varied at each time period.

Consequently, the combined forecast error is:

ec=Xt - X[ = Xt-NF1 , (1_g )F2 , y 'l * Il-N )e . (8)
'

t t tt t

The error variance is:

2 ,9 ,2 ,(1,y)22 2 + 2W (1-W)p a e ' (9)e y
g2

where:

P=Simplecorrelationcoefficientbetweenefande,2

afand 2=Samplevarianceofefande,respectively.2e
,

To find the value W, which minimizes the error variance, Bates and Granger
differentiate Equation (9) with respect to W:

i

I#c)=2Wef-2(1-W)e2 + 2(1-W)pe1 2 - 2WPag e2 (10)7dW

Equating Equation (10) to zero gives:

2# 2- P e1 e2W= (11)ej+
,

2-2 P a, av
z

40
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- Substituting Equation-(11) for Equation (9) gives the minimum error variance:

a. 2 , ofef(1-P)2 .(12).

of + ef - 2 p ay a2
2It can be seen that if W is determined by Equation (11), the value e iscno greater than the smaller of the two individual variances unless either P is

exactly equal to 71/72 or to e2 /01 If either equality holds, the variance
of the combined forecast is equal to the smaller of the two error variances.

'

Bates and Granger list five additional alternative methods for seeking W -t

T-1
2

I e
t,2

, t = T-v, ..., T-1, (13)Method 1: Wt= t=T-v

( ,1 + ,2)
t -v

where et,1 and et,2 are errors of forecasts 1 and 2, respectively.

T-1,

(I'I ,2Method 2: W o<a<1, (14)aW
t t-1 + t T-v=

,

T-1
I (e 'i + e '2) t = T-v, .... T-1t-T-v

where a is a fixed smoothing parameter.

T-1

(' ,2 ~ '1,t '2,t) # 2 1, (15)Method 3: W t1=
t

,

T-1 t
I O I*2t,1 + '2t,2 - 2 et 1 't,2)

t=1
4

where S is a discounting parameter. i

T-1.

I#(ef't);

S21. (16)Method 4: W t=1' =
t

,

; T-1
I ,1 + 2)t1

| t,2|
Method 5: W =aWt-1 + (1-a) o < a < 1. (17)t

,

l't,1l+l't,2l
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; Evaluation of the Models' Performances

'The basic data set to which the non-utility residual fuel oil demand
models have been applied is divided into two periods. The first period data
are-used to determine model identification and to generate forecasts for the-

second period. -Actual values fee the second part can then be compared with
,

each of the forecast values. and the applications of statistical measures will
,

permit evaluation of the accuracy of each forecast. -

The measures presented in this section have been used to determine the
differences in accuracy among the four procedures used for forecasting: the
econometric model, the Box-Jenkins model, the Winters model, and the combined

( models.

Measure 1: Mean Squared Error -- A particular favorite of forecasters '

|
using a least-square criterion, mean squared error (MSE) is an obvious measure

; of forecast quality and is defined as:

N

MSE=hti(X-F)' (h t t
1
4 where:

Xt = Actual observations
i

Ft = Forecasted values.

Measure 2: Theil Ineauality Coefficient -- This measure, proposed by H.
Theil, .5_/ is denoted by U' and described by the following formula:

4

N
1

2 = W t i (X # )2h4 t t
|

U (19)*1 N
Nhti

U2 equals zero only if all of the forecasts are perfect. U2 equals.

j one when the forecasting procedures leads to the same root-mean-squared error
as produced by using naive, no-change, extrapolation. By using the inequality,

'

coefficient, the seriousness of the forecast error is measured by the
,

quadratic loss criterion: the zero corresponds with perfection and a value of '

one corresponds to the loss associated with no-change extrapolation.
4

-I Measure 3: Decomposition of Mean Squared Error -- As proposed by Theil,~6/ 1

| MSE can be decomposed into three elements, each referring to a particular kind
'

of forecast error. This decomposition can be written in the following ways:;
,

UM=
~

(20),

I -F )t t( t1

! ;

! !
i 42
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IS '3 )
UR= F X

(21)1 N
I -F )2

.

Ih t tti

2 (1-r) S I
UD= XF

(22)

Ih t)2
1 N

ti

where:

{ T and Y = Sample means of the forecasts and actual observations

SF and SX = Sa.nple standard derivations of the forecasts and actual
observations

r = Sample correlation between the forecasts and the actual
observations.

UM refers to bias proportion, UR to the regression proportion, and UD to
the disturbance proportion. Both UM and Un tend toward zero for the
optimum forecast; therefore, Uu should tend toward unity.

Measure 4: Mean Absolute Error -- This measure is defined as:

.

t1|F-X!t t>

MAE = (23)*
N

Measure 5: Mean Absolute-Percent Error -- This measure is defined as:

F '*tN
t

t1 Xt,
MAPE = x 100. (24)g

The forecasting methods used in this study have been evaluated by applying
'

these statistical measures. The results of these comparisons and evaluations
are presented in the next section, which reports our findings.'

4

4. FINDINGS

In this section, the results of the estimation of the alternative demand
t forecastindiscussed.g models for non-utility residual fuel oil are presented andThis discussion assesses the implications of statistical measure

values used to produce the best short-term forecasts of demand for this
product.;

;
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_
Econometric Model

!

. The econometric demand for non-utility residual fuel oil has been
I estimated using data from July 1975 through December 1981. The results of
!. this estimation are shown in Table 2. Like all tables referenced in

Section 4, Table 2 appears at the end of this paper. As can be seen, the,

i estimated coefficients of the econometric fitted model are all significant at
the.0.10 level or better with the exception of INOM, the measure of industrial
production.

,
.

Evaluation of the estimated equation reveals that this model has !

relatively good explanatory power. -The RZ is 0.911, indicating that 91;
- percent of the variation in the demand for non-utility residual fuel oil is

'
* explained by this model.

j. The estimated model becomes the basis for forecasting demand for +

non-utility residual fuel oil for the 9-month period of January 1982 through''

; Septed er 1982. ,These forecasts will provide a basis for comparison with the
j- alternative forecasts methods described in the sections that follow.
!

| Box-Jenkins Model
i

| The Box-Jenkins model has been estimated using data for July 1975 through
i December 1981 on demand for non-utility residual fuel oil. The identification
! and estimation of the values of the parameter coefficients found in the

Box-Jenkins model required that sample autocorrelation and partial
1

! autocorrelation functions of various differences in the series be calculated
and examined. This examination indicated that, with no differencing, the ,

i . nidual demand series is not stationary, i.e., differencing is needed to !

; achieve stationarity in the series. In addition,_it was found that a seasonal '

i pattern exists in the series, with a cycle length of 12 months. To account
| f< r this finding, the 12th difference of the first difference ( V7 12 X)t
i c/ the residual demand series was calculated. This procedure was undertaken :

to remove the linear trend and the seasonal pattern.

i The sample autocorrelation functions for the series VV12 Xt were then
! examined, and the following tentative model was suggested for further .

j investigation:
i

| (1-B)(1-BII) (1- hB) y = (1- S B) (1- 9 8I)a. (25) |g 12 t

|

) Using the SAS computer program, the coefficients of the mndel (25) parametrs
were estimated. Results of this estimation are presented in Table 3.i

All estimated parameters of the Box-Jenkins model are significant at the
i 0.10 level or better. The standard error and variance estimates are low,
| indicating that the model explains relatively well the variation in demand for
{ monthly residual fuel. The application of a Chi-square test to the
!

autocorrelation of the residuals reveals that the residuals are randomly
' distributed. As a result of the evaluation of the Box-Jenkins model, it is i

i concluded that this model is adequate for forecasting.
|
:
'
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Winters Model

The Winters method has been applied to non-utility residual fuel oil demand
to produce.one-step-ahead forecasts. The first 78~ data observations (i.e.,
July 1975 through December 1981) were used to da ignate and calculate the
smoothing parameters (i.e., Alpha, Beta, and Ganna):

G= 0.75
S= 0.10

, 8= 0.10.

These values of the parameters were then used to produce the forecasts for
'

non-utility residual fuel oil, which are the basis for this analysis.
r

Combined Models
:

The Bates and Granger methods of combining forecasts discussed in
! Section 3 have been applied to non-utility residual fuel oil demand to produce. .

one-step-ahead forecasts. The combined models are:
,

,

; e Econometric model and Box-Jenkins model
i

j e Econometric model and Winters model
i
j e Box-Jenkins model and Winters model :
i

j Combined models are developed five different ways, based on the five
j combining methods discussed in Section 3.

| The smoothing parameters used in this paper are:

i e Q = 0.50, 0.70, and 0.90
t

o S=1.00,1.50,2.0,and2.50.
;

; The performance of these models is discussed in the next section.

! Comparison of Forecasts
t .

Table 4 sunnarizes the comparisons of alternative forecast methods,
t presenting several statistical measures of the forecast accuracy which may be
! used to evaluate the forecasts. With respect to the three initial methods
; used to forecast demand for non-utility residual fuel oil (i.e., econometric
L model, Box-Jenkins model, and Winters model), the following conclusions may be
{' drawn:

e Mean Squared Error -- This statistical measure indicates that the
! Box-Jenkins forecast and the Winters model are preferred to the
! econometric model. Choosing either of these methods will result in a

lower mean squared arror than observed for the econometric forecasts.
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e Mean Absolute Error and Mean' Absolute-Percent Error -- These
'

measures, when applied to the three forecasts, reveals that both a
Box-Jenkins model and the Winters model produce forecasts that
improve the econometric forecast. Further examination indicates
that,.on the basis of these measures, the Box-Jenkins model is
preferred to the Winters model.,

.e Thiel's Inequalit_y Coefficient -- This measure indicates that both

the Box-Jenkins and the Winters models yield better forecasts than
- ~does the econometric model. No differences are observed between'

these two methods with respect to forecast accuracy.

e Decomposition of the Mean-Sauared Error -- The Box-Jenkins~ method
produces the best forecasts,-while the Winters model produces

,

forecasts that improve the econometric forecasts.
, -

; In the Box-Jenkins model. and the Winters model, the five measures of' .

forecast performance considered above indicate that the econometric model does -

j not perform well in comparison with the Box-Jenkins -and the Winters rrodels.
Overall, the Box-Jenkins model appears to produce the most accurate -

4

one-step-ahead forecasts of- non-utility residual fuel oil demand.

The data in Table 4 are examined further to evaluate the extent to which
the development of combination forecasts, using the alternative forecasts ands

the alternative weighting methods discussed in Section 3, can-improve the
forecasts for non-utility residual fuel oil demand. The five statistical<

i measures discussed above have been applied to each of combination forecasts
considered. Results of this evaluaton of forecast accuracy indicate that:,

1. Combination forecasts can yield more accurate forecasts than the
single-method models used for this analysis.;

; 2. The specific combination methods that yield the most accurate
forecasts are the Box-Jenkins and Winters model combination. Method4

3. S= 2.0 and B= 2.5..

!

! A final evaluation of alternative single techniques and combination
! technique forecast methods is presented in Table 5. This table presents the
. values of the following ratio:
|

Mean Scuared Error i
! Mean Squarec Error, Econometric
!

where i presents single or combination model forecasts. Interpreting this
;

! ratio, the degree of improve w t in the forecast accuracy possible by choosing
method i rather than the econometric model is (1-ratio). Examination of the:

j data in Table 5 again supports the conclusion that the Box-Jenkins and Winters
combination. Method 3 yields the greatest-opportunity for improvement ini

forecast accuracy because the ratio'is smallest for these alternatives.

f
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! 5. SUPMARY AND CONCLUSIONS

The purpose of this paper has been to examine the potential for improving
demand forecasts in the econometric model by developing alternative single and
combination forecasting models and by conducting an evaluation of the extent
to which these methods do yield more accurate forecasts. The alternative

; single models examined were the Box-Jenkins model.and the Winters model. The
forecasts of these models and the econometric model were combined, using five

! alternative weighting methods, to develop new forecasts that may-be able to
take advantage of the strengths of the separate forecasts. The. statistical.

measures that had been applied to evaluate the forecasts included:

.e Mean squared error
,

:-
e Mean-absolute error

e Mean-absolute-percent error

e Thiel's inequality coefficient.

'

e Decomposition of mean-squared error.

I Examination of the results of the alternative forecasts and application of
; the statistical measures to the estimates has yielded the following concusions.
i

{ 1. Of the three single models used to produce short-term forecasts of
j non-utiity residual fuel oil, the Box-Jenkins model produces the best
| forecasts. The Winters model also performs better than does the

econometric model.;

2. The use of combination models can produce better forecasts than the<

i single models examined here. For non-utility residual fuel oil
! demand, the evaluation of forecast accuracy conducted here indicates
i that the combination of the Box-Jenkins and Winters models, using

Method 3 weighting, yields the most accurate forecast of non-utility
residual fuel oil demand. .

i It is recognized that the usefulness of the one-step-ahead forecast is
limited. A methodology that permits the generation of forecast for several

i steps ahead is preferred. This presents problems for the use of combined
forecasts if it cannot be assumed that the single forecasts are stable over '

l- time, with respect to accuracy and information of value. Therefore, it is
necessary to develop a methodology that permits the weights for each forecast,

| to be time-varying. This is the subject of further research and investigation.
,

I
L I
! .;
;

i

:

'
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TABLE 2: RESULTS OF ECONOMETRIC FITTED MODEL FOR NON-UTILITY RESIDUAL
FUEL OIL DEMAND, JULY 1975 TO DECEMBER 1981

Variable Coefficient t-Ratio

CONSTANT 0.713 4.721

XDRS (Lag) 0.170 3.583

XPRS -0.015 4.247

INDM 0.161 1.034*

GASPR 0.005 2.725

EHDD 0.001 14.975

OUM7677 0.149 3.932

DUMDEC -0.261 6.744

00MWIN -0.242 3.432

'Not significant at the 0.05 level.
4

1

SUMMARY STATISTICS

R-Squared (corrected) = 0.911

Mean-Squared Rasidual = 0.007

Star.dard Error of Regression = 0.088

Durbin-Watson Statistics = 2.094

Number of Observations = 78 (July 1975-December 1981)

Rho = 0.308

.
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TABLE 3: RESULTS OF BOX-JENKINS FITTED MCDEL FOR NON-UTILITY RESIDUAL
FUEL OIL DEMAND, JULY 1975 TO DECEMBER 1981

Standard
Parameter Coefficient Error T-Ratio

AR1(e ) 0.439 0.290 1.51*
y

MA1(0 ) 0.707 0.240 2.95**
1

SMA1(012) 0.852 0.347 2.46**

*Significant at the the 0.10 level.
**Significant at the 0.05 level.

Note: This model is represented by: (1-B)(1-B12)(1-4 8) X1 t=

(1-0 8)(1-0 8 )a'
1 12 t

Variance Estimate = 0.014
Standard Error Estimate = 0.120

Autocorrelations of Residual
Lags

6 -0.045 -0.114 -0.078 -0.144 0.038 -0.022

12 -0.018 0.035 -0.232 0.123 0.061 -0.130

18 0.173 -0.061 0.141 0.051 -0.122 -0.014

24 -0.065 -0.016 0.207 -0.209 -0.088 0.017

Chi-Square = 19.34
Degrees of Freedom = 21

.
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TABLE 4: COMPARISON OF ALTERNATIVE FORECASTING FOR NON-UTILITY . .,

RESIDUAL FUEL OIL USING COPBINED METHODS,,

JANUARY 1982 TO SEPTEMBER 1982 (Continued) r ji-

| m
, ./-

! i,

[Cos61ned Method 5 f G = 0.99) .
*

*

!

' ' . Econ. Econ. Box-Jenk ins /~ T

j Statistical '' and and and 1

j Measure Sox-Jenkins Winters Wis.ters
'

-

,

'
_

' _ |-

Mean of Actuni 1.111 1.111' l.111 #

,;' Mean of Forecast 1.135 1.142 1.077
'

,

Mem of Error -0.024 -0.031 0.033 .
>

.'-
<

) ;-

Wartance of Actual 0.048 C.048 ' O.,048
'

,

Wariance of fcrecast 0.026 0.020 0.028 / I

Warlance of Error 0.019 0.019 0.026 ;

Standard Deviation i,

i of Actual 0.219 0.219 ' O.219
,

'

,

1!Standard Deviation
of Forecast 0.161 0.140', 0.166 f

Standard of Deviation ,
of E rror _- 0.119 0.139 0.161

'

Mean-Absolute Error 0.125 0.124 0.117 I'
<

Mean-Absolute-Percent
Error 11.170 11.275 0.155

.*

Mean-Squared Error 0.018 0.018 0.024

- Root-Mean-Squared . . -

E rrorf 0.134 0.134' 10.175
a -

Ihlel's Inequalf ty
foeffic1ent j 0.014 0.014 0.019

Correlatton <

Coefffcfent 0.77 0.79 0.68
-

Decoeosition of MSE

UM (81as
Proportion) 0.03 0.05 0.05

.

@ (Regression
Proportion) 0.19 0.35 0.12

UD (01stribution
Proportion 0.78 0.60 0.83

_ _ _ _ _ _ _ _ _ - _ _ _ .
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TABLE-5: MEAN-SQUARED ERROR RATIOS FOR ALTERNATIVE NON-UTILITY RESIDUAL
FUEL- OIL MODELS AND ECONOMETRIC MODEL, JANUARY-1982 TO SEPTEMBER 1982

Ratio

No
Alternative .Models e or 6 a=0.50 ==0.70 ==0.90 $=1 6=1.5 $=2.0 3 2.5

Box-Jenkins 0.86 - - - -- -- -- -- -- -

Winters 0.36 -- -- -- -- - -- "

Combined

Method 1
Econ, & Box-Jenkins 0.55 -- -- -- -- -- -- --

Econ. & Winters 0'.59 - -- -- -- -- - --

Box-Jenkins & Winters 0.83 -- -- -- -- -- -- --

Method 2

0.66 0.69 0.76Econ. & Box-Jenkins -- -- -- ---

Econ. & Winters 0.66 0.69 0.69 --- -- -- ----

0.83 0.86 0.86Box-Jenkins & Winters -- -- -- ----

Method 3

0.41 0.48 0.62 0.69Econ & Box-Jenkins -- -- -- --

Econ. & Winters 0.52 0.55 0.66 0.69-- -- - -

Box-Jenkins & Wfiters 0.55 0.31 0.21' O.21"-- -- -- --

Method 4

Econ. & Box-Jenkins 0.55 0.45 0.41 0.41-- -- -- --

Econ. & Winters 0.59 0.52 0.45 0.45-- -- -- --

0.33 0.83 '1 0.79Box-Jenkins & Winters -- -- -- -- s

Method 5

Econ. & Box-Jenkins 0.45 0.52 0.62-- -- -- -- --

Econ. & Winters 0.52 0.55' O.62-- -- -- -- --

Box-Jenkins & Winters 0.S3 0.33 0,83-- -- -- -- --

* Lowest ratio.

,
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STATISTICAL PREDICTION _0F INSTANTANEOUS RESIDENTIAL ELECTRIC DEMAND *'

| -D. J. Anderson.-G.-J. Collaros, E. W. Enlow
| The BOM Corporation, 1801 Randolph Road S.E., Albuquerque, New Mexico 87106

(505)848-5000r-

ABSTRACT
,

Use of ' time -average residential electric l'oad data has_ been
assumed to significantly under- or over-estimate photovoltaic system
performance measures. Based on' a large sample of instantaneous
electric load data,. a statistical model was developed which converts

-

real time-average load data into estimated instantaneous data.*

Periodic regression analysis, cluster _ analysis, and classification-
analysis- were . performed ' to . characterize the. instantaneous load data.
The' model was structured ,into an algorithm which was incorporated into
a photovoltaic systems analysis _ simulation code. This simulation model
was exercised-to investigate the effects-of_ instantaneous versus time-4

average load data, with varying parameters, on residential photovoltaic
.

-system performance.
'

INTRODUCTION,

A residential- load profile is the pattern of electric use in a residence
over a. period of time. Utilities routinely monitor' residences and use these,

profiles to analyze the demand for electricity by a particular class of user.
When a utility constructs a profile, the time interval used. is usually between 15

.
minutes and 1 hour. While this interval is adequate for utility requirements, it

' is too large to reveal the instantaneous behavior of the load. _It is generally
assumed that use of time-average data in residential photovoltaic (PV) . system
simulations significantly underestimates the interaction between a PV system and ~
the utility. The designer of a PV system must be able to predict the total
energy.that will be produced by an array and..the fractions of energy that will be
used directly by the load or purchased from (or sold to) the utility. These
performance predictions _are required to properly size a system to meet demand and,

to determine the system's economic worth. Prior performance predictions of resi-:
'

dential PV power. systems had to be conducted using models that could accept only
hourly time-averaged load data, which does not reveal the instantaneous load
behavior caused by residential appliance usage.i

| _ Issues of using instantaneous load data-versus time-averaged data to predict
| energy fractions can be simply illustrated by figure 1. This figure shows a

hypothetical . PV system power output, assumed to be constant, and a -load.at three
different time intervals: instantaneous,15 minute, and 1 hour. As the time
interval becomes larger, the amount of variability in the load declines until, at
the longer time interval, little interaction takes place between the PV array,
the residential load, and the utility.

Work performed under contract 62-3977 to Sandia National Laboratories,
| Albuquerque, New Mexico.
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_
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- LOAD

Figure 1. Time-Averaged Versus. Instantaneous Load Profile

Recent studies of the effects of instantaneous loads have used statistical
approaches involving the complete characterization of the residential. load based
on the probabi'' ties of various household appliance usage - for average durations

; and individual appliance load requirements -(references 1 and 2). These statis-
. tical studies showed instantaneous loads to have an effect on annual residential

PV system performance. However, the numerous appliance on/off probability'

estimates required for these studies add uncertainty to the results. Adequate
samples of instantaneous residential loads did not exist to verify these results.

,

Objectives of the Detailed Residential Electric Load Determination Program
,

were to measure real, instantaneous load data, and to develop a statistical model
based on these measured data. Since utilities throughout the nation currently
collect residential load data at 15-minute intervals, the model was designed - to '

predict instantaneous residential electric load from 15-minute time-averaged
data. With this large data base, the statistical model can be used to predict
instantaneous load demand for a variety of PV applications.

I

Four residences in three regions of the country were instrumented and the
load measured at 5-second intervals. Each residence was continuously monitored
for 2 weeks during the sumer and winter to obtain seasonal load variations. The
load data were statistically analyzed and incorporated into a probabilistic
model. Annual performance predictions were then conducted to determine the
amount of energy supplied by a PV array to the load. To accomplish the perfor-
mance predictions, the statistical model was incorporated into SOLCEL, a Sandia
National Laboratories (SNLA) computer simulation code designed specifically for
the analysis of PV systems.

| DATA COLLECTION

Data acquisition hardware for direct measurement of instantaneous load
consisted of measurement equipment, located at each of four monitored residences,
and a. computer controller. The. complete measurement system consisted of current
loop transformers connected to a Scientific Columbus Joule Electronic Meter
(JEM), which measured load data at 5-second intervals in units of kVAh. After

60-
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i digitization within the JEM, the accumulated data were collected at regular
I intervals by the computer controller via telephone lines. Data were stored on
!, floppy disks and later transferred to the SNLA mainframe computer system.

The Public Service Company of New Mexico, Georgia Power of Atlanta,' Georgia,
|. and . the Public Service Electric and: Gas Company of Newark, New Jersey, were
I selected for participation in the program. Residences were selected by ~ the
L utilities:to obtain a typical residence from their current residential monitoring
; program. Selection was made on the basis of electrical consumption that approxi--
' mated the sample mean for residences from the utility load data bases.
t

Residential electric load data were directly measured at 5-second intervals
on the four residences selected in the northeast, . southeast, and southwest
regions . of the country. Sample instantaneous load profiles, along with .the
15-minute time averages, 'are illustrated in figure 2. A load data base
consisting of 5,080 complete, continuous, 15-minute intervals was established
(1,270 hours or 53 days of data). Load data were collected for 2-week periods,

during the summer and again for 2-week periods in the winter at the selected ,
residences. To date, this data base is the largest source of instantaneous load
data available. Data collected for each residence is summarized in table 1.

i TABLE 1. DATA COLLECTION BY RESIDENCE

i
I Hours of load Data Collection

ALB-1 ALB-2 Atlanta- Newark
i

Summer 215.5 224.5 149.5 190.5
Winter 146.5 104.0, 155.5 84.04 ,

Total 362.0 328.5 305.0 274.5,

,

1

LOAD MODEL DEVELOPMENT

: Initially, the instantaneous load model was planned to involve multiple
linear regression prediction of peaks (load spikes), peak durations, and frequen-,

cies per 15-minute interval, based on the time-averaged load. However, anclysis.

indicated that the instantaneous profiles, or. patterns, ' are driven by major,

! appliances only, .and that smaller appliances simply added to the base load. The
; peak loads, durations, and frequencies were thus based on particular appliance

load profiles.

A new modeling approach was undertaken which involved three basic stages
,plus the final prediction stage

| |

[ .(1) Instantaneou:; load profile characterization for each 15-minute
l interval.

(2) Determination of the most prevalent profile groups based on analysis of
the characterization measures.

!
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|

(3) Representation of the prevalent ~ profile groups.

; (4) Prediction of which -profile group representation to use based on the l

time average. l
'

Characterization of the 15-minute. interval load profiles was accomplished by
periodic regression analysis, a technique applicable to periodic data and similar
to polynomial regression and . Fourier analysis. This analysis uses functions of
sine and cosine curves as independent variables in. a multiple regression equa-
tion, the coefficients of which characterize the instantaneous profile.

Periodic regression analysis was first performed on 4-second interval data
collected during the initial stages of the direct measurement program. An early

conclusion was that data could be aggregated to 16-second intervals for modeling.
Doing so reduced the roundoff effects in the data, adequately maintained the

. instantaneous profile information, and advantageously reduced the amount of data
to be analyzed by periodic regression for each 15-minute interval.

An example of the regression analysis results, from program BMOP1R
(reference 3), and the. coefficient estimates for a selected 15-minute interval is
shown in figure 3. Three pairs of ' sine and cosine functions. of the timeline
variable, X, were included in the periodic regression example to form three
harmonics. The high squared multiple correlation coefficient of 0.936 indicates4

the . periodic regression model fits the data quite well,- with only three
,

harmonics. Coefficients for the sine and cosine pairs define the presence and
4

MULTIPLE R 0.9676
MULTIPLE R-SQUARE 0.9362,

STO. ERROR OF EST. 0.1754.

ANALYSIS OF VARIANCE.

SUM 0F SQUARES OF MEAN SQUARE F RATIO
REGRESSION 22.149336 6 3.691556 119.923
RESIOUAL 1.5083482 49 0.3078262E-01

VARIABLES IN EQUATION

STO. ERROR STD. REG
VARIABLE COEFFICIENT OF COEFF COEFF F TO REMOVE

t Y-INTERCEPT 1.232
| COSX 0.256 0.033 0.279 59.626
'

SINX 0.791 0.033 0.860 569.068
COS2X -0.140 0.033 -0.152 17.820

,

i SIN 2X 0.204 0.033 0.222 37.826
! COS3X 0.028 0.033 0.030 0.695
! SIN 3X 0.19 5 0.033 0.212 34.506

Figure 3. Periodic Regression Example with Three Harmonics

63
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magnitude of the corresponding harmonic in the equation. The Y-intercept value
is the 15-minute interval average load. Due to the orthogonality of the sine and j

cosine' functions, individual coefficient estimates remain the same, no matter how !

many other harmonics are in the equation. The orthogonality also results in
identical standard errors of the coefficients in the equation. Coefficients for |
each sine and cosine pair, say a and b respectively, can be combined to provide 4

the amplitude, A, and phase angle, O, of the sine curve harmonic by the following
-relations:

2+b2A= a

tan 0 = a/b

The 15-minute interval contains 56 intervals 16 seconds long, with the last data
point excluded. This corresponds to the degrees of freedom shown in the figure.
A plot of the observed data (0) for the 15-minute interval in the example and the
predicted values (P) from the periodic regression equation in the previous figure
is presented in figure 4. The-plot displays the adequacy of the periodic regres-
sion characterization of the instantaneous profile.

P . .

R 2 275i j2
,

ID 2.1002
~

l : ( :
C 1.925- h -

T -

T. .
,

E *1.750:
*

D , Nh -

- ---

y,,|

1.575j- ) {A
N o

D 1.400-H, _ _ _ .- :
__ __._ | ,

o 1.225 . E. -

e
'

h)b
_s

'
s 1.050;
E g;

-

c.

R .87507 ' -

V -

k.700 __.
,o

O.g......q..g.... .....4.j.....g.g..._. . .

(POWER) 12 24 36 48 60|

i CASE
!

Figure 4. Plot of Predicted and Observed Load Versus Time
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L . . Equipment : calibration and check-out .were . accomplished .during the initial
| direct measurement . phase. . Prior to collection of - the actual load data base,

|. changes made to the monitoring instrumentation -to: reduce rounding errors present
L :in low readings necessitated. lengthening the sampling interval to 5 seconds.

L Prior to performing. periodic regression on each of the Intervals in the load
.

data base, the 5-sec6nd interval data were aggregated into .15-second interval
load values, for the reasons previously stated, producing 60 measurements per .,

l' 15-minute ~ interval. .Since no prior information existed on how many harmonics
were necessary to adequately : model the. highly . variable load profiles it was,

| decided to use eight harmonics in.each periodic regression analysis. The use of
eight harmonics'was considered adequate .for most intervals and was also an upper
bound in consideration of the large volume of infomation which would require
file storage.

'

-. Periodic regression analysis was performed on each of : the 5,080 15-minute-

intervals in the load . data base using IMSL (reference 4) subroutinas.
Coefficients from each of the periodic regression equations and. descriptive

. information relating the. house, season, day, date, time, minimum, maximum, energy
i above average, squared : multiple correlation, standard error of estimate, and
! standard error of coefficient were concurrently stored on file for further

analysis. With 72.5 percent. of the equations having squared multiple correla-
2| tions (R ) greater than 70.0 percent, the periodic regression- stage was

F considered to have completely accomplished the goal of adequate profile
characterization.

' '

; Three criteria were then used to determine whether profiles were suffi-
F ciently active to require further modeling: time of day, energy above average,
| and the squared multiple correlation. Very little load activity was observed

between midnight and 5:30 a.m. The energy above average measures the energy
(area, below the instantaneous profile and above the 15-minute average, and thus

; relates the activity of the profile. Active profiles would neccssarily have high
j energy above average values. Squared multiple correlation measures the amount of
j variability accounted for by the regression equation in contrast to a horizontal
j_ line. Thus, a low correlation indicates that the time average value (Y-intercept

or constant term in the equation) is adequate for modeling and that the profile
is inactive.

Plots of energy above average versus quartile (15-minute time interval of I

the day) and squared multiple correlation for the 5,080 intervals are presented
; in figures 5 and 6 respectively. Also indicated on the plots are the cut-off '

j levels for the three criteria used to define active profiles:

'

(1) Quartiles greater than 22 (5:30 - 24:00) (figure 5)

(2) Energy above average greater than .06 kVAh (figures 5 and 6)

; (3) Squared multiple correlation greater than or equal to 70 percent
; (figure 6).

The breakdown of _ the 5,080 intervals according to the cut-off levels of the
criteria is shown in table 2. These cut-off levels were determined by observa-
tion of the figures and evaluation of the possible outlier intervals. (A more

!
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detailsd discussion is presented in reference 5.) The three criteria resulted in
classifying 734 out of the 5,080 15-minute interval profiles as being active.

TABLE 2. BREAKDOWN OF INTERVALS BY CRITERIA FOR ACTIVE PROFILES

ENERGY CORRELATION
AB0VE QUARTILE

AVERAGE LT 70 GE 70
1

LE 22 313 801
!

LE .06

GT 22 1045 2069

LE 22 0 60

GT .06-

GT 22 58 734

NOTE:

GE - GREATER THAN OR EQUAL TO

GT - GREATER THAN

LE - LESS THAN OR EQUAL TO

LT - LESS THAN

Determination of the most prevalent types of active load profiles was the
next analysis goal. Based on the premise that active profiles are mostly due to
a few major appliances, load profiles were grouped according to the coefficients
of the characteristic periodic regression equations. Even though base loads may
be different, resulting in different 15-minute average load values, load profiles
due to a particular appliance should be similar. In fact, each distinct profile

group developed could probably be associated with an individual appliance load or
combination of appliance loads.

Cluster analysis and contingency table layouts were used to examine the
groupings resulting frcm various criteria. In cluster analysis, values of the

coefficients ar e recoded as belonging to specified intervals, and cases
(profiles) having common codes for the coefficients are grouped together. The
specification of the intervals for each coefficient and the number of
coefficients included greatly affected the grouoings, resulting in a large numoer
of trial and error analyses. Output from the BMDP3M cluster analysis program is
quite lengthy and is not included here.'
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: -Initially, the. coefficient value_.for the sine and' cosine functions were used'

to group the intervals. Several problems were encountered involving the common'

' scale of the variables, symmetry of ~ the variables .about .zero, and . the large
-

,

- number of variables (up to .17) and cases .(734). .It was decided to transform the 'r
coefficients.into the harmonic amplitude and phase angle values and to reduce the
number of . harmonics used to cluster the profiles. . Intervals for. the amplitudes- ;

~u ~ '

.were reduced to four: low, medium, high, and very high. _ Phase _ angles were not
included individually, but-combined to form phase angle differences:between pairs
of harmonics . when both were in at - least the medium . category. The phase ' angle

" defines where along the time axis _ the' sine curve lies. This location was not
; -

i consideredfimportant.since it is' dependent upon when exactly the data collection
occurred and when appliances were turned on. However, when two or'more harmonics*

were at the medium or higher categories, the phase angle difference between the
!. . pairs- of harmonics did aid in grouping the ' profiles. Phase _ angle differences

~ ere placed in three categories: -in phase, between. phase, and out of phase.w

Several analyses using. this structure led to- a : good grouping of the
.

profiles. One conclusion was that only the first- two harmonics were needed to
i group the profiles. The final grouping structure .is summarized in a contingency

table layout shown in table 3.- Displayed -in the table are the number - of
: 15-minute interval profiles in -each group and the group classification number.
1- Thirteen different profiles groups were identified..with groups 10 and-12 being a
+ ' combination of two somewhat similar groups and group 13 being somewhat of a " grab
.

bag" group. All profiles not falling into a distinct group were placed in

i group 13. With the distinct profile groups defined, remaining modeling _ steps
}' were to form representations of the groups and to develop a prediction or selec-
j tion strategy. !

! ;

! To construct the- statistical model predicting instantaneous load profiles,

i precise definition of the predicted profiles (and therefore the profile groups)
was necessary. Mathematical formulation of the profiles using ,the sine curve'

1 (harmonic) amplitude and phase angle differences was considered, but was found to
j' smooth out the profiles. In view of how .the SOLCEL PV analysis code operates,
i and with the desire to maintain _the instantaneous nature of the profiles, it was
i- decided to use the interval of real instantaneous data which was closest to the
I average or centroid of the profile group. That is, real data profiles were used

! to represent the distinct profile groups.
L
! Mathematical averages of the first four harmonic amplitudes and the dif-
1 ference between the first two harmonic phase angles were calculated for each !
'

profile group. From the interval profiles in a particular _ group, the interval
j with amplitudes and the phase angle difference closest to the averages for that- _ ,

j group was determined. Closest was defined by several criteria: minimum sum of '

] squared deviations, minimum sum of absolute deviations, and two 'different
j weighting schemes used to weight the deviations from the amplitudes more than the

deviation from the phase angle difference. The representative intervals chosen
| matched on at least three of the above four criteria for all the groups. - !
:

The final load modeling step was to develop a rule for determining the,

. presence of an active profile, and selecting which representative profile to use.
.

.

> Possible relationships to be included in the prediction of load profile were time
of day,' day of week, season, region (NE, SE, SW), and the 15-minute average load.

j These. possible relationships were investigated, through analysis of contingency
i tables: and plots, to determine whether particular profiles occurred only at
!

!
'
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, TABLE 3. . CLASSIFICATION TABLE DISPLAYING OISTINCT PROFILES

2ND HARMONIC ~ AMPLITUDE

LOW - LE .05 MED - GT .05, HIGH - GT .10
LE .10

NUMBER OF PROFILE NUMBER OF PROFILE NUMBER OF PROFILE |

PROFILES GROUP PROFILES GROUP PROFILES GROUP

g LE .05 52 1 55 2 45 3

g LOW

3
S
< G1 .05, 136 4 66 5 9 13 IN
S LE .10 49 6 8 13 BTWN

5 MED 13 13 1 13 OUT

5
%

GT .10, 80 7 40 8 14 10 INr
%! LE .15 43 9 7 13 BTWN

HIGH 2 13 1 13 OUT

GT .15 38 11 9- 13 14 10 IN
#ERY HIGH 17 12 27 12 BTWN
I 2 13 6 13 OUT

IN = PHASE ANGLES IN PHASE
BTWN = PHASE ANGLES BETWEEN PHASE
OUT = PHASE ANGLES OUT OF PHASE
LE = LESS THAN OR EQUAL TO
GT = GREATER THAN

specific times of day, on weekdays or weekends, during a particular season, only
in a particular region, or only for selective time-average loads. However, since

,

the loads are appliance-driven, an argument could be made that the differences'

; were due to use of different kinds of appliances, each with different
' efficiencies, load requirements, and usage practices. With a sample of only four

households of appliances, determining precise relationships was not feasible. In
addition, no clear relationships were determined.

A basic approach involving frequencies of occurrence was decided upon for
the profile prediction. The frequenc) of occurrence of active profiles out of'

the total possible intervals when an active profile could occur was used to
develop the baseline probability of an active profile. Referring to the
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breakdown of the sampled intervals presented in table 2, the first. and third rows
were excluded as being possible active profiles. The resultant probability of an
active profile was calculated to be

(58 + 734)/(1045 + 2069 + 734 + 58) = 0.203

Finally, given the presence of an active profile, the selection of one of the 13
representative profiles was based on the frequencies of occurrence of the profile
groups out of the 734 total active profiles. Even though profiles _are predicted
by this relatively simple probabilistic prediction scheme, annual simulation
results are considered to be realistic. However, comparing a predicted instan-
taneous -load profile to an actual instantaneous load for a selected 15-minute
interval could show large discrepancies.

An algorithm incorporating the statistical load model prediction scheme and
the representative profiles was implemented into SOLCEL (reference 6). Using
annual load data and solar / weather data, the program simulates the annual perfor-
mance of specified PV and battery storage. systems; computes the load requirements
met by the PV system, battery storage, and the utility; and performs an economic

_

analysis. The representative load profiles were normalized to the 15-minute time
average load value and included as deviations from the 15-minute time averaged
load. SOLCEL steps through the simulation at 15-minute intervals, but if the
15-minute time average value is. greater than 0.5 kW (less than 0.5 kW is con-
sidered unconsequential) and an active profile is predicted, all computations are
performed at 15-second interval steps. For active profiles, the algorithm uses
the chosen profile deviations and the current time-averaged load to calculate the
15-second load values for that 15-minute interval. The probability of an active
profile, to be input by the user, can range from 0.0 (no -use of instantaneous
load, 15-minute time-average only) to 1.0 (complete use of 15-second interval
profiles of the statistical model between 5:30 a.m. to midnight).

PERFORMANCE COMPARISONS

The SOLCEL simulation code with the stctistical load model algoritnm was
exercised using various PV array sizes, probabilities of an active profile, and
time intervals. Typical Meteorological Year solar / weather data for Albuquerque
and an annual set of 15-minute load data for an Albuquerque residence, similar to
those sampled in this project, were used as inputs to define PV output and
average load. Performance of residential PV arrays is usually measured by the
percentage load supplied by the PV output. Using the baseline estimate of proba-
bility of an active profile, .203, and a 4 kW array size (considered apprcpriate
for the residences in this study), a baseline test case resulted in the PV array
supplying 33.3 percent of the annual energy demand of the residence. This
estimate represents the most accurate prediction of the actual PV fraction.

<

This result us then compared with results obtained using 15-minute and
hourly time-average load data and using the statistical model with twice the
occurrence of active prefiles. Results for these four initial simulations are
displayed in table 4 in the form of annual percentages of load met by the 4 kW PV
system. As expected, with smaller time intervals and the use of the 15-second
load profiles from the load model, the percentage of load satisfied by the PV
system declines. However, the hourly result overestimates the baseline model |

|
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result by only 1.3 percentage points, or a 3.9 percent error. Even operating the
model with twice the probability of occurrence of an active profile produces
little difference in the amount of energy supplied by the array to the load.

t

TABLE 4. RESULTS FROM SOLCEL SIMULATIONS

MODEL WITH
BASELINE MODEL WITH

PROBABILITY 15 MIN HOURLY TWICE PROBABILITY

PV OIRECT FRACTION .333 .339 .346 . 32;'

When array size is considered, and the probability of an active load is
increased, instantaneous load data. produce a significant decline in PV fractions
only for very small array sizes and unrealistically active loads. This effect is
displayed in figure 7. The probability of an active load was varied from 0.0
(use of 15-minute load data with 15-minute simulation time-step) to 1.0 (a
continuously active load between 5:30 a.m. and midnight with 15-second simulation
time-step). A probability of an active profile of 0.4 was considered an extreme
active case for load variability. This probability was extended to 1.0 to
investigate sensitivities. Array size was varied from 1 to 9 kW. For more
detailed discussion of these performar.ce comparisons, see reference 5.

.7 -

.6 -

pro 8. = 0.o

.5 -

' '
pro 8. = 1.0

PV DIRECT pgog, ,o,4
FRACTION .3 -

I

.2 -

.1 -

| o .

o 2 4 6 8 to

ARRAY OUTPUT (kW)

Figure. 7. PV Performance Versus Array Size for Various Probabilities
of an Active Profile
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. CONCLUSIONS'

A major finding of this project was the limited occurrence'of active instan-
taneous load . profiles. Results from the simulations for . typically sized PV
arrays and observed load activity -indicate- that. errors in annual PV system
performance- measures arising- from use of. time-average load data versus- instan- i1

-taneous load data are not-significant. Only extremely small PV arrays, where the
average load demand would approximately equal the PV output,-. lead to significant
over-estimation of the annual PV direct fraction by use of time-averaged load ,

data. These results are contrary to results from pre <fous probabilistic studies,
!, :which were not based on measured data. With the abundance of 15-minute time- -
| averaged residential load data that currently exists 'with. utilities, 15-minute
; load data is considered adequate for simulation and analysis of _~ annual perfor-

mance measures of residential PV systems.
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PRA UNCERTAINTIES AND THE ROLES OF SENSITIVITY I

AND UNCERTAINTY. ANALYSES

W. E. Vesely, Battelle Columbus Laboratories
D. M. Rasmuson, Division of Risk Analysis, NRC

ABSTRACT

W
o

-Seven categories of uncertainties are identified in a PRA and each
category is divided into subcategories to better differentiate the implica-
tions of the different types of uncertainties. In most PRA's, the majority of
uncertainties are not adequately treated or are not treated at all. By ele-
vating sensitivity analyses to a major role in a PRA, the PRA can become a

; more meaningful and credible information source for decision making. Uncer-

| tainty analyses can also be made more useful information sources than they are
now. The fact that PRAs allow uncertainties to be explicitly evaluated is a
unique strength of PRAs which needs to be explioted much more than it is now.

'

1.0 INTRODUCTION

i Probabilistic Risk Analysis, or PRA for short, has as its general
objective the quantification of risks from man-made and natural activities.

i The quantification of risk is achieved by calculating frequencies and cense-
quences of various accidents which can occur. PRA really started with
WASH-1400 (1), which quantified the risks from nuclear pow 2r plant accidents,
and today most effort in PRA is devoted to evaluating risks from nuclear power
plants. In referring to PRA's we shall thus mean nuclear power plant ~PRA's;
however, the discussions will be generally applicable to any PRA.

The usual application of a nuclear power plant PRA first involves
constructing accident scenarios (accident sequences) which define the specific
accidents to be considered. The accident scenarios consist of accident ini-
tiating events and safety system failures which must occur to produce signifi-

| cant consequences. The accident scenarios are defined by logic event trees.
I

|

i
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The frequencies of occurrence of the accidents and the consequences from the
accidents are quantified using reliability approaches, physical analyses, and
statistical analyses. In quantifying the accident frequencies, a variety of

| accident contributors are considered such as component failures, human errors,
. and environmental stresses. Various consequences are calculated, including
fatalities, radiation exposure, and property damage. The results from a PRA
include probability versus consequence distribution curves, from which various
characteristic risk values are derived such as the expected consequences from

an accident, Figure 1 illustrates the steps involved in a PRA. References,

(2,3) discuss in more detail the techniques and approaches which are used in a
! PRA.

Because of the lack of experimental data, the assumptions, models,
,

and data in a PRA involve a great deal of engineering assessments and subjec-
| tive judgements. Different analysts and experts sometimes have different

opinions on how likely accidents are and what the consequences will be. A PRA,

thus has considerable uncertainties associated with it, and these uncertain-
ties have sometimes caused controversy over the meaningfulness and interpreta-

tions of a PRA. Because there are various uncertainties associated with a
PRA, confusion often occurs when PRA uncertainties are discussed. The goal of

;

this paper is to differentiate the uncertainties which are associated with a,

PRA.;

AccordingtoWebster'sNew'CollegiafeDictionary,"unccrte.inty"is
the quality or state of being uncertain. " Uncertainty" in turn means
indefinite, indeterminate, not certain to occur, not reliable, not known

;

|
beyond doubt, not clearly identified, or not constant. " Uncertainty" is thus
a general term which can mean the quality or state of being random, or of
being unreliable, doubtful, vague, or. changeable.

Probabilistic risk analysis (PRA) has uncertainties with regard to
all the above meanings, and these different meanings are what often cause con-

fusion when PRA uncertainties are discussed. In this paper we define the dif-
ferent types of uncertainty which arise in a PRA. The different types of
uncertainties are quite different in nature and have different ramifications
on the results produced by a PRA.

|

e
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'
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ACCIDENT SEQUENCES
| ARE ANALYZED |
! '

'

U

PHYSICAL MODELS ARE USED TO Pressure
DETERMINE PHYSICAL CONDITIONS
GENERATED BY EACH SEQUENCE

THE PHYS CAL CONDITIONS
DETERMINE THE UNDESIRABLE
CONSEQUENCES TO THE PLANT
AND THE HARMFUL MATERIALS
RELEASED FROM THE PLANT

U
-

THE RELEASED MATERIALS ARE
TRANSPORTED TO THE SURROUNDING
ENVIRONMENT TO DETERMINE PHYSICAL
AND HEALTH CONSEQUENCES

1

I

FIGURE 1. THE BASIC STEPS IN A PRA

|
|
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:After categorizing the different types of uncertainties, we discuss

j the roles of uncertainty and sensitivity analyses in a PRA. Many PRA uncer-
tainties are not addressed by the usual uncertainty or sensitivity analyses
performed in a PRA. We suggest possible ways in which uncertainty analyses
can be made more complete and more useful.

| The paper is organized as follows. In the next section, Sec-
tion 2.0, we define the major types of uncertainty which exist in a PRA. In

I Section 3.0 we further categorize different types of uncertainty according to
their specific properties and impacts. In Section 4.0, we discuss uncertainty

analyses and sensitivity analyses and ways they can better contribute to the
usefulness of a PRA. Finally, in the section on conclusions and observations,
we comment on the present state of the art of uncertainty and sensitivity
analyses and needs which exist as we see them.

i

4

78

- , --. . - . .



_ _

2.0 THE MAJOR TYPES OF UNCERTAINTY

With regard to their.different ramifications, especially for PRA's,
! -we need to first of all distinguish between two major types of uncertainty:

1. Uncertainty due to physical variability
.and

.2. Uncertainty due to lack of knowledge.

Uncertainty due to physical variability is actual, random behavior;

in some physically measurable quantity. We can imagine an experiment being
conducted which produces a specific value of the quantity; when the experiment

j' is repeated, different values will be produced because'of some underlying
physical variability. " Experiment" is used in the general context and can
refer to an actual physical experiment, a specific scenario producing a speci-
fic value of some variable, or a given sample measurement having a specific

* value. Examples of uncertainty due to physical variability are variations in
weather, variations in stock market prices from one day to another, variations

,

in component failure times from one observation to another, and variations in
consequences from one accident to another. " Uncertainty due to experimental
variability" would thus be another label for this type of uncertainty. For

I case of reference, we shall call uncertainty due to physical variability
'' experimental uncertainty".

The second type of uncertainty, uncertainty due to lack of know-

f ledge, is quite different from experimental uncertainty. Uncertainty due to
| lack of knowledge is vagueness, indefiniteness, or imprecision in an analysis,

a stated conclusion, or stated value. The uncertainty exists because of ai

! lack of knowledge; if we had more information and more knowledge, the uncer-
tainty would decrease or would not exist. Examples of uncertainty due to lack

,

i of knowledge are uncertainties in the appropriateness of an economic model,

f uncertainties in a conclusion concerning the acceptability of a risk value,
! and uncertainties associated with an estimated value of a parameter. (Apara-
i meter is defined here to be an unknown constant.) We shall call uncertainties
| due to lack of knowledge, " knowledge uncertainty".

As indicated above, what differentiates experimental uncertainty:

from knowledge uncertainty is the impact that additional knowledge has. As
|

|
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:
.

we gain more knowledge, knowledge' uncertainty will decrease. However, as we
gain more knowledge, experimental uncertainty will not decrease; we will know
the variable behavior better and be able to quantify it more pracisely; how-<

ever, the variability itself.will not diminish.,

Variation in weather is a comon example of experimental variability
(the " experiment" here is~an observation on a given day, for example). As we
collect additional meteorological readings at a site, day to day temperatures
and day to day rainfall amounts will not vary less. However, as we collect

; more meteorological data, we may be able'to'more precisely estimate a fixed
parameter value in some weather model reducing our knowledge uncertainty about:

that' parameter value.
There is the' argument that if we had perfect, complete knowledge,

there would be no experimental uncertainty as well as no knowledge uncer-
,

tainty. We woulo nnow all the causes of physical and' random variations and

! would be able to precisely predict the value that will occur in the next
; experiment. However, this would not remove the variation from experiment to

experiment, even though under specific circumstances we might be able to con-
,

! trol the variation. Furthermore, perfect knowledge is an ideal state which is

f really never achieved. We therefore believe the differentiation between
experiment uncertainty and knowledge uncertainty to be meaningful and

,

important.
j Both Bayesian and classical statistics textbooks generally agree on
I the interpretation and analysis of experimental uncertainty. Experimental

uncertainty is assoc'ated with a random variable which can vary from experi-'

| ment to experiment; the probability of specific values of the random variable
is characterized by a sampling distribution. The variation in the values of

i- the random variable are viewed as being frequency based; the empirical proba-
' bility of an event for a finite number of experiments is defined as the

measured number of occurrences of the event divided by the number of experi-
ments conducted. As the number of trials increase, the empirical probability
approaches the true probability of the event. The set of repeated experiments
constitutes the " collective" in the terminology of von Mises, one of the
founders of the frequency based approach of statistics (4).

|
|

l

|
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|Knowledge uncertainty is more complex and more nebulous than experi-
J

mental uncertainty. Knowledge uncertainty consists not only of imprecision in |

parameter estin:ates, but also incompleteness in modeling and analysis, vague- i

ness in appropriate data values and data ranges, indefinitieness in the appli- ;

cability of the model, and doubtfulness and vagueness in the interpretability |
L
' of results produced by a model.

| Statistics, both Bayesian or classical, generally deal with only one
! specific type of knowledge uncertainty, the imprecision in an estimated para-

meter value. The imprecision is described by a confidence or probability
interval for the parameter which reflects uncertainty due to insufficient
numbers of measurements, and which assumes the data are appropriate and all

models are applicable and exactly known. The usual Bayesian and classical
statistical uncertainty analyses performed in PRA's treat only data impreci-
sions and their impacts on the PRA results. Consequently, a large portion of
the uncertainties which exist in a PRA are not considered by these uncertainty
analyses.

Some nonconventional statistic approaches have been developed for'

handling additional types of knowledge uncertainty (5), however, these
approaches generally have been limited in their application and are not used
in PRA's. In addition to the nonconventional statistical approaches, a theory
termed fuzzy set theory has undergone rapid development in the past several
years. Fuzzy set theory (6,7) attempts to address the various types of know-
ledge uncertainty which are r.ot addressed by conventional statistical

I approaches. In the following section, we will utilize fuzzy set theory
concepts, as well as statistical concepts when appropriate, to identify the

,

different types of uncertainty which exist in a PRA.

;

,

I

>
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e - A 3.0 THEDIFFERENTOPESOFUNCERTAINTIESINAPRA
_

-
,. + -

3.

Thef1EEE/ANSPRAPrecedure7 Guide (2)identifiedthreegeneraltypes
_

- -ofuncertaintieswhichexistisa'PftA: completeness uncertainty, modeling ;

uncertainty,'and dati uncertaintp. Completeness uncertainty generally refers I
'

b td uncertainty.in identifying al lthe elements and contributors to risk."

Model1[funcertaint7ganerallyreferstouncertaintyintheappropriatenessof |

the mode'Is use'd in a PRA. #'Eata. uncertainty refeIs to uncertainty in the para-

; metervaluesinnttoaPRA. ;

Thesethfeetypesof;uncertaintiesgenerallyrefertodifferent
;

|. types-of knowledge uncertainties; however, experimental uncertainties can also
i Wincludedinsomecases. It is useful to expand these three uncertainty !

'

;
_

[ ~ types into finer categories to better characterire the uncertainties which
!

~

Exist in a PRA. The expanded categories will allow more specific investiga-
x %

tion o( the ramifications of the different uncertainties. Table 1 gives the
,

i expanded categories of uncertainties which we have identified.

| 'J ~ U IU Table 1, seven major categories'of uncertainties are identified,

.,
Sith each category divided into subcategories where necessary for further

i specification. The seven categories are: (1)datauncertainties,(2) analyst
unce'rtainties,'(3)modelinguncertainties,(4)completenessuncertainties,(5)

j frequene.y ur.ceptainites, (6) consequence uncertainties, and (7) interpretatior. ;

,
uncertaintiest Thesesevencategories,goinhfromCategory1toCategory7, !

represent a progression'from PRA input uncertainties to higher level uncer-
'

~

tainties associated with'PRA results. Even though particularly applied to a
~PRW, we be~1ieve these categeries are generally applicable to any modeling |

,

| ; exercice. We now briefly discuss'the different categories and subcategories <

~

| of uncertainties.
! %

.

Data Uncertainties i

v . ,c. -~
,

We begin with data uncertair. ties since they are generally the uncer-
tainties which are treated in a PRA. Data uncertainties refer to uncertain-
ties in the parameteis which are' input-to a PRA. The parameters include those

,

constants' which are u' sed in estimating the frequency of different accidents
~ x.c

!p
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|

TABLE 1. CLASSIFICATION OF PRA UNCERTAINTIES

Category Subcategory General Type

.

1. Data Variation in parameter values from Experimental
Uncertainties one population to another Uncertainty

Imprecision in estimated parameter Knowledge
values Uncertainty

;

Vagueness in parameter values or Knowledge
parameter ranges Uncertainty

Iadefiniteness in applicability of data Knowledge
Uncertaintyd

2. Analyst Variation in results from analyst to Knowledge; '

Uncertainties analyst Uncertainty

3. Modeling Indefiniteness in the comprehensive- Knowledge
i Uncertainties ness of the model Uncertainty

Indefiniteness in the characteriza- Knowledge
:

i tions used in the model Uncertainty
i

4. Completeness. Indefiniteness as to whether all Knowledge
! Uncertainties significant contributors are included Uncertainty

Indefiniteness as to whether the contri- Knowledge
butors are included in the proper context Uncertainty
and in the correct relative manner

|
? 5. Frequency Variation in the occurrence frequency Experimental

Uncertainties from one accident to another Uncertainty

Uncertainty in the occurrence frequency of Knowledge
' of a given accident resulting from data, Uncertainty '

analyst modeling, and completeness
uncertainties

:
'

6. Consequence Variation in consequences from one Experimental
Uncertainties accident to another Uncerte tyn

; Uncertainty in the consequences of a given Knowledge
' accident resulting from data, analyst Uncertainty

modeling, and completeness uncertainties
,

| 7. Interpretation Doubtfulness or vagueness in the inter- Knowledge
Uncertainties pretability of the results produced by Uncertainty

the analysis
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-and those constants which are used in' estimating the consequences of the acci-

dents. yTable 2 lists various paraweters which are input to the likelihood and
consequen'ce evaluations in a PRA.'

The data uncertainty category consists of four subcategories (1)

[ ' population variations -(2)' imprecisions in values, (3) vagueness in values, |
and-(4) indefiniteness in applicability. Population variation occurs when the

,

.

parameters vary from scenario to' scenario within the analyses; the variation
,

Engen$rallybeIelatedtophysicalcauses.U1he parameters may vary over
time, or over different spatial regions, or over different individuals. The
p'ar'ametersbecomerandomvariableiwhichassumedifferentvaluesunderthese
'different situations. Eenweahumetheparametersareconstants,weignore,

'these variations. For example, in PRA's, component failure rates are

, enerally treated as bein'g constant' over time and over similar components,g
,

i however, more comprehensive modeling would allow the failure rates to randomly
' vary with time, with the system in which the component is located, and with

; theuniqueenvironmenteiperiencedbythecomponent. This type of uncertainty
: is not adequately treated by PRA's, or at most is treated in a very limited

manner.
i The second type of data uncertainty, parameter imprecision, occurs

when limited measur uents are only available to estimate the parameter values.
I This is the type of data uncertainty which is standardly treated by statis-

,

I jicalanalysis,eitherBayesianorclassical. Assuming the measurements are
completely applicable, and assuming an exactly known given probability distrI-

,bution (likelihood) for the occurrence of the measurements, a confidence
interval or probability distribution (a sampling distribution or posterior1

| ' distribution) is then derived to describe the imprecision in the parameter

| value inferred from the measurements. The confidence interv'als or distribu-
tions ape then propagated through the PRA to obtain the corresponding inter-
vals or distributions on the PRA results. Data imprecisions are generally the
uncertainties, and the only uncertainties, which are quantified and propagated
inPRAuncertaiStnanalyses.

'

The third type of dats' uncertainty, parameter vagueness, is dif-
ferent from parameter imprecision and is the type of uncertainty which is
addressed by fuzzy set theory. Parameter vagueness refers to the situation
where definitive values or definitive intervals are not able to be assigned to

84
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TABLE 2. PARAMETERS UTILIZED IN A PRA EVALUATION
L

,
-

' Frequency Parameters-

Frequencies of Accident Initiating Events
Component Failure Rates
Human Error Rates
Dependent Failure Probabilities (e.g., beta factors)
Test intervals and Durations

~

Maintenance . Intervals and Durations

In-Plant Consequences Parameters

Number of compartments for the containment; initia1' temperatures,
pressures, humidities, and dimensions of the compartments

'

Densities, heat capacities, and thermal conductivities of the heat sinks

Thickness, density, thermal conductivity, and' initial temperature of
containment floor

| Flow rates, shutoff pressures, and failure temperatures ~of coolant pumps
.

"

Flow rate, water temperature, and spray drop diameter-.of spray system'

Active fuel height, mass of V0 , fuel-pellet diameter, hydraulic2
4

diameter, cladding thickness
'

Heat capacity, temperatures..and heat transfer' area of vessel structures.
.

4 Ex-Plant Consequence Parameters

Inventories of all radionuclides at the time of the accident

Time and duration of radioactive releases, warning time for evacuation'

Elevation buoyancy ar.d duration of releases

Particle sizes and chemical properties of the released radionuclides

, _ Meteorological data; hourly wind speed, duration, stability category,
precipitation index:

.

'

Population density, evaluation speed, dry-deposition velocity
.

Value of land, relocation costs, decontamination costs

I

i 3
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a' parameter; in fuzzy set theory this is often described as not being able to
assign " crisp" values and intervals-(6). No one "best"_ estimate is.able to be
' assigned to a-parameter..or if an interval.is' ascribed for a parameter, one is
not~able to assign 75 percent, 90 percent, 99 percent, or some other definite

j- confidence value or probability value to the interval. Parameter vagueness
| may arise from a variety of causes. ~The conditions under which the data were

.

' ' collected may not be exactly known. Prior knowledge (such as the prior-dis-
tribution) about the parameter may be fuzzy and only partially quantificble; <;

-for example, e fuzzy range for the parameter may only be specifiable. Para-
. meter vagueness is a comon situation in PRA's and what one generally does is
ignore the-vagueness and to assume some well-defined best estimate, probabil-

ity interval, and associated probability distribution. Parameter vagueness is
; thus not treated in PRAs and this vagueness can significantly increase the

data uncertainties now assessed in current-PRA's.
The final type of data uncertainty, parameter applicability, refers

to extrapolation of the parameter values to the specific situations'in the
analyses. The available data bases or measurements may pertain to different

j situations than those being analyzed, or' general (generic) parameter values
; may only exist which need to be specialized to the given situation. An

| example where applicability uncertainty arises is extrapolating component
failure data for normal environments to accident environments. Another

,

example is extrapolating human behavior on plant simulators to behavior in
actual accident situations. Available data may be precise but not very
applicable.

When applicable, plant specific data does not exist for a PRA then
generic data is often used. In current PRA's, " generic data" is a nebulous
term which means data representative of some class. The con titutuency of the
class is not well defined or is rather arbitrarily described by some assumed
probability distribution. The relevance of the~ class-averaged data or class
description to the particular case being evaluated is not generally addressed.-
The individual case, such as an individual component, is assumed to be the
same as the average or median of the ill-defined class. Alternatively the
individual case is assumed to be a random selection from the class with some
rather arbitrarily assumed distribution. Uncertainties due to applicability

,

f are thus not treated in PRAs or are glossed over.
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Analyst Uncertainty:

' Analyst uncertainty is the second major category _of uncertainty
,

which we'have identified, and refers to the variation which exists in PRA

| modeling.and quantification due to individual analyst interpretations.
|

Analyst uncertainty is sometimes lumped with data uncertainty, however, it is|

a separate uncertainty contribution.- Given the same problem and same basic
information, there will be variation in the results among different analysts

;

; (different_PRA teams) because of their'different analysis framework. There is
i a potential for large variations because of the latitude afforded by sparse
! data and sparse experience on-accident occurrences.- We categorize this type

of uncertainty as a knowledge experimental uncertainty. This uncertainty is
not addressed in current PRA's; it can be a significant uncertainty contribu--
tion in comparing PRA's performed by different analysts even with supposedlyt

^

the same ground rules on the PRAs.-

Modeling Uncertainties.

! The third major category of uncertainties, modeling uncertainties,
refers to uncertainties in the applicability and precision of the models which-

are used in a PRA. Numerous models are utilized in a PRA to model initiating
event occurrences, safety system and component failures, human errors, physi-

1
' cal phenomena which are associated with an accident, containment and miti-
i gating system behavior, radiological transport, and health effects and other

consequences which result from the accidents. Table 3 lists models which are'

j utilized in a-PRA.
We have divided modeling uncertainty into two subcategories:

(1) indefiniteness in the model's comprehensiveness, and (2) indefiniteness in-

the model's characterizations.

|
Indefiniteness in model comprehensiveness refers to the uncertainty

as to whether the model accounts for all the variables which can significantly
;

affect the results. For example, in modeling operator response in an acci-
, dent, the question arises as to whether all the performance shaping factors

are considered which can significantly affect the operator's behavior. In

( modeling the stresses which are exerted on the reactor containment, the
i
I

~
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TABLE 3. MODELS UTILIZED IN A PRA4

Frequency Models-
.g.

Accident Occurrence Models |

Component Failure Models !
System Failure Models '

Human Response and Failure Models
Testing and Maintenance Models-
Fire Propagation.Models
Seismic Response and Fragility Models
Flood and High Wind Models

Implant Consequence Models

Meltdown Thermal Hydraulics Models
Radionuclide Release Models
Steam Explosion Models
Hydrogen Combustion Models
Containment Response Models
Radionuclide Transport Models
Containment Failure Mode Models

' Ex-Plant Models

Atmospheric Dispersion Models
Cloud Depletion Models
Ground Contamination Models
Dosimetry Models
Evaluation Models
Health Effecte Models'

Property Damage Models

|

|

>
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I. . question arises as to whether all the pertinent phenomena are considered wich
. can result in high containment pressure.

Indefiniteness in model characterization refers to the uncertainties
in the relations and descriptions used in the model. Even if the pertinent
variables are included in the model, appropriate relationships among the vari-
ables may not be described. Are the phenomena treat.ed to sufficient detail to

| allow meaningful results to be obtained? Are the phenomena meaningfully char-
acterized in the model? Should the phenomena be treated in a probabilistic or
deterministic fashion? How are failures' defined? Should the variables be

f treated as random variables or as parameters? These are all questions which
affect the uncertainty in the model's characterizations. Modeling uncertain-
ties in general are not well addressed in a PRA and it is our experience that

' they are as important or more important than data uncertainties.

~

Completeness Uncertainties

The fourth major category of uncertainties is completeness uncer-'

tainties. Completeness uncertainties are the uncertainties as to whether all
,

the significant phenomena and all the significant relationships have been con-;

| sidered in the PRA. Completeness uncertainties are similar in~ nature to
'

modeling uncertainties but occur at the initial, identification stage in the
'

PRA. To perform a PRA, we must first ask what risks are to be considered,
what types of accidents are to be considered,'and what types of accident con-
tributors are to be considered. These questions relate to completeness uncer-

| tainties. The selection of models to then produce the accident probabilities
! and accident consequences relates to modeling uncertainties.

There are two subcategories of completeness uncertainties, (1) con-
tributoruncertainties,and(2)relationshipuncertainties. Centributor
uncertainties refer to the uncertainty as to whether all the pertinent risks
and all the important accidents have been included. Relationship uncertain-
ties refer to the uncertainty as to whether all the significant relationships,

are identified which exist among the contributors and variables. Table 4
'

gives a more detailed breakdown of items which need to be considered under
completeness-contributor uncertainties and those which need to be considered'

' under completeness-relationship uncertainties. |
'

|
'

.
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TABLE 4. ELEMENTS IMPACTING COMPLETENESS UNCERTAINTY

Elements Impacting Contributor Uncertainty
.

1The completeness of the accident initiating events
The completeness of system and component failure. states.

The completeness of human responses

The completeness of the causes of system and component failures
The completeness of physical processes involved in core-meltdown

The completeness of hydrogen burning phenomena

! The canpleteness of phenomena impacting radionuclide transport
The conpleteness of consequences and health treated effects.-

-

Elements Impacting Relationship Uncertainty
.

The completeness of interactions defined between the initiating event and
system failures-

The completeness of interactions among system failures, component
,

failures, and human errors
,

I The completeness of interactions between system failures and physical
j processes

The completeness of interactions among in-vassel and out-of vessel
i phenomena
j

! The completeness of interactions among radionuclide transport processes

The conpleteness of interactions among consequences and health effects.

90
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| Completeness uncertainty acts as a constraint and limitation on a
PRA. The PRA evaluates the risk from only those accident scenarios which are
identified. These will never be exhaustive nor.will the analyses ever be com-
pletely comprehensive. Ways thus need to be devised to utilize PRAs which are
consonant with their strengths and weaknesses and which account for their
possible incompletenesses. If high risk contributors are not found then it

( may be due to the incompleteness of the PRA. Completeness. uncertainties are
thus as important as modeling and data uncertainties and especially so when
low risk numbers are calculated.

Frequency Uncertainties

Thelastthreecategoriesofuncertainties--(5)frequencyuncer-
tainties, (6) consequence uncertainties, and (7) interpretation uncertainties
deal with uncertainties in PRA outputs and results. Frequency uncertainties

'

are uncertainties associated with the accident probabilities and accident fre-
quencies produced by a PRA. The frequency uncertainties result from the data,
analyst, modeling, and completeness uncertainties which were previously dis-
cussed and which propagate through the PRA to the calculated accident proba-
bilities and frequencies.

Frequency uncertainties are divided into two subcategories, accident
to accident variations which comprise experimental uncertainties, and know-
ledge uncertainties in the estimated frequency of any given accident. Acci-
dent to accident variations are the differences in accident frequencies which
are due to the different events involved in different accidents. In most
PRA's, a finite number of accidents are considered and the variation in acci-

dent frequency is represented as a histogram or smoothed curve of frequency
versus accident description. Variations in parameter values which are physi-
cally caused (i.e., experimental, data uncertainties), contribute to the acci-
dent to accident variation. By treating certain random variables in the acci-
dents as fixed constants, the accident variation is artifically truncated;
however, compared to other uncertainties, PRA's handle this type of uncer-
tainty reasonably well for those accidents identified.

| 91
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Frequency uncertainties due to lack of knowledge arise from know-
ledge uncertainties in data,'modeling, and completeness; analyst to analyst
variations also contribute. In PRA's, imprecisions in data (parameters) are
generally the only uncertainties which are propagated through the analysis to
obtain frequency uncertainties due to lack of knowledge. The other date
uncertainties, analyst uncertainties, modeling uncertainties, and completeness
uncertainties which are generally not addressed, all contribute as much or
more uncertainty in most problems.

Consequence Uncertainties

' Consequence uncertainties are similar in nature to frequency.uncer-
tainties and consist of accident to accident variations and lack of knowledge4

uncertainties. The accident to accident variations are physical variations in
consequences due to the different events and physical realizations of vari-
ables which occur. The knowledge uncertainties are uncertainties in the con-
sequences of any given accident due to data, analyst, modeling, and complete-'

ness uncertainties. Like the frequency uncertainties, most PRAs only estimate
the uncertainties which are due to parameter imprecisions, which is in many,
if not most, PRAs not the dominant contributor. Figure 2 illustrates the fre-
quency and conseqence uncertainties as applied to a PRA-calculated " risk
curve", i.e., a complete cumulative distribution of frequency versus
consequences.

Interpretation Uncertainties

Interpretation or implementation uncertainty is the last uncertainty
I category. Interpretation uncertainty is the uncertainty the decision maker,

manager, or the public has in understanding and utilizing PRA results. This
uncertainty is as real as the other uncertainties. The user of PRA results,
or the intended audience toward which a PRA is directed, is not in general the
same as the individuals who were involved in performing the PRA. The transfer

of knowledge from the doer to the user involves a loss of information and
introduces additional uncertainties.

|
t
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The connunication of information in a PRA is not given near the

!
attention it should. Obtuse tables, abstract distribution curves, and uncoded

' computer printouts are produced in abundance in a typical PRA report. Page
after page of the report is filled with technical details which serve as an
obstacle to understanding. What makes matters worse is that a full scale PRA
often results in more than a 1000 pages of report. The format of a typical

,

'' PRA is a maze; we.know, since we've had to review numerous PRAs and have tried

to retrieve information from them.

$ FREQUENCY KNOWLEDGE
S UNCERTAINTY%

g 's1

5 Ns,

\ \ VARIATION IN FREQUENCY AND\.g g CONSEQUENCE FROM ACCIDENT

Q \ TO ACCIDENT
*

i 5 \
: % \ N

E \ N"' \ \\
E \ \

CONSEQUENCE KNOWLEDGE=

h { ~\ UNCERTAINTY
\: sa s \

3 \ \

E \ \
E \ \
E \ \

\
'

s \
f f \ \

5 \ \\ 1
:

.

'

FIGURE 2. FREQUENCY AND CONSEQUENCE UNCERTAINTIES

|

|
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4.0 SENSITIVITY AND UNCERTAINTY ANALYSES

[- i

Sensitivity and uncertainty analyses are analyses performed to |

! investigate the impacts of uncertainties in PRA assumptions, models, and data.
: Sensitivity and uncertainty analyses are similar in that they both have as a

general objective the evaluation of variations in the results (output) which
i can occur because of. variations in the assumptions, models, and data (input).

Even though they have a similar.. general objective, the two analyses are dif-
ferent in the approaches they use and the information they supply. Sensitiv '
ity and uncertainty analyses are not exploited enough in a typical PRA; when-

fully utilized, sensitivity and uncertainty analyses can provide a rich
1

variety of information which can significantly increase che usefulness and
credibility of a PRA.

!

| Sensitivity Analyses

Sensitivity analysis is the most straightforward of the two types of
analyses and involves changing one or more of the inputs and determining the
resulting changes in the PRA output. Sensitivity analyses can involve

;

j. changing the inputs one at a time, two at a time, up to all at a time. The
inputs changed are those deemed most subject to possible variations and uncer-

| tainties. Multiple inputs are simultaneously changed if they are thought to

( be related, for example due to dependencies or if large interactions due to
l the simultaneous changes are suspected. A set of inputs could also be simul-

taneously changed if the set of modified values represented a conservative or
optimistic bound on the PRA evaluation.

The size of the input change depends upon the focus of the sensiti-
vity study. Larger changes in the inputs are generally used to represent
bounding cases or alternative hypotheses; conservative or optimistic results

! are often obtained. Small changes are used in local sensitivity studies. For
these local sensitivity studies, partial derivatives of the output with regard
to one or more of the inputs are often used to characterize the output sensi-

! tivities. Taylor series or response surfaces can also used to represent the

,

output variations in the vicinity of some nominal input value set.

94
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We regard importance evaluations as a part of sensitivity analyses.
Importance evaluations identify the "importance" or contribution of inputs to
the output results. The.importances of inputs are generally obtained by
determining.the changes in outputs which result from prescribed changes in '

inputs. In this regard, they are thus types of sensitivity analyses. Impor-
I tance evaluations in PRAs are discussed in more detail in References'8 and 9.
i Figure 3 illustrates formats of systematic sensitivity analyses that
! can be instituted as part of a PRA. In each sensitivity analyses table, a

'specific assumption, model, piece of data, or combination of inputs, is modi-
fied in the left column and the impact on the PRA calculated likelihood and/or
consequence is described in the table. Core melt frequency impacts, radio-

,

'

active release impacts, early fatality impacts, latent fatality impacts, and
; property damage impacts can be specifically identified and can form the table

[ headings across the top of the table.
; The size of impacts in the tables can be determined from the sensi-

tivity calculations which are performed. The impacts can also be coded; for

i example, high, medium, and low with associated ranges of values could be
i assigned if impacts are subjectively estimated. The direction of the impact,

as to whether the result is increased or decreased, can also be identified'

(sometimes called the downside and upside impacts). Table 5 gives examples of
j the specific sensitivity analyses which can be performed in a PRA and the

results shown in a codified table such as in Figure 3. These sensitivity
analyses would substantially increase the information provided by the PRA.
This list is certainly not complete and can be supplemented by additional

} studies for particular implementations.
i

Uncertainty Analyses

!

Uncertainty analysis is different from sensitivity analysis in that
uncertainty analyses attempts to describe the likelihood for different size
variations while sensitivity analyses does not. The description of the like-

,

lihood of different variation can be carried out formally using classical
I statistics, Bayesian statistics, or fuzzy set theory, or can be carried out
,

' informally using qualitative descriptors such as describing "likely" ranges
for values.

i

|
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TABLE 5. EXAMPLES OF SENSITIVITY ANALYSES

11

1. Change system failure definitions where relevant according to regulatory
definitions and according to best estimate definitions.

2. Assume the probability of the second and subs.equent human errors to be-

i unity for moderate or highly coupled human actions according to NUREG/CR-
1278(10). This would show the impact of multiple human errors comitted
due to conmon procedural errors or "mindsets".

;

3. Assume the probability of the second and subsequent component failures to
be unity for those components of the same generic type which are under a

! conson maintenance or testing program. This would show the potential
impacts of systematic maintenance or testing deficiencies.

4

4. Change all priors used in Bayesian analyses to likelihood-dominated
priors (essentially flat priors on a linear or log scale) to show the
impacts of a priori assumptions on data.'

] 5. Calculate quantitative importances of individual components, human

j actions, test and maintenance activities, and systems.
1

i
6. Increase all human error rates associated with maintenance by a factor of

j 2 to 3 to show the impact of increased maintenance error frequency.
;

7. Change occurrence frequencies, frag 111 ties, and responses in seismic risk
)

analyses to show the impacts of design, operation, and modeling effects;

{ calculate quantitative importances for all the various contributors.

I

i

4
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The formal uncertainty approaches are more attractive in that they
explicitly quantify the uncertainties and the contribution to the uncertainty.
However, these formal approaches require distributions (functions) to be
assigned to quantify the likelihood of individual values being realized. For
classical statistic approaches, sampling distributions are required.* For

' Bayesian statistics, prior distributions are required. For fuzzy set theory,
membership functions are required. In performing the formal uncertainty

j analyses, the uncertainty distributions are assigned to input variables and
i are propagated through the PRA analyses to obtain uncertainty distributions on

the output results.
The assignment of distributions in formal uncertainty analyses is a1

problem since it can involve as much uncertainty as that to be quantified.

.

The assigned uncertainty distributions, particularly for Bayesian and fuzzy
set analyses, have little empirical basis and indicate more the subjective

! viewpoints of the PRA analyst.

| The PRA analyst generally selects specific distributions (e.g.,
' discrete log normal) for formal uncertainty analyses based on his own personal
; rationale and thus wrongl.y places himself in the position of the decision

maker. We support the philosoply of 1.eamer (11), which interpreted in a PRA
context says that a PRA uncertainty analyses should provide a mapping to show <

| how different decision-maker viewpoints are transformed by the PRA to updated
l or posterior assessments. At a minimum this means using different prior dis-

tributions in sensitivity studies to show their impacts on the PRA results
derived.

| With the present state of the art only data uncertainties, and
specifically data imprecisions, are treatable by formal classical and Bayesian
uncertainty analyses approaches. Data uncertainty is however only one of the
many uncertainties which exist in a PRA--an important uncertainty but only one
uncertainty.

,

* Classical confidence intervals can also be utilized, however, they
require the same type of information.

!
:
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Fuzzy set theory has potential but has not been applied to PRAs.
Informal uncertainty analyses approaches can be useful, but sufficient work
has not been performed to understand and codify their applications. Formal
uncertainty analyses approaches also have potential applicability to the other
categories of uncertainties which exist in a PRA, but at the present time this
is a potential and not a realization.

|Consequently, the majority of uncertainties in a PRA can at the
present time be treated only by sensitivity analyses which necessarily must
form a critical supplement to uncertainty analyses. Table 6 lists the uncer-
tainties which we have identified in a PRA and the type of analyses, uncer-
tainty or sensitivity analyses, which presently is available to address the
uncertainty. In Table 6, uncertainty analyses is restricted to either classi-
cal or Bayesian statistical analyses since fuzzy set theory has not yet been
applied to PRAs. Wherever uncertainty analyses appears by itself in Table 6
it can of course be replaced or be supplemented by sensitivity analyses. As
observed in the table sensitivity analyses clearly predominates as the most
relevant technique.

I ,

.

(

4
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TABLE 6. APPROACHES AVAILA8LE TO ADDRESS PRA UNCERTAINTIES
,

"

Available
Category Subcategory Approach

1. Data Variation in parameter values from Uncertainty;

Uncertainties one population to another Analyses

Imprecision in estimated parameter Uncertainty
,

~

values Analyses

Vagueness in parameter values or Sensitivity
' parameter ranges Analyses

: Indefiniteness in applicability of data Sensitivity
Analyses

2. Analyst Variation in results from analyst to Sensitivity
Uncertainties analyst Analyses

! 3. Modeling Indefiniteness in the comprehensive- Sensitivity
Uncertainties ness of the model Analyses:

Indefiniteness in the characteriza- Sensitivity
tions used in the model Analyses,

1

4. Completeness Indefiniteness as to whether all Sensitivity
; Uncertainties significant contributors are included Analyses

Indefiniteness as to whether the contri- Sensitivity
butors are included in the proper context Analyses

; and in the correct relative manner
;

j 5. Frequency Variation in the occurrence frequency Uncertainty
Uncertainties from one accident to another Analyses

Uncertainty in the occurrence frequency of Sensicivity;

of a given accident resulting from data, Analyses
i analyst modeling, and completeness -

i uncertainties !

! 6. Consequence Variation in consequences from one Uncertainty
| Uncertainties accident to another Analyses
!

; Uncertainty in the consequences of a given Sensitivity
' accident resulting from data, analyst Analyses

|
modeling, and completeness uncertainties

| 7. Interpretation Doubtfulness or vagueness in the inter- Sensitivity
i Uncertainties pretability of the results produced by Analyses

the analysis <

mu
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5.0 SUMMARIZATIONS AND CONCLUSIONS

Seven categories of uncertainties have been identified in a PRA:
(1) data uncertainties, (2) analyst uncertainties, (3) modeling uncertainties,
(4) completeness uncertainties, (5) frequency uncertainties, (6) consequence

;. uncertainties,and(7)interpretationuncertainties. The first four cate-
! gories represent input uncertainties and the last three represent output and

implementation uncertainties. These different uncertainties have different'

j ramifications in a PRA and they all are important.

|
In most PRAs, the majority of uncertainties which we have identified

are not adequately treated, and in fact, are not likely to be treated at all.i

! Inadequate sensitivity analyses are performed in a PRA and if they are per- |

formed they are rather unorganized and subjugated to a minor role. When
ancertainty analyses are performed in a PRA they are narrowly focused with I

I assumed distributions and with the analyst playing the role of decision-maker.
i We believe sensitivity analyses need to be elevated to a major role
j in a PRA. The information provided by sensitivity analyses can be as useful

or even more useful than the bottom-line probabilities and consequences which

! are calculated in a PRA. We believe a PRA uncertainty analysis needs to pro-

[ vide a mapping to show how different a priori decision-maker assessments are

| transformed by the PRAs; at minimum this means using different priors for

| Bayesian analyses.

) Because of the different uncertainties whici) exist in a PRA, sensi-
tivity analyses need to importantly supplement formal uncertainty analyses

] which are performed in a PRA. We think the systemization and codification of
sensitivity and uncertainty analyses on a PRA needs significant attention. As
importantly, the results of these studies need to be presented in a format
understandable to the decision-maker.

! With regard to research, we think additional uncertainty analyses

{ approaches, both formal and informal, need to be developed to address the
! range of PRA uncertainties which exist in a PRA. As an important part of this
i research, practical ways of utilizing uncertainty information in decision-

| making needs to be identified. Through these efforts, we believe PRAs will
become more meaningful and credible information sources for decision-making.

,

1
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The uncertainties which occur in a PRA are not different from those
which occur in other types of safety analyses or other analyses in general.
PRA uncertainties have been the focus of much attention and much criticism
because they tend to be more apparent than in other approaches which tend to
obscure the involved assumptions and uncertainties. The fact that PRAs allow
uncertainties and their impacts to be made evident is a unique strength nf
PRAs, not a weakness. This strength needs to be exploited and we feel this
can be done by pursuing the directions discussed in this paper.

,

,
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UNCERTAINTY ANALYSIS: GOOD NEWSJAND BAD NEWS

R. J. Beckman and D. W. Whiteman
Los Alamos National Laboratory.

.P. O. Box.1663
!' Los Alamos,sNew Mexico 87545
;

~ Abstract'

;;

The good'and bad characteristics of three methods of uncertainty analysis,
propagation of errors, techniques for- changing the input distribution, and
- Latin Hypercube Sampling, are investigated. For fault, tree analysis, Monte39 .

- Carlo is shown' to be the best technique. .However, nagging questions about the
'

appropiateness of placing distributions on the input variables may render the
; technique useless. Two methods are given for changing the input- distributions

to a large computer code, but in some cases these methods are shown to be

[ inefficient. .Unbiasedness in Latin Hypercube Sampling is shown to be induced;
j hy random selection of the design matrix, and the most efficient designs are
; not relat;ed to the monotonicity of the function.

!
I. Introduction

.t-
3 .. -

; Propagation of errors through fault trees, methods for investigating the
sensitivity of the output variables to changes in the input variables and Latin
Hypercube Sampling are methods commonly employed in uncertainty analysis. The
good characteristics of these methods have for the most part.been well docu--4

mented by the originators and in applications. On the other hand, apparent
severe drawbacks with each have been generally ignored or dismissed. The pur-

| pose of this manuscript is to critique these three techniques of uncertainty -
- analysis; showing both the good and had characteristics of each.

4

i Uncertainty analysis is viewed in two ways. The first is. error analysis
3 in which'the variances or " errors" in the inputs to a compute r ' code are

| propagated by various methods to obtain the errors in the _ output variables.
^

The second is sensitivity analysis where the investigator deduces the most im-
j, portant input variables in terms of increasing the " errors" in the output- -

i variables. While these two analyses n're related their objectives are com-

! plately different, and as such require different techniques,' and while some

| techniques are appropriate for one type of analysis they may not be appropriate
: for the other. For each method investigated the type of analysis; either error.

or sensitivity, for which the method was developed will he stated.

; In section 2, methods are investigated for the propagation of errors
through given fault trees. Methods for the propagation of errors in the dis-

! tribution ' functions of the input variables is given in section 3, while Latin y,
Hypercube sampling is investigated in section 4

j II. Propagation of Errors in Fault Trees.
_

In a study by Martz, -Beckman, Campbell, Whiteman and Booker, various
methods were investigated for the propagation of errors in coupled nuclear
power plant safety system fault tree models for the Arkansas Nuclear One Unit 1

.
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.(ANO-1) power plant. Fault trees models were constructed for the front-fine
safety system and were analyzed by Sandia Laboratories using the SETS code -to
produce a Boolean expression in terms of the minimal cut sets. An example, of
a fault rree, the two out of three monitoring system found in Henley and

3
Kumamoto is'given in Figure 1. The Boolean expression for the system un-,

availability for this model is

P, = P Pg2+PP23+ ppg 3 I23#~
*

where P is the component unavailability. Martz et. al. assumed that the
uncert inty in the basic event probabilities, P could be represented by a
probability distribution, and that these uncertaintke,s could be propagated to
obtain the uncertainty in-the overall system unavailability probability P .

The methods investigated error for. propagation were: (1) the method of
moments where the _ distribution f or - the top event was either the same as the
basic events (MM), normal (MM-N), or lognormal (MM-LN), (2) the nethod of mo-s

ments .using Tchebyshev's inequality (MM-Tj), (3) propagation by discrete
-probability distributions (DPP) of Kaplin and'(4) Monte Carlo, (MC).,

Comparisons across the four schemes are f acilitated by box plots which are
defined in Figure 2 and illustrated for a typical fault tree in Figures 3 and
4. The " truth" was determined by a large scale Monte Carlo simulation. The
figures show the only reliable method of propagation to be Monte Carlo. The

' " good news" f rom this study is: given the " Boolean" expression for the fault
trees, Monte Carlo produced the best results and these simulations can be ac-
complished in a finite amount of time using a $3000 home computer. The " bad
new" from the study concerns the assumptions. If only 'he first two momentst

are assumed known and no other assumotions are nade about the form of the dis-
tribution, the best that can be done in estimating the unavailability
percentiles is given by the Tchebyshev inequality. These bounds could be very
conservative for the upper percentiles.

III. Changing the Input Distribution

Many time investigators desire to change the distribution of the inputs of
large scale Monte Carlo computer codes. , Due to cost constraints however, these
computer runs are rarely made, and thus one is unsure of the sensitivity of
the output to the distribution of the input.

The good news is that two techniques which permit the investigator to
,

change the input distributions without terunning the code have been developed.
The first method (I) is a weighting method, like importance sampling, which
gives unbiased estimates of functions of the output variables. The second,

technique (II) involves a random selection of the existing input data which
,

changes the distribution of the output.
:

Let the input variables X = 1,2,... n have density f(x ) and suppose that
h(X ). Also suppose that O = E (g*(Y)) =

g
the output variable Y' =

g f fF {l/Eg(Y )} is the parameter to estimated. Then under density f
f

n a

E(g*(Y)}=h[i=1-=,f g(y )f(x ) dx .
f

1

-
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' An unbiased estimator of the paraneter 67 when the X come from density I(x),
can be obtained by weighting g(Y ) by w = f(x )/f(x ). That is

g g g

g,(Y) = 1 I w g(Y ).g g
1

Then, since

E(wg(Y))=[ w g(y )f(x)dx = g(y )I(x)dx = E7 (g(Y )) ,

g g

g,(Y) is an udblased estinetor of E (g*(Y)).7

A second method for changing the input distribution involves discarding
pairs of (x ,y ) leaving x with the "pseudodensity" I(x). Let M be a uniform1 g g
bound (if one exists) for the. ratio f(x)/f(x) < M. Also let the random vari-
chle V given X = x have a uniform distribution between 0 and (Mf(x)). Then x1
and the corresponding value of y are retained in the sample if the realization-

fv of V/X is less than f (x )/Mf(x ). Letting X* = x if x is selected then
g g g g

Pr{X* < x} = Pr{X* < x and X* = x }/Pr(X* = x }g,

f f(x) + Mf(x) dx / [ "Mf(x)
* * * dx=

, ,

x

=f I(x) dx = Y(x).
-

Hence, the selected X have I as a density.

At this time little is known of the properties of these two schemes.
However, some unfavorable characteristics of them are evident. First, for
Method I, the resulting estimators are not bounded. This may lead to some very'

poor estimators. For example, in the special case of estimating the distribu-
,

tion function of the output variables by the estimator

g*(y,Y) = II(y - Y ) ,

where I(z) = 1 if z 2 0, and I(z) = 0 otherwise, the estinator of the distribu-
tion function under f becomes

1

g,(y,Y)=fI(Y(x)/f(x))I(y-Y) .y g

Since no restriction placed on the ratio is Y(x )/f(x ), (y,Y) can be greater
scaledtok,thenu insedness is lost..

g,

than 1. If these results are
Therefore, with this method there,nay not be a good estimator of the distribu-
tion in function of h(x) under f. In addition, the variance of the estinator

may be very large or not exist. For example let f(x), Y(x) he normal with
variance 1 and means p and 9 , and Y = h(X) = X. Then, g*y = 1/n I X exp; g 2 g

2 2
[(p ~ U )X + .5(p ~ U )] and the variance of g*,is2 1 1 2

Var (g*,) = [(2p2 ~U) + 1] exp[(p ~U)I~U
1 2 1

4
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Since a uniform bound b|>* ~f(x)/f(x) may not exist,which is inceasing in Ip2 -"
it is not always pos-

sible to implerent Method II. This happens in a surprisingly large number of
cases. A simple example of this is the preceeding one of a shif,t of the mean
in normal samples with common vargancesj. In this case the ratio f(x)/f(x) is

tion of x on the support (-= , = ) . 2 The{lackofauniformboundcangI
-p )], which is a nonotone unbounded func-given by exp((p -p

g 2)x + 1/2(p
lso occur

for densiti s with finite support. For example if f(x) = x" (1 - X)8 and f(x)
=g2_8(1-X)g2G2 over the support (0,1], the ratio f(x)/f(x) = CX 2-81 (1 _
X) 1 is finite over [0,1] only if a2 > "I ^"d 02>O*l
IV. Latin Hypercube Sampling

5McKay, Conover and Beckman developed a technique for sensitivity analysis
called Latin Hypercube Sampling (LHS). In LHS the experimenter partiti;ns the
sample ranges of each of the input variables; he then chooses at rand <sm one of
the designs, where each input variable occurs once and only once in each
partition. For example, suppose there are two input variables, X ead X "*I

the range [0,1]. Also suppose that only three samples are permitted. 2'Then,y

the ranges of the two input variables are partitioned into three intervals, I l
= [0,1/3], I = [1/3, 2/3] and I = [2/3, 1], and pairs of inters als are drawn

randomwifhoutreplacementforbothoftheinputvariables.3
'lhis results inat

Let (I,,1 represent the fact that Xsix possible combinations or designs.
is in interval t .3)Then the six possible designsg

is in interval Ig, while X2
for three samples are:

D = [(I , I ), (I2' I )' II 'I )Ig 2 3 3

D2 " I(I ' I )* (I ' I )' II ' I )II I 2 3 3 2

3 " I(I ' I )' (I ' I )' II ' I )ID I 2 2 I 3 3

D = {(1 , I )' II ' I )' II ' I )I4 7 3 2 I 3 2

5 " MI , I )' U ' I )' (I ' I )ID
g 2 2 3 3 I

D6 " I(I ' I )' II ' I )' (I ' I )l
1 3 2 2 3 I

The Latin Hypercube Procedure for this example requires that one of these six
designs he drawn at random and X 's drawn according to their distribution overg
the selected intervals. It should be noted that the LHS procedure forces the
values of the X to be spread across their entire range. Therefore, in terms
of sensitivity analysis, this procedure is not as likely as random sampling to

niss those portions of the range of the input variables which could grfatly
influence the output variable. In addition, McKay, Conover and Beckman gave
unbiased estimators of parameters of the output variables, which for nany fuc-
tions have a smaller variance than unbiased estimators obtained using random
samples.

It would seen then that LHS sampling has the desired properties of being
both useful in sensitivity analysis and producing reduced variance unbiased es-
tinators for error analysis. This is not truel The unbiasedness of the LHS
estimators is an artifact of the random selection of the design. Once the
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design has been chosen, the resulting estimator may not be unbiased. The fol-
-loving examples will illustrate this-point. I

l

Consider the following four functions of the input variables X and X 8g 2

f (X ,X ) " 1+ 2'g g 2

f (X ,X ) " X X '2 1 2 I2

f ( l'*2) " (*2 . Sin (wX )) '3 1

and f (X ,X ), a continuous monotone function which is closely approximated by
4 1 2

the bivariate step function which take on the values.

I 18 18 0
3

X I 18 '9 0
2 2

I 9 0 0
g

I I I
l 2 3

1

: X and X, are assumed to have a uniform distribution and E(Y) = E[f (X ,X )] i"g g 3 2
to be esEimated. The expected value of the functions and their bias, given any'

of the six designs, are given in Table 1. Table 2 contains the variance of the
average of three realizations of the function and the efficiencies of the six;

designs, where the efficiencies are measured by the ratio of the mean square
error of the estimator for each design to the variance of the function obtained
using random sampling.

.The LHS estimator of the function f (X ,X ) = Xg+X2 is unbiased given
g 3 2any of the six designs, and is 27 times more efficient than random sampling in-

dependent of the design. LHS estimators of the means of linear functions, such

: as f , are always unbiased reguardless of the design chosen, and they are more
effikientthanthoseobtainedbyrandomsampling.

Nonlinear functions such as, f (X ,X ) = X X , are usually biased given a
LHS design. FromTable1,theLHSentkmahorismostbiasedforthetwoextreme2 3 2

-(in the sense of the correlation between X and X ) designs D, and D6' " "d~I 9
dition, the efficiencies for either of these Ewo designs is a factor of two
lower than the efficiency of any of the other four designs.

One might expect that with more samples estimators of the mean of f using
2

designs D or D w uld become unbiased. Actually, the opposite is true, for as
g 6

n, the number of cells in the design approaches **, the expected value of f
2,

' using D approaches .33 and the bias goes to .08. The bias in f under design
g . 2

D is smallest when there is one observed value of (X ,X ), and it increases
1 g 2

monotonically with n.

/
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,

example, consider the function f (X ,X ) = [X - sin (wX )] . This function is |q 1 2 g 2both unbiased and has highest efficiency for designs D and D , while the meang 6
square error using designs D and D is actually larger than that for random

3 4sampling.

That function f is better for designs D and D is not necessarily due to3 1the nonnonotinicity of f . Consider, for example,6function f . For the sake-

3 4
of easily obtaining the variance of the estimator for the various designs we3

assume that f is a step function taking on the values in the function4
definition. We can see from Tables 1 and 2 that the " linear" design b is the
best design while the intermediate design D is the worst. Therefore, the most-
efficient designs can not be predicted.ev$en if the underlying function is
monotone in its variables.

V. Conclusions
i

It has been shown that three methods which either have been or will be
used in uncertainty analysis have both their good and bad characteristics. We
have shown that " error" propagation or nnalysis for fault trees can be carried
out by Monte Carlo at a reasonable cost, but that we may be " wrong" in placing
distributions on the input variables. In addition we showed tw'o methods for4

' changing the distribution of input variables, but the methods may'1ead to
highly variable estimators or the variance of the estimators may not exist.

; Finally we have shown that in most applications the use of Latin Hypercube
Sampling leads to biased estimators, but in terms of mean square error, these
estimators are usually better than those based on randon sampling.
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' Table 2. Variance and Efficiencies for Four
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.

Functions and Six Design Matrices
'
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: D.' D D D D D
! Fimet ion Variance 1 2 3 4 5 6

i ) ~

,.

i

f '= Xg+X2 .056 27.0 27.0 27.0 27.0 27.0 27.0'

g

i e'
-

i

1 > -

X .016 2.3 4.4 4.4 4.4 4.4 2.3 [f2=Xg 2
,

i f3 " I*1 - sin (wX )] .017 1.7 1.0 .8 .8 1.0 1.7
2 1

'

4

~f 20.67 5.2 20.6- 10.3 10.3 1.3 20.6'
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RECENT DEVELOPMENTS IN SENSITIVITY ANALYSIS
|

|
Ronald L. Iman

,

ABSTRACT

This presentation was a preview of' a much larger effort at
Sandia National Laboratories involving the comparison of
techniques for uncertainty analysis and sensitivity analysis
for use with computer _ models in risk assessment applications.
That effort compares the techniques of (1) response surf';e
fitting using fractional factorial designs, (2) Latin hyrr-
cube sampling, and (3) differential analysis. The comparison
utilizes three real computer models used in risk assessment
applications associated with severe accidents at nuclear

i reactors and with geologic isolation of radioactive waste.
Since the paper with the results of these comparisons is
quite lengthy, no attempt is made to summarize the - results
in these proceedings; rather it is' suggested that interested
readers contact the author directly to receive a copy.
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T0XIC0 KINETICS AND RISK ASSESSMENT

Abe Silvers, Paolo Ricci, and Ron Wyzga

.

ABSTRACT

'

Health risk assessment, the estimation of the probability-of incurring an j

adverse health effect, given exposure to a toxicant, relies heavily on the use 1
of dose-response functions and the extrapolation of animal data to man. 1

Recent work (1) with the chemical vinyl chloride = has illustrated the possible
usefulness of incorporating chemical . kinetic- data into a risk assessment.
Other authors have recognized the significance of these approaches (2). To-

further study the use of toxicokinetics in risk assessment, an Electric Power
Research Institute workshop was held on the subject.' The objectives of the.

workshop were to explore various questions such as the following:

1. What are the strengths and weaknesses of toxicokinetics in the
extrapolation of animal data to man?

2. Can the toxicokinetic study concept, as now practiced, be modified to
enhance its application in extrapolation problems?

3. Are there generic structures which can readily be used as models for
toxicokinetic studies?

4. Are there generic structures (such as metals) which cannot be
successfully studied by accepted toxicokinetic techni
modifications of approach which could be considered? ques? ' Are there

5. What areas of risk assessment modeling, incorporating kinetic
parameters, should be pursued?,

!

6. What toxicokinetic research problems, associated with risk assess-
ment, should EPRI support?

A fundamental research problem considered at the workshop is that presented by
the difference between the administered dose, and the dose delivered to the

,

biological target actually causing the adverse response. In a study, the'

chemical can be administered intravenously, orally through inhalation, or
intramuscul ar1y. These routes may differ from inhalation, ingestion and
dermal absorption, normally the ways thr5 ugh which man first comes in contact.
with a toxicant. A fraction of the original amount administered to a test
animal may be delivered to the target organ or cell. Following absorption
(for example, . diffusion or osmosis), a chemical may undergo such chemical
processes as hydroxilation and rendered " safe" for blood transport and
excretion. The concentration of the remaining unbound substance may be a

: fraction of the absorbed concentration. The free chemical may be further
[ converted to a metabolite, the active toxic substance. For ' instance, -the

116
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l

metabolic process may involve epoxidation, as is the case for vinyl chloride,
trichlorethyleneand other organic compounds. Thus, for example, although the
compound to which man is initially exposed is benzo (a)phyrene, the active
carcinogen is an epoxide. The establishment of the target tissue dose
(effective dose) is basic to this research.

For most cancers, the actual site for carcinogenic,ettack is DNA. However,
even though data on DNA transformation is not normally available, it was
recognized that information collected from metabolic studies, with data
indicating length of study, survivorship, and other experimental factors could j
reduce the uncertainties in the estimates of parameters describing adverse
health effects.

Various research directions were suggested. Among them were projects to study
the following: |

|
(a) The use of short-term bioassays with pharmacokinetics to estimate |

risk. j
r

(b) The use of DNA adducts to estimate risk.

(c) The correlation of toxicity to effective dose.

(d) The correlation of various types of effective doses (free or bound
concentrations, metabolite concentration, or uptake rate) to outcomes
such as tumor incidence or DNA adduct concentration.

A volume of the complete discussions will be published shortly.

References

1. Gehring, P. J. , Watanable, P. G., and Park, C. N. " Resolution of Dose-
Response Toxicity Date for Chemicals Requiring Metabolic Activation:
Example--Vinyl Chloride," Toxicology and Applied Pharmacology, 44,
pp. 581-591 (1978).

2. Hoel, D. G. , Kaplan, N. L., and Anderson, M. W., " Implications of |
Nonlinear Kinetics on Risk Assessment in Carcinogenesis," Science, |
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STATISTICAL METHODS USED IN DEVELOPING AN OPTIMUM GLASS
FOR VITRIFICATION AND STORAGE OF NUCLEAR WASTES *

.W. M. Bowen and L. A. Chick
Pacific Northwest Laboratory

P.O. Box 999, Richland, WA 99352
-(509)375-2979

.

A proposed metifod of storing certain nuclear wastes, which has been under study
for some time, involves adding glass-forming chemicals to the waste stream so
that the mixture can be melted to form a glass. The resulting melt is then
poured into a metal canister for cooling and storage in a geologic repository.
In developing a waste glass composition for this purpose there are two compo-
sition dependent properties which must be minimized. These are: 1) leaching
(i.e., dissolution by contact with ground water) and 2) crystal formation as
the glass cools from 1000 to 500 C. In minimizing these two properties, the
only feasible compositions are those which are compatible with the liquid-fed
ceramic melter (LFCM). There are three major LFCM process influence properties
which must be observed. First, viscosity of the glass must be approximately
100 poise at the operating temperature 1150 C to facilitate homogeneity and
pouring of the glass. Second, there must be minimal crystallization betweene

, 1000 and 1150 C to avoid crystal and sludge buildup at " cool spots" in the
melter. Third, electrical conductivity of the composition must be between
0.15 and 0.50 (ohm-cm)-1 in order to melt the glass under current power supply
restrictions.

This paper presents the statistical methods used in a current study to develop
a waste glass composition with minimum leaching and crystallization, subject to

i constraints on the three LFCM process influence properties. The computer-aided
design of a D-optimal seven component mixture experiment is outlined with a dis-
cussion of anomalies, modifications, and deviations from classical design of
mixture experiments. Methods for analyzing, displaying and interpreting the
component effects are presented. Scheffe polynomial .models, fitted to the
experimental data, express the five properties of interest as separate func-
tions of composition. Model selection and validation are described. The
fitted models are then utilized with nonlinear optimization techniques to
locate the optimum waste glass composition,' subject to constraints on the seven
components and on the three LFCM process influence properties.

A formal PNL technical report which gives a detailed account of this project
will be available on request from the authors after March 1984. We apologize
for not being able to meet the deadline for inclusion in the Proceedings.

|

l

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01930.
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PROBABILISTIC FRACTURE MECHANICS:
STATISTICAL, MATHEMATICAL, AND MODELING ISSUES

by

David C. Cox and' Robert E. Kurth

Batte11e's Columbus Laboratories

Presented at

1983 Statistics Symposium on National Energy Issues
,

1

October 20,~1983
Rockville, Maryland

ABSTRACT

i

Over the last several years, Battelle has been developing a probabi-
listic fracture mechanics (PFM) capability. The purpose of the program is
two fold: first to examine, modify, or develop probabilistic methods for use4

in the analysis of structural reliability and, secondly, to demonstrate the
use of such methods through their application in simplified structural
analysis.

.

This paper presents the results of the probabilistic model develop-
ment effort for three probabilistic techniques: Monte Carlo, Markov chain,
and discrete probability distributions. In addition,' three case studies are

'

presented in which each of these methods was compared and recommendations for
their~ suitability in structural analysis were made.- The structures included a
bridge component, a pipe-to-vessel weld in a nuclear piping system and a steel
plate. The results of these three studies indicate that Monte Carlo analysis

'

is the preferred technique for use in structural analysis with the Markov-
chain model being used for sensitivity analysis. The discrete probability

5 distribution method is found to be accurate if enough data points are used to
represent the probability density function of the random variable. However,
since classic confidence bounds cannot be estimated for the-discrete probabi-
lity method, several runs are usually necessary to have confidence in the

; results. KEY WORDS: STRUCTURAL RELIABILITY, MONTE CARLO, MARKOV CHAIN, *

| DISCRETE PROBABILITY DISTRIBUTIONS,- PROBABILISTIC ANALYSIS

l
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-INTRODUCTION

The purpose of this paper is to discuss some of the statistical and
-modeling problems encountered.during a progam to develop probabilistic frac-*

ture mechanics (PFM) models and p' resent the methods used to address these pro-
blems. Included in the discussion are problems, together with the associated
-technique used to solve them, encountered during both the development phase-1

' and the subsequent application.
t

All of the discussion in this paper is in the context of stable i

-crack growth which is governed-by Linear Elastic Fracture Mechanics ~(LEFM).
It is important to note that PFM models are not so narrow in scope. In fact, ;

we have developed such models for fast fracture and crack initiation processes
which are not governed by LEFM. However, since the primary focus of this-

,! paper is on' statistical and probabilistic modeling methods, only the LEFM
models are presented to minimize the amount of fracture mechanics theory which .

,

needs to be presented.

The paper is divided into three sections. The first defines PFM
models and how they can be used in structural reliability applications. The
second presents the actual PFM models and how they are used during structural "

analysis. Finally, the analysis performed during three case studies is given-
_,

during which a discussion of the modeling problems and solutions is presented.-
i

Probabilistic Fracture Mechanics Models - A Defintion

} The ultimate goal of any fracture mechanics analysis is to assess
'

the effect of defect growth on structural integrity. For example, any welded
structure, such as bridges, nuclear piping systems, offshore oil platforms,
etc., will have defects in them due to imperfect welding processes. These

+ - types of structures are the primary focus of this paper; they can be analyzed
at least conservatively, by Linear Elastic Fracture. Mechanics (LEFM). Accord-
ing to the LEFM theory, the growth of cracks is governed primarily by the cur-.

rent crack size, normally denoted a, and the applied stress, denoted cr. Thus,
if the crackl is small enough or the stress level low then no. or very little,
crack growth will occur. (The empirical relationship governing crack growth

j is discussed later). For laboratory conditions in which the material.laus are
| well-defined, the initial crack-size is precisely known and the applied stres-
: ses tightly contralled very good predictions of crack-growth are obtained.
i Unfortunately during service, there is uncertainty and random fluctuations in
! each of these processes. The purpose of developing PFM models is to account
| for the uncertainty and random variation in parameters and models so as to
' include the stochastic nature of the fracture process during the structural

i

1 In this paper the terms crack and defect are used in'terchangably. This is
for the convenience of the authors. Many fracture analysis reserve the
term defect for the material state prior to crack initiation.
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,

evaluation. 'In developing PFM models ind their associated ' data bases, no dis-
'

tinction-is made between uncertainty (due.to a lack of knowledge) and random
fluctuations (due to true stochastic variations).

,

A PFM model can be constructed using many different probabilistic
techniques. These. techniques can be broadly classified into two categories:
random-parameter.and shock models. Random-parameter models are based on an

; underlying mechanistic (deterministic) theory in which the inputs are distri-
h butions rather'than point values. The selected probabilistic methods, e.g.,

Monte Carlo, is then.used to combine these distributions according to the
underlying mechanistic principle to obtain.an output distribution for the
quantity or quantities of interest. For PFM analysis, this is normally the
time dependent distribution of crack sizes from which the expected time to
failure, probability of failure, and so on, can be determined. On.the other
hand, shock models require no underlying mechanistic principle but rather the
philosophy is that experimental results will dictate the correct choice of
model parameters which represent the mechanistic process without actually hav-
ing derived this relationship. The term shock is used because, for PFM

| models, two assumptions are necessary for this type of development. First, it
is assumed that the applied load is viewed as a " shock" at the crack tip. If

this shock level exceeds a critical value, then the crack advances; if not,,

; 'there is no growth. The second assumption is that the process is Markovian,
that is, the advance of the crack is only dependent on the current crack size2

and the shock level.-
.

'

In summary, a PFM model is a technique for describing the growth of
cracks in a structure using.either random-parameter or shock model methods for

,

4

, including the uncertainty and stochastic variation of material properties,
| initial defect sizes, environments, and loads in a structural assessment.

!

PFM Model Descriptions
,

1

$
During the course of PFM model development at Battelle, several dif-,

| ferent types of probabilistic techniques have been examined for use in the
j model construction. Three of the techniques are described and their method of

application explained in this These are: Monte Carlo, Discrete Pro-|

bability Distributions (DPD's) paper.and Markov chain. Before describing these
[ methods, the basic principles of LEFM are presented.

l

j. LEFM Theory
(
: -

LEFM determines the-amount of crack growth from a correlation relat-
ing crack growth to a measure of the stress field strength at the crack tip,,

' called the intensity factor denoted K. For simple loadings and geometries, K
can be calculated analytically. For more complex problems, numerical solu- ;

tions are required. Since.the primary focus of this study is on probabilistic
; methods, relatively simple structural configurations have been studied. While
i a variety of crack growth laws have been proposed, the earliest, and simplest,
4

'
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of these forms is used thrgughout the three case studies. This ferm is known
las the Paris' Law equationt ) and is given by

da/dN = C'(AK)n (1)
.

where

4K = of(a.w) 6
f(a,n): function of geometry which is set equal to one for these-

studies
c',n: empirically determined constants
N : number of stress cycles
a : crack length

For constant applied ~ stress ranges 2 and a known initial crack size equation
(1) can be integrated to yield

af = (aom + C,n/2enN }l/m (2)
f

,

where

m = 2 - n/2
C = n/2 C'(2/(2 - n))
Ng = final cycle
af = final crack size

B@cause the applied stress, material properties, and initial crack size are
not known precisely this deterministic form can only provide a rough estimate
of the final crack size. Because of the variable loadings, we use a Taylor
series approximation to equation (2) in which the interval of integration,
denoted AN, is assumed to be small enough that the stress range can be assumed
to be constant. The series is terminated after the linear terms to yield

at + 1 = atm + C o aN (3)n

This is the basic underlying deterministic model for the random--parameter
models.

!

|

2 Stress ranges are used since fatigue crack growth is being considered.
Creep crack growth is not discussed.
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Random-Parameter Models

During the three case studies, two random-parameter models were
used: Monte Carlo and DPD's. Each of these is presented below.

Monte Carlo. The Monte Carlo technique is a simple method for add-
ing a probabilistic structure to a deterministic model. Suppose the output,
Lc(t), is related to the individual inputs, L (t), by a functioni

Lc(t) = f (Ll(t), L2(t), ... Ln(t))
|

where the function f may not even be analytic, e.g., a computer program. If

each of the inputs has been characterized by a probability density function
(PDF) during data analysis, then the following procedure is used during a
Monte Carlo simulation. The cumulative distribution function (CDF) of each
input is generated by integrating the PDF. A random number between 0 and 1 is
generated, call it rl. The CDF is inverted and the value for the load, Lj(1)
is determined. This method of choosing the value is repeated for each indivi-
dual load. A value of Lc is then calculated as ;

I

Lc(1) = f (Li(1), L2(1), ..., ln(l)) .

The entire process is repeated a large number of times, say M. What results
is a M-dimensional vector of the output: (Lc(1),Lc(2),...,Lc(M)). This
vector is used to construct a histogram which can be analyzed statistically to
obtain estimates of the mean, kurtosis, probability of failure and so on.
Obviously, in the limit as M tends to infinity, the continuous distribution
will be asymtoptically approached. Equally obvious the computer time will
also in rqase. As an alternate method of sampling, importance sampling
schemes (2) can be employed to reduce computational time.

Discrete Probability Distributions (DPD's). The description of
DPD's follows the conventions set forth by Kaplan (3). In this method, the
initial input distributions are discretized into m values. Each value of each
variable is then assigned a probability of occurrence. Additionally, the
various forms of any probabilistic function are assigned a probability of
being correct. If these discrete values are paired with their probabilities,
the following vectors of ordered pairs result for two loads x and Y.

x = Ex1, pl), (x2, p2), ..., (xm, pm);
Y = [ YI, q1), (Y1, q2), . . . , (Ym, qm). .

;

i

125



(
The number of discrete points in each of these vectors has been chosen to be
the same although it is not necessary to do so. The addition of two discrete
vectors is defin~ed by

Z=Y+X
Z = (Y , pj) + (X , and

Z = (Xj + Yi, Pi *qj) j, gj)i<

for all i and j .

Therefore, the addition of two vector 3 containing m ordered pairs each results
in a vector which has m2 ordered pairs. The multiplication of DPD's is simi-

.larly defined.

Since, even for relatively small values of m and K (on the order of -
10), the computer storage capability will quickly be exceeded, it is necessary

'

to' examine some procedure for reducing this vector's size. This leads to an
examination of the condensation procedure discussed below.

In order to illustrate the condensation procedure, assume that the
initial DPD for two inputs contain 20 ordered pairs, respectively.' The output
distribution will then be a vector of 400 ordered pairs after each of indivi-
dual DPD's have been combined. However, it has been assumed that 20 orderd
pairs adequately describe the distribution. Suppose the range of possible
values is divided up into equal intervals. Further, for the sake of example,
assume that the new values between 144 and 188 in this vector, denoted L',
fall.in the 6th interval. Then

188

h
P Pi6 " $ 144

'

188

Z6* $,f44 Pi i

where L' = [(Zj , pj )] , i = 1, 2, . . . , 400. This procedure can be written in
general as

i"S P
Jj

Z9= j p) Z3j .

where

Si = {j |di < Zj < dj+1)
a = (amax-ain)/20m

di = a in, di+1=di+Am
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.
For many DPD applications, it is not possible to use equally' spaced intervals.

! In fact, logarithmically spaced or other time independent unequal interval
spacing schemes may lead to the same problem. A method for calculating time
dependent bin sizes has been devised by Battelle and is used to condense the
DPD at each time step. In this method, after each time step, the largest and
smallest values of the vector L' are determined. The intervals are then

j . determined from
,

i

! bl = a inm
b l = b .1 + 2(i - 1) (%nax - Amin)/N/(N - 1), 1 = 2, ..., Nt

_ where

a in = minimum valuem
Anax = maximum value

N = number of discrete intervals
bi = interval endpoints for condensation.

.

Markov Chain Models. In d
conventionsputforthbyBogdanoff(4{scussingtheMarkovmodel,someofthe1 are used. In the Markov mode the crack
is defined by discrete states with time being measured by duty cycles. In
addition, the Markov assumption is made, i.e., the probability that the crack
which is currently in state i will be in state j during the next duty cycle is.

only dependent on its present state and not on the previous load history.
Consider

,

t = 0, 1, 2, 3, ...

which need not be of equal duration. The crack is defined by variable states

a = 0, 1, 2, ..., n

where a = 0 implies no crack and a = n may be defined as the limit state. The
initial distribution of cracks is defined by

I = (1 , 12, ..., in)1

by design codes or other data. The transition probabilities, Pjj, are defined
as the probability that given the crack is currently in state i it will next
be in state J. The evolution of the crack growth process is given by

Pt=IMt
i
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'
Lwhere

L

M.= matrix of transition. probabilities P p . . .

7
Pt = (Pt(1), Pt(2), ..., Pt(n), PDF of.loids at time t.

~

i
'

' Once the transition' probabilities, Pjj, are defined, the Markov
-model provides an inexpensive, simple method for calculating the distributions-

,

at.any' time.- However, several drawbacks to the Markov model exist. First,:

recent crack growth rate data which show very limited scatter in growth _ rate
i under. steady state (K = constant). testing conditions (5) suggest~that the-

..

!

assumption of a shock model for the crack growth may not be correct.
Secondly,' it is difficult. if'not impossible,.to find the appropriate crack

; growth data in sufficient quantity to calculate the transition probabilities.,

To generate such data experimentally would be expensive, although it would
only be necessary to do so once for a specified load distribution. If crack,

)

| growth data cannot be found, the transition probabilities can be determined
~

from material life: data for a given load distribution. In this case, however,'

the Markov model provides a curve fitting procedure and it is difficult to-

! attach physical significance to the Markov model parameters. .

4

The evaluation of each of these probabilistic methods has been per -
!. formed during the course of three case studies. Each of these studies are
,

j summarized below.

i Case Studies for the Evaluation of
|. Probabilistic Fracture Mechanics Models
!
!

Three case studies have been performed to evaluate the effect of
-including probabilistic. techniques in the structural integrity models. The

,

! first case study examines the'effect of using random load sequencing in place
! of.a deterministically fixed sequence of loads which. represents the expected '

I
j frequency of the individual load transients. The second case study compared
!- Monte Carlo and Markov Chain models. Finally, a comparison of Monte Carlo and
j DPD models was made. The details and results of each study are summarized <

i below.
i

f Case Study I: 'Probabilistic Modeling of Loads in
Nuclear Piping Systems4

i The piping System in a nuclear power plant must be designed so that
' the coolant pressure boundary is maintained throughout the plant life. To
| insure that the piping' system performs this function, many analyses,must be

performed, including determination of the piping system fatigue crack growth
irates. Because of the variability in the initial defect sizes and loads, a

deterministic analysis of the fatigue crack growth process must necessarilyi

| make worst case assumptions about the initial defect size and coupling of the
pipe stresses due to the steady state plant operation and transient events.

,

In this type of analysis, severe transient events, e.g., design basis,

!

-128

.

-..._.--L: - . - . _ - . . - , --, - _ , - - - . - . . . - - . _ - - , - , . - _ - . - . . - - . .-



i earthquakes, which have a relatively low probability of occurrence, are
l applied at the start of the plant '.ife in order to be conservative during the
l analysis. The purpose of this study is to compare and contrast the use of

such a deterministic analysis with the results of a probabilistic fracture
mechanics (PFM) analysis of a selected piping system in a nuclear power plant.

Certain transient load events, while unlikely, are significant for
the analysis since the induced stresses in the pipe are large, causing signi-
ficant crack growth and reducing the overall system life and threatening its
integrity. Current analyses tend to hypothesize that major transient events
occur early in the plant life. This assumption may causes the crack to reach
a size greater than the threshold size associated with typical service
stresses very early in its life. The hypothesis that statistically rare
transient events, which induce large stresses in tha piping system, occuri

early in the plant life is referred to in this study as the worst case coupl-
ing of loads.

An alternative to this type of analysis is probabilistic ordering of
the loading coupled with probabilistic fracture mechanics (PFM) methods. The
use of probabilistic models allows the analyst to avoid the overly conserva-
tive bias in the assumptions of a deterministic analysis with probabilistic
information to estimate the behavior of crack growth in a manner that reflects
the random nature of the materials, the loadings, and the cracking process.

The purpose of this study is to compare piping system integrity,
calculated using each type of analysis, to estimate the relative level of con-
servatism. The cold leg piping system of a selected nuclear power plant has
chosen as a vehicle for this comparison. The deterministic analysis will use
many of the techniques and methods described in the " Cold Leg Integrity Evalu-
ation" by M. E. Mayfield, et al.(6). The probabilistic calculations will be
made using a PFM model which employs a Monte Carlo simulation.

The initial crack depth, aspect ratio, yield stress, critical stress
intensity factor, and failure crack size for this analysis are presented in
Table 1. The chosen initial crack depth was so large so as to almost insure
that the threshold would not be a significant factor. For this reason, thres-
hold effects were excluded from this analysis.

TABLE 1. FRACTURE MECHANICS ANALYSIS PARAMETERS

Initial Defect Size (1) 1.43 cm
Aspect Ratio 0.1
Crack Depth :at Failure (1) 3.81 cm
Crack Orientation Axial

,
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The remaining parameters needed for.the, deterministic analysis are.
.

the loads and load sequence encountered in one lifetime. The number of times
each transient occurs has.been taken from the vendors design analysis as was
~done in the Cold Leg Integrity Study The eleven transient events shown in-

.

Table 2 are included in the analysis. It is important to note that during the
~ deterministic analysis, immediately after the plant start-up, Transient 1, an

; _ earthquake, is postulated to occur, certainly a good example of worst case
loading.

. TABLE 2. TRANSIENT EVENTS INCLUDED IN THE ANALYSIS OF PIPING SYSTEM

T

i

Transient Number Transient Description Design Cycles

!

1 Plant Start-Up or Shutdown 240
2 Power. Loading or Unloading 48,000,;

; 3 Step Increase / Decrease in Power 8,000
i 4 Reactor Trip -470

5 Turbine Trip 390
6 Rapid Depressurization 80

1 7 Steam Line Failure 1.

! 8 Hydrotest of 3,125 psi at 400 F 20
: 9 Earthquake (0BE) 650
: 10 . Earthquake (SSE) 1

11 Vibration 2.1 x 1010s

i
.

I For the probabilistic analysis, two key parameters change. First,
the initial crack size is a random variable, not a constant. . Based on the
results of reference (7), it is assumed that the initial crack depth distribu-

! . tion is a Rayleigh distribution. This distribution is skewed right and has a
relatively long tail, although not as dramatic as for the lognormal distribu-

! tion. The parameters for the initial defect distribution are given in Table 3.
The second random variable is the frequency of the transient. events. For thet

.

present analysis, the frequency of these events is chosen to match the fre-
l' quency of these events over an assumed 40 year plant life used to the Cold Leg
' ~ Integrity Study. For example, a plant start-up or shutdown (transient 1)

will, on the average, occur.240 times during the plant life as given in
j. Table 2. The frequency of all 11 transients has been detailed in Table 2.
;

; Several simplifications were made for the deterministic model to
i reduce the cost of the analysis to facilitate meeting the objectives of this
j study. These include: (1) no crack-interaction modeling, (2) no threshold
j effects, (3) one-dimensional crack growth, (4) no elastic-plastic modeling,
} and (5) trapezoidel rule for integration. These assugptions are different
,

!
j .
~
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TABLE 3. PARAMETERS.FOR. INITIAL CRACK' SIZE-

~PROBABILITYDENSITYFUNCTION(PBF)
[. ,

i

| '

' Minimum.Value- 0.635 cm
~PDF Form Rayleigh

,

; -

! Modal Value 1.270 cm
: Maximum Value 1.905 cm

,

;
. . ..

*

enough from those'of the Cold Leg Study to inhibit. direct comparison.of the-

,

deterministic results of this study with the-Cold Leg Study. Therefore the
,

deterministic calculation has been made independently of the Cold Leg Study~

; analysis.

I The result of-the deterministic calculation, gives a failure time of-

reference (6)y 3.7 x 109 cycles. Since the loading spectrum adopted inapproximatel
was used in~this study, the relationship of these cycles to. time

'may be made and.is found to be approximately 8 years. .Given the assumption
,

that the plant is designed for a 40 year life, this corresponds to a factor.of.
: : safety, denoted 6, of approximately 0.2.

The res'ults of the probabilistic calculations are presented in
Figures 1 and 2. Because the initial crack size is:a random variable in the*

: probabilistic model and because of the final crack size's sensitivity to this
value, a skewed distribution for the initial size was chosen. This is crucial

,

; - so that the effect.of the worst case loading scheme on the crack growth may be
examined without the effect of the initial defect size obscuring the results.'

,

The empirically constructed cumulative distribution function (CDF)
j of the initial defect size is given in Figure 1. The modal'and mean values of
): this distribution are 1.270 cm and 1.383 cm, respectively. Since the deter-
! ministic calculation started at a value of 1.43 cm, this implies that approxi-
! mately 54 percent of all probabilistic calculations began with a crack size

larger than the deterministic value.:

;
' The results of the probabilistic fracture mechanics' analysis are

shown in Figure 2 in terms of the cumulative distribution function of the
; . safety factor, S. The parameters of the distribution of 8 are
z

|
9 = 2.64 p = 1.50

; ..

j' ' where'u is the mean value and o is the standard deviation. _The median value
[ from Figure 3 is given as 1.77. Therefore, the best estimate value for the
; remaining life of the piping system is approximately 70 years.
;

; The immediate conclusion one reaches in comparing these results is
that the worst case-loading of a nuclear piping system predicts that the;

f

1 31>

i
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expected life of that system is shortened by a factor of nine. Even if a con- |
servative PFM analysis is being performed, the deterministic worst case
sequencing of the loading predicts about a factor of 5.0 reduction in the !

plant life as compared to the PFM analysis when the 10 percentile value of 8
is used.

As noted earlier, this study made a number of simplifications in the
deterministic analysis as compared to reference (1). That deterministic ana-
lysis for the same point in the piping system indicated a mean safety factor
of 0.77. This is significantly larger than the value of 0.2 calculated during
this study, a difference that is not unexpected given the simplifying and con-
servative assumptions made. However, the PFM analysis, which was performed
using the same simplifying assumptions employed during this study's deter-
ministic analysis, predicts that 97 percent of the. time the safety factor will
exceed that found during the Cold Leg Study. This indicates that the assump-
tion of worst case load sequencing often used in deterministic analysis per-
formed (for example, the Cold Leg Study) introduces a degree of overconserva-
tism sufficient to make the additional complexity, and cost, of the more
detailed analysis questionable.

Observe that the present study indicates a factor of nine difference
in the safety factor determined from probabilistic and deterministic analyses.
While this difference is quite significant, it is biased towards a lower bound
in that the present PFM formulation is significantly biased towards lower
safety factors for several reasons, as follows. First, in the deterministic
load sequence between plant start-up and shutdown,'a sampling without replace-
ment scheme is used. In the PFM' analysis, a sampling with replacement scheme
has been adopted. For calculations in which the safety factor is signifi-
cantly greater than one, this should not result in any significant difference
between the two analyses since the frequency of the various transients will
approach the same value, on the average. However, in the present analysis,
the component's expected life is less than the 40 year period and it is
expected that the sampling with replacement will lead to slightly more con-
servative results than sampling without replacement. Secondly, the selected.

density function for the initial crack size leads to a mean value that is

higher than the initial crack size used in the Cold Leg Study. Finally, and
most importantly, no threshold for the stress intensity factor was used during
this study. Because of the prohibitive cost of making Monte Carlo calcula-
tions for this case, a statisticaly significant set of crack curves were not
generated. However, several sample paths for the crack growth were calculated,

and the indication is that deleting the threshold stress intensity factor from
the PFM analysis reduces the safety factor by an order of magnitude.

'

Case Study II: Comparison of Monte Carlo and Markov Chain Methods

The determination of the reliability of structures, such as joints
in bridges, requires that the uncertainty in material properties, flaw sizes

,

( and location, environments, and loadings be considered in the analysis. Two

|
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popular probabilistic models used to incorporate these uncertainties in crack
growth analysis are: (1) Monte Carlo, and (2) Markov chain. This study com-
pares results developed by applying both methods to a problem in which cracks
are considered to be growing in bridge-type materials. The effects of varia-
'ble crack sizes and variables loadings on the growth of a crack are investi-
gated using both methods.. The results of these investigations are used to I

judgeEeach method's applicability to such problems. Before one can proceed
with the application of Mante Carlo and Markov chain models (previously des-
cribed), a basic load cycle together.with the_ load distribution must be
defined and sources.of variability charcaterized. The situation'of a bridge-

is used as a vehicle for this discussion.

| The normal practice for defining a load cycle for a bridge is to
I examine the stress at a selected point on the bridge during the time it takes
j a vehicle to cross the bridge. In this case, the load cycle is equal'to the

~

time it takes the vehicle to cross the bridge. Since millions of vehicleso

will cross a bridge during its life, somewhat longer cycles are defined, such
as the hourly or daily number of trucks crossing multiplied by this single
. cycle load. However, for many bridges several vehicles can be on the bridge
simultaneously. Then, since the stress at a point-on the bridge is a combina-
tion of-the stresses induced by each vehicle, the probabilistic methods cannot

,

sample from the weight distribution for the vehicles independently.

To formulate stress distributions for some location, the first step
taken was to redefine the basic stress cycle as the time between the entry of
a vehicle onto the bridge and the first subsequent time at which no vehicles
are on the bridge. A calculation of the duration of the load cycle defined in
this way was made and compared to the duration under the above noted more com-
mon definition. For purposes of this comparison, the speed of the vehicles
was assumed to be uniformly distributed between 30 and 40 mph and the inter-
arrival time between vehicles was assumed to be exponentially distributed with
a mean of 20 seconds. For this case, the mean duration of the load cycle was
determined to be approximately 14 seconds, a result which compares favorably
with the 10.4 second duration of the load cycle' developed under the more com-
mon defintion. Thus, the new definition does not appear to significantly
affect the load duration. In addition, this new definition of the load cycle
is numerically convenient because it allows a stress distribution to be calcu-
lated which is statistically independent between successive cycles. Conse-

'quently, this indpendence property simplifies the Monte Carlo model and
reduces, to some extent, the computational time of the program. Since the
stress distribution due to multiple vehicle crossings cannot be determined
from independent sampling of the individual vehicle weight with the former
definition of the load cycle, the new definition was adopted for use in this
study.

Dat; on vehicle (truck) weights were obtained from several
reports (8-10). These data were synthesized and input to a stress analysis
cod 2 using multiple span beam theory to calculate a stress histogram for mul-
tiple truck crossings. Thereafter, a Rayleigh distribution was fit to these
results. This distribution is used in the subsequent probabilistic calcula-
tions. -Stresses so determined were assumed to exist in the vicinity of a
through edge crack in the flange of a main grider.
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Having' defined the probabilistic techniques to be used and the
method for calculating the statistical distribution for the stress, the first
step in applying-the PFM methods is to define and calculate the model para-
meters. These parameters are obtained from the literature for all cases,

.

except for the Markov transition probabilities which are derived as detailed '

later.

Parameters needed for the Paris law equation are available for typi- |
cal bridge steels from several sources. In this study the values found in
reference (ll) were used. These values, which represent A514 steel at finite
growth rates, are:

c' = 2.4 E-10 (inch /cycie)/ksi

m = 3.0.

Data in References (8-10) were used to synthesize the distribution of truck
weights. As previously discussed, the stress frequency of occurrence distri-
bution is represented by the Rayleigh distribution, with the truck inter- '

arrival time being obtained from Reference (8). The only remaining parameters
for the Monte Carlo analysis are those whjch) define the distribution of theinitial crack sizes. Data from Referencelll suggest the initial crack size
as a Rayleigh distribution with the following parameters:

amodal = 0.01 inch

a in = 0.005 inchm .

At this point, the Monte Carlo analysis can be performed. It remains to
determine the transition probabilities fnr the Markov analysis.

In order to determine the trar, ition probabilities for the Markov
model, it is necessary to have a statist) 11y significant number of crack
growth curves for the given applied stress listory. Data for crack growth
under actual loading conditions are relatively limited. This condition, at
first consideration, would suggest that the use of the Markov model is
impossible. However, while actual crack data may not exist in sufficient
quantity to calculate the transition probabilities directly, these probabil-
ities can be estimated from data giving the time to failure. In this case,
there is no way to attach any physical significance to the damage state,
since, during the process of estimating the transition probabilities, the num-
ber of states is being adjusted so that the Markov calculation will reproduce
the cumulative distribution function of the time to failure. It is not

appealing to use the Markov model as a curve fitting procedure. Furthermore,;

the comparison of the two models would be inappropriate if the Markov model
were used in this way (since the parameters could be adjusted to provide as
accurate a fit to the data as desired). For these reasons, the results of
the Monte Carlo calculation are used to simulate a set of crack growth curves.
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It is then assumed that these curves represent real data so that the transi-
tion probabilities are calculated from this data set.

The data set generated includes 1,000 crack growth curves. The
crack growth calculation is stopped when the crack size reaches 0.5 inch. For
purposes of Markov analysis, it is assumed that the damage is discretized into
equal intervals of 0.025 inch. To calculate the transition probabilities,'

.each of the 1,000 curves is examined to determine how many cracks which are in
' state i at time t remain in state 1, how many move to state i+1, and so on. ;

Knowing the state the crack started in, and examining the next time interval '

for the state that crack is predicted to be in, the transition probablities
are easily calculated.

|

| Consider first the results of the Monte Carlo method shown in
i Figures 3 and 4. The probability of failure, shown in Figure 3, is indicated
I to be near zero up to approximately 600,000 cycles, at which time it increases

very rapidly. The average crack growth behavior, presented in Figure 4,
starts off very slowly but it too increases rapidly at 600,000 cycles.

7

Figures 5 and 6 also show the result of the Markov chain application
to cracks growing in bridges for failure probability and average crack size,4

respectively. For the transition probability calculation (shown in Table 4),
it was initially assumed that there are 20 damage states. What is immediately
obvious from these figures is that the Markov model is overpredicting the
spread in the crack growth process. In fact, using the following formulas for
a unit step model:

19

E(t ) = 1 (1 + Pj/(1 - Pj))f
i=1

19

(t ) = (Pj/(1 - P )2) U2f i

where

E(t ) = expected value of the time to failuref

(tf) = standard deviation of the time to failure

we find
i

E(t ) = 8 x 105 cyclesf
(tf) = 1.4 x 104 cycles.

(These are only approximate values since the model is not strictly a unit step
model.) The corresponding results for the Monte Carlo analyses are

i
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TABLE 4 TRANSITION PROBABILITY MATRIX FOR THE MARK 0V MODEL
,

Damage Transition Probability of Crack Moving
State from Damage State I to J*

I J=I J=I+1 J=I+2

1 .9486 .0514 0
'

2 .9812 .0188 0
3 .9580' .0420 0
4 .9297 .0703 0
5 .8966 .1391 0
6 .8609 .1391 0
7 .8196 .1804- 0
8 .7788 .2212 0-
9 -.7294 .2706. O'

.10 .6807 .3193 0
11 .6375 .3675 0
12 .5737 .4263 0
13 .5220 .4780 0
14 .4681 .5319 0
15 .3980 .6020 0
16 .3391 .6609 0
17 .2811 .7189 0
18 .2005 .7923 .0072
19 .1532 .8408 0
20 1.0 0: 0

,

All other entries (not shown) are equal to zero.*

,

k

+

,

!
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E(t ) = 8 x 105 cyclesf
; tr = 3.2 x 103 cycles.
!

Thus, the standard deviation of the time to failure for the Markov chain cal-
culation is a factor of 4.5 larger than the Monte Carlo results predict. |

Since we are free to choose how the damage and time are discretized in the |>

Markov model, the transition probabilities were regenerated for a 40 state
case. This result is also shown in Figure 8. Observe for this case that the
variance of the time to failure is less than for the 20 state run. Clearly
then the number of damage states exerts a strong influence on the variance.
While it is true that the number of states could be increased to more closely
approximate the standard deviation of the Monte Carlo results used to estimate
the transition probabilities, the added computational cost does not justify

-this procedure.

The comparison of the Monte Carlo and Markov chain models provided
one immediate major result. Regardless of how much data is available to cal-
culate transition probabilities, parameters in the Markov model must still be
adjusted to reproduce the data. Thus, the Markov model is not unique nor are
exact material property data and precise stress distributions sufficient to
allow the Markov model to accurately predict the crack growth characteristics.

If confidence can be placed in the Markov results, the advantage of
the method is its extremely low cost. In contrast, while the Monte Carlo ana-
lysis seems to reasonably replicate crack growth trends observed in struc-
tures, it does so at a high computational cost. (The Markov analyses per-
formed required two orders of magnitude less computational time than the Monte
Carlo analysis). Since probabilistic analysis of crack growth is usually per-
formed for risk assessment or in sensitivity studies of crack growth models,
it will usually be the case that many runs of the code are required. During
this study, one run of the Monte Carlo analysis cost approximately $500 and
the number of runs performed was minimized to make the results statistically
significant but at a loss of statistical accuracy. Obviously then, while it
is an appropriate model for PFM analysis, its cost may preclude its general
use.

'It appears from the results generated that probabilistic analysis
(of a bridge or other structure) may be best accomplished by a combination of
PFM formulations. The present results suggest that it is best to perform a
limited number of Monte Carlo analyses for several of the potential stress
distributions which the structure will see. Then, these results can be used'

to accurately determine the Markov transition probabilities for the range of
i stress distributions of interest. Thereafter, the Markov model can be used

with confidence in repeated applications in order to' minimize the cost of ana-
lysis for probabilistic studies.

.
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/ ase Study'III: Comparison of Monte Carlo andC
Discrete Probability Distribution Methods;

,

;
,cRecently,DiscretePhobabilityDistributions(DPD's)havebeensug-

g:sted for.use in* risk analysis calculations to simplify the numerical compu-
tations wh ih '.iust be p'erformed to determine failure probabilities. Specifi-
cally, DPD's! ave'been developed to investigate probabilistic functions, that,

- - is, functionk diose exact form is uncertain. 'The analysis of defect growth in
materials by Probabilistic Fracture Mechanics (PFM) models provides an example
in which the,orobabilistic function plays an important role. This study com-
pares and co1ttasts Monta Carlo simulation and DPD's as tools for calculating
material f flug d0e~ t6' fatigue crack growth.

lTheI,Nainderofthisstudyexaminesthefollowingtopics. First,
the necess gy mathgmatics for each of the two methods is developed. Next, the
application se qdthods to cracks growing in steels is made. Finally, a
comparison, oft @twcmethodsisprovidedandconclusionsabouttheuseofof the
each method are reached.

h ' '' '
1

A -'

> f CRACK GROWTH RATE LAW
(. .c

,

$ . ||~

~

,0ver the last\ few years,1.several invest'1gators have examined the
growth of craacks in m'a'te'Tials, resulting in a relationship between the rates

of crack .geowth|yith resptcT'to time, da/dN, and a measure of the stress near
the crack tip, denoted the' dress intensity factor.{ The relationship used
during these studies is: N

,

1
.

,I\

y.
,

da/dN b C6Km '. (1)'
s

'N ,
-

,

I ,where "E
~ ''

'

\
4 .sm i s

AK = stress intensity factor, and
C,m =.emdirically determined constants,. ,<

| ThesimplestformulaforcalculatingoKisgivin'by

| 'N AK = a na, t , .

[- h'( t \ '
'

. ( .,
i ts

|- As'a vehicle for discussion, alproblem will be examined in which the material"

| is a carb n
by Harris 2) steal used in nuclear piping systems.- Folloding the data derived,

, we obtain f,roa Equatior. (1).

~
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|

da/dN = C c4 12 a2 , (2)
:

; .

where

m=4
, C = lognormally distributed with mean 9.14 x 10-12 and .

| standard deviation 2.20 x 10-11
,

IntegratingEquation(2) yields

4 x2 AN (3)a +1 = a ,+ C 0n n ,

where it is assumed that AN is small enough so that a can be assumed constant,
and n represents discrete time in units of AN.

Equation (3) contains three random variables: the present defect
distribution, a ; the stress, a; and the empirical constant, C. The initialn
defect distribution ao is assumed to be described by a Rayleigh distribution:

R(a)N-a'exp(-(a')2/2) ,

- here a' = (a - a in)/(amodal - a in).w m m

The stress distribution is also given by a Rayleigh distribution,
denoted by P(Y). Table 5 gives the parameter values for each of these
distributions.

TABLE 5. INITIAL DEFECT AND STRESS DISTRIBUTION PARAMETER VALUES

Initial Defect Stress
Parameter Distribution Distribution

Minimum Value, a in 0.005 inch 10 Ksim

Modal Value, amodal 0.01 inch 35 Ksi

We are interested in the DPD of the initial crack size after NFcycles, then
|

|
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:However, since:C was fixed'thr9ughout this calculation, what has actually been
'obtained is y,,

..

e4

(N ) (N ) iF F y' . .. , '

i
.

= (Zj, pi (Z |C{)) 5 A. (C1)
l

A -
,

,

.That is, the probability being calculated is conditional on C1 If the calcu-
lation is repeated for all of %e discrete values of C, then -

Cj) = Z , Pj(Z , Pj(Zi|Cj))A i i .

By combining A (Cj) with the DPD representing the distribution for C and
condensing the resulting DPD, the final crack size distribution is obtained.

The results of the crack' growth calculations are shown in
Table 6. For the Monte Carlo results,.2000 crack sample paths were generated.
The DPD calculation requires a selection for the number of discrete points to
be made. Four cases-are shown in Tabic 6; for example, "DPD 10" means"that
each distribution was represented tiy 10 discrete points.

,

TABLE 6. RESULTS OF CRACK GROWTH CALCULATIONS USING DPD AND '
,

MONTE CARL 0 METHODS AFTER 100,000 STRESS CYCLES

_

Standard Failure Computer
Mean Crack Deviation Probability Time

Method Size (in.) -(in.) -(%) (sec)

DPD 10 .08361 .1460 11.3 5
r
'

DPD15 .07778 .1368 9.0 16

! DPD 20 .07753 . 3 8. , 8.5 40
'

DPD 25 .07698 .1363 8.4 87

Monte Carld
^

.07546 .1350 7.9 45
s

| 95% confidence .06954 .08138 .1307 .1391 6.7-9.1
! intervals for

Monte Carlo-
| results ' .

- 1.

'j ~
,

'
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Table 6 shows that, for this problem, the DPD method is faster than
Monte Carlo for comparable accuracy. The DPD-15 estimates of mean crack size,
standard deviation, and failure probability each fall within the 95 percent
confidence bounds for the corresponding parameter, based on the Monte Carlo

- results. The DPD-15 calculation takes 16 seconds as compared to 45 for. Monte
Carlo. In practice, however, it may be difficult to realize the maximum pos-
sible improvement in computation time using the DPD method. This is because
the computational costs of the DPD method are very sensitive to the number of

,

discrete points used to represent the distributions. For example, increasingj
L the number of points from 15 to 20 more than doubles the computation time. In

general, the computation time will increase as:

[R--2h
|MC

2'=|\N1)C
1 |

1

where

C1 = computation time for first DPD calculation with
N1 discrete points

.

R1 = number of discrete points for first DPD calculation
' N2 = number of discrete points for the DPD' calculation

being estimated1

M = number of random variables included in the DPD calculation
C2 = estimate of DPD calculation time for N2 discrete points.

Therefore, the inevitable trial-and-error needed to produce stable DPD results
may be computationally expensive, unless runs are carefully planned and judi-
cious extrapolation methods are employed.

The computational advantages of the DPD method may be greater in4

practical risk assessment problems where very low failure probabilities are
encountered. For example, for a failure probability of 10-4, 1.7 million
Monte Carlo runs would be required to obtain the accuracy exhibited by the
Monte Carlo estimate of the failure probability in Table 6 (95 percent confi-
dence interval of + 15 percent). Improvements in the crude Monte Carlo
method, such as importance sampling (2) tend to be ad hoc, and rather proble-
matical in practice.

To obtain estimates of the probability of failure with the DPD
L method, no alterations to the algorithm need to be made, yet low probabilities
' can be calculated by placing more of the discreta points in the tails of the

distributions for the random input variables. By maintaining the same total
number of discrete points, the cost will remain the same, yet the low failure
probability can be calculated. Because of the relatively low cost of the DPD
calculation for such cases, several runs can be made to determine the failure,

probability's sensitivity to the discretization chosen for the random variable
distributions. To date, however, the performance of the DPD method in such

,
low-probability evaluations has not been precisely characterized.

!
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Finally, it should be noted that the DPD method is not merely a con-
:v:nient device fer approximating inherently continuous calculations. It can,

b2 argued that many actual risk assessment calculations should properly be
treated as discrete. For example, the fitting of continuous distributions to
sparse data inevitably involves further assumptions not directly supported by
that data. Thus, the DPD calculation, making direct use of dis. crete data, may
actually be more natural than nthers based on continuous distributions.

,
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ABSTRACT
o

" Trend and pattern analysis" are oft-cited goals in the review of
operational data reported by nuclear utilities to the Nuclear
Regulatory Commission (NRC). The NRC Office for Analysis and

.
Evaluation of: Operational Data in conjunction with EG&G Idaho,

|. Inc., has developed software which uses contir.gency table
techniques to perform such analysis. The objective of the
analysis is to ideatify outliers and anomolous behavior within
the data which would be good candidates for detailed engineering
follow-up.

This paper briefly discusses the Sequence Coding and Search
System (SCSS) Licensee Event Report (LER) data base which
contains data in a form amenable to cross-classification, the
data retrieval and statistical software employed in conjunction
with the SCSS, and the results of a trial application to the 1981
LER data.

/

BACKGROUND

The pre-eminent source of operating incident data for U.S. nuclear
power plants is the Licensee Event Report (LER). Reactor licensees submit
an LER to the Nuclear Regulatory Commission (NRC) when an incident at a
plant meets one or more of the reporting criteria incorporated in their
operating license technical specifications. Table 1 shows the volume of
LERs received over the last 5 complete years, and a received-to-date figure
for 1983.

TABLE 1. NUMBER OF LERS BY CALENDAR YEAR

Year 1978 1979 1980 1981 1982 1983*

Number of LERs 3168 3164 3850 4016 4399' 2571
.

* Partial year; reports through July 1983.
|
4
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i Each individual' LER receives wide distribution both'within and outside
-of the NRC, and is scrutinized in some detail by engineering personnel.
This case-by-case review.is sometimes supplemented by referenc.e to previous
. reports, but in general the recognition of incident recurrence, increasing
rate of occurrence, or a pattern of occurrence is. delimited by the
perception and memory of the individual engaged in the review. While '

confident that event-by-event review identifies events of immediate s'afety
significance, we have been. concerned that safety-significant situations of
high or wide-spread incidence of lower level go unrecognized in this
approach. To address this concern we have developed computer software '

which allows rapid and flexible statistical analysis of the LER incident
data.

SOFTWARE DESCRIPTION

The Sequence Coding and Search System (SCSS) LER data base was
developed by the NRC Office for Analysis _and Evaluation of Operational Data
-(AE00) with assistance from Oak Ridge National Laboratory (ORNL) in order
to support both ad hoc data retrieval (i.e., identification of all LERS
which describe a given problem) and broader form statistical analysis. The3

production. version is implemented in System 1022 on a PDP-10 at ORNL;I
'the version which works in concert with the trends and patterns software is

implemented in the Control Data Corporation (CDC) "DMS-170" data management
system at the Idaho National Engineering Laboratory (INEL).

-The most fundamental data structure in SCSS is the step record. Each
step record contains information about a single reported incidence of
hardware fault or human error, and step records are strung together to
model a sequence of events. described in an LER. SCSS step records are
conceptually equivalent to the "one-line" component fault records cataloged ,

in the previously published LER data summaries.2 A single LER generates
multiple, step records in the SCSS' data base.

By manipulation of the step records and related data stored in other
segments of the SCSS we can cross classify individual incidents to build
multiway contingency tables. The dimensions of these tables are selected
principally from those listed in Table 2.

The software which accesses the SCSS database and constructs the
desired tables is the CONTING program written by E. Henry and L. R. Fitch
of INEL.3 CONTING is a user prompting interactive program which
translates the analyst's table specifications into the required searches
and sorts of the SCSS and if desired will automatically prepare an input
file for execution by the P4F program of the "BMDP" statistical software-

package.4

:
m
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TABLE'2. MAJOR INCIDENT. ATTRIBUTES FOR CROSS-CLASSIFICATION |

<

. Abbreviation Attribute- Explanation

FID Facility Identification A four digit alpha numeric code
unique to each licensed power
reactor

'h CAUSE: Cause 'The proximate cause of the incident

' COMP Component An item of hardware, a person, or
a designation.for a train or all
trains of a system

PSYSTEM Principal System The system in which a component
is installed or, in the case of
personnel,_the activity engaged
in when the incident occurred

ISYSTEM Interfacing System Additional system information
for components at system
boundaries

VENDOR Vendor The component manufacturer

EFFECT Effect The observed component state
or behavior

EVDATE Time The time interval containing the
incident's event date

CONTING has the capability to perform selection and tabulation over
the entire SCSSsdatabase, or over any pre-selected subset. Pre-selection i

may be performed by CONTING, or outside of CONTING using the CDC program
Query / Update (QU).5 This capability allows the u:er greater flexibility
in the specification of the relevant population of records than is afforded
by the selection of levels for a given table dimension or factor within
CONTING. -It is most useful for exclusion of a single level in a dimension
we don't wish to see in the final table itself.

The CONTING user builds a table by selecting one dimension at a time
from, attributes such as those listed in Table 2. Once a dimension is
selected the user has the capability to:

I

o List all the levelivalues permitted in the SCSS data base, along
with the counts of records containing each value.

.

k
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Select all permitted values, delete selectively from this' list,o
.or build up the values list one at a time.

o Use a-file of previously selected values.

The construction of time cells by CONTING for event dates is particularly
flexible and convenient. The user can select from input options such as
the following:

o Start'date, end date, number of cells
_

r

4 o Start date, months per cell, number of cells ,-,

o End date, months per cell, number of cells

last N months (prior to ending date for SCSS data)o
.

o User-specified time cells.

When specification of the levels or cells for the selected dimension is
-

completed, CONTING will summarize the status of the table: each dimension
and its corresponding number of levels, and the total table size (total
cells). The user then may either select an additional dimension or proceed
to execute the data categorization already specified.

CONTING can determine counts for up to 50,000 cells as defined by the
table dimension / level input. Tables with up to 200,000 cells can be built
through batch execution; the input needed for batch execution is
automatically prepared. Outputs from CONTING are specified by the user and
can include:

i

o A history of the CONTING interactive session

o A computer file of the table input which can be saved and re-used
. at a future time
!

'
Cell counts for the table in a list format with cell identifyingo
labels.

o A computer file of the control language and data needed for
multiway table analysis by BMDP-P4F. This data can include
exposure time in each cell in reactor calendar hours or reactor
critical hours, as well as cell counts.'

The ability to calculate cell exposure time is another important and
convenient feature of CONTING. This feature uses a special auxiliary file

6of the INEL SCSS data base which contains Gray Book data for calculation
of reactor critical hours.

/

/

l
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BMDP-P4F provides numerous options for table display and log-linear
modeling. - The standard P4F input file prepared by CONTING may contain
requests for table-formatted cell counts and exposure times for all cells
as well as cell counts for all one- and two-way marginals.
Percent-of-total count figures are also displayed for each cell. No

requests for modeling are included in the standard file. The user adds the.
necessary P4F modeling commands on a case-by-case basis by editing the'

input file before submitting it for execution.

Following the notation used in the BMDP documentation,4 the
log-linear model in three dimensions is written as:

In F =0+A +A +A +A +A +A +A (1),

123 1 2 3 12 13 -23 123

where

the expected cell counts in each cell of aF =
123

three-dimensional array indexed by i = 1, I;
j = 1, J; k = 1, K; for dimensions
(attributes) 1, 2 and 3, respectively (I is the
number of categories or levels of the first
attribute; J, the second; and K, the third),

the grand mean effect,0 =

the main effects for the three dimensions,A,A'A3 =
3 2

second order effects, andA12' A13' A23
=

the third order effect.A =
123

.

In this notation, one may use further subscripts to denote effects for

individual levels of the attributes; e.g., A12O j) is the second-order
th

effect describing the interaction of the i level of the first table
th

dimension attribute with the j level of the second attribute. When the
additional subscripts are suppressed, the notation refers to the set of all
such effects, over all the levels of the variables or attributes indexed by
the subscripts. Standard log-linear modeling includes constraints which
make the effects unique. They are a measure of the magnitude each term '

contributes to the expected cell frequency.
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The model of Equation (1) is " saturated"; estimates for the l's can
be found so that the expected cell counts match the observed cell counts
exactly. One may test the adequacy of log-linear models with selected sets
of the effects assumed to be zero and thus excluded. For example, one may
test the hypothesis that the 1 are all zero. P4F finds maximum

123
likelihood estimates of expected cell counts for hierarchical models; i.e.,

models for which the inclusion of an effect of a specified order implies ,

the inclusion of all lower-order effect sets involving the same
dimensions. The expected cell counts under assumed Poisson sampling are
estimated using iterative proportional fitting (IPF).7

After estimating expected cell counts, P4F uses one of two algorithms
(described in Appendix A.7 of Reference 4 and in the July 1983 BMDP
Newsletter) for calculating parameter estimates (the l's in Equation 1)
and their standard errors. Pertinent to later discussions is the method
used when the model is indirect (i.e., the iteration is required to
calculate estimates of expected cell counts) and the cell estimates include
one or more zeros. In this case, P4F obtains parameter estimates by
finding the weighted least squares solution given by

I = (X' W X) 1 X' W Y (2)
-

where

a column vector of the logs of cell estimates,Y =

an (nxp) design matrix for the model (where n = number ofX =

non-zero cell estimates and p = number of parameters to be
estimated),and

an (nxn) diagonal matrix with the reciprocal of the cellW =

estimates as the diagonal entries; i.e., W is the asymptotic
variance-covariance matrix of Y.

As mentioned earlier, CONTING has the ability to calculate the
exposure time in plant, calendar hours or plant critical hours for each cell
in a table, and to pass the values to BMPD-P4F. The IPF algorithm involves
an initial fit matrix which generally consists of all ones. P4F allows the
user to override this default; one may for example declare certain cells to
be structural zeros (empty cells; combinations of attributes which do not
ever occur) by inputting zeros in the initial matrix for those cells.
Specifying exposure times for each cell in a table as an initial fit matrix
allows the user to take advantage of an even stronger feature, namely, the
log-linear hazard modeling methodology demonstrated by Laird and
011 vier.8 Laird and Olivier showed that if the exposure times are used

152
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f, .9

:as initial values and piecewise exponential sampling is assumed, then IPF'

. yields cell estimates which, when divided by their respective exposure ,

times, in turn yield a set of maximum likelihood estimates for occurrence
or. hazard rates for'a given log-linear model. Further, likelihood ratio.

- tests: based on the fitted counts are valid in making inferences about the
hazard rates'. With an initial fit matrix of exposure times, these rates

~

are produced by P4F as expected values from the specified model.
6

TRIAL APPLICATION.

The log-linear modeling approach to investigating the pattern or trend
/ .which may exist in a data. set was applied to a contingency table.for

personnel steps in the SCSS data base.
~

Personnel errors were used in this initial application of log-linear-
modeling techniques for a host of reasons. Among these reasons are the
fact that personnel steps represent a unique subset of the SCSS database,
the way personnel steps easily lend themselves to a configuration
consisting of well defined categories with a managable size table, and the
ability to ' construct a table without an overriding number of zeros. The

~

last reason stated is a significant factor which will be discussed later.

The original contingency' table built through CONTING consists of three
SCSS fields, namely, FID,.PSYSTEM, and EVDATE. For FID six plants were
used. These six plants represented the three pressurized water reactor
(PWR) and boiling water reactor (BWR) plants with the highest amount of LER
reporting for 1981. The plants are listed below.

BWRs PWRs

(
BEP2 - Brunswick Unit 2 MGS1 McGuire Unit 1-

EIH1 Hatch Unit 1 SGS2 Salem Unit 2- -

'
EIH2 Hatch Unit 2 SNP1 Sequoyah Unit 1- -

The SCSS PSYSTEM field for personnel steps reflects the activity
engaged in when an incident occurs. Five activities were chosen for the
modeling. The selection was based on their being deemed " interesting" from
an engineering perspective and there being an appreciable number of steps
for each of these activities in the data base. The following activities
were used:

PD Design Activity
PM Maintenance / Repair Activity
P0 Operation Activity
PT Test / Calibration Activity
PZ Unknown Activity

Finally, only 1981 data were used in developing a model. The year was
partitioned into four quarters. This partitioning was motivated by the
interest in assessing whether or not the events being studied could be
characterized by any underlying temporal trend or pattern. The four
quarters of 1981 are labelled T1, T2, T3, and T4, respectively.

r
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One other SCSS field was involved in this analysis.f The SCSS EFFECT
code when used in conjunction with personnel' describes wnether an omission
or commission was involved. Some personnel steps have the effect code UF
(" Desired Commission"). These steps provide further information about

ireported events but are excluded from this study because they do not
.

describe personnel errors (faults).'

With the basic structure of the table defined, the CONTING software
package was then used. An initial run sorting on the eleven personnel
effect codes other than UF was used to form a set of step records
describing personnel faults. A subsequent CONTING run using this set
generated counts for a 6 x 5 x 4 table incorporating the plant (FID),
activity (PSYSTEM) and EVDATE variables defined above. This run invoked
the option for building a BMDP input deck for program P4F. The BMDP deck
for this run, with the count data excluded, appears in Figure 1. The deck ,

was executed and an evaluation was made of the resulting contingency
table. Figure 2 shows the output, with percent of total and margin tables
attached. The table has 120 cells and 295 observations, but 29 cells are
zero. If the effect dimension were included for study, the same
295 observations would be spread among 1320 cells and the table would be
extremely sparse.

Zero entries always pose some problem for log-linear modeling, since
expected cell counts that follow a log model cannot be zero. The zeros in
Figure 2 are sampling zeros rather than structural zeros; given enough time
for observation, eventually every cell would be nonzero. In the meantime,
the data may not provide enough information tc, estimate all the parameters
of specified log-linear models.

The implications in having a multidimensional table dominated by zeros
vary with the particular log-linear analysis code being used. Problems
occur with the BMDP code when all the cells associated with an effect being
estimated for a specified model are zero counts; when this is the case, the
effect is unestimable and the algorithm loses track of which effects were
estimable and which estimates are associated with which effects. However,
this is not a problem for some log-linear codes. In these codes for each
effect whose cell counts are all zero the effects itself is assumed to be
zero and no attempt is made to estimate it. In essence the cells are
treated as structural zeros and all the remaining effects with nonzero cell'

counts are estimated. The BMDP program is to be modified in the future so
that it handles this problem in the manner discussed above.

A number of additional alternatives for handling tables with sparse
entries exist. Included are deletion of the rows and/or columns in the
table whose sparsity inhibits the modeling, adding a small number (delta)
to each cell in the table, and collapsing of categories into a lesser

~

number of groups. rThe use of some of these alternatives is discussed
below; References 7, 9 and 10 provide further insights.

i
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'OVHBM,T37,P1,STANY.

JACCNT, l D=0V H,0RG=3 540, B I N=TM3.
'ATTACH,BMDP4F,lD=BMDP.

BMDP4F,W=50000.
-cEOR
/ PROBLEM' TITLE IS

' PERSONNEL MODELING 1981
/ INPUT VARIABLES ARE 3.

TABLE IS 5, 6, 4.

FORMAT IS-FREE.
/ VARIABLE NAMES ARE PSYSTEM,FID ,EVDATE .
/ TABLE INDICES ARE PSYSTEM, FID EVDATE .,

SYMBOLS ARE A, B, C.
/ COMMENT.'

THE FOLLOWING TABLE SHOWS THE TIME CELLS
AND CORRESPONDING EVENT DATE BOUNDARIES

CELL BOUNDARh CELL BOUNDARY
_________________________________________________________

T1 19810101-19810401 T3 19810701-19811001i

T2 19810401-19810701 T4 19811001-19820101
,

'.

/ CATEGORY
CODES (3) ARE 1 TO 4

i NAMES (3) ARE
'T1 ', 'T2 ' 'T3 ', 'T4 '.,

CODES (2) ARE 1 TO 6
NAMES (2) ARE
'BEP2', 'ElH1', 'ElH2', 'MGSI', 'SGS2', 'SNPI'.
CODES (1) ARE 1 TO 5
NAMES (1) ARE
'PD ' 'PM '

'.P 0 ' 'PT ' 'PZ '., , , ,

/ PRINT OBS.PERC= TOT.MARGINALS=2.
/ COMMENT '

SORT WAS PERFORMED ON SET 1 0F OLDSETS

RECORD HITS WERE USED FOR FREQUENCY ACCUMULATION

RECORDS PERTAINING BOTH FAILURES AND COMMAND
FAULTS WERE SORTED

! '.
/ END

Figure 1. Initial BMDP-P4F deck.
i

i
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***** OBSERVED FREQUENCY TABLE 1

EVDATE FIO PSYSTEM

PD PM P0 PT PZ TOTAL
------== --- ==

T1 SEP2 5 0 0 3 0 I 8

li:1 1 8 i i i i 3
MGS1 6 4 3 1 1 1 15
SGS2 0 0 1 0 0 1 1
ShP1 5 2 4 6 21 19

------------------l------- ---- -- - - -

TOTAL 20 o 9 15 5I 55

T2 BEP2 1 1 2 2 0I 6

EIH1 7 1 0 2 2I 12
EIH2 1 4 5 2 11 13
MGS1 6 15 15 5 2 1 43
SGS2 3 3 6 4 0 1 16

- _ - _- 1--= _ _ 11
1 1$NPL 6 2 1 1

_ - _ - -=_:

TOTAL 24 26 29 16 4 1 101

T3 BEP2 3 2 0 3 2 I 10
EIH1 1 5 2 1 1 1 10
EIH2 1 1 0 0 01 2

%1 11 14 13 2 1 1 41
SG 2 1 0 3 1 1 I 6

SN 1 4 2 0 6 3 1 15
_ - - - _ __

=.__.___.-_________g ..

TOTAL 21 24 16 13 8 1 d4

T4 BEP2 6 6 0 3 0 1 15
EIH1 2 0 3 1 01 6

.
EIH2 0 1 1 1 01 3

' M451 4 2 3 6 21 17
5652 0 2 3 0 1 I 6
SMP1 2 2 3 0 1 1 S

"

TOTAL 14 13 13 11 4 55

TOTAL OF THE 08 SERVED FkcQUENCY TABLt IS 295

Figure 2. Output from initial BMDP-P4F run.
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***** PERCENT 5 0F THE T ABLE TOT AL - T ABLE 1
^

EVDATE FID PSYSTEM

PD Ptt PO PT PZ TOTAL
_

___

|-
T1 SEP2 1.7 0.0 0.0 1.0 0.0 I 2.7

ElH1 .7 0.0 0.0 0.0 .3 I 1.0
! EIH2 .7 0.0 .3 1.7 .3 J 3.1
! MG 1 2. 14 1.0 .3 ' .3 h 531

SG 2 0. 0.0 .3 0.0 00.. .
-SM 1 1. .7 1.4 2.0 .71 6.4

- - -- I
-- - - - - - - - - - - - - -

_

,

1 T2 BEP2 .3 .3 .7 .7 0.0 1 2.0
i EIH1 2.4 .3 0.0 .7 .71 4.1
- E1H2 .3 1.4 1.7 .7 .31 4.4

MGS1 20 5.1 5.1 1.7 .7 I 14.6
i SGS2 1.0 1.0 2.0 1.4 00 I 5.4
j SMP1 2.0 .7 .3 .3 .3 I 37 '

____

- - - - .-g--------- ,

i TOTAL 8.1 8.8 9.8 5.4 2.0 1 34.2

: T3 SEP2 1.0 .7 0.0 1.0 .7 I 3.4i E1H1 .3 1.7 .7 .3 .31 3.4

'. GIH2 .3 .3 0.0 0.0 0.0 I .7
MES1 3.7 4.7 4.4 .7 . 3 -1 13.9

i SGS2 .3 0.0 1.0 .3 .3 I 2.0
j SNP1 1.4 .7 0.0 2.0 1.0g 51

| TOTAL 7.1 8.1 6.1 4.4 2.7 1 28.5
' T4 SEP2 2.0 2.0 0.0 1.0 0.0 I 5.1
, EIH1 .7 0.0 10 .3 0.0 1 2.0

EIH2 0.0 .3 .3 .3 -0.0 1 A.0
"

'
MGS1 1.4 .7 1.0 2.0 .7 I 5.8

i SG$2 0.0 .7 1.0 0.0 .3 1 2.0: SNP1 .7 .7 1.0 00 .31 2.7

TOTAL 4.7 4.4 4.4 3d 1.4 18.6
~

i

i Figure 2. (continued).
! -
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***** MARGINAL SUBTABLE -- TABLE 1

PSYSTEM'

PD PM Pa PT PZ TOTAL
____ _

____ _ _
_ _ _ __ - _ __-_ __ _

.

_ _ _ ___ _

79 69 69 55 23 1 295
<

***** M ARGINAL SUBTABLE - TABLE 1

F10 >

SEP2 EIH1 EIH2 MGS1 SGS2 SNP1 TOTAL

29 53 1 29539 31 27 116 -

***** MARGINAL SUBTABLE - TABLE 1

| EVDATE
"

T1 T2 T3 T4 TOTAL
_

55 101 84 55 I 295

***** MARGINAL SU8 TABLE - TABLE 1

FIO PSfSTEM
_

PD PM PD PT PZ TOTAL
==

-

- - _ . .-=--

SEP2 15 9 2 11 2 I 39
.

EIH1 12 6 5 4 4 1 31
| EIH2 4 6 7 8 21 27
i MGS1 27 35 34 14 6I 116
1 SGS2 4 5 13 5 21 29

$NP1 17 8 o 13 7I 53
__ ___=__

___ _ g4

__ __

i TOTAL 79 69 69 55 23 1 295

! Figure 2. (continued).
!

.,
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***** MARGINAL SU8TABLs - TABLE 1

EVDATE PSY5 TEM

PD PM PO PT PZ TOTAL
_ _ _ _ _ - - - _ - .

T1 20 6 9 15 5I 55
i T2 24 26 29 16 6 I 101

T3 21 24 18 13 oI 84
T4 14 13 13 11 4I $5

______________I______ i- - - - _ _ _ - _

; TOTAL 79 69 69 55 23 I 295

| ***** MARGINAL SUBTABLE -- TABLE 1
i

EVDATE FID
4EP2 EIH1 Eld 2 MGS1 SGS2 SNP1 TOTAL

_ __

Tl 8 3 9 15 1 19 I 55
; T2 6 12 13 43 16 11 1 101

T3 10 10 2 41 6 15 " 84,

T4 15 6 3 17 6 8 551

== = - - -_- _ _ = = = ____ . _ - _ - _ _ -

TOTAL 39 31 27 116 29 53 1 295

Figure 2. (continued)..
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Returning to our particular model, after a number of iterations the
' decision.was'made to consolidate plants into the two groups, BWRs and
PWRs. ~ This change was made through'a simple modification of the original
BMDP deck produced by CONTING. Figure 3 shows the modified BMDP deck with
additional options specified for modeling. Commands in the deck which are
new or modified are highlighted. The contingency table for this new
' configuration appears in Figure 4.

In Figure 3, we see that the three fiel'ds PSYSTEM, FID and EVDATE are
referenced, respectively, by the symbols P, F, and T (rather than the
dimension numbers 1, 2, and 3 of Equation 1). Also, notice that a number
of models for the data have been specified. Finding a " good" model is an
exploratory process. The models specified in the figure represent only a .

small subset of those tested on the data. The ensuing discussion pertains,

only to the model ultimately chosen to characterize the data. However,
there is no one model which can objectively be classified as the "best"
model. Factors such as past knowledge of relationships between variables,
physical constraints and cost must be taken into consideration in-
development of any model.,

The model selected to characterize the data is PF,T. That is,-
non-zero effects for the PSYSTEM-facility interaction and for event date

-will be included in the model. Since this is a hierarchial model, P and F

are also terms whose main effects are included. The effect sets APT'
are assumed to be zero for.this model.XFT, and IPFT

Sections of the P4F output pertinent to this model are contained in
Figure 5. Figure 5(b)a shows the expected cell frequencies generated.

Estimates of the effects for the model are given in' Figure 5(c).
Equation (1) together with the model implies that the (1,j,k) cell

4

frequency can be estimated as

), (3)exp(0) exp(A (9)) exp(Ag g ) * exp(1. g ) * exp(Appp 7

and the "multiplicative parameters" in the listing give these values. For
example, the multiplicative "PWR" effect (see Figure 5(d)) of 1.43 shows
that counts for the PWR plant cells in the table are on the average roughly
43'4 higher than the overall average. Detailed interpretation of these
effects and the model itself in general requires insight and knowledge on
the part of the individual doing the analysis, regarding the "real world"

| meaning of the factors being modeled in addition to an understanding of the
mathematics involved in the modeling procedure itself.

;

6

| a. Figure 5 is marked with circled letters. .These correspond to the
letters in parentheses in the text figure references.

:
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OV HBM, T37, P 1, STA NY.
ACCNT, l D=0VH,0RG=3 54 0, B I N=TM3.
ATTACH,BMDP4F,lD=BMDP.

* BMDP4F,W=50000.
* EOR.

/-PROBLEM TITLE IS
' PERSONNEL MODELING 1981

/ INPUT VARIABLES ARE 3.
TABLE IS 5, 6, 4. .

*

FORMAT IS FREE.
/ VARIABLE NAMES ARE PSYSTEM,FID ,EYDATE .
/ TABLE INDICES ARE PSYSTEM, FID EVDATE .,

'

SYMBOLS ARE P,F,T.*

/ FIT MODEL IS PF,FT,PT.-
*

CELL =STAN. STEP =8. PROB =.25.
'* -

. ADD IS MULTIPLE. DELETE IS SIMPLE. STRATA IS PSYSTEM., +
'

' ' ' /F1T MODEL iS FP,T.-+

CELL =STAN. STEP =8. PROB =.25.~

. ADD IS MULTIPLE. DELETE IS SIMPLE. STRATA ~IS PSYSTEM.*

/ FIT MODEL IS F,PT.*

CELL =STAN. STEP =8. PROB =.25.*
,

,

ADD IS MULTIPLE . DELETE IS SIMPLE. STRATA IS PSYSTEM.*

/ FIT MODEL IS'FT,P.4

CELL =STAN. STEP =8. PROB =.25.c 4

ADD IS MULTIPLE . DELETE IS SIMPLE . STRATA IS PSYSTEM.4

~ / FIT MODEL IS P,F,T. t4

CELL =STAN. STEP =8. PROB =.25.4

ADD-lS MULTIPLE. DELETE IS SIMPLE. STRATA IS PSYSTEM.4

/ PRINT OBS.EXP. LAMBDA. BETA.PERC= TOT.*

Figure 3. Modified BMDP-P4F deck.
'

,
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s y

/ COMMENT ' .

THE FOLLOWING TABLE SHOWS THE-TIME CELLS
4 AND CORRESPONDING EVENT DATE BOUNDARIES

A
.

_

CELL BOUNDARY CELL BOUNDARY
_________________________________________________________

T1- 19810101-19810401 ~T3 19810701* 19811001
T2 19810401-19810701 T4 19811001-19820101

'
t

b/ CATEGORY '

CODES (3) ARE 1 TO 4
'

NAMES (3) ARE
'T1 ', 'T2 ' 'T3 ' 'T4 '., ,

CODES (2) ARE 1 TO 6.

NAMES (2) ARE
; + ' BW R ' , 'BWR', ' BWR', 'PWR', 'PWR', 'PWR'.
f CODES (1) ARE 1 TO 5

NAMES (1) ARE
'PD ', 'PM ', 'PO ', 'PT ', 'PZ '

.

] / PRINT OBS.PERC= TOT.MARGINALS=2.
/ COMMENT '

'

SORT WAS PERFORMED ON SET 1 0F OLDSETS

| RECORD HITS WERE USED FOR FREQUENCY ACCUMULATION
:

| -RECORDS PERTAINING BOTH FAILURES AND COMMAND
!
I FAULTS WERE SORTED

| '.

; / END'

,

|

! Figure 3. (continued). '

i

,
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.

***** OBSERVED FREQUENCY TABLE 1

EVDATE FID PSYSTEM
_

PD PM PO PT PZ TOTALi __ _ _ _ ._ _-_ _ _ _ _ _ _ _ _--- __

4

T1 SWR 9 0 1 a 2 1 20
PWR 11 6 8 -7 3 1 35

TOTAL 20 6 9 15 5k 55
!

'

T2 BWR 9 6 7 6 3 1 31
; PWR 15 20 22 10 3 I 70 -
, _---------_-------------------------------------1---------

TOTAL 24 26 29 15 6 I A011

'

T3 8WR 5 8 2 4 3 1 22
PWR 16 16 16 9 5 1 62

==1 _ ------- =- -- - - - - - - --

; T OT AL 21- 24 18 13 8 1 84 .

! T4 swr 8 7 4 5 01 24
PWR 6 6 9 6 4 1 31

==----------l--------
: TOTAL 14 13 13 11 4 1 55

TOTAL OF THE OBSERVED FREQUENCY TABLE IS 295 ,

Figure 4. Observed frequency table from modified BMDP-P4F run.'
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LIKELIHJ0D-RATIO Pik4 SON~

MODEL , D.F. CHI-SQUARE PROS CHI-SQUARE PROS ITsR.

PFsT. 27 35.31 .13 13 30 28 .3015- 2 |

***** EXPECTED VALUES USING A80Vs MODEL

EVDATE FID PSYSTin

PD PM PO PT PZ TOTAL
==

T1 SWR 5.8 3.9 2.6 4.3 1.5 18.1,

PWR 8.9 8.9 10.3 6.0 2.o 36.9
. ~

TOTAL 14.7 12 9 12 9 10.3 4. 3 |, 55.0

$7I 33.22
''

67.8T2 swr 10.6 7.2 4.8 7.9
1PWR 16.4 16.4 18 8 11.0

T0fAL 27.0 23.6 23 6 18.8 7.9 " 101.0

T3 SWR 8.8 6.0 4.0 6.5 2.3 I 27.6
PWR 13.7 13.7 15.7 91 4.3 I 56.4
. - = _ - - _ - - - -

- - _ ..._ -._.._ _ .. 1.........
TOTAL 22.5 19.6 19.6 15.7 6.5 I 84.0

T4 BdR 5.8 3.9 2.6 4.3 1.5 I id.1
PdR 8.9 a.9 10.3 6.0 2.6 1 36.9
- --- = - - - - - - - - - - - - - - - - - - ------------I--------
TOTAL 14.7 12.9 12.9 10.3 4.3 I $5.0

Figure 5. Modified BMDP-P4F run output for selected model.
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ESTIMATES OF THE LOG-LINEAR PARAMdTEk5 (LAMBDA) IN THE MODEL AB0Vt
THETA (MEAh) 1.8038

i

ESTINATES OF THE MULTIPLICATIVs PARAMETERS (BLTA = eXP(LAn30A)EXP(THETA) 6.0725
***** ESTIMATES OF THE LOG-LINEAR PARAMsTERS (LAMSDA) IN THE M006L A80Vs

Pif$1EM
_ _ _

PD PM PU PT PZ

.427 .232 .098 .075 .832
***** RATIO OF THE LOG-LINEAR PARAMcTLR ESIInATE5 (LAM 8DA) TO ITS STANDARD ERR 0R -

PSYSTEM
__

PD PM P0 PT PL

3 783 1.894 .723 .593 -4.543
***** ESTIMATES OF THE MULTIPLICATIVE PARAMETERS (86TA = EXP(LAR8DA)

PSYSTEM '

______

PD PM P0 PT PZ;

j 1.533 1.261 1.103 1.078 .435

***** ESTIMATES OF THE LOG-LINEAR PARAntTERS (lad 80A) IN THE MG0EL ABOVE
1

FID
:

--

-

SWR PWR

.359 .359

***** RATIO OF THE LOG-LINEAR PARAMETER ESTIMATES (LAM 8DA) TO ITS STANDARD ERROR
! FID

___

8WR PdRi

-5.196 5.196

***** ESTIMATES OF THE MbLTIPLALATIVL PAAAMETERS (8 ETA = EXP(LAnSDA)
FID
--

SWR PWR
@g .698 1 432

i m
'

Figure 5. (continued).
<
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C0000 ESTIM ATES OF THE LOG-LINc AR PAR ACETERS (L AMSD A) IN THE n003L A80VG

' [ EVDATE [,

! E T1 T2 T3 T4 -
~ s.

-.

j-
; _ = = = = = = = = _ - _ __

.258 .350 .166 .258~,
,

N,e,

***** RATIO OF THE LOG-LINEAR PAdAMETER ESTInATES (LAMSDA) TO'ITS iTANI3 Ado ERROR<
,

. g~

EVOATE f'g- f
3

e . . .~

T1 T2 T3 T4 e
'

-

--- ,>_ - _ - - _ _ _ _
;------ ,,

' 1 -2.285 3 777 1.692 -2.285 - ,
'-

I ***** ESTIMATES OF THE MULTIPLICATIVE PARAMETERS (dETA = EXP(LAMdDA! , . ,

| EVDATE
~

i.

! T1 T2 T3 T4

b .773 1.419 1.180 .773 -

| ***** ESTIMATES OF THE LOG-LINE AR. P ARAMETERS -(L AM8DA) IN THE MODEL ABOVE

| FID P3YSTEM !
~

, _ _ _ _

,

PD PM PO / 'PT PZ
==_ ___ = - _ = - - - . - _ =--

i

~

4WR .140 .054 .325 .194 .045 - -

' PWR .140 .054 .325 .194 .045 -

,

!
~ ***** RATIO OF THE LOG-LINEAR PARARETER -ESTIMATES (LAMBD A) TO IT5-STANDARD' ERROR' '.,'

j_-
-

_ _ _

PSTSTEn , //_ -;,
-

~WID,- - ,_,
f ,

'

. . , - -_ .
s ~

_' '
| ' PD PR P O ' __ _ - - . . - - - - - - - = _ . '

'

PT ' PZ ~
, ,

'

t _ _- - - - - - -

' swr -1.245 .442 -2.40s 1 .534 c245
PwK -1 245 .442 2 408 -1.534 .2s3 .

-

***** ESTIMATES OF THE MULTIPLIC ATIVE P ARAMETERS (8ET A EXP(LANSDA)=
j

FID PSYSTEM
; -- - -_

| PD PM PG PT PZ

I BWR 1.151 947 .723 1.214 1346 Oe '

4 PWR .869 1.056 1.384 .824 .956 v
I
j Figure 5. (continued).
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MODELS FORMED BY ADOING TERMS TO N00EL - PFsT. I

N00EL F 0.F. N PRb8 C ARE PROS-

!: Pis PF. 15 21.01 .1367 18.04 .25M'DIFF. DUE TO ADDING PT. 12 14.30 .2819 12 21 .4292
I FTePF. 24 30.26 .1763 A 24.64 .4256OIFF. DUE TO ADDING FT. 3 $.05 .1644 \1/ 5.65 .I302

DIFF. DUE TO ADOING PFT. 2h 3hk! $f$ 30.!$- *$$$$
* *

.

STEP 1. DEST N00EL FOUND IS - PFT.; ,

i STEPPING STOPS DUE TO CRITERION PR04 ABILITY ( .2508.
i

: MODELS FORMED BT DELETING TERMS FROM M00EL -- PFsT.
1 -'
a SIMPLE LIKELIH000-RATIO PEARSON
j MODEL EFFECT 0.F. CH1-SOUARE PAGS CHA-50uaRE PROS

,

*

I PF. 30 56.15 .0026 48.47 .0170 ij OIFF. DUE TO DELETING T. 3 20.64 .0001 18.19 .0004.

I DIFF. DUE TO DELETING PF. .k *
!h h ! h6hh

# * *

.06 .:
STEP 1. BEST N00EL FOUNO IS -- FsPsT. .

STEPPING STOPS DUE TO CRITERION PROBASILITT ( .250).

*****0ELETIDP OF STRAT A
|

4 VARIASLE CATEGORY CHISQUAki U.F. PROS.
PSYSTEM PD 14.85 9 .09521>

hPSYSTEM PM 8.24 9 .50656
PSY TEM PD 14.83 9 .09561 'l

PSY TEM PT 14.87 9 .09450 '
.

1 PSY TEM PZ 10.00 9 .35076 :
J

1 Figure 5. (continued). |
1 .
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A basic way of assessing how good the model fits the data is through'
<

2t evaluating the chi-square (x ) statistic compute'd.from the observed and
2" expected data. The x statistic can be computed either through the

' likelihood-ratio (LR) method or the Pearson method. In both cases the-

statistic is a measure of the overall amount of deviation between the 3
,

expected and. observed cell frequency counts. These statistics are
~

2vpresented in Figure 5(a). The magnitude of the x statistics must be
evaluated relative to tht specific configuration for a prescribed table and

2relative to the specified model. For this model the x statistics and !
associated probability levels are (35.31, P = .13) and (30.28, P.= .30),
respectively for the LR and Pearson statistics. The probability level can |

be interpreted as the probability of getting a " larger" x value under
the hypothesis that the model is "true". Low probability values imply that
either the model is not acceptable or the observed data is rare for-that
model. The observed values for the PF,T model indicate a moderately good

% fit with this model; that is, the data gives us no reason to suspect that -

'the model is totally inadequate. However, it could be of interest and.

benefit to pursue trying to enhance the fit of the model to the data. Two
common ways this is done are through addition or deletion of terms to' the
model and exclusion of "other" cells from the data.

In Figure 5(f) we see the effect of including additional terms in the
model. Notice a better fit is obtained when the term FT is added. For the f

2resulting model (FT,PF) the LR and Pearson.x statistics are .17 and
.42, respectively. The " significance" of this observed change in the
adequacy of the fit, again, is a subjective question which can only be

* answered specific to the particular application.

One might also try to enhance the model by deletion of terms. In
particular, we will examine the' term PF. The effects associated with the
interaction between PSYSTEM and type of facility (PF) are shown in
Figure 5(e). For example, we see that, after adjusting for the main
(overall) differences between the selected BWR and PWR plants, for design
activities (PD) the BWR plant counts on the average remain about 15% higher
than the average, while for operation activities (PO) PWR plant counts
remain about 38% higher than the average. This indicates the relationship
between PSYSTEM and FID may depend on the particular PSYSTEM and FID
combination. The need to include this term in the model is reflected in

2the x statistics we obtain with the term deleted. Figure 5(g) shows
2that the LR and Pearson x statistics for the model (P, F, T) (without

the interaction term) are .D5 and .14, respectively; these in contrast to
.13 and .30 with PF included. s

The final section of the BMDP output, see Figure.5(h), provides
information about the level of PSYSTEM which has the greatest impact on the
fit.of the model. Maintenance is the type of activity which is least
accomodated by the selected model.

\
L
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The fact that the PF,T.model provides a reasonable fit coupled with
~

the' fact that'the x2
'

statistics do:not improve through adding PT to the'
2'

model:(Pearson x actually decreases) indicates that the distribution
~ f the personnel activities studied doe not'signifIcantly change from one-o

quarter to another in 1981 for_the high-reporting plants.

CONCLUSIONS
'

. . -. .

In'this paper we have illustrated a' system-for. automated trend'and
pattern analysis of operational- data from nuclear power plants. :The , system

.pernt.ts one to. analyze broad segments of the reported data and generate. ,

tables of: counts. These tables are u~seful for obtaining overviews of the.
, data and qualitatively identifying outliers, even without the log-linear,

modeling capability. The. time-consuming nature of producing such tables ~in-
the past has_now been overcome.-

.

With log-linear modeling,-a capability to statistically investigate
Lthe relationships present in.the data has been added and demonstrated. .The.

i application of thisfcapability to SCSS. data is_in its preliminary stage's;
for example,-the normalizing capability for studying hazard rates was not
demonstrated _in the trial application because its use in conjunction withi

collapsing categories to produce less sparse tables is sti_11 under-
development. However, we-are confident that log-linear hazard rate;
modeling is a'ppropriate for~this data and we_ expect to learn'more about.
operational events through engineering analysis of events flagged by these

~

,

methods as they evolve further.
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. GOVERNMENT AND STATISTICS: THE ASA/NRC EXPERIENCE

Bernard Harris

Abstract

The following material is part of the panel discussion on the activi-
ties of the ASA Ad Hoc Advisory Committee on Nuclear Regulatory Research.
The discussion that follows is intended to describe the operatiuns of the
comnittee and its interactions with the Nuclear Regulatory Commission (NRC)
from the perspective of a committee member.

GOVERNMENT AND STATISTICS: THE ASA/NRC EXPERIENCE

In this brief di; course, I wish to describe the interactions of the ASA'

Ad Hoc Advisory Committee on Nuclear Regulatory Research with the Nuclear
Regulatory Research Branch of the Nuclear Regulatory Commission (NRC). The
remarks that follow will reflect my personal views of these interactions and
their consequences to both organizations. These connents need not necessarily
be the views of other comnittee members.

In order to put these comments into perspective, it seems desirable to
first briefly describe how the committee came into existence and the organiza-
tion of the committee In response to a perceived need, the American Statistical
Association entered into discussions with the Nuclear Regulatory Commission
and following some negotiations, the committee came into being i.. October 1980.

Initially, the committee divided itself into three subconnittees:

1. Models and Analysis
2. Data Problems
3. Communication.

This division is significant to this discussion, since it reflects the
committee's view of how it expected to operate, the areas in which it hoped
to provide advice and the manner in which it hoped to provide such advice.

'

That is, the committee envisioned three areas in which advice could be useful
and divided themselves into these three subcommittees according to their
talents and interests. This reflects a percept'on of the needs of the Nuclear
Regulatory Commission in assessing nuclear reactor safety as follows:

1. Models and Analysis Subcommittee

This subconnittee would study mathematical and statistical models for
reliability in order to ascertain their applicability and utility in problems
of concern to the Nuclear Regulatory Commission. They would also study the
methodology employed by the NRC to determine if it is adequate or if some
modifications or perhaps even substantially different methodology is needed.
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The committee planned to study system reliability modelling and the applica-
tion of some recent proposals for modelling of complex systems, such as the
MAXIMUS proposal. The agenda also included the analysis of common mode and
common cause failure models, and the study of mathematical models for the fre-
quency of initiating events, such as earthquakes, floods, or fires. The sub-
committee would study mathematical models for haman errors. In addition, the
study of uncertainty and sensitivity analyses was considered to be within
their purview. In any of these areas, it was deemed useful to create new
models whenever appropriate.

2. Data Subcommittee

This subcommittee reviewed the data collection processes employed by the
NRC and made appropriate recommendations. They studied and familiarized them-
selves with LER's and other data sources. In addition, they considered
possible changes in processes that would increase accessibility of data by
using suitable automated procedures for organizing data.

3. Communication Subcommittee

This subcommittee vas concerned with advising on methods of communicating
rrsults and conclusions concerning nuclear reactor safety to the general public,
political bodies and appropriate professional organizations by interpreting
the statistical evidence in a manner conducive to facil'tating such communica-
tion.

The above structure was abandoned after one year and only the first two
functions were continued fro the balance of the life of the committee.

The Nuclear Regulatory Commission appeared to have somewhat different
ideas concerning the utilization of the committee. Many of the meetings of
the committee were devoted to two principal activities.

1. Briefings by the staff of the Nuclear Regulatory Commission.
These served the purpose of informing the committee about their current
projects and areas of concern. In addition, this also provided information
on the methods that were currently being employed by the Nuclear Regulatory
Commission in studying these problems.

2. Reviews of NRC research projects completed under external grants
and contracts. Naturally, some time was needed for the committee members to
become familiar with the terminology used by the NRC staff and with the problems
that confronted NRC, in particular, those with which the committee could render
some useful assistance. Nevertheless, from our standpoint, a significant
fraction of the time allocated to such meetings was quite unproductive. In par-
ticular, I had the feeling that reviewing reports prepared under contract
should be done by the NRC internally. However, some exceptions are certainly
justified. Specifically, some of the reports did provide some insight into NRC
Concerns.

Despite the above negative comments, there were a number of significant
benefits derived from these meetings. In particular, we became acquainted
with a number of the phenomena of concern to the NRC. These include:

173

_ _ _ _ _ _ _ _ _ . _



..m, ., - , .. . . - . . , , , . - - . . . . . . , . . . . . . . , _ _ . . .

__

1. Damage to reactors due to floods, earthquakes, and so on.

2. Models for release and transport of radionuclides, such as
Gaussian plumes, top-hat plumes, and others.

3. Maintenance problems, including pipe breakage and failure
of diesel engines to start on demand.

4. The tendency of reactor vessels to become brittle.

5. Human error rates.

6. The inadequacies of data on component and system failures due
to regulations as well as record keeping problems.

7. The inadequacies of data due to lack of accessibility of records

I feel that such meetings would have been substantially more productive,
if, one day prior to the meeting, some time had been allocated to screening
possible briefings in order to ascertain whether the committee might benefit
from them. A similar procedure could have been undertaken in screening the

.

reports to be reviewed.

Inasmuch as most of my activities on the committee were devoted to the
Models and Analysis Subcommittee, a disproportionate amount of the comments
that follow will deal with the activities of that subcommittee and in
particular with my own activities.

Accordingly, I will now list the specific problem areas to which I have
gained insight and to which I hope that I have made a contribution.

1. Probabilistic Risk Assessments. This is the most commonly used
method for estimating the rate of nuclear reactor accidents. The Reactor
Safety Study (1975) (also known as the Rasmussen Report) is the prototype
of such studies.

2. Common Mode and Common Cause Failures. Some of the methods
previously employed for the estimation of the probability of such failures
have been highly controversial. For example, the procedures used in the
Reactor Safety Study were severely criticized in the Lewis Report.

3. Precursor Methods. These are methods for evaluating the frequency
of nuclear reactor accidents in which the observed occurrence of those events
which can be completed to accidents are combined with^ estimates of the
probabilities of the sequences needed for completion. This enables one to
obtain estimates of the accident rates.

The committee did make a number of reasonable accomplishments once there
was a clear perception of some areas in which they could be useful. A
listing of some of these accomplishments follows.
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1. Reports prepared under NRC Research Grants were reviewed and comments
evaluating them were released to the NRC.

2. Recommendations on data collection and data processing were made.

3. The PRA (Probabilistic Risk Assessment) technique was reviewed and
recommendations for improvements in the PRA process were made.

| 4. Some particular cases of implementations of PRA studies were reviewed
and reports commenting on them were provided to the NRC.

5. A report on common mode and common cause failures has been sent to
the NRC.

6. A report discussing precursor methods has been prepared and should
be released to the NRC shortly.

I would like to close this brief discussion with some comments and sug-
gestions for future advisory committees and how their interactions with
government agencies may be improved.

First, a clearer understanding of potential contributions of the committee
are needed. These should be related to the expectations of the government
agency in such a way that both bodies will be satisfied with the advisory
process.

!

An additional problem is a consequence of the Federal Advisory Committee
Act. This imposes severe restrictions on the appointment and operation of
advisory committees. Presumably the purpose of this act is to avoid the undue
influence of special interest groups and to prevent conflicts of interest, as
well as to insure that public access to such meetings is guaranteed.
Personally, I do not regard this as being so serious a problem as to warrant
the restrictions imposed by this act. In particular, while a special interest
group may make suggestions to a government agency, the agency is capable of
exercising discretion and is under no obligation to adopt the suggestions.

I would now like to close this commentary with some remarks concerning
the benefits to my own career and activities that accrued as a result of my
association with the committee.

A significant fraction of my own research is in the area of reliability
theory. My activities with the committee provided me with a source of
interesting problems and some insight into an important area of application.

I also became acquainted with the PRA methodology and even made some con-
tributions to the PRA Guide through my membership on William Vesely's committee.

I learned a substantial amount about the present state of research on the
propagation of uncertainty and on sensitivity analysis.

I will terminate this discussion with one negative note. I have sent a
number of reports to the Office of Nuclear Regulatory Research, but as of
this date, I have received no comments or feedback. I hope that some
connunication will be forthcoming soon.
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Abstract

; Decisions must be made, in spite of uncertainty. If the uncertainty !is too *
iarge, whether in a probabilistic or a deterministic sense, then the regu-
latory decision might be ~not to proceed with the activity, or to. proceed with
appropriate conservatism expressed in cautions and limitations--but a decision

: is made nonetheless. :While most regulatory decisions are made in a determin-
istic sense using appropriate bounding conservatisms, in most cases the basic'

i

uncertainties involved are much the same as those inherent in a PRA. The use :

of PRA adds a new dimension for the decisionmaker--one of a.more realistic
'

display of the integrated interactions of all systems, including the human..
These insights are important, but the bottom-line risk or core melt numbers

;. must be used with caution because of the inherent uncertainties.'

Use of PRA as an influence on decisions suffers from the tendency to go too -
quickly to the bottom line, which is the weakest part of'a PRA. -Numerical,

criteria such as safety goals need to be constructed and implemented in such a
.

way as not to drive one even.. faster to the bottom line. One needs to stopt

along the way and pay:particular attention to the design.and operations insights
derived from the analyses. Therefore, the performance of the PRAs and the

I display of results and uncertainties should be suitably constructed so as to
! provide convenient and scrutable stopping places for the decisionmaker, to

encourage viewing these insights and understanding the underlying assumptions'

F and uncertainties, and to discourage undue fixation on the bottom line. Only
then will regulation be able to draw fully upon the potential benefits of PRA

;

as an information source and regulatory tool..

Decisions cannot be made by-the-numbers in a complex technology. Neither PRAs.
nor safety goals can be used as conveyances for easy decisions. Acceptable

j risk as portrayed .in the Commission's safety goals is a subjective judgment
i that cannot and should not be interpreted as a clear go no-go numerical
i criterion. One must remember that PRA results are uncertain, but also their

'

-

bottom-line results are being compared to objectives that are believed to be a
conservative, and perhaps equally uncertain, estimate of society's perceived
tolerance of risk. '

-

:

The general topic for this session of the Statistics Symposium is acceptable
'

risk and safety goals, and I was asked to discuss experiences and strategies
at the NRC. After giving this subject considerable thought, I felt I would
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be responsive to this charge if I tried to put int'o perspective the past
practices of the NRC with regard to acceptable risk'and decisionmaking under
uncertainty, the evolving role of PRA as an analytical tool and aid to
decisionmaking, and the thinking behind the Comission's safety goal. Indeed,
because of the uncertainties involved, there must be enough grist in these
topics to keep any statistician's mill grinding.

The focus will be principally on PRA, because it is the only quantitative tool
that can be used to estimate risk. The focus will not be on the definition of
acceptable risk--the Commission's safety goals will be taken as a given in
this area. With regard to acceptable risk, past NRC policies and practice
have used a qualitative approach--reasonable assurance of no undue risk. The
safety goals policy statement is an attempt to define acceptable risk in a
more quantitative manner; to make the NRC's policy more explicit and under-
standable and to set more definitive boundaries on regulation.

What is a Decision?

There are very few decisions made on any subject today that do not have some
degree of uncertainty. The only sure things in life are death and taxes; but
there is precious little that we, as decisionmakers, can do to alter the
outcome of these events. Therefore, we are stuck with making the best of
uncertainty in the vast majority of our decisions.

While the NRC is specifically charged with protecting the public health and
safety in matters involving the peaceful uses of nuclear energy, it is

. recognized that the backdrop of this charge is the anticipation that, with
proper regulation, such uses can occur without an undue threat to public
health and safety. Therefore, the NRC is clearly charged to strive toward a
reasonable balance in regulation, and cessation of the activity it regulates
should only take place if there is not reasonable assurance that the public is
being adequately protected.

The interesting thing about decisions is that, if you don't take any action,
that is still a decision. In this context, the lack of a decision to issue a
nuclear power plant operating license would signify unacceptable risk, and the
lack of a decision to shut down an operating plant would signify acceptable
risk. Both such inactions clearly are decisions. Thus, every day the NRC,
through action or inaction, is called upon to make decisions; and these
decisions must be made using the best available knowledge and in spite of
uncertainty.

How Does the NRC Regulate and Make Decisions?_

The traditional regulatory process for limiting nuclear power risks is
deterministic, based on the concept of defense-in-depth which involves plant
design, operations, siting, and emergency planning. The defense-in-depth
concept emphasizes good management; quality assurance; conservative design,
contruction, and operations; prevention of core damage accidents by requiring
appropriate emergency shutdown and cooling systems; mitigation of any accidents
that might lead to core damage through the use.of systems that reduce the
amount of fission products released to the environment; siting in areas that
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are not in close proximity to highly populated areas; and good emergency
planning. Analyses to demonstrate compliance with NRC's requirements have
generally been based on conservative engineering . judgment, through the use of
design basis accidents (DBAs), with little emphasis on probabilistic assessments
as to the likelihood of meeting the engineering intent of the requirements.
However, even the NRC's deterministic approach to licensing has been sprinkled
with judgments regarding the likelihood of occurrence of certain events.
These are apparent, for example, in the establishment of requirements for
redundancy and diversity, including use of the single failure criterion.

The DBAs are a set of accidents chosen to envelope credible accident conditions.
Design and operations should be such that these accidents will not cause
substantial degradation of the core, and conservative estimates of the radio-
logical impact of such accidents have to be limited to prescribed values using
engineered safety features and appropriate siting. The success of this
approach has been demonstrated in that it is widely recognized that accidents
outside of the design basis envelope dominate the estimated low levels of risk
associated with the operation of nuclear power plants. The more probable
causes of such accidents are believed to originate from multiple failures or
human errors outside the domain of the single failure criterion and those
common cause failure mechanisms currently addressed in the regulations
(seismic qualification, safeguards, fire protection, etc.). While this fact
does not negate the effectiveness of the NRC's regulatory practices, it does
raise a question as to whether additional protection for accidents beyond the
design basis should be provided--thus, the current widespread interest in
degraded core accidents and PRA.

The principal shortcoming of the traditional deterministic process is that it
does not include an effective means for conducting an integrated and systematic
systems analysis of the plants. PRA is designed to fill this gap. It is a
powerful tool for organizing information into a logical framework and providing
insights into the complex interrelationship among systems and humans in a
nuclear power plant.

PRA can provide a comprehensive, balanced, realistic model for predicting
reactor risks by performing a systematic review of the design and operation of
a nuclear power plant from a risk and reliability perspective. It is not
constrained to design basis events, but instead provides an integrated assess-
ment of front-line safety systems, support systems, and plant operation with
respect to core melt, containment failure, and radiological consequences.

PRA provides the regulator with additional tools to: (1) conduct a broad,
realistic inquiry into plant vulnerability to severe accidents; (2) understand
the character, variety, and importance of these vulnerabilities; and (3) estimate
the net risk reduction value of alterations in design or operation. It also
provides the regulator with a frame of reference to better understand and
interpret the lessons from experience with operating reactors.

Through the modeling of plant performance and the interactions between systems
and humans, and the subsequent quantification of success / failure paths, a
number of potential weaknesses in plant design and operating, test, and
maintenance procedures have been identified, even though a plant may meet the
NRC's deterministic requirements. Thus, PRA can be effectively used by
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the industry and the NRC to supplement conventional engineering evaluation
techniques to enhance safety as well as to improve plant availability.

In spite of the potential advantages offered by PRA, however, the uncertainties
inherent in the assessments have appropriately limited their usefulness in
regulation. These uncertainties are pervasive, since they are a function of
the assumptions made by the individual analysts, the state of knowledge of
plant response to a given stimulus, and the quality of the data base; and the
PRAs are so complex that it is difficult not only to identify the uncertainties,
but also to quantify and propagate them so as to measure their importance
relative to central estimates of absolute risk. The end result is that, after
a PRA is completed, the pervasive uncertainties result in doubt as to the
actual importance of the identified design and operational weaknesses and
questions as to whether other weaknesses of perhaps even more risk importance
have been overlooked. However, this does not negate the qualitative and
quantitative insights that are gained.

Uncertainties arise in many areas, as we are all aware. Principal among the
uncertainties in PRA are the modeling of human actions, assumptions on success /
failure criteria, effects of test and maintenance, completeness of accident
initiators (e.g., sabotage), common cause failure mechanisms (including seismic,
flood, and fire-induced failures), the phenomena of core melt progression and
in-plant and ex-plant fission product transport, threats to containment
integrity, partial failures, rectification, design and fabrication errors,
equipment performance, treatment of generic and plant-specific data, failure
and recovery times, meteorological conditions, radiological health effects,
and the effectiveness of offsite emergency actions.

Clearly, the uncertainties are not all in one direction. Many may result in
an underestimate of the risk, such as incompleteness in accident initiators
and common mode failures. Others may overestimate the risk, such as any use
of conservative failure criteria, failure to consider appropriately partial :

failures or ad hoc operator intervention, and the use of conservative source
terms. Therefore, it is difficult to judge whether the bottom line results of
any PRA represent an underestimate or an overestimate of risk. However, most
experts in the field agree that reasonable bounds on PRA estimates of the risk
from a nuclear power plant are about an order of magnitude around the central
estimate, and the bounds likely are larger for external phenomena (such as
seismic, fire, and flood) acting on the plant systems.

No technical analysis, whether deterministic in nature or probabilistic, is
ever formally complete or completely certain. Also, in most instances, the
uncertainties identified in PRAs are equally applicable to the more determin-
istic analyses. Therefore, it is important that the decisionmaker understand
all significant uncertainties so as to make more optimum use of all provided
analyses, including the information contained in PRAs.

Given these large uncertainties, how can PRA be used in the regulatory process
with any degree of confidence? That is the question one so often hears. I
will ask a different question. Given the strengths of PRA in providing an
integrated look at the performance and interactions of systems, components,
and humans, how can PRA not be used in the regulatory process? Our task must
be not to decide whether to use PRA, but how to use it most effectively.
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It should be emphasized that PRA is not a decisionmaking tool nor is it a
magic formula which can be substituted for sound judgment. PRA is an analytic
tool which is being and should be used to supplement (not supplant) the
deterministic analyses traditionally used by the NRC staff. The process of
considering deterministic and probabilistic information, weighing policy
alternatives, and selecting the most appropriate regulatory action requires
integrating PRA insights with engineering judgment and operating data as well
as with social, economic, and political concerns. No one said that decision-
making was easy, and certainly PRA should not be expected to make it much
easier.

What are Potential Uses of PRA in Decisionmaking?

The current situation regarding PRA applications in regulatory decisionmaking
is one of increasingly widespread use as an analytical tool to add an
additional perspective to safety analysis, but also with increasing concern
over uncertainties and the credibility of bottom-line numbers. With only the ,
rarest exceptions, there have not been direct applications of PRA in plant-
specific decisions; but the methods are now almost routinely used in the
"high-medium-low" sense for assigning priorities among both generic and
plant-specific safety issues and in considering regulatory revisions. One
recent application of great importance is the heavy reliance by all parties in
the special Indian Point ASLB hearing on the methods and results of PRA.
Insights from the Indian Point PRA resulted in a few relatively inexpensive
modifications and procedural changes that offered substantial safety benefits
at modest cost. Another example is the use of PRA insights in the SEP
(Systematic Evaluation Program) review of the ten oldest operating plants, to
help in decisionmaking on hardware backfits and procedural changes. Still
another is the continuing (use of probabilistic perspectives in resolvingunresolved safety issues USIs). Examples include ATWS, station blackout,
shutdown heat removal, pressurized thermal shock, and DC power. A plant-
specific application of some note was for Big Rock Point: the utility-
sponsored PRA was used to demonstrate that many suggested safety-related
retrofits would not be cost-beneficial because of tne specific design, size,
and siting of the Big Rock Point station.

Some areas where PRA might someday contribute importantly are still in an
evolving stage of development. These include accidents initiating from fires,
where the first PRA applications on a broad systems level have shown the
techniques to be useful but in need of further development; and from earth-
quakes, where there has already been substantial development under NRC and
private sponsorship which now allows quite useful insights, even though the
quantitative results of the analyses are quite uncertain and presently should
not be credibly compared directly to risks from internal accident initiators.
Another example is the study of core melt progression and fission product
transport, where the incorporation of a better understanding of the physical
phenomena and containment. performance into probabilistic models is now in a
very active stage of development.

More important, several regulatory initiatives now of greatest visibility
within the NRC apply probabilistic thinking or analysis as an integral part of
the approach: examples include the severe accident arena, the rethinking of
the siting and emergency preparedness regulations, the human factors area, the
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analysis of operational data and events, and improved approaches to regulating
reactor operations. Perhaps the most important area now moving toward
regulatory closure is the " severe accident" arena, where possible rulemaking
or changes in other aspcts of regulation is now under active consideration
within NRC, and whee probabilistic methods and insights that include numerous
PRA studies are anticipated to form an important information base to aid
decisionmaking. ,

Potential uses of PRA in the future fall into three basic categorizations:
prioritization of NRC resources; generic regulatory applications; and plant-
specific usage. Each of these categories places somewhat different demands
on the quantitative credibility of the PRA results.

Prioritization of . resources--Even considering the inherert incompleteness of
the models and the uncertainties associated with the quancification of models
in a probabilistic risk assessment, because of its integrated nature and
reliance o'n realistic information, a probabilistic risk analysis presents our
best available information concerning the specific ways in which the critical
safety functions at nuclear power plants can fail to be performed, and the
importance of such failures. This information can be used to guide and focus
a wide spectrum of activities designed to improve the state of knowledge .

regarding the safety of nuclear power plants. The resources of NRC, as well
'

as those ~of the industry, are limited; and the application of probabilistic
risk analysis techniques or insights from previous studies could permit the
decisionmaker to allocate these resources to issues most likely to reduce risk
or better define or limit the uncertainties. Examples of areas where prioriti-
zation is required include allocating resources to the resolution of generic
safety issues, establishing priorities for limited research funds, and allocating
staff to those inspection modules and activities of most importance to safety.

All issues in the above areas are not really amenable to reasonable quanti-
fication. ' For example, it would be difficult to quantify the importance of a
quality assurance issue. However, most issues can be reasonably quantified,
and the nature of the decisions necessary to allocate regulatory resources
does not require great precision in PRA results. It is sufficient to prioritize

confirmatory research and the efforts used to resolve generic safety issues
generically into broad categories (e.g., high, medium, and low). The reasoning
is that one would not dismiss a potential safety issue unless it were clearly
of low risk. Thus, a few completed PRA studies can be selected as surrogates
even though it is apparent they do not fully represent the characteristics of
some plants, provided the nature of these differences are reasonably understood
and can at least be qualitatively evaluated.

The uncertainties involved in the risk measures used for prioritization are
such that only large (at least an order of magnitude) variations in the
comparative results should be considered significant. Thus, if severe core

r to conclude

damage frequency were one of the measures, it would be impropg}/RYthat an issue having an estimated damage frequency of 3 x 10- RY is
significantly more important than an issue assessed as 1 x 10 , but it

would normally be appropriate to prioritize on the basis that an issue assessed
0-4/RY is substantially more important than another issue evaluated as

as g/RY.10-
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Generic regulatory applications--The insights gained from the integral view of
the probabilistic risk analysis can identify gaps in the present regulatory
concept of defense-in-depth or in the detailed application of that concept.
Due to the disciplined, integrated nature of the review, virtually every
probabilistic risk analysis performed to date has identified some feature of
the plant, previously unrecognized, which has had a measurable impact on
either the frequency of severe core damage or the risk to the public associated
with the facility. Many times the weakness involves system interactions or
dependencies. It is possible to examine these gaps and, if necessary, develop
deterministic criteria which remove these weaknesses from further regulatory
considera tion.

However, there is an important question relating to the applicability of the
results of existing PRAs to all plants. This is the so-called surrogate
problem, which I would prefer to call the problem of generic applicability.

At one time, it was thought that WASH-1400 might adequately display the risk ;

and dominant contributors to risk for all LWRs. Work completed since then,
however, has clearly indicated that class-specific and plant-specific
differences can substantially affect the estimated core melt frequency and
risk of a plant, as well as the dominant accident contributors. This is so
because many of the risk significant features of a plant are dependent on
balance-of-plant design. Therefore, if one wanted to establish surrogate
plant classes based on risk estimates, the number of plant classes would be
larger than the number of NSSS hesigns with containment variations.

While there is substantial ongoing work on the surrogate question, both by the
NRC and the industry, it appears that, if reasonable accuracy is desired,
there will likely need to be several dozen plant classes to describe the risk;
and these classes still could not be used to provide an accurate central
estimate of risk of a specific plant due to the inherent uncertainties and the
potential for important plant-specific design or operational differences.

How then can one use PRA as an effective tool for generic decisionmaking?
Again, I will answer that question by asking how we can afford not to use the
insights available from PRA. My answer implies that some information, albeit
incomplete, on risk is still better than no information. There is no require-
ment for perfect knowledge or perfect equity in regulatory decisionmaking;
therefore, these standards should not be drawn across the trail of PRA--they
are red herrings. Given a recognized safety problem for a given plant, the
NRC frequently and in a deterministic manner has expanded the search to all
plants and made generic, design-specific (e.g., based on NSSS design) decisions
on fixes that clearly could be and have been argued as being uncertain and
inequitable on a plant-specific basis. The use of PRA information would at
least better define the importance of the uncertainties, and some of the
inequity might even be reduced. Does that mean that PRA insights should not
be used just because there will still be residual uncertainty and inequity? I
think not. But one must be very careful not to place undue weight on the
numbers themselves.

The principal benefits of PRAs in generic regulatory application are the
ability to identify, for further study, potential plant weaknesses and to
assess in a cost-benefit mode the effectiveness and relative merits of
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alternative fixes. Even though one may not be able.to describe generically
the risk of a large number of plants using a single surrogate, one might find
that a single fix may have comparable risk reduction potential across a number
of different design classes. This could occur because a modification to
design or procedures could affect a number of different accident sequences,
one or more of which might be dominant in one design, while others might be
dominant in other designs. Therefore, while there likely will be a large
number of plant classes, there might be a significantly smaller number of
" surrogate" (generic) potential risk reduction modifications.

The types of analysas that could support generic regulatory decisions vary in
scope and depth. They could range from full-scope PRAs (even including
external accident initiators, such as seismic) to limited scope reliability
analyses similar to that performed several years ago on auxiliary feedwater
systems. IJncertainties in the fuller scope analyses would have to be
considered in detail to assess the likely generic implications with regard to
the dominance of the sequences, the impact of various alternative fixes, and
the applicability to other designs (the equity problem). For the limited
scope analyses the equity problem still exists, because the system being
reviewed will have more or less risk importance depending on the specifics of
the overall plant design. However, as far as the study itself the uncertainties
probably would be diminished, since relative insights would likely be sought
using a prescribed analytical process which would tend to cancel out some
uncertainties. The basic objective of such narrow studies would be to identify
and assess risk-important system design and procedure alternatives across a
number of different plant designs in the search for correctable weaknesses in
system reliability. Of course, even these reliability studies generally still
should be performed in an accident sequence context, to maintain some sensitivity
to plant-specific design differences of major risk importance.

Given a reasonably thorough understanding of the risks and dominant sequences,
the limitations of the insights as they derive from the scope and depth of the
studies performed, and an understanding of the uncertainties involved in the
analyses, the insights gained from probabilistic risk analyses can be used to
identify areas in which regulatory action is necessary either to significantly
lower the probability or consequences of certain types of accident sequences,
or to relax regulatory requirements when they do not have a significant impact
on either the estimated risk to the public or the estimated frequency of core
melting.

It is possible that there presently is a sufficient collection of PRAs such
that the risks of one or more accident sequences and the benefits of possible
fixes can be reasonably understood as a function of plant class, including an
understanding of the uncertainties in the analyses. Of course, there could be
plant-specific risk outliers that would swamp the relative importance of
particular accident sequences or possible fixes at a given plant; but this
still would not alter the absolute importance of that sequence or fix. Al so ,
it is recognized that there could be some plant-specific design or operational
characteristics that would substantially alter both the absolute and relative
importance of particular accident sequences or fixes at a particular plant;
but that should not be a strong argument for not taking appropriate action on
a significant safety problem.
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Plant-specific _ applications--The third area for the potential use of PRAs in
decisionmaking lies in plant-specific applications. As recognized in the
Commission's safety goal policy statement, the use of safety goals (and thus
the bottom-line numbers of plant-specific PRAs) as licensing criteria that
must be met is not appropriate at the present time. Such use focuses on the
weakest part of a PRA--the accuracy of the bottom-line results. Hweve r ,
there are other important potential uses of a plant-specific PRA that cculd be
beneficial.

A plant-specific probabilistic risk analysis, performed early in the design
process, can yield a large number of insights regarding integral performance
of the plant to the designers as they perform their detailed design; and the
assumptions and boundary conditions used in the PRA can drive the design
process so that they are included in the detailed design. At the same time,
it can be used to focus quality assurance activities during the detailed
design and construction, as well as during the development of operating, test,
and naintenance procedures on those items which have the highest potential for
affecting risk. The real significance of such an analysis is not the numerical
values calculated, but rather the insights on important features of the design
and critical man-machine interfaces which are identified and therefore can be
considered in depth.

For operating plants, there are a number of potential uses of a PRA that would
not be strongly dependent on the accuracy of the bottom-line numbers. Examples
of these uses include:

1. The possibility of assessing plant-specific alternatives to the resolution
of generic safety issues.

2. The possibility of plant-specific prioritization of inspection activities
which, coupled with operating experience feedback, could more effectively
utilize inspe'ction resources in important areas such as quality assurance,
maintenance, and testing.

3. Assessment of the risk importance of operating events, including assisting
decisionmaking with regard to requests for relief from LC0 requirements.

4. Identification of plant-specific design weaknesses such as functional
systems interactions and other common cause failure modes, including
those initiated by seismic events, fires, and floods.

5. Evaluation of operating and emergency procedures and the assessments of
off-normal events that have the potential of progressing to a degraded
core accident.

As indicated, the above uses do not draw their basic strength from the bottom-
line numbers. The basic strength is the ability to pinpoint important areas
that must be properly monitored, to understand accident sequences sufficiently
well to be able to estimate margins of safety, and to better understand remedial
actions that should be taken during accident situations. While all of these
uses are of regulatory importance, they would be even more important to the
utility itself, to help it run the plant more safely and reliably.
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What is the Role of Safety Goals in Regulatory Decisions?

On March 14, 1983, a policy statement on safety goals was issued by the
Commission for public comment and a two-year evaluation period. This policy
statement includes qualitative safety goals, as well as quantitative design
objectives which could serve in the future as risk benchmarks for use by the
NRC as part of the decisionmaking process on matters relating to nuclear
safety. The Commission's policy statement and evaluation plan explicitly
exclude the safety goals from use in licensing cases, and as a principal
decision criterion in regulation, for the two-year evaluation period.

This statement of NRC safety policy expresses the Commission's views on the
acceptable level of risks to public health and safety and on the safety-cost
tradeoffs in regulatory decisionmaking. However, as clearly stated in the
policy statement the quantitative design objectives are only aiming points,
not firm requirements or limits. They are goals which plant designers and
operators should meet where feasible, and they are not substitutes for existing
regulations. Also, the basic purpose of the evaluation period is to permit a
better understanding of the strengths and weaknesses of the techniques (PRA)
by which one judges whether these objectives have been met, and to judge the
effectiveness of the goals and design objectives.

Therefore, at the present time the safety goals have no real role in decision-
making. However, what might their future role be? It would be difficult, if

not presumptuous, to speculate; but one can make some jJdgments as to factors
affecting the potential future role.

First, it is clear that in implementing the safety goals great care will have
to be exercised to differentiate between risk levels that must be met and
goals or aiming points that are only desirable to meet. Second, since there
will always be substantial uncertainty surrounding the results of a PRA,
careful thonoht will have to be giv?n to the degree of confidence to be
required in estimating whether the goals are reached. For example, if a 90
percent confidence factor is expected, either explicitly or de, facto, this
would be equivalent to increasing the stringency of the design objectives by
as much as a factor of 10 in most cases; or by even more where the PRA results
are even more uncertain, such as in estimations of seismic risk.

' Finally, in implementing the safety goals care will have to be taken that the
principal use and thrust of PRAs does not become the precise matching of
bottom-line numbers with the quantitative design objectives. Avoiding such
use will be difficult to do, given the structure of the safety goals. However,
if this happens, the focus will be on the weakest element of a PRA; and the
substantial insights to be drawn with regard to accident sequences, system
reliability, and human performance will tend to be downgraded or even lost.

The role to be played by the safety goal is yet to be determined. However, it
is clear that, practically speaking, the role will be strongly dependent on
the final structure of the implementation plan.
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How Can PRA Best Serve the Decisionmaker?

Regardless of advances in the state of the art of PRA and the experience data
base, there will always be substantial uncertainties in the results and
opportunities for unintentional or even intentional bias. Because of this
fact, the strengths and weaknesses of PRA must be kept firmly in mind when
craf ting an implementation plan for the Commission's safety goals. PRA is
only a tool for providing information, and the safety goals can only be as
effective as the tool permits. A mismatch between the strengths of the tool
and the de facto implementation of the safety goals would do a disservice to
both.

Recognizing the uncertainties involved in PRAs, several things can be done to
help the decisionmaker understand the results of a PRA and factor the results
appropriately into his or her decision rationale, as discussed below. This is
an important subject, whether or not quantitative design criteria are finally
adopted by the Commission for widespread use; because PRAs will still exist,
and the results of the PRAs will be used by decisionmakers whether or not
formal decision standards or criteria are adopted by the Commission.

Prescriptive methodology and assumptions--It is clear that some degree of
prescriptiveness must occur, otherwise one would not know whether differences
between PRAs were reflective of plant design and operating differences, or
merely the result of the ideas of individual analysts. The degree of pre-
scriptiveness of the methodology is an issue of substantial controversiality,
since one does not want to destroy innovative thought.

Peer review--Some comfort can be drawn from a substantial peer review of the
PRA, both during and after the conduct of the PRA; and the regulatory review
prc.:ess itself certainly will add credibility to the analyses.

Uncertainty analyses--Standard procedures will have to be prescribed for the
performance of uncertainty and confidence analyses. This will have to cover
analytical assumptions and phenomenology, as well as the stochastic uncer-
tainties of the data base. The existence of an unusual degree of uncertainty
must be identified for analysis and understanding.

Sensitivity analyses--Standard procedures will have to be prescribed for the
performance of sensitivity and importance analyses, so that the decisionmaker
can determine the weight that he or she should give to uncer tainties.

Display of results--Because of the almost unlimited number of areas where
uncertainty and sensitivity analyses can play an important role, careful
thought will have to be given to reasonably standard requirements to enhance
the full and scrutable display of results for decisionmakers. Scrutability

and completeness will play opposing roles, and the challenge will be to achieve
the first without sacrificing the second unduly.

In Summary

Decisions must be made, in spite of uncertainty. If the uncertainty is too

large, whether in a probabilistic or a deterministic sense, then the regu-
latory decision might be not to proceed with the activity, or to proceed with
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appropriate conservatism expressed in cautions and limitations--but a decision _I
is made nonetheless. While most regulatory decisions are made in a determin- j-(
istic sense using appropriate bounding conservatisms, in most cases the basic s-

unctrtainties involved are much the same as those inherent in a PRA. The use _T
of PRA adds a new dimension for the decisionmaker--one of a more realistic 5
display of the integrated interactions of all systems, including the human, si
These insights are important, but the bottom-line risk or core melt numbers g;

must be used with caution because of the inherent uncertainties. __

"

Use of PRA as an influence on decisions suffers from the tendency to go too --

quickly to the botton line, which is the weakest part of a PRA. Numerical -

criteria such as safety goals need to be constructed and implemented in such "7
a way as not to drive one even faster to the bottom line. One needs to stop 7'"
along the way and pay particular attention to the design and operations

_'

insights derived from the analyses. Therefore, the performance of the PRAs --:
and the display of results and uncertainties should be suitably constructed fy-

so as to provide convenient and scrutable stopping places for the decision- -'

maker, to encourage viewing these insights and understanding the underlying -*

assumptions and uncertainties, and to discourage undue fixation on the bottom ;-

line. Only then will regulation be able to draw fully upon the potential -

benefits of PRA as an information source and regulatory tool.

Decisions cannot be made by-the-numbers in a complex technology. Neither PRAs II
nor safety goals can be used as conveyances for easy decisions. Acceptable s

risk as portrayed in the Commission's safety goals is a subjective judgment
that cannot and should not be interpreted as a clear go no-go numerical .

cri terion. One must remember that PRA results are uncertain, but also their 4
bottom-line results are being compared to objectives that are believed to be
a conservative, and perhaps equally uncertain, estimate of society's perceived
tolerance of risk. 1_
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