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PROCEEDINGS OF THE NINTH ANNUAL STATISTICS SYMPOSIUM ON NATIONAL ENERGY ISSUES,
OCTOBER 19-21, 1983

Compiled by

Maurice C. Bryson

ABSTRACT

The Ninth Annual Statistics Symposium on National Energy Issues was
held in Rockville, Maryland, at the Holiday Inn Crowne Plaza, October 19-21,
under the joint sponsorship of Los Alamos National Laboratory and the Nuclear
Regulatory Commission. Sessions included two contributed-paper sessions, two
tutorial sessions, and one discussion group. Included in these proceedings
are those papers for which final copy was provided by the authors, together
with a 1ist of papers presented and a l1ist of attendees.



INTRODUCTION

The Ninth Annual Statistics Symposium on National Energy Issues (formerly,
DOE Statistics Symposium) was held in Rockville, MD at the Holiday Inn
Crowne Plaza on October 19-21, 1983. Co-hosts for the symposium were the
Los Alamos National Laboratory and the Nuclear Regulatory Commission. The
symposium has been held annually since 1975 under the auspices of a Steering
Committee with membership drawn from the several national laboratories of
the Department of Energy. Members of the 1983 Steering Committee were:

Maurice bryson, Los Alamos Yational Laboratory - chairman

David Gosslee, Oak Ridge National Labcratory

Ronald Iman, Sandia National Laboratories

Samuel Kao, Brookhaven National Laboratory

David Margolies, Lawrence Livermore National Laboratory

Donald Stevens, Pacific Northwest Laboratory.

The 1983 symposium included both contributed-paper sessions and tutorial
sessions with invited participants, as well as an invited-participant panel
discussion. Because of the informal nature of some sessions, several par-
ticipants did not feel that it was appropriate to submit papers or remarks
for these proceedings. A comprehensive list of papers is included here,
identifying those that are included either in full or in abstract form. Con-
tributed papers were selected from abstracts submitted to a Program Committee,
whose membership included the following:

Lawrence Bruckner, Los Alamos National Laboratory - chairman

Cory Atwood, EG&G - Idaho

Daniel Carr, Pacific Northwest Laboratory

Ronald Glaser, Lawrence Livermore National Laboratory

Irving Hall, Sandia National Laboratories

Max Morris, Oak Ridge National Laboratory.

Local arrangements assistance was provided by Dale Rasmuson, Nuclear Regula-
tory Commission.

Fifty-one persons attended the symposium. A complete list of attendees is
included at the end of the Proceedings.
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(A) - Denotes abstract only published in proceedings.
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THE ESTIMATION OF THE HAZARD FUNCTION
FROM RANDOMLY CENSORED DATA BY THE KERNEL METHOD

by
Martin A. Tanner and Wing Hung Wong
SUMMARY

We obtain a direct kernel estimate of the hazard function from censored
data by convolution smoothing of the empirical hazard. By exploiting a
conditional independence property (the lemma in Section 2) of the random
censorship model, it is possible to obtain expressions for bias and variance
in small sampIes. Under regularity conditions, the bias is asymptotically
equal to the error resulting from approximating the death hazard function by
its convolution with the kernel. The estimator is shown to be mean square
consistent as the window size shrinks to zero. Asymptotic normality is also
established, the proof of which is based on Hajek's projection approach. The
understanding of these properties is prerequisite to the understanding of more
complicated procedures based on kernels. The results also give insights to
bias correction procedures as weli as to the difference between hazard
estimation and density estimation.

1. Introduction

1.1 The problem

In lifetesting, medical follow up, and other studies, the observation of
the occurrence of the event of interest (called a failure, or a death) may be
prevented for some of the items of the sample by the previous occurrence of
some other event (called a loss, or a censoring event). Thus, if Ty,...,T,
are life times (time to failure) for the n items under study and Cy,...,C, the
corresponding censoring times, then it is not possible to observe both T; and
C,. Instead, we can only observe X; and &, where X; = min(T;,C;) and

- I[T < CJ

In this paper. Tyseee,T, are assumed to be i.i.d. from a life distribution
Fr. We are interested in est1mat1ng

(a) the survival function: (t) =1 - Fr(t)
sb; the density function: = dF (t)/dt -dSy(t)/dt
c¢) the failure rate (or hazard function:

Ap(t) = fr(t)/S(t) = -d Tog S;(t)/dt.

AMS Subject Classification: Primary 62G05, 62P10; Secondary 62E20, 65010

Key words and phrases: censored data, hazard, survival, kernel method,
Hajek's projection method



Theoretically, knowing any one of these functions, we can easily obtain the
other two. In practice, when these functions have to be estimated, it is not
always possible to directly convert the estimate of one function to estimates
of the other two. In this paper, we will focus on the estimation of the
failure rate function.

1.2 Kaplan-Meier estimate of survival function

Let Xf1yseeaX be the order statistics of the X's, and §,,1,...,8 the
JORRID )"1558) (B

gorrespo §'s. "The Kaplan-Meier estimator (Kaplan and Meier, 1958) St
s
~ n. .
S*(x) = { jl' it (3) if X(i) ¢ %L X(i+1)
0 5T X ? X(n) .

This estimator is applicable if the lifetime T; can be assumed to be
independent of the (potential) censoring time jo

1.3 The hazard estimates

- log g'(x) is a step function with

- _
oBpes 100 (aee) A SR S |
jump at X gy = (1) n-T+1 _
x i=n .

An ad hoc way to remove the awkward infinity is to always treat the last
observation as if it were censored, i.e., the survival estimate has no Jump at
X(n). [f this ad hoc convention is adopted, then formal differention of

- log S* produces the (formal hazard estimate)

n
121 -G(i) log (1 - H_—‘]"v-n)G(x - X(i))

where 8(x - X )) refers to the Dirac Delta function. The infinite spikes at
the data poin‘g are obviously undesirable. One way to smooth them out is to

convolute with a peaking kernel Kh(x) oL K(ﬁ), yielding the hazard estimate
n X - X,.
- 1
AMx) = I - 80y Tog (1= mgop)  K(—0d)

i=1



Another natural way to obtain hazard estimate is to consider the estimate
of the cumulative hazard:

ﬁ(r‘ = L a, where
X(i) «<x

a; = contribution of X(i) to the cumulative hazard

= 84y (1/No. of items at risk) = §4y(1/n-i+1) .

The corresponding hazard function is

n
131 F:T'T (1) §(x - x(1)) .

Smoothing this, we obtain the hezard estimate

- n x = X

If there is no censoring, this reduces to the second estimator in Watson and
Leadbetter,.(1964a). It is not hard to see that if n » = and h » 0, then the
estimates A(x) and A(x) will be equivalent in the 1imit. Thus the asymptotic
properties of the two estimators are similar. In small samples, A is
analytically more tractable than A, and in this paper we will only investigate
properties of the former. Rice and Rosenblatt (1976) give asymptotic bounds
for the difference between X and A in the uncensored case. Figure 1 presents
A and A obtained from 200 pseudo-random variates in the case of exponential
death times and exponential censoring. The two estimates are seen to be quite
similar. In fact, Monte Carlo results indicate that they are quite similar
for a sample size as small as 20.

1.4 The random censorship assumption

The theoretical properties of the hazard estimate A will be developed in
this paper under the assumption of random censorship which stipulates that the
censor1ng times Cy,...,C, also form a random sample, independent of the life
times. will denote the common distribution function of Cy,...,C,, and S¢,

Cs Ans tﬁe corresponding survival, density, and hazard functions. In
Sectibns 2 and 4, X is shown to be consistent and asymptotically normal under
the random censorsh1p assuinption. Although we have not obtained concrete
theoretical results outside the random censorship model, we think that X (and
its modifications) is also relevant for other types of censoring schemes.



1.5 Relation to other work

The Kaplan-Meier estimate for survival function is first discussed in
Kaplan and Meier (1958). Meier (1967) emphasizes that this function plays a
role in the censored situatiogn similar to the empirical function in the
uncensored case. Recently Foldes, Rejto, and Winter (1981) propose estimating
the density from censored data by Iw.K (x-X.), where the w;'s are the jumps in
the Kaplan-Meier curve. This is a diréct g neralifation o} the usual kernel
density estimate in the uncensored case when W, = = is the jump of the
empirical cdf. A smooth survival estimate can be Bbteined by integration and
the hazard estimate is obtained by forming the ratio of density and survival
estimates. Foldes et al. established strong consistency under certain
assumptions. No finite sample results are presented. McNichols and Padgett
(1981) examine the same kernel density estimate under a proportional hazard
assumption and give expressions for expected value and variance in small
samples.

Alternatively, one can use the kernel method directly on the hazard scale,
using the weights provided by the jumps of the empirical estimate of the
cumulative hazard function given in Nelson (1972) and Aalen (1978). This is
the approach taken in this paper.

In the uncensored case, the estimation of the hazard function is
considered in detail in Watson and Leadbetter (1964a,b). They examine both
approaches, that is, estimation of the hazard function via density estimation,
or directly by smoothing empirical hazards. As is clear in their paper, the
second approach is analytically more tractible, and they are able to give
finite sample bias and variance expressions and conditions for consistency.
Our results in Section 2 and Section 3 are generalizations of their results to
the censored case. The calculaticns in Section 2 are conditional and they
depend on the crucial observation that E(§,. |x .)) is independent of j. As
for the consistency, the direct generalizaé?&n 8* Watson and Leadbetter's
argument requires conditions which are dependent on the censoring distribution
and this dependency may be undesirable. We have therefore presented
alternative conditions which avoid this difficulty. More detailed asymptotic
results on hazard estimation in the uncensored case are given in Rice and
Rosenblatt (1976).

The results in Section 4 concerning asymptotic normality have no analog in
the literature. Even in the uncensored case, Watson and Leadbetter cannot
obtain asymptotic normality for the direct kernel hazard estimate (the second
approach). Our result in Section 4 is a novel application of the projection
method (Hajek, 1968) which has traditionally been applied to the asymptotic
theory of U-statistics, linear combination of order statistics, and linear
rank statistics. It is hoped that our calculations may be useful for the
asymptotic theory of sums where each term involves both the rank and magnitude
of an individual sample point.

In practice, different degrees of smoothing are needed in different
regions. Moreover, it seems natural to use the observations to determine the
degree of smoothing. Section 5 contains further comments on these
methodological developments, numerical examples, as well as remarks on the
significance of the present study.
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Finally, we cite works of general interest for the nonparametric
estimation of density or hazard functions from censored data. Kimura (1972),
Tarter (1979) investigated the Fourier series expansion approach.
Bartoszynski, Brown, McBride, and Thompson (1981) apply penalized maximum
likelihood methods. Lo (1980) proposes Bayesian nonparametric kernel
methods. Finally, the work on piecewise smooth survival function estimation,
Friedman (1978), can be regarded as giving piecewise smooth density estimates.

2. Calculation of mean and variance

In this and the next two sections we assume the random censorship model:

Tl,TZ,....Tn ~ iid TT. independently of

cl’CZ"'°’Cn ~ iid FC .

We observe X; = min(T;,C5), &8; = I . We will investigate the
properties of ! g . [Ti . Ci]

n
“ - 1
A = L G.K-X.
(x) i1 7 89 Ky
as an estimate of A.(x), where K is a symmetric kernel, K _(y) = 1 K(£). The
point of interest x is fixed throughout the study, and asgumed to satisfy the
condition S¢(x)S~(x) > 0. (Without this condition the problem is either
trivial or Impos ible.) We also assume that fr is a continuous and bounded
function.

2.1 The mean

The calculation of the mean of A(x) requires a conditional argument which
is made possible by the following lemma. The lemma says that given the value
of X¢;y, the probability that this corresponds to a censored observation is
indeéézdent of the ordering j. This result may be surprising at first sight
because the unconditional probability of the above event certainly depends on

h 8
fr(y)Sely)
P C def
emma.: - .y = = ==%=
independent of the value of j.

Proof: We need to show, for any Borel set A, that

fo(y)Sp(y) 1 .
T C n! j-1 n-j .
W RO TEDTEgT o (DR (0) T e (vddy = fx(_) AG(J‘)dp ;
Jj)e

11



Now, the right hand side

n
1£1 P(T1 < Ci. rank(Xi) = j, Xie A)

n P(T1 < Cl' rank(xl) = j, Xl e A)

n/ P(T, < Cp» rank(X,) = J, X, = y)dy
A

n/ PT; €Cpu X; =y, § -1 out of XppeeenX < y)dy
A

n IA P(T; < Cps Xy = Y)P(J = 1 out of XyeeusX < y)dy

n sty (3D AL 0@ - P ™ ey
as required.

With the help of this Yemma, the calculation of the mean is
straightforward.

= n 1
(2.1.1) Ex(x) - f jfl E“(j)“(j) =y) ‘nTJ";r fx(j) (.Y)Kh(x - y)dy
] . :
L ST TETgIT F ) (-Fy (0 ™) 264 (yIm(y Ky (x-y)dy
" fy(y)
=[ (1 - Fy(y)) bEmOl m(y)Kp(x - )dy

= [ (1 - FRy) Ay, (x - y)dy

Hence

Bias = [/AL(y)K (x - y)dy - A (x)] + [- [FY (A (yK (x - y)dy]

The first component of the bias is the error of approximating A (x) by the
convolution A.*K (x), this can be made small by decreasing h. The Iecond term
will be seen to do to zero as n increases. This bias expression is important
for the purpose of bias correction, see Section 5.2.

12



2.2 The variance

n
1
CRAE < B LR i Pl < X))

1
k) 4 T 78T () 8(5)%n (X = X(r¥n(X = X()))

= (I) + (II)
n
1 =
(1) = ltjil T-3+1)2 fx(j) (Y)E(G(j)|‘(j) =y)] K%(x - y)dy

- LI e Ty A0 - F ™I (m()KE(x - )ay

nk. Tx(¥) fr(¥)Sely) ’
- [[kEO k7 ‘k ( ) F (Y) (1-F (Y)) ]'T—r-ryy'-f;ryy-—- h(x - y)dy

= [ 1 (F () (y)KE(x - y)dy

where

1 () 988 z —g( ¢ I L f;FL—L—ax.

a notation introduced by Watson and Leadbetter (1964b). To calculate (II), first
note that for r < s, v < z,

¥y, X,., =2z) =P (8

(s) '

= 1|x(r) =y, X

(8¢ry 8¢5y ¥(ry = (1) = 1 ) (s) = 2)

=P8, = 1,8, = 1|x1 =¥, X, = 2)
= P(8,= 1|Xl = y)P(8, = 1|X2 = 2) = m{y)m(2),

by the same kind of argument used in establishing that E(s(j)lx(j) = y) is
independent of j. Thus, letting

1 1
t(y,z) =L I £ :
2) = £ S FRT T T, 000

13



for y < z, we have

() =2 [ tly.z)aly)n(z)Ky (x - y)ky(x - 2)dydz
y<z

n-1 n
TR R e SH
r=1 s=r+l

n!
n-r+l n-s+l (r-1)'(s-r-

TIT(n-5)7 F;-l(.V)fx()')[Fx(z)'rx()')]s-”l

fy(2)(1 - Fy(2)™®

fy(z)  fyly) 1-Fy(y)
bl F l y * 1= FXU, t1=F (-Y) » F'(TTX'I—" [Fx(z) - F (.Y)J }
Thus

-2 (- it L LI F' ()] } A (y)Ap(2)
(XE) . Iy<z - Fyly) - r;r;y:r;c;y [Fy(z) - Fyly) A (y)ag(z
: Kh(x - y)Kh(x - z)dydz
1-Fy (y)
r x b I
= { f‘T(Y)Kh(X - y)dy)? - 2 Iy‘z {F;(Y) + r;r;y:r;ryy (F;(Z) - FQ(Y)]!

e A2, (x - y)K(x - z)dydz

Now

(EA(x))2 = [/A(y)Ky(x = y)dy)?
- 2 (Iaqly)Kp(x = ¥)dy) (JER(y)AL(y)K, (x = y)dy)
+ LR (YK, (x - y)dyD?
[ap(y)Ky(x - y)dyD?
-2 [ FAL (AL (2)K, (x - y)Ky (x - 2)dydz

Y.z

v [ FR(y)Fy(2) Ap(y)Ag(2)Ky (x - Y)K, (x - 2)dydz
Y,z

14



Hence finally
Var(A(x)) = (1) + (I1) - (EA(x))2

= [ 1 (Fe ()AL (Y)KE(x - y)dy
1-Fy (y)
v2 ] (F(2) - FR(y)FY(2) - r;mxT;m [Fy(z) - FY(y) ]}

y<z

» AT(y)AT(z)Kh(x - y)Kh(x - 2)dydz .

3. Consistency in mean square

3.1 Asymptotic unbiasedness

First consider the convoluation error [A(y)K, (x - y)dy - A(x), where A is
any hazard function. If X is continuous and bounded or integrable, then this
error vanishes as h » 0. In practice, however, hazard functioqs might not
satisfy these conditions (e.g., Weibull with y > 1 : A(t) = ). The
crucial factor is, of course, how fast K falls off at 1nfin1ty. The following
condition, given by Watson and Leadbetter (1964b), seems close to the minimal
condition needed for the convolution error to vanish in the limit. We say
that K is compatible with F if the following condition (A) is satisfied:

(A) : For any fixed M > 0, there exists h small enough such
2

that & /(1 - F(y)) is uniformly bounded for [y - x| > M.
(Let us denote this bound by Gy.)

[f K decreases exponentially, or varies regularly with exponent < -1, then a
sufficient condition for (A) is that K(x)/(1 - F(x)) » 0 as x + =, In
particular, a kernel with compact support always satisfies (A).

Theorem 1: Let K be compatible with Fy, and n + =, h » 0, nh » =,
then EXTx) » A,(x).
Proof:
[EX(x) = Ap(x)] < | [ap(y)Kp(x = y)dy = Ap(x) | + JER(y)Ar(y)Kp(x - y)dy
First temm < !ly—x|<M Kply = x)[Acy) = Ar(x)[dy
+ fly-xl’" Kply = x)Ap(y)dy + I'y_,'," Ar(x)Kp (y = x)dy

= (I) + (I1) + (111),

15



this is true for any M.

(IT1) < Ap(x) / Ky (y = x)dy = A(x) lltl’ u K(t)dt » 0

h
(11): the integrand is dominated by Gyfr(y) which is integrable;

further, the integrand » Q for each y as h + 0. Thus
(I1) » 0 as h » 0 by the dominated convergence theorem.

|y-x|>M

(1) can be made arbhitrarily small by choosing M small, since A is
continuous at x.

Second term < (/ ) Py (K (x = y)dy = IV + V,

+ ]
ly-x|<M  |y-x|>M

IV » 0 exponentially if Fx(x + M) <1, V»+ 0 again by the dominated
convergence theorem.

3.2 Asymptotic expression for the variance

It turns out that the conditions in Theorem 1 are not sufficient to obtain
a useful limiting expression for Var A(x). More conditions need to be
imposed, and this can be done in two different ways, as tne folilowing theorem
explains. The proof of this theorem can be skipped without loss of
continuity.

Theorem 2: If the conditions of Theorem 1 hold and
either (i) K is also compatible with Fp
or (i1) | K(t)dt = o(M's) as M ¢+ » and
[t]>m
2
h = ofn EIT). g >1
then
% Hx 1
Var(A(x)) = =5 + o (&)
where

o
HX *W (K (t)dt) .

Proof: In the case (i), K is compatible with both Fr and Fy, the
arguments used by Watson and Leadbetter (1964b) to derive their asymptotic
formula (theorem 2 of that paper) also apply here, with obvious modifications,
to produce the abcve result. Thus we will only prove the above theorem for
the case (ii).

16



Var(A(x)) = [T (Fy(y))Ar(y)KE(x - ¥) dy
1-Fy (y)
X
+2 [ (F(2) - FR(y)Fy(2) - mEEMC [FR(z) - F(y)])

y<z

. AT(y)AT(z)Kh(x - y)Kh(x - 2)dydz
where
-1 5 oa ok n-k
IH(F) o kio-n—_r (k) F (1 - F) .
The theorem is proved if we can show that

Ar(x)
(a): g; [1,(Fy (NN (y)KE(x - y)dy ) - ™

1-Fy(y)
X
(b): 3~ chz (FR(2) - RWFR) - pryrgyy (@) - R

: xT(y)AT(z)Kh(x - y)Kh(x - 2)dydz » 0

where

a, = / Kg(t)dt =<% (J k2(t)dt) .

Proof of (a): rewrite the left hand side as

|=

R I (Fy(y))Ap(y)K2(x - y) d
" (Ily-x|<M Ily-x'>M) AP YA ()KE(x - ¥) dy

-

For the first integral, choose M s.t. Fx(x+M) < 1; then

1
n I (Fyly)) » F, 1y uniformly in y for |y - x| < M (Lemma 6 of Watson and
Leadbetter, 1964b).”" Thus the first integral is asymptotically equivalent to

Arly)  KR(x-y)

/ . dy .
| y-x|<M I-Fyy) *h

Ar(x)

T
This converges LT o )] since if K, is a peaking kernel, then so
does KZ/a, . x'X



For the second integral, it is bounded by
& / (= ==) Ay)KE(x - y)dy
= [ (20 n + O(1))AL(y)K2(x - y)dy .
*h " y-x|>M LR

Thus it suffices to observe that

”

ntnn g Ap(Y)KE(x - y)dy « 222D 6, . (sup Fr(y)) J

Ky (x-y)dy
*h |y=x|>M *h y [y-x|>M n

constant . (nenn) . h. [ u K(t)dt
t)ﬁ
o(ngnn. hB*l) "

Proof of (b): Let us decompose the integral according to the partition:
{y < 2z} = region 1 v region 2 v region 3 with

region 1: y <z, |y - x| <M, z> &
region 2: y <z, |y - x| <M z<z
region 3: y <z, |y- x| >M
wtere m, z, is chosen such that
( Fy(x+M) = a <1, z > x+M, Fy(z)) <1

( Fylzg) - FylxsM) = 6> 0 .

In_region 1:

1-Fy (y)
| @) - g - raery () - B

1-F, (y) FO(2) (Fy(2)-Fy(y))-(1-F, (y))F0(2)
X X X X X X
* | Craeror - f(@) ) ) ¢ MM}
1-F
< ll%ii a” + 2(2) F;(z) :
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Thus the absolute value of the integral in (b) over region 1 is <

32; Iregion : ((1-a+8) "+ (1-F(2)FR2)Np(2)A0()K, (x = y)K (x - 2)dydz
The first term clearly + 0,
nd 1
2" term = x“—n !region - Fe(2))FR(2)A1 () Fr(2)K, (x - 2)K, (x - y)dydz
(sup fr(2)) ,
iy (I'y o Ap(y)Ky, (x - .v)dy)(fz>z Kp(x - 2)dy)
i AT (9 (5 - NS R8I
— X =
% |y-x|<™ i s t)-%
=0 (nh B+l)

In region 2: Fx(y) <F (z) <F (ao) =a<l.

F (2) r"( . 1-Fy (y) h
- Fy(y)Fy(z) - 'r-r-y-r-r—y [F (z) - Fy(y)]

F (2) F, (y)
< Fx(l) [1- F (¥)1+ (1 -Fy(y)) y—T;T:r—r-y

<a +na1

Hence the absolute value of the integral in (b) over region 2 is
n n n-1
<—(a +na ") | (YA (2)K, (x - y)K (x - y)dydz
“h Jregion 2 AT T h h

<G (en ™) K, (x - y)dy]2 + 0 .

In _region 3:
. 1-Fy (y)
FR(z) - FR(2)Fy(y) - W (FR(2) - Fi(y))

Fy ) - (Y @prg @) o )]

< 2n(1 - Fy(y))
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Hence the absolute value of the integral in (b) over region 3 is

2n? ¢
< N (] Ap(2)Ky (x - Z)dZ)(:‘ " fr(y)K, (x = y)dy)

y-X
=0 (n2h8+1) .

This completes the proof of Theorem 2.

3.3 Remarks

First we make the obvious remark that Theorems 1 and 2 together give the
conditions for mean square consistency of A(x).

Next we comment on conditions (i) and (ii) of Theorem 2. Condition (i)
has the advantage that it imposes no further constraint on h besides those
stated in Theorem 1. On the other hand, since Fy,(x) < 1 and F.(x) < 1, we
will eventually observe a number of deaths arouné the time poiﬁt x, from which
we should be able to accurately estimate A.(x). Thus it seems undesirable that
the tail behavior of Fp should impose conthions on K for the estimation
of A.(x). In this respect, condition (ii), which imposes further conditions
on K and h, but removes the dependence of K on Fc» is a useful alternative to

(i)

Finally, the approximate variance given by Theorem 2 agrees with our
intuition that, as the point of interest x goes to infinity, the variability
of the estimate increases without limit.

4. Asymptotic normality
4.1 The projection method

A(x) is obtained from the data in a complicated way, involving functions
of X;'s and their ranks, as well as &'s. None of the central limit theorems,
theorems about combinations of order statistics nor theorems about linear rank
statistics can be applied directly in this situation. But as.will be shown in
the following section, the calculation of the expectation of A(x) conditional
on (x.,ci) is nevertheless possible. It is exactly in this type of situation
that the projection method (Hajek, 1968) is most effective in investigating
asymptotic normality. Let us first summarize the basics of this method.

Suppose Yp,...,Y, are i.i.d., W a statistic based on Y. . The key idea of
Hajek's methoé is that, even though the central limit theorem is concerned
with sums of independent random variables, its scope may be extended to
statistics asymptotically equivalent to such sums. Thus we can try to
approximate W by its projection W on the subspace of all such sums of
independent terms. Hajek gave the following formulae;
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- n
W= T E'W|Y.)- (n- 1)EW
i=1 !

EW = EW

E(W - W)2 = Var(W) - Var(i) .

The projection method gonsists of finding conditions such that (a) the
standardized forms of W and W have the sawe asymptotic distribution.

(b) the central limit theorem can be applied to establish asymptotic normality
for W.

4.2 Caleulation of W

Let W = A(x), = (X l1,¢..,n. The projection W will now be
calculated accordiné to Hlje{ 3 formula. For this we need EW and E(W i)
The former is already given in Section 2.1. The calculation of E(W[Y,) is
simplified by the fact that W can be expressed as a sum of identicall

distributed terms:

n

1
W JEI Hj. HJ WGJ Kh(x-xj).

where Rj is the rank of Xj in the sample X. Thus
n
{ = = - i
E(W]Y,) 351 E(W|Y;) = E(W|Y) + (n 1)5(“j|'1)- i*i,

where E(H1|Yi) and E(Nj|Y1) is given in (4.2.1) and (4.2.2) below.

(1) E(W|¥,) = 6, K, (x - x1)£(ﬁ:§;_r Xy08:)

But given (X,,8;), R; ~ 1 + Binomial(n - 1;Fy(X5))
Hence

n-l 1

€ Gewor | Ye89) = 8 e O RN - AR

1
. ﬁTT?F;TX}TT‘(l . Fx(xi)") .
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Hence

1 l'Fx(Y)"-l
(4.2.2) EMW;|Yy) =57/ TRy "Wk (X - V()

L DRy ) nfy ()" (1-Fy ()
T A(A-T) MO Iyex, ")

« Kplx = y)fy(y)dy .

Finally, the expression for W is obtained by putting (2.1.1), (4.2.1), (4.2.2)
into

-~ n "
W= 151 {E(wilvi) + (n - 1)£(uj|v1)1 - (n - 1)EW
where j # 1 in E(Hjlvi) .

Thus, we can write

- - n
W-EW= ¢ {E(H.IYi) +# (n - 1)E(W.|Y,) - EW)
j=1 ; 371

d 1
N L LA A LR
where 8y = = By HIm(y)Ky (x = y)fy (y)dy
n
l-Fx(Xi)

Vn(Yf) a T:F;YY;T 61 Kh(x - Xi)

[1-Fy (y)"=nFy ()" (1-F, ()]
Un(yi) - ‘f (l_rx(y)’z I[y‘xi]m(Y)fx(y)Kh(x - y)dy .

4.3 Asymptotic normality
Theorem 3: If K is compatible with both Fy and F¢, then the standardized

form of_ W = A(x) has an asymptotic normal distribution, as n » =, h » 0,
h=n',0<y<1.
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The main steps of the proof are as follows: (i; obtain bounds for
1R (i1) obtain agproximate moments for V,, (iii) check that
Vg (H)/V THS + 1, this will guarantee that W and w have the same.type of
distribution asymptotically, (iv) check Lyapounov's condition for W, thus
proving asymptotic normality.

(1) |u,| = o(n m), [&] = 0 Graeyy) -

Proof of (i): choose M such that Fx(x+n) <1,

[1-Fy () "0y (9) "™ (1-Fy (1))

FaaTaey | (Ily-x|<n *Iy-x|>n =F ) e
Ky, (x-¥)
or:rx—(-y-)-dy
<C+ G"Ily-x|>ﬂ(l *Fyly) + oo s Fx(y)"'l-an(y)"°l) dFy (y)

<C+Gy [A(1oFeFe s ™o o™l g
= 0(en n) .
0< -8, < 0 (Fy (xsM)) + Gy [FF1(1 = Fy(0))dFy(y) = O (ipkeyy) -
(1) EV,e|" = o, (T:rir;,)' m(x)fy(x) + ofa, )
where a_, = | Ky (y)dy = ;?%T [ K" (t)dt; r =1,2,3,...

Proof of (ii):

(1-Fy(y))"
ElV,(Y)|" =/ ?I—;EY;S;; m(y)Ky(x = y)fy(y)dy
2

(1-Fp(y))"

</ — m(y)K} (x - y)f,(y)dy
|y-x| M (1-Fy(y))" " '

+ 6y Ily—x[)ﬂ (1 - FR(y))" mly)fy (y)dy

rh (I:pirﬁy)r m(x)fy (x) + O(Gr'h) .
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Here we have used the fact that Kr/a is also a peaking kernel and M is
chosen such that F (x+M) 4

(111) Var(W)/Var(W) » 1.

Proof of (iii): making use of (i) and (ii) above, we have

Var(u_(Y;)) = 0 ((en n)?),
Var(V, (Y;)) = ay (T:rir;y)’ m(x)fy(x) + o(a, )
.UK_’bLtJitl r:% +off) -
Hence,
Var(W) = n Var (3 V (Y,) + 2u (v,) + 8,)

= 3 DVar(V_(1,)) + 2 cov(V, (Y,),U,(Y,)) + Var(u_(¥,))]

K2 (t)dt XT(X) 1) ! 0( in n) + 0 (‘ln n! )

o TR0 o o1
(k2 (t)ar) *rix) 1
) nh ) O & -

Comparing with expression for Var(W) in Theorem 2, we have (iii).

The fact that Var H + 1 guarantees that

£ ( “-EH‘, _ _E-EW )2 2 ——‘lr- E(i - W)2
/Var(w) lVar(H) Var(W)

= —L [Var(W) - Var(W)] (by Hajek's formula)

Var(w)
* 0
W-EW M- W
But ———"— has the same asymptotic distribution as — , hence it has the
ar
same asymptotic distribution as —!Lﬁ!- " Var(Ww)

/—-—"-
Var(W) 25



(iv) Finally it remains to show that«-!lg!—- + N(0,1). Since 8, is
negligible, by Lyapounov's theorem, a sx'f‘!)ent condition will be:

n

1 1 1 3
L Ej =V (Y,)+=U(Y.)]+0 .
Var(;)372 is] n n'i n n'i

To check this, rewrite the left hand side as

1 1
LHS 'W " 4 E“n“i) ’ Uﬂ(vi)'3

n

———yry 172 172

Now
m(x)f,(x)
EIV_|? = =% ( [K3(t)dt) —2e ]
Vol i ( Jk3(t)dt) (or ()7 +o (;z)
£V, | < 0 (p)
EJu " = 0((2n n)")
. AL (x)
Thus
LHS‘O(Tlm-_L‘z)‘O(—L‘)l
(5 (nh) /nh

verifying the condition.
5. Discussion

5.1 Bias correction near the origin

In calculating the estimate A in Figure 1, a bias correction procedure was
used for points near the origin. Figure 2 presents A without bias
correction. The effect is seen to be quite large for points close to the
origin. The reason for the bias is apparent in the dominant terms of the
expression for the expected value:
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EA(x) = [ A(y)Ky(x - y)dy

= 3 Alx + ht)K(t)dt

-

= A(x) f:K(t)dt +R .
h

The remainder term R is negligible either whep h is small or when A'(t) is
small around x. For x large compared to h, [n h K(t)dt = 1, and even in this
case the convolution approximation will be 9056 only if the remainder R is
small. Thuys, in doing bias correction, we will only correct for the leading
term A(x) K(t)dt. For x small compared to h this leading termn is
significan!‘? less than A(x)._ The pias correction procedure is to divide the
estimate A(x) by the factor [;/h K(t)dt.

5.2 Significance of the present study

Our ultimate goal is to establish the theoretical properties of the fully
data adaptive procedures. However, this is & difficult problem. We regard
the present paper as solving a significant component problem. One must
understand how these estimators behave when the parameters are chosen
deterministically as a prerequisite to the analysis of the behavior of the
data adaptive procedure. Another component of this problem, dealing with the
nearest neighbor hazard estimator, is solved by Tanner (1982).

The present study provides several insights to the relation between
density and hazard estimation. The leading term of the bias expression
presented in Section 2 is the convolution approximation
error AT'K (x) = A.(x). In the uncensored situation the bias of the kernel
density es!imat is also a convolution approximation error f 'Kh(x) - fT(x).
Because fy is L%, the convolution error is guaranteed to vanlsh"in the
limit. However, A, need not be L] and hence kernel hazard estimation is at a
disadvantage on thTs point. Convolution is an approximation of the value cof a
function by a weighted average (according to the kernel) of values at other
points. We must therefore ensure that function values at points far away must
not be so large that the down-weighting by the kernel is insufficient. This
is the essence of the compatibility condition between the kerne! and Fy in
Sections 3 and 4. We point out that if a kernel with compact support 1s used
then the above difficulty cannot arise. In this case, the asymptotic mean
square error behavior of the kernel is exactly the same as that of the kernel
density estimate, and all the familiar convergence rate results (in MSE) for
kernel density estimates carry over to kernel hazard estimates.
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It must now be emphasized that, with censored data, it is no longer
possible to express the bias in the kernel density estimates as a convolution
approximaticn error (see next section for a description of kernel density
estimates from censored data and relevant references). It appears that in the
case of censoring, the hazard function is a more natural entity to analyze
than the density. One directly observes X = min(T,C), and & = I T<¢1* While
the hazard functions a-e related in a very simple way A, = Ay + ; fander
independence of T and C), the densities are related in § morl complicated
way f, = fTS + fCS . Thus, it is not surprising that in this context the
estimétion og the hlzard XT is a more tractible problem than the estimation of
the density fy.

The consideration ot the convolution error in the bias also gives us a
guide as to when hazard estimation is to be preferred over density
estimation. Namely, if over the region of interest we expect stability on the
hazard scale, then hazard estimation is preferred since the convolution error
will be vory small. Conversely, if the density scale is more stable, then
density estimation is Lo be preferred.

In the area of reliability and survival analysis, it is usually the hazard
scale which is more stable. For example, the exponential hazard is a
constant, and it is the exponential life time which is fundamental to much of
reliability and survival analysis. In practice, an exponential model might be
too restrictive, but there are often situation where we do not expect the
hazard to vary drastically over the region of interest. The kernel hazard
estimate should perform well in these situations, since in these cases the
window width h need not he very small in order to achieve T good convolution
approximatinn, hence the variance, which is of order (nh)™*, can be made much
smaller than otherwise possible.
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Kernel hazard estimate from 00 observations, with bias correction.
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ABSTRACT

The combination forecast methodology is use“ul hecause in selecting the
"best" single model the analysts may discard independent information of
interest, which exists in the rejected models. The methodology of combining
forecasts is f.unded on the axiom of maximum information usage. This paper
considers three alternative approaches--econometric, Box-Jenkins, and
Winters--to forecasting short-term demand for non-utility residual fuel oil.
In the paper, various combinations of tiese three approaches are used to yield
combined forecasts, using the Bates-Granger Technique, applied to monthly data
on non-utility residual fuel oil. It is demonstrated that the optimum method
propo: ed is superior to the existing single equation econometric model.

1. INTRODUCTION

The essential objective of most forecasting is to provide decisionmakers
with the information necessary to permit confidence in the decision made.
Since no one forecast includes all the available information or all possible
sg:cifications, multiple forecasts are often prepared for the same variable.
These multiple forecasts are then examined within the context of the decision
objectives, and one forecast is selected as most pertinent to the question at
hand. Selecting a single forecast may not make the best use of available
information, however, for several reasons. Although there is likely to be
some common information among forecasts, rejected forecasts may contain some
information not available in the selected forecast. Rejected forecasts could
be based on different assumptions, diffarent variables, or diffecent
relationships between variables. Thus, combined forecasts may provide a
better forecast than any indiviaual rorecast. The methodology of combining
forecasts is founded on the axiom >f maximum information usage.

Improvement ard refinement of the demand forecast using time-series (e.g.,
box-Jenkins) and combination forecasts (e.g., econometric and Box-Jenkins)
would enable analysts to produce more accurate short-term projections of the
demand for non-utility residual fuel oil. This paper summarizes the findings
for non-utility residual fuel oil. It includes: (1) estimation of an
econometric model to project the demand; (2) development of alternative
approaches (Box-Jenkins and Winters) to the short-term demand forecasting; and
(3) development of approaches to combine the econometric and the alternative
approaches to the short-term demand forecasting.
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Structure of the Paper

This paper consists of five sections, including this introduction.
Section 2 describes the data used for the analysis. Section 3 presents and
discusses specification of the models and empirical techniques used. The
findings are discussed in Section 4, and Section 5 is a summary with
conclusions of the paper.

2. DATA
To develop forecasts for non-utility residual fuel oil demand, it was
necessary to identify monthly data sources for this variable and the other
variables used in the estimation of an econometric model. These data were
supplied by the Analysis Branch of the Short-Term Information Division in the
U.S. Department of Energy, Energy Information Administration.

The most common data sources identified and used in this paper were:

» Monthly Energy Review, U.S. Department of Energy, Energy Information
dministration

. Industrial Production, Board of Governors, U.S. Federal Reserve System

« gggthlx State, Regional, and Ngéional Heatin De?ree-0a¥§ Weighted by
opulation, U.S. Department of Commerce, Nationa eanic an

tmospheric Administration.

Table 1 presents a summary of all variables, sources of data, and units

for the variables used in this paper.
3. METHODOLOGY

This section presents the methodological approaches used to forecast and
to evaluate the demand forecasts of non-utility residual fuel oil. To provide
an understanding of the findings presented later in this paper, the discussion
that follows focuses on:

. Empirical specification and techniques

. Evaluation of model paerformance.

The purpose of this section is to describe each of these phases and to provide
a framework for the analysis and discussion of findings.
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TABLE 1:

VARIABLE DEFINITIONS, SOURCES, AND UNITS

Variable Definition

Source

Unit

XDRS¢ Non-utility residual
fuel oil demand at
time t.

XDRS¢ .1 Non-utility residual
fuel oil demand at
time t-1.

XPRS¢ Real wholesale price
of residual fuel oil
at time t.

Industrial production

index of all manufac-

tured articles at time
t (1967=1.00).

INDM;

|EHDD ¢ Heating degree-days
at time t, national
1980 popu‘ation
weighted.

[GASPR¢ Real price of natural
gas at time t.
loum7677, A binary variable for
natural gas curtail-
ments during the 1967-
1977 winters; coded 1

in November 1976 to
March 1977, 0 otherwise.
iDUMDECt A binary variable for
period following total
decontrol on January
1981; coded 1 in
February 1981

forward, 0 otherwise.
[DUMWIN, A binary variable for
warm winter, coded 1 in
November 1981 to March
1982, 0 otherwise.

Production,
6-12.3

Monthly Enerqgy Review
and E!*, FPC !orm 423
Monthly Energy Revi
and : orm

U.S. Department of
Energy, FEA Form
P302-M-1, "Petroleum
Industry Monthly Report
for Product Prices"

Board of Governors,
Federai Reserve
System, Industrial
nthly,

U.S. Department of
Commerce, National
Oceanic and Atmospheric
Administration (NOAA)

Monthly Energy Review

Million barrels
per day

Million barrels
per day

1967 cents per

gallon

Index, 1967=1.0

Average daily
degrees above
Fahrenheit 65

1967 cents per
million Btu

Dimensionless

Dimensionless

Dimensionless




Empirical Specification and Techniques

Two alternative models are used in the forecasts of non-utility residual
fuel o1l demand:

An econometric model
Time-series models, specifically
-=-  Box-Jenkins method

== Winters method
-- Combination methods.

In this section, the empirical specification of these four methodological
approaches to forecasting are briefly described.

Econometr ic Model

The econometric demand mode! for non-utility residual fuel oil is
specified as a linear function of eight variables:

The real price of No. 6 residual fuel oil to relail consumers

in time t--XPRSy. This variable is included in the demand model to
measure the impact of residual fuel oil price on the demand for
residual fuel oil.

The industrial production index of all manufactured articles

in time t--INDMy. This is expected to have an effect on the demand
for residual fuel oil because it is closely related to consumption of
total non-utility residual fuel oil.

The real price of natural gas in time t--GASPRy. Since natural gas
is a substitute for residual fuel oil, the price of natural gas is
also included in the specification.

The national population-weighted heating degree-days in time t--
EHDDy. It is included in the specification to explain seasonal
variation.

OUM7677¢. This is a binary variable and included in the
specif;;ation for natural gas curtailments during the winter of 1976
and 1977.

DUMDEcs. This is a binary variable and included in the
specification for the period following total decontrol on January 28,
1981.

DUMWINg. This is a binary variable indicating an unusually warm
winter.

XDRSs-}. This is a lagged dependent variable included in the
specification to allow the last observed value to influence the
forecast more directly.
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The econometric demand model for non-utility residual fuel oil is:
XDRSt - Bb + ﬁlxmst + ﬁZINDHt + B3GASPRt + 34EH00t (1)
+ ﬁsw"""t - ﬁswmect + B70um1nt - BaxDRSt_1 +e,.

Equation (1) is estimated using the Cochrane-Orcutt 1/ procedure with monthly
data from July 1975 to December 1981.

Box~-Jenkins Method

The Box-Jenkins method is a forecasting technique that seeks to develop, in
a systematic manner, the forecasting mode! that is best suited to each time
series under investigation.2/ This method can lead to a forecast that is
better than those produced by other smoothing models. At the outset, a
statistical analysis on the data series is conducted to find the forecast model
that gives the best fit. The forecast model is then selected from a collection
of models that represent the Box-Jenkins family of models.

Four basic stages are necessary to develop a Box-Jenkins forecast; the
first three stages construct the Box-Jenkins model and the last stage produces
forecasts. The four stages are:

1. Identification -- The objective of this stage is to select the
forecast mode! that seems most appropriate to the time series under
study. The data are used to generate a series of sample
autocorrelation functions and partial autocorrelation. These are then
compared to certain theoretical autocorrelation and partial
autocorrelation functions from known forecast models to seek the best
match. The forecast model is then identified and selected. The
principle of parsimony is applied: the model with the smallest number

of coefficients suitable for the series is the model that is selected.

2. Estimation -- Upon selecting the model, the second stage is initiated
ereby the coefficients are estimated. The estimates are found so
they yield the fit of past observations which produces the minimum
sum of squared residual errors.

3. Diagnostic Checking -- Using the fitted results, the residual errors
are exam to determine the adequacy of the fit. A good fit will
yield residual errors that are randomly distributed with mean zero
and a constant variance. T check is made by way of the

autocorrelation functions of che residual errors.

4, Forecasting -- Once an appropriate model has been identified, it may
be used to generate a forecast of future values that are optimal in a
minimum mean-squared-error sense.

Should the diagnostic check fail, the first three stages are repeated
until a model is founa that gives acceptable results. Once the model and the
corresponding coefficients are selected, the model is then used to forecast



future observations. The forecasts are updated in each time per od as each
new observation entry becomes available. In the event that the time series
seems to be changing, the coefficients of the mode! may be re-estimated or an
entirely new model may be selected. When the appropriate model and
coefficient estimates are found, an equation is developed from the model to
forecast future values.

Winters Method

Linear and seasonal exponential smoothing as developed by Winters 3/ is
based on the assumption that the time series is adequately represented by the
mode 1:

Xg = (Sg # Ty 1) Ig + es, (2)

w
ot
"

Base signal or permanent component
Ty = Linear trend component

Multiplicative seasonal factor

—
or
"

et = Random error component

~
"

Lead time for the forecast.

There are three basic equations involved in the Winters model:

X

S¢ =a__t + (1-a) (Seq * Teop)s 0<@«< 1 (3)
It-l

Ty = B(Sp=Se.q) + (1-8) Ty.q, 0<f <1 (4)
"

Iy sa—gz- * (1= s 0<d <1 (5)

where:
L = Length of seasonality
@, B, and d = Smoothing parameters.

Equation (5) is comparable to a seasonal index. This index is the ratio
of Lhe current value of the series, divided by the current single
smoothed value for the series, S IF X¢ is larger than Sy, the ratio
will be greater than 1; if it is smal]er than Sy, the ratio "will be less
than 1. Equation (4) 1s used for smoothing the trend because it weights the
incremental trend (S¢-S¢.1) with B and the previous trend value Ty.
with (1-48). Equation (5) is used to obtain the smoothed value; the first term
;s divided by the seasonal value I;_ i to eliminate seasonal fluctuations
rom X¢.
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In addition to these equations, a forecast is obtained by Equation (6):
thpr' (St + Tt T) It-L+r. (6)

Combination Methods (One Step-Ahead Forecasts)

Bates and Granger propose a technique of producing a forecast by combining
the forecasts from two alternative methods in their 1969 seminal paper. 4/ Let

Ft and F% be two unbiased one-step-ahead forecasts of xt with errors

ei - xt - F% and eg- xt - F%, respectively. Then the combined forecast is
C . 1 = 2 )
Xp = Wy Fy+ (1-W,)FE, (7

where Wy is a combining parameter and is varied at each time period.
Consequently, the combined forecast error is:

¢ c 1 2 1 2
ey * xt - X=X - HtFt - (I-Ht)Ft = Wee, + (I-Ht)et. (8)

The error variance is:

2 k.2 -
CoeWoy+ (1-W)® o 2t oM (l-H)palcz, (9)
where:
P = Simple correlation coefficient between e% and e%,
o.2 2 1 1 2
1 and 0‘2 = Sample variance of e, and e, respectively.

To find the value W, which minimizes the error variance, Bates and Granger
diffarentiate Equation (9) with respect to W:

Satod=awa? 21w od+ 2014) poy oy - MPay 0,y (10)

Equating Equation (10) to zero gives:

2
T - o

Ve —§—yh 72 (1)
o1+t 0,-2 Po, 0,



Substituting Equation (11) for Equation (9) gives the minimum error variance:

2 2 2
ol LB ikl T (12)
op* 022 Poy 0,

It can be seen that if W is determined by Equation (11), the value o2 is
no greater than the smaller of the two individual variances unless either P is
exactly equal to oy /oy or to gp/01. If either equality holds, the variance
of the combined forecas% is equal to %he smaller of the two error variances.

Bates and Granger list five additional alternative methods for seeking Wg.

T-l 2
z e
Method 1: “t = _‘tr'T-v }’ s t = Tey, ..., T-1, (13)
=1 ;s
. 1S

where ey 1 and ey p are errors of forecasts 1 and 2, respectively.

T-1
I e
Method 2: W, = QW , + _;I;Q)t-T-v e ' o<cacx<l, (14)
- 2 2 ,
th-v (et’l + Qt‘z) t T-V, ceny T-l

where @ is a fixed smoothing parameter.

Til t 2
(e -8 e, .)
Method 3: W, = _t=1 A "%t2 7 f1t %2, R 1T (15)
Y-l .t (.2 ”r -2 )
s B leg*veg-2e 18,
t=1
where B is a discounting parameter.
T-1
8% (e )
Method &: W, = t-} ’ , B 21 (16)
3 B, + %))
t-l t,l t.z
o
Method 5: “t '"t-l + (1-9) 1,21 . <<, (17)
|°g.1l‘|’t,2|
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Evaluation of the Models' Performances

The basic data set to which the non-utility residual fuel oil demand
models have been applied is divided into two periods. The first period data
are used to determine model identification and to generate forecasts for the
second period. Actual values f~~ the second part can then be compared with
each of the forecast values, and the applications of statistical measures will
permit evaluation of the accuracy of each forecast.

The measures presented in this section have been used to determine the
differences in accuracy among the four procedures used for forecasting: the
econometric model, the Box-Jenkins model, the Winters model, and the combined
models.

Measure 1: Mean Sgu*:eg Error -- A particular favorite of forecasters
using a least-square criterion, mean squared error (MSE) is an obvious measure
of forecast quality and is defined as:

. 2
MSE = - tgl (Kp=Fe)®s (18)
where:

xt = Actual observations

Ft = Forecasted values.

Moasur% B ngil Inaguglitz Coeffiﬁignt == This measure, proposed by H.
Theil, s oted by and described by the following formula:

" i tg}_n(xtJt)z
{tzl g

u2 equals zero only if all of the forecasts are perfect. u2 equals
one when the forecasting procedures leads to the same root-mean-squared error
as produced by using naive, no-change, extrapolation. By using the inequality
coefficient, the seriousness of the forecast error is measured by the
quadratic loss criterfon: the zero corresponds with perfection and a value of
one corresponds to the loss associated with no-change extrapolation,

Measure 3: Qgcomg%sitiga of Mean S§g!rgd Error -- As proposed by Theil, 6/
MSE can be decomposed into three elements, each referring to a particular kin

of forecast error. This decomposition can be written in the following ways:

(19)

2
TAP R AC | L (20)
X oy Fefe)




(Sp=5y)

R - (21)
2- »
;31 (Xg=Fy)
2 (1-r) §,8
0 - 1) ";-. (22)
i t!l (Xg-Fy)

where:
FadX = Sample means of the forecasts and actua) observations

SF and Sy = Sanple standard derivations of the forecasts and actual
observations

r = Sample correlation between the rorecasts and the actua)
observations.

UM refers to bias proportion, UR
the disturbance proportion. Sst
optimum forecast; therefore,

to,the regression proportion, and uo to
h UM and UR tend toward zero for the
should tend toward unity.

re 4: 1 rror «= This measure is defined as:

F =X
MAE = J!i 'wt K. (23)

Measure 5: Mean Absolute-Percent Error -- This measure is defined as:

& 1

MAPE = w x 100, (24)

The forecasting methods used in this study have been evaluated by applying
these statistical measures. The results of these comparisons and evaluations
are presented in the next section, which reports our findings.

4. FINDINGS

In this section, the results of the estimation of the alternative demand
forecasting models for non-utility residual fuel of] are presented and
discussed. This discussion assesses the implications of statistical measure
vilues used to produce the best short-term forecasts of demand for this
product.
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tri 1

The econometric demand for non-utility residual fuel oil has been
estimated using data from July 1975 through December 1981. The results of
this estimation are shown in Table 2. Like all tables referenced in
Section 4, Table 2 appears at the end of this paper. As can be seen, the
estimated coefficients of the econometric fitted model are all significant at
the 0.10 level or better with the exception of INDM, the measure of industrial
production.

Evaluation of the estimated equation Eoveals that this model has
relatively good explanatory power. The R¢ is 0.911, indicating that 91
percent of the variation in the demand for non-utility residual fuel oil fis
explained by this model.

The estimated mode! becomes the basis for forecasting demand for
non-utility residual fuel oil for the 9-month period of January 1982 through
September 1982. These forecasts will provide a basis for comparison with the
alternative forecasts methods described in the sections that follow.

Box-Jenkins Model

The Box-Jenkins mode! has been estimated using data for July 1975 throu?h
December 1981 on demand for non-utility residual fuel oil. The identification
and estimation of the values of the parameter coefficients found in the
Box-Jenkins mode! required that sample autocorrelation and partial
autocorrelation functions of various differences in the series be calculated
and examined. This examination indicated that, with no differencing, the

. >sidua) demand series 15 not stationary, i.e., differencing is needed to
ach.~ve stationarity in the series. In addition, it was found that a seasonal
pa‘tern exists in the series, with a cycle length of 12 months. To account
for this finding, the 12th difference of the first difference (VV 12 X)

¢/ the residual demand series was calculated. This procedure was unécr&a&en
to remove the linear trend and the seasonal pattern.

The sample autocorrelation functions for the series V Vyp X; were then
examined, and the following tentative mode! was suggested for “urther
investigation:

(1-8) (1-8') (1- 9,8) X, = (1- 8,8) (1- 0,,8'%) a. (25)

Using the SAS computer program, the coefficients of the model (25) parametrs
were estimated. Results of this estimation are presented in Table 3.

A1l estimated parameters of the Box-Jenkins model are significant at the
0.10 leve!l or better. The standard error and variance estimates are low,
indicating that the mode! explains relatively well the variation in demand for
monthly residual fuel. The application of a Chi-square test to the
autocorrelation of the residuals reveals that the residuals are randomly
distributed. As a result of the evaluation of the Box-Jenkins model, it is
concluded that this mode! s adequate for forecasting.



Winter 1
The Winters method has been applied to non-utility residual fuel oil demand

to produce one-step-ahead forecasts. The first 78 data observations (i.e.,
July 1975 through December 1981) were used to dc.ignate and calculate the
smoothing parameters (i.e., Alpha, Beta, and Gamma):

Q= 0.75

B=0.10

d= 0.10.

These values of the parameters were then used to produce the forecasts for
non-utility residual fuel oil, which are the basis for this analysis.

Combined Models

The Bates and Granger methods of combining forecasts discussed in
Section 3 have been applied to non-utility residual fuel oil demand to produce
one-step-ahead forecasts. The combined models are:

B Econometric mode! and Box-Jenkins model

. Econometric mode! and Winters mode)

. Box-Jenkins mode! and Winters mode!

Combined models are developed five different ways, based on the five
combining methods discussed in Section 3.

The smoothing parameters used in this paper are:
B @ = 0.50, 9.70, and 0,90
v g = 1.00, 1.50, 2.0, and 2.50.
The performance of these models is discussed in the next section.

Comparison of Forecasts

Table 4 summarizes the comparisons of alternative forecast methods,
presenting several statistical measures of the forecast accuracy which may be
used to evaluate the forecasts. With respect to the three initia) methods
used to forecast demand for non-utility residual fuel oil (i.e., econometric
godel, Box-Jenkins model, and Winters model), the following conclusions may be

rawn:

o E!an SgE*rgg Error == This statistical measure indicates that the
ox=Jenkins forecast and the Winters model are preferred to the
econometric model. Choosing either of these methods will result in a
lower mean squared arror than observed for the econometric forecasts.
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B Mean Absolute Error %sd E!!n Abﬁglgte‘Pgrgggt Error -- These
measures, w app t ree forecasts, reveals that both a
Box-Jenkins model and the Winters model produce furecasts that
improve the econometric forecast. Further examination indicates

that, on the basis of these measures, the Box-Jenkins model is
preferred to the Winters model.

v Thiel's Inequality Coefficient -- This measure indicates that both
the Box-ﬂenE?ns and %ﬁz Winters models yield better forecasts than
does the econometric model. No differences are observed between
these two methods with respect to forecast accuracy.

o  Decomposition of the !gan-Sggar$d Error -- The Box-Jenkins method
produces the best forecas s, while the Winters model produces
forecasts that improve the econometric forecasts.

In the Box-Jenkins model and the Winters model, the five measures of
forecast performance considered above indicate that the econometric model does
not perform well in comparison with the Box-Jenkins and the Winters models.
Overall, the Box-Jenkins model appears to produce the most accurate
one-step-ahead forecasts of non-utility residual fuel oil demand.

The data in Table 4 are examined further to evaluate the extent to which
the development of combination forecasts, using the alternative forecasts and
the alternative weighting methods discussed in Section 3, can improve the
forecasts for non-utility residual fuel oil demand. The five statistical
measures discussed above have been applied to each of combination forecasts
considered. Results of this evaluaton of forecast accuracy indicate that:

1. Combination forecasts can yield more accurate forecasts than the
single-method models used for this analysis.

2. The specific combination methods that yield the most accurate
forecasts are the Box-Jenkins and Winters model combination, Method
3, B= 2.0 and B= 2.5.

A final evaluation of alternative single techniques and combination
technique forecast methods is presented in Table 5. This table presents the
values of the following ratio:

gggn Squared Error i

Mean Squared trror, Econometric

where i presents single or combination moael forecasts. Interpreting this
ratio, the degree of improveme t in the forecast accuracy possible by choosing

method i rather than the econometric model is (l-ratio). Examination of the
data in Table 5 again supports the conclusion that the Box-Jenkins and Winters

combination, Method 3 yields the greatest opportunity for improvement in
orecast accuracy because the ratio is smaliest for these alternatives.
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£. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to examine the potential for improving
demand forecasts in the econometric model by developing alternative single and
combination forecasting models and by conducting an evaluation of the extent
to which these methods do yield more accurate forecasts. The alternative
single models examined were the Box-Jenkins model and the Winters model. The
forecasts of these models and the econometric mode! were combined, using five
alternative weighting methods, to develop new forecasts that may be able to
take advantage of the strcn?ths of the separate forecasts. The statistical
measures that had been applied to evaluate the forecasts included:

@  Mean squared error

B Mean-absolute error

¢  Mean-absolute-percent error

@ Thiel's inequality coefficient

. Decomposition of mean-squared error.

Examination of the results of the alternative forecasts and application of
the statistical measures to the estimates has yielded the following concusions.

1. Of the three single models used to produce short-term forecasts of
non-utiity residual fuel oil, the Box-Jenkins mode! produces the best
forecasts. The Winters model also performs better than does the
econometric model.

2. The use of combination models can produce better forecasts than the
single models examined here. For non-utility residual fuel oil
demand, the evaluation of forecast accuracy conducted here indicates
that the combination of the Box-Jenkins and Winters models, usin?
Method 3 wei?hting, yields the most accurate forecast of non-utility
residual fuel oil demand.

[t is recognized that the usefulness of the one-step-ahead forecast is
limited, A methodology that permits the generation of forecast for several
steps ahead is preferred. This presents problems for the use of combined
forecasts if it cannot be assumed that the single forecasts are stable over
time, with respect to accuracy and information of value. Therefore, it is
necessary to develop a methodology that permits the weights for each forecast
to be time-varying. This is the subject of further research and investigation.
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TABLE 2: RESULTS OF ECONOMETRIC FITTED MODEL FOR NON-UTILITY RESIDUAL
FUEL OIL DEMAND, JULY 1975 TO DECEMBER 1981

Variable Coefficient t-Ratio
CONSTANT 0.713 4.721
XDRS (Lag) 0.170 3.583
XPRS -0.015 4.247
INDM 0.161 1.034*
GASPR 0.005 2.725
EHOD 0.001 14.975
QUM7677 0.149 3.932
DUMDEC -0.261 6.744
DUMWIN -0.242 3.432

*Not significant at the 0.05 level.

SUMMARY STATISTICS

R-Squared (corrected) = 0.911

Mean-Squared Residual = 0.007

Standard Error of Regression = 0.088

Ourbin-watson Statistics = 2.094

Number of Observations = 78 (July 1975-December 1981)

Rho = 0.308
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TABLE 4: COMPARISON OF ALTERNATIVE FORECASTING FOR NON-UTILITY
RESIDUAL FUEL OIL USING COMBINED METHODS,
JANUARY 1982 TO SEPTEMBER 1982 (Continued)

5 @=0,¢
con. con. - ns
Statistical and and and
Mcasure Box-Jenkins Winters Wikters
an of Actusl 1.111 1.111 i
an of Forecast 1.135 1.142 1.077
an of Error -0.024 -0.031 0.033
ariance of Actual 0.048 G.048 0.048
ariance of forecast 0.026 0.020 0.028
arfance of Error 0.019 0.019 0.026
Standard Deviation
of Actual 0.219 0.219 0.219
S tandard Deviation
of Forecast 0.161 0.140 0.166
S tandard of Deviation
of Error 0.139 0.139 0.161
an-Abso lute Error 0.126 0.124 0.117
an-Abso lute-Percent
Error 11.170 11.275 0.155
E:n-squu'ed Error 0.018 0.018 0.024
t -Mean-Squared
Error 0.134 0.13% 10.175
Thiel's Inequalfty
toefficient 0.014 0.014 0.019
|Corretation
Coefficient 0.77 0.79 0.68
Decompos ition of MSE
Bias
roportion) 0.03 0.05% 0.05
‘uegression
roportion) 0.19 0.35 0.12
uo ;omrumm
reportion 0.78 0.60 0.83




TABLE 5: MEAN-SQUARED ERROR RATIOS FOR ALTERNATIVE NON-UTILITY RESIDUAL
FUEL OIL MODELS AND ECONOMETRIC MODEL, JANUARY 1982 TO SEPTEMBER 1982

Ratio

No
Altgrnative Mocels sor 8 o050 o%0.70 a=0.30 g=! g=1.5 8=2.0 p2.5

Box=Jenkins 0.36 - e e Lring o Lo e
Winters 0.36 - - - R et s i
Combined
Mathod |
Econ. & Sox~Jenkins 0.55 - ou - . o g e
Econ. & Winters 0.39 - -- - - - - v
Sox-Jenkins & Winters (.33 .- .- e . - et o
Method 2
Econ. & Box=~Jenkins .- 0.66 0.69 0.7 - e . P
Econ. & Winters .= 0.66 0.69 0.69 o= e > we
Box=Jenkins & Winters == 0.83 0.86 0.86 o o o v
thod 3
Econ. & Sox-Jenkins - - - .- 0.41 0.48 0.82 0.69
Econ. & Winters - .- - - g.52 0.55 0.66 2.69
Sox-Jenkins & Wiiters == .- - .- 0.%5 2.1 0.21* 0.219
Mathod ¢
Econ. & Sox-Jenkins - - - -- 0.55 3.45 0.41 0.41
Econ. & winters .- - - .- 0.39 0.52 1.45 0.45
S8ox-Jenkins & Winters == it - ne 0.33 0.33 x 3 0.79
Method 5
Econ. &4 3ox-Jenkins — 0.45 0.52 0.82 -- - - e
Econ. & winters - 0.52 0.55 0.82 - a we w
Box=Jankins & Wintars == 0.83 0.83 0.493 .- .- - e

*Lowest ratio.
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STATISTICAL PREDICTION OF INSTANTANEOUS RESIDENTIAL ELECTRIC DEMAND*

D. J. Anderson, G. J. Collaros, E. W. Enlow
The BOM Corporation, 1801 Randolph Road S.E., Albuguerque, New Mexico 87106
(505)848-5000

ABSTRACT

Use of time average residential electric load data has been
assumed to significantly under- or over-estimate photovoltaic system
performance measures. Based on a large sample of instantaneous
electric load data, a statistical model was developed which converts
real time-average 1load data into estimated instantaneous data.
Periodic regression analysis, cluster analysis, and classification
analysis were performed to characterize the instantaneous lvad data.
The mode]l was structured into an algorithm which was incorporated into
a photovoltaic systems analysis simulation code. This simulation model
was exercised to investigate the effects of instantaneous versus time-
average load data, with varying parameters, on residential photovoltaic
system performance.

[NTRODUCTION

A residential load profile is the pattern of electric use in a residence
over a period of time. Utilities routinely monitor residences and use these
profiles to analyze the demand for electricity by a particular class of user.
When a utility constructs a profile, the time interval used is usually between 15
minutes and | hour. While this interval is adequate for utility requirements, it
is too large to reveal the instantaneous behavior of the load. It is generally
assumed that use of time-average data in residential photovoltaic (PV) system
simulations significantly underestimates the interaction between a PV system and
the utility. The designer of a PV system must be able to predict the total
energy that will be produced by an array and the fractions of energy that will be
used directly by the load or purchased from (or sold to) the utility. These
performance predictions are required to properly size & system to meet demand and
to determine the system's economic worth. Prior performance predictions of resi-
dential PV power systems had to be conducted using models that could accept only
hourly time-averaged load data, which does not reveal the instantaneous load
behavior caused by residential appliance usage.

[ssues of using instantaneous load data versus time-averaged data to predict
energy fractions can be simply illustrated by figure 1. This figure shows a
hypothetical PV system power output, assumed to be constant, and a load at three
different time intervals: instantaneous, 15 minute, and 1 hour. As the time
interval becomes larger, the amount of variability in the load declines until, at
the longer time interval, little interaction takes place between the PV array,
the residential load, and the utility.

*Work performed under contract 62-3977 to Sandia National Laboratories,
Albuguergue, New Mexico.
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Figure 1. Time-Averaged Versus Instantaneous Load Profile

Recent studies of the effects of instantaneous loads have used statistical
approaches involving the complete characterization of the residential load based
on the probabi ‘ties of various household appliance usage for average durations
and individual appliance load requirements (references 1 and 2). These statis-
tical studies showed instantaneous loads to have an effect on annual residential
PV system performance. However, the numerous appliance on/off probability
estimates required for these studies add uncertainty to the results. Adequate
samples of instantaneous residential loads did not exist to verify these results.

Objectives of the Detailed Residential Electric Load Determination Program
were to measure real, instantaneous load data, and to develop a statistical model
based on these measured data. Since utilities throughout th2 nation currently
collect residential load data at 15-minute intervals, the model was designed to
predict instantaneous residential electric load from 1S5-minute time-averaged
data. With this large data base, the statistical model can be used to predict
instantaneous load demand for a variety of PV applications.

Four residences in three regions of the country were instrumented and the
load measured at 5-second intervals. Each residence was continuously monitored
for 2 #eeks during the summer and winter to obtain seasonal load variations. The
load data were statistically analyzed and incorporated into a probabilistic
model. Annual performance predictions were then conducted to determine the
amount of energy supplied by a PV array to the load. To accomplish the perfor-
mance predictions, the statistical model was incorpcrated into SOLCEL, a Sandia
National Laboratories (SNLA) computer simulation code designed specifically for
the analysis of PV systems.

DATA COLLECTION

Data acquisition hardware for direct measurement of instantaneous load
consisted of measurement equipment, located at each of four monitored residences,
and a computer controller. The complete measurement system consisted of current
loop transformers connected to a Scientific Columbus Joule Electronic Meter
(JEM), which measured load data at 5-second intervals in units of kVAh. After
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digitization within the JEM, the accumulated data were collected at regular
intervals by the computer controller via telephone lines. Data were stored on
floppy disks and later transferred to the SNLA mainframe computer system.

The Public Service Company of New Mexico, Georgia Power of Atlanta, Gecrgia,
and the Public Service Electric and Gas Company of Newark, New Jersey, were
selected for participation in the program. Residences were selected by the
utilities to obtain a typical residence from their current residential monitoring
program. Selection was made on the basis of electrical consumption that approxi-
mated the sample mean for residences from the utility load data bases.

Residential electric load data were directly measured at 5-second intervals
on the four residences selected in the northeast, southeast, and southwest
regions of the country. Sample instantaneous load profiles, along with the
15-minute time averages, are illustrated in figure 2. A load data base
consisting of 5,080 coumplete, continuous, l5-minute intervals was established
(1,270 hours or 53 days of data). Load data were collected for 2-week periods
during the summer and again for 2-week periods in the winter at the selected
residences. To date, this data base is the largest source of instantaneous load
data available. Data collected for each residence is summarized in table 1.

TABLE 1. DATA COLLECTION BY RESINENCE

Hours of Load Data Collection

ALB-1 ALB-2 Atlanta Newark

Summer 215.5 224.5 149.5 190.5
Winter 146.5 104.0 155.5 84.0
Total 362.0 328.5 305.0 274.5

LOAD MOCEL OEVELOPMENT

Initially, the instantaneous load model was planned to involve multiple
linear regression prediction of peaks (load spikes), peak durations, and frequen-
cies per l5-minute interval, based on the time-averaged load. However, analysis
indicated that the instantaneous profiles, or patterns, are driven by major
appiiances only, and that smaller appliances simply added to the base load. The
peak loads, durations, an¢ frequencies were thus based on particular appliance
load profiles.

A new modeling approach was undertaken which involved three basic stages
plus the final prediction stage:

(1) Instantaneous load profile characterization for each lS-minute
interval.

(2) Determination of tne most prevalent profile groups based on analysis of
the characterization measures.
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(3) Representation of the prevalent profile groups.

(4) Prediction of which profile group representation to use based on the
time average.

Characterization of the 15-minute interval load profiles was accomplished by
periodic regression analysis, a technigue applicable to periodic data and similar
to polynomial regression and Fourier anmalysis. This analysis uses functions of
sine and cosine curves as independent variables in a multiple regression equa-
tion, the coefficients of which characterize the instantaneous profile.

Periodic raogression analysis was first performed on 4-second interval data
collected during the initial stages of the direct measurement program. An early
conclusion was that data could be aggregatad to l6-second intervals for modeling.
Doing so reduced the roundoff effects in the data, adeguately maintained the
instantaneous profile information, and advantageously reduced the amount of data
to be analyzed by periodic regression for each 1S5-minute interval.

An example of the regression analysis results, from program BMOPIR
(reference 3), and the coefficient estimates for a selected lS-minute interval is
shown in figure 3. Three pairs of sine and cosine functions of the timeline
variabla, X, were included in the periodic regression example to form three
harmonics. The high squared multiple correlation coefficient of 0.936 indicates
the periodic regression model fits the data quite well, with only three
harmonics. Coefficients for the sine and cosine pairs define the presence and

MULTIPLE R 0.9676
MULTIPLE R-SQUARE 0.9362
STO. ERROR OF EST. 0.1754

ANALYSIS OF VARIANCE

SUM OF SQUARES OF MEAN SQUARE F RATIO
REGRESSION 22.149336 6 3.691556 119.923
| RESIDUAL 1.5083482 a9 0.3078262E-C1

VARIABLES IN EQUATION
STD. ERROR STD. REG

VARIABLE COEFFICIENT OF COEFF COEFF F TO REMOVE
Y-INTERCEPT 1.232

COosX 0.256 0.033 0.27% 59.626
SINX 0.791 0.033 0.860 569.068
Cos2x -0.140 0.033 -0.182 17.820
SIN2X 0.204 0.033 0.222 37.826
COS3X 0.028 0.033 0.030 0.695
SIN3X 0.19§ 0.033 0.212 34.506

Figure 3. Periodic Regression Example with Three Harmonics

63



magnitude of the corresponding harmonic in the equation. The Y-intercept value
is the 15-minute interval average load. Oue to the orthogonality of the sine and
cosine functions, individual coefficient estimates remain the same, no matter how
many other harmonics are in the equation. The orthogonality also results in
identical standard errors of the coefficients in the eguation. Coefficients for
each sine and cosine pair, say a and b respectively, can be combined to provide
the amplitude, A, and phase angle, 6, of the sine curve harmonic by the following
relations:

A 8\/32 + b2

tan 8 = a/b

The 15-minute interval contains 56 intervals l6 seconds long, with the last data
point excluded. This corresponds to the degrees of freedom shown in the figure.
A plot of the observed data (0) for the lS5-minute interval in the example and the
predicted values (P) from the periodic regression equation in the previous figure
is presented in figure 4, The plot displays the adequacy of the periodic regres-
sion characterization of the instantaneous profile.

P R i *"‘.‘Oy:‘ﬁ:."’vv".v‘vv..ﬁv‘vvva.v‘o"r"-’."00101'0..—
: Z-_ZZE_#}‘Y N
? i.—“—OG — ol o
c e - —
- 1.925 . :
E S e TR :
D 1. 780 44— - s
1 AT, = S S R AT S
A 1876:} DIRENTY T
N :
CERERL - o AR AN AR,
0
B
S
E
R 500 - -
Vv s : . R bl
€ ) » ) — A\ pomq .
D = —‘7_"“"‘“"”‘"4f§qgi.“ 2 il
A e S <
(POWER) 012 243036 24854 60
CASE

Figure 4. Plot of Predicted and Observed Load Versus Time
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Equipment calibration and check-out were accomplished during the initial
direct measurement phase. Prior to collection of the actual load data base,
changes made to the monitoring instrumentation to reduce rounding errors present
in low readings necessitated lengthening the sampling interval to 5 seconds.

Prior to performing periodic regression on each of the intervals in the load
data base, the 5-second interval data were aggregated into 15-second interval
load values, for the reasons previously stated, producing 60 measurements per
15-minute interval. Since no prior information existed on how many harmonics
were necessary to adequately model the highly variable load profiles, it was
decided to use eight harmonics in each periodic regression analysis. The use of
eight harmonics was considered adequate for most intervals and was also an upper
bound in consideration of the large volume of info-mation which would require
file storage.

Periodic regression amalysis was performed on each of the 5,080 15-minute
intervals in the load data base using IMSL (reference 4) subroutines.
Coefficients from each of the periodic regression eguations and descriptive
information relating the house, season, day, date, time, minimum, maximum, energy
above average, squared multiple correlation, standard error of estimate, and
standard error of coefficient were concurrently stored on file for further
analysis. With 72.5 percent of the eguations having squared multiple correla-
tions (RZ) greater than 70.0 percent, the periodic regression stage was
considered to have completely accomplished the goal of adequate profile
characterization.

Three criteria were then used to determine whether profiles were suffi-
ciently active tc require further modeling: time of day, energy above average,
and the squared multiple correlation. Very little load activity was observed
between midnight and 5:30 a.m. The energy above average measures the energy
(area, helow the instantanecus profile and above the 15-minute average, and thus
relates the activity of the prefile. Active profiles would neccssarily have high
energy above average values. Squared multiple correlation measures the amount of
variability accounted for by the regression equation in contrast to a horizontal
line. Thus, a low correlation indicates that the time average value (Y-intercept
or constant term in the equation) is adequate for modeling and that the profile
is inactive.

Plots of energy above average versus quartiie (15-minute time interval of
the day) and squared multiple correlation for the 5,080 intervals are presented
in figures 5 and 6 respectively. Also indicated on the plots are the cut-off
levels for the three criteria used to define active profiles:

(1) Quartiles greater than 22 (5:30 - 24:00) (figure 5)

(2) Energy above average greater than .06 kVAh (figures 5 and 6)

(3) Squared multiple correlation greater than or equal to 70 percent
(Figure 6).

The breakdown of the 5,080 intervals according to the cut-cff levels of the

criteria is shown in table 2. These cut-off levels were determined by observa-
tion cf the figures and evaluation of the possible outlier intervals. (A more
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decailed discussion is presented in reference 5.) The three criteria resulted in
classifying 734 out of the 5,080 15-minute interval profiles as being active.

TABLE 2. BREAKDOWN OF INTERVALS 8Y CRITERIA FOR ACTIVE PROFILES

ENERGY CORRELATION
ABOVE QUARTILE
AVERAGE LT 70 GE 70
LE 22 313 801
LE .06
GT 22 1045 2069
LE 22 0 60
GT .06
GT 22 58 734
NOTE:

GE - GREATER THAN OR EQUAL TO
GT - GREATER THAN

LE - LESS THAN OR EQUAL TO

LT - LESS THAN

Determination of the most prevaient types of active lcad profiles was the
next analysis goal. Based on the premise that active profiles are mostly due to
a few major appliances, load profiles were grouped according to the coefficients
of the characteristic periodic regression equations. Even though base loads may
be different, resulting in different 15-minute average lcad values, load profiles
due to a particular appliance should be similar. I[n fact, each distinct profile
group developed could probably be associated with an individual appliiance load or
combination of appliance loads.

Cluster analysis and contingency table layouts were used to examine the
groupings resulting from various criteria. In cluster analysis, values cof the
coefficients are recoded as belonging to specified intervals, and cases
(profiles) having common codes for the coefficients are grouped together. The
specification of the Iintervals for each coefficient and the number of
coefficients included greatly affected the grounings, resuiting in a large numoer
of trial and error &rmalyses. Output from the BMDP3M cluster analysis program is
quite lengthy and is not included here.
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Initially, the coefficient value for the sine and cosine functions were used
to group the intervals. Several problems were encountered involving the common
scale of the variables, symmetry of the variables about zero, and the large
number of variables (up to 17) and cases (734). It was decided to transform the
coefficients into the harmonic amplitude and phase angle values and to reduce the
number of harmonics used to cluster the profiles. Intervals for the amplitudes
were reduced to four: low, medium, high, and very high. Phase angles were not
included individually, but combined to form phase angle differences between pairs
of harmonics when both were in at least the medium category. The phase angle
defines where along the time axis the sine curve lizs. This location was not
considered important since it is dependent upon when exactly the data collection
occurred and when appliances were turned on. However, when two or more harmonics
were at the medium or higher categories, the phase angle difference between the
pairs of harmonics did aid in grouping the profiles. Phase angle differences
were placed in three categories: in phase, between phase, and out of phase.

Several analyses using this structure led to a good grouping of the
profiles. One conclusion was that only the first two harmonics were needed to
group the profiles. The final grouping structure is summarized in a contingency
table layout shown in table 3. Displayed in the table are the number of
15-minute interval profiles in each group and the group classification number.
Thirteen different profiles groups were identified, with groups 10 and 12 being a
combination of two somewhat similar groups and group 13 being somewhat of a "grab
bag" group. A1l profiles not falling into a distinct group were placed in
group 13. With the distinct profile groups defined, remaining modeling steps
were to form representations of the groups and to develop a prediction or selec-
tion strategy.

To construct *the statistical model predicting instantaneous load profiles,
precise definition of the predicted profiles (and therefore the profile groups)
was necessary. Mathematical formulation of the profiles using the sine curve
(harmonic) amplitude and phase angle differences was considered, but was found to
smooth out the profiles. In view of how the SOLCEL PV analysis code operates,
and with the desire to maintain the instantaneous nature of the profiles, it was
decided to use the interval of real instantaneous data which was closest to the
average or centroid of the profile group. That is, real data profiles were used
to represent the distinct profile groups.

Mathematical averages of the first four harmonic amplitudes and the dif-
ference between the first two harmonic phase angles were calculated for each
profile group. From the interval profiles in a particular group, the interval
with amplitudes and the phase angle difference closest to the averages for that
group was determined. Closest was defined by several criteria: minimum sum of
squared deviations, minimum sum of absolute deviations, and two different
weighting schemes used to weight the deviations from the amplitudes more than the
deviation from the phase angle difference. The representative intervals chosen
matched on at least three of the above four criteria for all the groups.

The final load modeling step was to develop a rule for determining the
presence of an active profile, and selecting which representative profile to use.
Possible relationships to be included in the prediction of load profile were time
of day, day of week, season, region (NE, SE, SW), and the 15-minute average load.
These possible relationships were investigated, through analysis of contingency
tables and plots, to determine whether particular profiles occurred only at
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TABLE 3. CLASSIFICATION TABLE DISPLAYING DISTINCT PROFILES

2ND HARMONIC AMPLITUDE

LOW - LE .05 MED - GT .05, HIGH - GT .10
LE .10
UMBER OF PROFILE [NUMBER OF | PROFILE | NUMBER OF | PROFILE
ROFILES GROUP |PROFILES GROUP | PROFILES GROUP
@ LE .05 52 1 55 2 45 3
2 LOW
é‘ =W=ﬂ
< |GT .05, 136 4 66 5 9 13 N
= {LE .10 439 6 8 13 BTWN
§ MED 13 13 1 13 ouT
=
e
- | 8T .10, 80 7 40 8 14 10 IN
2. LE .15 43 9 3 13 BTWN
HIGH 2 13 1 13 ouT
GT .15 38 i | 3 13 14 10 IN
VERY HIGH 17 12 27 12 || 8TWN
u 2 13 6 13 ouTt
' | L | o
[N = PHASE ANGLES IN PHASE
BTWN = PHASE ANGLES BETWEEN PHASE
QUT = PHASE ANGLES OUT OF PHASE
LE = LESS THAN OR EQUAL TO
GT = GREATER THAN

specific times of day, on weekdays or weekends, during a particular season, only
in a particular region, or only for selective time-average 1oads. However, since
the loads are appliance-driven, an argument could be made that the differences
were due to use of different kinds of appliances, each with different
efficiencies, load requirements, and usage practices. With a sample of only four
households of appliances, determining precise relationships was not feasible. In
addition, no clear relationships were determined.

A basic approach involving frequencies of occurrence was decided upon for
the profile prediction. The frequency of occurrence of active profiles out of
the total possible intervals when an active profile could occur was used to
develop the baseline probability of an active profile, Referring to the
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breakdown of the sampled intervals presented in table 2, the first and third rows
were excluded as being possible active profiles. The resultant probability of an
active profile was calculated to be

(58 + 734)/(1045 + 2069 + 734 + 58) = 0.203

Finally, given the presence of an active profile, the selection of one of the 13
representative profiles was based on the frequencies of occurrence of the profile
groups out of the 734 total active profiles. Even though profiles are predicted
by this relatively simple probabilistic prediction scheme, annual simulation
results are considered to be realistic. However, comparing a predicted instan-
taneous load profile to an actual instantaneous lcad for a selected l5-minute
interval could show large discrepancies.

An algorithm incorporating the statistical load model prediction scheme and
the representative profiles was implemented into SOLCEL (reference 6). Using
annual load data and solar/weather data, the program simulates the annual perfor-
mance of specified PV and battery storage systems; computes the load requirements
met by the PV system, battery storage, and the utility; and performs an economic
analysis. The representative load profiles were normalized to the l5-minute time
average lcad value and included as deviations from the 15-minute time averaged
load. SOLCEL steps through the simulation at 15-minute intervals, but if the
15-minute time average value is greater than 0.5 kW (less than 0.5 kW is con-
sidered unconsequential) and an active profile is predicted, all computations are
performed at l5-second interval steps. For active profiles, the algorithm uses
the chosen profile deviations and the current time-averaged load to calculate the
15-second load values for that 15-minute interval. The probability of an active
profile, to be input by the user, can range from 0.0 (no use of instantaneous
load, 15-minute time-average only) to 1.0 (complete use of 15-second interval
profiles of the statistical mode! between 5:30 a.m. to midnight).

PERFORMANCE COMPARISONS

The SOLCEL simulation code with the statistical load model algoritnm was
exercised using various PV array sizes, probabilities of an active profile, and
time intervals. Typical Meteorological Year solar/weather data for Albuguergue
and an annual set of l5-minute load data for an Albuguerque residence, similar to
those sampled in this project, were used as inputs tu define PV output and
average load. Performance of residential PV arrays is usually measured by the
percentage load supplied by the PV output. Using the baseline estimate of proba-
bility of an active profile, .203, and a 4 kW array size (considered apprcpriate
for the residences in this study), a baseline test case resuited in the PV array
supplying 33.3 percent of the annual energy demand of the residence. This
estimate represents the most accurate prediction of the actual PV fraction.

This result wis then compared with results obtained using 1S5-minute and
hourly time-average 'oad data and using the statistical model with twice the
occurrence of active prufiles. Results for these four initial simulations are
displayed in table 4 in the form of annual percentages of load met by the 4 kW PV
system. As expected, with smaller time intervals and the use of the l5-second
load profiles from the load model!, the percentage of load satisfied by the PV
system deciines. However, the hourly resuit overestimates the baseline model
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result by only 1.3 percentage points, or a 3.9 percent error. Even operating the
mode! with twice the probability of occurrence of an active profile produces
little difference in the amount of energy supplied by the array to the load.

TABLE 4. RESULTS FROM SOLCEL SIMULATIONS

MODEL WITH
BASELINE MODEL WITH
PROBABILITY 15 MIN HOURLY TWICE PROBABILITY
PV DIRECT FRACTION [_'.333 .339 .346 .327

When array size is considered, and the probability of an active lcad is
increased, instantaneous load data produce a significant decline in PV fractions
only for very small array sizes and unrealistically active loads. This effect is
displayed in figure 7. The probability of an active load was varied from C.0
(use of 15-minute load data with 1S5-minute simulation time-step) to 1.0 (a
continuously active load between 5-30 a.m. and midnight with 15-second simulation
time-step). A probability of an uctive profile of 0.4 was considered an extreme
active case for load variability. This probability was extended to 1.0 to
investigate sensitivities. Array size was varied from 1 to 9 kW. For more
detailed discussion of these performarce comparisons, see reference 5.

PROSB. = 1.0
PV DIRECT

PR . =04
FRACTION e

0 2 B 6 8 10

ARRAY QUTPUT (kW)

Figure 7. PV Performance Versus Array Size for Various Probabilities
of an Active Profile
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CONCLUSIONS

A major finding of this project was the limited occurrence of active instan-
taneous load profiles. Results from the simulations for typically sized PV
arrays and observed load activity indicate that errors in annual PV system
performance measures arising from use of *“ime-average load data versus instan-
taneous load data are not significant. Oniy extremely small PV arrays, where the
average load demand would approximately equal the PV output, lead to significant
over-estimation of the annual PV direct fraction by use of time-averaged load
data. These results are contrary to results from previous probabilistic studies,
which were not based on measured data. With the abundance of 15-minute time-
averaged residential load data that currently exists with utilities, l5-minute
load data is considered adequate for simulation and analysis of annual perfor-
mance measures of residential PV systems.
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PRA UNCERTAINTIES AND THE ROLES OF SENSITIVITY
ANC UNCERTAINTY ANALYSES

W. E. Vesely, Battelle Columbus Laboratories
D. M. Rasmuson, Division of Risk Analysis, NRC

ABSTRACT

Seven categories of uncertainties are identified in a PRA and each
category is divided into subcategories to better differentiate the implica-
tions of the different types of uncertainties. In most PRA's, the majority of
uncertainties are not adequately treated or are not treated at all. By ele-
vating sensitivity analyses to a major role in a PRA, the PRKA can become a
more meaningful and credible information source for decision making. Uncer-
tainty analyses can also be made more useful information sources than they are
now. The fact that PRAs allow uncertainties to be explicitly evaluated is a
unique strength of PRAs which needs to be explioted much more than it is now.

1.0 INTRODUCTION

Probabilistic Risk Analysis, or PRA for short, has as its general
objective the quantification of risks from man-made and natural activities.
The quantification of risk is achieved by calculating frequencies and cense-
quences of various accidents which can occur. PRA really started with
WASH-1400 (1), which quantified the risks from nuclear power plant accidents,
and today most effort in PRA is devoted to evaluating risks from nuclear power
plants. In referring to PRA's we shall thus mean nuclear power plant PRA's:
however, the discussions will be generally applicable to any PRA,

The usual application of a nuclear power plant PRA first involves
constructing accident scenarios (accident sequences) which define the specific
accidents to be considered. The accident scenarios consist of accident ini-
tiating events and safety system failures which must occur to produce signifi-
cant consequences. The accident scenarios are defined by logic event trees.
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The frequencies of occurrence of the accidents and the consequences from the
accidents are quantified using reliability approaches, physical analyses, and
statistical analyses. In quantifying the accident frequencies, a variety of
accident contributors are considered such as component failures, human errors,
and environmenta)l stresses. Various consequences are calculated, including
fatalities, radiation exposure, and property damage. The results from a PRA
include probability versus consequence distribution curves, from which various
characteristic risk values are derived such as the expected consequences from
an accident. Figure 1 illustrates the steps involved in a PRA. References
(2,3) discuss in more detail the techniques and approaches which are used in a
PRA.

Because of the lack of experimental data, the assumptions, models,
and data in a PRA involve a great deal of engineering assessments and subjec-
tive judgements. Different analysts and experts sometimes have different
opinions on how likely accidents are and what the consequences will be. A PRA
thus has considerable uncertainties associated with it, and these uncertain-
ties have sometimes caused controversy over the meaningfulness and interpreta-
tions of a PRA. Because there are various uncertainties associated with a
PRA, confusion often occurs when PRA uncertainties are discussed. The goal of
this paper is to differentiate the uncertainties which are associated with a
PRA.

According to Webster's New Collegiate Dictionary, "uncertzinty" is
the quality or state of being uncertain. “Uncertainty" ir turn means
indefinite, indeterminate, not certain to occur, not reliable, not known
beyond doubt, not clearly identified, or not constant. “Uncertainty" is thus
a general term which can mean the quality or state of being random, or of
being unreliable, doubtful, vague, or changeable.

Probabilistic risk analysis (PRA) has uncertainties with regard to
all the above meanings, and these different meanings are what often cause con-
fusion when PRA uncertainties are discussed. In this paper we define the dif-
ferent types of uncertainty which arise in a PRA. The different types of
uncertainties are quite different in nature and have different ramifications
on the results produced by a PRA.
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ACCIDENT SEQUENCES
ARE ANALYZED

PHYSICAL MODELS ARE USED TO
DETERMINE PHYSICAL CONDITIONS
GENERATED BY EACH SEQUENCE

THE PHYSICAL CONDITIONS
DETERMINE THE UNDESIRABLE
CONSEQUENCES TO THE PLANT
AND THE HARMFUL MATERIALS
RELEASED FROM THE PLANT

THE RELEASED MATERIALS ARE
TRANSPORTED TO THE SURROUNDING
ENVIRONMENT TO DETERMINE PHYSICAL
AND HEALTH CONSEQUENCES
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FIGURE 1. THE BASIC STEPS IN A PRA
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After categorizing the different types of uncertainties, we discuss
the roles of uncertainty and sensitivity analyses in a PRA. Many PRA uncer-
tainties are not addressed by the usual uncertainty or sensitivity analyses
performed in a PRA. We suggest possible ways in which uncertainty analyses
can be made more complete and more useful.

The paper is organized as follows. In the next section, Sec-
tion 2.0, we define the major types of uncertainty which exist in a PRA. In
Section 3.0 we further categorize different types of uncertainty according to
their specific properties and impacts. In Section 4.0, we discuss uncertainty
analyses and sensitivity analyses and ways they can better contribute to the
usefulness of a PRA. Finally, in the section on conclusions and observations,
we comment on the present state of the art of uncertainty and sensitivity
analyses and needs which exist as we see them,
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2.0 THE MAJOR TYPES OF UNCERTAINTY

With regard to their different ramifications, especially for PRA's,
we need to first of all distinguish between two major types of uncertainty:

1. Uncertainty due to physical variability
and
2. Uncertainty due to lack of knowledge.

Uncertainty due to physical variability is actual, random behavior
in some physically measurable quantity. We can imagine an experiment being
conducted which produces a specific value of the quantity; when the experiment
is repeated, different values will be produced because of some underlying
physical variability. "Experiment™ is used in the general context and can
refer to an actual physical experiment, a specific scenario producing a speci-
fic value of some variable, or a given sample measurement having a specific
value. Examples of uncertainty due to physical variability are variations in
weather, variations in stock market prices from one day to another, variations
in component failure times from one observation to another, and variations in
consequences from one accident to another. “Uncertainty due to experimental
variability" would thus be another label for this type of uncertainty. For
ease of reference, we shall call uncertainty due to physical variability
*experimental uncertainty®.

The second type of uncertainty, uncertainty due to lack of know-
ledge, is quite different from experimental uncertainty. Uncertainty due to
lack of knowledge is vagueness, indefiniteness, or imprecision in an analysis,
a stated conclusion, or stated value. The uncertainty exists because of a
lack of knowledge; if we had more information and more knowledge, the uncer-
tainty would decrease or would not exist. Examples of uncertainty due to lack
of knowledge are uncertainties in the appropriateness of an economic model,
uncertainties in a conclusion concerning the acceptability of a risk value,
and uncertainties associated with an estimated value of a parameter. (A para-
meter is defined here to be an unknown constant.) We shall call uncertainties
due to lack of knowledge, “"knowledge uncertainty".

As indicated above, what differentiates experimental uncertainty
from knowledge uncertainty is the impact that additional knowledge has. As
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we gain more knowledge, knowledge uncertainty will decrease. However, as we
gain more knowledge, experimental uncertainty will not decrease; we will know
the variable behavior better and be able to quantify it more pracisely; how-
ever, the variability itself will not diminish.

Variation in weather is a common example of experimental variability
(the "experiment® here is an observation on a given day, for example). As we
collect additional meteorological readings at a site, day to day temperatures
and day to day rainfall amounts will not vary less. However, as we collect
more meteorological data, we may be able to more precisely estimate a fixed
parameter value in some weather model reducing our knowledge uncertainty about
that parameter value.

There is the argument that if we had perfect, complete knowledge,
there would be no experimental uncertainty as well as no knowledge uncer-
tainty. We woula anow all the causes of physical and random variations and
would be able to precisely predict the value that will occur in the next
experiment. However, this would not remove the variation frowm experiment to
experiment, even though under specific circumstances we might be able to con-
trol the variation. Furthermore, perfect knowledge is an ideal state which is
really never achieved. We therefore believe the differentiation between
experiment uncertainty and knowledge uncertainty to be meaningful and
important.

Both Bayesian and classical statistics textbooks gererally agree on
the interpretation and analysis of experimental uncertainty. Experimental
uncertainty is assoc’ated with a random variable which can vary from experi-
ment to experiment; the probability of specific values of the random variable
is characterized by a sampling distribution. The variation in the values of
the random variable are viewed as being frequency based; the empirical proba-
bility of an event for a finite number of experiments is defined as the
measured number of occurrences of the event divided by the number of experi-
ments conducted. As the number of trials increase, the empirical probability
approaches the true probability of the event. The set of repeated experiments
constitutes the “"collective™ in the terminology of von Mises, one of the
founders of the frequency based approach of statistics (4).
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Knowledge uncertainty is more complex and more nebulous than experi-
mental uncertainty. Knowledge uncertainty consists not only of imprecision in
parameter estimates, but also incompleteness in modeling and analysis, vague-
ness in appropriate data values and data ranges, indefinitieness in the appli-
cability of the model, and doubtfulness and vagueness in the interpretability
of results produced by a model.

Statistics, both Bayesian or classical, generally deal with only one
specific type of knowledge uncertainty, the imprecision in an estimated para-
meter value. The imprecision is described by a confidence or probability
interval for the parameter which reflects uncertainty due to insufficient
numbers of measurements, and which assumes the data are appropriate and all
models are applicable and exactly known. The usual Bayesian arnd classical
statistical uncertainty analyses performed in PRA's treat only data impreci-
sions and their impacts on the PRA results. Consequently, a large portion of
the uncertainties which exist in a PRA are not considered by these uncertainty
analyses.

Some nonconventional statistic approacihes have been developed for
handling additional types of knowledge uncertainty (5), however, these
approaches generally have been limited in their application and are not used
in PRA's. In addition to the nonconventional statistical approaches, a theory
termed fuzzy set theory has undergone rapid development in the past several
years., Fuzzy set theory (6,7) attempts to address the various types of know-
ledge uncertainty which are not addressed by conventional statistical
approaches. In the following section, we will utilize fuzzy set theory
concepts, as well as statistical concepts when appropriate, to identify the
different types of uncertainty which exist in a PRA,
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3.0 THE DIFFERENT TYPES OF UNCERTAINTIES IM A PRA

The I1EEE/ANS PRA Procedures Guide (2) identified three general types
of uncertainties which exist in a PRA: completeness uncertainty, modeling
uncertainty, ana data uncertafity. Completeness uncertainty generally refers
to uncertainty in jdentifying all the elements and contributors to risk.
Modeling uncertainty ganerally refers to uncertainty in the appropriateness of
the mode!s used in a PRA. Uata uncertainty refers to uncertainty in the para-
meter values input to a PRA.

These three types of uncertainties generally refer to different
types of knowledge uncertainties; however, experimental uncertainties can also
be included in some cises. It is useful to expand these three uncertainty
types into finer categories to better characterize the uncertainties which
exist in a PRA. The expanded catagories will a'low more specific investiga-
tion of the ramifications of the different uncertainties. Table 1 gives the
expanded categories of uncertainties which we have identified.

In Table 1, seven major categories of uncertainties are identified,
with each category divided into subcategories where necessary for further
specification. The seven categories are: (1) data uncertainties, (2) analyst
uncertainties, (3) modeling uncertainties, (4) completeness uncertainties, (5)
frequency urcectainites, (6) consequence uncertainties, and (7) interpretatior.
uncertainties. These seven categories, goina from Category 1 to Category 7,
represent a pregression from PRA input uncertainties to higher level uncer-
tainties associated with PRA results. Even though particularly applied to a
PRA, we believe these categories are generally applicable to any modeiing
exercise. We now briefly discuss the different categories and subcategories
of uncertainties.

Data Uncertainties
We begin with data uncertairties since they are generally the uncer-
tainties which are treated in a PRA, Data uncertainties refer to uncertain-

ties in the parameters which are input to a PRA, The parameters include those
constants which are used in estimating the frequency of different accidents
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TABLE 1. CLASSIFICATION OF PRA UNCERTAINTIES
e e —————
Category Subcategory General Type
1. Data Variation in parameter values from Experimental
Uncertainties one population to another Unceriainty
Imprecision in estimated parameter Knowledge
values Uncertainty
Vagueness in parameter values or Knowledge
parameter :anges Uncertainty
“adefiniteness in applicability of data Knowledge
Uncertainty
2. Analyst Variation in results from analyst to Knowledge
Uncertainties analyst Uncertainty
3. Modeling Indefiniteness in the comprehensive- Knowledge
Uncertainties ness of the model Uncertainty
Indefiniteness in the characteriza- Knowledge
tions used in the model Uncertainty
4. Completeness Indefiniteness as to whether all Knowledge
Uncertainties significant contributors are included Uncertainty
Indefiniteness as to whether the contri- Knowledge
butors are included in the proper coniext Uncertainty
and in the correct relative manner
5. Frequency Variation in the occurrence frequency Experimental
Uncertainties from one accident to another Uncertainty
Uncertainty in the occurrence frequency of Knowledge
of a given accident resulting from data, Uncertainty
analyst modeling, and completeness
uncertainties
6. Consequence Variation in consequences from one Experimental
Uncertainties accident to another Uncertrinty
Uncertainty in the consequences of a given Knowledge
accident resulting from data, analyst Uncertainty
modeling, and completeness uncertainties
7. Interpretation Doubtfulness or vagueness in the inter- Knowledge
Uncertainties pretability of the results produced by Uncertainty

the analysis
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and those constants which are used in estimating the consequences of the acci-
dents. Table 2 1ists various parameters which are input to the likelihood and
consequence evaluations in a PRA.

The data uncertainty category consists of four subcategories (1)
population variations, (2) imprecisions in values, (3) vagueness in values,
and (4) indefiniteness in applicability. Population variation occurs when the
parameters vary from scenario to scenario within the analyses; the variation
can generally be related to physical causes. The parameters may vary over
time, or over different spatial regions, or over different individuais. The
parameters become random variables which assume different values under these
different situations. When we assume the parameters are constants, we ignore
these variations. For example, in PRA's, component failure rates are
generally treated as being constant over time and over similar components,
however, more comprehensive modeling would allow the failure rates to randomly
vary with time, with the system in which the component is located, and with
the unique environment experienced by the component. This type of uncertainty
is not adequately treated by PRA's, or at most is treated in a very limited
manner,

The second type of data uncertainty, parameter imprecision, occurs
when 1imited measurements are only available to estimate the parameter values.
This is the type of data uncertainty which is standardly treated by statis-
tical analysis, either Bayesian or classical. Assuming the measurements are
completely applicable, and assuming an exactly known given probability distri-
bution (1ikelihood) for the occurrence of the measurements, a confidence
interval or probability distribution (a sampling distribution or posterior
distribution) is then derived to describe the imprecision in the parameter
value inferred from the measurements. The confidence intervals or distribu-
tions ave then propagated through the PRA to obtain the corresponding inter-
vals or distributions on the PRA results. Data imprecisions are generally the
uncertainties, and the only uncertainties, which are quantified and propagated
in PRA uncertainty, analyses,

The third type of dats uncertainty, parameter vagueness, is dif-
ferent from parameter imprecision and is the type of uncertainty which is
addressed by fuzzy set theory. Parameter vagueness refers to the situation
where definitive values or definitive intervals are not able to be assignea to
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TABLE 2. PARAMETERS UTILIZED IN A PRA EVALUATION

Frequency Parameters

Frequencies of Accident Initiating Events

Component Failure Rates

Human Error Rates

Dependent Failure Probabilities (e.g., beta factors)
Test intervals and Durations

Maintenance Intervals and Durations

In-Plant Consequences Parameters

Number of compartments for the containment; initial temperatures,
pressures, humidities, and dimensions of the compartments

Densities, heat capacities, and thermal conductivities of the heat sinks

Thickness, density, thermal conductivity, and initial temperature of
containment floor

Flow rates, shutoff pressures, and failure temperatures of coolant pumps
Flow rate, water temperature, and spray drop diameter of spray system

Active fuel height, mass of VOp, fuel-pellet diameter, hydraulic
diameter, cladding thickness

Heat capacity, temperatures, and heat transfer area of vessel structures.

Ex-Plant Consequence Parameters

Inventories of all radionuclides at the time of the accident

Time and duration of radioactive releases, warning time for evacuation
Elevation buoyancy ard duration of releases

Particle sizes and chemical properties of the released radionuclides

Meteorological data; hourly wind speed, duration, stability category,
precipitation index

Population density, evaluation speed, dry-deposition velocity

Value of land, relocation costs, decontamination costs




2 parameter; in fuzzy set theory this is often described as not being able to
assign “crisp® values and intervals (6). No one "best" estimate is able to be
assigned to a parameter, or if an interval is ascribed for a parameter, one is
not able to assign 75 percent, 90 percent, 99 percent, or some other definite
confidence value or probability value to the interval. Parameter vagueness
may arise from a variety of causes. The conditions under which the data were
collected may not be exactly known. Prior knowledge (such as the prior dis-
tribution) about the parameter may be fuzzy and only partially quantificble;
for example, a2 fuzzy range for the parameter may only be specifiable. Para-
meter vagueness is a common situation in PRA's and what one generally does is
ignore the vagueness and to assume some well defined best estimate, probabil-
ity interval, and associated probability distribution. Parameter vagueness is
thus not treated in PRAs and this vagueness can significantly increase the
data uncertainties now assessed in current PRA's.

The final type of data uncertainty, parameter applicability, refers
to extrapolation of the parameter values to the specific situations in the
analyses. The available data bases or meacurements may pertain to different
situations than those being analyzed, or general (generic) parameter values
may only exist which need to be specialized to the given situation. An
example where applicability uncertainty arises is extrapolating component
failure data for normal environments to accident environments. Another
example is extrapolating human behavior on plant simulators to behavior in
actual accident situations. Available data may be precise but not very
applicable.

When applicable, plant specific data does not exist for a PRA then
generic data is often used. In current PRA's, “generic data" is a nebulous
term which means data representative of some class. The con.titutuency of the
class is not well defined or is rather arbitrarily described by some assumed
probability distribution. The relevance of the class-averaged data or class
description to the particular case being evaluated is not generally addressed.
The individual case, such as an individual component, is assumed to be the
same as the average or median of the i{ll-defined class. Alternatively the
individual case is assumed to be a random selection from the class with some
rather arbitrarily assumed distribution. Uncertainties due to applicability
are thus not treated in PRAs or are glossed over.
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Analyst Uncertainty

Analyst uncertainty is the second major category of uncertainty
which we have identified, and refers to the variation which exists in PRA
modeling and quantification due to individual analyst interpretations.
Analyst uncertxinty is sometimes lumped with data uncertainty, however, it is
a separate uncertainty contribution. Given the same problem and same basic
information, there will be variation in the results among different analysts
(different PRA teams) because of their different an2lysis framework. There is
a potential for large variations because of the latitude afforded by sparse
data and sparse experience on accident occurrences. We categorize this type
of uncertainty as a knowledge experimental uncertainty. This uncertainty is
not addressed in current PRA's; it can be a significant uncertainty contribu-
tion in comparing PRA's performed by different analysts even with supposedly
the same ground rules on the PRAs.

Modeling Uncertainties

The third major category of uncertainties, modeling uncertainties,
refers to uncertainties in the applicability and precision of the models which
are used in a PRA. Numerous models are utilized in a PRA to model initiating
event occurrences, safety system and component failures, human errors, physi-
cal phenomena which are associated with an accident, containment and miti-
gating system behavior, radiological transport, and health effects and other
consequences which result from the accidents. Table 3 lists models which are
utilized in a PRA,

We have divided modeling uncertainty into two subcategories:

(1) indefiniteness in the model's comprehensiveness, and (2) indefiniteness in
the model's charac*terizations.

Indefiniteness in model comprehensiveness refers to the uncertainty
as to whether the model accounts for all the variables which can significantly
affect the results. For example, in modeling operator response in an acci-
dent, the question arises as to whether all the performance shaping factors
are considered which can significantly affect the operator's behavior. In
modeling the stresses which are exerted on the reactor containment, the
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TABLE 3. MODELS UTILIZED IN A PRA

Frequency Models

Accident Occurrence Models

Component Failure Models

System Failure Models

Human Response and Failure Models
Testing and Maintenance Models

Fire Propagation Models

Seismic Response and Fragility Models
Flood and High Wind Models

In-Plant Consequence Models

Meitdown Thermal Hydraulics Models
Radionuclide Release Models

Steam Explosion Models

Hydrogen Combustion Models
Containment Response Models
Radionuclide Transport Models
Containment Failure Mode Models

Ex-Plant Models

Atmospheric Dispersion Models
Cloud Depletion Models

Ground Contamination Models
Dosimetry Models

Evaluation Models

Health Effects Models
Property Damage Models



question arises as to whether all the pertinent phenomena are considered wich
can result in high containment pressure.

Indefiniteness in model characterization refers to the uncertainties
in the relations and descriptions used in the model. Even if the pertinent
variables are included in the model, appropriate relationships among the vari-
ables may not be described. Are the phenomena trealed to sufficient detail to
allow meaningful results to be obtained? Are the phenomena meaningfully char-
acterized in the model? Should the phenomena be treated in a probabilistic or
deterministic fashion? How are failures defined? Should the variables be
treated as random variables or as parameters? These are all questions which
affect the uncertainty in the model's characterizations. Modeling uncertain-
ties in general are not wel' addressed in a PRA and it is our experience that
they are as important or more important than data uncertainties.

Completeness Uncertainties

The fourth major category of uncertainties is completeness uncer-
tainties. Completeness uncertainties are the uncertainties as to whether all
the significant phenomena and all the significant relationships have been con-
sidered in the PRA. Completeness uncertainties are similar in nature to
modeling uncertainties but occur at the initial, identification stage in the
PRA. To perform a PRA, we must first ask what risks are to be considered,
what types of accidents are to be considered, and what types of accident con-
tributors are to be considered. These questions relate to completeness uncer-
tainties. The selection of models to then produce the accident probabilities
and accident consequences relates to modeling uncertainties.

There are two subcategories of completeness uncertainties, (1) con-
tributor uncertainties, and (2) relationship uncertainties. Centributor
uncertainties refer to the uncertainty as to whether all the pertinent risks
and all the important accidents have been included. Relationship uncertain-
ties refer to the uncertainty as to whether all the significant relationships
are identified which exist among the contributors and variables. Table 4
gives a more detailed breakdown of items which need to be considered under
completeness-contributor uncertainties and those which need to be considered
under completeness-relationship uncertainties.
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TABLE 4. ELEMENTS IMPACTING COMPLETENESS UNCERTAINTY

e —
—— e

Elements Impacting Contributor Uncertainty

The completeness of the accident initiating events

The completeness of system and component failure states

The completeness of human responses

The completeness of the causes of system and component failures
The completeness of physical processes involved in core-meltdown
The completeness of hydrogen burning phenomena

The completeness of phenomena impacting radionuclide transport
The completeness of consequences and health treated effects.

Elements Impacting Relationship Uncertainty

The completeness of interactions defined between the initiating event and
system failures

The completeness of interactions among system failures, component
failures, and human errors

The completeness of interactions between system failures and physical
processes

The completeness of interactions among in-vessel and out-of vessel
phenomena

The completeness of interactions among radionuclide transport processes

The completeness of interactions among consequences and health effects.

e e -—
R
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Completeness uncertainty acts as a constraint and limitation on a
PRA. The PRA evaluates the risk from only those accident scenarios which are
fdentified. These will never be exhaustive nor will the analyses ever be com-
pletely comprehensive. Ways thus need to be devised to utilize PRAs which are
consonant with their strengths and weaknesses and which account for their
possible incompletenesses. If high risk contributors are not found then it
may be due to the incompleteness of the PRA. Completeness uncertainties are
thus as important as modeling and data uncertainties and especially so when
Tow risk numbers are calculated.

Frequency Uncertainties

The last three categories of uncertainties--(5) frequency uncer-
tainties, (6) consequence uncertainties, and (7) interpretation uncertainties
deal with uncertainties in PRA outputs and results. Frequency uncertainties
are uncertainties associated with the accident probabilities and accident fre-
quencies produced by a PRA. The frequency uncertainties result from the data,
analyst, modeling, and completeness uncertainties which were previously dis-
cussed and which propagate through the PRA to the calculated accident proba-
bilities and frequencies.

Frequency uncertainties are divided into two subcategories, accident
to accident variations which comprise experimental uncertainties, and know-
ledge uncertainties in the estimated frequency of any given accident. Acci-
dent to accident variations are the differences in accident frequencies which
are due to the different events involved in different accidents. In most
PRA's, a finite number of accidents are considered and the variation in acci-
dent frequency is represented as a histogram or smoothed curve of frequency
versus accident description. Variations in parameter values which are physi-
cally caused (1.e., experimental, data uncertainties), contribute to the acci-
dent to accident variation. By treating certain random variables in the acci-
dents as fixed constants, the accident variation is artifically truncated;
however, compared to other uncertainties, PRA's handle this type of uncer-
tainty reasonably well for those accidents identified.
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Frequency uncertainties due to lack of knowledge arise from know-
ledge uncertainties in data, modeling, and completeness; analyst to analyst
variations also contribute. In PRA's, imprecisions in data (parameters) are
generally the only uncertainties which are propagated through the analysis to
obtain frequency uncertainties due to lack of knowledge. The other datz
uncertainties, analyst uncertainties, modeling uncertainties, and completeness
uncertainties which are generally not addressed, all contribute as much or
more uncertainty in most problems.

Consequence Uncertainties

Consequence uncertainties are similar in nalure to frequency uncer-
tainties and consist of accident to accident variations and lack of knowledge
uncertainties. The accident to accident variations are physical variations in
consequences due to the different events and physical realizations of vari-
ables which occur. The knowledge uncertainties are uncertainties in the con-
sequences of any given accident due to data, analyst, modeling, and complete-
ness uncertainties. Like the frequency uncertainties, most PRAs only estimate
the uncertainties which are due to parameter imprecisions, which is in many,
if not most, PRAs not the dominant contributor. Figure 2 illustrates the fre-
quency and consegence uncertainties as applied to a PRA-calculated "risk
curve”, i.e., a complete cumulative distribution of frequency versus
consequences.

Interpretation Uncertainties

Interpretation or implementation uncertainty is the last uncertainty
category. Interpretation uncertainty is the uncertainty the decision maker,
manager, or the public has in understanding and utilizing PRA results. This
uncertainty is as real as the other uncertainties. The user of PRA results,
or the intended audience toward which a PRA is directed, is not in general the
same as the individuals who were involved in performing the PRA. The transfer
of knowledge from the doer to the user involves a loss of information and
introduces additional uncertainties.
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The communicatior of information in a PRA is not given near the
attention it should. Obtuse tables, abstract distribution curves, and uncoded
computer printouts are produced in abundance in a typical PRA report. Page
after page of the report is filled with technical details which serve as an
obstacle to understanding. What makes matters worse is that a full scale PRA
often results in more than a 1000 pages of report. The format of a typical
PRA is a maze; we know, since we've had to review numerous PRAs and have tried
to retrieve information from them.

FREQUENCY KNOWLEDGE
UNCERTAINTY

VARIATION IN FREQUENCY AND
CONSEQUENCE FROM ACCIDENT
TO ACCIDENT

CONSEQUENCE KNOWLEDGE
UNCERTAINTY

\

\
-,

Accident Frequency for Consequences Greater than a Given Value

FIGURE 2. FREQUENCY AND CONSEQUENCE UNCERTAINTIES
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4.0 SENSITIVITY AND UNCERTAINTY ANALYSES

Sensitivity and uncertainty analyses are analyses performed to
investigate the impacts of uncertainties in PRA assumptions, models, and data.
Sensitivity and uncertainty analyses are similar in that they both have as a
general objective the evaluation of variations in the results (output) which
can occur because of variations in the assumptions, models, and data (input).
Even though they have a similar, general objective, the two analyses are dif-
ferent in the approaches they use and the information they supply. Sensitiv-
ity and uncertainty analyses are not exploited enough in a typical PRA; when
fully utilized, sensitivity and uncertainty analyses can provide a rich
variety of information which can significantly increase che usefulness and
credibility of a PRA.

Sensitivity Analyses

Sensitivity analysis is the most straightforward of the two types of
analyses and involves changing one or more of the inputs and determining the
resulting changes in the PRA output. Sensitivity analyses can involve
changing the inputs one at a time, two at a time, up to all at a time. The
inputs changed are those deemed most subject to possible variations and uncer-
tainties. Multiple inputs are simultaneously changed if they are thought to
be related, for example due .o dependencies or if large interactions due to
the simultaneous changes are suspected. A set of inputs could also be simul-
taneously changed if the set of modified values represented a conservative or
optimistic bound on the PRA evaluation.

The size of the input change depends upon the focus of the sensiti-
vity study. Larger changes in the inputs are generally used to represent
bounding cases or alternative hypotheses; conservative or optimistic results
are often obtained. Small changes are used in local sensitivity studies. For
these local sensitivity studies, partial derivatives of the output with regard
to one or more of the inputs are often used to characterize the cutput sensi-
tivities. Taylor series or response surfaces can also used to represent the
output variations in the vicinity of some nominal input value set.
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We regard importance evaluations as a part of sensitivity analyses.
Importance evaluations identify the “importance®™ or contribution of inputs to
the output results. The importances of inputs are generally obtained by
determining the changes in outputs which result from prescribed changes in
fnputs. In this regard, they are thus types of sensitivity analyses. Impor-
tance evaluations in PRAs are discussed in more detail in References 8 and 9.

Figure 3 illustrates formats of systematic sensitivity analyses that
can be instituted as part of a PRA. In each sensitivity analyses table, a
specific assumption, model, piece of data, or combination of inputs, is modi-
fied in the left column and the impact on the PRA calculated likelihood and/or
consequence s described in the table. Core melt frequency impacts, radio-
active release impacts, early fatality impacts, latent fatality impacts, and
property damage impacts can be specifically identified and can form the table
headings across the top of the table.

The size of impacts in the tables can be determined from the sensi-
tivity calculations which are performed. The impacts can also be coded; for
example, high, medium, and low with associated ranges of values could be
assigned if impacts are subjectively estimated. The direction of the impact,
as to whether the result is increased or decreased, can also be identified
(sometimes called the downside and upside impacts). Table 5 gives examples of
the specific sensitivity analyses which can be performed in a PRA and the
results shown in a codified table such as in Figure 3. These sensitivity
anaiyses would substantially increase the information provided by the PRA.
This 1ist is certainly not complete and can be supplemented by additional
studies for particular implementations.

Uncertainty Analvses

Uncertainty analysis is different from sensitivity analysis in that
uncertainty analyses attempts to describe the likelihood for different size
variations while sensitivity analyses does not. The description of the like-
11hood of different variation can be carried out formally using classical
statistics, Bayesian statistics, or fuzzy set theory, or can be carried out
informally using qualitative descriptors such as describing *1ikely" ranges
for values.
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IMPACTS ON LIKELIHOOD
OR CONSEQUENCE

DATA MODIFIED

FIGURE 3. SENSITIVITY STUDY TABLES



TABLE 5. EXAMPLES OF SENSITIVITY ANALYSES

2.

3.

Change system failure definitions where relevant according to regulatory
definitions and according to best estimate definitions.

Assume the probavility of the second and subsequent human errors to be
unity for moderate or highly coupled human actions according to NUREG/CR-
1278 (10). This would show the impact of multiple human errors committed
due to common procedural errors or "mindsets”.

Assume the probability of the second and subsequent component failures to
be unity for those components of the same generic type which are under a
common maintenance or testing program. This would show the potential
impacts of systematic maintenance or testing deficiencies.

Change all priors used in Bayesian analyses to likelihood-dominated
priors (essentially flat priors on a linear or log scale) to show the
impacts of a priori assumptions on data.

Calculate quantitative importances of individual components, human
actions, test ana maintenance activities, and systems.

Increase all human error rates associated with maintenance by a factor of
2 to 3 to show the impact of increased maintenance error frequency.

Change occurrence frequencies, fragilities, and responses in seismic risk
analyses to show the impacts of design, operation, and modeling effects;
calculate quantitative importances for all the various contributors.

I
J

97



The formal uncertainty approaches are more attractive in that they
explicitly quantify the uncertainties and the contribution to the uncertainty.
However, these formal approaches require distributions (functions) to be
assigned to quantify the 1ikelihood of individual values being realized. For
classical statistic approaches, sampling distributions are required.* For
Bayesian statistics, prior distributions are required. For fuzzy set theory,
membership functions are required. In performing the formal uncertainty
analyses, the uncertainty distributions are assigned to input variables and
are propagated through the PRA analyses to obtain uncertainty distributions on
the output results.

The assignment of distributions in formal uncertainty analyses is a
problem since it can involve as much uncertainty as that to be quantified.

The assigned uncertainty distributions, particularly for Bayesian and fuzzy
set analyses, have little empirical basis and indicate more the subjective
viewpoints of the PRA analyst.

The PRA analyst generalily selects specific distributions (e.q.,
discrete log normal) for formal uncertainty analyses based on his own persona)
rationale and thus wrongly places himself in the position of the decision
maker. We support the philosoply of Leamer (11), which interpreted in a PRA
context says that a PRA uncertainty analyses should previde a mapping to show
how different decisfon-maker viewpoints are transformed by the PRA to updated
or posterior assessments. At a minimum this means using different prior dis-
tributions in sensitivity studies to show their impacts on the PRA results
derived.

With the present state of the art only data uncertainties, and
specifically data imprecisions, are treatable by formal classical and Bayesian
uncertainty analyses approaches. Data uncertainty is however only one of the
many uncertainties which exist in a PRA--an important uncertainty but only one
uncertainty.

*Classical confidence intervals can also be utilized, however, they
require the same type of information.
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Fuzzy set theory has potential but has not been applied to PRAs.
Informal uncertainty analyses approaches can be useful, but sufficient work
has not been performed to understand and codify their applications. Formal
uncertainty analyses approaches also have potential applicability to the other
categories of uncertainties which exist in a PRA, but at the present time this
is a potential and not a realization.

Consequently, the majority of uncertainties in a PRA can at the
present time be treated only by sensitivity analyses which necessarily must
form a critical supplement to uncertainty analyses. Table 6 lists the uncer-
tainties which we have identified in a PRA and the type of analyses, uncer-
tainty or sensitivity analyses, which presently is available to address the
uncertainty. In Table 6, uncertainty analyses is restricted to either classi-
cal or Bayesian statistical analyses since fuzzy set theory has not yet been
applied to PRAs. Wherever uncertainty analyses appears by itself in Table 6
it can of course be replaced or be supplemented by sensitivity analyses. As
observed in the table sensitivity analyses clearly predominates as the most
relevant technique.
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TAELE 6.

APPROACHES AVAILABLE TO ADDRESS PRA UNCERTAINTIES

Category Subcategory Approach
1. Data Variation in parameter values from Uncertainty
Uncertainties one pepulation to another Analyses
Imprecision in estimated parameter Uncertainty
values Analyses
Vagueness in parameter values or Sensitivity
parameter ranges Analyses
Indefiniteness in applicability of data Sensitivity
Analyses
2. Analyst Variation in results from analyst to Sensitivity
Uncertainties analyst Analyses
3. Modeling Indefiniteness in the comprehensive- Sensitivity
Uncertainties ness of the model Analyses
Indefiniteness in the characteriza- Sensitivity
tions used in the mode) Analyses
4., Completeness Indefiniteness as to whether all Sensitivity
Uncertainties significant contributors are included Analyses
Indefiniteness as to whether the contri- Sensitivity
butors are included in the proper context Analyses
and in the correct relative manner
5. Frequency Variation in the occurrence frequency Uncertainty
Uncertainties from one accident to another Analyses
Uncertainty in the occurrence frequency of Sensicivity
of a given accident resulting from data, Analyses
analyst modeling, and completeness
uncertainties
6. Consequence Variation in consequences from one Uncertainty
Uncertainties accident to another Analyses
Uncertainty in the consequences of a given Sensitivity
accident resulting from data, analyst Analyses
modeling, and completeness uncertainties
7. Interpretation Doubtfulness or vagueness in the inter- Sensitivity
Uncertainties pretability of the results produced by Analyses

the analysis




5.0 SUMMARIZATIONS AND CONCLUSIONS

Seven categories of uncertainties have been identified in a PRA:

(1) data uncertainties, (2) analyst uncertainties, (3) modeling uncertainties,
(4) completeness uncertainties, (5) frequency uncertainties, (6) consequence
uncertainties, and (7) interpretation uncertainties. The first four cate-
gories represent input uncertainties and the last three represent output and
implementation uncertainties. These different uncertainties have different
ramifications in a PRA and they all are important.

In most PRAs, the majority of uncertainties which we have identified
are not adequately treated, and in fact, are not likely to be treated at all.
Inadequate sensitivity analyses are performed in a PRA and if they are per-
formed they are rather unorganized and subjugated to a minor role. When
wncertainty analyses are performed in a PRA they are narrowly focused with
assumed distributions and with the analyst playing the role of decision-maker.

We believe sensitivity analyses need to be elevated to a major role
in a PRA. The information provided by sensitivity analyses can be as useful
or even more useful than the bottom-line probabilities and consequences which
are calculated in a PRA. We believe a PRA uncertainty analysis needs to pro-
vide a mapping to show how different a priori decision-maker assessments are
transformed by the PRAs; at minimum this means using different priors for
Bayesian analyses.

Because of the different uncertainties which exist in a PRA, sensi-
tivity analyses need to importantly supplement formal uncertainty analyses
which are performed in a PRA. We think the systemization and codification of
sensitivity and uncertainty analyses on a PRA needs significant attention. As
importantly, the results of these studies need to be presented in a format
understandable to the decision-maker.

With regard to research, we think additional uncertainty analyses
approaches, both formal and informal, need to be developed to address the
range of PRA uncertainties which exist in a PRA, As an important part of this
research, practical ways of utilizing uncertainty information in decision-
making needs to be identified. Through these efforts, we believe PRAs will
become more meaningful and credible information sources for decision-making.
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The uncertainties which occur in a PRA are not different from those
which occur in other types of safety analyses or other analyses in general.
PRA uncertainties have been the focus of much attention and much criticism
because they tend to be more apparent than in other approaches which tend to
obscure the involved assumptions and uncertainties. The fact that PRAs allow
uncertainties and their impacts to be made evident is a unique strength of
PRAs, not a weakness. This strength needs to be exploited and we feel this
can be done by pursuing the directions discussed in this paper.
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UNCERTAINTY ANALYSIS: GOOD NEWS AND BAD NEWS

R. J. Beckman and D. W. Whiteman
Los Alamos National Laboratory
P. Q. Box 1663
Los Alamos, New Mexico 87545

Ahetract

The good and bad characteristics of three methods of uncertainty analysis,
propagation of errors, techniques for changing the input distribution, and
Latin Hypercube Sampling, are investigated. For fault tree analysis, Monte
Carlo is shown to be the best technique. However, nagging questions about the
appropiateness of placing distributions on the input variables may render the
technique useless. Two methods are given for changing the input distributions
to a large computer code, but in some cases these methods are shown to be
inefficient. Unbiasedness in Latin Hypercube Sampling is shown to be induced
by random selection of the design matrix, and the most efficient designs are
not related to the monotonicity of the function.

I. Introduction

Propagation of errors through fault trees, methods for investigating the
sensitivity of the output variables to changes in the input variables and Latin
Hypercube Sampling are methods commonly emploved in uncertainty analysis. The
good characteristics of these methods have for the most part been well docu-
mented by the originators and in applications. On the other hand, apparent
severe drawbhacks with each have heen generally ignored or dismissed. The pur-
pose of this manuscript is to critique these three techniques of uncertainty
analysis; showing both the good and bad characteristics of each.

Uncertainty analysis is viewed in two wavs. The first is error analysis
in which the variances or "errors" in the inputs to a computer code are
propagated by various methode to obtain the errors in the output variables.
The second is sensitivity analysis where the investigator deduces the most im-
portant input variables in terms of increasing the "errors" in the output
variables. While these two analyses are related their objectives are com=-
pletely different, and as such require different techniques, and while some
techniques are appropriate for one type of analysis they may not be appropriate
for the other. For each method investigated the type of analysis; either error
or sensitivity, for which the method was developed will bhe stated.

In section 2, methods are investigated for the propagation of errors
through given fault trees. Methods for the propagation of errors in the dis~-
tribution functions of the input variables is given in section 3, while Latin
Hypercube sampling {s investigated in section 4,

I1. Propagation of Errors in Fault Trees.
In a study by Martz, Beckman, Campbell, Whiteman and Booker.l various

methods were investigated for the propagation of errors in coupled nuclear
power plant safety system fault tree models for the Arkansas Nuclear One Unit 1
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{ANO-1) power plant. Fault trees models were constructed for the front-Jine
safety system and were analyzed by Sandia Laboratories using the SETS code” to
produce a Boolean expression in terms of the minimal cut sets. An example, of
a fault gree, the two out of three monitoring system found in Henley and
Kumamnto , is given in Figure 1. The Boolean expression for the svstem un-
availability for this model is

P' - Ple + PZP3 + PIP3 -2 PIPZPJ »
where P, is the component vnavaflahility. Martz et. al.l assumed that the
uncertainty in the basic event probabilities, P,, could be represented by a
probability distribution, and that these uncertainties could be propagated to
obtain the uncertainty in the overall system unavailability probability Ps'

The methods investigated error for propagation were: (1) the method of
moments where the distribution for the top event was either the same as the
basic events (MM), normal (MM=N), or lognormal (MM=LN), (2) the method of mo-
ments using Tchebyshev’s inequality (MM=T]I), (3) propagation by discrete
probability distributions (DPP) of Kaplin , and (4) Monte Carlo, (MC).
Comparisons across the four schemes are facilitated by bhox plots which are
defined in Figure 2 and illustrated for a typical fault tree in Figures 3 and
4, The "truth" was determined by a large scale Monte Carlo simulation. The
figures show the only reliable method of propagation to be Monte Carlo. The
"good news" from this study is: given the "Boolean" expression for the fault
trees, Monte Carlo produced the best results and these simulations can be ac~-
complished in a finite amount of time using a $3000 home computer. The "bad
new" from the study concerns the assumptions. If onlv the first two moments
are assumed known and no other assumptions are made about the form of the dis-
tribution, the best that can be done in estimating the unavailability
percentiles is given by the Tchebyshev inequality. These bounds could he very
conservative for the upper percentiles.

ITI. Changing the Input Distribution

Many time investigators desire to change the distribution of the inputs of
large scale Monte Carlo computer codes. Due to cost constraints however, these
computer runs are rarely made, and thus one is unsure of the sensitivity of
the output to the distribution of the input.

The good news is that two techniques which permit the investigator to
change the input distributions without rerunning the code have been developed.
The first method (I) i{s a weighting method, like importance sampling, which
gives unbiased estimates of functions of the output variables. The second
technique (II) {nvolves a random selection of the existing input data which
changes the distribution of the output.

Let the input variables X, = 1,2,...,n have density f(x,) and suppose that
the output varifable Y, 6 = ii(x )« Also suppose that 8, = E_(g*(Y)) =
Pf(l/tg(Yi)) is the pauméter to be estimated. Then under density f

n £
Blgr) =+ [ [ Ry f(x) dx

{=] -
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An unbiased estimator of the ;arameter 0? when the Xi come from density ?(x),
can be obtained by weighting B(Yi) by w, = f(xi)/f(xi). That is

1
g, (Y) =~ T wg(Y,).

Then, since

Belwga(¥y)) = [ wysly)f(dax = | gly )T (x)dx = By (g(Y,)) ,

g'(Y) is an u.'iased estimator of E?(g*(Y)).

A second method for changing the input distribution involves discarding
pairs of (x,,v,) leaving x, with the "pseudodensity" f(x). Let M be a uniform
bound (if ong e%ists) for t%e ratio f(x)/f(x) €« M, Also let the random vari-
able V given X = x have a uniform distribution Setween O and (Mf(x)). Then x
and the corresponding value of y, are retained in the sample if the realizatioa
v of V/X is less than f (xi)/Mf(§l). Letting X* = xiif X, is selected then

Pr{X* ¢ x} = Pr{X* < x and X* = xt}/Pr(x* - xl}
. F(x) ® f(x f(x)
= Lf(x)’m)dx/ L—M%GT—“X
x
= [ F(x) dx = F(x).

Hence, the selected Xi have f as a density.

At this time little 1is known of the properties of these two schemes.
However, some unfavorable characteristics of them are evident. First, for
Method I, the resulting estimators are not bounded. This may lead to some very
poor estimators. For example, in the special case of estimating the distribu-
tion function of the output variabhles by the estimator

1
gy, Y) = S Ity = Y)

where I(z) = 1 1f z > 0, and I(z) = 0 otherwise, the estimator of the distribu~
tion function under f becomes

1 .
g, (v,¥) = — 1 (Flx)/t(x)) Ty=¥)) .

S8ince no restriction placed on the ratio is Fix ) /f(x,), (v,Y) can bhe greater
‘than 1. 1If these results are scaled to &, thén uﬁ‘innednecn is lost.
Therefore, with this method there_may not be a good estimator of the distribu-
tion in function of h(x) under f. 1In addition, the variance of the estimator
may be very large or not exist. For example let f(x), f(x) he normal with
variance | and means ¥y and My and Y = h(X) = X, Then, g*w =1/ntL Xiexp

[(u2 - ul)xi + .S(uf - u§)| and the varfance ?f g*' is

v-r(g*v) B [(Zuz - vl)z + 1) expl(uz - u‘)zl - u§
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which is inceasing in lu, = u,l.

Since a uniform bound M > ?(x)/f(x) may not exist, it is not always pos-
sible to implement Method II. This happens in a surprisingly large number of
cases. A simple example of this is the preceeding one of a shift of the mean
in normal samples with common vnréance!. In this case the ratio f(x)/f(x) is
given by exp[(ul - u.)x + l/2(u2 = u, )], which is a monotone unbounded func=-
tion of x on the support (-= 6 ®),” The lack of a uniform bﬂ&“d can llso oceur
for denlttiis with finite support. For example if f(x) « x~ (1 - X)ol_
x ‘azs(l-x) 2 gver the support [0,1], the ratio f(x)/f(x) = cX "2 71 (] -
X)"2°"1 {g finite over [0,1] only 1if a, > a, and B, > B;.

IV. Latin Hypercube Sampling

McKay, Conover and Beckmnnsdeveloped a technique for sensitivity aralysis
called Latin Hypercube Sampling (LHS). In LHS the experimenter partiti,ns the
sample ranges of each of the input variables; he then chooses at rand.m one of
the designs, where each input variable occurs once and only once in each
partitiorn. For example, suppose there are two input variables, X, ead X,, over
the range [0,1]. Also suppose that only three samples are petm}.ted. Then,
the ranges of the two input variables are partitioned into three intervals, I
= [0,1/3], 1, = [1/3, 2/3] and I, = [2/3, 1], and pairs of interivils are drawn
at random wi%hout replacement for both of the input variables. 1.i= resultrs in
six possihle combinations or designs. Let (I_,,T,) represent the fact that X
is in interval Ii’ while X2 {8 in interval f1.' Then the six possible designs
for three samples are: .

by = [T, 1)), (I, 1), (15,15)

=
[}

p = 11y, 1)), (1,, 1), (1, T}

2
"

3 {(Ill Iz)' (12- Il)' (130 I3)}

=
"

4 = 100 B9)s (s 100 (gs T3

ns = ((I]o Iz)v (129 I3)v (131 ‘l)}
nﬁ - ((Ill 13)0 (Izt Iz)o (13’ Il)}

The Latin Hypercuhe Procedure for this example requires that one of these six
designs be drawn at random and X, ‘s drawn according to their distributicn over
the selected intervals. It should he noted that the LHS procedure forces the
values of the X to be spread across their entire range. Therefore, in terms
of sensitivity analysis, this procedure {s not as likely as random sampling to
miss those portions of the range of the input variables which could greatly
influence the output variable. In addition, McKay, Conover and Beckman gave
unbiased estimators of parameters of the output variables, which for many fuc=-
tions have a smaller variance than unhiased estimators ohtained using random
samples.

It would seem then that LHS sampling has the desired properties of bheing
both useful in sensitivity analysis and producing reduced variance unhiased es=
timators for error analvsis. This i{s not true! The unbiasedness of the LHS
estimators {s an artifact of the random selection of the design. Once the
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design has been chosen, the resulting estimator may not be unbiased. The fol-
lowing examples will illustrate this noint.

Consider the following four functions of the input variables Xl and Xzz
tl(xl,xz) = X1 + Xz,
£2(XeXp) = X, X5
2
f3(xl,x2) = (X, - sin(¥X,))",

and f‘(x ,Xz), a continuous monotone function which is closely approximated by
the hivariate step function which take on the values.

13 18 18 0O
Xz I2 18 9 0
Il 9 0 0
Il I2 13
X

X, and X, are assumed to have a uniform distribution and E(Y) = E[f (xl,xz)) is
to be esgimnted. The expected value of the functions and their bia‘, iven any
of the six designs, are given in Table 1. Table 2 contains the variance of the
average of three realizations of the function and the efficiencies of the six
designs, where the efficiencies are measured by the ratio of the mean square
error of the estimator for each design to the variance of the function obtained
using random sampling.

The LHS estimator of the function fl(x ,Xz) = X 4+ X, is unbiased given
any of the six designs, and is 27 times more e*ficient han random sampling in-
dependent of the design. LHS estimators of the means of linear functions, such
as f,, are always unblased reguardless of the design chosen, and they are more
efficient than those obtained by random sampling.

Nonlinear functions such as, fz(x yX,) = X X,, are usually biased given a
LHS design. From Table 1, the LHS CSC{NRGOY is most biased for the two extreme
(in the sense of the correlation between Xl and X,) designs D, and D,. 1In ad-
dition, the efficiencies for either of these Ewo designs ls a factor of two
lower than the efficiency of any of the other four designs.

One might expect that with more samples estimators of the mean of f, using
designs D, or D, would become unbiased, Actually, the opposite is true, for as
n, the number of cells in the design approaches =, the expected value of f
using D, approaches .33 and the hias goes to .08, The bias in f, under design
D, is smallest when there {s one observed value of (xl.xz), and it increases
n%notonically with n.
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example, consider the function f (xl.xz) = [X = sin(txz)lz. This function is
both unbiased and has highest e?ficioncy for designs D, and D_., while the mean
square error using designs D3 and D,. is actually large} than that for random
sampling.

That function f, is better for designs D, and D, is not necessarily due to
the nonmonotinicity of f,. Consider, for example, function f,. For the sake
of easily obtaining the variance of the estimator for the various designs we
assume that f, is a step function tacing on the values in the function
definition. We can see from Tables | and 2 that the "linear" design U, is the
best design while the intermediate design D, is the worst. Therefore, the most
efficient designs can not be predicted even if the underlying function is
monotone in its variables.

V. Conclusions

It has been shown that three methods which either have been or will be
used in uncertainty analysis have both their good and bad characteristics. We
have shown that "error" propagation or =nalysis for fault trees can be carried
out by Monte Carlo at a reasonable cost, but that we may be "wrong" in placing
distributions on the input variables. In addition we showed two methods for
changing the distribution of input variahles, but the methods may lead to
highly variable estimators or the variance of the estimators may not exist.
Finally we have shown that in most applications the use of Latin Hypercube
Sampling leads to biased estimators, but in terms of mean square error, these
estimators are usually hetter than those based on random sampling.
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Table 1. Fxpected Values ané Rias for Four
Functions and Six Jesign Matrices

Punct Lon Bxpected Value U1 "2 Py P % B
fs =X, +X, 1.00 0,00 0,00 0.00 0,00 0,00 0,00
fz - Xl X2 .25 -007 04 00‘ -, 04 -ON 501
£y (X, = .m(axznz .20 00 =.11 A1 W11 W1 .00
f‘ 8.0 -2000 I.OO -2.00 02.00 ‘.00 lom
Tahle 2. Variance and Efficiencies for Four
Funccions and Six Design Matrices
Function Variance Py bt " Dy %
fl - Xl + Xz .056 27.0 27.0 27.0 27.0 2700 27."
fz = xl xz 016 2,3 4,4 4.4 4,4 4.4 2.3
£, = 1%, = sin(ex,))? 017 17 1.0 8 8 1.0 1.7
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RECENT DEVELOPMENTS IN SENSITIVITY ANALYSIS
Ronald L. Iman

ABSTRACT

This presentation was a preview of a much larger effort at
Sandia National Laboratories involving the comparison of
techniques for uncertainty analysis and sensitivity analysis
for use with computer models in risk assessment applications.
That effort compares the techniques of (1) response surf .e
fitting using fractional factorial designs, (2) Latin hyy .r-
cube sampling, and (3) differential analysis. The comparison
utilizes three real computer models used in risk assessment
applications associated with severe accidents at nuclear
reactors and with geologic isolation of radioactive waste.
Since the paper with the results of these comparisors is
quite lengthy, no attempt is made to summarize the results
in these proceedings; rather it is suggested that interested
readers contact the author directly to receive a copy.
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TOXICOKINETICS AND RISK ASSESSMENT
Abe Silvers, Paolo Ricci, and Ron Wyzga

ABSTRACT

Health risk assessment, the estimation of the probability of incurring an
adverse health effect, given exposure to a toxicant, relies heavily on the use
of dose-response functions and the extrapolation of animal data to man.

Recent work (1) with the chemical vinyl chloride has illustrated the possible
usefulness of incorporating chemical kinetic data into a risk assessment.
Other authors have recognized the significance of these approaches (2). To
further study the use of toxicokinetics in risk assessment, an Electric Power
Research Institute workshop was held on the subject. The objectives of the
workshop were to explore various questions such as the following:

1. What are the strenaths and weaknesses of toxicokinetics in the
extrapolation of animal data to man?

2. Can the toxicokinetic study concept, as now practiced, be modified to
enhance its application in extrapolation problems?

3. Are there generic structures which can readily be used as models for
toxicokinetic studies?

4. Are there generic structures (such as metals) which cannot be
successfully studied by accepted toxicokinetic techniques? Are there
modifications of approach which could be considered:

5. What areas of risk assessment modeling, incorporating kinetic
parameters, should be pursued?

6. What toxicokinetic research problems, associated with risk assess-
ment, should EPRI support?

A fundamental research problem considered at the workshop is that presented by
the difference between the administered dose, and the dose delivered to the
biological target actually causing the adverse response. In a study, the
chemical can be administered intravenously, orally through inhalation, or
intramuscularly. These routes may differ from inhalation, ingestion and
dermal absorption, ncmally the ways through which man first comes in contact
with a toxicant. A fraction of the original amount administered to a test
animal may be delivered to the target organ or cell. Following absorption
(for example, diffusion or osmosis), a chemical may undergo such chemical
processes as hydroxilation and rendered “safe" for blood transport and
excretion. The concentration of the remaining unbound substance may be a
fraction of the absorbed concentration. The free chemical may be further
converted to a metabolite, the active toxic substance. For instance, the
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metabolic process may involve epoxidation, as is the case for vinyl chloride,
trichlorethylene and other organic compounds. Thus, for example, although the
compound to which man is initially exposed is benzo(. )phyrene, the active
carcinogen is an epoxide. The establishment of the target tissue dose
(effective dose) is basic to this research.

For most cancers, the actual site for carcinogenic 2ttack is DNA. However,
even though data on DNA transformation is not normally available, it was
recognized that information collected from metabolic studies, with data
indicating length of study, survivorship, and other experimental factors could

reduce the uncertainties in the estimates of parameters describing adverse
health effects.

Various research directions were suggested. Among them were projects to study
the following:

(a) The use of short-term bioassays with pharmacokinetics to estimate
risk.

\b) The use of DNA adducts to estimate risk,
(c) The correlation of toxicity to effective dose.

(d) The correlation of various types of effective doses (free or bound
concentrations, metabolite concentration, or uptake rate) to outcomes
such as tumor incidence or DNA adduct concentration.

A volume of the complete discussions will be published shortly.
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STATISTICAL METHODS USED IN DEVELOPING AN OPTIMUM GLASS
FOR VITRIFICATION AND STORAGE OF NUCLEAR WASTES*

W. M. Bowen and L. A. Chick
Pacific Northwest Laboratory
P.0. Box 999, Richland, WA 99352
(509) 375-2979

A proposed metnod of storing certain nuclear wastes, which has been under study
for some time, involves adding jlass-forming chemicals to the waste stream so
that the mixture can be melited to form a glass. The resultirg melt is then
poured into a metal canister for cooling and storage in a geologic repository.
In developing a waste glass composition for this purpose there are two compo-
sition dependent properties which must be minimized. These are: 1) leaching
(i.e., dissolution by contact with ground water) and 2) crystal formation as
the glass cools from 1000° to 500°C. In minimizing these two properties, the
only feasible compositions are those which are compatible with the liquid-fed
ceramic melter (LFCM). There are three major LFCM process influence properties
which must be observed. First, viscosity of the glass must be approximately
100 poise at the operating temperature 1150°C to facilitate homogeneity and
pouring of the glass. Second, there must be minimal crystallization between
1000° and 1152°C to avoid crystal and sludge buildup at "cool spots” in the
melter. Third, electrical conductivity of the composition must be between
0.15 and 0.50 (ohm-cm)~! in order to melt the glass under current power supply
restrictions.

This paper presents the statistical methods used in a current study to develop
a waste glass composition with minimum Teaching and crystallization, subject to
constraints on the three LFCM process influence properties. The computer-aided
design of a D-optimal seven component mixture experiment is outlined with a dis-
cussion of anomalies, modifications, and deviations from classical design of
mixture experiments. Methods for analyzing, displaying and interpreting the
component effects are presented. Scheffe polynomial models, fitted to the
experimental data, express the five properties of interest as separate func-
tions of composition. Mode! selection and validation are described. The
fitted models are then utilized with nonlinear optimization techniques to
locate the optimum waste glass composition, subject to constraints on the seven
components and on the three LFCM process influence properties.

A formal PNL technical report which gives a detailed account of this project
will be available on request from the authors after March 1984. We apologize
for not being able to meet the deadline for inclusion in the Proceedings.

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1930.
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PROBABILISTIC FRACTURE MECHANICS:
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ABSTRACT

Over the last several years, Battelle has been developing a probabi-
listic fracture mechanics (PFV) capability. The purpose of the program is
two fold: first to examine, modify, or develop probabilistic methods for use
in the analysis of structural reliability and, secondly, to demonstrate the
use of such methods through their application in simplified structural
analysis.

This paper presents the results of the probabilistic model develop-
ment effort for three probabilistic techniques: Monte Carlo, Markov chain,
and discrete probability distributions. In addition, three case studies are
presented in which each of these methods wac compared and recommendations for
their suitability in structural analysis were made. The structures included a
bridge component, a pipe-to-vessel weld in a nuclear piping system and a steel
plate. The results of these three studies indicate that Monte Carlo analysis
is the preferred technicue for use in structural analysis with the Markov
chain mode]l being used for sensitivity analysis. The discrete probability
distribution method is found to be accurate if enough data points are used to
represent the probability density function of the random variable. However,
since classic confidence bounds cannot be estimated for the discrete probabi-
lity method, several runs are usually necessary to have confidence in the
results. KEY WORDS: STRUCTURAL RELIABILITY, MONTE CARLO, MARKOV CHAIN,
DISCRETE PROBABILITY DISTRIBUTIONS, PROBABILISTIC ANALYSIS
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INTRODUCTION

The purpose of this paper is to discuss some of the statistical and
modeling problems encountered during a progam to develop probabilistic frac-
ture mechanics (PFM) models and present the methods used to address these pro-
blems. Included in the discussion are problems, together with the associated
technique used to solve them, encountered during both the development phase
and the subsequent application.

A1l of the discussion in this paper is in the context of stable
crack growth which is governed by Linear Elastic Fracture Mechanics (LEFM).
It is important to note that PFM models are not so narrow in scope. In fact,
we have developed such models for fast fracture and crack initiation processes
which are not governed by LEFM. However, since the primary focus of this
paper is on statistical and probabilistic modeling methods, only the LEFM
models are presented to minimize the amount of fracture mechanics theory which
needs to be presented.

The paper is divided into three sections. The first defines PFM
models and how they can be used in structural reliability applications. The
second presents the actual PFM models and how they are used during structural
analysis. Finally, the analysis performed during three case studies is given
during which a discussion of the modeling problems and solutions is presented.

Probabilistic Fracture Mechanics Models - A Defintion

The ultimate goal of any fracture mechanics analysis is to assess
the effect of defect growth on structural integrity. For example, any welded
structure, such as bridges, nuclear piping systems, offshore oil platforms,
etc., will have defects in them due to imperfect welding processes. These
types of structures are the primary focus of this paper; they can be analyzed
at least conservatively, by Linear Elastic Fracture Mechanics (LEFM). Accord-
ing to the LEFM theory, the growth of cracks is governed primarily by the cur-
rent crack size, normally denoted a, and the applied stress, denoted o. Thus,
if the crackl is small enough or the stress level low then no, or very little,
crack growth will occur. (The empirical relationship governing crack growth
is discussed later). For laboratory conditions in which the material laws are
well-defined, the initial crack size is precisely known and the applied stres-
ses tightly contralled very good predictions of crack growth are obtained.
Unfortunately during service, there is uncertainty and random fluctuations in
each of these processes. The purpose of developing PFM models is to account
for the uncertainty and random variation in parameters and models so as to
include the stochastic nature of the fracture process during the structural

1 In this paper the terms crack and defect are used interchangably. This is
for the convenience of the authors. Many fracture analysis reserve the
term defect for the material state prior to crack initiation.
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evaluation. In developing PFM models and their associated data bases, no dis-
tinction is made between uncertainty (due to a lack of knowledge) and random
fluctuations (due to true stochastic variations).

A PFM model can be constructed using many different probabilistic
techniques. These techniques can be broadly classified into two categories:
random-parameter and shock models. Random-parameter models are based on an
underlying mechanistic (deterministic) theory in which the inputs are distri-
butions rather than point values. The selected probabilistic methods, e.g.,
Monte Carlo, is then used to combine these distributions according to the
underlying mechanistic principle to obtain an output distribution for the
quantity or gquantities of interest. For PFM analysis, this is normally the
time dependent distribution of crack sizes from which the expected time to
failure, probability of failure, and so on, can be determined. On the other
hand, shock models require no underlying mechanistic principle but rather the
philosophy is that experimental results will dictate the correct choice of
model parameters which represent the mechanistic process without actually hav-
ing derived this relationship. The term shock is used because, for PFM
models, two assumptions are necessary for this type of development. First, it
is assumed that the applied load is viewed as a "shock" at the crack tip. If
this shock level exceeds a critical value, then the crack advances; if not,
there is no growth. The second assumption is that the process is Markovian,
that is, the advance of the crack is only dependent on the curren® crack size
and the shock level.

In summary, a PFM model is a technique for describing the growth of
cracks in a structure using either random-parameter or shock mode! methods for
including the uncertainty and stochastic variation of material properties,
initial defect sizes, environments, and loads in a structural assessment.

PFM Model Descriptions

During the course of PFM model development at Battelle, several dif-
ferent types of probabilistic techniques have been examined for use in the
model construction. Three of the techniques are described and their method of
application explained in this paper. These are: Monte Carlo, Discrete Pro-
bability Distributions (DPD's) and Markov chain. Before describing these
methods, the basic principles of LEFM are presented.

LEFM Theory

LEFM determines the amount of crack growth from a correlation relat-
ing crack growth to a measure of the stress field strength at the crack tip,
called the intensity factor, denoted K. For simple loadings and geometries, K
can be calculated analyticaily. For more complex problems, numerical solu-
tions are required. Since the primary focus of this study is on probabilistic
methods, relatively simple structural configurations have been studied. While
a variety of crack growth laws have been proposed, the earliest, and simplest,
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of these forms is used thr?g hout the three case studies. This ferm is known
as the Paris' Law ecuation and is given by

da/dN = C'(aK)n (1)

where

AK = of(a,w) VYra

f(a,n): function of geometry which is set equal to one for these
studies

c¢',n: empirically determined constants

N : number of stress cycles

a crack length

For constant applied stress ranges? and a known initial crack size equation
(1) can be integrated to yield

af = (aom + ch/zoan)l/m (Z)

where

2 - n/2

n/2 C'(2/(2 - n))
final cycle
final crack size

m

c
Ne
af

Because the applied stress, material properties, and initial crack size are
not known precisely this deterministic form can only provide a rough estimate
of the final crack size. Because of the variable loadings, we use a Taylor
series approximation to egquation (2) in which the interval of integration,
denoted AN, is assumed to be small enough that the stress range can be assumed
to be constant. The series is terminated after the linear terms to yield

ag + 1 = atm + C o"aN (3)

This is the basic underlying deterministic model for the random--parameter
models.

2 Stress ranges are used since fatigue crack growth is being considered.
Creep crack growth is not discussed.
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Random-Parameter Models

During the three case studies, two random-parameter models were
used: Monte Carlo and DPD's. Each of these is presented below.

Monte Carlo. The Monte Carlo technique is a simple method for add-
ing a probabilistic structure to a deterministic model. Suppose the output,
Le(t), is related to the individual inputs, Li(t), by a function

Le(t) = f (L1(t), LZ(t)o «oes Ln(t))

where the function f may not even be analytic, e.g., a computer program. If
each of the inputs has been characterized by a probability density function
(PDF) during data analysis, then the following procedure is used during a
Monte Carlo simulation. The cumulative distribution function (CDF) of each
input is generated by integrating the POF. A random number between 0 and 1 is
generated, call it ri. The CDF is inverted and the value for the load, Lj(1)
is determined. This method of choosing the value is repeated for each indivi-
dual load. A value of L¢ is then calculated as

Le(1) = £ (L1(1), L2(1), ..., Ln(1)) .

The entire process is repeated a large number of times, say M. What results
is a M-dimensional vector of the output: (Lc(1), Le(2), «oey Le(M)). This
vector is used to construct a histogram which can be analyzed statistically to
obtain estimates of the mean, kurtosis, probability of failure and so on.
Obviously, in the limit as M tends to infinity, the continuous distribution
will be asymtoptically approached. Equally obvious the computer time will
also in?rgase. As an alternate method of sampling, importance sampling
schemes(2) can be employed to reduce computational time.

Discrete Probability Distributions (DPD's}. The description of
DPD's follows the conventions set forth by Kaplan (3). In tiiis method, the
initial input distributions are discretized into m values. Each value of each
variable is then assigned a probability of occurrence. Additionally, the
various forms of any probabilistic function are assigned a probability of
being correct. If these discrete values are paired with their probabilities,
the following vectors of ordered pairs result for two loads X and Y.

X = [X1, p1), (X2, P2), ..., (xm, pmH
Y = [v1, q1), (Y1, @2), ..., (¥Ym, gm)] .
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The number of discrete points in each of these vectors has been chosen to be
the same although it is not necessary to do so. The addition of two discrete
vectors is defined by

=Y+ x
l= (Y'h P ) + (x ’ and
ls= (Xj + Yi, ﬁh *q5) for all iand j

Therefore, the addition of two vectors containing m ordered pairs each results
in a vector which has m2 ordered pairs. The multiplication of DPD's is simi-
larly defined.

Since, even for relatively small values of m and K (on the order of
10), the computer storage capability will quickly be exceeded, it is necessary
to examine some procedure for reducing this vector's size. This leads to an
examination of the condensation procedure discussed below.

In order to illustrate the condensaticn procedure, assume that the
fnitial DPD for two inputs contain 20 ordered pairs, respectively. The output
distribution will then be a vector of 400 ordered pairs after each of indivi-
dual DPD's have been combined. However, it has been assumed that 20 orderd
pairs adequately describe the distribution. Suppose the range of possible
values is divided up into equal intervals. Further, for the sake of example,
assume that the new values between 144 and 188 in this vector, denoted L',
fall in the 6th interval. Then

188

P, = p. , and
6 12544 i

; 1 188
s p z
6" P8 By P B

where L' = [(Zj, pi)), 1 =1, 2, ..., 400. This procedure can be written in
general as

where
Si = {jldj < Z3 < dj+1}

A = (amax - amin)/20
di = amin, df + 1 =d] +&
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For many DPD applications, it is not possible to use equally spaced intervals.
In fact, logarithmically spaced or other time independent unequal interval
spacing schemes may lead to the same problem. A method for calculating time

dent bin sizes has been devised by Battelle and is used to condense the
DPD at each time step. In this method, after each time step, the largest and
smallest values of the vector L' are determined. The intervals are then
determined from

b1 = apin
bl i bi-l + 2(1 = 1) (amax 2 ‘Miﬂ)/"/(" W l)o is= 29 seey N

where

anin = minimum value

amax = maximum value

number of discrete intervals

bj = interval endpcints for condensation.

Markov Chain Models. In djscussing the Markov model, some of the
conventions put forih by Bogaanoff(4 are used. In the Markov mode the crack
is detined by discrete states with time being measured by duty cycles. In
addition, the Markov assumption is made, i.e., the probability that the crack
which is currently in state i will be in state j during the next duty cycle is
only dependent on its present state and not on the previous load history.
Consider

S0 1, 8 3 iss
which need not be of equal duration. The crack is defined by variable states
a = 0' 1’ 2’ IQ.’ n

where a = 0 implies no crack and a = n may be defined as the limit state. The
initial distribution of cracks is defined by

I = (ilo ‘2. seey ‘n)

by design codes or other data. The transition probabilities, P1¥. are defined
as the probability that given the crack is currently in state i it will next
be in state j. The evolution of the crack growth process is given by

Pt = I Mt
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where

M = matrix of transition probabilities Pig
Pt = (Pt(1), Pt(2), ..., Pt(n), POF of loads at time t.

Once the transition probabilities, Pij, are defined, the Markov
model provides an inexpensive, simple method for calculating the distributions
at any time. However, several drawbacks to the Markov model exist. First,
recent crack growth rate data which show very limited scatter in growth rate
under steady state (K = constant) testing conditions(5) suggest that the
assumption of a shock model for the crack growth may not be correct.

Secondly, it is difficult, if not impossible, to find the appropriate crack
growth data in sufficient quantity to calculate the transition probabilities.
To generate such data experimentally would be expensive, although it would
only be necessary to do so once for a specified load distribution. If crack
growth data cannot be found, the transition probabiiities can be determined
from material life data for a given load distribution. In this case, however,
the Markov mode) provides a curve fitting procedure and it is difficult to
attach physical significance to the Markov model parameters.

The evaluation of each of these probabilistic methods has been per-
formed during the course of three case studies. Each of these studies are
summarized below.

Case Studies for the Evaluation of
Probabilistic Fracture Mechanics Models

Three case studies have been performed to evaluate the effect of
including probabilistic techniques in the structural integrity models. The
first case study examines the effect of using random load sequencing in place
of a deterministically fixed sequence of loads which represents the expected
frequency of the individual load transients. The second case study compared
Monte Carlo and Markov Chain models. Finally, a comparison of Monte Carlo and
DPD models was made. The details and results of each study are summarized
below.

Case Study I: Probabilistic Modeling of Loads in
Nuclear Piping Systems

The piping System in a nuclear power piant must be designed so that
the coolant pressure boundary is maintained throughout the plant life. To
insure that the piping system performs this function, many analyses must be
performed, including determination of the piping system fatigue crack growth
rates. Because of the variability in the initial defect sizes and loads, a
deterministic analysis of the fatigue crack growth process must necessarily
make worst case assumptions about the initial defect size and coupling of the
pipe stresses due to the steady state plant operation and transient events.
In this type of analysis, severe transient events, e.g., design basis
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earthquakes, which have a relatively low probability of occurrence, are
applied at the start of the plant 'ife in order to be conservative during the

analysis. The purpose of this study is to compare and contrast the use of
such a deterministic analysis with the results of a preobabilistic fracture

mechanics (PFM) analysis of a selected piping system in a nuclear power plant.

Certain transient load events, while unlikely, are significant for
the analysis since the induced stresses in the pipe are large, causing signi-
ficant crack growth and reducing the overall system life and threatening its
integrity. Current analyses tend to hypothesize that major transient events
occur early in the plant life. This assumption may causes the crack to reach
a size greater than the threshold size associated with typical service
stresses very early in its life. The hypothesis that statistically rare
transient events, which induce large stresses in th2 piping system, occur
early in the plant life is referred to in this study as the worst case coupl-
ing of loads.

An alternative to this type of analysis is probabilistic ordering of
the loading coupled with probabilistic fracture mechanics (PFM) methods. The
use of probabilistic models allows the analyst to avoid the overly conserva-
tive bias in the assumptions of a deterministic analysis with probabilistic
information to estimate the behavior of crack growth in a manner that reflects
the random nature of the materials, the loadings, and the cracking process.

The purpose of this study is to compare piping system integrity,
calculated using each type of analysis, to estimate the relative level of con-
servatism. The cold leg piping system of a selected nuclear power plant has
chosen as a vehicle for this comparison. The deterministic analysis will use
many of the techniques and methods described in the "Cold Leg Integrity Evalu-
ation" by M. E. Mayfield, et al.(6). The probabilistic calculations will be
made using a PFM model which employs a Monte Carlo simulation.

The initial crack depth, aspect ratio, yield stress, critical stress
intensity factor, and failure crack size for this analysis are presented in
Table 1. The chosen initial crack depth was so large so as to almost insure
that the threshold would not be a significant factor. For this reason, thres-
hold effects were excluded from this analysis.

TABLE 1. FRACTURE MECHANICS ANALYSIS PARAMETERS

Initial Defect Size (1) 1.43 cm
Aspect Ratio 0.1
Crack Depth at Failure (1) 3.81 cm
Crack Orientation Axial
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The remaining parameters needed for the deterministic anmalysis are
the loads and load sequence encountered in one lifetime. The number of times
each transient occurs has been taken from the vendors design analysis as was
done in the Cold Leg Integrity Study. The eleven transient events shown in
Table 2 are included in the analysis. It is important to note that during the
deterministic analysis, immediately after the plant start-up, Transient 1, an
ﬁarg?quake, is postulated to occur, certainly a good example of worst case

oading.

TABLE 2. TRANSIENT EVENTS INCLUDED IN THE ANALYSIS OF PIPING SYSTEM

Transient Number Transient Description Design Cycles
1 Plant Start-Up or Shutdown 240
2 Power Loading or Unloading 48,000
3 Step Increase/Decrease in Power 8,000
4 Reactor Trip 470
5 Turbine Trip 390
6 Rapid Depressurization 80
7 S*eam Line Failure 1
8 Hydrotest of 3,125 psi at 400 F 20
- Earthquake (OBE) 650
10 Earthquake (SSE) 1

11 Vibration 2.1 x 1010

{l

For the probabilistic analysis, two key parameters change. First,
the initial crack size is a random variable, not a constant., Based on the
results of reference(7), it is assumed that the initial crack depth distribu-
tion is a Rayleigh distribution. This distribution is skewed right and has a
relatively long tail, although not as dramatic as for the lognormal distribu-
tion. The parameters for the initial defect distribution are given in Table 3.
The second random variable is the frequency of the transient events. For the
present analysis, the frequency of these events is chosen to match the fre-
quency of these events over an assumed 40 year plant life used to the Cold Leg
Integrity Study. For example, a plant start-up or shutdown (transient 1)
will, on the average, occur 240 times during the plant life as given in
Table 2. The frequency of all 11 transients has been detailed in Table 2.

Several simplifications were made for the deterministic model to
reduce the cost of the analysis to facilitate meeting the objectives of this
study. These include: (1) no crack interaction modeling, (2) no threshold
effects, (3) one-dimensional crack growth, (4) no elastic-plastic modeling,
and (5) trapezoidel rule for integration. These assumptions are different
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TABLE 3. PARAMETERS FOR INITIAL CRACK SIZE
PROBABILITY DENSITY FUNCTION (PBF)

PDF Form Rayleigh

Minimum Value 0.635 cm
Modal Value 1.270 cm
Maximum Value 1.905 cm

enough from those of the Cold Leg Study to inhibit direzt comparison of the
deterministic results of this study with the Cold Leg Study. Therefore the
deterministic calculation has been made independently of the Cold Leg Study
analysis.

The result of the deterministic calculation, gives a failure time of
approxima?ely 3.7 x 109 cycles. Since the loading spectrum adopted in
reference(6) was used in this study, the relationship of these cycles to time
may be made and is found to be approximately 8 years. Given the assumption
that the plant is designed for a 40 year life, this corresponds to a factor of
safety, denoted B, of approximately 0.2.

The results of the probabilistic calculations are presented in
Figures 1 and 2. Because the initial crack size is a random variable in the
probabilistic model and because of the final crack size's sensitivity to this
value, a skewed distribution for the initial size was chosen. This is crucial
so that the effect of the worst case loading scheme on the crack growth may be
examined without the effect of the initial defect size obscuring the results.

The empirically constructed cumulative distribution function (COF)
of the initial defect size is given in Figure 1. The modal and mean values of
this distribution are 1.270 cm and 1.383 cm, respectively. Since the deter-
ministic calculation started at a value of 1.43 cm, this implies that approxi-
mately 54 percent of all probabilistic calculations began with a crack size
larger than the deterministic value.

The results of the probabiiistic fracture mechanics analysis are
shown in Figure 2 in terms of the cumulative distribution function of the
safety factor, 8. The parameters of the distribution of B are

us= 2.64 p=1.50

where u is the mean value and P is the standard deviation. The median value

from Figure 3 is given as 1.77. Therefore, the best estimate value for the
remaining life of the piping system is approximately 70 years.

The immediate conclusion one reaches in comparing these results 1s
that the worst case loading of a nuclear piping system predicts that the
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expected life of that system is shortened by a factor of nine. Even if a con-
servative PFM analysis is being performed, the deterministic worst case
sequencing of the loading gredicts about a factor of 5.0 reduction in the
plant ;1fe as compared to the PFM analysis when the 10 percentile value of 8
is used.

As noted earlier, this study made a number of simplifications in the
deterministic analysis as compared to reference (1). That deterministic ana-
lysis for the same point in the piping system indicated a mean safety factor
of 0.77. This is significantly larger than the value of 0.2 calculated during
this study, a difference that is not unexpected given the simplifying and con-
servative assumptions made. However, the PFM analysis, which was performed
using the same simplifying assumptions employed during this study's deter-
ministic analysis, predicts that 97 percent of the time the safety factor will
exceed that found during the Cold Leg Study. This indicates that the assump-
tion of worst case load sequencing often used in deterministic analysis per-
formed (for example, the Cold Leg Study) introduces a degree of overconserva-
tism sufficient to make the additional complexity, and cost, of the more
detailed analysis questionable.

Observe that the present study indicates a factor of nine difference
in the safety factor determined from probabilistic and deterministic analyses.
While this difference is quite significant, it is biased towards a lower bound
in that the present PFM formulation is significantly biased towards lower
safety factors for several reasons, as follows. First, in the deterministic
load sequence between plant start-up and shutdown, a sampling without replace-
ment scheme is used. In the PFM analysis, a sampling with replacement scheme
has been adopted. For calculations in which the safety factor is signifi-
cantly greater than one, this should not result in any significant difference
between the two analyses since the frequency of the various transients will
approach the same value, on the average. However, in the present analysis,
the component's expected life is less than the 40 year period and it is
expected that the sampling with replacement will lead to slightly more con-
servative results than sampling without replacement. Secondly, the selected
density function for the initial crack size leads to a mean value that is
higher than the initial crack size used in the Cold Leg Study. Finally, and
most importantly, no threshold for the stress intensity factor was used during
this study. Because of the prohibitive cost of making Monte Carlo calcula-
tions for this case, a statisticaly significant set of crack curves were not
generated. However, several sample paths for the crack growth were calculated
and the indication is that deleting the threshold stress intensity factor from
the PFM analysis reduces the safety factor by an order of magnitude,

Case Study II: Comparison of Monte Carlo and Markcv Chain Methods

The determination of the reliability of structures, such as joints
in bridges, requires that the uncertainty in material properties, flaw sizes
and location, environments, and loadings be considered in the analysis. Two
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popular probabilistiz models used to incorporate these uncertainties ir crack
growth analysis are: (1) Monte Carlo, and (2) Markov chain. This study com-
pares results developed by applyin? both methods to a problem in which cracks
are considered to be growing in bridge-type materials. The effects of varia-
ble crack sizes and variables loadings on the growth of a crack are investi-
gated using both methods. The results of these investigations are used to
Jjudge each method's applicability to such problems. Before one can proceed
with the application of Munte Carlo and Markov chain models (previously des-
cribed), a basic load cycle together with the load distribution must be
defined and sources of variability charcaterized. The situation of a bridge
is used as a vehicle for this discussion.

The normal practice for defining a load cycle for a bridge is to
examine the stress at a selected point on the bridge during the time it takes
a vehicle to cross the bridge. In this case, the load cycle is equal to the
time it takes the vehicle to cross the bridge. Since millions of vehicles
will cross a bridge during its life, somewhat longer cycles are defined, such
as the hourly or daily number of trucks crossing multiplied by this single
cycle load. However, for many bridges several vehicles can be on the bridge
simultaneously. Then, since the stress at a point on the bridge is a combina-
tion of the stresses induced by each vehicle, the probabilistic methods cannot
sample from the weight distribution for the vehicles independently.

To formulate stress distributions for some location, the first step
taken was to redefine the basic stress cycle as the time between the entry of
a vehicle onto the bridge and the first subsequent time at which no vehicles
are on the bridge. A calculation of the duration of the load cycle defined in
this way was made and compared to the duration under the above noted more com-
mon definition. For purposes of this comparison, the speed of the vehicles
was assumed to be uniformly distributed between 30 and 40 mph and the inter-
arrival time between vehicles was assumed to be exponentially distributed with
a mean of 20 seconds. For this case, the mean duration of the load cycle was
determined to be approximately 14 seconds, a result which compares favorably
with the 10.4 second duration of the load cycle developed under the more com-
mon defintion. Thus, the new definition does not appear to significantly
affect the load duration. In addition, this new definition of the load cycle
is numerically convenient because it allows a stress distribution to be calcu-
lated which is statistically independent between successive cycles. Conse-
guently, this indpendence property simplifies the Monte Carlo model and
reduces, to some extent, the computational time of the program. Since the
stress distribution due to multiple vehicle crossings cannot be determined
from independent sampling of the individual vehicle weight with the former
definition of the load cycle, the new definition was adopted for use in this
stuay.

?as; on vehicle (truck) weights were obtained from several
reports(s- 0). These data were synthesized and input to a stress analysis
code using multiple span beam theory to calculate a stress histogram for mul-
tiple truck crossings. Thereafter, a Rayleigh distribution was fit to these
results. This distribution is used in the subsequent probabilistic calcula-
tions. Stresses so determined were assumed to exist in the vicinity of a
through edge crack in the flange of a main grider.
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Having defined the probabilistic techniques to be used and the
method for calculating the statistical distribution for the stress, the first
step in apg]ying the PFM methods is to define and calculate the model para-
meters. hese parameters are obtained from the literature for all cases,
?xcept for the Markov transition probabilities which are derived as detailed

ater.

Parameters needed for the Paris law equation are available for typi-
cal bridg? iseels from several sources. In this study the values found in
reference(ll) were used. These values, which represent A514 steel at finite
growth rates, are:

c¢' = 2.4 £-10 (inch/cycie)/ksi
m= 3.0.

Data in References(8-10) were used to synthesize the distribution of truck
weights. As previously discussed, the stress frequency of occurrence distri-
bution is represented by the Rayleigh distribution, with the truck inter-
arrival time bein? obtained from Reference(8). The only remaining parameters
for the Monte Carlo analysis are those thih define the distribution of the
initial crack sizes. Data from Reference(ll) suggest the initial crack size
as a Rayleigh distribution with the following parameters:

dmodal = 0.01 inch
3nin = 0.005 inch .

At this point, the Monte Carlo analysis can be performed. It remains to
determine the transition probabilities for the Markov analysis.

In order to determine the trar ‘tion probabilities for the Markov
model, it is necessary to have 2 statisti 11y significant number of crack
growth curves for the given applied stress iistory. Data for crack growth
under actual loading conditions are relatively limited. This condition, at
first consideration, would suggest that the use of the Markov model is
impossible. However, while actual crack data may not exist in sufficient
quantity to calculate the transition probabilities directly, these probabil-
ities can be estimated from data giving the time to failure. In this case,
there is no way to attach any physical significance to the damage state,
since, during the process of estimating the transition probabilities, the num-
ber of states is being adjusted so that the Markov calculation will reproduce
the cumulative distribution function of the time to failure. It is not
agpealing to use the Markov model as a curve fitting procedure. Furthermore,
the comparison of the two models would be inappropriate if the Markov model
were used in this way (since the parameters could be adjusted to provide as
accurate a fit to the data as desired). For these reasons, the results of
the Monte Carlo calculation are used to simulate a set of crack growth curves.
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It is then assumed that these curves represent real data so that the transi-
tion probabilities are calculated from this data set.

The data set generated includes 1,000 crack growth curves. The
crack growth calculation is stopped when the crack size reaches 0.5 inch. For
purposes of Markov analysis, it is assumed that the damage is discretized into
equal intervals of 0.025 inch. To calculate the transition probabilities,
each of the 1,000 curves is examined to determine how many cracks which are in
state i at time t remain in state i, how many move to state i+l, and so on.
Knowing the state the crack started in, and examining the next time interval
for the state that crack is predicted to be in, the transition probablities
are easily calculated.

Consider first the results of the Monte Carlo method shown in
Figures 3 and 4. The probability of failure, shown in Figure 3, is indicated
to be near zeroc up to approximately 600,000 cycles, at which time it increases
very rapidly. The average crack growth behavior, presented in Figure 4,
starts off very slowly but it too increases rapidly at 600,000 cycles.

Figures 5 and 6 also show the result of the Markov chain application
to cracks growing in bridges for failure probability and average crack size,
respectively. For the transition probability calculation (shown in Table 4),
i. was initially assumed that there are 20 damage states. What is immediately
obvious from these figures is that the Markov model is overpredicting the
spread in the crack growth process. In fact, using the following formulas for
a unit step model:

19
E(tf) = Zl (1 +Pi/(1 - Pj))
i=
19
(t) = (Pis(1 - pi)2)1/2
i=
where
E(tf) = expected value of the time to failure
(tg) = standard deviation of the time to failure
we find
E(tfg = 8 x 109 cycles
(tf) = 1.4 x 104 cycles

(These are only approximate values since the model is not strictly a unit step
model.) The corresponding results for the Monte Carlo analyses are

135



TABLE 4., TRANSITION PROBABILITY MATRIX FOR THE MARKOV MODEL

Damage Transition Probability of Crack Moving
State from Damage State I to J*
I J =1 J=1+1 J=1+72
1 .9486 .0514 0
2 .9812 .0188 0
3 .9580 .0420 0
< .9297 .0703 0
5 .8966 L1391 0
6 . 8609 L1391 0
7 .8196 . 1804 0
8 .7788 .2212 0
9 .7294 .2706 0
10 .6807 .3193 0
n .6375 . 3675 0
12 .5737 4263 0
13 .5220 .4780 0
14 . 4681 .5319 0
15 . 3980 .6020 0
16 .3391 .6609 0
17 .2811 .7189 0
18 .2005 . 7923 .0072
19 .1532 .8408 0
20 1.0 0 0

* A1l other entries (not shown) are equal to zero.
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E(tf) = 8 x 105 cycles
tf = 3.2 x 103 cycles.

Thus, the standard deviation of the time to failure for the Markov chain cal-
culation is a factor of 4.5 larger than the Monte Carlo results predict.
Since we are free to choose how the damage and time are discretized in the
Markov model, the transition probabilities were regenerated for a 40 state
case. This result is also shown in Figure 8. Observe for this case that the
variance of the time to failure is less than for the 20 state run. Clearly
then the number of damage states exerts a strong influence on the variance.
While it is true that the number of states could be increased to more closely
approximate the standard deviation of the Monte Carlo results used to estimate
the transition probabilities, the added computational cost does not justify
this procedure.

The comparison of the Monte Carlo and Markov chain models provided
one immediate major result. Regardless of how much data is available to cal-
culate transition probabilities, parameters in the Markov model must still be
adjusted to reproduce the data. Thus, the Markov model is not unique nor are
exact material property data and precise stress distributions sufficient to
allow the Markov model to accurately predict the crack growth characteristics.

If confidence can be placed in the Markov results, the advantage of
the method is its extremely low cost. In contrast, while the Monte Carlo ana-
lysis seems to reasonably replicate crack growth trends observed in struc-
tures, it does so at a high computational cost. (The Markov analyses per-
formed required two orders of magnitude less computational time than the Monte
Carlo analysis). Since probabilistic analysis of crack growth is usually per-
formed for risk assessment or in sensitivity studies of crack growth models,
it will usually be the case that many runs of the code are requiren. During
this study, one run of the Monte Carlo analysis cost approximately $500 and
the number of runs performed was minimized to make the results statistically
significant but at a loss of statistical accuracy. Obviously then, while it
is an appropriate model for PFM analysis, its cost may preclude its general
use.

it appears from the results generated that probabilistic analysis
(of a bridge or other structure) may be best accomplished by a combination of
PFM formulations. The present results suggest that it is best to perform a
limited number of Monte Carlo analyses for several of the potential stress
distributions which the structure will see., Then, these results can be used
to accurately determine the Markov transition probabilities for the range of
stress distributions of interest. Thereafter, the Markov model can be used
with confidence in repeated applications in order to minimize the cost of ana-
lysis for probabilistic studies.
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Case Study III: Comparison of Monte Carlo and
screte Probability Distribution Methods

Recently, Discrete Proubability Distributions (DPD's) have been sug-
gested for use in risk analysis calculations to simplify the numerical compu-
tations whiih st be performed to determine failure probabilities. Specifi-
cally, DPD's have been developed to investigate probabilistic functions, that
is, functiont shose exact form is uncertain. The analysis of defect growth in
materials by Probabiiistic Fracture Mechanics (PFM) models provides an example
in which the orobabiliistic function plays an important role. This study com-
pares and contrasts Mont> Carlo simulation and DPD's as tools for calculating
material failure due to fatigue crack growth.

The rerainder of this study examines the following topics. First,
the necessacy mathematics for each of the two methods is developed. Next, the
application of these methods to cracks growing in steels is made. Finally, a
comparison of the tw( methods is provided and conclusions about the use of
each method é&re reached.

CRACK GROWTH RATE LAW

Over the last few years, several investigators have examined the
growth of craacks in matesials, resulting in a relationship between the rate
of crack growth with resnect to time, da/dN, and a measure of the stress near
the crack tip, denoted the ciress inlensity factor. The relationship used
during these studies is:

da/dN = Ca¥y (1)
where
AK = stress intensity factor, and
C,m = empirically determined constants.
The simplest formula for calculating AK is given by

AK = 0 na

As a vehicle for discussion, a problem will be examined in which the material
is a carb9n steel used in nuclear piping systems. Following the data derived
by Harrisi2), we obtain fron Equation (1)
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da/dN = C 04 n2 a2 (2)

j where
m=4

C = lognormally distributed with mean 9.14 x 10-12 and
standard deviation 2.20 x 10-11,

Integrating Equation {2) yields
an+] = an + C 04 72 aN (3)

where it is assumed that aN is small enough so that o can be assumed constant,
and n represents discrete time in units of aN.

Equation (3) contains three random variables: the present defect
distribution, a,; the stress, o; and the empirical constant, C. The initial
defect distribution ap is assumed to be described by a Rayleigh distribution:

R(a) ~ a' exp(-(a')2/2) ,

where a' = (a - apipn)/(amodal - amin).

The stress distribution is also given by a Rayleigh distribution,
denoted by P(v). Table 5 gives the parameter values for each of these
distributions.

TABLE 5. INITIAL DEFECT AND STRESS DISTRIBUTION PARAMETER VALUES

—_———— e ——

Initial Defect Stress

Parameter Distribution Distribution
Minimum Value, agin 0.005 inch 10 Ksi
Modal Value, ampdal 0.01 inch 35 Ksi

—-
——

We are interested in the DPD of the initial crack size after NF
cycles, then
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(NF) ~ ~
A = (Zj, pi) for 1 <i< 20 .

However, since C was fixed thrqughout this calculation, what has actually been
obtained is

(Ng) o e (Nf)
A = (Z, pi (Zil1C1)) = A (€1) .

That is, the probability being calculated is conditional on C;. If the calcu-
lation is repeated for all of L.e discrete values of C, then *

A(NF)(Cj) = Zi, Pi(Z4, Pi(Z4lCy)) .

By combining A(NF)(C%) with the DPD regresenting the distribution for C and
condensing the resulting DPD, the final crack size distribution is obtained.

The results of the crack growth calculations are shown in
Table 6. For the Monte Carlo results, 2000 crack sample paths were generated.
The DPD calculation requires a selection for the number of discrete points to
be made. Four cases are shown in Table 6; for example, "DPD 10" means that
each distribution was represented by 10 discrete points.

TABLE 6. RESULTS OF CRACK GROWTH CALCULATIONS USING DPD AND
MONTE CARLO METHODS AFTER 100,000 STRESS CYCLES

Standard Failure Computer

wis . BE0R - g Meg e
DPD 10 .08361 .1460 11.3 5
DPD15 .07778 .1368 6.0 16
OPD 20 .07753 v, 8.5 40
DPD 25 .07698 .1303 8.4 87
Monte Carilo .07546 .1350 7.9 45
95% confidence .06954-.08138 .1307-,1391 6.7-9.1

intervals for
Monte Carlo
results

140



Table 6 shows that, for this problem, the DPD method is faster than
Monte Carlo for comparable accuracy. The DPD-15 estimates of mean crack size,
standard deviation, and failure probability each fall within the 95 percent
confidence bounds for the corresponding parameter, based on the Monte Carlo
results. The DPD-15 calculation takes 16 seconds as compared to 45 for Monte
Carlo. In practice, however, it may be difficult to realize the maximum pos-
sible improvement in computation time using the DPD method. This is because
the computational costs of the DPD method are very sensitive to the number of
discrete points used to represent the distributions. For example, increasing
the number of points from 15 to 20 more than doubles the computation time. In
general, the computation time will increase as:

R2
Cp = <— NC1
N1

Ci = computation time for first DPD caicuiation with

N1 discrete points
number of discrete points for first DPD calculation

number of discrete points for the DPD calculation

being estimated

M = number of random variables included in the DPD calculation
C2 = estimate of DPD calculation time for Np discrete points.

where

=
™~ —
won

Therefore, the inevitable trial-and-error needed to produce stable DPD results
may be computationally expensive, unless runs are carefully planned and judi-
cious extrapolation methods are employed.

The computational advantages of the DPD method may be greater in
practical risk assessment problems where very low failure probabilities are
encountered. For example, for a failure probability of 10-4, 1.7 million
Monte Carlo runs would be required to obtain the accuracy exhibited by the
Monte Carlo estimate of the failure probability in Table 6 (95 percent confi-
dence interval of + 15 percent). Improvements in the crude Monte Carlo
method, such as importance sampling(2) tend to be ad hoc, and rather proble-
matical in practice.

To obtain estimates of the probability of failure with the DPD
method, no alterations to the algorithm need to be made, yet low probabilities
can be calculated by placing more of the discrete noints in the tails of the
distributions for the random input variables. By maintaining the same total
number of discrete points, the cost will remain the same, yet the low failure
probability can be calculated. Because of the relatively low cost of the DPD
calculation for such cases, several runs can be made to determine the failure
probability's sensitivity to the discretization chosen for the random variable
distributions. To date, however, the performance of the DPD method in such
low-probahility evaluations has not been precisely characterized.
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Finally, it should be noted that the DPD method is not merely a con-
venient device for approximating inherently continuous calculations. It can
be argued that many actual risk assessment calculations should properly be
treated as discrete. For example, the fitting of continuous distributions to
sparse data inevitably invelves further assumptions not directly supported by
that data. Thus, the DPD calculation, making direct use of discrete data, may
actually be more natural than others based on continuous distributions.
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OPERATING REACTCR DATA FROM LICENSEE EVENT REPORTS

Robert L. Dennig
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0. V. Hester and C. D. Gentillon
EG&G Idaho, Inc.

ABSTRACT

"Trend and pattern analysis" are oft-cited goals in the review of
operational data reported by nuclear utilities to the Nuclear
Regulatory Commission (NRC). The NRC Office for Analysis and
Evaluation of Operational Data in conjunction with EG&G Idaho,
Inc., has developed software which uses contingency table
techniques to perform such analysis. The objective of the
analysis is to ideatify outliers and anomolous behavior within
the data which would be good candidates for detailed engineering
follow-up.

This paper briefly discusses the Sequence Coding and Search
System (SCSS) Licensee Event Report (LER) data base which
contains data in a form amenable to cross-classification, the
data retrieval and statistical software employed in conjunction
with the SCSS, and the results of a trial application to the 1981
LER data.

BACKGROUND

The pre-eminent source of operating incident data for U.S. nuclear
power plants is the Licensee Event Report (LER). Reactor licensees sutwit
an LER to the Nuclear Regulatory Commission (NRC) when an incident at a
plant meets one or more of the reporting criteria incorporated in their
operating license technical specifications. Table 1 shows the volume of
LERs received over the last 5 complete years, and a received-to-date figure
for 1983.

TABLE 1. NUMBER OF LERS BY CALENDAR YEAR

Year 1978 1979 1980 1981 1982 1983*

Number of LERs 3168 3164 3850 4016 4399 2571

*Partial year; reports through July 1983.
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Each individual LER receives wide distribution both within and outside
of the NRC, and is scrutinized in some detail by engineering persornel.
This case-by-case review is sometimes supplemented by reference to previous
reports, but in general the recognition of incident recurrence, increasing
rate of occurrence, or a pattern of occurrence is delimited by the
perception and memory of the individual engaged in the review. While
confident that event-by-event review identifies events of immediate safety
significance, we have been concerned that safety-significant situations of
high or wide-spread incidence of lower level go unrecognized in this
approach. To address this concern we have developed computer software
which allows rapid and flexible statistical analysis of the LER incident
data.

SOFTWARE DESCRIPTION

The Sequence Coding and Search System (SCSS) LER data base was
developed by the NRC Office for Analysis and Evaluation of Operational Data
(AEOD) with assistance from Oak Ridge National Laboratory (ORNL) in order
to support both ad hoc data retrieval (i.e., identification of all LERS
which describe a given problem) and broader form statistical analysis. The

production version is implemented in System 1022 on a PDP-10 at ORNL;1

the version which works in concert with the trends anc patterns software is
implemented in the Control Data Corporation (CDC) "DMS-170" data management
system at the Idaho National Engineering Laboratory (INEL).

The most fundamental data structure in SCSS is the step record. Each
step record contains information about a single reported incidence of
hardware fault or human error, and step records are strung together to
model a sequence of events described in an LER. SCSS step records are
conceptually equivalent to the "one-1ine" component fault records cataloged

in the previously published LER data summar1es.2 A single LER generates
multiple step records in the SCSS data base.

By manipulation of the step records and related data stored in other
segments of the SCSS we can cross classify individual incidents to build
multiway contingency tables. The dimensions of these tables are selected
principally from those listed in Table 2.

The software which accesses the SCSS database and constructs the
desired tables is the CONTING program written by E. Henry and L. R. Fitch

of INEL.3 CONTING is a user-prompting interactive program which

translates the analyst's table specifications into the required searches
and sorts of the SCSS and if desired will automatically prepare an input
file for execution by the P4F program of the "BMDP" statistical software

package.4
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TABLE 2. MAJOR INCIDENT ATTRIBUTES FOR CROSS-CLASSIFICATION

Abbreviation Attribute Explanation
FID Facility Identification A four digit alpha numeric code
unique to each licensed power
reactor
CAUSE Cause The proximate cause of the incident
comp Component An item of hardware, a person, or

a designation for a train or all
trains of a system

PSYSTEM Principal System The system in which a component
is installed or, in the case of
personnel, the activity engaged
in when the incident occurred

ISYSTEM Interfacing System Additional system information
for components at system
boundaries

VENDOR Vendor The component manufacturer

EFFECT Effect The observed component state

or behavior

EVDATE Time The time interval containing the
‘ncident's event date

CONTING has the capability to perform selection and tabulation over
the entire SCSS database, or over any pre-selected subset. Pre-selection
may be performed by CONTING, or outside of CONTING using the COC program

Query/Update (QU).S This capability allows the uter greater flexibi'ity

in the specification of the relevant population of records than is afforded
by the selection of levels for a given table dimension or factor within
CONTING. It is most useful for exclusion of a single level in a dimension
we don't wish to see in the final table itself.

The CONTING user builds a table by selecting one dimension at a time
from attributes such as those listed in Table 2. Once a dimension is
selected the user has the capability to:

0 List all the level salues permitted in the SCSS data base, along
with the counts of records containing each value.
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0 Select all permitted values, delete selectively from this list,
or build up the values list one at a time.

(i} Use a file of previously selected values.

The construction of time cells by CONTING for event dates is particularly
flexible and convenient. The user can select from input options such as
the following:

0 Start date, end date, number of cells

0 Start date, months per cell, number of cells

0 End date, months per cell, number of cells

0 Last N months (prior to ending date for SCSS data)
0 User-specified time cells.

When specification of the levels or cells for the selected dimension is
completed, CONTING will summarize the status of the table: each dimension
and its corresponding number of levels, and the total table size (total
cells). The user then may either select an additional dimension or proceed
to execute the data categorization already specified.

CONTING can determine counts for up to 50,000 cells as defined by the
table dimension/level input. Tables with up to 200,000 cells can be built
through batch execution; the input needed for batch execution is
automatically prepared. Outputs from CONTING are specified by the user and
can include:

0 A history of the CONTING interactive session

) A computer file of the table input which can be saved and re-used
at a future time

0 Cell counts for the table in a 1ist format with cell identifying
labels

0 A computer file of the control language and data needed for
multiway table analysis by BMDP-P4F. This data can include
exposure time in each cell in reactor calendar hours or reactor
critical hours, as well as cell counts.

The ability to calculate cell exposure time is another important and
convenient feature of CONTING. This feature uses a special auxiliary file

of the INEL SCSS data base which contains Gray Book data6
of reactor critical hours.

for calculation
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BMDP-P4F provides numerous options for table display and log-linear
modeling. The standard P4F input file prepared by CONTING may contain
requests for table-formatted cell counts and exposure times for all gells
as well as cell counts for all one- and two-way marginals.

Percent-of-total count figures are also displayed for each cell. No
requests for modeling are included in the standard file. The user adds the
necessary P4F modeling commands on a case-by-case basis by editing the
input file before submitting it for execution.

Following the notation used ir the BMDP documentation.4 the
log=linear model in three dimensions is written as:

In F Bg+) ¢} ) ¢} +) &)F +) (1)
123 1 2 3 12 13 23 123

where

F123 = the expected cell counts in each cell of a

three-dimensional array indexed by i = 1, I;
j=1,J; k=1, K; for dimensions

(attributes) 1, 2 and 3, respectively (I is the
number of categories or levels of the first
attribute; J, the second; and K, the third),

8 = the grand mean effect,

xl' xz. x3 = the main effects for the three dimensions,
le' ‘13' x23 = second order effects, and

x123 = the third order effect.

In this notation, one may use further subscripts to denote effects for
individual levels of the attributes; e.g., ‘12(11) is the second-order
effect describing the interaction of the 1th level of the first table
dimension attribute with the Jth level of the second attribute. When the
additional subscripts are suppressed, the notation refers to the set of all
such effects, over all the levels of the variables or attributes indexed by
the subscripts. Standard log-linear modeling includes constraints which
make the effects unique. They are a measure of the magnitude each term
contributes to the expected cell frequency.
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One other SCSS field was involved in this analysis. The SCSS EFFECT
code when used in conjunction with personnel describes whether an omission
or commission was involved. Some personnel steps have the effect code UF
("Desired Commission"). These steps provide further information about
reported events but are excluded from this study because they do not
describe personnel errors (faults).

With the basic structure of the table defined, the CONTING software
package was then used. An initial run sorting on the eleven personnel
effect codes other than UF was used to form a set of step records
describing personnel faults. A subsequent CONTING run using this set
generated counts for a 6 x 5 x 4 table incorporating the plant (FID),
activity (PSYSTEM) and EVDATE variables defined above. This run invoked
the option for building a BMOP input deck for program P4F. The BMDP deck
for this run, with the count data excluded, appears in Figure 1. The deck
was executed and an evaluation was made of the resulting contingency
table. Figure 2 shows the output, with percent of total and margin tables
attached. The table has 120 cells and 295 observations, but 29 cells are
zero. If the effect dimension were included for study, the same
295 observations would be spread among 1320 cells and the table would be
extremely sparse.

Zero entries always pose some problem for log-linear modeling, since
expected cell counts that follow a log model cannot be zero. The zeros in
Figure 2 are sampling zeros rather than structural zeros; given enough time
for observation, eventually every cell would be nonzero. In the meantime,
the data may not provide enough information tc estimate all the parameters
of specified log-linear models.

The implications in having a multidimensional table dominated by zeros
vary with the particular log-linear analysis code being used. Problems
occur with the BMDP code when all the cells associated with an effect being
estimated for a specified model are zero counts; when this is the case, the
effect is unestimable and the algorithm loses track of which effects were
estimable and which estimates are associated with which effects. However,
this is not a problem for some log-linear codes. In these codes for each
effect whose cell counts are all zero the effects itself is assumed to be
zero and no attempt is made to estimate it. In essence the cells are
treated as structural zeros and all the remaining effects with nonzerc cell
counts are estimated. The BMDP program is to be modified in the future so
that it handles this problem in the manner discussed above.

A number of additional alternatives for handling tables with sparse
entries exist. Included are deletion of the rows and/or columns in the
table whose sparsity inhibits the modeling, adding a small number (delta)
to each cell in the table, and collapsing of categories into a lesser
number of groups. The use of some of these alternatives fs discussed
below; References 7, 9 and 10 provide further insights.
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OVHBM, T37 ,P1,STANY.
ACCNT, ID=0VH,O0RG=3540, BIN=TM3,
ATTACH,BMOP4F, |ID=BMDP.
BMDP4F ,W=50000.
*EOR
/ PROBLEM TITLE IS
'"PERSONNEL MODEL ING 1981
/ INPUT VARIABLES ARE 3.
TABLE IS 5, 6, 4.
FORMAT IS FREE.
/ VARIABLE NAMES ARE PSYSTEM,FID , EVDATE .
/ TABLE INDICES ARE PSYSTEM, FID » EVDATE .
SYMBOLS ARE A, B, C.
/ COMMENT !
THE FOLLOWING TABLE SHOWS THE TIME CELLS
AND CORRESPONDING EVENT DATE BOUNDARIES

—— ———————— . ————— - — - - ——— —— — —

CELL BOUNDARY CELL BOUNDARY
1 19810101-19810401 T3 19810701=19811001
12 19810401-19810701 T4 19811001-19820101
----:: ....... L PR I R -
/ CATEGORY

CODES(3) ARE 1 TO 4
NAMES(3) ARE
0Ty 8, YR R, WY %, VR4 0,
CODES(2) ARE 1 TO 6
NAMES(2) ARE
'BEP2', 'EIH1', 'EIH2', 'MGS1', 'SGS2', 'SNP1',
CODES(1) ARE 1 YO 5
NAMES(1) ARE
'‘PD ', 'PM ', PO ', 'PT ', 'PZ 1,
/ PRINT 0BS.PERC=TOT.MARG INAL S=2.
/ COMMENT !
SORT WAS PERFORMED ON SET 1 OF OLDSETS

RECORD HITS WERE USED FOR FREQUENCY ACCUMULATION

RECORDS PERTAINING BOTH FAILURES AND COMMAND
FAULTS WERE SORTED

/ END
Figure 1. Initial BMDP-PAF deck.
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Figure 2. (continued).
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se*e% MARGINAL SUBTABLE == TABLE 1
PSYSTEM

PO PN T 1 PZ  TOTAL

79 69 09 55 23 1 295
$8%%%  MARGINAL SUBTABLE == TABLE 1

F 10
BEP2 EIH1 EIN2 nes1 $652 SNP1  TOTAL

39 31 27 116 29 53 295

ssess MARGINAL SUBTABLE —-- TABLE 1
EVDATE

n 12 13 T+  TOTAL

55 101 84 55 295
esees AARGINAL SUBTABLE =- TABLE 1
FID PSYSTEN
T PD PN PO PT PZ  TOTAL
B4 1 1-% o3
gid - 7 8 Zi Z%
"o 21 3% 34 14 6 116
i 4 B 3 i1 8
TOTAL 79 69 69 55 23 295

Figure 2. (continued).
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EVDAT: PSY>TEN
PD o PT TOTAL
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TOTAL 39 27 116 53 295
Figure 2. (continued).



Returning to our particular model, after a number of iterations the
decision was made to consolidate plants into the two groups, BWRs and
PWRs. This change was made through a simple modification of the original
BMOP deck produced by CONTING. Figure 3 shows the modified BMDP deck with
additional options specified for modeling. Commands in the deck which are
new or modified are highlighted. The contingency table for this new
configuration appears in Figure 4.

In Figure 3, we see that the three fielas PSYSTEM, FID and EVDATE are
referenced, respectively, by the symbols P, F, and T (rather than the
dimension numbers 1, 2, and 3 of Equation 1). Also, notice that a number
of models for the data have been specified. Finding a "good" model is an
exploratory process. The models specified in the figure represent only a
small subset of those tested on the data. The ensuing discussion pertains
only to the model ultimately chosen to characterize the data. However,
there is no one mode) which can objectively be classified as the "best"
model. Factors such as past knowledge of relationships between variables,
physical constraints and cost must be taken into consideration in
development of any model.

The model selected to characterize the data is PF,T. That is,
non-zero effects for the PSYSTEM-facility interaction and for event date
will be included in the model. Since this is a hierarchial model, P and F
are also terms whose main effects are included. The effect sets XPT’

XFT' and XPFT are assumed to be zero for this model.

Sections of the P4F output pertinent to this model are contained in
Figure 5. Figure S(b\‘ shows the expected cell frequencies generated.

Estimates of the effects for the model are given in Figure 5(c).
Equation (1) together with the model implies that the (i,j,k) cell
frequency can be estimated as

exp(8) ¢ exp(ip 4y) ¢ exp(Apc5y) © explhgiyy) © exp(XpF(,j)), (3)

and the "multiplicative parameters" in the listing give these values. For
example, the multiplicative "PWR" effect (see Figure 5(d)) of 1.42 shows
that counts for the PWR plant cells in the table are on the average roughly
43% higher than the overall average. Detailed interpretation of these
effects and the model itself in general requires insight and knowledge on
the part of the individual doing the analysis, regarding the "real world"
meaning of the factors being modeled in addition to an understanding of the
mathematics involved in the modeling procedure itself.

a. Figure 5 is marked with circled letters. These correspond to the
letters in parentheses in the text figure references.
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OVHBM,T37,P1,STANY.
ACCNT, ID=0VH,ORG=3540, BIN=TM3,
ATTACH, BMDPAF, | D=BMDP.
BMDP4F ,wW=50000.
*EOR
/ PROBLEM TITLE IS
'"PERSONNEL MODEL ING 1981
/ INPUT VARIABLES ARE 3.
TABLE IS 5, 6, 4.
FORMAT IS FREE.
/ VARIABLE NAMES ARE PSYSTEM,FID ,EVDATE .
/ TABLE INDICES ARE PSYSTEM, FID » EVDATE .
SYMBOLS ARE P,F,T. ]
/FIT MODEL IS PF,FT,PT,
CELL=STAN.STEP=8,.PROB=.25.
ADD IS MULTIPLE.DELETE IS SIMPLE.STRATA 1S PSYSTEM,
/FIT MODLEL IS FP,T.
CELL=STAN.STEP=8.PROB=.25.
ADD IS MULTIPLE.DELETE IS SIMPLE.STRATA IS PSYSTEM.
/FIT MODEL IS F,PT,
CELL=STAN.STEP=8.PROB=,25.

ADD IS MULTIPLE .DELETE IS SIMPLE.STRATA IS PSYSTEM,
/F1T MODEL IS 7T,P.
CELL=STAN.STEP=8.PROB=,25.
ADD IS MULTIPLE .DELETE IS SIMPLE .STRATA IS PSYSTEM,
/FiT MODEL IS P,F,T.
CELL=STAN.STEP=8.PROB=, 25,
ADD IS MULTIPLE.DELETE IS SIMPLE.STRATA |S PSYSTEM,
/PRINT OBS.EXP.LAMBDA.BETA.PERC=TOT,

Figure 3. Modified BMDP-P4F deck.
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/ COMMENT !
THE FOLLOWING TABLE SHOWS THE TIME CELLS
AND CORRESPONDING EVENT DATE BOUNDARIES

CELL “BOUNDARY CELL BOUNDARY
T 19810101-19810401 T3 19810701-19811001
12 19810401-19810701 T4 19811001-19820101
----:? ...................................................
/ CATEGORY

CODES(3) ARE ' TO 4
NAMES(3) ARE
' . NEZ A% b, R N,
CODES(2) ARE 1 TO 6
NAMES(2) ARE
+ 'BWR', 'BWR', 'BWR', 'PWR', 'PWR', 'PWR'.
CODES(1) ARE 1 TO 5
NAMES (1) ARE
'PD ', 'PM ', 'PO ', '®T v, 'PZ 1,
/ PRINT OBS.PERC=TOT.MARGINALS=2.
/ COMMENT !
SORT WAS PERFORMED ON SET 1 OF OLDSETS

RECORD HITS WERE USED FOR FREQUENCY ACCUMULATION
RECORDS PERTAINING BOTH FAILURES AND COMMAND
FAULTS WERE SORTED

/ END

Figure 3. (continued).
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*e%%¢ (OBSERVED FREQUENCY TABLE 1

EVOATE  FID PSYSTEN

#D PN “Po . PT PZ  TOTAL
1n BuR 9 0 1 8 2 1 20
PuR 11 6 8 ? 31 35
TOTAL 20 6 9 15 5 1 55
12 BWR 9 6 7 6 3 a1
PuR 15 23 22 10 3 70
TOTAL i% 20....--.3;.------13-- é f -tJL
"o PR S mge Wil
TOTAL 21 24 18 13 8 1 84
T4 BuR 8 7 - 5 01 24
PuR 6 6 9 5 ¢ 1 31
TOTAL 14 13 13 11 s i 55

TOTAL OF THE OBSERVED FREQUENCY TABLE 1S 295

Figure 4. Observed frequency table from modified BMDP-P4F run.
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A basic way of assessing how good the model fits the data is through
evaluating the chi-square (xz) statistic computed from the observed and

expected data. The xz statistic can be computed either through the
likelihood-ratio (LR) method or the Pearson method. In both cases the
statistic 1s a measure of the overall amount of deviation between the
expected and observed cell frequency counts. These statistics are

presented in Figure 5(a). The magnitude of the xz statistics must be
evaluated relative to the specific configuration for a prescribed table and

relative to the specified model. For this model the xz statistics and
associated probability levels are {25.31, P = .13) and (30.28, P = .30),
respectively for the LR and Pearson statistics. The probahility level can

be interpreted as the probability of getting a "larger" xz value under

the hypothesis that the model is “true". Low probability values imply that
either the model 1: not acceptable or the observed data is rare for that
model. The observed values for the PF,T model indicate a moderately good
fit with this model; that is, the data gives us no reason to suspect that
the model is totally inadequate. However, it could be of interest and
benefit to pursue trying to enhance the fit of the model to the data. Two
common ways this is done are through addition or deletion of terms to the
model and exclusion of "other" cells from the data.

In Figure 5(f) we see the effect of including additional terms in the
model. Notice a better fit is obtained when the term FT is added. For the

resulting model (FT,PF) the LR and Pearson xz statistics are .17 and
.42, respectively. The "significance" of this observed change in the
adequacy of the fit, again, is a subjective question which can only be
answered specific to the particular application.

One might also try to enhance the model by adeletion of terms. In
particular, we will examine the term PF. The effects associated with the
interaction between PSYSTEM and type of facility (PF) are shown in
Figure 5(e). For example, we see that, after adjusting for the main
(overall) differences between the selected BWR and PWR plants, for design
activities (PD) the BWR plant counts on the average remain about 13% higher
than the average, while for operation activities (PO) PWR plant counts
remain about 38% higher than the average. This indicates the relationship
between PSYSTEM and FID may depend cn the particular PSYSTEM and FID
combinétion. The need to include this term in the model is reflected in

the x2 statistics we obtain with the term deleted. Figure 5(g) shows

that t've LR and Pearson x2 statistics for the model! (P, F, T7) (without
the interaction term) are .05 and .14, respectively, these in contrast to
.12 and .30 with PF included.

The final section of the BMDP output, see Figure 5(h), provides
information about the level of PSYSTEM which has the greatest impact on the
fit of the model. Maintenance is the type of activity which is least
accomodated by the selected model.
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The fact that the PF,T model provides a reasonable fit coupled with
the fact that the xz statistics do not improve through adding PT to the

mode] (Pearson xz actually decreases) indicates that the distribution
of the personnel activities studied doe not significantly change from one
quarter to another in 1981 for the high-reporting plants.

CONCLUSIONS

In this paper we have illustrated a system for automated trend and
pattern analysis of operational data from nucliear power plants. The system
permits one to analyze broad segments of the reported data and generate
tables of counts. These tables are useful for obtaining cverviews of the
data and qualitatively identifying outliers, even without the log-linear
modeling capability. The time-consuming nature of producing such tables in
the past has now been overcome.

With log-linear modeling, a capability to statistically investigate
the relationships present in the data has been added and demonstrated. The
application of this capability to SCSS data is in its preliminary stages;
for example, the normalizing capability for studying hazard rates was not
demonstrated in the trial application because its use in conjunction with
collapsing categories to produce less sparse tables is still under
development. However, we are confident that log-linear hazard rate
modeling is appropriate for this data and we expect to learn more about
operational events through engineering analysis of events flagged by these
methods as they evolve further.

REFERENCES

1. Sequence Coding and Search System: User's Manual for the SCSS Data
Base, OﬁNL/NSTg-IQG (Draft), April 5, 1982.

2. M. Trojovsky, Data Summaries of Licensee Event Reports of Pumps
at U.S. Commercial Nuclear Power Plants, January 1. 1972 to

September 30, 1980, NUREG/CR-1205, Rev. 1, (EGG-EA-5524),
January 1982.

3. E. B. Henry, C. D. Gentillon, A User's Guide to CONTING, EGG-EA-6402,
September, 1983 (Draft; to be published as a NUREG).

4. W. J. Dixon, (Chief Editor), BMDP Statistical Software 1981,
Berkeley, California: University of California Press, 1981.

5. Query/Update Reference Manual, Control Data Corporation Manual
No. 60498300G.

6. Operating Units Status Reports, Licensed Operating Reactors, U.S.
Nuclear Regulatory Commission, NUREG-0020 (published monthly).

7. Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practices, Cambridge, Mass.: MIT
Press, 1975.

169






COVUE
JERNMENT
.NT AND

‘.--\0
\ter

eparts
! ment

mns ‘ n

v
f




the

the Nuclear
on (NRC). The
interactions and

)
Qs v

ymment s need not n.w('pc‘-‘,ay‘\_]y

seems des

ence ana the

American
a1 L<

ry







have been




1.

evaluating them were released

Reports prepared under NR(

the

Research Gra

to NRC
] 44 PN

2. Recommendations data collection and

e PRA J ) 1STI1C RISk

3. Th

recommendations

A
Assessment )

improvements in the PRA |

4. Some particular of imnlementation

and repsorts

cases

commentina on them provided to

were

A report on common mode and

common cC

precursor methods h
short]

Ye

]

i

I WOl t 1 thi S

gestions

government

ke C brief di
(‘n?‘}r(’ *d‘./i‘i(jr“j/ {jmx'u'i\'{*?(;r) and how

igqencles

) » T o ~ALIC ¢
) ¢ )5¢ SCus

"‘f\r

11d
for

may be improved.

Py
U

a clearer
rhtxi‘.(\ C

f 1rst, 1'1’1"’.7"3'41"","“} potential

to
will

are needed.
agency i

process.

1t ed the

bodies

- ) |
he rel

hoth

110
A

" ex
n such a way that h

e

additinnal . -

 f

the a

' r em consequence

AFY. Y"i" 1MpOses severe
advisory R Pr ablvy the purp
1”{1‘”’"‘(:6‘ ot spec 3"
well
D ~CAN
Personally,
the ,
qr(‘“; nay iﬁLi' S11QQ¢
exercising

NS On

committea 3

)Se

roups and to pre

< o S i L
as to to such

iCCess

ac heina en
i { J SO

<o

~ + b . - -
restri« ons 1518 L { Y . . v

n parti
wern nent

~h14¢ + 3
o lad

ymment
career and fviti

““ap_

t heory.

interestir

number

this date

!

ommunic:

roq

+ )
weeting

agenc)

nt S were

data

proce

~ T - >
echnique was

w

cess were made,

n¥f

< tudie

] ures ”:!S

1S D¢ nrep

are

with

their

some

3 + s
n ()r)‘( !

tributions

~&

w\‘% +

he

thi

vent

rio lem

C

r
]

the

[qh} ] o 1
agency

ardnnt n
1G0P the

ne remark
rued a

1S 4

revi ()w‘..,‘j

d
1

comments

the

and comments

reviewed

S were reviewed

;’\ een TO

sent

and should

and
with

sug-

A
1ans

of the

government

A+ 4
advisory

committee

he

”~

ommittee
of

50 ry
operation

avoid the undue

nf int -
) n pv(an’ as

‘}.‘,',gy‘,j‘n‘ nn'i -

as to warrant
special
capable of

suggestions.

intere f;|*

is

S concerning

result of my




PROBABILISTIC RISK ASSESSMENT (PRA)
AND
DECISIONMAKING UNDER UNCERTAINTY

Malcolm L. Ernst
Division of Risk Analysis
U.S. Nuclear Regulatory Commission
Washington, DC 20555

Tutorial Session 2




PROBABILISTIC RISK ASSESSMENT (PRA)
AND
DFCISIONMAKING UNDER UNCERTALNTY

Malcolm L. Ernst, Acting Director
Division of Risk Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Abstract

Decisions must be made, in spite of uncertainty. If the uncertainty is too
iarge, whether in a probabilistic or a deterministic sense, then the regu-
latory decision might be not to proceed with the activity, or to proceed with
appropriate conservatism expressed in cautions and limitations--but a decision
is made nonetheless. While most requlatory decisions are made in a determin-
istic sense using appropriate bounding conservatisms, in most cases the basic
uncertainties involved are much the same as those inherent in a PRA. The use
of PRA adds a new dimension for the decisionmaker--one of a more realistic
display of the integrated interactions of all systems, including the human.
These insights are important, but the bottom-line risk or core melt numbers
must be used with caution because of the inherent uncertainties.

Use of PRA as an influence on decisions suffers from the tendency to go too
quickly to the bottom line, which is the weakest part of a PRA. Numerical
criteria such as safety goals need to be constructed and implemented in such a
way as not to drive one even faster to the bottom line. One needs to stop
along the way and pay particular attention to the design and operations insights
derived from the analyses. Therefore, the performance of the PRAs and the
display of results and uncertainties should be suitably constructed so as to
provide convenient and scrutable stopping places for the decisionmaker, to
encourage viewing these insights and understanding the underlying assumptions
and uncertainties, and to discourage undue fixation on the bottom line. Only
then will regulation be able to draw fully upon the potential benefits of PRA
as an information source and regulatory tool.

Uecisions cannot be made by-the-numbers in a complex technology. Neither PRAs
nor safety goals can be used as cenveyances for easy decisions. Acceptable
risk as portrayed in the Conmission's safety goals is a subjective judgment
that cannot and should not be interpreted as a clear go no-go numerical
criterion. One must remember that PRA results are uncertain, but also their
bottom-line results are being compared to objectives that are believed to be a
conservative, and perhaps equally uncertain, estimate of society's perceived
tolerance of risk.

The general topic for this session of the Statistics Symposium is acceptable
risk and safety goals, and I was asked to discuss experiences and strategies
at the NRC. After giving this subject considerable thought, I felt I would
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be responsive to this charge if | tried to put into nerspective the past
practices of the NRC with regard to acceptable risk and decisionmaking under
uncertainty, the evaiving role of PRA as an analytical tool and aid to
decisionmaking, and the thinking behind the Commission's safety goal. Indeed,
because of the uncertainties involved, there must be enough grist in these
topics to keep any statistician's mill grinding.

The focus will be principally on PRA, because it is the only quantitative tool
that can be used to estimate risk. The focus will not be on the definition of
acceptable risk--the Commission's safety goals will be taken as a given in
this area. With regard to acceptable risk, past NRC policies and practice
have used a qualitative approach--reasonable assurance of no undue risk. The
safety goals policy statement is an attempt to define acceptable risk in a
more quantitative manner; to make the NRC's policy more explicit and under-
standable and to set more definitive boundaries on regulation.

What is a Decision?

There are very few decisions made on any subject today that dc not have some
degree of uncertainty. The only sure things in life are death and taxes; but
there is precious little that we, as decisionmakers, can do to alter the
outcome of these events. Therefore, we are stuck with making the best of
uncertainty in the vast majority of our decisions.

While the NRC is specifically charged with protecting the public health and
safety in matters involving the peaceful uses of nuclear energy, it is
recognized that the backdrop of this charge is the anticipation that, with
proper regulation, such uses can occur without an undue threat to public
health and safety. Therefore, the NRC is clearly charged to strive toward a
reasonable balance in regulation, and cessation of the activity it regulates
should only take place if there is not reasonable assurance that the public is
being adequately protected.

The interesting thing about decisions is that, if you don't take any action,
that is still a decision. In this context, the lack of a decision to issue a
nuclear power plant operating license would signify unacceptable risk, and the
lack of a decision to shut down an operating plant would signify acceptable
risk. Both such inactions clearly are decisions. Thus, every day the NRC,
through action or inaction, is called upon to make decisions; and these
decisions must be made using the best available knowledge and in spite of
uncertainty.

How Does tne NRC Regulate and Make Decisions?

The traditional regulatory process for limiting nuclear power risks is
deterministic, based on the concept of defense-in-depth which involves plant
design, operations, siting, and emergency planning. The defense-in-depth
concept emphasizes good management; quality assurance; conservative design,
contruction, and operations; prevention of core damage accidents by requiring
appropriate emergency shutdown and cooling systems; mitigation of any accidents
that might lead to core damage through the use of systems that reduce tne
amount of fission products released to the environment; siting in areas that




are not in close proximity to highly populated areas; and qood emergency
planning. Analyses to demonstrate compliance with NRC's requirements have
general ly been based on conservative engineering judament , through the use of
design basis accidents (DBAs), with little emphasis on probabilistic assessments

as to the likelihood of meeting the engineering intent of the requirements.
However, even the NRC's deterministic approach to licen 1ng has been sprinkied
with judgments regarding the likelihood of occurrence of certain event
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the industry and the NRC to supplement conventional engineering evaluation
techniques to enhance safety as well as to improve plant availability.

In spite of the potential advantages offered by PRA, however, the uncertainties
inherent in the assessments have appropriately limited their usefulness in
requlation. These uncertainties are pervasive, since they are a function of
the assumptions made by the individual analysts, the state of knowledge of
plant response to a given stimulus, and the quality of the data base; and the
PRAs are so complex that it is difficult not only to identify the uncertainties,
but also to quantify and propagate them so as to measure their importance
relative to central estimates of absolute risk. The end result is that, after
a PRA is completed, the pervasive uncertainties result in doubt as to the
actual importance of the identified design and operational weaknesses and
questions as to whether other weaknesses of perhaps even more risk importance
have been overlooked. However, this does not negate the qualitative and
quantitative insights that are gained.

Uncertainties arise in many areas, as we are all aware. Principal among the
uncertainties in PRA are the modeling of human actions, assumptions on success/
failure criteria, effects of test and maintenance, completeness of accident
initiators (e.g., sabotage), common cause failure mechanisms (including seismic,
flood, and fire-induced failures), the phenomena of core melt progression and
in-plant and ex-plant fission product transport, threats to containment
integrity, partial failures, rectification, design and fabrication errors,
equipment performance, treatment of generic and plant-specific data, failure
and recovery times, meteorological conditions, radiological health effects,

and the effectiveness of offsite emergency actions.

Clearly, the uncertainties are not all in one direction. Many may result in
an underestimate of the risk, such as incompleteness in accident initiators
and common mode failures. Others may overestimate the risk, such as any use
of conservative failure criteria, failure to consider appropriately partial
failures or ad hoc operator intervention, and the use of conservative source
terms. Therefore, it is difficult to judge whether tne bottom line results of
any PRA represent an underestimate or an overestimate of risk. However, most
experts in the field agree that reasonable bounds on PRA ostimates of the risk
from a nuclear power plant are about an order of magnitude around the central
estimate, and the bounds likely are larger for external phenomena (such as
seismic, fire, and flood) acting on the plant systems.

No technical analysis, whether deterministic in nature or probabilistic, 1s
ever formally complete or completely certain. Also, in most instances, the
uncertainties identified in PRAs are equally applicable to the more determin-
istic analyses. Therefore, it is important that the decisionmaker understand
all significant uncertainties so as to make more optimum use of all provided
analyses, including the information contained in PRAs,

Given these large uncertainties, how can PRA be used in the requlatory process
with any degree of confidence? That is the guestion one SO often hears. 1
will ask a different question. Given the strengths of PRA in providing an
integrated look at the performance and interactions of systems, components,
and humans. how can PRA not be used in the regulatory process? Our task must
be not to decide whether to use PRA, but how to use it most effectively




It should be emphasized that PRA is not a decisionmaking tool nor is it a
magic formula which can be substituted for sound Judgment. PRA is an analytic
tool which is being and should be used to supplement (not supplant) the
deterministic analyses traditionally used by the NRC staff. The process of
considering deterministic and probabilistic information, weighing policy
alternatives, and selecting the most appropriate regulatory action requires
integrating PRA insights with engineering judgment and operating data as well
as with social, economic, and political concerns. No one said that decision-
making was easy, and certainly PRA should not be expected to make it much
easier,

What are Potential Uses of PRA in Decisionmaking?

The current situation regarding PRA applications in regulatory decisionmaking
is one of increasingly widespread use as an analytical tool to add an
additional perspective to safety analysis, but also with increasing concern
over uncertainties and the credibility of bottom-1ine numbers. With only the
rarest exceptions, there have not been direct applications of PRA in plant-
specific decisions; but the methods are now almost routinely used in the
"high-medium-low" sense for assigning priorities among both generic and
plant-specific safety issues and in considering regulatory revisions. One
recent application of great importance is the heavy reliance by all parties in
the special Indian Point ASLB hearing on the methods and results of PRA.
Insights from the Indian Point PRA resulted in a few relatively inexpensive
modifications and procedural changes that offered substantial safety benefits
at modest cost. Another example is the use of PRA insights in the SEP
(Systematic Evaluation Program) review of the ten oldest operating plants, to
help in decisionmaking on hardware backfits and procedural changes. Still
another is the continuing use of probabilistic perspectives in resolving
unresolved safety issues (USIs) Examples include ATWS, station blackout,
shutdown heat removal, pressurized thermal shock, and DC power. A plant-
specific application of some note was for Big Rock Point: the utility-
sponsored PRA was used to demonstrate that many suggested safety-related
retrofits would not be cost-beneficial because of tne specific design, size,
and siting of the Big Rock Point station.

some areas where PRA might someday contribute importantly are still in an
evolving stage of development. These include accidents initiating from fires,
where the first PRA applications on a broad systems level have shown the
techniques to be useful but in need of further development; and from earth-
quakes, where there has already been substantial development under NRC and
private sponsorship which now allows quite useful insights, even though the
quantitative results of the analyses are quite uncertain and presently should
not be credibly compared directly to risks from internal accident initiators.
Another example is the study of core melt progression and fission product
transport, where the incorporation of a better understanding of the physical
phenomena and containment performance into probabilistic models is now in a
very active stage of development.

More important, several regulatory initiatives now of greatest visibility
within the NRC apply probabilistic thinking or analysis as an integral part of
the approach: examples include the severe accident arena, the rethinking of
the siting and emergency preparedness regqulations, the human factors area, the




analysis of operational data and events, and improved approaches to requlating
reactor operations. Perhaps the most important area now moving toward
regulatory closure is the "severe accident" arena, where possible rulemaking
or changes in other astects of regulation is now under active consideration
within NRC, and whe:e probabilistic methods and insights that include numerous
PRA studies are anticipated to form an important information base to aid
decisionmaking.

Potential uses of PRA in the future fall into three basic categorizations:
prioritization of NRC resources; generic regulatory applications; and plant-
specific usage. Each of these categories places somewhat different demands
on the quantitative credibility of the PRA results.

Prioritization of resources--Even considering the inherer® incompleteness of

the models and the uncertainties associated with the quan.ification of models
in a probabilistic risk assessment, because of its integrated nature and
reliance on realistic information, a probabilistic risk analysis presents our
best available information concerning the specific ways in which the critical
safety functions at nuclear power plants can fail to be performed, and the
importance of such failures. This information can be used to guide and focus

a wide spectrum of activities designed to improve the state of knowledge
regarding the safety of nuclear power plants. The resources of NRC, as well

as those of the industry, are limited; and the application of probabilistic
risk analysis techniques or insights from previous studies could permit the
decisionmaker to allocate these resources to issues most likely to reduce risk
or better define or limit the uncertainties. Examples of areas where prioriti-
zation is required include allocating resources to the resolution of generic
safety issues, establishing priorities for limited research funds, and allocating
staff to those inspection modules and activities of most importance to safety.

A1l issues in the above areas are not really amenable to reasonable gquanti-
fication. For example, it would be difficult to quantify the importance of a
quality assurance issue. However, most issues can be reasonably quantified,
and the nature of the decisions necessary to allocate regulatory resources

does not require great precision in PRA results. It is sufficient to prioritize
confirmatory research and the efforts used to resolve generic safety issues
generically into broad categories (e.g., high, medium, and low). The reasoning
is that one would not dismiss a potential safety issue unless it were clearly
of low risk. Thus, a few completed PRA studies can be selected as surrogates
even though it is apparent they do not fully represent the characteristics of
some plants, provided the nature of these differences are reasonably understood
and can at least be qualitatively evaluated.

The uncertainties involved in the risk measures used for prioritization are
such that only large (at least an order of magnitude) variations in the
comparative results should be considered significant. Thus, i1f severe core
damage frequency were one of the measures, it would be improper to conclude
that an issue havinc an estimated damage frequency of 3 x 10"2/RY is
significantly more important than an issue assessed as | x 10"°/RY, but it
would normally be appropriate to prioritize on the basis that an issue assessed
as gn‘Jva is substantially more important than another issue evaluated as
10°°/RY,




Generic requlatory dﬁpllgdtlf ns--The insights gained from the integral view of
the probabilistic risk ,na,,)xs can identify gaps in the present regulatory
concept of defense-in-depth or in the detailed application of that concept.

Due to the disciplined, integrated nature of the review, virtually every
probabilistic risk analysis performed to date has identified some feature of
the plant, previously unrecognized, which has had a measurable impact on

either the frequency of severe core damage or the risk to the public associated
with the facility. Many times the weakness involves system interactions or
dependencies It is possible to examine these gaps and, if necessary, develop
detervfu quf criteria which remove these weaknesses from further regulatory
consideration

However, there is an )urtjﬂt question relating to the applicability of the
1s the so-called surrogate
em, whicl would prefer to call the problem of generic applicability

results of existing P! to all plants. This
Y

|

At one time, it was thought that WASH-1400 might adequately display the risk
and dominant contributors to risk for all LWRs. Work completed since then,
nowever, has clearly indicated that class-specific and plant-specific
differences can substantially affect the estimated core melt frequency and
risk of a plant : 11 as the dominant accident contributors. This is so
because many o he risk significant features of a plant are dependent on
balance-of-plant de: . Therefore, if one wanted to establish surrogate
plant classes based on risk estimates, the number of plant ciasses would be
larger than 2 number SS nesigns with containment variations.

ongoing work on the surrogate question, both by the
't appears that, if reasonable accuracy is desired,
to be several dozen plant classes to describe the risk;
could not be used to provide an accurate central
5 t of a 1fic plant due to the inherent uncertainties and the
potential for important plant-specific design or operational differences.

How then can one use PRA as an effective tool for generic decisionmaking?
Again, I will answer that question by asking how we can afford not to use the
insights available f PRA. My answer 1m11ies that some information, albeit
incomplete, on risk is stil etter than no information. There 1S no require-
ment for perfec nowledge or perfect o¢u1t, in regulatory decisionmaking;
therefore, these standards should not be drawn across the trail of PRA--they
are red herrings. Given a recognized safety problem for a given plant, the
NRC frequently and in a deterministic manner has expanded the search to all
plants and made generi lesign-specific (e.g., based on NSSS design) decisions
I xes | ive been argued as being uncertain and
The use of PRA information would at
' and some of the
insights should not
artainty and inequity?
lace undue w‘ti‘-_]".t on the

> regulatory application are the
potential plant weaknesses and tc
aness and relative merits of
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alternative fixes. FEven though one may not be able to describe generically
the risk of a large number of plants using a single surrogate, one might find
that a single fix may have comparable risk reduction potential across a number
of different design classes. This could occur hecause a modification to
design or procedures could affect a number of different accident sequences,
one or more of which might be dominant in one design, while others might be
dominant in other designs. Therefore, while there likely will be a large
number of plant classes, there might be a significantly smaller number of
“surrogate" (generic) potential risk reduction modifications.

scope and depth. They could range from full-scope PRAs (even including
external accident initiators, such as seismic) to limited scope reliability
analyses similar to that performed several years ago on auxiliary feedwater
systems. lUncertainties in the fuller scope analyses would have to be
considered in detail to assess the likely generic implications with regard to
the dominance of the sequences, the impact of various alternative fixes, and
the applicability to other designs (the equity problem). For the limited

scope analyses the equity problem still exists, because the system being
reviewed will have more or less risk importance depending on the specifics of
the overall plant design. However, as far as the study itself the uncertainties
probably would be diminished, since relative insights would likely be sought
using a prescribed analytical process which would tend to cancel out some
uncertainties. The basic objective of such narrow studies would be to identify
and assess risk-important system design and procedure alternatives across a
number of different plant designs in the search for correctable weaknesses 1in

system reliability. Of course, even these reliability studies generally still

should be performed in an accident sequence context, to maintain some sensitivity
to plant-specific design differences of major risk importance.

The types of analyses that could support generic regulatory decisions vary in

Given a reasonably thorough understanding of the risks and dominant sequences,
the limitations of the insights as they derive from the scope and depth of the
studies performed, and an understanding of the uncertainties involved in the

inalyses, the insights gained from probabilistic risk analyses can be used to
identify areas in which reqgulatory action is necessary either to significantly
lower the probability or consequences of certain types of accident sequences,

or to relax reqgulatory requirements when they do not have a significant impact
on either the estimated risk to the public or the estimated frequency of core

1

e that there presently is a sufficient collection of PRAs such
that the risks of one or more accident sequences and the benefits of possible
fixes can be reasonably understood as a function of plant class, including an

understanding of the uncertainties in the analyses. Of course, there could be

[t is possibl

plant-specific risk outliers that would swamp the relative importance of
particular accident sequences or possible fixes at a gqiven plant; but this
still would not alter the absolute importance of that sequenc2 or fix. Also,
it is recognized that there could be some u‘&”?-\oﬂ(i;'L JPsi;ﬂ or sueratwaqal
haracteristics that would substantially alter both the absolute and relative
portance of particular accident sequences or fixes at a particular plant;
but that should not be a strong argument for not taking appropriate action on

1anificant < faot: nr jL\‘u‘
> J 1Cant ) LY | L




Plant use of
decisionmaking 1ies in plant-specific applications. As recognized in
Commission's safety goal policy statement, the use of safety goals (and thus
the bottom-1ine numbers of plant-specific PRAs) as licensing criteria that
must be met is not appropriate at the present time. Such use focuses on the
weakest part of a PRA--the accuracy of the bhottom-line results. uwever,
there are other important potential uses of a plant-specific PRA that could be
beneficial.

A plant-specific probabilistic risk amalysis, performed early in the design
process, can yield a large number of insights regarding integral performance
of the plant to the designers as they perform their detailed design; and the
assumptions and boundary conditions used in the PRA can drive the design
process so that they are included in the detailed design. At the same time,
it can be used to focus quality assurance activities during the detailed
design and construction, as well as during the development of operating, test,
and maintenance procedures on those items which have the highest potential for
affecting risk. The real significance of such an analysis is not the numerical
values calculated, but rather the insights on important features of the design
and critical man-machine interfaces which are identified and therefore car be
considered in depth.

For operating plants, there are a number of potential uses of a PRA that would
not be strongly dependent on the accuracy of the bottom-line numbers. F
of these uses include:

The possibility of assessing plant-specific alternatives to
of generic safety issues.

The possibility of plant-specific prioritization of inspection act
which, coupled with operating experience feedback, could more effec

utilize inspection resources in important areas such as quality assurance,
maintenance, and testing.

Assessment of the risk importance of operating events, including assisting
decisionmaking with regard to requests for relief from ) requirements
[dentification of plant-specific design weaknesses such as functional
systems interactions and other common cause failure modes. including
those initiated by seismic events, fires, and floods.

Evaluation of operating and emergency procedures an
off-normal events that have the potential of proqre
core accident.

As indicated, the above uses do not draw their basic str
line numbers. The basic strength is the ability to pinpc
that must be properly monitored, to understand accident seq
well to be able to estimate margins of safety, and to better
actions that should be taken during accident situations.

3y

ises are of regulatory importance, they would be even
utility itself, to help it run the plant more safel
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What is the Role of Safety Goals in Regulatory Decisions?

On March 14, 1983, a pelicy statement on safety goals was issued by the
Commission for public comment and a two-year evaluation period. This policy
statement includes qualitative safety goals, as well as quantitative design
objectives which could serve in the future as risk benchmarks for use by the
NRC as part of the decisionmaking process on matters relating to nuclear
safety. The Commission's policy statement and evaluation plan explicitly
exclude the safety goals from use in licensing cases, and as a principal
decision criterion in regulation, for the two-year evaluation period.

This statement of NRC safety policy expresses the Commission's views on the
acceptable level of risks to public health and safety and on the safety-cost
tradeoffs in regulatory decisionmaking. However, as clearly stated in the
policy statement the quantitative design objectives are only aiming points,

not firm requirements or limits. They are goals which plant designers and
operators should meet where feasible, and they are not substitutes for existing
regulations. Also, the basic purpose of the evaluation period is to permit a
better understanding of the strengths and weaknesses of the techniques (PRA)

by which one judges whether these objectives have been met, and to judge the
effactiveness of the goals and design objectives.

Therefore, at the present time the safety goals have no real role in decision-
making. However, what might their future role be? It would be difficult, if
not presumptuous, to speculate; but one can make some jadyments as to factors
affecting the potential future role.

First, it is clear that in implementing the safety goals great care will have
to be exercised to differentiate between risk levels that must be met and
goals or aiming points that are only desirable to meet. Second, since there
will always be substantial uncertainty surrounding the results of a PRA,
careful thoucht will have to be giv2n to the degree of confidence to be
required in estimating whether the goals are reached. For example, if a 90
percent confidence factor is expected, either explicitly or de facto, this
would be equivalent to increasing the stringency of the design objectives by
as much as a factor of 10 in most cases; or by even more where the PRA results
are even more uncertain, such as in estimations of seismic risk.

Finally, in implementing the safety goals care will have to be taken that the
principal use and thrust of PRAs does not become the precise matching of
bottom-1ine numbers with the quantitative design objectives. Avoiding such

use will be difficult to do, given the structure of the safety goals. However,
if this happens, the focus will be on the weakest element of a PRA; and the
substantial insights to be drawn with regard to accident sequences, system
reliability, and human performance will tend to be downgraded or even lost

The role to be played by the safety goal is yet to be determined. However, it
is clear that, practically speaking, the role will be strongly dependent on
the final structure of the implementation plan.
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How Can PRA Best Serve the Decisionmaker?

Regardless of advances in the state of the art of PRA and the experience data
base, there will always be substantial uncertainties in the results and
opportunities for unintentional or even intentional bias. Because of this
fact, the strengths and weaknesses of PRA must bhe kept firmly in mind when
crafting an implementation plan for the Commission's safety goals. PRA is
only a tool for providing information, and the safety goals can onl)
effective as the tool permits., A mismatch between the strengths

and the de facto implementation of the safety goals would do a di

both.

Recoanizing the uncertainties involved in PRAs, several things can be t
help the decisionmaker understand the results of a PRA and factor the result:
appropriately into his or her decision rationale, as discussed below. T

an important subject, whether or not quantitative design criteria ar

adopted by the Commission for widespread use; because PRAs will stil

and the results of the PRAs will be used by decisionmakers whether

formal decision standards or criteria are adopted by the Commission

scriptive methodology and assumptions--It is clear that some degree
prescriptiveness must occur, otherwise one i11d not know whether
between PRAs were reflective of plant design and operating differenc
merely the result of the ideas of individual analysts. The degree
scriptiveness of the methodology is an issue of substantial controvers
since one does not want to destroy innovative thought.

Peer review--Some comfort can be drawn from a substantial peer

FD.‘!.,- T“‘.‘?T{_”{HY'\HZ and after the conduct of the 1”-\'." and the req

prcecess itself certainly will add credibility to the analyses.

performance of un‘wf?ATHTV and confi
analytical assumptions and p“unumwnn1\qy, as well as the st
tainties of the data base. The existence of an unusual
must be identified for analysis and understanding.

Une ertainty .,H':d‘,_‘{_"‘“-,——(S_Y.mzi.ir‘1 procedures will have to be pres
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large, whether in probabilisti
1

atory decision




appropriate conservatism expressed in cautions and limitations--but a decision
is made nonetheless. While most regulatory decisions are made in a determin-
istic sense using appropriate bounding conservatisms, in most cases the basic
uncertainties involved are much the same as those inherent in a PRA. The use
of PRA adds a new dimension for the decisionmaker--one of a more realistic
display of the integrated interactions of all systems, including the human.
These insights are important, but the bottom-line risk or core melt numbers
nust he used with caution because of the inherent uncertainties.

Use of PRA as an influence on decisions suffers from the tendency to go too
quickly to the bottom line, which is the weakest part of a PRA. Numerical
criteria such as safety goals need to be constructed and implemented in such
way as not to drive one even faster to the bottom line. One needs to stop
ong the way and pay particular attention to the design and operations
nsights derived from the analyses. Therefore, the performance of the PRAs
and the display of results and uncertainties should be suitably constructed
s0 as to provide convenient and scrutable stopping places for the decision-
naker, to encourage viewing these insights and understanding the underlying
assumptions and uncertainties, and to discourage undue fixation on the bottom
line. Only then will reqgulation be able to draw fully upon the potential
benefits of PRA as an information source and regulatory tool.

1

3
a
a

\

Jecisions cannot be made by-the-numbers in a complex technology. Neither PRAs
nor safety goals can be used as conveyances for easy decisions. Acceptable
risk as portrayed in the Commission's safety goals is a subjective judgment
that cannot and should not be interpreted as a clear go no-go numerical
criterion. One must remember that PRA results are uncertain, but also their
bottom-1ine results are being compared to objectives that are believed to be

3 conservative, and perhaps equally uncertain, estimate of society's perceived

’ﬁ‘twvj]:gw 134 rNsk.




REFERENCES

Feactor Safety Study--An Assessment of Accident Risks in U.S. Commercia)
Nuclear Power Plants, WASH-1400 (NUREG-75/014), October 1975.

PRA Procedures Guide, NUREG/CR-2300, January 1983.

N. J. McCormick, Reliability and Risk Analysis, Academic Press, New York,
1981.

R. von Mises, "On the Foundation of Probability and Statistics"™, Annua)
of Mathematics and Statistics, 12, 1941, pp. 191-205,

V. Barnett, Comparative Statistical Infiluences, Wiley and Sons, New York,
1982, 3

D. Dubofs and H. Prade, Fuzzy Sets and Systems: Theory and Applications,
Academic Press, New York, 1980,

A. Kandel, Fuzzy Techniques in Pattern Recognition, Wiley and Sons,
New York, 1982,

W. E. Vesely, T. C. Davis, R. S. Denning, and N. Saltos, Measures of Risk
Importance and Their Applications, NUREG/CR-3385, July 1983.

W. E. Vesely, T. C. Davis, and N. Saltos, Measures of the Risk Impacts of
Testing and Maintenance Activities, NUREG/CR-3541, October 1983.

A. D. Swain and H. E. Guttmann, Handbook of Human Reliability Analysis
with Emphasis on Nuclear Power PTant AppTications, NUREG/CR-1278,
October 1980,

€. E. Leamer, Specification Searches: Ad Hoc Influence with

Nonexperimental Data, Wiley and Sons, New York, 1978.




Attendees:

1983 Statistical Symposium on National Energy

Lee Abramson

Nuclear Regulatory Commission
MNBB 7602

Washington, DC 20555

Fred Balkovetz

EG&G Idaho~Inc.

P. 0. Box 1625

Idaho Falls, ID 83415

Iris Banz

Westinghouse Electric Corporation
P. O, Box 355, MNC-416
Pittsburgh, PA 15230

Richard Beckman

Los Alamos National Laboratory
Mail Stop F600

Los Alamos, NM B7545

Thomas ¥, Bement

Los Alamos National Laboratory
Majl Stop F600

Los Alamos, NM 87345
Steve Bengston

EG&C Idaho-Inc.

P. 0. Box 1625

Idaho Falls, ID 83415

Carl A. Bennett
Battelle Human Affafrs Research Center
4000 NW 4]1st St.,

Seattle, WA 98105

Deborah E. Bennett

Lawrence Livermore National La
P. 0. Box 808, L-316
Livermore, CA 94550

Jane M. Booker

Los Alamos National Laboratory
Mail Stop FA00

Los Alamos, NM 87545

W. M. Bowen

Bactelle Northwest

P. O, Box 999, Battelle Blvd.
Richland, WA 991352

Issues




Lawrence A. Bruckner

Los Alamos National Laboratory
Mail Stop F600

Los Alamos, NM 87545

Maurice C. Bryson

Los Alamos National Laboratory
Mail Stop F600

Los Alamos, NM

Beverly G. Cassidy

Westinghouse Electric Corporation
P. O. Box 355, MNC-416
Pittsburgh, PA 15230

David C. Cox

Battelle Columbus Laboratory
505 King Avenue

Columbus, OH 43201

Robert L. Dennig
Nuclear Regulatory Commission
EWS

Washington, DC 20555

A MN=7/(3A~

la G, Doctor

Pame
Battelle Northwest
Box 9(){)‘ Battelle Blvd.
, WA 99352

ivermore National Laboratory
808, L-316
94550

National Laboratory
X, Bldg. 7509

TN 37850

>andra Frattalli

Nuclear Regulatory Commission
MNBB

Washi

laser
{ivermore National Laboratory
L=316

34550




Rubin Goldstein

Combustion Engineering, Inc.

Dept. 9485-2408, 1000 Prospect Hill
indsor, CT 06095

Peter Groer

Oak Ridge Associated Universities
Box 117
Oak Ridge, TN 13783l

Oren V. Hester
EG&G Idalic=Inc.
P, 0., Box 1625
Idaho Falls, ID 83415

Ronald L. Iman

Sandia National Laboratories
Division 1223

Albuquerque, NM 87185

Leslie Johnson

Lawrence Livermore National Laboratory
P. 0. Box 808, L-316
Livermore, CA 94550

Samuel C. Kao

Brookhaven National Laboratory
AMD 515, BNL

Upton, NY 11973

Robert E. Kurth

Battelle Memorial Institute
505 W. King NE

Columbus, OH 43201

James A. Lechner

National Bureau of Standards
Administration A337
Washington, DC 20234

Ernest Linder

Penn State University

219 Pond Laboratory
Department of Statistics
University Park, PA 16802

J. H. Lofthouse
EG&G Idaho=Ine.
P. O, Box 1625
Idaho Falls, ID

Dan Lurie
Nuclear Regulatory Commission
MNBB 7602

Washington, DC




David Margolies

Lawrence Livermore National Laboratory
P. 0. Box 808, L-316

Livermore, CA 94550

Michael D. McKay

Los Alamos National Laboratory
Mail Stop F600

Los Alamos, NM 87545

Richard W. Mensing

Lawrence Livermore National Laboratory
P. O, Box 808, L-316

Livermore, CA 94550

Joann M. Mines

Exxon Nuclear Idaho Co., Inc.
P. 0. Box 2800, CPP-668

[daho Falls, ID 83401

David L. Nelson

Boeing Computer Services

565 Andover Park West, MS 9C-01
Tukwila, WA 98188

L. D. Y. Ong

Nuclear Regulatory Commission
Office of Policy Evaluation
1717 H, St. N.W.

Washington, DC 20555

jerome Puskin

Nuclear Regulatory Commission
MNBB 7602

Washington, DC 20555

Joan R. Rosenblatt

National Bureau of Standards
A438 Administration
Washington, DC 20234

David Rubinstein

Nuclear Regulatory Commission
MNBB 7602

Washington, DC 20555

John Van Ryzin

Columbia University and
Brookhaven National Laboratory

600 West 168th St.

New York, NY 10032




Rama Sastry

U.S. Devartment of Energy
EP-32

Washington, DC 20584

F. A, Seiler

Lnvelace Kesearch Center

P. 0. Box 5890

Albuquerque, NM 87185
Abraham Silvers

Electrical Power Research Inst
74 Roosevelt Circle

Palo Alto, CA 94306

Martin Tanner
University of Wisconsin
1210 W. Dayton

Madisor, WI 53706

Jacqueline K., Telford
Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road

Laurel, MD 20707

fTerrance N. Troy
National Bureau of Standards
Office ) § r‘.\ «".‘.\'Jhtr‘n]'.\r

Washington, D 20234

P, Uppuluri
Ogk Ridge« National lLaboratory
Bldeg., 9704-]
P. O, Box Y
Oak Ridge, TN 37830

iteve Verrill
Lawrence Livermore National Laboratory
P. 0. Box 808, L-316

Livermore , CA 94559

Richard Weisinger
Lawrence Livermore National Labor
0. Box 808, L-3]

ermore, CA 94550




Nuclear Regulatory Commission, Bethesda, Maryland

J

Technical Information Center, Oak Ridge, Tennessee

Los Alamos National Laboratory, Los Alamos, New Mexico




%.‘” FORM 38 VS NUCLEAR RECL L ATORY COMMGE,

EPORT NUMBER ‘Augrer 5, TIOC soe Vo No ey

NUREG/CP-0053

BIBLIOGRAPHIC DATA SHEET LA-10127-C

3 TITLE AND SURTITLE 10N NUMBES

Proceedingsf the Ninth Annual Statistics Symposium ' e

on National Bpergy issues, October 19-21, 1983

= * May 1984
6 AUTHOR ", \ K 7 DaTE T ISSUED

[ W-‘ 'vl;u
Compiled by Maur¥ce C. Bryson )y
Y. 1v:ag¥Q5:5:;:::7:%2%#"“"““
S PRI ORMNG ORGANIZATION NAME AND MAILING ADDRESS (Incuse 2o Cooe 4
Lcs Alamos National Bgboratory "
Los Alamos, NM 87545 PR ——
-’:‘
4 A7225
TLOSPONSON NG DRGANIZATION NAKE AND MAILING ADDR lincrwe S0 Coow b4 122 TYPE OF REPORT
/
Division of Risk Analysis #
- ~ .' ps
Office ~f Nuclear Regulatory Wesearch g | Lonfersoce Proceedings

U.S. Nuclear Regulatory Commi
Washington, DC 20555

11 SUPPLEMENTARY NOTES

4 ARSTRACT 1200 wereh o W

The Ninth Annual Statistics Sym National Energy Issues was held in
Rockville, Maryland, at the Holiflay Inrgrowne Plaza, October 19-21, 1983,
under the ‘oint sponsorship of fos AlamosyNational Laboratory and the Nuclear
Requlatory Conmission. Sessionf included contributed-paper sessions, two
tutorial sessions, and one di Included in these proceedings are
those papers for which final by the authors, together with

a list of papers presented

opy was provid

The REY WORDS AND DOCUMENT ANALYINS T80 DESCR PTDRS
VB AL ABILITY STATEMENT " 's’ccw:'v CLASS P T1ON TE NUWMBER OF PAGES
’ "
UncTassified
U ] 2. & d '8 'Slcwﬂv CLASS! P ICATION 20 PRICE
/4
niinice (ReTassified s

‘U S GOVERNMENT PRINLING OFFICE 1984—778-008/4102






