- 2. Single Unit Deration The turbina driven auxiliary feedwater pump may be out-of-service for up to 72 hours. If the turbine driven auxiliary feedwater pump cannot be restored to service within that 72 hour time period, the reactor shall be in hot shutdown within the next 12 hours. Either one of the two motor driven auxiliary feedwater pumps may be out-of-service for up to 7 days. If the motor driven auxiliary feedwater pump cannot be restored to service within that 7 day period the operating unit shall be in hot shutdown within the next 12 hours.
- D. The main steam stop valves (MS-2017 and MS-2018) and the non-return check valves (MS-2017A and MS-2018A) shall be operable. If one main steam stop valve or non-return check valve is inoperable but open, power operation may continue provided the inoperable valve is restored to operable status within 4 hours, otherwise the reactor shall be placed in a hot shutdown condition within the following 6 hours. With one or more main steam stop valves or non-return check valves inoperable, subsequent operation in the hot shutdown condition may proceed provided the inoperable valve or valves are maintained closed. An inoperable main steam stop valve or non-return check valve may however, be opened in the hot shutdown condition for the performance of testing to confirm operability.

Basis

A reactor shutdown from power requires removal of core decay heat. Immediate decay heat removal requirements are normally satisfied by the steam bypass to the condenser. Therefore, core decay heat can be continuously dissipated via the steam bypass to the condenser as feedwater in the steam generator is converted to steam by heat absorption. Normally, the capability to return feedwater flow to the steam generators is provided by operation of the turbine cycle feedwater system.

The eight main steam safety valves have a total combined rated capability of $6.60^{\circ}.000$ lbs/hr. The total full power steam flow is 6.620.000 lbs/hr, therefore eight (8) main steam safety valves will be able to relieve the total full-power steam flow if necessary.

In the unlikely event of complete loss of electrical power to the station, decay heat removal would continue to be assured for each unit by the availability of either the steam-driven auxiliary feedwater pump or one of the two motor-driven auxiliary steam generator feedwater pumps, and steam discharge to the atmosphere