Comanche Peak Steam Electric Station

Risk-Based In-Service Testing Program

Risk Ranking Determination Study

Summary Report

Engineering Analysis

November 22,1995

Table of Contents

1.0 BACKGROUND 1-1
2.0 PROJECT SCOPE AND OBJECTIVES 2-1
3.0 PROJECT APPROACH 3-1
3.1 Methodology 3-2
3.2 Risk Importance Determination 3-5
3.3 Completeness Issues 3-6
3.4 Cumulative Effects of Test Interval Changes 3-7
3.5 Expert Panel 3-8
3.6 Identification of Component Degradation and Feedback Process 3-9
3.7 Quality and Technical Adequacy of CPSES IPE 3-11
4.0 SUMMARY AND CONCLUSIONS 4-1
4.1 Summary of Expert Panel Process 4-1
4.2 Results and Conclusions 4-3
5.0 REFERENCES 5-1

1.0 BACKGROUND

In-service Testing (IST) programs were developed to ensure the reliable operation of safetyrelated pumps and valves at nuclear power plants. The codes, standards and guides for these tests were developed by the American Society of Mechanical Engineers (ASME) Operations and Maintenance (O\&M) Committee. The essential Nuclear Regulatory Commission (NRC) regulation governing this process of testing has been 1NCFR50.55 and has been implemented using ASME Be:PV Code Section XI (Ref. 1), both for passive component examination (welding, studs, etc.) and for active component testing (pumps and valves).

For the past several years, both the nuclear industry and the NRC have devoted significant aitention and resources aimed at improving the performance of pumps and valves. In a letter (Ref. 2) dated September 9, 1991 from James E. Richardson of the NRC to Forrest T. Rhodes of ASME, the NRC requested that the ASME O\&M Committee consider revising existing requirements for in-service testing. The letter requested revisions to ensure the ability of certain pumps and valves to perform their intended hydraulic and mechanical safety functions. The revisions requested would:

- Expand the scope to include specific components that are not constructed in accordance with ASME B\&PV Code Section III rules for construction or tested in accordance with ASME B\&PV Code Section XI;
- Require verification of each safety function for each included component;
- Require such verification be accomplished at design basis conditions, or, where such verification is not possible, a test at less than design basis conditions combined with an analysis may be substituted; and
- Data collected during component testing may be compared with data taken during previous tests to allow determination of the condition of the component.

This request was made in part due to NRC concerns with the ability of some components to perform their safety functions under design basis conditions, such as motor-operated valves and check valves, and concern that the in-service tests required by ASME B\&PV Code Section XI and incorporated by reference into 10 CFR $50.55 \mathrm{a}(\mathrm{f})$ do not: a) include each component that has a hydraulic or safety-related function; b) accomplish verification of each safety function of each safety-related component; or c) require that such verification be accomplished at the design basis conditions.

The intent of current IST programs is to include all active safety-related pumps and valves that are credited in the plant design basis safety analysis. In general, the IST equipment lists are developed by review of plant drawings showing ASME Code Class 1,2 and 3 classification boundaries. All components within the boundaries are then reviewed to determine whether or not they were credited with an active safety function under the plant licensing basis. The FSAR analyses and other design basis documentation are reviewed to make these determinations.

Older plants not initially designed to ASME B\&PV Code Section III have applied ANSI Safety Class 1,2 and 3 classification rules to piping and components for purposes of establishing ASME B\&PV Code Section XI test requirements, even though the systems and components were not designed or constructed in accordance with ASME B\&PV Code Section III.

As a result of the NRC request for IST program enhancement, there are industry concerns involving the restrictive nature and basis for these requirements and their impact on plant operation. Overly restrictive requirements can complicate plant operation, cause unwarranted operating costs, and most importantly, degrade plant safety through needless component testing and undue burden during plant outages.

Developments in the industry demonstrate an acceptance of the use of risk-based approaches using a plant's probabilistic safety analysis (PSA) to identify prescriptive regulations that have marginal safety benefits. The momentum in this direction is evidenced by recent NRC interest in graded QA and EPRI's applications of risk-based technologies, and most recently, in the issuance of the Nuclear Regulatory Commission's final policy statement on the use of PSA in nuclear regulatory activities (Ref. 3).

Similarly, improvements to IST programs using a risk-based approach can reduce operating costs while maintaining a high level of plant safety. Possible savings from improved IST programs include:

- Reduced costs of engineering analyses to develop test criteria that adequately demonstrate functional capability at design basis conditions;
- Reduced costs of plant modifications where current configurations do not support testing at or near design basis conditions;
- Reduced costs for development of new test procedures implementing the new test criteria; and
- Reduction of incremental costs associated with performing the new tests, including:
- Additional time required to perform the tests and analyze results;
- Costs of specialized test equipment or vendor services;
- Possible effects on critical path outage duration; and
- Possible increases in radiation exposure.

For these reasons it is advantageous for utilities to pursue IST program improvements. The impact of changes on plant safety is of primary interest and is the controlling factor in implementing such changes. However, changes that negligibly reduce plant safety should not be ruled out, especially if such changes can lead to significant plant performance improvements in other areas.

2.0 PROJECT SCOPE AND OBJECTIVES

The scope of this project is to perform a review of the Comanche Peak Steam Electric Station IST program that optimizes the safety benefits in assuring pump and valve performance. It uses a methodology for a risk-based approach to IST program review and enhancement that is founded on a blend of probabilistic and deterministic methods and that has as its principal results, recommendations for adjustments to test frequency intervals for these components. Thus, it is not aimed at reducing the number of components within the scope of an IST program, rather at optimizing what is tested and when. In this study, all components within the scope of the IST program were examined. However, only those determined to be less safety significant will be considered for a code exemption. The ASME O\&M Committee is reviewing the more safety significant components to ensure that the appropriate tests are identified and performed on those components for their respective failure modes.

The objectives of this project are to apply risk-based technologies to IST components to determine their risk significance; to apply risk-based technologies to risk-significant components identified in the IPE and outside of ASME Code Classes 1,2 and 3 to determine whether additional compensatory measures are appropriate; and to apply a combination of deterministic and risk-based methods to determine appropriate testing frequencies and/or compensatory measures for IST components. The results of this project will be the basis for the CPSES code exemption submittal to the NRC and will be part of a pilot study for the industry.

Several safety enhancements to a plant IST program can be derived, both directly and indirectly, by using the probabilistic and deterministic approach presented in this report. These safety enhancements are very similar to those attendant with the optimized performance of motoroperated valves discussed in NUMARC 93-05 (Ref. 4), from which elements of the following discussion were taken.

Direct Safety Enhancements

Greater attention and resources devoted to the high priority IST components could translate into many direct safety enhancements. First, this group of components could be subjected to, where practical and meaningful, more frequent periodic tests than the lower priority groups. The timeliness of any problem identification and resolution would be improved. Second, requirements associated with the high priority group of IST components are expected to be more
rigorous and demanding in nature than for the other groups. These requirements provide added assurance that any problems that may impact the functionality of the components will be identified and resolved. Third, the resulting risk-based IST program will consider whether some risk-significant components that are outside the scope of ASME Code Classes 1,2 and 3 should be added to the IST program to improve safety. Finally, because extensive testing can have adverse safety and operational consequences, reduction of testing may reduce component wearout and operator burden. These changes are expected to improve safety.

Indirect Safety Enhancements

There are other indirect safety benefits to this approach that are as important. Risk-based prioritization efforts identify the safety-significant IST components and the impact of their potential failures on plant safety. In addition, these analyses identify important scenarios that provide information with respect to the operational demand that may be placed on a given component. Such information is valuable because it relates the performance of the IST component to the broader context of plant safety. This allows more rational decision making, more efficient use of resources, and is central to optimizing safety benefits.

PROJECT APPROACH

The TU Electric risk-based IST project was developed and implemented as part of a tailored collaboration (TC) effort with EPRI. The project was conducted under the direction of a Steering Committee that interfaced with the American Society of Mechanical Engineers (ASME) research program funded by the NRC, the Westinghouse Owners Group (WOG), the Nuclear Energy Institute (NEI) and other utilities, and coordinated its activities with other industry efforts such as the WOG check valve program and various NEI activities on risk-based regulation. The TC project was designed to provide plant-specific benefits to TU Electric and, as a pilot project, to provide generic insights and tools that will benefit similar industry projects. In particular, the project developed generic methods for idencifying opportunities to reduce those IST-related regulatory requirements and commitments that require significant resources to comply with and/or implement, but contribute insignificantly to safe and reliable operation. This work is being provided to NEI's Risk-Based IST Task Force and ASME B\&PV Code Section XI IST Research Task Force to assist them in their formulation of guidelines and inservice testing requirements.

The Steering Committee developed the overall project objectives and milestones and commissioned various work activities and studies in doing this work. The Steering Committee consisted of members with expertise in the areas of licensing, probabilistic safety analysis, ASME B\&PV Code Section XI and WOG analysis activities. In addition to providing overall voordination, the Steering Committee served as the central point of decision making for major technical issues and provided technology transfer and guidance to the expert panel in performing its work. These latter activities were accomplished through common membership of several members on the Steering Committee and the expert panel. It was concluded that the strength of this risk-based IST program and the integrity of its results lie both in the rcbustness of the methodology and in the work of the Steering Committee and expert panel. Further, the robustness of the methodology provides consistency in the results.

The project was divided into two phases. Phase 1 included the development of an implementation guidelines document and actual implementation of the methodology to prioritize components in the IST program. Phase 2 involved the development of tools for evaluating test intervals for the risk-significant IST components. The work activities in each of these phases were reviewed by the Steering Committee and presented to various other peer groups at strategic points in the project. In this way the methodology was refined, and a fairly
mature process was arrived at before involvement of the expert panel. The various tasks that support the project are described in more detail in the sections that follow.

3.1 Methodology

The process described above lead to development of the methodology. The methodology was leveloped consistent with NUMARC Guides 93-01 (Ref. 5)(Maintenance Rule) and 93-05 (Motor Operated Valve(MOV) testing). The system level ranking approach from the Maintenance Rule process was merged with the component level ranking approach used for MOV testing. The merging of the two approaches was designed to ensure that the new IST program would benefit from and be consistent with the Maintenance Rule process and other industry risk-based programs.

The Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW) risk measures of the Maintenance Rule were combined with the Fussell-Vesely (FV) risk measure of MOV testing. Because this initiative was to reduce existing regulatory burden rather than focus on new regulatory initiatives, the methodology applies these risk measures in a manner intended to ensure a safety-neutral outcome.

Because RRW and FV provide similar insights, only the FV importance measure was utilized in this analysis. Fussell-Vesely provides a measure of incremental change in total core damage frequency (CDF) that indicates the importance of incremental changes in reliability that might result from changing in-service test intervals. Risk Achievement Worth provides an indicator of the importance of degradations in component reliability. These measures were combined into a decision criteria such as that shown in Figure 3-1.

As the figure indicates, components with a significant FV were considered "more risk significant". Components with an insignificant FV were considered "less risk significant". However, it was important to ensure that a reduction in test intervals did not allow unintended consequences, i.e., a compromise in safety resulting from a degradation in reliability.

Figure 3-1

Therefore, if FV was insignificant, it was also required that RAW be insignificant for a component to be classified as "less risk significant". If RAW was significant, the component was considered by the expert panel for placement in the high category. If the panel decided the component could be ranked low, an additional requirement was imposed before a component could be classified as "less risk significant". A compensatory measure was required to be selected by the expert panel to limit degradations in reliability.

During the development of this methodology, EPRI and NEI began working with NRC on the development of the EPRI PSA Applications Guide (Ref. 6). In general, this methodology is consistent with the guide. The guide did provide a specific acceptance criteria for permanent risk increases that was used in this evaluation. A few minor differences between this methodology and the EPRI PSA Applications Guide exit, most of which are more conservative in this study.

The general approach taken included four steps. First, risk importance was determined. This determination was based on the results of the IPE and the IPEEE and other plant operating modes, such as outage modes. In addition to this complete spectrum of core damage accidents, severe accidents leading to large and early fission product releases were also given special attention. Finally, the importance of components not in the IPE and IPEEE models or not in the IST program were evaluated.

The next step addressed the completeness and adequacy of these models through a number of sensitivity analyses to compensate for the limitations of the quantitative models. The third step evaluated the cumulative impact of low risk significant components on plant risk if their inservice test intervals were extended. This step provided technical justification for proposed test intervals for less risk significant components in the existing IST. The fourth and last step was to review the process and results with an expert panel that was knowledgeable of plant risk, plant design, plant operations practices, and plant performance. This process blended deterministic safety insights with quantitative risk insights to ensure that risk significance was appropriately identified.

The following sections further describe the methodology and provide some additional background to this work.

3.2 Risk Importance Determination

In this study, risk importance rankings of the IST components were determined based on the results of the CPSES IPE. These risk rankings were then complemented with rankings based on consideration of other accident initiators and plant operating modes. These other accident initiators are external events such as fires, tornados, and earthquakes. The other plant operating mode is the outage mode. Each of these evaluations considered importance with respect to core damage prevention. Core damage prevention has been found to be a good measure of the spectrum of releases that can result from severe accidents. However, unicue risk contributions can occur if severe accident releases are large and early. Hence, risk rankings were also complemented by considering components important to preventing large, early releases. This approach is consistent with the intent of the safety goal and the severe accident policy statement and is a requirement of the EPRI PSA Applications Guide.

In applying the above method, it was found that a significant action of IST components are not in the IFE. While it is likely that such components are not risk significant, this study specifically evaluated each component and the design basis functions addressed by the IST program. Most components that are not in the IPE were found to be implicitly modeled by the study. That is, the IPE found that the components cither were not required for the system to prevent severe accidents, were in systems that provided a highly redundant function, or performed functions that were extremely unlikely to be required. The systematic review of these components used quantitative and qualitative insights to determine whether components should be considered more or less risk significant and whether risk insights implied that compensatory actions should be considered.

The risk ranking process also identified some IPE components that were more risk significant but which were not in the IST program. These components typically were found to be outside the code class boundary and therefore not subject to IST requirements. These components were considered for compensatory action equivalent to those defined for components in the IST program.

3.3 Completeness Issues

Quantitative risk models have limitations associated with the structure of the models and the assumptions and the input data used. The limitations were compensated for by evaluating truncation limits, identifying IST components masked by the IPE, applying a conservative treatment of common cause failures, requiring an expert panel to identify components with operational concerns, and performing selected sensitivity studies.

The risk ranking process described above used the FV and RAW importance measures. The values for these importance measures are calculated based on cutsets. The cumulative effects analysis described below also is based on cutsets. Cutsets are obtained by solving the mode! with a truncation limit. Experience has shown that setting the truncation limit arbitrarily low creates inefficiencies such that analysis costs quickly exceed the value of risk insights gained. This project evaluated the truncation limit used in the CPSES IPE and found it to be sufficient for both risk ranking and estimating cumulative effects.

The IPE model may "mask" certain components because they are associated with supercomponents, human events or initiating events but not explicitly identified. The components masked by the IPE model are typically small contributors to the overall probability of the event. However, it was considered appropriate to verify this consideration for this effort. The project evaluated those IST components that were: 1) contained in supercomponents (e.g., some components on the diesel generator skid), 2) required to function as part of a human action, and 3) might cause a significant plant initiator.

Risk ranking results can be strongly affected by the contribution of common cause failure. The approach taken in the project was to conservatively assume that a common cause event in the cutsets should have its entire risk significance assigned to all components represented by the event. This approach lead to the inclusion of a significant number of components in the more risk significant category which otherwise would have been considered less risk significant. The expert panel confirmed that the approach identified potentially important components.

Both risk ranking measures used are influenced by the reliability data assigned to the component. The CPSES IPE uses generic data since an insufficient amount of plant-specific data was available. Generic data (and indeed, most interpretations of plant specific data) considers components in groups. But ranking was done on a component basis. Consequently,
the expert panel considered whether or not plant specific operational insights indicated component reliability problems that might affect the ranking of an individual component or small group of components. Components with operational concerns were considered more risk significant by the expert panel.

Finally, the completeness of the models, assumptions and input data were tested by sensitivity studies. In one sensitivity study designed to consider the impact of human event modeling, risk ranking results were compared assuming operator events in the IPE always failed to occur. Another sensitivity study was designed to consider whether changes to in-service testing offered the potential for common-cause-like degradations in components in different systems. Less risk significant components were assumed to be influenced two at a time. Four such components were identified which, together with other components, offered the potential of becoming more risk significant. Appropriate compensatory actions designed to limit reliability degradations were imposed on these components. A similar sensitivity study was performed where less risk significant compor onts were assumed to be influenced three at a time.

3.4 Cumbiative Effects of Test Interval Changes

A risk ranking approach based on importance measures such as was used in this project does not necessarily guarantee that acceptable levels of risk will result. Risk importance measures are based on changes to components one at a time. Changes to many components simultaneously may cause unintended increases in risk despite meeting the selected conservative risk ranking measures.

An analysis was performed to determine the potential risk impact of increasing in-service testing intervals simultaneously on all less risk significant components. Consideration was given to available information on how changes in test intervals will change component unavailability. Uncertainty in this information, together with the complexity required to model such an approach, dictated the use of a very conservative approach. That is, risk impact was measured assuming that component unavailability (including both on demand and time dependent failure rates) increased by the same factor that the test interval increased. Despite the use of this conservative assumption, calculations indicate that test intervals could be increased from quarterly to six years or more with acceptable increases in risk. If consideration were given to improvements in performance that are possible to occur from a risk-based IST program, it is plausible that core damage risk may not increase at all.

3.5 Expert Panel

For the CPSES Risk-Based In-Service Testing (RBIST) Program, an expert panel (EP) was established to make the final determination of risk ranking for the pumps and valves in the CPSES Unit 1 and 2 IST program. The panel was constituted in part of individuals who were members of the Steering Committee and of others who were members of the expert panel established for the implementation of the Maintenance Rule.

The members of the panel were selected based on their nuclear power plant experience which included expertise in the areas of ASME codes and standards, plant operations, maintenance engineering, systems engineering, design engineering and probabilistic safety assessment (PSA). The minimal education and experience requirements for panel members were a BS in an engineering discipline and eight years in nuclear power. The operations representative currently holds a USNRC Senior Reactor Operator License and has held it for at least two years. The chairman has significant technical expertise in PSA applications and project management. The expert panel also utilized the expertise of other consultants and engineers in doing its evaluations.

The minimum quorum necessary for the EP to conduct business was four (4) members consisting of the representatives from operations, probabilistic risk assessment, system engineering/in-service test engineering, and codes and standards. It was decided that the panel would be living and it would participate in periodic updates to the ranking whenever the IPE study is updated.

The scope of the expert panel activities included both risk ranking and application of it. The panel's principal responsibility was to ensure the risk ranking information was consistent with plant design, operating procedures, and with plant-specific operating experience. The panel made a qualitative assessment of the risk importance categories that were developed for the components using the IPE results and insights discussed in the preceding sections of this report. This assessment was based on deterministic insights, plant-specific history, engineering judgements, regulatory requirements, and probabilistic safety analysis insights. The panel reviewed the IPE component risk rankings, compared the IPE and IST functions to ensure consistency with plant design, analyzed applicable deterministic information and determined the final safety significance categorizations for all the IST components. At the end of the expert panel evaluation process, every component in the CPSES IST program was reviewed and
evaluated by the expert panel members. A summary of the expert panel process is provided in section 4 of this report.

3.6 Identification of Component Degradation and Feedback Process

At CPSES, various station procedures are used to govern the activities related to the IST program and other areas such as corrective action and root cause programs. These procedures form a consistent means of controlling and integrating site-wide activities. The ASME B\&P Code Section XI in-service testing of pumps and valves is implemented by procedure STA-711, "ASME Section XI In-service Teiting Program for Pumps and Valves." This procedure provides guidance to ensure effective, consistent and coordinated implementation of the code requirements. It provides guidance on how the in-service testing program interfaces with other station procedures to perform surveillances, to maintain test records, to assure deficiencies are identified, tracked and resolved, and to assure that corrective actions are performed and documented. These procedures provide the means by which feedback of failures of IST components to the IST program is accomplished. They provide assurance that failures of IST components will be promptly identified and addressed and modifications to the in-service testing program (e.g., change to surveillance intervals) are made in a timely manner.

A failure of an IST component may be identified in the course of doing ordinary maintenance and tests or as part of a surveillance activity. These activities are controlled primarily by STA606, "Work Requests and Work Orders," and STA-704, "Surveillance Program". When a failure is identified as part of a surveillance test or maintenance activity, a ONE Form is prepared per STA-421, "Operations Notification and Evaluation (ONE FORM)", depending on the nature of the failure. This form is used at CPSES to report potential adverse conditions and resolve issues and to assure that corrective actions are performed and documented. Resolution of a ONE Form is accomplished in accordance with the requirements of STA-422, "Processing of Operations Notification and Evaluation (ONE) Forms". Resolution of a ONE Form includes:

- Assigning a unique identification number and logging in appropriate plant information systems, and initial distribution for trending purposes.
- Reviewing the reported condition to determine the category of correction action required.
- Considering the generic implications of the item, i.e., the potential for the condition to exist elsewhere and initiating works order as required to investigate.
- Determining the probable cause of failure.
- Identifying and performing corrective action.

Depending upon the nature of the adverse condition, the corrective actions may include reporting to outside agencies, performing an engineering evaluation or performing a root cause evaluation. Root cause evaluations are preformed in accordance with STA-515, "Root Cause Analysis." These evaluations include a structured analysis of issues in order to identify causes of and contributing factors to component failure. As appropriate, root cause evaluations consider human performance issues and require failure analysis of components.

In addition to these activities, the implementation of the Maintenance Rule at CPSES requires that failures of components in systems within the scope of the rule be reviewed to determine whether these failures are maintenance preventable functional failures. The IST systems are within the scope of the maintenance rule and thus will come under these provisions. Maintenance preventable failures that result in system functional failures receive root cause analysis and corrective action evaluations, if the Maintenance Rule has been implemented on the system.

For deficiencies arising from surveillance work orders, records of corrective action are documented on work orders per the requirements of STA-606, "Work Requests and Work Orders". Work orders contain details of all corrective actions performed. Records of in-service testing to confirm operational adequacy following corrective actions are documented on postwork test reports per the requirements of STA-623, "Post-Work Test Program." The IST engineer reviews all closed IST-related surveillance work orders and post-work tests. The IST engineer also reviews in-service valve test results during the work order post-work review process and extracts and records any trendable data for early identification of equipment problems that may require modification to the IST program.

Because the IST engineer is a member of the systems engineering group, his activities are closely integrated with those of the system engineers. The pump and valve performance records maintained by the IST engineer are used extensively by systems engineers to determine corrective actions and to monitor system performance. The IST engineer is aiso a member of the expert panel for implementation of the Maintenance Rule and the risk-based IST program. He participates in periodic reviews of the performance of systems within the scope of these
programs, and through these means, he can provide timely feedback of performance of components in the systems.

Thus, the various procedures and programs in place at CPSES provide assurance that failures of IST components will be promptly identified and addressed and modifications to the in-service testing program will be considered and made in a timely manner.

3.7 Quality and Technical Adequacy of CPSES IRE

In general, the IPE study for CPSES fully satisfies the requirements of a full-scope Level-I and Level-II PRA. One of the main objectives of the IPE development was to be able to utilize its results and insights toward the enhancement of plant safety through risk-based applications. With this objective in mind, the IPE elements were developed in detail and integrated in a manner sufficient to satisfy both the NRC Generic Letter $88-20$ requirements and support future plant applications.

The CPSES IPE study was performed by developing large fault trees and small event trees. The large fault trees were then linked together according to the event tree logics for quantifying accident sequences. The major elements of the IPE study were developed and reviewed in a manner consistent with and in excess of the good practices of the time. In general, it is believed that the CPSES IPE meets or exceeds the quality standards subsequently suggested by the EPRI PSA Applications Guide. These major elements are briefly described below.

Initiating Event Analysis

A detailed review of plant equipment and operating procedures was performed to identify all the potential plant-specific initiating events as well as those initiating events that were identified in the industry. The loss of support system initiators such as service water, component cooling water, safety chilled water, HVAC, Instrument Air, Electrical Power subsystems were also identified and evaluated in the IPE study. In addition, other special initiators including interfacing systems LOCA, SGTR, ATWS, internal flooding and station blackout were analyzed in detail and documented in the IPE.

Accidem Sequence Analysis

A detailed accident sequence analysis was performed and resulted in the development of functional event trees for all the initiating events identified in the IPE study. This also included induced LOCA initiating events such as stuck open primary side safety valves, stuck open PORVs, and most importantly, reactor coolant pump seal LOCA.

The accident sequences were quantified using the fault tree linking methodology. The common concern in the industry is the truncation limit which could potentially impact the importance evaluation. The total core damage frequency for CPSES was estimated to be $5.72 \mathrm{E}-05$. The truncation limit chosen for the CPSES accident sequence quantification was set at $1.0 \mathrm{E}-09$ which is approximately $2.0 \mathrm{E}-05$ below the total core damage frequency. The recommended truncation limit in the EPRI PSA Application Guide document is 10^{-4} below the baseline IPE core damage frequency. The analysis of truncation limits for this application is described in section 4 of the main report. Most assumptions related to IST components were in effect validated by the treatment of not-modeled IST components. In addition, ATWS mitigating IST components have been ranked appropriately.

Systems Analysis

One of the major elements of the CPSES IPE study was the system analysis task. A total of 15 systems including support systems and front-line systems required for accident mitigation were analyzed. For all 15 systems, detailed system notebooks were developed which are found to be excellent documents for plant support activities. The impact of the loss of room cooling on equipment operability was carefully evaluated by the plant-specific room heat-up calculations and other available information in the industry. As part of this effort, the impact of loss of room cooling on the control room and switchgear room were also evaluated.

Common Cause Failure Analysis

Common Cause Failures (CCF) impacting two or more components in a system were carefully examined and appropriately placed in the system fault tree models. The Multiple Greek Letter (MGL) method described in NUREG/CR-4780, "Procedures for Treating Common Cause Failures in Safety and Reliability Studies," was used to quantify the effect of common cause
failure events. The evaluation process is consistent with the NRC and EPRI guidelines. The typical IST-related component types are included in the CCF analysis. These are:

- Motor operated valves
- Air operated valves
- Check valves
- Electro-hydraulic valves
- Solenoid valves
- Operating pumps
- Standby pumps
- Turbine-driven pumps
- Positive displacement pumps

Human Reliability Analysis

TU Electric spent extensive amount of time to review, analyze and document human interactions that were modeled in the IPE study. This analysis is consistent with the guidelines of SHARP methodology developed by EPRI. This analysis included an evaluation of operator timing and emergency operating procedures that might create more demands on the operator. In general, three groups of human interactions were considered, namely, latent human errors, human errors associated with initiating events, and dynamic human errors. In addition, a detailed recovery analysis was performed to properly account for the possible recovery actions. The approach adopted for the CPSES IPE follows the general guidelines in the EPRI recovery analysis (EPRI RP 3206-03, "Modeling of Pecovery Actions in PRAs"). The recovery analysis included the interview of operations staff with extensive plant experience, development of decision trees, review of related procedures and drawings, and consideration of the available time for each critical recovery action. The human reliability analysis process and results were all documented in a separate notebook.

IPE Review Process

To ensure a high-quality IPE and to provide quality control to the IPE Process, two types of independent reviews were conducted. One was done internally by TU Electric staff, and the other was done externally by outside PSA experts. In general, both reviews were applied 5 the entire examination process except when it was not possible due to the availability of resources or required skills. In those few cases, as a minimum, each task was reviewed thoroughly by either an internal or external independent reviewer. Furthermore, a final independent review was performed after the IPE study was completed. A team of PRA experts was selected from the industry to independently review the entire IPE study and its supporting analyses. The review team spent one week at the TU Electric offices where documents, procedures and supporting calculations and analyses were available for use. The results of all independent review activities performed by internal and external reviewers were well documented as part of the IPE documentation requirements.

Section 3.0 provides an overview of the process used to develop the risk based IST plan for CPSES. This section provides a discussion of the results and conclusions of the process.

4.1 Summary of Expert Pånel Process

As described earlier, the expert panel process was integrated with a Steering Committee which in turn coordinated with other industry activities such as the ASME research program and the WOG check valve program. The expert panel for risk-based IST was essentially the same as the Maintenance Rule expert panel with the addition of the Steering Committee chairman and the IST program coordinator, both of whom were knowledgeable of IST requirements and commitments, IST plan implementation, and CPSES plant performance.

To prepare for the expert panel review, the risk ranking team developed a set of simplified P\&IDs for all the systems modeled in the IPE. The IPE risk category results, component tag numbers, and the location of the components in the systems were all shown on the simplified diagrams. Using this information and the design basis functions addressed by IST as documented in the IST plan, the panel reviewed and validated or adjusted the ranking results.

The panel's principal responsibility was to ensure the risk ranking information was consistent with plant design, operating procedures, and with plant- specific operating experience. The IPE and IST functions were compared to ensure consistency with plant design. In particular, reverse flow in check valves was evaluated to see if it might be risk significant since the IPE assumed this to be low probability. If redundant trains could be affected by that failure mode, the risk ranking was adjusted accordingly. Also, information was fed back to the ranking process to reflect unmodeled operator actions that altered some ranking information, usually a RAW value rather than a FV value. Finally, the panel identified operational concerns about a specific component that might affect the risk ranking or might make in-service testing desirable for other reasons. In more than one case, a component's ranking was increased to high because inservice testing helped prevent entry into a limiting condition for operation (LCO).

The panel also reviewed the sensitivity of the component rankings to common cause failure. Many of these components were valves in the lower half of the FV medium category (i.e., from 0.005 to 0.001). The panel felt that these were important components and that they should be retained as is in the IST program.

The panel also reviewed the rankings and their associated technical bases for other sources of risk and other risk measures, namely, the IPEEE and outage risk sources and the large, early release risk measure. Based on this information, the ranking of some components was increased to high.

In the event that the panel found a component to be potentially high (low FV, but high RAW), the panel selected a compensatory measure to ensure that component functionality would still be evaluated on a regular basis by other plant programs. Because pumps were often ranked high and potentially high components were often in the flow path for the IST pump test, the quarterly pump test was often found to be an effective compensatory measure for suction and discharge check valves. Potentially high MOVs were often "tested" by other technical specification requirements, namely slave relay tests.

The panel also spent a significant portion of its time reviewing IST components not modeled by the IPE, and IST components that were modeled by the IPE but for which not all IST functions were modeled. Risk ranking of these functions was based on insights gained from the earlier work, e.g., components whose failures might affect redundant trains were ranked high.

The final ranking step performed by the panel was to consider IPE components not in the IST which met the criteria for high risk. All the high risk components not in the IST program were confirmed by the expert panel. In general, the importance of instrument air and the decay heat removal related portions of main steam were the principal focus of the panel's considerations. Evaluations were designated to determine how to best use in-service testing techniques to address the more safety significant failure modes modeled in the IPE.

For high ranked components in the IST, the panel decided to maintain all in-service testing as is, regardless of whether some failure modes (and therefore some tests) were not risk significant. This conservative approach was adopted for ease of implementation and administrative consistency. For low ranked components in the IST, the panel discussed the technical basis for increasing test intervals and yet maintaining plant safety. In addition, the panel considered implementation issues associated with particular test intervals. The panel concluded that generally a staggered test implementation over 6 years would be the best implementation strategy.

4.2 Results and Conclusions

In this study, all components within the scope of the IST program were examined. In all, a total of 687 components were examined and ranked as either High-more safety significant or Lowless safety significant. Of this total, 654 valves were evaluated, $117(17.9 \%)$ of which were ranked high and $537(82.1 \%)$ of which were ranked low. Thirty-three (33) pumps were evaluated, $21(63.6 \%)$ of which were ranked high and $12(36.4 \%)$ of which were ranked low. Of the total components, $375(54.6 \%)$ were modeled in the IPE and $312(45.4 \%)$ were in IST only, most (285) of the latter being low ranked valves. Only those determined to be less safety significant (low) will be considered for a code exemption.

Table 4-1 lists all the components by tag number that were examined in this evaluation. This table shows the entire spectrum of the review and the results of the expert panel evaluations. The risk ranking process was concluded to be robust. It generated results that were consistent with deterministic insights from the expert paiel and found to be safety neutral. The following spectrum of risk and deterministic insights demonsitates this conclusion:

- a spectrum of risk sources were considered, i.e., IPE, external and outage,
- multiple risk measures were considered, i.e., CDF and LERF,
- diverse importance measures were used, i.e., FV and RAW,
- sensitivity studies consistently demonstrated that the risk significant components had been identified,
- both IPE and IST functions were compared and evaluated and considered in an integrated manner, and
- both PRA and deterministic insights from the expert panel were incorporated into both the ranking results and the resulting IST plan.

The scope and level of detail of the results review by the expert panel, the emphasis placed on understanding why components were ranked high or low, the careful comparison of the IPE and the IST functions, and the sensitivity studies performed all demonstrated the technical adequacy of the IPE to serve as the basis for this and other risk based applications. The resulting risk based IST program is considered by the expert panel to have the appropriate changes (both increases as well as decreases in scope) and the appropriate checks and balances to ensure burden reduction can be achieved while maintaining or even improving plant safety.

The results of this analysis indicate that the risk increase associated with the proposed interval changes is acceptable even with the very conservative assumptions used in the study. The total risk may in fact decrease if the overall IST program becomes more efficient by focusing on the more important components. Each of the important components are represented more than once in nearly all of the cutsets containing pumps and valves. A small improvement in the unavailabilities of important components would likely translate into a corresponding reduction in risk. This reduction in risk is probably larger than the increase that might result from increased test intervals since it is expected that the risk increase would be even less than the amounts calculated here.

In conclusion, modifying the test frequencies of the IST components in the low safety significance category to every 6 years is reasonable and at worst would result in an insignificant increase in total plant risk. By every indication from both engineering judgment and risk insights, the selected test interval increase for less safety significant components is prudent and the overall change to the IST program is believed to be safety neutral.

5.0 REEERENCES

1. ASME Bioler and Pressure Vessel Code, Section XI
2. Letter dated September 9, 1991 from James E. Richardson of the NRC to Forrest T. Rhodes of ASME.
3. Nuclear Regulatory Commission, "Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory Activities; Final Policy Statement," Federal Register, Vol. 60, No. 158, August 16,1995.
4. NUMARC 93-05, "Guideline for Optimizing Safety Benefits in Assuring the Performance of Motor-Operated Valves," Nuclear Management and Resources Council, Inc., December 1993.
5. NUMARC 93-01, "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants, "Nuclear Management and Resources Council, Inc., May 1993.
6. Electric Power Research Institute, "PSA Applications Guide," TR-105396, Project 3200-12, Final Report, August 1995.

Summary of Risk Ranking Results for IST Components

Sorted By IST Plan		Component Description	Fussell-Vesely *	Risk Achievement Worth *	Initial IPE Ranking Bassd on FV *-	IPEEE Fire : Tomado FV Ranking Changes	Outage Risk Ranking Cranges	Large, Early Release FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
IST Pian Table Number	Component Tag Number											
Table 0	CP1-AFAPM0-01 (1)	PUMP 1-91	00282	28296	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-AFAPMD-02	MOTOR DRIVEN AUXIILARY FEEDWATER PUMP 1-02	00394	33020	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-AFAPTD-01	TURGINE DRIVEN AUXILIAR FEEDWATER P(MMP :-01	0.2351	129035	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-CCAPCC-01	01	00356	48323	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-CCAPCC-02	COMPONENT COCLING WATER PUMP 1- 02	00303	385384	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-CHAPCP-05	SAFETY CHILLED WATER RECIRC PUMP $1-05$	00060	17278	Medium	No change	No change	No change	No change	' Madium	No Change	High
Table 0	CP1-CHAPCP-06 (2)(4	SAFETY CHILLED WATER RECIRC PUMP 1-C6	0.0003	1.3459	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 0	CP1-CTAPCS-01	CONTAINMENT SPRAY PUMP 1-01	n/a	n'a	None	No. change	No change	No change	Vo change	na	No Change	High
Table 0	CP1-CTAPCS-02	CONTAINMENT SPRAY PUMP 1-02	n / a	n/a	None	No change	No change	No change	No change	n/a	No Change	High
Table 0	CP1-CTAPCS 03	CONTAINMENT SPRAY PUMP 1-03	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	High
Table 0	CP1-CTAPCS-04	CONTAINMENT SPRAY PUMP 1.04	n/a	n/a	None	No change	No change	No change	No chenge	nia	No Change	High
Tabie 0	CP1-DDAPRM-01	REACTOR MAKEUP WATER PUMP $1-01$	n/a	n/a	n/a	no	n/a	n/a	No change	n/a	Low	Lew
Table 0	CP1-DOAPFT-01	DIESEL GENERATOR 1-01 FUEL OIL TRANSFER PUMP 1-01	00478	1400000	High	No change	No change	No change	No change	None	Decreased	Low
Table 0	CP1-DOAPFT-02	DIESEL GENERATOR 1-01 FUEL OIL. TRANSFER PUMP 1-02	00478	1400000	High	No change	No change	No change	No change	None	Decreased	Low
Tabie 0	CP1-DOAPFT-63	DIESEL GENERATOR 1-02 FUEL OIL. TRANSFER DUMP 1-03	C0478	1400000	"eh	No change	No change	No change	No change	None	Decreased	L.ow
Table 0	CP1-DOAPFT-04	DIESEL GENERATOR $1-02$ FUEL OIL TRANSFER PUMP 1-04	00478	1400000	High	No change	No change	No change	No change	None	Decreased	Low
Table 0	CP1-SWAPSW-01	STATION SERVICE WATER PUMP 1-01	0.0969	778709	High	No change	No change	No change	No change	High	No Change	High
Table 0	CP1-SWAPSW-02 [1)	STATION SERVICE WATER PUMP $1-02$	00385	1070000	High	No change	No crange	No change	No change	High	No Change	High
Table 0	CP1-WPAPSS-01	SAFEGUARD BUILDING SUMP $1-01$ PIMMP $1-01$	n/a	N/a	n'a	n/a	ria	n/3	No change	N/a	Low	Low
Table 0	CP1-WPAPSS-02	SAFE GUARD BUIL DING SUMP 1-01 PUMP $1-02$	n/a	nis	n/a	n/a	n/a	n/a	No change	nfe	Low	Low
Table 0	CP1-WPAPSS-03	SAFEGUARD BUILDING SUMP 1-02 PUMP $1-03$	nua	n/a	n/a	n / a	nia	N/a	No change	n/a	Low	Low
Table 0	CP1-WPAPSS-04	SAFEGUARO BUILDING SUMP 1-02 PUMP 1-04	nja	n/a	n/a	n / s	N / a	N / s	No change	nta	Low	Low
Tabie 0	CPX-DDAPRM-01	REACTOR MAKEUP WATER PUMP X-01	nia	na	n/a	n/a	n / a	n/a	No change	n/a	Low	Low
Table 0	CPX-SFAPSF-01	SPENT FUEL POOL COOLING WATER PUMP X-01	n/a	n/a	n/a	n/a	n/a	n/a	No change	N/a	Low	Low
Table 0	CPX-SFAPSF-02	SPENT FUEL POOL COOLING WATER PUMP X-02	n/a	N'a	n/8	n/a	n/a	n/a	No change	n/a	Low	Low
Table 0	TBX-CSAPBA-01	BORIC ACID TRANSFER PUMP 1-01	N/3	N/a	None	No change	No change	No change	No change	n / a	No Change	High
Table 0	TBX-CSAPBA-02	BORIC ACID TRANSFER PUIMP 1-02	n/a	n/a	None	Nochange	No change	No change	No change	n/a	No Change	High
Table 0	TBX-CSAPCH-01 (1)	CENTRIFUGAL CHARGING PUMP 1.01	0.0125	15301	High	No change	No change	No change	No change	High	No Change	High

Sorted By IS: Plian												
IST Plan Table Number	Component Tag Number	Compenent Description	Fussell-Vesely*	Risk Achlevement Worth ${ }^{-}$	Initial IPE Ranking Based on FV **	IPEET FIre 8 Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Selsmic Risk Ranking Changes	CDF Ranking Changes wlout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 0	TBX-CSAPCH-02	CENTRIFUGAL CHARGING PUMP 1-02	0.0271	21861	Figh	No change	No change	No change	No change	High	No Change	High
Table 0	TBX-RHAPRH-01 (1)	RESIDUAL HEAT REMOVAL PUMP 1-01	00050	13468	Medium	No change	No change	No change	No change	Mactium	No Change	High
Table 0	TBX-RHAPRH-02	RESIDUAL HEAT REMOVAL PUMP 1-02	00088	16201	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 0	TEX-SIAPSL-01 (1)	SAFETY INJECTION PUMP 1-01	00146	12559	High	No change	No change	No change	No change	High	No Change	High:
Table 0	TEX-SIAPSI-02	SAFETY INJECTION PUMP 1 -02	00257	14509	High	No change	No change	No change	No change	High	No Change	High
Table 1	1-FV-2456	VIv	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 1	1-FV-2457	guv	N/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 1	1-HV-2459	TD AFW PMP 1-01 DISCH TO SG $1-01$ FLO CTRL VIV	n/a	n/a	None	No change	Low	No change	No change	n/a	No Change	Low
Table 1	1-HV-2460	TD AFW PMP 1-01 DISCH TO SG 1-02 FCV	n/a	N/a	None	No change	Low	No change	No change	n/a	No Change	Low
Table 1	1-HV-2461 (1)	CTRL VLV	n/a	Na	None	No change	Low	No charge	No change	None	No Change	Low
Table 1	$1+\mathrm{HV}-2462$	CTRL VLV	00000	1.9356	None	No change	Low	No change	No change	None	No Change	Low
Table 1	1 +hV-2480	MD AFW PMP 1-01 SSW SUCT ISOL VL.	n/a	n / a	N/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 1	1-HV-2481	MD AFW PMP 1-02 SSW SUCT ISOL VLV	n/a	N/a	n / h	n/a	n/9	nja	No change	n/a	Low	Low
Table 1	1-HV-2482	TD AFW PMP 1-01 SSW SUCT ISOL VLV	n/a	n/a	nua	n/a	nia	ava	No change	n/a	Low	Low
Table 1	$1+\mathrm{HV}-2484$	CST 1-01 DISCH VLV 2484	nis	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 1	1-HV-2485	CST 1-01 DISCH VLV 2485	n/a	n/a	nia	n/a	n/a	n/a	No change	n/a	Low	Low
Tabie 1	1-HV-2491A	TD AFW PMP $1-01$ DISCH TO SG 1-01 isOL VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 1	1-HV-24918	MO AFW PMP 1-0t DISCH TO SG 1-01 isOL VLV	n/a	Na	None	No change	No change	No change	No change	n/a	No Change	Low
Table 1	1-HV-2492A	TD AFW PMP 1-01 DISCH TO SG 1-02 ISOL VIV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 1	1-HV-24928	MO AFW PMP 1-01 DISCH TO SG 1-02 ISOL VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 1	1-HV-2493A	MO AFW PMP $1-02$ DISCH TO SG 1-03 ISOL VLV	N/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 1	1-HV-24938	TD AFW PMP 1-01 DISCH TO SG 1-03 ISOL VLV	n/a	noa	None	No change	No change	No change	No change	N/a	No Change	Low
Table 1	1-HV-2494A	MD AFW PMP 1-02 DISCH TO SG 1-04 ISOL VIV	n/a	n/a	None	No change	Nochange	No change	No change	nia	No Change	Low
Table 1	1-HV-24943	TD AFW PMP 1-01 DISCH TO SG 1-04 ISOL VIV	nja	Na	None	No charge	No change	No change	No change	n/a	No Change	Low
Table 1	1-LV-2478	MIN WTR TO CST 1-01 MU VLV	n/a	N / a	Na	n/a	$\mathrm{n} / \mathrm{3}$	n/a	No change	n/a	Low	Low

Summary of Rest Resting Resultar

		9	E	5	$\frac{3}{5}$	5	5	3	${ }_{3}{ }^{3}$	g ${ }_{5}$	¢	3	3	3	5 है	5	g	3	3	9	g	Ef	5	3	\％	B
		$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & 5 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { an } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3	$\begin{aligned} & \text { o } \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & 5 \\ & \frac{8}{2} \end{aligned}$			$\stackrel{3}{5}$		（1）	5	5	5		$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{0}{8} \\ & \frac{0}{2} \end{aligned}$	5	g		$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	鮟	［10
		ct	（3	$\begin{aligned} & \frac{8}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{8}{2} \\ & \frac{1}{2} \end{aligned}$	है	$\frac{\pi}{2}$	ถ	${ }^{3}$	z^{3}	อ็	¢	5	g	है	5	5	\％	กี	ह็	है	है	ถ	है	อ์	ถ็
		$\begin{aligned} & 0_{0}^{0} \\ & 0_{0}^{1} \\ & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{5}{4} \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{8}{6} \\ & \frac{0}{6} \\ & \frac{6}{6} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{t}{4} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & \frac{0}{4} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \frac{0}{4} \\ & \frac{5}{4} \\ & \frac{9}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \text { en } \\ & \frac{1}{6} \\ & \frac{1}{2} \end{aligned}$				$\begin{aligned} & \stackrel{8}{5} \\ & \frac{5}{7} \\ & \text { ? } \end{aligned}$						$\begin{aligned} & \frac{0}{2} \\ & \frac{4}{5} \\ & \frac{5}{2} \end{aligned}$		\％
		$\begin{aligned} & 0 \\ & e_{6}^{6} \\ & 6 \\ & \frac{0}{2} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 8 \\ & y_{4} \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{6}^{6} \\ & 6 \\ & 0 \\ & 2 \end{aligned}$	¢	$\begin{aligned} & 8 \\ & 6 \\ & 6 \\ & \frac{8}{2} \end{aligned}$	$\begin{gathered} \frac{8}{0} \\ \frac{4}{4} \\ \frac{0}{6} \\ \frac{2}{2} \end{gathered}$			ह็			$\begin{aligned} & \text { 豦 } \\ & 0 \\ & 0 \end{aligned}$	\％	ह็			ถ์	5	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{5}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { 昆 } \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{1}{7} \\ & \frac{0}{2} \end{aligned}$	\％	\％
		5	$\stackrel{*}{5}$	5	$\stackrel{3}{3}$	\＆		$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{8}{6} \\ & 0 \\ & 2 \end{aligned}$			ถี		\％		5	ह6	\％		c	है			$\begin{aligned} & 0 \\ & \mathbf{e}_{4}^{4} \\ & 0 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \frac{8}{6} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	砉	＊
			2 2 5 5 2 2		$\begin{aligned} & 8 \\ & \text { a } \\ & \text { 5 } \\ & 0 \\ & 2 \end{aligned}$	$\frac{5}{5}$		$\begin{aligned} & 8 \\ & \frac{8}{1} \\ & \frac{1}{6} \\ & \frac{1}{2} \\ & 0 \end{aligned}$			¢		cier	$\begin{array}{\|l\|l\|} \hline \\ \hline \\ 0 \\ 0 \\ 2 \end{array}$	ถี	ह6	$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0_{6}^{5} \\ & \frac{0}{2} \end{aligned}$	है	5					\％	眴
		$\frac{8}{2}$	$\frac{9}{2}$	$\frac{9}{2}$	$\frac{8}{2}$	¢	है	5	${ }_{5}^{5}$		ล็		5	\％	อ๊	ถึ	\％	¢	ह็	ह็	$\frac{\mathbf{g}}{\frac{5}{2}}$	$\begin{aligned} & \frac{9}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{0}{6} \\ & \frac{5}{2} \end{aligned}$	$\frac{9}{2}$	$\frac{8}{2}$	\％
		อ็	है	\％	$\stackrel{n}{\infty} \underset{\sim}{\infty}$	ह็	ल్ల్́	$\stackrel{5}{6}$		㦴䓵	ร็		5		है	ह็	\％	్ㅓㅇ	ह็	5	ह็	¢	ह็	हٌ	ह5	อ็
		อ	${ }^{[1}$	ह็	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	है	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & { }_{8}^{6} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { My } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O	है	E	\％${ }^{\text {\％}}$		हี	ह็	8	\%	¢	อี	है	ह็．	ह็	ह็	ถ็	ह็
																		$\begin{aligned} & 3 \\ & 5 \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & \frac{1}{2} \\ & \frac{0}{0} \\ & \frac{9}{2} \\ & \frac{0}{2} \\ & \frac{2}{3} \\ & \frac{1}{5} \\ & \frac{1}{2} \end{aligned}$								
$\frac{5}{6}$		2 6 2 2 2 2				$\begin{aligned} & 8 \\ & \stackrel{8}{8} \\ & \frac{1}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \pi \\ & \text { तo } \\ & \frac{4}{4} \\ & \hline \end{aligned}$					$\begin{aligned} & 20 \\ & 88 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$		4 0 4 4				¢ 8 4	$\begin{array}{r} 9 \\ 8 \\ 8 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 8 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm \\ & 8 \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \\ & 8 \\ & 4 \\ & \hline \end{aligned}$	¢ 4 4	\％	\％ 4
		产		顔	旁		$\frac{\bar{m}}{\text { m }}$	$\begin{aligned} & \overline{\mathrm{s}} \\ & \frac{\mathrm{t}}{\mathrm{a}} \\ & \hline \end{aligned}$							$\frac{\square}{8}$			$\stackrel{\text { \％}}{\text { ¢ }}$	－	豊		$\stackrel{\square}{\square}$	$\stackrel{5}{\square}$	$\stackrel{\text { ¢ }}{\text { y }}$	官	－

		\％	$\stackrel{3}{5}$	剅	5	\％	\％	5	5	5	5	3	5	3	5	5	3	E	3	Et	9	\％	ह3	
		$\begin{aligned} & \frac{8}{4} \\ & \frac{5}{5} \\ & \frac{9}{2} \end{aligned}$		5			$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{2} \end{aligned}$			$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & \frac{1}{4} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 6 \\ & \vdots \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{0}{4} \\ & \frac{4}{6} \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{5} \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{6}^{6} \\ & \frac{1}{5} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$		5	\％	\％	
		है	\％	를	5	$\frac{5}{3}$	อี	อี	ถํ	है	$\stackrel{3}{5}$	5	$\stackrel{\text { \％}}{3}$	9	है	है	²	อ็	5	\％	$\frac{5}{6}$	ร็	อ็	
		$\begin{aligned} & \frac{8}{4} \\ & \text { (1 } \\ & \frac{0}{6} \\ & \frac{2}{2} \end{aligned}$	2 0_{0}^{2} 5 2 2		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{8}{6} \\ & \frac{0}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { ? } \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{8}{8} \\ & \frac{4}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{5}{2} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { : } \\ & \text { ! } \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { : } \\ & \text { ét } \\ & \frac{6}{6} \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \\ & \mathbf{B}_{6}^{6} \\ & 6 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{4}^{4} \\ & \frac{5}{4} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 \\ & 5 \\ & \frac{0}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & 0_{6}^{6} \\ & \frac{7}{5} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \text { and } \\ & \frac{6}{7} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	
		$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{0}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{0}^{2} \\ & \frac{5}{2} \\ & 0 \\ & 0 \end{aligned}$	है	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{6} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{8}{6} \\ & \frac{6}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{5}{6} \\ & \frac{0}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { ? } \\ & \frac{4}{7} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \frac{8}{2} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{8}{6} \\ & \frac{5}{8} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & { }_{5}^{4} \\ & \frac{5}{3} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \text { : } \\ & \frac{5}{6} \\ & \text { ¢ } \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \text { 9. } \\ & \text { ! } \\ & \frac{5}{5} \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 5 \\ & 5 \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 \\ & \frac{0}{6} \\ & \frac{0}{6} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { :g } \\ & \frac{8}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{0}{6} \\ & \frac{0}{2} \end{aligned}$	อี	हี	ट็	ถ็ํำ
		！ ！ 6 0 2	$\begin{aligned} & 8 \\ & \text { 帣 } \\ & 0 \\ & \frac{0}{2} \end{aligned}$	อ์	4 4 2 2 2 2	$\begin{aligned} & \frac{0}{0} \\ & \frac{6}{6} \\ & \frac{5}{2} \\ & \hline 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \frac{5}{8} \\ & \frac{8}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { : } \\ & \text { (t. } \\ & \frac{1}{6} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \text { ! } \\ & \text { ! } \\ & \text { ¿ } \end{aligned}$						0 0 0 0 0 0			$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$	है	है	ลٌ	
		$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{0}{4} \\ & \frac{0}{2} \end{aligned}$		है	$\begin{aligned} & 2 \\ & \frac{8}{6} \\ & \frac{6}{6} \\ & 0 \end{aligned}$		8 $\frac{8}{4}$ $\frac{7}{6}$ 2 2	a $\frac{5}{6}$ 2 2		$\begin{aligned} & 0 \\ & \frac{0}{5} \\ & 5 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{4}{6} \\ & \frac{6}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \frac{8}{6} \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{8} \\ & \frac{8}{6} \\ & \frac{0}{2} \end{aligned}$			$\begin{aligned} & \frac{4}{4} \\ & \frac{1}{6} \\ & \frac{0}{2} \\ & \stackrel{\circ}{2} \end{aligned}$		$\begin{aligned} & 4 \\ & \frac{0}{6} \\ & 6 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 0_{4}^{4} \\ & \frac{1}{6} \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{0}^{4} \\ & \frac{5}{5} \\ & \frac{2}{2} \end{aligned}$	ถ็	ह็	ह็	อ็ อ็ อึ
		$\frac{\frac{0}{2}}{2}$	$\frac{\stackrel{y}{2}}{2}$	$\frac{5}{2}$	\％	5	$\frac{8}{2}$	$\frac{9}{2}$	$\frac{8}{2}$	$\frac{8}{2}$	$\frac{8}{6}$	3	$\stackrel{z}{3}$	$\stackrel{\text { gr }}{ }$	$\frac{8}{2}$	$\frac{0}{2}$	$\frac{9}{2}$	$\frac{8}{2}$	है3	9	है	है	ह็	
		ถ	ร	¢	$\stackrel{8}{8}$	$\begin{gathered} 8 \\ \stackrel{8}{2} \\ \hdashline \end{gathered}$	ถี	है	है	ถี	$\stackrel{8}{8}$	$\begin{aligned} & \stackrel{\otimes}{0} \\ & \stackrel{3}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{3} \\ & \stackrel{3}{2} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％	c．	ह็	ह®	$\begin{aligned} & \otimes \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{8}{3} \\ & \stackrel{3}{6} \end{aligned}$	ह็	है	อ็	อ็รึร็
		$\stackrel{\square}{c}$	ह๊	ร็	$\begin{aligned} & 6 \\ & 68 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	है	है	हึ	है	\％	\％	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	\％${ }_{6}^{6}$	ह็	¢ึ	है	ह็	8	\％	ह็	$\frac{5}{6}$	อ็	ำ ํ．${ }^{\text {co }}$
$\frac{5}{2}$		$\begin{aligned} & 5 \\ & \vdots \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & \frac{5}{5} \\ & \frac{4}{5} \end{aligned}$		$\begin{aligned} & \frac{\varphi}{6} \\ & \frac{4}{4} \\ & \hline \end{aligned}$	N K W	®				Z \％ 区	N U U U	$\begin{aligned} & \text { N } \\ & \text { on } \\ & \text { 4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ષ్ర } \\ & \text { us } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{(2} \\ & \text { i } \\ & \underline{u} \end{aligned}$			B	¢ ¢ －	त्र	$\begin{aligned} & \mathbb{N} \\ & \mathbf{O} \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{3}{6} \\ & 0 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	
高		高		$\stackrel{5}{4}$	旁	¢	\％	宮	铬	$\stackrel{\square}{\text { ¢ }}$	－	$\stackrel{\square}{\text { ¢ }}$	－	鿬	硣	宮	$\stackrel{\square}{\text { \％}}$	范	宮	彦	$\frac{\stackrel{\rightharpoonup}{8}}{\text { ¢ }}$	－	－	\％

Sorted By	ST Plan											
IST Plan Table Number	Component Tag Number	Component Description	Fussell-Vesely*	$\begin{aligned} & \text { Risk } \\ & \text { Achievement } \\ & \text { Worth. } \end{aligned}$	Initial IPE Ranking Based on $\mathrm{FY}{ }^{-1}$	IPEEE Fire 3 Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Selsmic Risk Ranking Changes	CDF Ranking Changes wlout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 2	1-FV-4550A	VENT CHLRUT CCW SPLY VIV	N/2	N/	n/3	Na	N/	N/a	Noo change	N/a	Low	Low
Table 2	IFV-4650]	VENT CHLR UI CCW RET MLV	n/3	N/2	n/8	N/3	n/a	n/a	No change	n/a	Low	Low
Table 2	1HV-4512 (1) 4)	UI SFGD LOOP A CCW RET VIV	0.0028	237844	Medium	No change	No change	No crange	No. change	Msdium	No Change	High
Table 2	1+RV-4513	UI SFGO LOOP B CCW RET VIV	00018	309018	Medium	No charge	No change	No change	No change	None	No Change	High
Table 2	1+HV-4514	UT SFGO LOOP A CCW SPLY VVV	0.0050	237844	Medum	No change	No change	Nochange	No change	Medium	No Change	High
Table 2	1-HV-4515	U1 SFGD LOOP B CCW SPLY VZV	00018	309018	Medum	No change	No change	No change	No change	- None	No Change	High
Table 2	1-HV-4524	viv	0.0019	40.9779	Medium	No change	No change	No change	No change	None	No Change	High
Table 2	1-HV-4525	viv	00019	40.9779	Medium	No change	No change	No change	No change	None	No Change	High
Table 2	1-HV-4526	UI NON-SFGO LOOP CCW UPSTRM SPLYVLV	00019	40.9779	Medium	No change	No change	No change	No change	None	No Change	High
Table 2	1-HV-4527	SPLY VLV	00019	409779	Medium	No change	No change	No change	No change	None	No Change	High
Table 2	1-HV-4572	RHR HX $1-01$ CCW RET VV	00045	9.2011	Medium	No change	No change	No change	No change	Low	No Change	High
Table 2	1 HV-4573	RHR HX 1-02 CCW RET VLV	0.0048	9.2781	Medium	No change	No change	No change	No change	Low	No Change	High
Tabie 2	1-HV-4574	CS HX 1-01 CCW RET VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 2	1-HV-4575	CS HX 1-02 CCW RET VLV	n/a	n/a	None	No changs	No change	No change	No change	no	No Change	Low
Table 2	1-HV-4631A	UI PSS CCW SPLY HDR ISOL VLV	n/a	n/a	n/a	No	n/a	n / a	No change	No	Low	Low
Tabie 2	1-HV-4631B	UI PSS CCW RET HOR ISOL VLV	N/	n/a	N/a	n/a	N / a	N/a	No change	n/a	Low	Low
Table 2	1-HV-4696	U1 THBR CLR CCW RET IRC ISOL VV	00000	5.9646	Nona	No change	No change	No change	No change	None	No Change	Low
Tabie 2	1-HV-4699	UPSTRM ISOL VIV	00000	192050	None	No change	No change	Nu change	No change	None	No Change	Low
Table 2	1-HV-4700	ONSTRM ISOL VLV	00000	19.2050	Nene	No change	No change	No change	No change	None	No Change	Low
Table 2	1-HV-4701	UT RCP CLR CCW RET IRE ISOL VI.V	n/a	n / a	None	No change	No change	No change	No change	n / a	No Change	Low
Table 2	1-HV-4708	UI RCP CLR CCW RET ORC ISOL. VIV	n/a	n/a	None	No change	No change	No change	No change	N/a	No Change	Low
Tabie 2	1-HV-4709	U1 THER CLR CCW RET ORC ISOL VLV	00000	5.9646	None	No change	No ctiange	No change	No change	None	*o Change	Low
Table 2	1-HV-4710	$\left\lvert\, \begin{aligned} & 14 \times S L T D \\ & \text { ISOL VLV } \end{aligned}\right.$	n/3	n/a	n/a	n/a	N/a	N/3	No change	n/a	Low	Low
Table 2	1-HV-4711	isot Mv	n/a	N/a	n/a	N/a	n/a	n/a	No change	N/a	Low	Low

Summary of Risk Remking Resalts for IST Components

Sorter	ST Plan											
$\begin{gathered} \text { Plan } \\ \text { Table } \\ \text { \| Number } \end{gathered}$	Component Tag Number	Component Description	Fussell-Vesely*	Risk Achievement Worth *	initial IPE Ranking Based on FV *-	IPEEE Fire 8 Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earity Reloase FV Ranking Changes	Selsmic Risk Ranking Changes	CDF Raniking Changes Wout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 2	1+HV-4725	CNTMT CCW DRE TK 1.02 IRC ISOL VLV	n/a	n/a	None	No change	No change	Medsum CN	Nochange	N/a	No Change	Hingh
Tabie 2	1+NV-4726	CNTET CCW DRN TK 1-02 ORC ISOL VLV	n/a	n'a	None	No change	No change	Medum ${ }^{\text {cN }}$	No change	n/a	No Crange	High
Table 2	1-LV-4500	CCW SRG TK 1 -01 MU VIV 4500	n/a	n/a	n/a	N/	n/8	n/a	No change	n/a	Low	Low
Table 2	1-LV-4500-1	CCW SRG TK 1-01 RMUW SPLY VIV	n/a	n/a	N/	n/a	n/a	n/a	No change	N/8	Low	Low
Tabie 2	1-LV-4501	CCW SRG TK 1-01 MU VV 4501	n/a	n/a	N/a	N/a	n/a	N/a	No change	n/a	Low	Low
Table 2	1.PV-4552 (1)	SFTY CHLR T-O5 CCW RET PCV	n/a	n/a	None	Ne change	No change	No change	No change	- None	No Change	Low
Table 2	1.PV-4553	SFTY CHLR 1-06 CCW RET PCV	00000	1.1249	None	No change	No change	No change	No change	None	No Change	Low
Table 2	10C.0003	CCW SRG TK 1-01 RMUW SPLY CHK VLV	N/a	n/a	n/a	n/a	n/a	N/	No change	N/a	Low	Low
Table 2	1CC-0004	CCW SRG TK 1-01 DEMIN WTR SPLY CHK VIV	n/a	N/a	n/a	nia	n/a	N/8	No change	N/a	Low	Low
Table 2	10.0031	CCW PMP 1.01 DISCH CHK VLV	0.0005	30208	Low	Noc change	No change	No change	No change	Low	Tos Charge	Low
Table 2	$1 \mathrm{CCO}-0061$ (1)(4)	CCW PMP 1-02 DISCH CHK VLV	00000	385415	Low	No change	No change	No change	No changs	Low	No Change	Low
Table 2	1CC-061!	XSLTDN HX 1.01 CCW SPLY RLF VLV	n/a	N/a	Na	n/3	n/a	N/a	No change	n/	Low	Low
Table 2	1-C.-0618	RCDT HX 1-01 CCW SPLY RLF VLV	n/e	n/a	n/a	n/a	n/a	n / a	No change	n/a	Low	Low
Table 2	1CC-0629	UT RCP CLR CCW RET HDR CHK VLV	n/a	n/3	N/8	N / S	n/a	Na	No change	n/a	Low	Low
Tabie 2	1CC-0646	RC PMP T-O4 THBR CLR CCW SPLY UPSTRM STOP CHK VLV	00000	6.1735	None	No change	No change	No change	No change	None	No Change	Low
Table 2	1CC-0657	RC PMP 1-03 THER CLR CCW SPLY UPSTRM STOP CHK VIV	00000	61735	None	Nio change	No change	No change	No change	None	No Change	Low
Table 2	1CC-0687	RC PMP 1-02 THER CLR CCW SPLY UPSTRM STOP CHK VLV	00000	6.1735	None	No change	No change	No change	No change	None	No Change	Low
Table 2	HCC-0694	RC PMP 1-01 THER CLR CCW SPLY UPSTRM STOP CHK VL.V	00000	61735	None	No change	No change	No change	No change	None	No Change	Low

Table 4-1

Sorted By	ST Plan											
15T Plan Table Number	Component Tag Number	Component Description	Fussell-Vesely *	Risk Achievement Worth *	Initial IPE Ranking Basad on FV **	HPEEE Fire s Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Reiesse FV Ranking Changes	Selsmic Rlisk Ranking Changes	CDF Ranking Changes *out CCF	Ranking Changes Dus To Expert Panel Review	Final Ranking Eased On IST Study
Table 2	$1 \mathrm{CC}-0713$	UT RCP CLR CCW SPL Y HOR CHK VLV	00000	19.2052	None	No change	No change	No change	No change	None	No Change	Low
Table 2	tCC-0831	UI RC PMP THBR CLR CCW RET HDR RLF CHK VLV	n/a	N/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 2	1CC-1067	CNTMT CCW DRN TK 1-02 RET HDR RLF VLV	n/a	n/a	nia	N / a	N/a	n/a	No change	n/a	Low	Low
Tabie 2	ICC-1075	RC PMP 1-01 THER CLR CCW SPIY STOP CHK VLV	0.0000	6.1735	None	No change	No change	No change	No change	${ }^{\text {' None }}$	No Change	Low
Table 2	1CC-1076	RC PMP $1-02$ THBR CLR CCW SPLY STOP CHK VLV	0.0000	6.1735	None	No change	No change	No change	No change	Nons	No Change	Low
Table 2	1CC-1077	RC PMP $1-03$ THBR CLR CCW SPLY STOP CHK VLV	0.0000	6.1735	None	No change	No change	No change	No change	Nane	No Change	Low
Table 2	1CC-1078	RC PMP $1-04$ THBR CLR CCW SPLY STOP CHK VLV	0.0000	6.1735	None	No change	No change	No change	No change	None	No Change	Low
Table 2	1CC-1079	CIRCLE SEAL CHECK VALVE $1 / 2^{\prime \prime}$ FNPT	n/a	n/a	Nons	No change	No change	No change	No change	n/a	No Change	Low
Table 2	1CC-1080	CIRCLE SEAL CHECK VALVE $1 / 2^{\circ}$ FNPT	Na	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 2	1CC-1081	CIRCLE SEAL CHECK VALVE $1 / 2^{\circ} \mathrm{FNPT}$	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 2	$1 \mathrm{CC}-1082$	CIRCEL SEAL CHECK VAL VE $1 / 2$ FNPT	n/a	n/a	None	No change	No change	No change	No change	n'a	No Change	Low
Table 2	X-PCV-H116A (1)(4)	UPS AIC UNIT X-01 CCW RET PCV	0.0000	10132	Low	Medium	No change	Medium	No change	Low	No Change	High
Table 2	X-PCY-H1168	UUPS AIC UNIT X-G2 CCW RET PCV	0.0002	1.1610	Low	Medium	No change	Medium	No change	Low	No Change	High
Table 2	X-PV-3583	CR AIC UNIT X-01 CCW RET PCV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 2	X-PV-3584	CTRL RM AIC UNIT $X-02$ REFRIG CNDSR CCW RET PRESS CTRL. VLV	nla	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Tabie 2	X-PV-3585	CR AIC UNIT X-03 CCW RET PCV	n/a	Na	None	No change	No change	No change	No change	n/a	No Chanye	Low

Summary of Risk Ranking Resuits for IST Componeuts

Sorted By	ST Plan											
$\left\lvert\, \begin{gathered} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{gathered}\right.$	Component Tag Number	Component Description	Fussell-Vesely*	$\begin{gathered} \text { Riak } \\ \text { Achievement } \\ \text { Worth } \end{gathered}$	Initial IPE Ranking Based on FV "	IPEEE Fire 8 Tomado FV Ranking Changes	Outage Rlsk Ranking Changes	Large, Early Rolease FV Ranking Changes	Selismic Risk Ranking Changes	CDF Ranking Changes whout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 2	X-PV-3588	CTRL RM AIC UNIT X-A REFRIG CNOSR CCW RET PRESS CTR LVIV	Na	n/a	N/	Na	n/a	na	No change	N/	Low	Low
Tabie 3	$1+\mathrm{NV}-6720$	SFTY CH WTR SRG TK 1.01 RMUW SPLY viv	n/a	N/a	N/a	no	n/a	N/3	No change	N/	Low	Low
Tabie 3	1CH-0300	SFTY CH WTR SRG TK 1-01 DEMIN WTR SPLYCHKVLV	n/3	N/a	n/a	n/a	n/a	N/3	No change	N/a	Low	Low
Table 3	1CH0301	SFTY CH WTR SRG TK 1-01 DEMIN WTR SPLY CHK VIV	N/	N / a	N/	n/a	n/a	n/a	No change	n/3	Low	Low
Table 3	1 CH 0302	SFTY CHWTR SRG TK $1-01$ MULV VV 6712 BYP VLV	n/a	n/3	n/a	n/a	n/a	N/a	No change	n/a	Low	Low
Table 3	${ }^{1} \mathrm{CH} 0305$	SFTY CH WTR SRG TK $1-01$ MULVL VV 6713 BYP VIV	n/a	Na	Na	N/a	No	n/a	No changs	n/a	Low	Low
Table 4	1.8100	U1 Rep Si wet Ret tsol Viv	No	n/a	None	No chenge	No change	No change	No change	n/a	No Change	Low
Table 4	$1-8104$	UT Emer Borate Viv	n/a	n/a	None	Ne change	No change	No change	No change	n/a	No Change	Low
Table 4	$1-8105$	Ui Chrg Pmp To RCS intent isol Viv	00002	17840	Low	Noc change	No change	No change	No change	None	No Change	Low
Table 4	$1-8106$	Ui Chrg Pmp To RCS Cntmit isol Viv	00002	1.7840	Low	No change	No change	No change	No change	None	Noc Change	Low
Table 4	$1-8109$	PD CHRG PMP 1-01 RECIRC VLV	N/a	n/a	n/a	n/a	N/a	N/a	No change	n / a	Low	Lu*
Table 4	1-8110 (1)(4)	Ccp 1-01/1-02 Dnstrm Mininow Viv	00002	1.7840	Low	Medium	No change	No change	No change	Low	No Change	High
Table 4	1-8111	Cap 1-01/1-02 Upstm Miniflow Viv	0.0009	1.9458	Low	Medium	No change	No change	No change	Low	No Change	Hiligh
Table 4	1-8112	UT RC Pmp Seal we Ret isoi viv	n/a	n/e	None	No change	No change	No change	No change	N / a	No Change	Low
Table 4	$1-8145$	Ui Prat Aux Spr Viv	N/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 4	$1-8146$	U1 RCS Loop 4 Chrg Viv	n/a	N / a	None	No change	No change	No change	No crange	n/a	No Change	Low
Trabie 4	1-8147	U1 RCS LOOP 1 CHRG VLV	n/a	n/a	N/a	N/	n/3	N/a	No change	Na	Low	Low
Tabie 4	1-8152	UI LION CNTMT ORC ISOL VLV	n/a	No	None	No change	No change	Heotum Cav	No chenge	n/a	No Change	High
Table 4	1.8153	U1 XS LTDN ISOL VIV8153	N / a	n / a	N / a	N/	n/a	n/s	No change	n/a	Low	Low
Table 4	1.8154	U1 XS LTDN ISOL VLV8154	n / e	n/a	n/a	n/a	n/a	no	No change	n/a	Low	Low
Table 4	1.8160	UIL LTON CNTMT IRC ISOL VLV	n/a	no	None	No change	No change	Medum CNV	No change	n / a	No Change	High
Table 4	1-8202A	\qquad	N/a	n/a	n/a	n/a	n/3	n/a	No change	N/a	Low	Low
Tabie 4	1.82028	PD CHRG PMP 1-01 SUCT STAB UPSTRM WNT VLV	n/a	N/2	N/a	n/a	Na	N / a	Noochange	N/a	Low	Low

Table 4-1

Sorted By IST Fien												
IST Plan Tabie Kumber	Component Tag Number	Component Description	Fussell Vessty-	$\begin{gathered} \text { Risk } \\ \text { Achievement } \\ \text { Worth. } \end{gathered}$	$\begin{aligned} & \text { Inititu IPE } \\ & \text { Ranking Based } \\ & \text { on FV" } \end{aligned}$	IPEEE FITe * Tornado :V Ranking Change	$\begin{aligned} & \text { Outage Ilisk } \\ & \text { Rant isk } \\ & \text { Con ges } \end{aligned}$	Large, Earty Ranking Changes	Selsmic Risk Raniking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panel Review	Finai Ranking Based On isT study
Tatie 4	1-2710a	POCHRG PMP 1.01 SUCT STAB H2IN2 SPLY VLV B2T0A	Na	Na	no	na	N/a	n/a	No change	No	Low	Low
Table 4	1.82108	PD CHRG PMP 1.01 SUCT STAB H2N2 SPLYVLV 82108	n/a	N/a	n/a	N/8	Na	Na	No change	Na	Low	Low
Tabie 4	1.8351a	RC Pmp 1.01 St werinj Vv	N/	w/	None	No change	No charge	No change	No chenge	N/	No Change	Low
Table 4	1.83518	RC imp 1.02 siut inj uv	n/a	n/s	None	No change	No change	No change	Nocrenge	Na	No Charge	Low
rabie 4	1.8351 C	RC Pmp 1-03 Si we inj Viv	Na	Na	None	No ctiange	No change	No change	No change	Na	No Change	Low
Tatie 4	1.83510	RC Pmp roa si uti inj Uv	ne	No	None	Nochange.	No change	No chenge	No change	Na	No Chenge	Low
rabie 4	1-8378A	RCS Loop 1-04 Chrg Dnstrm Chav Viv	N/a	N/	None	No change	Nochange	No ctange	No change	Na	No. Change	Low
Tabee 4	1-83788	RCS Loop 104 Crig Upstm Che VIN	N/8	n/a	None	No change	No change	No change	No charge	N/a	No Change	Low
Trable 4	1-8379a	viv	n/a	No	N / a	N/	Na	n / a	No change	n/a	Low	Low
Table 4	1-83798	$\begin{aligned} & \text { RCS } \\ & \text { VLV } \end{aligned}$	n/a	No	n/a	Na	Na	n/	Nochange	Na	Low	Low
Table 4	$1-8381$	Chige in ire Chak Viv	n/a	N/2	None	No change	No change	No change	No change	n/a	No Chenge	Low
Table 4	1-8881/ (1)	CCP 1.01 Disch Chk Uw	00001	1.5050	Low	No change	No change	No change	No change	Low	No Charge	Low
Table 4	1.84818	CCp 1.02 Disch Chk Viv	00003	20913	Low	No chenge	No charge	No change	No change	Low	No Crange	Low
Table 4	1.8497	Pa Pmp 1-01 Disch Chavvorn	n/a	Na	mone	No change	No change	No change	No change	n/a	No Change	Low
rable 4	1-8510a	CCCP P1.01 ALT MINILLORLF VVV	n/a	n/a	n/a	N/a	n/a	Na	Nochange	no	Low	Low
Table 4	1.85108	CCP 1.02 ALT MINIFLORLF VVV	n/a	nor	n/a	Na	N/	n/s	No change	N/	Low	Low
Trabie 4	1.8571/	CCP 1-01 An minino soilvo	00012	48723	Medium	No change	No change	No change	No chenge	None	No Change	High
Tabie 4	1-85118	COP 1-02 AR M Mnifo 1sot Viv	00012	4.8723	Medium	No change	No change	No change	No change	None	No Change	High
Table 4	1.8512a	CCP 1-02 An Memino locilvorw	0.0012	48723	Modum	No change	No charge	No change	No change	None	No Change	High
rabie 4	1.85128	Cap 1-01 An Miniflo Isol Vv	00012	48723	Medium	No change	No change	No change	No chenge	None	No Change	High
Table 4	$1-2546$	Fwst 1.01 To Chrg Pmp Suac Chx Viv	0.0002	1.7840	Low	Medum	No change	Medium	No change	Low	No Change	High
Table 4	1-fCV-01108	uv	nia	N/⿷.	Na	n/a	N/a	Na	No change	n/a	Low	Low
Tabio 4	1 1.FCV-0111A	RTRI YV	N/a	N/	n/a	n/	n/a	N/	No change	N/	Low	Low

Summary of Risk Remking Results for IST Components

Sarted By	ST Plan											
$\left\|\begin{array}{c} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{array}\right\|$	Component Tag Number	Component Description	Fussell -Vesely *	$\begin{aligned} & \text { Rlisk } \\ & \text { Achievement } \\ & \text { Worth : } \end{aligned}$	$\begin{aligned} & \text { Initial 'or } \\ & \text { Ranking Based } \end{aligned}$ on FV **	IFEEE Fire s Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Early Release FV Ranking Changes	Selsmickisk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panal Review	Final Ranking Based On 15 T study
Table 4	1-FCV-01118	RCS MU TO VCT 1-0t ISOL VLV	n/a	n/3	n/e	n/a	n/a	n/a	No change	n/9	Low	Low
Trabie 4	1+NV-8220	UI CHARGE PMP SUCT HI PNT VNT VIV 8220	n/a	N/3	None	No change	No change	No change	No change	n/a	No. Change	Low
Table 4	1-HV-8229	U1 CHARGE PMP HI PNT VNT Y V 8221	n/a	n/a	Nons	Noochange	No change	No change	No change	n/a	No Change	Low
Table 4	1-CV-01128 (1)(4)	$\begin{aligned} & \text { VCT 1-0 } \\ & 01128 \end{aligned}$	0.0002	1.7841	Low	Medium	No change	No change	No change	Low	increased	High
Table 4	$1 \mathrm{LCV}-0112 \mathrm{C}$	$\text { } 0112 \mathrm{C}$	00009	1.9459	Low	Medium	No change	No change	No change	ow	increased	High
Table 4	1-LCV-01120 (t)(4)	RWST $1-01$ TO CHRG PMP SUCT VLV 01120	00002	1.7841	Low	Medium	No change	No change	No change	- Low	Increased	High
Tabie 4	HCV-0112E	RWST $1-01$ TO CHRG PMP SUCT VVV $0112 E$	00009	19459	Low	Medium	No change	No change	No change	Low	increased	High
Table 4	$1 \mathrm{LCV}-0459$	U1 LTON ISOL V V 0459	n/a	n/a	n/a	n/a	Na	n/a	No change	n/a	High	High
Table 4	H.LCV- 0460	ILTON ISOL VV V 0460	n/a	n/a	n/a	n/a	त/a	n'a	No change	n/a	High	H.ah
Table 4	ICS 8180	U1 IRC SL WTR RET CNMT ISOL BYP CHK VLV	n/a	no	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 4	1CS-8350A	RC PMP 1-01 SL WTR INJ CHK VLV	n/a	n/a	None	No conange	No change	No change	No chance	N/a	No Change	Low
Table 4	1CS-83508	RC PMP 1-02 SL WTR INJ CHK VIV	n/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Taste 4	1CS-8350C	IRC PMP 1-03 SL WTR INJ CHK VIV	n/a	n / s	None	No change	No change	No change	No change	N / a	No Cliange	Low
Table 4	1CS-83500	RC PMP 1.04 SL WTR INJ CHK VLV	Na	Na	None	No change	No change	No change	No change	n/a	No Chenge	Low
Table 4	ICS-8367A	RC PMP 1-01 SL INS IME CHK VLV	na	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	ICS-83678	RC PNP 1-02 SL INJ IMB CHK VVV	n/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	1CS-8367C	RC PMP 1-03 SL INJ MMB CHK VLV	n/a	n / a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	ICS-83670	RC PMP 1-04 SL INJ MMB CHK VLV	N/a	N/a	None	No change	No change	No change	No change	N/a	No Change	Low
Table 4	ICS-8368A	RC PMMF 1.01 SL INJ IRC CHK VLV	Na	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	$1 \mathrm{CS}-8368 \mathrm{~B}$	RC PMP 1-02 SL INJ IRC CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	ICS-8368C	RC PMP 1-03 SL INJ IRC CHK VLV	n/3	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	1CS-83680	RC PMP 1-04 SL INS IRC CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 4	1CS-8377	$\begin{aligned} & u+R \\ & v v \end{aligned}$	n/a	n/a	n/a	n/a	n/a	N/a	No change	n/a	Low	Low
Table 4	1 CS 8442	UT EMER BORATE LN CHK VIV	n / a	n/a	None	No change	No change	No change	No change	nie	No Change	Low
Table 4	1CS-8473	BA PMP 1-02 DISCH CHK VLV	n / a	n/a	None	No change	No change	Wo change	No change	n/a	No Change	Low
Taite 4	ICS-8480A	CCP 1-01 RECIRC CHK VLV	n/a	n/a	N / a	Na	n/3	n/a	No change	N/a	Low	Low

Soried By	ST Plan											
$\left\lvert\, \begin{array}{c\|} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{array}\right.$	Component Tag Number	Component Description	Fussell-Vesely -	$\begin{aligned} & \text { Risk } \\ & \text { Achievrment } \\ & \text { Worth": } \end{aligned}$	Initial IPE Ranking Based on FV "-	IPEEE FITR s Tornado FV Ranking Changes	Outrge Rtsk Ranking Changes	Large, Early Release FV Ranking Changes	Selamic Risk ranking Changes	CDF Ranking Changes wiout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 4	ICS-84808	CCP 1-02 RECIRC CHK VLV	n/a	n/a	N/a	N/	n/a	N/3	No change	n/3	Low	Low
Tabie 4	155-8487	BA PMP 1-01 DISCH CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Lew
Tabie 4	xCS-0037	BA PMP 1-01 MINIFLO CHK VLV	n/a	n/a	Na	nja	n/a	n/a	No change	N/a	Low	tow
Tabse 4	XCS50039	8A PMP $2-01$ MINIFLO CHK VLV	n/a	N/a	n/a	n/a	n/a	N/a	Nio change	N/a	Low	Low
Table 4	xCS-0041	BA PMP T.02 MINIFLO CHK VLV	n/a	n/a	n/a	N/2	N/a	N/a	No change	' no	Low	Low
Tabie 4	xCS-0044	BA PMP 2 -02 MINIFLO CHK VLV	n/a	n / a	N/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 5	1-FV-4772-1	Cs Pmp 1-CI Recric Viv	nia	N/a	None	No change	No change	No change	No change	n / a	Noo Chanye	Low
Table 5	-FV-4772-2	Cs Pmp 1-03 Recirc Viv	n / s	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 5	1-FV-4773-1	Cs Pmp 1-02 Recirc VN	n/a	n/a	None	No change	No change	No change	No change	n/a	Noo Change	Low
Table 5	1-FV-4773-2	Cs Pmp 1-04 Recirc Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 5	1-HV-4758	RWST TO CS PMP 1-01/1-03 SUCT VLV	n/a	n/a	None	No change	No change	No change	No change	N/3	No Change	Low
Table 5	1-HV-4759	RWST TO CS PMP 1-026-04 SUCT VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 5	1-HV-4776	CS HX 1-01 Out VLV	n/a	n/a	None	No change	No change	No change	No change	N/a	No Change	Low
Tabie 5	1-HV-4777	CS HX 1-02 OUT VIV	n/a	N/a	None	No change	No change	No change	No change	N/a	No Change	Low
Table 5	1-HV-4782	isol vev	n/a	n/a	None	No change	No change	Nochange	No chenge	N/a	No Change	Low
Table 5	1-HV-4783	ISOL VIV	Na	n/a	None	No change	No change	No change	No change	n/3	No Change	Low
Table 5	HLV.4754	CS CHEM ADD TK 1-01 DISCH VIV 4754	n/a	N/a	N/a	n/a	n/3	N/a	No chenge	N/e	Low	Low
Table 5	H-LV-4755	CS CHEM ADD TK 1-01 DISCH V V 4755	n/a	no	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 5	1CT-0013	CS PMP 1-04 DISCH CHK VIV	n/a	n/a	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	1-T-0020	CS PMP 1-04 EDUCT SUCT CHK VIV	nia	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 5	1СT-0025	viv	n/a	N/a	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	ICT-0031	CS PMP 1-02 EDUCT SUCT CHK V VV	n/a	n/a	n/a	n / a	n/a	n / a	No change	n'a	Low	Low
Table 5	${ }_{1} \mathrm{CT}-0042$	CS PMP 1-02 DISCH CHK VLV	n/a	n/a	None	No change	Noch-ige	No change	No change	n/a	Low	Low

Sorted By IST Plan		Component Description	Fussoll-Vesely *	Risk Achlevement Worth *	Initiai IPE Ranking Based on FV *	IPEEE Fire 8 Tomaee FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Kanking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Besed On IST Study
$\left\lvert\, \begin{gathered} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{gathered}\right.$	Component Tag Number											
Table 5	ICT-0047	CS PMP 1-04 MINIFLO LN CHIK VLV	Na	N/8	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	1CT-0048	CS PMP 1-02 MINIFLO LN CHK VLV	n/a	no	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	1CT-0063	CS PMP 1-03 MINIFLO LN CHK VLV	no	n/a	None	Nio change	No change	No change	No change	no	Low	Low
Table 5	$1 \mathrm{CT}-0064$	CS PMP 1-01 MINIFLO LN CHK VLV	n/a	Na	None	No change	No change	No change	No change	nis	Low	Low
Table 5	1 CT-0065	CS PMP 1-03 DISCH CHK VLV	noa	n/a	None	No change	No change	No change	No change	N/a	Low	Low
Table 5	ICT-0072	CS PMP 1-03 EDUCT SUCT CHK VLV	n/a	n/a	n/a	Na	n/a	n/a	No change	N/a	Low	Low
Tabie 5	$1 \mathrm{CT}-0077$	RWST TO CSP 1-01/1-03 SUCT CHK VIV	n/a	n/a	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	1CT-0082	CS PMP 1-01 EDUCT SUCT CHK VIV	n/a	nia	n/a	n/a	n/a	n/a	No change	na	Low	Low
Tabie 5	1CT-0094	CS PMP 1-01 DISCH CHK VLV	N / a	n/a	None	No change	No change	No change	No change	no	Low	Low
Table 5	$1 \mathrm{CT}-0142$	U1 CS TRN A HOR IRC CHK VLV	no	n/a	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	ICT-0145	UT CS TRN B HDR IRC CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/3	Low	Low
Table 5	$1 \mathrm{CT}-0148$	IVIV	n/a	n/a	None	No change	No change	No change	No change	n/a	Low	Low
Table 5	1CT-0149	VLV	n/a	nia	None	No change	No change	No change	No change	N/a	Low	Low
Table 5	$1 \mathrm{CT}-0309$	CNTMT SMP TO CS PMP 1-01/7-03 SUCT ISOL VLV BONANET RLF VLV	r/a	n/a	n/a	N/a	n/a	n/a	No change	N/a	Low	Low
Table 5	1CT-0310	CNTMT SMP TO CS PMP 1-02/1-04 SUCT ISOL VLV BONNET RLF VLV	n/a	n/a	n/a	N/a	nua	nia	No change	no	Low	Low
Table 5	CTVBCA 01	CHEMICAL ADDITIVE TANK VENTPATH	N/a	n/a	n/a	n/a	N/a	No	No change	n/a	Low	Low
Table 5	CTVBCA 02	CHEMICAL ADOITIVE TANK VENTPATH	N/a	n/a	n/a	n/a	n/a	n/a	No change	nja	Low	Low
Table 6	1-HV-5365	isOL VLV	n/a	n/a	N/a	n/a	N/a	n/e	No change	N/8	Low	Low
Table 6	1-HV-5366	IVLV	n/a	n/a	n/a	n/a	n/a	n/a	No change	N/a	Low	Low
Table 6	100-0006	RMUWST 1-01 IN UPSTRM CHEK VLV	Na	n/a	n/a	N/a	n/2	n/a	No change	n/a	Low	Low
Table 6	100-0016	RMUW PMP 1-01 RECIRC CHIK VLV	n/a	Na	n/a	nia	n/a	n/a	No change	n / a	Low	Low
Table 5	100-0018	RMUW PMP 1-01 OISCH CHK VIV	n/a	n/a	n/a	n/a	N/3	n/a	No change	N/a	Low	Low
Table 6	100-0020	RMUW PMP 1-01 TO RMUW HDR ISOL VLV	nua	n/a	n/a	N/a	n/a	n/a	No change	na	Low	Low
Table 6	100-0064	RMUWST 1-01 RET UPSTRM CHK VLV	n/a	n/a	n/a	n/a	N/a	n/a	No change	nua	Low	Low
Table 6	100-0065	RMUWST 1.01 IN DNSTRM CHK VIV	N/a	n/a	N/a	Na	n/a	N/a	No change	n/s	Low	Low
Table 6	100-0066	RMUWST 1-01 RET DNSTRM CHK VL.	n/a	n / a	n/a	n/a	Na	n/a	Nio change	n/a	Low	Low

		5	5 \％	\％	$\stackrel{3}{3}$	$\stackrel{3}{3}$	\％	5 g\％	5	3	5	5	5	5	$\stackrel{3}{5}$	3	9	5	$5{ }^{3}$	8	\％		$\frac{5}{3}$
		5	5 g	5	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{5}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 6 \\ & 0 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0_{0}^{4} \\ & y_{6}^{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{4} \\ & \frac{1}{6} \\ & \frac{8}{2} \end{aligned}$	है	3	3	9	$\stackrel{\text { \％}}{ }$	5	\％	5	$3{ }^{3}$	5	\％		\％
		ह็	ह็\％	है	c	ถ	¢	¢	3	5	हี	，${ }^{\text {c }}$	ह็	ถี	E	ह็	ถี	5	อี่	ถี	है		है
		8 $\frac{8}{6}$ $\frac{8}{2}$ 2		$\begin{aligned} & e_{0}^{2} \\ & \tilde{x}_{7}^{5} \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & y_{4}^{4} \\ & y_{4}^{4} \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \frac{0}{5} \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$	$\begin{gathered} 8 \\ \mathbf{c}_{6}^{2} \\ \frac{8}{8} \\ \frac{8}{2} \end{gathered}$	$\begin{aligned} & 8 \\ & \text { et } \\ & \frac{6}{6} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \text { ey } \\ & \text { 岳 } \\ & \frac{0}{2} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \text { e } \\ & \text { ? } \\ & \text { 6 } \\ & \frac{0}{2} \end{aligned}$					$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{8}{2} \\ & 2 \end{aligned}$	8 $\frac{8}{6}$ 0 2		\％
		ถี	อ็．	อ็	8 $\frac{8}{4}$ 6 8 2			$\begin{aligned} & 8 \\ & \stackrel{8}{6} \\ & \stackrel{6}{6} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { ? } \\ & \text { \% } \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$	है	है	है	อ็	ถٌ	है	है	อ	ह็\％	है	ह！		है
		है	ถ็ถ	อ็	$\begin{aligned} & 0 \\ & \mathbf{c}_{6}^{6} \\ & 5 \\ & \frac{1}{2} \end{aligned}$			部｜		$\begin{aligned} & 0 \\ & \\ & \hline 0_{6}^{6} \\ & \frac{8}{c} \end{aligned}$	ถ็	ह็	ถึ	ถ	है	ह็	ٌ	อ็	2็	5	อ็		ह็
		ह็	อี่	ह็	$\begin{aligned} & 9 \\ & \frac{0}{4} \\ & \frac{7}{6} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { 㽞 } \\ & \frac{6}{6} \\ & \frac{0}{2} \end{aligned}$		ถٌ	ह็	है	อ็	ถึ	อ็	อ็	อี	ล๊ $\frac{1}{0}$	ถ็	है		हٌ
		है	ㄹ．	อ็	$\frac{8}{2}$	$\begin{aligned} & \frac{g}{2} \\ & \frac{5}{2} \end{aligned}$	$\frac{8}{2}$	$\frac{8}{2}$	3	3	ถ็	ह็	อ็	है	อ็	อ็	อ็	ह18	อึ ${ }^{\text {co }}$	है	ह็		हٌ
		ह็	ह\％ 5^{5}	E	ถ็	है	ह5	है	\％	$\stackrel{8}{0}$	ह็	อี	ह็	¢	है	ह5	อ็	है	อี ट็	อ็	$\stackrel{\square}{2}$		플
		ٌ	อ็อ	ह็	อ็	ह็	อ็	है	\％	苟	ह็	\％	हี	ถ็	อ็	อ็	ถ็	हึ	ล็ $\frac{1}{}$	ह็	ह็		¢
$\frac{5}{2}$		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$		$\begin{array}{r}8 \\ \vdots \\ 0 \\ 0 \\ 8 \\ \hline\end{array}$	8 8 8 8	$\begin{aligned} & 4 \\ & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	© 8 8	$\begin{aligned} & \hat{8} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	8 8 8 8	8 8 8 8	8 8 8	8 8 8	¢ 8 8	$\%$ 8 8	8 8 8 8	8 8 8 8 8	\qquad		$\begin{aligned} & 5 \\ & \frac{5}{6} \\ & 0 \\ & 0 \end{aligned}$	年		and 0 0 0
		¢	¢	－	$\stackrel{\hat{p}}{\hat{p}}$		$\begin{gathered} \hat{e} \\ \stackrel{⿱}{\theta} \end{gathered}$	$\begin{gathered} \hat{p} \\ \hat{p} \\ \hat{0} \end{gathered}$	$\begin{aligned} & \hat{\mathrm{a}} \\ & \text { 合 } \end{aligned}$	$\begin{gathered} \tilde{\frac{s}{2}} \\ \text { in } \end{gathered}$	－	$\stackrel{\hat{p}}{\text { \％}}$	会	会	N	－	$\hat{\hat{p}}$	$\begin{gathered} \hat{\mathbf{p}} \\ \hat{\mathbf{p}} \mathbf{\theta} \end{gathered}$		－	卷		会

Sorted By	ST Plan											
$\left\lvert\, \begin{gathered} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{gathered}\right.$	Component Tag Number	Component Description	Fussell-Vesely *	$\begin{aligned} & \text { Risk } \\ & \text { Achievement } \\ & \text { Worth. } \end{aligned}$	$\begin{aligned} & \text { Initial IPE } \\ & \text { Ranking Based } \\ & \text { on FV "- } \end{aligned}$	IFEEE FITE : Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Early Retease FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Pansi Review	Final Rewng Based On का Study
Table 7	$100-0258$	$i n v$	Na	Na	n/3	n/a	n/a	n/a	No change	N/a	Low	Low
Table 8	1-FV-2181	SG 1-01 FW SPLIT FLO BYP VIV	n/a	n/a	n/a	N / a	n/a	n/e	No change	n/a	Low	Low
Table 8	$1-F \mathrm{~F}-2182$	SG 1-02 FW SPLIT FLO BYP VV	N/a	n/a	n/a	n/a	N/a	N/a	Noc crange	no	Law	Low
Taste 8	$1 .+\mathrm{V}-2183$	SG 1-03 FW SPLIT FLO BYP VIV	n/a	N/a	n/a	n/	n/a	N/a	No change	ria	Low	Low
Table 8	1-FV-2is4	SG 1-04 FW SPLIT FLO EYP VLV	n/a	n/a	n/a	n / s	n/a	n/a	No change	n/a	Low	Low
Table 8	1-FV-2193	SG t-01 Fw Prentr Byp Viv	n/a	n/a	None	No change	No change	No change	No change	, nia	No Change	Low
Tatie 8	1 1FV-2194	SG 1-02 FW PREHTR BYP VIV	n/a	n/a	n/a	n/a	n/a	na	tio mang	n/2	Low	tow
Tat'3 8	1.FV-2195	SG 1-03 FW PREHTR BYP VLV	n/a	N/a	n/3	n/a	n/a	n/a	No change	n/a	Low	Low
Table 8	$1+\mathrm{V}-2196$	SG 1-06 Fw Prehtr Byp Viv	n/a	N/a	None	No change	No change	No change	No change	n / s	No Change	Low
Tabie 8	$1+\mathrm{NV}-2134$	SG T-01 FW ISOL V.V	n/a	n/a	None	No change	No ctiange	No change	Nochange	N/a	High	High
Table 8	1-H:-2135	SG 1-02 FW ISOL VLV	N/a	n/a	None	No change	No change	Nin change	No change	N/a	High	High
Table 8	$1+\mathrm{HV}-2136$	SG 1-03 FW ISOL VVV	u/a	n/a	None	No change	No change	No change	No change	N/	High	High
Table 8	1-HV-2137	SG 1-04 FWISOL VLV	n/a	n / a	None	No change	No change	No change	No change	n/a	High	High
Table 8	$1+\mathrm{HV}-2154$	FWLN 1-01 SEC SMPL VIV	N/	n/a	n/a	N / a	n/a	N/a	No change	n/a	Low	Low
Table 8	1-HV-2155	FWLN 1-02 SEC SMPL VLV	n/a	n/a	N / c	n/a	N/a	n/a	No chenge	n/8	Low	Low
Table 8	1-HV-2185	SG 1-01 FW ISOL BYP VIV	n/a	n/a	N/3	a/a	n/a	N/	No change	n/a	Low	Low
Table 8	1-HV-2186	SG 1-02 FW ISOL BYP VLV	n/a	n / s	N/a	n/a	n/a	n'a	No change	n/a	Low	Low
Table 8	1+HV-2187	SG 1-03 FW ISOL BYP VIV	n/3	. 7	n/a	n/a	N/	N/3	No change	n/9	Low	Low
Table 8	1-HV-2188	SG 1-04 FWISOL BYP VIV	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 8	IFW.0070	SG 1-03 FW HDR CHK VLV	Na	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	1FW-0076	SG 1-02 FW HOR CHK VLV	N/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low

Soried By	ST Plian											
IST Plan Table Number	Component Tag Number	Component Description	Fussell-Vesely*	$\begin{aligned} & \text { Risk } \\ & \text { Achievement } \\ & \text { Worth" } \end{aligned}$	Intital IPE Ranking dased on $\mathrm{FV}^{\text {- }}$	IPEEE Fire 8 Tomado FV Ranking Changes	Outage Risk Ranking Changes	Large, Early Reiease FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wlout CCF	Ranking Changes Due To Expert Panei Review	Final Raniking Baxed On IST Study
Tabie 8	IFW-0082	SG T-01 FW HOR CHK V V	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 8	IFW-008s	SG Y-OA FW HDR CHK VIV	n/a	n/8	None	No change	Noo ctange	No change	No change	n/e	No Change	Low
Table 8	1FW-019	SG TOA FW PREHTR BYP ORC CHK VI.V	n/a	n/a	n / a	no	n / a	n/a	No change	n/a	Low	Low
Table 8	1FW-0192	SG 1-OT FW PREHTR BYP ORC CHK VIV	n/a	n/a	n / s	n/a	n/a	n/a	No change	W/a	Low	Low
Table 8	IFW-0193	SG 1-02 FW PREHTR BYP ORC CHK VIV	n/a	n/a	n/a	n/2	n/a	n/a	No change	, n/a	Low	Low
Table 8	1FW-194	SG 1-03 FW PREHTR BYP ORC CHK VIV	n/a	n/a	n/3	N/a	N/3	N / a	No change	nia	Low	Low
Tabie 8	1FW-0195	SG 1-04 FW PREHTR BYP IRC CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	IFW-0196	SG 1-OI FW PREHTR BYP IRC CHK VIV	n/a	N/3	None	Noo change	Noo change	No change	No change	n/a	No Change	Low
Tacle 8	1FW-0197	SG 1-O2 FW PREHTR BYP IRC CHK VLV	n/a	nta	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	IFW-0198	SG t-03 FW PREHTR BYP IRC CHK VLV	n/3	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	1FW-0199	SG 1-04 AFW NZL CHK VLV	N/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	1FW-0200	SG 1-01 AFW NZL CHK VLV	n/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 8	1FW-0201	SG 1-02 AFW NZL CHX VLV	n/a	nia	None	No change	No change	No change	No change	N/a	No Change	Low
Table 8	1FW-0202	SG 1-03 AFW NZL CHK VLV	n/a	n/a	None	No change	No change	Vo change	No change	$\mathrm{n} /$	No Chenge	Low
Table 9	1-HV-2333A	MSIV 1-01	00004	6.9592	Low	No change	No change	Low SGTR-CN	No change	Ncre	No Change	Low
Table 9	1-HV-23338	MSIV 1-01 BYP VLV	n / a	N/a	n/a	N / s	Na	N/a	No change	N/8	Low	Low
Table 9	$1+\mathrm{HV}-2334 \mathrm{~A}$	MSIV 1-02	00004	6.9592	Low	No change	No change	LOW SGTR.CN	No change	None	No Change	Low
Tabie 9	$1+\mathrm{VV}-2334 \mathrm{~B}$	MSIV 1-02 BYP VL V	n'a	N/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 9	1+iV-2335A	MSIV 1-03	00004	69592	Low	No change	No change	Low SGtr.cN	No change	None	No Change	Low
Table 9	1+ +V-23358	MSIV 1-03 BYP VLV	n/a	n / a	n/a	n/a	$\mathrm{N} / 2$	N/	No change	N/a	Low	Low
Trable 9	$1+\mathrm{HV}-2336 \mathrm{~A}$	MSIV 1.04	00004	69592	Low	No change	No change	LOW SGTR.CN	No change	None	No Change	Low
Tabie 9	1-HV-2336E	MSIV 1-04 BYP VLV	n/2	n/a	no ${ }^{\text {a }}$	no	n / s	N/a	No changs	n/a	Low	Low
Table 9	1.-HV-2397	SG t-01 BLDN ISOL VLV	n'a	n / e	None	No change	No change	Low SGTR.CN	No change	n/a	No Change	Low

Summary of Risk Raniking Resuhs for IST Components

Sorted By is	ST Plan											
$\begin{array}{\|c} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{array}$	Component Tag Number	Component Description	Fussell-Vesely*	Risk Achlevement Worth -	Initial IPE Ranking Based on FV **	PEEE FIrs 8 Tornado FV Ranking Changes	Outags Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Selsmic Risk Ranking Changes	CDF Ranking Changes whot CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On 1ST Study
Table 9	1-HV-2397A	SG 1-01 PLDN HELB ISOL VLV	N/a	N/a	None	No change	No change	LOw SGTR-CN	No change	nia	No Change	Low
Table 9	1-HV-2398	SG 1-02 BLDN ISOL MLV	n/a	n/a	n/a	n/a	n/a	Low SGTR CN	No change	N/0	No Change	Low
Table 9	1-HV-2398A	SG 1-02 BLDN HELA ISOL VLV	n/a	n/a	nio	n/a	n/a	Low SGTR-CN	No change	N/a	No Change	Low
Table 9	1+12-2399	SG 1-03 BLDN ISOL VLV	n/a	n/a	n/a	n/a	n/8	Low SGTR-CN	No change	n / a	No Change	Low
Table 9	1-HV-2399A	SG 1-03 BLDN HEI B ISOL VLV	n/a	n/a	n/a	N / a	n/a	Low SGra.cn	No change	N/a	No Change	Low
Table 9	1-h 2400	SG 1-04 BLDN ISOL VIV	n/a	na	n/a	n/a	N/a	LOW SGTR CN	No change	- N / s	No Change	Low
Table 9	1 HV-2400A	SG T-O4 BLDN HELB ISOL VIV	no	N/a	n/a	n/a	n/a	LOW SGTR-CIT	No change	n/a	No Change	Low
Tabie 9	1-HV-2401A	SG 1-01 DRUM SMPL ISOL VLV	n'a	n/a	N/a	n/3	n/a	n/a	No change	N/a	Low	Low
Table 9	1-HV-24018	SG 1-01 BLDN SMPL ISOL VIV	n/a	n/a	n/a	n/a	n/a	n / a	No change	n/a	Low	Low
Table 9	1-HV-2402A	SG 1-02 DRUM SMPL ISOL VLV	n/a	N/a	n / s	n/a	N/a	n/a	No change	n/e	Low	Low
Table 9	1-HV-2402B	SG 1-02 BLDN SMPL ISOL VLV	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 9	1-HV-2403A	SG 1-03 DRUM SMPL. ISOL. VL. V	n/a	n/a	nia	N / a	n/3	Na	No change	no	Low	Low
Table 9	$1-\mathrm{HV}-24038$	SG 1-03 BLDN SMPL ISOL VIV	n/3	n/a	n/a	n/8	N/3	n / B	No change	n / a	Low	Low
Table 9	1 +hV-2404A	SG 1-O4 DRUM SMPL ISOL VLV	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 9	1-HV-24048	SG 1-04 BLDN SMPL ISOL VLV	n/a	n / a	n/a	noa	n/a	n/a	No. change	n/a	Low	Low
Table 9	$1+\mathrm{HV}-2405$	SG 1-0t SMPL ISOL VIV	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 9	1-HV-2406	SG 1-02 SMPL ISOL VIV	n/a	n/a	n/3	n/a	n/a	n/a	No chance	n/a	Low	Low
Table 9	1-HV-2407	SG 1-03 SMPL ISOL. VLV	nua	n/a	nia	n/a	n/a	n/a	No change	N/a	Low	Low
Table 9	1-HV-2408	SG 1-04 SMPL ISOL VLV	n/e	n/a	n/a	n/a	N/a	n/e	No change	n/a	Low	Low
Table 9	1-HV-2409	MSL 1-0t BEF MSIV DUPOT $1-25$ ISOL VLV	N / a	r/a	None	No change	No change	LOw SGTR-CN	No change	n/a	No Change	Low
Table 9	1-HV-2410	MSL 1-02 BEF MSIV DUPOT ISOL VLV	n/a	N/a	None	No change	No change	LOw SGTR-CN	No change	n/a	No Change	Low
Tabie 9	1-HV-2411	MSL 1-03 BEF MSIV DIPOT ISOL VLV	n/a	n/a	None	No change	No change	LOw SGTR.CN	No change	n/a	No Change	Low

Summary of Reisk Rennking Ressits for IST Components

		5	$\stackrel{3}{5}$	\％	挐	竟	覾	5	5	$3{ }^{3}$	g	$)^{\text {g }}$	3	5	g	5	3	3	f	\％	\％	g		है	5	\％	${ }_{5}$	9
		$\begin{aligned} & \frac{8}{6} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{5}{6} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & 8 \\ & \frac{8}{5} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$		3	5	${ }^{5}$	\％	5	\％	\％	$\frac{3}{3}$	\％	告	\％	\％	\％	5	5	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{6}{4} \\ & \frac{8}{2} \end{aligned}$	\％	ह	3	
		है	$\frac{8}{2}$	$\begin{aligned} & \frac{8}{2} \\ & \frac{8}{2} \end{aligned}$	5	ह็	を	\％${ }^{\text {f }}$ ¢	อ	อี ${ }^{5}$	है ${ }^{\text {co }}$	E．	¢	c	2ٌ	\％	ç	E	อ	है	है	อ็	ह็	है	ह็	อ	\％	ํ．
		$\begin{aligned} & 8 \\ & \frac{8}{5} \\ & \frac{5}{2} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{8}{0} \\ & \frac{6}{6} \\ & \frac{5}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & t_{4}^{8} \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { e. } \\ & \frac{9}{6} \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{5}{6} \\ & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{1}{6} \\ & \frac{1}{5} \\ & \frac{3}{2} \end{aligned}$		$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 品 } \\ & \frac{1}{6} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 2 \end{aligned}$	\mid	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 5 \\ & \frac{8}{6} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { : } \\ & \frac{1}{5} \\ & \frac{0}{2} \end{aligned}$								$\left\lvert\, \begin{aligned} & \frac{0}{9} \\ & \frac{1}{6} \\ & \frac{0}{2} \\ & \hline \end{aligned}\right.$	
		$\begin{aligned} & z \\ & \frac{3}{4} \\ & \frac{4}{8} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & \frac{0}{2} \\ & 8 \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & \frac{3}{y} \\ & \frac{0}{0} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & z \\ & \frac{z}{k} \\ & \frac{\alpha}{8} \\ & \frac{z}{3} \end{aligned}$		$\begin{aligned} & z \\ & \frac{3}{4} \\ & \frac{4}{0} \\ & \frac{1}{3} \end{aligned}$		ह็		8%	（ $\begin{gathered}8 \\ 6 \\ 6 \\ 0 \\ 0\end{gathered}$	c	है	$\frac{\square}{2}$	ถ็	8	析	ถึ	है	ह็	Eٌ	E	$\begin{aligned} & 8 \\ & 0 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	ć	है	ถ็	
		$\begin{aligned} & 1 \\ & \\ & \\ & \frac{8}{4} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{0}^{4} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{6} \\ & \frac{0}{6} \\ & \frac{0}{2} \end{aligned}$		\％ ${ }_{6}^{6}$ 2 2		$\begin{aligned} & \frac{8}{4} \\ & \frac{9}{7} \\ & \frac{5}{8} \\ & \frac{0}{2} \end{aligned}$		อ๋ $\frac{5}{\text { c }}$	¢）$\frac{1}{}$	｜c．	\％	हٌ	อ็	20	ह3	析	ह็	อ็	ह็	\％	है	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	อٌ	อ		
			$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{6}{4} \\ & \frac{1}{2} \end{aligned}$		$\frac{\hat{6}}{\frac{\partial}{2}}$	$\begin{aligned} & \frac{E}{5} \\ & \frac{5}{8} \end{aligned}$	$\begin{gathered} \xi \\ 5 \\ \frac{8}{8} \end{gathered}$		츨		¢）$\frac{\square}{\text { a }}$	（	啀	E	็	율	2		है	ह์	ะ	อ็	हٌ	$\begin{aligned} & \frac{4}{4} \\ & \frac{t_{4}^{4}}{6} \\ & \frac{9}{2} \end{aligned}$	हٌ	¢	อ็	\％${ }_{\text {a }}^{\text {\％}}$
		$\begin{aligned} & \frac{8}{6} \\ & \frac{1}{2} \end{aligned}$	$\frac{8}{2}$	$\frac{\stackrel{y}{2}}{\frac{2}{2}}$	\％3	ถ็	\％	5 ${ }^{\text {c }}$	政	ह็\％	อ็．	\％$\frac{8}{2}$	20	¢	ह็	อ	อ	${ }_{\text {\％}}^{2}$	है	อ็	ह็	है	ह็	$\begin{aligned} & \frac{9}{[} \\ & \frac{5}{2} \end{aligned}$	ह็	ह็	ถ็	ถี
		ถ็	$\begin{gathered} 0 \\ 8 \\ \hline \end{gathered}$	$\stackrel{8}{8}$		를	ह0	등	흘	ํ．	ह็．	\％${ }^{\text {c }}$	อ	E	¢	อี	²	E	ह็	อ็	ह็	ह็	ह็	อ็	ह็	ह็	\％	ถٌ
		है	$\begin{array}{r\|} 8 \\ 8 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	¢	ह6	$\frac{8}{8}$	¢	ถ็	ह็ है	ถ็ $\frac{\square}{6}$	을	²	ถ๊	ํํํ	5	$\frac{8}{8}$	$\frac{5}{5}$	है	ह็	ถ็	ह็	อ็	อ็	อ	¢	ร์
		$\text { MSL } 1 \text { 104 EEF MSIV DPPOT ISOL KV }$													SG 1－02 SFTY VLV 0060			－	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 5 \\ & 5 \\ & 6 \\ & 5 \\ & 8 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{8} \\ & 8 \\ & 3 \\ & 5 \\ & 4 \\ & 4 \\ & 5 \\ & \frac{3}{3} \\ & 0 \\ & \hline \end{aligned}$	SG 1 －03 SFTY VLV 0095	8 8 3 5 5 6 5 3 						$\left.\begin{gathered} 2 \\ 0 \\ 0 \\ 5 \\ 5 \\ 6 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$
$\begin{gathered} 5 \\ \frac{5}{2} \\ 5 \end{gathered}$		$\begin{aligned} & \text { N } \\ & \text { y } \\ & \text { x } \end{aligned}$		$\begin{aligned} & \tilde{y} \\ & \frac{y}{4} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { ल్ల } \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\sim} \\ & \stackrel{y}{2} \\ & \underset{\sim}{2} \end{aligned}$									$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 8 \\ & 5 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \bar{g} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 8 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	\％ $\begin{array}{r}8 \\ 8 \\ 2 \\ 2 \\ 2\end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \text { \% } \\ & 8 \\ & \frac{\omega}{2} \\ & 2 \end{aligned}$	\＄ ¢ 2 2	$\begin{aligned} & \text { © } \\ & 8 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{y}_{8}^{8} \\ 0 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & \stackrel{0}{2} \\ & \hline \end{aligned}$	－		
$\left\lvert\, \begin{aligned} & \text { 骨 } \\ & \frac{1}{4} \end{aligned}\right.$		$\begin{aligned} & \infty \\ & \frac{p}{0} \\ & \hline \end{aligned}$	$\begin{gathered} \circ \\ \frac{0}{e} \\ \text { 青 } \end{gathered}$		$\begin{aligned} & a \\ & \frac{a}{2} \\ & \frac{a}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \frac{ \pm}{8} \\ & \text { it } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\oplus}{9} \\ & \frac{8}{6} \\ & \hline \end{aligned}$			$\begin{array}{\|c} a \\ \frac{9}{a} \\ \text { a } \\ \hline \end{array}$					$\begin{aligned} & 0 \\ & \text { e } \\ & \frac{2}{2} \\ & \hline \end{aligned}$		路	$\begin{aligned} & \text { n } \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { of } \\ & \frac{9}{\square} \\ & \hline \end{aligned}$	$\stackrel{\text { a }}{\text { 荲 }}$	$\stackrel{\text { ¢ }}{\text { 傀 }}$	¢		$\begin{array}{r} a \\ \frac{a}{2} \\ \frac{9}{6} \\ \hline \end{array}$			$\begin{array}{r} 0 \\ \frac{0}{2} \\ \frac{0}{2} \\ \hline \end{array}$	㙖

Summary of Risk Reaking Results for IST Components

			3	\％	5 \％${ }^{3}$	3	\％${ }^{3}$	5		䆩	丵	5	告	亚等	\％${ }_{5}$		$\overbrace{\text { E }}^{\text {E }}$	\％		嘼畐	9	禹	部	兵	兵	
			\％	$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{5}{5} \\ & \frac{0}{2} \end{aligned}$					$\left\lvert\, \begin{aligned} & \frac{0}{6} \\ & \frac{6}{6} \\ & \frac{0}{2} \end{aligned}\right.$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 . \\ & 0_{4}^{4} \\ & 5 \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & \text { ? } \\ & \frac{0}{5} \\ & \frac{0}{2} \end{aligned}$		$3{ }^{3}$		3 3	3 \％	53	\％	8	室	垔	番	呯	2 2 2
		$\frac{5}{2} \frac{5}{2}$	$\frac{8}{2}$	ใ	है है	¢	है	ถั ${ }^{\text {a }}$		割	量		$\begin{gathered} E \\ \frac{E}{8} \\ \frac{8}{2} \end{gathered}$	衰	อ็ร		료를	cึ	ถี ${ }^{\text {c }}$	副采呈	อ็	E	है	5	อ็	है
			$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & 6 \\ & 0 \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & 0_{0}^{4} \\ & 0 \\ & \frac{0}{2} \end{aligned}$					$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{array}$	$\begin{aligned} & \text { 8. } \\ & \frac{5}{6} \\ & \frac{1}{2} \end{aligned}$									है		$\begin{aligned} & \text { : } \\ & \frac{6}{6} \\ & \frac{1}{2} \end{aligned}$		颜	\％
		$\left\|\begin{array}{l} 2 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 2 \\ & 0 \\ & 5 \\ & 0 \\ & 2 \\ & 2 \end{aligned}\right.$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{8}{6} \\ & \frac{8}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{0}{6} \\ & \frac{0}{2} \end{aligned}$		$\begin{array}{ll} 4 \\ 0 \end{array}$		$\begin{aligned} & 0 \\ & 0_{0}^{6} \\ & \frac{5}{4} \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & { }_{0}^{8} \\ & \frac{5}{0} \\ & \frac{0}{2} \end{aligned}$				อัก		ถึ 己ٌ	อ๊	8 욜		ถี	ถ๊	อ์	ถ็	है	5 8 8 0 8 8
			$\begin{array}{\|l\|} \hline 2 \\ y_{1}^{6} \\ \frac{5}{2} \\ \frac{2}{2} \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \\ & 0_{1}^{6} \\ & 0 \\ & 0 \\ & 2 \\ & \hline \end{aligned}$	0 2 0 0 2			$\begin{aligned} & 8 \\ & \frac{4}{4} \\ & \frac{1}{6} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \begin{array}{c} 8 \\ 6 \\ \vdots \end{array} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \\ & \frac{5}{5} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { 형 } \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{9}{0} \\ & \frac{6}{6} \\ & \frac{8}{2} \\ & \frac{0}{2} \end{aligned}$	\％${ }^{\frac{1}{2}}$		อ็อ็	อี	ह็ $\frac{5}{5}$		ถ็	ह็	\％	\％	\％	20 \％ \％ W
		$\left\lvert\, \begin{aligned} & 9 \\ & \frac{9}{4} \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} 8 \\ 5 \\ 5 \\ 5 \\ \frac{1}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0_{6}^{6} \\ & 6 \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & c \\ & c \\ & 0 \\ & 0 \\ & 0 \\ & z \end{aligned}$					$\begin{aligned} & \text { : } \\ & \text { E. } \\ & 5 \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & : \\ & \text { : } \\ & \frac{6}{6} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { 㐌\| } \\ & \frac{0}{2} \end{aligned}$		อ็ ${ }^{\text {co }}$		อٌ ${ }^{\text {ch }}$	²	$5 \sqrt{2}$	（1）	ล2	ह็	$\frac{5}{2}$	อ็	ถ็	\％
		$\frac{5}{2}$	$\frac{5}{2}$	$\frac{9}{2}$	$\begin{array}{l\|l} \frac{2}{2} & \frac{0}{2} \\ \frac{8}{2} \\ \hline \end{array}$	$\frac{8}{2}$	$\frac{8}{2}$	$\frac{8}{2}{ }_{\frac{0}{2}}$	$\frac{1}{2}$	全	勂	$\frac{E}{\frac{5}{8}}$		婁管边	อ๊ร		ह็．	हٌ	ถ๊ ${ }^{\text {ci }}$	部室	อ็	อ	อ็	ถ๊	ह็	$\frac{8}{2}$
		\％	\％	है	ํำ	²	ह็	ลีย	ถٌ	$\stackrel{\text { ¢ }}{\substack{2 \\ \square}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\begin{gathered} \text { e } \\ \stackrel{\rightharpoonup}{\otimes} \\ \text { en } \end{gathered}$		อ็		อ็ $\square^{\text {c．}}$	ㄲ	ถ．줄	¢ ${ }_{6}^{\text {¢ }}$	ह็	ร็	ह5	¢	랄	อ๊
		$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	8	ह8	ह\％$\frac{5}{5}$	ถ็	¢	อ็ อ็	है	$\begin{aligned} & \approx \\ & \text { た } \\ & 0 \end{aligned}$	움	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 気 } \\ & 8 \\ & \hline \end{aligned}$	\％ 0	$\frac{\square}{\text { ct }}$		ถึ ${ }^{\text {² }}$	늘	$\frac{5}{2} \frac{\square}{2}$	（1）	ह็	ह็	ถ็	E．	อٌ	อ็
		$\begin{aligned} & 3 \\ & 3 \\ & \frac{2}{x} \\ & \hline \end{aligned}$											$\begin{aligned} & \infty \\ & \sum_{3} \\ & E \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$													$\frac{3}{3}$
\％		$\begin{aligned} & \mathrm{y} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 7 \\ 5 \\ 0 \\ 2 \end{array}\right] \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\otimes}{8} \\ & \vdots \\ & \vdots \end{aligned}$							$\begin{aligned} & \mathbf{y} \mathbf{C}_{\mathbf{Q}}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{~} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{8} \\ & \stackrel{\vdots}{\Phi} \\ & \hline \end{aligned}$								$\begin{aligned} & ⿻ 日 禸 \\ & 0 \\ & \hline \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{8}{6} \\ & \frac{9}{6} \\ & \hline \end{aligned}$		\＄ $\stackrel{+}{+}$ $\stackrel{+}{5}$	\％ 0 in	\pm
¢		$\stackrel{\square}{\square}$	告	$\stackrel{\square}{\square}$			魹		（1）	안						这								안 \％ \％		需

Summary uf Risk Ranking Resutro for IST Components

mol	407	B	abuelp on	eN	e／u	e，	8／4	Bu	8／u	AM Iosisjdas Oi MnWa in	1910－15x	21 \％qe1
mol	ma7	en	abuecp on	en	E／u	eN	e／u	8／	B／u	ATA YHO SJdas O1 MRW\％Ln	0910－15x	21 शपе1
mol	mol	E／u		EM	e，	e／u	e， 4	B／	B／		1000 ± 35	$21.9{ }^{\text {a }} 1$
407	mol	e／	ebueyp on	8 N	8，4	e／u	e，	en	$8 / 4$		c000－15x	21 अप्रा
mol	407	en	e6veup on	e／u	B／u	E／u	8／3	eru	e／u		＊ 500 － SS	21 『qE1
mo7	mol	8／u	26ueyp on	8／4	8／u	e／u	E／u	e／u	8，		Es00－isi	$2 \cdot$ अवर्1
mol	ตอ7	8，	abueyp on	$8{ }^{1}$	P／	\＃／	8／u	e／	8／u	ATA TOSI WaLSNO HOH diNd slend स1M 7 Bn	$2200-451$	21 अपе1
mo7	mol	\＃N	จธี้еч¢ ON	84	e／u	8／u	en	8／u	B／u	 	$1200-351$	Z1 शवस1
m07	м\％า	\＃／u	abueup on	eN	e／4	E／u	e／u	8／4	8л		2100－3St	21 सपе1
mol	＊07	8／4	QUuEup ON	8／3	8／4	E／u	8	$8 / 4$	8／4	AV TOSI waisdn HGH dOOT sidnd AVO T3n－3ye in	$1100-351$	21 अव\％1
mol	mo7	8／4	－6urup on	8／	en	8／4	\＃／	\％μ	8／4		2815－Ntil	$11.89{ }^{1}$
mol	mol	E／μ	96ueup on	e／u	B／u	$8 \times$	8／4	\％	e／		6L15－AH－1	
mol	mol	2／0	96 ueqp ON	$8 / 4$	en	en	8／u	e／u	E／u		8L2FAH－1	11 अवe1
${ }_{4} \mathrm{~B}_{\text {\％}}$	${ }^{\text {afueup }}$ ON	＊／u	e6ueup on	25uewp On	tho eneo	abuelp On	QUSN	8／4	8，		LO90－ADH－3	11 〒Ge
4र̇\％	26บ4，ON	en	${ }^{\text {atuetp on }}$	abvecp on	1 Kı059\％	abueyp ON	Quon	8／4	P／u		$9090-\mathrm{A} 2 \mathrm{H}+1$	4 अ9\％1
mol	श®veup ON	8／$/$	${ }^{\text {abueup }}$ ON	26ие\％On	mol	abueyo on	a＊	8／u	8／u		$6190-n 0 \pm 1$	／1 9q1
m（1）	3 ¢veyo On	8u	${ }^{26}$ veup 0 N	a6ueve on	mol	${ }^{\text {a }}$ ¢ueपp ON	2von	er	E／4		$8190 \cdot 0 \cdot 51$	11 \＃981
4 ¢0．	abueyo on	2VON	26 UPLP ON	abueup on	efueup on	unypew	mol	0029 ：	10000	An Opuwn $20-1$ duct BHa $^{\text {a }}$	$1190-43+1$	11 थq81
$4^{\text {¢ }}$		2von	2tueus on	26ueqp on	aburup ori	urıpew	mol	298E ！	00000		（t） $0190-10 \pm 1$	11 शqe1
mo7	จิveyo On	e／u	26 L	abueup an	25ıueip On	etueup on	2UON	B／4	E／4		$80 ¢ 18-1$	11 शqe 1
mol	28veyp On	P／	ebuewp on	2bueup on	abueqp ON	26ueup ON	2VON	B／u	8／4		VOEL8－1	11 शqe $_{1}$
$4{ }^{5} 5$	26bueuj On	mol	abueyp on	Y0075i w－9pom	2buetp ON	abuelp on	mol	－232s	20000	AnA losi ismy of upsic sduad eitas In	2128－1	11 age 1
$4{ }^{\text {¢ }} \mathrm{H}$	28 ¢VeYo ON	mol		26 uetp on	OELuTE ON	96uewp on	unxpew	88689	L2000	Ais aix $20-1$ dund atib	891／8－1	$1{ }^{11}$
$4{ }^{6} \mathrm{FH}$	S6uevo on	mov	abueqp on	abueqp on	abuewp ON	26ueqp ON	unipaw	6LZES	－c000	Mun 20x 10.1 dud dird	（b） $89128-6$	11 सदe1
$4{ }^{6} \mathrm{H}$	asueyp on	8，	abuerp on	abueup an	1 Kobape	abueqp on	avon	e／	8，	Mandy pos $20-1$ dund dida	88028－1	11 सqe1
$4{ }_{4}$	abueyo ON	8 N	abueyp on	abueup on	1 Kobopes	atuetp On	2UON	8，	e／u	Nunat pins 10－1 duid ary	V8028－1	13 सqe ${ }_{1}$
Чढ̈\％	abueyj ON	8／4	afueup ON	boisi unpen	2 hoobopey	efueup on	avon	e／	E／4		82028－1	15 ace 1
5 ¢\％${ }^{\text {\％}}$	abuewo ON	8，		bolsiumpen	2 Krofapej	abueup on	200 N	e，	e／u		V20＜8－1	15 सqe 1
पВ¢⿳亠丷厂犬	26иеч）ON	®M	$26 \mathrm{Mm} \mathrm{T}^{\text {ON }}$	¢0，	2 Inolores	26́veup On	200N	$8 / 4$	s／u		81028－1	14 स191
kpms ISI wo paseg Bupquey feuld	меркау jourd Hadxa o1 ang seठिuะ\％ Bupauey		$\begin{aligned} & \text { sabut a } \\ & \text { 6upxury } \\ & \text { xsid भways } \end{aligned}$	รลถิบะบว Bupyuay At aseapa Aนve＇atue7		saถuzчว Supxuey As opwwol \％and 333di	－Ad wo pesseg Bupxuey 	．чдгом Mspa	－Alasen－passny	uondussag juauodunว	sequunN 6e1 วuauodwo	saquinn equel 1 अ릭 IS！
											veld IS	18.8 pevos

Table 4-1
Summary of Risk Ranking Kesults for IST Componerts

Sorted By IST Plan		Component Description	Fussell-Vesely *	Risk Achievement Worth *	Inttial IPE Ranking Based on FV *	tPEEE Fire ${ }^{2}$ Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Early Reliease FV Ranking Changes	Seismic Risk Ranking Changes	COF Ranking Changes whout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
IST Plan Table Number	$\begin{aligned} & \text { Component Tag } \\ & \text { Number } \end{aligned}$											
Table 12	XSF-0179	U2 RMUW TO SFPCS ISOL VLV	nja	Nia	N/a	n/a	nva	N / a	No change	Na	Low	Low
Table 12	XSF-0180	U2 RMUW TO SFPCS CHK VLV	n/a	Noa	Na	n/a	n/a	nia	No change	N/a	Low	Low
Table 13	1-83004	ORN VLV	n/a	n/a	N/a	n/a	Nia	n/a	No chançe	n/a	Low	Low
Table 13	1-8800	VLV	n/a	na	n/3	n/3	n/a	n/a	No change	n / a	Low	Low
Tabie 13	1-88014	Ccp 1-01/1-02 Si isol viv 8801A	00002	1.7840	Low	No change	No change	No change	No change	None	No Change	Low
Table 13	1-88018	Ccp 1.01/1-02 St isol Vkv 88018	0.0002	17840	ow	No change	No change	No change	No change	None	No Change	Low
Table 13	1-8802A	SI Pmp 1-01 To Heli $28.3 \mathrm{kgj} / \mathrm{sol}$ Viv	n/a	nia	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-88028	SI Pmp 1-02 To HII 184 inj isol Vho	N/a	n/a	None	No change	No change	No change	No change	N/a	No Change	Low
Table 13	1-8804A (2)(4)	RHR Pmp 1-01 To Cop Suct Viv	n/a	n/a	Medium	No ctiange	No crange	No change	No change	Medium	No Change	High
Table 13	1-88048	RHR Pmp 1-02 To Si Pmps Suct VIv	0.0011	11151	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1-8806	Ruwst 1-01 To Si Pmps Suct Viv	00005	1.4773	Low	Medium	No change	Medium	No change	Low	No Change	High
Table 13	1-8807A	U1 SIP/CCP Suct Hodr Xtie Viv 8807A	n/3	N/a	None	No change	No change	No change	No change	N/a	No Change	Low
Table 13	1.88078	U1 SIP/CCP Suct Hdr Xtie Viv B8078	n/a	Na	None	No change	No change	No change	No change	Na	No Change	Low
Table 13	1.8808 A	SI Accum 1-01 inj Viv	n/a	Na	Non	No change	Low	No change	No change	ni	No Change	Low
Table 13	1-8808B	SI Accum $1-02 \mathrm{imj}$ Viv	nia	no	None	No change	Low	No change	No change	nia	No Change	Low
Table 13	1-8808C	Si Accum $1-03$ inj Viv	n/a	n/a	None	No change	Low	No change	No change	n/a	No Change	Low
Table 13	1-88080	SI Accum 1-04 inj Viv	n/a	n/a	None	No change	Low	No change	No change	n/3	No Change	Low
Table 13	1-8809A (1)	RHR To Cl 1-01/1-02 inj isol Viv	00034	53279	Medium	No change	Category 1	No change	No change	Low	No Change	High
Table 13	1-88098	RHR To Cl $1-03 / 1$-04 inj isol VIv	00037	5.3968	Medium	No change	Category 1	No change	No change	Low	No Change	High
Table 13	1-8815A (1)	Contrmt Smp To RHR Pmp 1-01 Suct tsol VIv	00045	50741	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1-88118	Cntmt Smp To RHR Pmp 1-02 Suct isol Viv	00072	94595	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1.8812A (1)	Rwst 1-01 To RHR Pmp 1-01 Suct Viv	00028	49150	Medium	No change	Category 1	No change	No change	Low	No Change	High
Table 13	1-88128	Rwst 1-01 To RHR Pmp 1-02 Suct Viv	00031	4.9650	Medium	No change	Category 1	No change	No change	Low	No Change	High
Table 13	1-8813	Si Pmp 1-01/1-02 Miniflo Ret Vlv	0.0021	5.3732	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1-8814A	S: Pmp 1-01 Miniffo Vlv	00016	48719	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1-8814e	SI Pmp 1-02 Miniflo Viv	00016	4.8719	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 13	1.8815	Cap 1-01/1-02 inj Chk Viv	00002	1.7870	Low	Medium	No change	Medium	No change	Low	No Change	High
Table 13	$1-8817$	RHR Cl $1-01$ inj Chk Vlv	n/a	a/a	None	No change	No change	Medum ISLOCA	No change	n/a	No Change	High
Table 13	1.88 . 18	RHR Cli $1-02$ inj Chk Viv	n/a	nia	None	No change	No change	Medum ISLOCA	No change	Na	No Change	High
Table 13	$1-8818 \mathrm{C}$	RHR Cl $1-03$ inj Chk VI,	nia	N/a	None	No change	No change	Medium isloca	No change	n / a	No Change	High
Table 13	1-88180	TRHR CI 1-04 inj Chk Vv	Na	n/a	None	No change	No change	Medum ISLOCA	No change	n/a	No Change	High
Tabie 13	1-8821A	Domp 1-01 Xtie Vlv	n'a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-88218	Sit 7 p \% $02 \times$ xtie Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-8823	U1S TOCL TST ISCL VLV	N/a	n/a	n/a	rua	n/a	N/a	No change	N/a	Low	Low

Table 4 -1
Summary of Risk Ranking Results for IST Components

Sorted By IST Plan												
IST Pisn Table Number	Component Tag Number	Component Description	Fussell-Vesely*	fisk Achlevement Worth ${ }^{-}$	Intitial IPE Ranking Based on FV **	IPEEE Firs \& Tornado FV Ranking Chances	Outage Risk Ranking Changes	Large, Early Release FV Ranking Changes	Seismadc Risk Ranking Changes	CDF Ranking Changes whout CCF	ranking Changes Due To Expert Panel Review	Final Ranking Blased On IST Study
Table 13	1-8824	SI TOHL 1-01/1-04 TST ISC. VIV	na	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Tabie 13	$1-8825$	RHR TO HL 1-021-03 TST ISCL VLV	n/a	nia	n/a	n/a	N/3	N/a	No change	Na	Low	Low
Table 13	$1-8835$	S1 Pmp 1-01/1-02 To Cl inj isol Viv	00006	1.4773	Low	Medium	Category 1	Medum	No change	Low	No Change	High
Table 13	T-8840	RHR To He 1-02/1-03 inj isol Viv	00247	139685	High	No change	No change	No change	No change	High	No Change	High
Table 13	1-8841A	RHR To RCS Hill $1-02$ Upstm Chik Viv	nua	Nia	None	No change	No change	No change	No. change	nia	No Crange	Low
Table 13	1-88418	RHR To RCS ill 1-03 Upsirm Chk Viv	n / a	Na	None	No change	No change	No charge	No change	N/3	No Change	Low
Table 13	$1-8843$	CCP 1-01/1-02 INJ HDR CHIK VLV UPSTRM TST VLV	n/a	n/a	r/a	H/a	n/a	no	No change	n / m	Low	Low
Table 13	1-8871	U1 St TST HDP RET IRC ISOL VLV	n/a	n/a	n/a	nfa	n/a	n/a	No change	n'a	Low	Low
Table 13	1-8875A	S1 Accum 1-01 N2 SPL Y/VENT Viv	n/a	n/a	None	No change	No change	No change	No change	n / s	No Change	Low
Table 13	1-88758	Si Accurn 1-02 N2 SPLYMENT Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-8875	SI Accum 1-03 N2 SPL YNENT VIV	n/a	n/a	Nont	No change	No change	No change	No change	n'a	No Change	Low
Table 13	1-88750	SI Accum 1-04 N2 SPL Y/VENT VIV	n/a	n/a	None	No change	No change	Nu change	No change	nra	No Change	Low
Table 13	1-8877A	St Acoum 1-01 Tst in tsol Viv	n/a	n/a	None	No change	No change	Nto change	No. change	n/a	No Change	Low
Tabie 13	1-88778	S! Accum 1-02 Tst Ln isol Viv	n'a	n/a	None	No change	No change	No change	No change	ria	No Change	Low
Table 13	1-8877C	St Accum 1-03 Tst in isot Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-88770	SI Accum 1-04 Tst Ln isol Viv	Na	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-8878A	Si Accum 1-01 Filil viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Tacie 13	1-8978B	SI Accum 1-02 Fial Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-8878C	Si Accum 1-03 Fiil Viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1-88780	SI Accum 1-04 Filil Viv	nfa	n/a	None	No change	No change	No change	No change	N/a	No Change	Low
Tabie 13	1-8879*	RHR TO CL 1-01 TST VLV	nia	Na	n'a	n/a	n/3	n/s	No change	n'a	Low	Low
Table 13	1-88798	RHR TO CL 1.02 TST VLV	n/a	n/a	nua	N/a	n/a	n/a	No change	nua	Low	Low
Table 13	1-8879C	RHR TOCL 1-03 TST VLV	n/a	n/a	n/a	N/a	n/a	n/a	No change	nia	Low	Low
Table 13	$1-88790$	RHR TO Ct. 1-04 TST VL.	n / a	n/a	n/a	n/a	n/8	n/a	No change	nia	Low	Low
Table 13	1-8880	UI SIPPORV ACCUM N2 SPLY ORC ISOL viv	n'a	n/a	n/a	n/a	N/a	n/a	No change	n/a	Low	Low
Table 13	1-8881	SI TO HL. 1-02/1-03 TST ISOL VLV	n/a	N/a	n/a	n/a	nia	n/a	No change	nia	Low	Low
Table 13	1-8882	CCP 1-01/1-G2 INJJ HOR CHK VLV ONSTRM TST VLV	n/a	n/a	nua	r / a	n/a	n/3	No change	n/a	Low	Low
Tabie 13	1-8888	U1 SI ACCUM FILL LNISOL VLV	n/a	n/a	n/a	n'a	n/a	n/a	No change	n/a	Low	Low
Table 13	1-8889A	St TO HL 1.01 TST LN VLV	n/s	n/a	n/a	n/a	n/a	nia	No change	n/a	Low	Low
Table 13	1-88898	51 TO HL 1-02 TST LN VIV	n/a	n/a	n/a	n/a	n'a	n/a	No change	n/a	Low	Low
Table 13	1-8889C	SI TO HL 1-03 TST LN VIV	N/a	nia	N/a	n/a	nja	n/a	No change	n/a	Lowe	Low
Table 13	1-88890	SI TO HL. 1-04 TST LN VIV	noa	n / a	n/2	n/a	n/a	n/3	No change	n/a	Low	Low
Table 13	1-8890 A	RHR TOCL $1-01 / 1-02$ TST VIV	N/a	n/a	n/a	Na	N/a	n/a	No change	n / s	Low	Low
Table 13	1-88908	RHR TOCL 1-0331-04 TST VLV	n/3	n/a	n/a	nia	$\mathrm{n} / 2$	n/a	No change	n/e	Low	Low

Sorted By	St Plan											
$\begin{aligned} & \text { IST Plan } \\ & \text { Table } \\ & \text { Number } \end{aligned}$	Comporient Tag Number	Component Description	Fussell-Vesety*	Risk Achievamant Worth ${ }^{-}$	Initiat IPE Ranking Based on FV "	IPEEE Fire s Tomado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panel Raviaw	Final Ranking Based On IST Stuaty
-able 13	1510183	BONNET RELIEF VALVE FOR CONTAINMENT ISOLATION VALVE 1 88118 \qquad -	n/a	N/a	Na	N/a	nia	Na	No change	N/	High	High
Tabie 13	1S1-8619A	St TO CL 1-01 CHK VLV	N/	N/a	None	No change	No change	Hestumisloca	No change	N / a	No Change	High
Table 13	1SL-88198	S1 TOCL 1-02 CHK VLV	n/a	No	None	No change	No change	Hastumistioca	No change	n/a	No Change	High
Table 13	$151+190$	SI TO CL 103 CHK VLV	n/a	n/a	None	No change	No change	westimistoca	No change	n/a	No Change	High
Table 13	151-88190	Si TOCL 1-04 CHK VLV	nia	N/a	None	No change	No change	Matkmisloca	No change	n/a	No Change	High
Table 13	151-8900A	CCP 1-01/1-02 TO CL 1-01 CHK VLV	n/a	N/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	151-89008	CCP 1-01/1-02 TO CL 1-02 CHK VLV	n/a	N / s	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 13	$151-8500 \mathrm{C}$	CCP 1-01/1-02 TO CL 1-03 CHK VLV	N/a	n/9	None	No change	No change	No change	No change	N/a	No Change	Low
Table 13	15189000	CCP 1-vT/ 02 TO CL 1-04 CHK VLV	N/8	n/8	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	1S1-8905A	SI TO HL 1-01 INJ UPSTRM CHK VIV	N/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	151-99058	SI TO HL 1-02 INJ UPSTRM CHK VI.V	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Lo
Table 13	151-8905C	SI TO HL 1 -03 INJ UPSTRM CHK VVV	n/9	n/a	None	No change	No change	No change	No change	no	No Change	Low
Table 13	151-89050	SI TO HL 1-04 INJ UPSTRM CHK VLV	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 13	151-8919a	SI PMP 1-01 TO RWST CHK VIV	n/a	n/8	None	No change	No change	No change	No change	n/a	No Change	Low
Tabie 13	151-89198	SI PMP 1-02 TO RWST CHK VLV	N/B	n/a	None	No change	No change	No Change	No change	n's	No Change	Low
Table 13	151-8968	SI N2 SPLY HOR 1-0Y1-02 CHK VLV	n/a	N/a	n/a	n/a	N/	Na	No change	n/a	Low	Low
Table 13	1518972	US SI TST HDR RLF VIV	N/8	n/8	n/a	N/a	N/a	n/a	No change	N/	Low	Low
Table 14	1-HV-4286	SSW PMP 1-01 DISCH VIV	00061	90306	Medium	No change	No change	No change	No change	Medium	No Change	High
Table 14	$1 .+\mathrm{NV}-4287(2)(4)$	SSW PMP 1-02 DiSCH VLV	00001	371754	Medrum	No change	No change	No change	No change	Medum	No Change	High
Table 14	1. HV - 4393	DG 1-01 JKT WTR CLR SSW RET VLV	n/a	Na	None	No change	No change	No change	No change	n/a	No Change	Low
Table 14	1 + $\mathrm{HV}-4394$	DG 1-02 JKT WTR CLR SSW RET VLV	n/a	n/a	None	No change	No change	No change	No change	N/	No Change	Low
Table 14	1+12-4395	SSW TRN A TO UI AFW PMP SUCT VV	N/a	n/a	n/a	n/a	n/a	n/a	No change	N/	Low	Low
Table 14	$1+\mathrm{HV}-4396$	SSW TRN B TO UI AFW PMP SUCT VIV	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 14	ISW-0016 (3)	U1 SSW TRN B SPLY HDR IN CHK VLV	00005	30296	None	No change	No change	No change	No change	None	No Change	Low

Summay of Risk Remining Results for IST Components

Sorted By	ST Plan											
1ST Plan Table Number	Component Tag Number	Component Description	Fussell-Vesely *	$\begin{aligned} & \text { Risk } \\ & \text { Achievement } \\ & \text { Worth * } \end{aligned}$	Intital IPE Ranking Sased on $\mathrm{FV}{ }^{*}$	IPEEE Fire 8 Tomado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes whout CCF	Ranking Changes Due To Expert Pansl Review	Final Ranking Based On IST Study
Tabie 14	$15 W-6017$ (3)	U1 SSW TRN A SPLY HDR IN CHK VLV	00003	1.9796	None	No change	No change	No change	Noc crange	None	No Change	10
Table 14	15W-0373	SSW PMP 1-02 OISCH CHK VLV	00015	70.7025	Medum	No change	No change	No change	Ne change	Medium	No Change	High
Tabie 14	1SW-0374	SSW PMP 1-01 DISCH CHK KVV	00012	718633	Medium	No change	No change	No change	No change	Ntedium	No. Change	High
Tabie 14	SWWavB-01	PROTECTION	N/a	N/	n / a	N/a	N/	no	No change	N/a	High	High
Table 14	SWWAVB-02	PROTECTION	n/a	N/a	n/a	n/s	n/3	n/a	No change	n/a	Hegh	High
Tab'	SWWave-03	PROTECTION	N/a	n/3	N/a	N/a	n'a	n/a	No change	n/a	High	High
Table 14	SWVAVB-04	PROTECTION	N/a	N/a	N/a	N/3	n/3	no	No change	n/a	High	Hish
Table 15	1 Cl 1054 e	UPSTRM CHK VIV	n/3	n/a	n/a	N/8	n/a	N/3	No change	n/a	High	Hight
Table 15	$1 \mathrm{CL}-0645$	CR AIC ACCUM X-01 INST AIR SPLY ONSTRM CHK VIV	N/3	N/	N/a	n/a	N/a	n/	No change	n/a	High	High
Table 15	$1 \mathrm{C}+0646$	CR AIC ACCUM X-02 INST AIR SPLY UPSTRM CHK VLV	n/a	$n+$	n/a	Na	N/3	No	No change	n/a	High	High
Table 15	1 CL 1.0647	ONSTRM CHK VIV	n/a	n/e	n/a	No	n/a	No	Nochange	ne	High	Migh
Table 16	1-HV-5157	DISCH HDR ORC 1	Na	n'a	None	No change	No change	statum CN	No change	n/a	No Change	High
Table 16	1-HV-5158	DISCH HDR IRC ISOL VLV	n/	n/a	None	No change	No change	Hesium CN	No change	n/a	No Change	High
Table 16	1VD-0907	DISCH HDR PRESS RLI VLV	nja	N/a	n/9	n/a	n/a	n/e	No change	n/a	Low	Low
Table 15	VO-0003	SFGD BLDG SMP 1.01 PMP $1-01$ DISCH CHK VLV	n/8	n/e	n/a	N/a	ne	no	No change	n/a	Low	Low
Table 16	VD-0004	SFGD BLDG SMP 1-01 PMP $1-02 \mathrm{DISCH}$ CHK VVV	N/	n/3	n/a	n/a	no	N/	No change	n/a	Low	Low
Table 16	Vo-0011	CHK VLV SFGD BLOG SMP 1-02 PMP 1-03 DISCH	n/a	n/a	n/a	n/3	nos	n/a	No change	n/a	Low	Low
Tabie 16	VD-0012	SFGD BLDG SMP 1-02 PMP $1-04 \mathrm{DISCH}$ CHK VLV	n/a	n/a	nua	n/a	n/a	N/	No change	n/a	Low	Low
Teblie 17	1-7126	EWPS RCDT $1-01$ VNT HOR IRC DNSTRM ISOL viv	n/a	N/a	Na	n/3	N/a	N/a	No change	n/a	Low	Low
Tabie 17	1-7135	LWPS RCOT 1-01 LVL CTRL VIV BYP VLV	n/a	n/a	n/a	n/a	n/a	n/8	No change	n/a	Low	Low
Table 17	1-7136	Roat Pump Discharge Control Vative	n / s	n/a	None	No change	No change	Mesumicn	No change	n/a	No Change	High
Table 17	1-7150	IVv	n/2	no	n/a	n/a	Na	n/a	No change	n/a	Low	Low
Tabie 17	$1+\mathrm{HV}$-3486	UI CNTMT SERV AIR ISOL VLV	n/a	N/a	n/a	n'a	n/a	n/a	No change	N / a	Loat	Low
Tabie 17	1-HV-3487	U1 CNTMT INST AIR HDR ISOL VLV	n/a	n / a	None	No change	No change	Low SGTR-CN	No. change	n/a	No Change	Low

Soned By	ST Plan											
$\left\|\begin{array}{c} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{array}\right\|$	Component Tag Number	Component Description	Fussell-Vesely *	$\begin{aligned} & \text { Risk } \\ & \text { Achievement } \\ & \text { Worth: } \end{aligned}$	Intitial IPE Ranking Based on $\mathrm{FV}^{\text {- }}$	IPEEE Fire 8 Tomado FV Ranking Changes	Outage Risk Rarking Changes	Large, Earty Release FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ranking Changes Due To Expert Panel Review	Final Ranking Based On IST Study
Table 17	1-HV-4075	UI CNTMT FP HOR ORC ISOL VLV	N/	n/a	n/a	n/a	na	n/a	No change	N/B	Low	Low
Table 17	I-HV-4075C	UI CNTMT FP HoR IRC ISOL. VIV	n/a	n/a	n/a	nja	n/a	n/a	No change	n/a	Low	Low
Table 17	1-HV-4165	ISOR VLV	n/a	N/8	n/a	n/a	N/	n/a	No change	n/a	Low	Low
Table 17	$t+$ HV- 4166	viv	N/a	n/3	Na	n/a	N/3	n/a	No change	n/a	Low	Low
Table 17	1-HV-4167	tsot viv	n/a	n/a	N/8	n/a	n/e	n/a	No change	n/a	Low	Low
Table 17	1-HV-4168	isou v.V	n/a	N/2	no	n/a	N/a	n/a	No change	Nu	Low	Low
Table 17	1-HV-4169	RC LOOP $1-04$ HOT LEG SMPL LN IRC isot viv	n/a	Na	n/a	n/a	n/a	N/8	No change	r/a	Low	Low
Table 17	1-HV-4170	RC LOOP $1-0181$ 1-04 HOT LEG SMPL LN ORC ISOL VLV	n/a	n/a	n/a	n/8	n/a	n/a	No change	n/a	Low	Low
Table 17	1+NV-4171	$\begin{array}{\|l} \text { ACCUM 1- } \\ \text { ISOL. VLV } \end{array}$	nia	n/a	None	No change	No change	No change	Nechange	n/8	No Change	Low
Table 17	1-HV-4172	isol viv	n/a	n/a	None	No change	No change	No change	No change	rua	No Change	Low
able 17	1-HV-4173	ACCUMM 1-03 LIO SPACE SMPL LN IRC ISol VIV	N/	n/9	None	No change	No change	No change	No change	n/a	No Change	Low
Table 17	1 HV-4174	ACCUM 1-04 I. 0 SPACE SMPL INIRC isol viv	n/a	n/a	None	No change	No change	No change	No change	n/a	No Change	Low
Table 17	1-HV-4175	U1ACCUM LIQ SPACE SMPL LN ORC ISOL VIV	n/a	no	n/a	n/e	N/a	N/	No change	n/a	Low	Low
Table 17	1.HV-4176	PRZR $1-01$ STM SPACE SMPL. LN ORC ISOL VLV	n/a	n/a	nia	N/a	N/a	n/3	No change	n/2	Low	Low
Table 17	1-HV-5536	UI CNTMT AIR PRG SPLY ORC ISOL DMPR AO	n/a	n/a	n/a	n/a	n/s	n/a	No change	n/a	Low	Low
Table 17	1-HV-5537	UI CNTMT AIR PRG SPLY IRC ISOL. DMPR AO	n/a	n/a	n'a	n/a	n/a	n/a	No change	Na	Low	Low
Table 17	1+HV-5538	UI CNTMT AIR PRG EXH ORC ISOL OMPR AO	n/a	n/a	n/a	No	N / a	n/a	No change	n/a	Low	Low
Table 17	1.HV 5539	UI CNTMT AIR PRG EXH IRC ISOL. DMPR AO	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 17	1.HV-5540	U1 CNTMT H2 En exelorc isx DMPR	n/a	n/a	n/a	n/e	N/a	No	No change	N/8	Low	Low
Table 17	1-HV-5541	U1 CNTMT H2 PRG EXH IRC ISOL DMPR	n/a	n/a	n/a	n/a	n/a	n/a	Nochar -	n/a	Low	Low
Table 17	1 HV. 5542	UI CNTMT H2 PRG SPLY ORC ISOL	n/a	n/a	n/a	n/a	n/a	n/a	No change	n/a	Low	Low

Sorted By IST Plan												
$\left\lvert\, \begin{array}{c\|} \text { IST Plan } \\ \text { Table } \\ \text { Number } \end{array}\right.$	Component Tag Number	Component Description	Fussell-Vesely *	Risk Achlevement Worth *	initial IPE Ranking Based on FV "	IPEEE Five 3 Tornado FV Ranking Changes	Outage Risk Ranking Changes	Large, Earty Release FV Ranking Changes	Seismic Risk Ranking Changes	CDF Ranking Changes wout CCF	Ra. "rd Changes Due To Expert Pane! Review	Finai Ranking Based On IST Study
Table 17	T-HV-5543	U1 CNTMT H2 PRG SPLY IRC ISOL DMPR	n / a	n/9	n/e	n/a	N/a	n/a	No change	n/a	Low	Low
Table 17	1+iv-5544	UI CNTMT AIR PIG RAD DET UNIT 5502/03/66 SMPL IN ORC ISOL VLV	N/a	N/	n/a	n/a	n/a	n/a	No change	N/a	Low	Low
Table 17	1+HV-5545	UI CNIMT AIR PIG RAD DET UNIT 550203/66 SMPL IN IRC ISOL VLV	n/a	n/a	n/s	nos	N/a	Na	No change	N/	Low	Low
Table 17	1-HV-6546	UI CNTMT AIR PIG RAD DET UNIT $550203 / 66$ SMPL OUT ORC ISOL VL.	N/3	n/a	n/a	n/a	n/a	n/a	No change	N/a	Low	Low
Table 17	1+HV-5547	UI CNTMT AIR PIG RAD DET UNIT 5502/03/66 SMPL OUT IRC ISOL. VL	n/a	n/a	n/a	N/a	n/a	Na	No change	n/a	Low	ow
Table 17	1-HV-5548	UI CNTMT PRESS RIF SYS ORC ISOL VLV	N/ ${ }^{\text {a }}$	n/a	None	No change	No change	Low CN	No change	n/a	No Change	Low
Table 17	1-HV-5549	UI CNTMT PRESS RLF SYS IRC ISOL VIV	No	n/a	None	No change	No change	Low CN	No change	n/a	No Change	Low
Table 17	1+HV-5556	UI CNTMT AIR PASS SMPL RET LN ORC ISOL VLV	n/a	n / S	n/a	n/3	n/a	n/a	No change	no	Low	Low
Table 17	1-HV-5557	UI CNTMT AIR PASS SMPL RET LNIRC ISOt VV	n/a	n/a	n/a	n/a	n/a	n/a	No change	N/	Low	Low
Table 17	1-HV-5558	UI CNTMT AIR PASS SMPL SPLY LN ORC ISOL VLV 5558	N/a	N/3	no	n/a	n/a	n/a	No change	N/a	Low	Low
Table 17	1-HV. 5559	UI CNTMT AIR PASS SMPL SPLY LNIRC ISOL VVV 5559	n/a	n/a	r/a	n/a	n/a	n/a	No change	n/a	Low	Low
Table 17	1-HV-5560	UI CNTMT AIR PASS SMPL SPLY LN ORC ISOL VVV 5560	n/a	N/a	n/2	n/a	n/a	n/s	No change	n/a	Low	Low
Table 17	1-AV-5561	14 CNTMT AIR PASS SMPL SPLY LN IRC ISO 2V 5561	n/a	n/2	n/a	N/a	n/a	n/a	No change	n/a	Low	Low
Table 17	1-HV-5562	$U 1 \mathrm{CN}$ MT PRG EXHIRC ISOL DMPR BYP OMPR	n/a	n/a	n/a	n/a	n/a	n/a	No change	N/a	Low	Low
Table 17	1 HV-5563	U1 CNTMT H2 PRG SPLY IRC ISOL DMPR	n/e	n/a	n/a	n/a	n/a	N / s	No change	n/a	Low	Low
Table 17	1+HV-6082	UI VENT CH WTR SPLY ORC UPSTRM ISOL VIV	n/a	n/a	n/a	n/a	N/3	n/a	No change	n/a	Low	Low
Table 17	1-HV-8083	UI VENT CH WTR RET IRC DNSTRM ISOL viv	n/a	n/8	n/a	N/2	n/a	N/a	No change	N/a	Low	Low
Table 17	1.HV-6084	UT VENT CH WTR SPLY ORC DNSTRM 1 ISOL VIV	N/a	n/a	n/a	N/a	n / a	n/a	No change	n/a	Low	Low
Tabie 17	1-HV-7311	RC PASS SMPL MODULE 1-04 TO RCDT 1 01 RET LN ORC ISOL VIV	N/a	n/a	n/a	n/a	N/2	n/a	No change	n / a	Low	Low
Table 17	1+HV-7312	RC PASS SMPL MODULE 1-04 TO RCDT 1 O1 RET LN IRC ISOL VLV	nja	n/a	n/a	n/a	n/3	n/e	No change	n/a	Low	Low
Table 17	1-LCV. 1003	LWPS RCDT 1-01 LVL CTRL VLV	n/a	na	None	No change	No change	Medum CN	No change	n/a	Increased	High
Table 17	IPS.0500	UT ACCUM LIO SPACE SMPLLN ORC RiF VLV	n/a	n/a	n/a	No	N/a	n/a	No change	n/a	L*	Low

Table 4-1
Summry of Risk Raming Resales for IST Cemponents

Sorted By	ST Plan											
IST Pian Table Number	Component Tag Number	Component Description	Fussell-Vesely *	Risk Achievement Worth *	Initial IPE Ranking Based on FV ${ }^{-0}$	IPEEE Fires a Tomade FV Ranking Changes	Outage Risk Ranking Changes	Large, Early Release FV Raniting Changes	Seismic Risk Ranking Changes	CDF Ranking Changes whout CCF	Ranking Changes Due To Expert Panel Revieu	Final Ranking Based On IST Study
Table 17	1.PS-0501	PRZR 1-01 LIQ SPACE SMPL IN ORC RL.F VL.V	N/a	n/a	nia	n/a	n/a	n/a	No change	n/a	Low	Low
Table 17	1-PS-0502	RLF VIV	N/a	N/a	nia	n/a	n/a	n/a	No change	N/a	Low	Low
Table 17	1-PS-0503	RC LOOP 1-0i/1-04 Hi SMPL. LN ORC RLF v.v	N/a	n/a	n/a	n/a	n/a	N/a	No change	N/3	Low	Low
Table 17	$185-0015$	CNTMT PERS AIRLOCK 1-09 EXT DOOR MAN EQUAL VL.V 0015	n/a	Na	N / B	n/3	N/	n/a	No change	n/a	Low	Low
Table 17	1BS-0025	CNTMT PERS AIRI OCK 1-01 EXT DOOR AUTO EQUAL VLV	No	N/8	n / a	n / m	n/a	NJa	No change	N/a	Low	Low
Table 17	1BS-0029	CNTMT PERS AIRLOCK 1-01 EXT DOOR MAN EQUAL VIV 0029	n/a	n / a	n/a	n'a	n'a	n/a	No change	- n/a	Low	Low
Table 17	IBS-0030	CNTMT PERS AIRL OCK 1-01 INT DOOR AUTO EQUAL VLV V	nta	n/a	nia	n/a	N/8	n/a	No change	N/a	Low	Low
Table 17	1BS-0044	CNTMT PERS AIRL OCK $1-01$ INT DOOR MAN EQUAL VLV 0044	n/a	n/e	n/a	N/a	n/a	n/a	No change	N/8	Low	Law
Table 17	185-0056	CNTMT PERS AIRL OCK 1 -01 INT DOOR MAN EQUAL VLV 0056	n/a	n / a	n/a	N/a	n/a	N/a	No change	n/a	Low	Low
Tabie 17	1BS-0202	UT CNTMT PERS EMER AIRL OCK INT DOOR MAN EQUAL. VL.V	nia	n/a	n / s	n/a	N/a	n/8	No change	N/a	Low	Low
Table 17	18S-0203	UI CNTMT PERS EMER AIRL OCK EXT OOOR MAN EQUAL. VLV	n/a	n/a	n / m	n/a	Na	n/3	No change	N/3	Low	Low
Table 17	1CA-0016	UT CNTMT SERV AIR HOR CHK VLV	n/a	n'a	n'a	n / e	n/a	n / a	No change	n/a	Low	Low
Table 17	$1 \mathrm{CH}-0024$	US VENT CH WTR SPLY IRC CHK VLV	n/a	n/a	n/3	n/a	no	N/a	No change	N/a	Low	Low
Table 17	1-CH-0271	UT CNTMT VENT CH WTR SPLY HOR ORC PRESS RLF VLV	N/a	\%/8	n/a	n/a	n/a	n/3	No change	n/a	Low	Low
Table 17	1-H50272	UI CNTMT VENT CH WTR RET HDR ORC PRESS RLF VLV	N/a	n/3	n/a	nie	noa	N/a	No change	N/a	Low	Low
Table 17	1 CL -0030	UT INST AR HDR TO U1 CNTMT CHK VLV	no	n/a	None	No change	No change	No change	No change	no	No Change	Low
Table 17	1Wp-7176	LWPS RCDT $1-01$ DRN HDR RLF VIV	n/a	n/a	n/a	n/3	n/a	n/a	No change	n/a	Low	Low
Table 17	1WP-7177	RC PASS SMPL RET TO RCDT $1-01$ RL. F IVLV	n/a	n/a	n/a	n/a	n/a	n/a	No change	nia	Low	Low

