SOUTH CAROLINA ELECTRIC & GAS COMPANY NUCLEAR OPERATIONS EDUCATION AND TRAINING

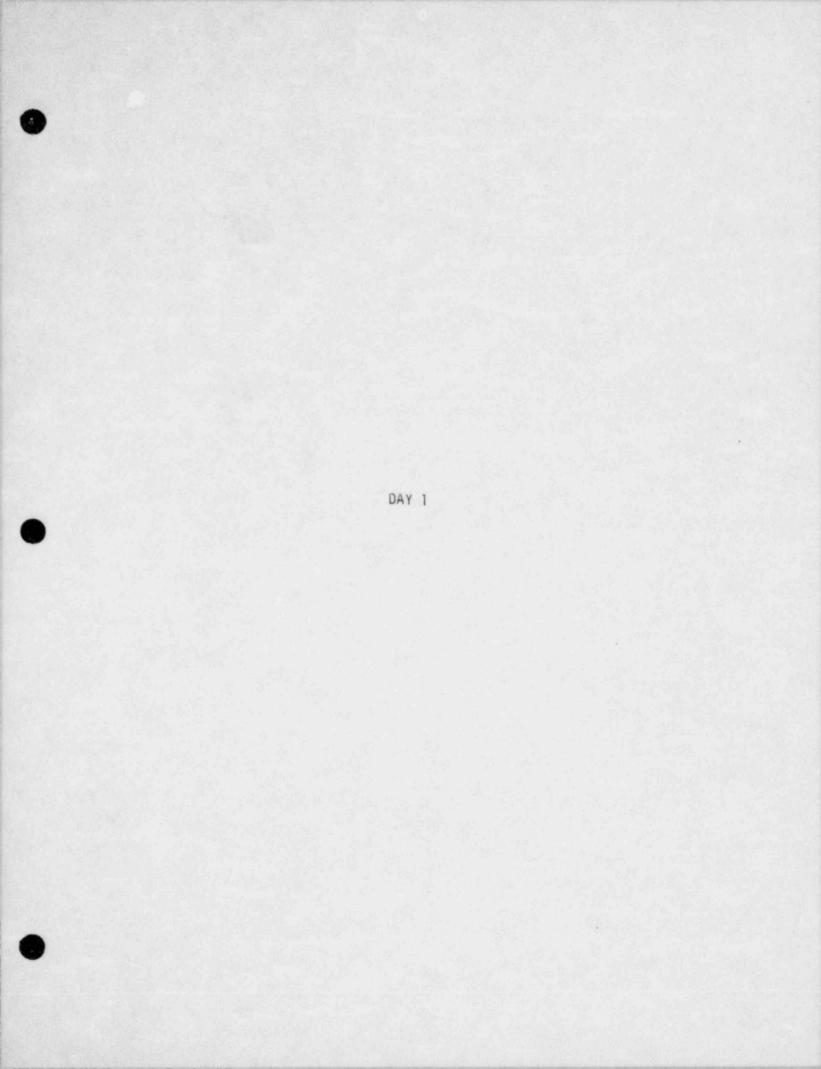
INSTRUCTOR LESSON PLAN SIMULATOR TRAINING FOR RO'S

Time: 25 Days

Recommended

Nuclear Operations Training Supervisor

Date


Date 7/10/00

Approved

Associate Manager

Nuclear Operations Training

8408170318 840810 PDR ADOCK 05000395 PDR

SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

PWR NORMAL PLANT OPERATIONS

UNIT B-5 Plant Heatup

Overview

This unit will be aimed at commencing the plant heatup. A review of some technical specifications will also be conducted.

Terminal Objective

Upon completion of this unit, the student will have demonstrated effective communication and coordination between control room operators. The student will also have acquired the knowledge required to place the plant in mode V and discuss the major steps in the overall evolution.

Enabling Objectives

Upon completion of this unit, the student will be able to:

- 1)- discuss the precautions and limitations of a plant heatup.
- 2)- demonstrate effective communication between Control Room operators. 3)- describe the major steps of a plant heatup.

4)- describe the primary system alignments in the refueling mode.

References

- Virgil C. Summer Training Simulator GOP-1, GOP-6, GOP-7, EOP-4, SOP-115, SOP-201, SOP-202, SOP-306, STP-102.001, STP-103.001, STP-134.001
- 2. Virgil C. Summer Phase III Training Material
- 3. South Carolina Electric & Gas Company Phase II Training Material
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

.

5

C

(

(

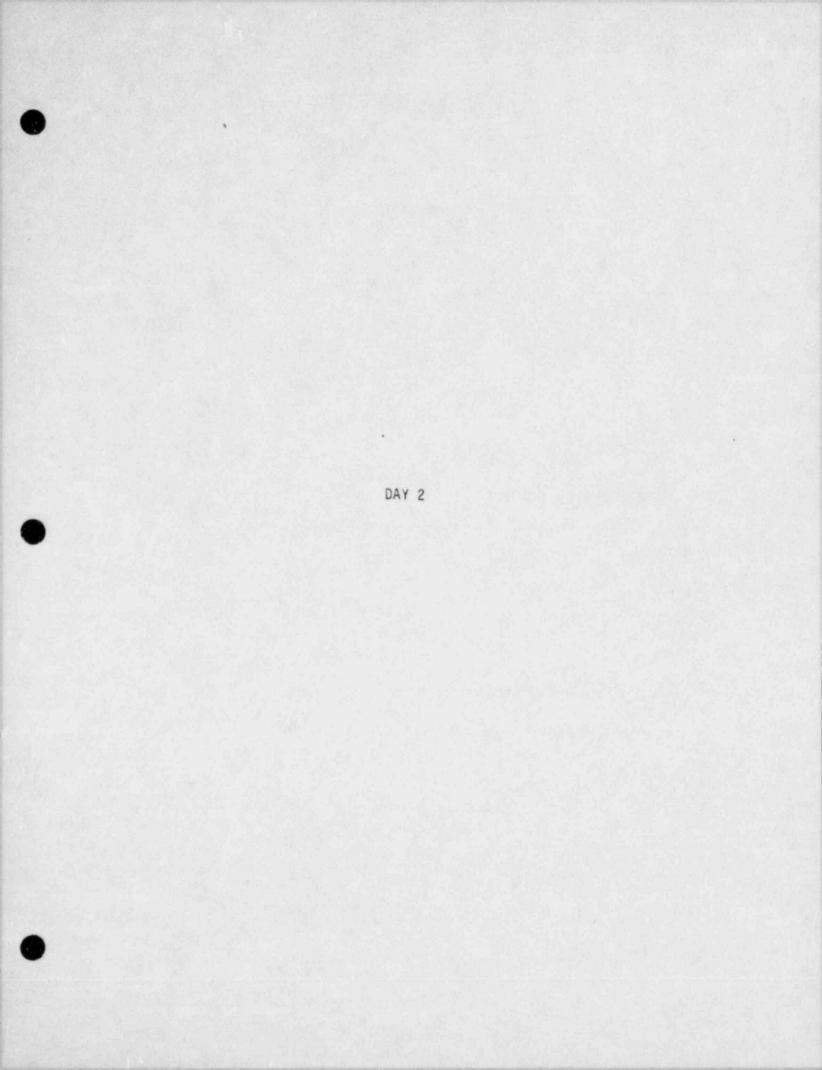
	INSTRUCTOR'S LESSO	ON PLAN Page 1	
-	LESSON OUTLINE	NOTES AND REFERENCES	s
	INTRODUCTION		
	A. UNIT TERMINAL OBJECTIVE:		
	Upon completion of this unit, the student		
	will have demonstrated effective com-		
	munications and coordination between		
	Control Room operators. The student will		
	also have acquired the knowledge required		
	to start plant heatup to hot shutdown		
	and discuss the major steps in the overall evolution.		
	B. OPERATIONS PLAN:		
	Initiate heatup to hot shutdown.		
	C. MALFUNCTIONS SCHEDULED:		
	- RHR-2, RHR heat exchanger flow control		
	valve failure		
	- RHR-1, RHR pump trip		
	- CVC-10, VCT level transmitter (LT-112)		
	failure		
	- MSS-13 atmospheric steam dump valve	이 이 이는 것은 물건이 물건이다.	
	failure		
	- EPS-5 loss of ESF bus		
	- EPS-6 diesel generator failure	이 이 가 아파 가 있었다.	
110	STATE THE NEED TO ASK QUESTIONS AS THEY		
<u>A</u>	ARISE		
51	STATE BASIC PRESENTATION FORMAT		

0963L:4

1. 1

Page 2

LESSON OUTLINE	NOTES AND REFERENCES
II. REVIEW (Optional)	
A. Summarize the procedure by having a	
student give a basic outline of the major	
steps.	
B. Review the plant heatup procedure, GOP-1,	
stressing the following:	
- Purpose	
- Precautions	
- Initial conditions	
- Instructions	
- Final conditions	다 안내 많은 감독을 가려고 다섯
C. Review the Technical Specification 3/4.4.8	
D. Discuss the upcoming simulator operations	일에 물을 알 했다. 김 씨가 가지 않았
II. PROCEDURE	
A. Place the plant in the SNAP at cold	
shutdown and conduct the shift turnover.	
- Shift:	
- Plant conditions: Mode 5	
B. Scheduled STPs	
1. STP-102.001 source range analog	
channel operation test	
2. STP-103.001 RCS and pressurizer	
heatup/cooldown	
3. STP-134.001 shutdown margin calculation	
C. Commence plant heatup and secondary plant	
startup per GOP-1.	


LESSON OUTLINE		
	NOTES AND REF	ERENCES
D. Malfunctions		
- initiate the following malfunctions		
during the heatup	EAR SEALS PORT	
o RHR-1, RHR pump trip	口之后,不是我,是我	
o RHR-2, RHR heat exchanger flow		
Control valve failure		
o CVC-10, VCT level transmitter		
(LT-112) failure		
o MSS-13, atmospheric steam dump	지역의 실험이는 것을 했다.	
valve failure		
o EPS-5, loss of ESF bus		
o EPS-6, diesel generator failure		
- For each malfunction:		
 Discuss effect on operation 		
o Evaluate response		
 Clear the malfunction after a 		
reasonable period of time	김 영화, 이번 등 김 승규는 승규는 승규가 가지 않는 것이 같다.	
E. Continue plant heatup IAW GOP-001 and		
establish the pressurizer bubble		
- Have student perform a source range	675	
analog channel test during the heatur	STP-102.001	
r. Take a SNAP at the end of the shift to use		
as tomorrow's IC		
G. Students conduct a shift turnover to the		
instructor. Check for knowledge of		
current plant condition.		
CRITIQUE	1 Hour	
 Review overall operations. Review malfunction responses. 		

0963L:4

 INSTRUCTOR'S LES	SSON PLAN		Page 4	
LESSON OUTLINE	1	NCTES AND R		
INTENTIONALLY BLANK				
			2	
	and see			
	A Contractor	1		•
	1 1 1 1 1 1 1			:
				•
	S. S. Start			
	1.1.1.1.1.1.1.1.1			
			1. A. S. S.	
	Investigation of			

.

.

SOUTH CAROLINA ELECTRIC & GAS COMPANY

PHASE III PROGRAM

NORMAL MINOR OPERATIONS WITH MINOR MALFUNCTIONS

Plant Heatup - Cold Shutdown to Hot Shutdown

Overview

....)

The startup of a nuclear power plant proceeds in an orderly manner from cold shutdown condition to the operational mode. Many systems must be aligned. Safety items must be tested and other requirements must be met and completed in a timely manner. Many operations are completed outside the control room, and effective communications must be established between the control room and operators to control those evolutions.

This unit will be devoted to continuing the plant heatup from the cold shutdown condition.

Terminal Objective

Upon completion of this unit, the student will have acquired the knowledge to perform a plant heatup to hot shutdown and be able to summarize the steps involved.

Enabling Objectives

.....

Upon completion of this unit, the student will be able to:

- demonstrate effective communications between the control room and work stations outside the control room.
- 2)- describe the steps in the procedure for plant heatup to hot shutdown condition.
- 3)- discuss the precautions behind the procedure used to conduct a plant heatup.

References

- Virgil C. Summer Training Simulator GOP-1, SOP-101, SOP-211, SOP-404, and STP-103.001
- 2. Virgil C. Summer Phase III Training Material
- 3. South Carolina Electric & Gas Company Phase II Training Material
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

. . - ,

(

(

(

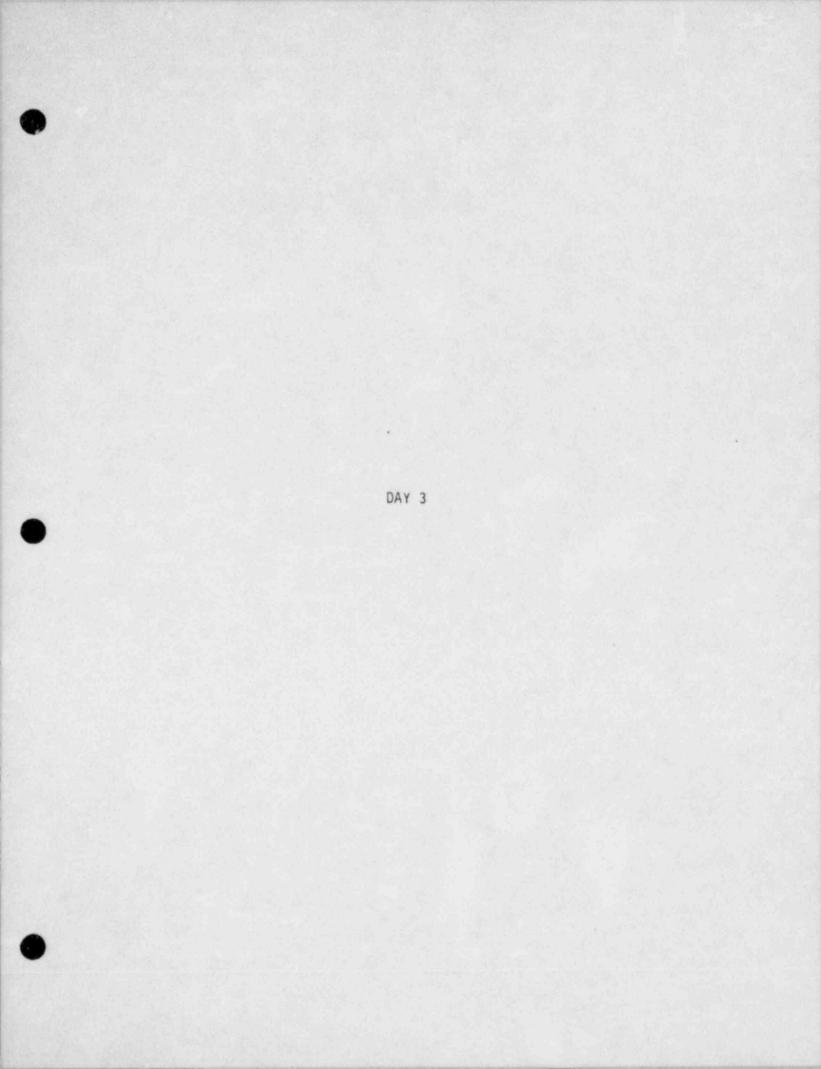
(

ų,

LESSON OUTLINE NOTES AND REFERENCES 1 Ι. INTRODUCTION A. UNIT TERMINAL OBJECTIVE: Upon completion of this unit, the student will have acquired the knowledge to perform a plant heatup to hot shutdown and be able to summarize the steps involved. B. OPERATIONS PLAN: Commence plant pressurization and heatup toward hot shutdown, including drawing a pressurizer bubble. C. MALFUNCTIONS SCHEDULED: - FWM-3, emergency feedwater pump trip NIS-6, noisy SR channel PRS-2, pressurizer level channel failure NOTE: In addition to the above listed malfunctions, any of the malfunctions scheduled on previous simulator sessions can also be used. STATE THE NEED TO ASK QUESTIONS AS THEY ARISE STATE BASIC PRESENTATION FORMAT REVIEW (Optional) A. Review procedure GOP-1 Procedure - Supporting system procedures B. Summarize the procedure by having a student give a basic outline of the major steps. C. Review procedure GOP-2 Purpose

0964L:4 .

- 9


....

A STATE OF	INSTRUCTOR'S LESSON PL		
	LESSON OUTLINE	NOTES AND REFERENCES	
- :	Precautions Initial conditions		
 - D. S	Instructions Final conditions ummarize procedure by having a student		
g	ive a general outline of the procedure iscuss upcoming operations		
A. Si ti ti	et up plant in SNAP taken at the end of he previous shift and conduct shift urnover Shift		
	cheduled STPs STP-103.001 RCS and Pressurizer Heatup/Cooldown		
	ntinue the plant heatup IAW GOP-1 nd GOP-2	Use STP-103.001 RCS and Pressurizer Heatup/Cool-	
	<pre>Ilfunctions Initiate the follwoing during the heatup 0 NIS-6, noisy SR channel 0 PRS-2, pressurizer level channel failure 0 FWM-3, emergency feedwater pump trip For each malfunction 0 Discuss the effect on plant operations</pre>	down during entire heatup	

Page 3

	LESSON OUTLINE	NOTES AND REFERENCES
	o Evaluate the response	
	 Clear the malfunction after a reasonable period of time At the end of the shift, take a SNAP to use as tomorrow's IC Students conduct a shift turnover to instructor. Check for her her her her her her her her her he	
Α.	instructor. Check for knowledge of current plant condition. CRITIQUE Review overall operations. Review malfunction responses.	1 hour

(

SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

NORMAL PLANT OPERATIONS WITH MINOR MALFUNCTIONS

Plant Heatup and Startup

Overview

It is desirable to accomplish the system heatup in a timely manner; therefore the main steam plant is normally warmed up at the same time as the reactor coolant system. The objective of the plant heatup is to have the steam plant warmed and available for startup when the reactor coolant system has been heated up.

This unit will involve itself with continuing the plant heatup and performing a reactor startup. The plant will be loaded towards 100 percent power in the time remaining.

Terminal Objective

Upon completion of this unit, the student will be able to discuss the procedure for a plant heatup and startup and the importance of each step in the total evolution. The student will also be able to discuss all of the prerequisities such as administrative requirements, precautions and limitations for plant heatups.

Enabling Objectives

Upon completion of this unit, the student will be able to:

- 1)- describe the steps listed in the plant heatup procedures.
- 2)- answer the assigned homework questions.
- 3)- review secondary plant Heatup and Startup procedure.

References

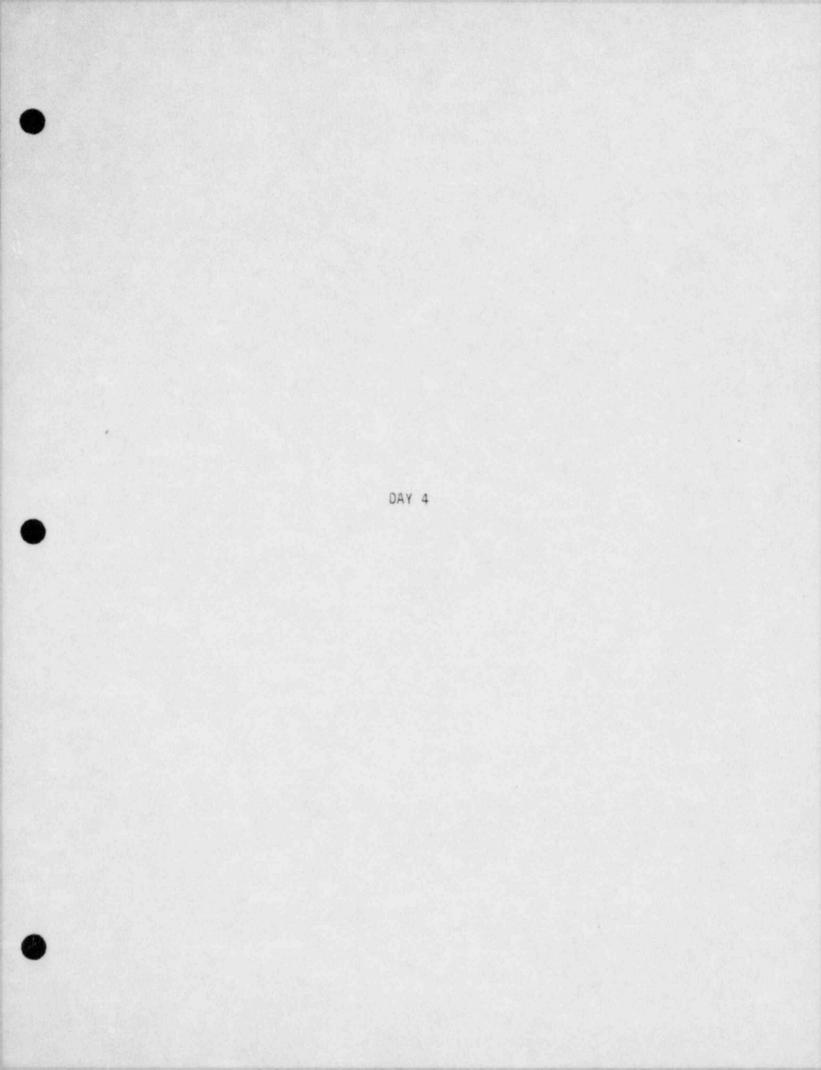
- Virgil C. Summer Training Simulator GOP-2, GOP-3, GOP-4, SOP-208, SOP-210, SOP-404, STP 103.001, and STP 123.002
- 2. Virgil C. Summer Phase III Traiing Material
- 3. South Carolina Electric & Gas Phase II Training Material
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

(

(

(


Page 1 LESSON OUTLINE NOTES AND REFERENCES INTRODUCTION A. UNIT TERMINAL OBJECTIVE: Upon completion of this unit, the student will be able to discuss the procedure for a plant heatup and reactor startup and the importance of each step in the total evolution. The student will also be able to discuss all of the prerequisite administrative requirements, precautions and limitations for plant heatups. B. OPERATIONS PLAN: Continue plant heatup and perform a reactor startup and plant loading. (Start with snap taken at the end of the previous simulator session). С. MALFUNCTIONS SCHEDULED: NIS-4, 112 channel gamma compensation failure - FWM-21, MF bypass valve failure FWM-2, condensate pump trip FwM-5, feedwater pump speed control oscillates NIS-3, PR channel failure AI problems QPTR problems, QPTR calculations -NOTE: In addition to the above listed malfunctions, any of the malfunctions scheduled on previous simulator sessions can also be used. STATE THE NEED TO ASK OUESTIONS AS THEY

ARISE STATE BASIC PRESENTATION FORMAT

5	INSTRUCTOR'S LESS	Page 2 DN PLAN
	LESSON OUTLINE	NOTES AND REFERENCES
7.	REVIEW (Optional)	
(A. Review the homework	
	B. Review procedure GOP-3	
	- Purpose	
	- Precautions	
(- Initial conditions	
	- Instructions	
	- Final conditions	
	C. Review procedure GOP-4	
	- Purpose	
	- Precautions .	
	- Initial conditions	
	- Instructions	
	- Final conditions	
	D. Discuss Tech Specs 3/4.5	
	E. Discuss upcoming operations	
III.	PROCEDURE	
	A. Put plant in SNAP taken at the end of the	
	previous session and conduct a shift	
	turnover	
	- Shift:	
	- Initial conditions: SNAP	
	- Load dispatch: 100 percent by the end	
	of the shift	
```	B. Scheduled STPs	
	1. STP 103.001 RCS and pressurizer	
	heatup/cooldown	
	2. STP 123.002 service water system pump	
	test	
	C. Continue the heatup IAW GOP-2 and GOP-3	Continue using STD 102 per
	D. Perform a reactor startup IAW GOP-3	Continue using STP 103.001-
	E. While in IR initiate NIS-4, IR channel	RCS and Pressurizer Heatup/ cooldown
,	gamma compensation failure	
	- Discuss effect on reactor startup	

.

LESSON OUTLINE			
		NOTES AND REFERENCES	
F. I	ncrease reactor power to POAH and start		
S	econdary plant		
G. I	nitiate FWM-21, MF bypass valve failure,		
a	fter transfer from emergency feedwater		
	Discuss effect on plant operation		
	Evaluate response		
-	creat matranceron		
	ontinue plant loading to 100 percent		
	Have students a service water system	STP 123.002	
	pump test		
	itiate FWM-2, condensate pump trip when		
	re than one pump		
	Discuss effect on plant operation		
	Evaluate response		
	Clear malfunction	그 문학 도 부분대 감독 관망	
J. In	itiate ∆I problems		
1.5	itiate QPTR problems		
	itiate FwM-5, feedwater pump control		
	cillates		
M. Co	ntinue loading as time permits		
	udents conduct a shift curnover to		
in	structor. Check for knowledge of		
	rrent plant conditions.		
CRITIQ	JE	1 Hour	
A. Rev	iew overall operations.		
B. Re	view malfunctions responses.		



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

### PHASE III PROGRAM

# NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

#### Overview

During the normal operation of a nuclear power plant, it is periodically required to shutdown and cooldown the unit for either maintenance or refueling considerations. Since this occurs only once or twice per year, it is a relatively infrequent evolution. Hence it becomes difficult for control room operator to experience the operations required for taking the plant to a cold shutdown condition and the use of the applicable procedures designed to bring the plant to this condition.

This and the following unit are designed to provide a review of the systems which are utilized during a plant cooldown. In addition, it will enable the student to apply the proper procedures and actually perform the plant shutdown and cooldown as a control room operator.

### Terminal Objective

The student will be able to describe the series of events encountered in bringing a nuclear plant from full power operation to cold shutdown and manipulate the plant through these events. The program instructor's observation and the student's oral response to questioning will be used in determining satisfactory completion of the course objective.

#### Enabling Objectives

Upon completion of this unit the student shall be able to:

- 1)- describe the series of events in power reduction and reactor shutdown.
- 2)- discuss the different methods of cooling down the Reactor Coolant System (RCS).
- 3)- describe how the Steam Dump System is used during plant cooldown.
- 4)- describe when and how the Residual Heat Removal (RHR) System is placed into service.
- 5)- describe shutdown margin requirements during each mode.
- 6)- perform a plant shutdown and cooldown following the appropriate plant procedures.

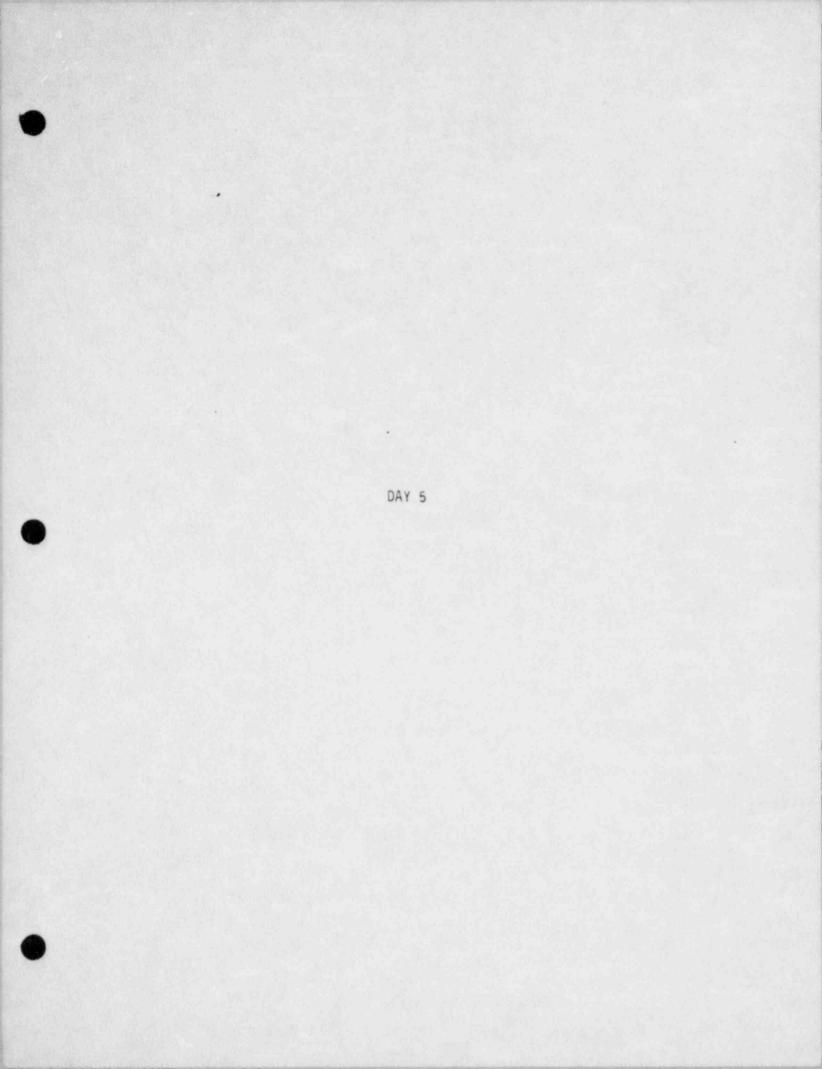
### References

- 1. South Carolina Electric & Gas Company Phase II Training Material
- 2. Virgil C. Summer Phase III Training Material
- 3. Technical Specifications
- Virgil C. Summer Training Simulator GOP-4, GOP-5, GOP-6, GOP-7, EOP-10, SOP-102, SOP-210, STP-103.001, and STP-134.001.

INSTRUCTOR'S GUIDE

(

(


	INSTRUCTOR'S LESSON PLA	N Page 1
)	LESSON OUTLINE	NOTES AND REFERENCES
Ι.	INTRODUCTION	
•••		
	A. UNIT TERMINAL OBJECTIVE:	
	The student will be able to adequately	
	describe the series of events encountered	
	in bringing a nuclear plant from at full	
	. power operation to cold shutdown as	
	evaluated by the program instructor's	
	observation and student's oral response to	
	questions. B. <u>OPERATIONS PLAN</u> :	
	Perform plant shutdown from previous	
	power accent to hot standby. Commence cooldown. Place RHR is service and	
	establish N ₂ bubble in the pressurizer.	
,	Perform control board misalignments if desired.	
	C. MALFUNCTIONS SCHEDULED	
	- CRF-6 uncontrolled rod motion	
	- FWM-4 feedwater flow transmitter	
	failure	그 같은 것 같은 것 같은 것 같이 같을 것 같아.
	- CVC-9 plugged boric acid filter	
	- MSS-1 Steam Generator pressure	
	transmitter failure (control)	
II.	REVIEW (Optional)	
	A. Present overview of	
	simulator operations:	
	- Unloading from 100 percent	
	- Reactor shutdown	
	- Commence cooldown	
	- Place RHR in service	
,	- Establish N ₂ bubble	
	2 00010	a second second second second

INSTRUCTOR'S LESSON PLA	AN Page 2
LESSON OUTLINE	NOTES AND REFERENCES
- Begin recovery operations	
<ul> <li>Begin recovery operations</li> <li>Establish PZR bubble</li> </ul>	
<ul> <li>B. Review use of EHC and turbine auxiliaries</li> <li>EHC</li> </ul>	
o Manual	
o Standby	
- Auxiliaries	
o Motor suction pump	
o Turning gear oil pump	
o Bearing lift oil pump	
C. Review use of steam dumps/atmospheric	
reliefs during cooldown	
- Tavg mode	
- Steam pressure mode, manual controllers	
- Atmospheric reliefs	
o When used	
o Auto setpoint	
o Manual control	
D. Review technical specification 3/4.2	
E. Review RHR system	
- RCS cooldown	
- Flow paths	
o Cold leg injection	
o Cold leg recirculation	
<ul> <li>Hot leg recirculation</li> </ul>	
F. Brief review of shutdown procedures	
- GOP-4	
- GOP-5	
- GOP-6	
- GOP-7	

		INSTRUCTOR'S LESSON	PLAN	Page 3	
		LESSON OUTLINE	NOTES ,	AND REFERENCES	
III.	PR	OCEDURE .			
		Set up plant in previous day's snap			
		and conduct shift turnover			
		- Shift:			
		- Plant Conditions: 25 percent power,			
		unloading to shutdown			
	8.	Scheduled STPs			
		- STP-103.001 RCS and pressurizer			
		heatup/cooldown			
		- STP-134.001 shutdown margin calculation			
	С.	Commence load reduction .			
	D.	Initiate CRF-6, uncontrolled rod motion			
		- Discuss effects on AI, HCFs			
		- Evaluate response			
•					
-		- Clear malfunction			
	Ε.	Continue load reduction			
	F.	Initiate FWM-4 feedwater flow transmitter		1	
		- Discuss effects on SGWLC			
		- Evaluate response			
		- Do not clear until MSS-1			
	G.	Initiate CVC-9, plugged boric acid filter			
		- Discuss effects on shutdown			
		- Evaluate response			
	н.	Initiate MSS-1, Steam Generator pressure			
		transmitter failure (control)			
		- If this is the same loop as FWM-4 and			
		the loop SGWL is low, a reactor trip			
		might occur when bistables tripped			
		- If students miss this and cause a reac-			
-		tor trip, let them conduct EOP-5 and			
		then reinitiate at just before the trip			

D -	INSTRUCTOR'S LESSON PL	Page 4
	LESSON OUTLINE	NOTES AND REFERENCES
	- Evaluate response	
	- Clear MSS-1 and FwM-4	
	I. Continue shutdown as time permits	
	- Have students calculate shutdown margin	STP-134.001
	<ul> <li>If cooldown is commenced initiate RCS and pressurizer heatup/cooldown STP's</li> </ul>	STP-103.001
	J. At end of shift take a SNAP and use it as tomorrow's IC	
IV.	CRITIQUE	
	A. Review overall operations.	1 Hour
	B. Review malfunction responses.	

1



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

### PHASE III PROGRAM

## NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

# Plant Shutdown and Cooldown to Cold Shutdown

#### Overview

During the shutdown and cooldown several systems are used as heat sinks for the reactor coolant system. During the unloading the main steam system and the turbine are used. Once the reactor shuts down, the steam dumps are used to cooldown to ~350°F. The reactor coolant system is then depressurized to ~380 psig and the RHR System is placed in service. The RHR System is then used to cool down to the Cold Shutdown condition (mode V,  $T_{avg} \leq 200°F$ ) or to the Refueling Mode (mode VI,  $T_{avg} \leq 140°F$ ).

This unit will be directed towards continuing the shutdown and cooldown of the power plant, along with reviewing the procedures necessary to perform those operations.

### Terminal Objective

Upon completion of this unit, the student will be able to perform a reactor shutdown and plant cooldown using appropriate procedures. The student will also be able to discuss the importance of major steps in the total operation. Students will also be able to describe the performance of a shutdown margin (SDM) determination.

### Enabling Objectives

Upon completion of this unit, the student will be able to:

- 1)- discuss shutdown margin determination calculation.
- 2)- describe the steps applied to the reactor shutdown and plant cooldown procedures.
- 3)- describe integrated plant relationships involved with plant shutdown and cooldown.
- 4)- discuss core reactivity effects during plant cooldown.
- 5)- perform a plant shutdown and cooldown.

### References

- Virgil C. Summer Training Simulator GOP-4, GOP-5, GOP-6, GOP-7, SOP-101, SOP-102, SOP-202, STP-103.001, and STP-112.002.
- 2. Virgii C. Summer Phase III Training Material
- 3. Curve Book
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document
- 6. South Carolina Electric & Gas Company Phase II Training Material

INSTRUCTOR'S GUIDE

.

5

(

(

(

ş.,

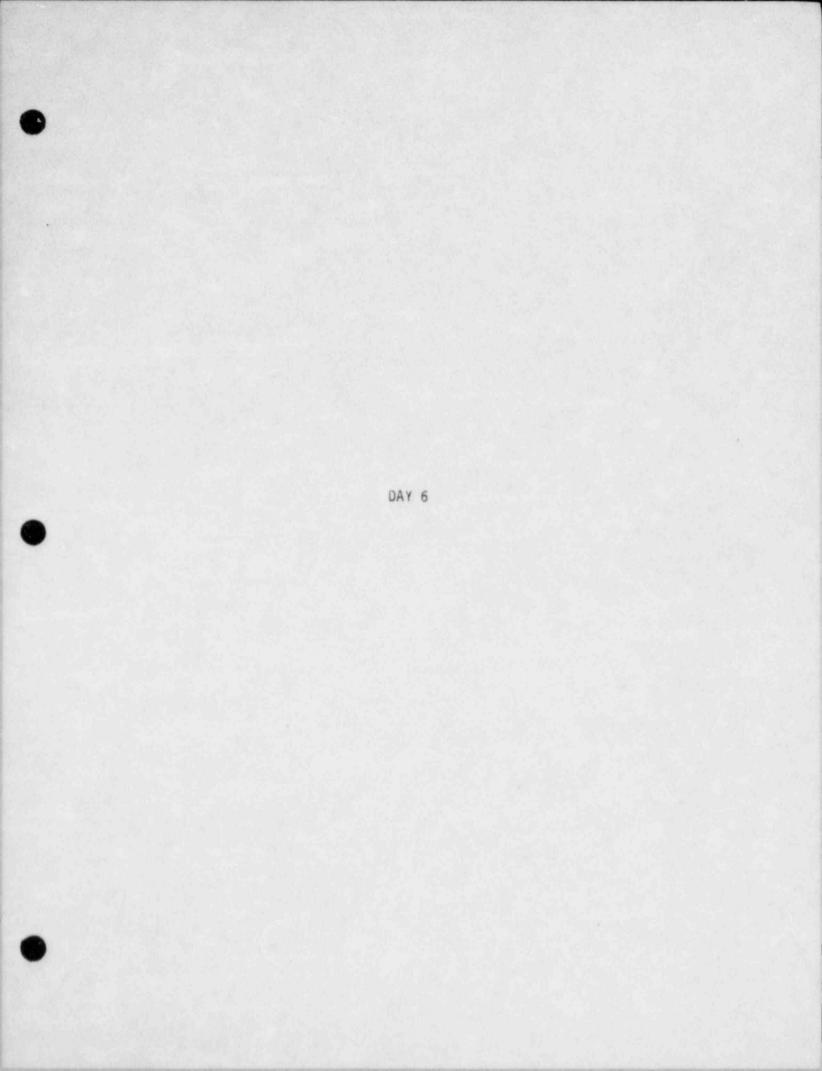
Page 1

LESSON OUTLINE	NOTES AND REFERENCES
	All and the second second
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
Upon completion of this unit, the student	
will be able to perform a reactor shutdown	
and plant cooldown using appropriate	
procedures. The student will also be able	
to discuss the importance of major steps	
in the total evolution. Students will	
also be able to describe the performance	
of a shutdown margin determination.	
B. OPERATIONS PLAN:	
Continue the plant shutdown/cooldown.	
C. MALFUNCTIONS SCHEDULED:	
1. PRS-3, pressurizer spray valve failure	
(open)	
2. PCS-6, inadvertent containment isola-	
tion phase A (Train A)	
3. MSS-5, steam dump control valve	
4. CVC-19, seal injection flow control	
valve (HCV-186) failure	
NOTE: In addition to the above listed mal-	
functions, any of the malfunctions scheduled	
on previous simulator sessions can also be	
used.	
STATE THE NEED TO ASK QUESTIONS AS THEY ARISE	
STATE BASIC PRESENTATION FORMAT	
EVIEW (Optional)	
. Emphasize AI control during shutdown	
. Review procedure GOP Appendices B and D	
. Have students perform a SDM from known	and the second
initial conditions.	

.

Page 2

	LESSON OUTLINE	NOTES AND REFERENCES
	. Review tech spec 3/4.4.7	
	. Discuss upcoming simulator operations	
	ROCEDURE	
Α.	. Put plant in SNAP taken at end of last	
	shift and conduct shift turnover	
	- Shift:	
	- Plant status: continue cooldown from	
	yesterday	
0.	Scheduled STPs:	
	1. STP-103,001 RCS and pressurizer	
	heatup/cooldown	
	<ol> <li>STP-112.002 reactor building spray pump test</li> </ol>	
с.	Continue cooldown	
	If still on steam dumps, initiate MSS-5,	Use STP-103.001
	steam durb control valve	during entire
	- Discuss effects on cooldown	cooldown
	- Evaluate response	
٤.	Initiate PCS-6, inadvertent CISA (Train A)	
	- Discuss effects on cooldown	
	- Evaluate response	
F,	While RCPs are still in service, initiate	
	CVC-19, seal injection flow control valve	
	(HCV-186) failure	
	- Discuss effects on RCP	
	- Evaluate response	
G.	When the pressurizer spray valve(s)	
	is(are) opened to depressurize the RCS,	
	initiate PRS-3, pressurizer spray valve	
	failure (open)	


LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>Discuss effect on cooldown</li> <li>Evaluate response</li> </ul>	
- Clear malfunction H. Depressurize to ~380 psig and put RHR in Service.	
<ul> <li>I. Continue plant cooldown to cold shutdown using the RHR system, and discuss the following:         <ul> <li>Calculation of xenon-free cold shutdown boron concentration using shutdown margin calculation</li> </ul> </li> </ul>	STP-112.002
<ul> <li>Pressure/temperature limitations for the RHR system</li> <li>Interlocks associated with the RHR system</li> <li>Cooldown limits for the RCS and pressurizer</li> </ul>	
<ul> <li>Cooldown verifying cooldown rates using RCS &amp; pressurizer heatup/cooldown</li> <li>Verification and adjustment of RHR boron concentration</li> <li>Alignment of the RHR system during cooldown</li> </ul>	
<ul> <li>Collapsing the pressurizer steam bubble</li> <li>Letdown flowpath while in RHR cooling alignment</li> </ul>	
<ul> <li>J. Students conduct shift turnover to instructor.</li> <li>Check for knowledge of current plant conditions.</li> </ul>	
CRITIQUE A. Review overall operations. B. Review malfunctions responses.	

÷

.

.

*****



#### SOUTH CAROLINA ELECTRIC & GAS COMPANY

PHASE III PROGRAM

#### NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

Plant Startup - Hot Standby to Point of Adding Heat

#### Overview

The startup of the reactor is probably the most important single event in normal operations. This is a time when many large reactivity additions are made by the operator. Strict attention must be given to plant parameters at all times so that the operator can take decisive and prompt action in the event of any unexplained reactivity excursion. Precise control of the reactor must be maintained at all times.

In this unit you will discuss the startup procedure, conducting a reactor startup, and proceding towards 2% power. The startup should be observed closely by those students not actually performing the evolution. During the course of this 25 day simulator training project each student will have the opportunity to perform at least 10 reactor startups.

#### Terminal Objective

Upon completion of this unit the student will be able to discuss the basic procedure for a startup and the importance of each step in the total evolution. The operator will also discuss all of the prerequisite administrative requirements, precautions, and limitations for reactor startups. The student will also gain familiarity with the control board and learn important equipment control locations at his particular work station.

#### Enabling Objectives

Upon completion of this unit the student will be able to:

- describe the steps of the reactor startup procedure in a chronological order.
- 2)- state the locations of various equipment controls and indications.
- 3)- discuss precautions and limitations of a reactor startup.
- 4)- describe control system interrelationships incorporated into the procedure.
- 5)- demonsrate good watch standing practices.
- 6)- perform a safe and controlled reactor startup.

References

- 1. Virgil C. Summer Training Simulator GOP-3, GOP-4
- 2. Virgil C. Summer Phase III Training Material
- 3. South Carolina Electric & Gas Company Phase II Training Material
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document

## INSTRUCTOR'S GUIDE

1

. .

5

(

(

(

	INSTRUCTOR'S LESSON PLA	N Page 1
	LESSON OUTLINE	NOTES AND REFERENCES
Ι.	INTRODUCTION	
	A. UNIT TERMINAL OBJECTIVE:	
	Upon completion of this unit, the student	
	will be able to discuss the basic pro-	
	cedure for a startup and the importance of	
	each step in the total evolution. The	
	operator will also discuss all of the	
	prerequisite administrative requirements,	김 김정은 영양, 김지 않았는 것이 같이 했다.
	precautions and limitations for reactor	
	startups. Students will also gain	
	familiarity with the control board and	그렇는 그 그 것이 가슴 가슴 가 있다.
	learn important equipment control loca-	
	tions at his particular watchstation.	
	B. OPERATIONS PLAN:	
	Perform a reactor startup to power in	
	accordance with general normal operating	
	procedures. Continue plant power	
	increase as time permits.	
	C. MALFUNCTIONS SCHEDULED:	
	NONE	
	이 같은 것을 많이	
	STATE THE NEED TO ASK QUESTIONS AS THEY ARISE	
	STATE BASIC PRESENTATION FORMAT	
	REVIEW (Optional)	
	A. Review reactor theory homework .	
	B. Review procedure for shift and relief	
	turnover	
	- Purpose	
	- Scope	
	- Definitions	
	- Procedure	

0955L:4

. .

Page 2

-	LESSON OUTLINE	NOTES AND REFERENCES
	C. Review the major parts of the reactor	
	startup procedure, GOP-3, stressing	
	the following:	
	- Precautions and limitations	
	- Initial conditions	
	- Procedure	
	Always attempt to orient the students to	
	the basic procedure to help them attain a	
	"big picture" concept.	
D.	Summarize the reactor startup procedure by	
	having a student give a basic outline of	
	it:	
	- Check initial conditions and complete	
	check lists	
	- Adjust Boron concentrations if	
	necessary	
	- Announce reactor startup	
	- Block the high flux at shutdown alarm	
	- Record source range counts	
	- Withdraw control rods in manual to	
	establish criticality	
	- Verify reactor subcritical at RIL	
	- Announce reactor criticality	
	- Proceed to 10 ⁻⁸ amps at .75 DPM	
	- Block source range at P-6	
	- Level power at 10 ⁻⁸ amps. Record	
	critical data.	
	- Increase power to 2 percent	
Ε.	Review major parts of the plant operations	
	> 2 percent power, GOP-4, stressing:	
	- Purpose	
	- Precautions	
		*

LESSON OUTLINE	AN Page 3
	NOTES AND REFERENCES
- Initial conditions	
- Instructions	
- Final conditions	
F. Review operational control area guidelines	
- Control areas in the control room	
- Technical specifications manning	
requirements	
- Physical restrictions imposed upon the	
operators	
G. Review Technical Specifications para. 3.0.4	
H. Discuss upcoming simulator operations	
PROCEDURE	
A. Proceed to Control Room and discuss the	
following:	
- Instructor/student relationship	
- Communication between students and	
operators outside the control room	
- Control room manning	
- Shift turnover	
- Control room terminology	
- Simulator problems	
.B. Put plant in MOL, hot standby and conduct shift turnover	
- Shift: 0000-0800	
- Initial conditions: Hot standby,	
557°F, 2235 psig	
C. Students should calculate an ECP and an SDM	
NOTE: Stress the importance of the	
reactor operator staying at his control	
station with control rods in manual and	
off the bottom	
	1

÷

<ul> <li>Discuss technical specifications requirements needed prior to criticality (summarization)</li> <li>Para. 3.0.4 changing modes</li> <li>2.2.1 limiting safety system settings</li> <li>3/4 1.3.1 group height</li> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.5 shutdown rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Obscuss the following:</li> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Jouling</li> <li>Minimum and maximum critical positions</li> <li>Indications of criticality</li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁶ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source-range high flux reactor trip</li> <li>Operation of intermediate range nuclear instruments</li> <li>Increase power to 10⁻⁶ amps and discuss:</li> </ul>		LESSON OUTLINE	NOTES AND REFERENCES
<pre>requirements needed prior to criticality (summarization) Para. 3.0.4 changing modes 2.2.1 limiting safety system settings 3/4 1.3.1 group height 3/4 1.3.2 position indicating system 3/4 1.3.4 rod drop time 3/4 1.3.5 shutdown rod insertion limit 3/4 1.3.5 shutdown rod insertion limits 3/4 3.1.1 reactor trip system instrumentation Discuss log readings taken prior to pulling rods Discuss the following: Operation of the rod control system in manual Osubcritical multiplication Operation of source range nuclear instruments Obubling Minimum and maximum critical postitions Increase power to 10⁻⁸ amps and discuss: Source-intermediate range Permissive P6 and blocking of the source range high flux reactor trip Operation of intermediate range</pre>		Discuss technical specifications	
<pre>criticality (summarization) - Para. 3.0.4 changing modes - 2.2.1 limiting safety system settings - 3/4 1.3.1 group height - 3/4 1.3.2 position indicating system - 3/4 1.3.4 rod drop time - 3/4 1.3.5 shutdown rod insertion limit - 3/4 1.3.6 control rod insertion limits - 3/4 3.1.1 reactor trip system instrumentation - Discuss log readings taken prior to pulling rods - Discuss log readings taken prior to pulling rods - Discuss the following: - Operation of the rod control system in manual - Subcritical multiplication - Operation of source range nuclear instruments - Doubling - Minimum and maximum critical postitions - Indications of criticality Scheduled STPs: None Increase power to 10⁻⁸ amps and discuss: - Source-intermediate range overlap - Permissive P6 and blocking of the source range high flux reactor trip - Operation of intermediate range</pre>			
<ul> <li>Para. 3.0.4 changing modes</li> <li>2.2.1 limiting safety system settings</li> <li>3/4 1.3.1 group height</li> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.4 rod drop time</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system     instrumentation</li> <li>Discuss log readings taken prior to     pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control     system in manual</li> <li>Subcritical multiplication</li> <li>Ouperation of source range nuclear     instruments</li> <li>Doubling</li> <li>Minimum and maximum critical     postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> </ul> </li> <li>Increase power to 10⁻⁸ amps and discuss: <ul> <li>Source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>			
<ul> <li>2.2.1 limiting safety system settings</li> <li>3/4 1.3.1 group height</li> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.4 rod drop time</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system         <ul> <li>instrumentation</li> <li>Discuss log readings taken prior to         pulling rods</li> <li>Operation of the rod control         system in manual         <ul> <li>Operation of the rod control         system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear         instruments         <ul> <li>Doubling</li> <li>Minimum and maximum critical         postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs:         <ul> <li>None</li> </ul> </li> <li>Increase power to 10⁻⁸ amps and discuss:         <ul> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the         source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul></li></ul></li></ul>			
<ul> <li>3/4 1.3.1 group height</li> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.4 rod drop time</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> </ul> </li> <li>Increase power to 10⁻⁸ amps and discuss: <ul> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>			
<ul> <li>3/4 1.3.2 position indicating system</li> <li>3/4 1.3.4 rod drop time</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>			이 같은 것은 것은 것은 것이다.
<ul> <li>3/4 1.3.4 rod drop time</li> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Obubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>			
<ul> <li>3/4 1.3.5 shutdown rod insertion limit</li> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>		- 3/4 1.3.4 rod drop time	
<ul> <li>3/4 1.3.6 control rod insertion limits</li> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>			
<ul> <li>3/4 3.1.1 reactor trip system instrumentation</li> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>		- 3/4 1.3.6 control rod insertion limit	
<pre>instrumentation - Discuss log readings taken prior to pulling rods - Discuss the following:         O Operation of the rod control         system in manual         O Subcritical multiplication         O Operation of source range nuclear         instruments         O Doubling         O Minimum and maximum critical         postitions         O Indications of criticality Scheduled STPs: None Increase power to 10⁻⁸ amps and discuss: - Source-intermediate range overlap - Permissive P6 and blocking of the         source range high flux reactor trip - Operation of intermediate range</pre>		- 3/4 3.1.1 reactor trip system	요즘 동안에 있는 것이 같은 것을 수 있는 것
<ul> <li>Discuss log readings taken prior to pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss: <ul> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>			
<ul> <li>pulling rods</li> <li>Discuss the following: <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs: <ul> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>	-		
<ul> <li>Discuss the following:         <ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> </ul> </li> <li>Scheduled STPs:         <ul> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>		pulling rods	
<ul> <li>Operation of the rod control system in manual</li> <li>Subcritical multiplication</li> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>	-		
system in manual • Subcritical multiplication • Operation of source range nuclear instruments • Doubling • Minimum and maximum critical postitions • Indications of criticality • Scheduled STPs: None • Increase power to 10 ⁻⁸ amps and discuss: • Source-intermediate range overlap • Permissive P6 and blocking of the source range high flux reactor trip • Operation of intermediate range			
<ul> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>			
<ul> <li>Operation of source range nuclear instruments</li> <li>Doubling</li> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>		o Subcritical multiplication	
instruments O Doubling O Minimum and maximum critical postitions O Indications of criticality Scheduled STPs: None Increase power to 10 ⁻⁸ amps and discuss: - Source-intermediate range overlap - Permissive P6 and blocking of the source range high flux reactor trip - Operation of intermediate range			
<ul> <li>Minimum and maximum critical postitions</li> <li>Indications of criticality</li> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>			
postitions o Indications of criticality Scheduled STPs: None Increase power to 10 ⁻⁸ amps and discuss: - Source-intermediate range overlap - Permissive P6 and blocking of the source range high flux reactor trip - Operation of intermediate range		o Doubling	
<ul> <li>Indications of criticality</li> <li>Scheduled STPs:</li> <li>None</li> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>		o Minimum and maximum critical	
<ul> <li>Scheduled STPs: None</li> <li>Increase power to 10⁻⁸ amps and discuss:         <ul> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul> </li> </ul>		postitions	
None Increase power to 10 ⁻⁸ amps and discuss: - Source-intermediate range overlap - Permissive P6 and blocking of the source range high flux reactor trip - Operation of intermediate range		o Indications of criticality	
<ul> <li>Increase power to 10⁻⁸ amps and discuss:</li> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>	. Sc	cheduled STPs:	
<ul> <li>Source-intermediate range overlap</li> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>			
<ul> <li>Permissive P6 and blocking of the source range high flux reactor trip</li> <li>Operation of intermediate range</li> </ul>	. In	crease power to 10 ⁻⁸ amps and discuss:	
source range high flux reactor trip - Operation of intermediate range	9 (F)	Source-intermediate range overlap	
- Operation of intermediate range	-	Permissive P6 and blocking of the	
		source range high flux reactor trip	
nuclear instruments	-		
		nuclear instruments	

	LESSON CUTLINE	NOTES AND REFERENCES
IV.	<ul> <li>Data taken at 10⁻⁸ amps and why it is taken</li> <li>F. Increase power to 2 percent. Discuss: <ul> <li>Indications at the point of adding heat</li> <li>Effects of moderator temperature and Doppler on SUR.</li> <li>Effect of increasing T_{avg} on steam dump operation</li> </ul> </li> <li>G. Final condition: 2 percent power</li> <li>H. Students conduct shift turnover to instructor. Check for knowledge of current plant condition</li> <li>CRITIQUE</li> </ul>	
•	A. Review overall operations and conduct.	
•		

# SOUTH CAROLINA ELECTRIC & GAS COMPANY

## PHASE III PROGRAM

NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

Plant Startup - Hot Standby to Full Power

### Overview

Before performing a reactor startup, a calculation is required to help predict the point at which criticality will occur. This calculation is called an estimated critical condition (ECC). If we find that from this calculation (ECC) that the reactivity balance of the core has changed significantly, then a more structured approach toward criticality must be used. This is called an inverse count rate ratio plot (ICRR). These two calculations (ECC and ICRR) tell the operator that the reactor is responding properly (as predicted) during the startup and thus ensures the operator that he is maintaining precise control of the reactor. Both of these calculations require reference information which is obtained by the operators during the previous critical operation.

This unit will review the procedures for taking reference critical data (RCD), calculating the ECC and performing an ICRR plot. A review of some items from technical specifications will also be conducted.

#### Terminal Objective

Upon completion of this unit the student will be able to discuss the data collected and the performance of ECC, RCD AND ICRR plot calculations. Also, the student will recall the function, composition and responsibilities of the Plant Safety Review Committee (PSRC) and Nuclear Safety Review Committee (NSRC).

Rev 0 1/83

#### Enabling Objectives

Upon completion of this unit, the student will be able to:

- describe the steps taken that are necessary to perform an ECP, ICRR plot and RCD.
- 2)- discuss the importance of ECP, ICRR plot and RCD calculations.
- 3)- perform a safe and controlled reactor startup.
- 4)- explain how a core reactivity balance is calculated.

## References

(

- Virgil C. Summe Training Simulator GOP-4, GOP Appendix B, GOP Appendix C, GOP Appendix D, STP 125.002
- 2. Virgil C. Summer Phase III Training Material
- 3. South Carolina Electric & Gas Company Phase II Training Material
- 4. Tecunical Specifications
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

ſ.

(

(

.

LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>INTRODUCTION</li> <li>A. UNIT TERMINAL OBJECTIVE: Upon completion of this unit, the student will be able to discuss the data collected and the performance of ECC, RCD, and ICRR plot calculations. Also, the student will recall the function, composition and responsibilities of the Plant Safety Review Committee (PSRC) and Nuclear Safety Review Committee (NSRC).</li> <li>B. <u>OPERATIONS PLAN:</u> Perform a reactor startup to POAH. Per- form a 1/M plot during the startup. Con- tinue plant power to increase to full load.</li> <li>C. <u>MALFUNCTIONS SCHEDULED</u>: NONE</li> </ul>	NOTES AND REFERENCES
STATE THE NEED TO ASK OUESTIONS AS THEY ARISE STATE BASIC PRESENTATION FORMAT REVIEW (Optional) A. Review reactor theory homework B. Complete the review of GOP-4 (if required) C. Review Reference Critical Data procedure GOP4 Appendix B - Purpose - Procedure <u>Note to Instructors</u> : Stress the impor- tance of having accurate data to perform	

INSTRUCTOR'S LESSON
---------------------

Page 2

LESSON OUTLINE	NOTES AND REFERENCES
 <ul> <li>D. Review ECC Calculation procedure GOP Appendix C <ul> <li>Purpose</li> <li>Procedure</li> <li><u>Note to Instructors</u>: Have students calculate an ECC with the instructor providing data</li> </ul> </li> <li>E. Review procedure for an ICRR plot, GOP Appendix D using a sample plot</li> <li>F. Review the administrative section of tech specs for the review and audit</li> <li>G. Discuss upcoming simulator operations PROCEDURE</li> <li>A. Put plant in IC EOL, Hot Standby and <ul> <li>Conduct a shift turnover</li> <li>Shift</li> <li>Initial conditions: Hot Standby, 557°F, 2235 psig</li> </ul> </li> </ul>	NOTES AND REFERENCES
B. Provide students with RCD; have the students calculate the ECCS and shutdown margin	
<ul> <li>C. Direct students to conduct a reactor startup guided by a 1/M plot, discuss:</li> <li>Tech specs requirements</li> <li>Criticality data</li> <li>Manual rod control</li> <li>Subcritical multiplication</li> <li>Doubling</li> <li>Indications of criticality</li> <li>D. Scheduled STPs:</li> <li>STP 125.002 Diesel Generator Operability Test</li> </ul>	

0954L:4

. . . . .

Page 3

.*

LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>E. Increase power to 10⁻⁸ amps, discuss</li> <li>NIS overlap</li> <li>Permissive P-6</li> </ul>	5:
<ul> <li>F. Increase power to about 2 percent, of</li> <li>Indications of the point of additional additionadditional addi</li></ul>	ng heat and
dump operation G. Final condition: 2 percent power H. Students conduct shift turnover to instructor. Check for knowledge of current condition	
IV. CRITIQUE	
<ol> <li>Review overall operations and conduct</li> </ol>	e.

# SOUTH CAROLINA ELECTRIC & GAS COMPANY

## PHASE III PROGRAM

# NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

Plant Startup - Hot Standby to Full Power

#### Overview

Once the reactor is producing heat, the secondary plant may be aligned in preparation for starting the turbine-generator. The goal of the operators is to make a smooth transition to a loaded generator, and to gradually increase that load toward 100 percent power. Many systems will be operated in manual control until it becomes appropriate to transfer them to automatic control. During power operations it is necessary to periodically check the nuclear instruments for accuracy. This is accomplished by performing a secondary heat balance calculation.

In this unit you will discuss plant operations greater than 2 percent power, heat balance calculations, and the procedure for changing plant load. A review of additional items from the Administrative Section of the Technical Specifications will also be conducted.

## Terminal Objectives

Upon completion of this unit, the student will have acquired the knowledge necessary for starting the turbine generator and loading the plant to 100 percent power. The student will also be able to explain how to perform a secondary heat balance calculation.

## Enabling Objectives

Upon completion of this unit, the student will be able to:

- 1)- discuss the startup of the turbine generator.
- 2)- describe the integrated plant relationships that are involved with startup and loading of the plant.
- 3)- describe the steps supplied to the plant loading procedure.
- 4)- perform a secondary heat balance calculation.
- 5)- perform a plant loading to 100 percent power.

#### References

- Virgil C. Summer Training Simulator GOP-3, GOP-4, Appendix D, STP-102.002 and STP-122.002
- 2. Virgil C. Summer Phase III Training Material
- 3. South Carolina Electric & Gas Company Phase II Training Material
- 4. Technical Specifications
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

5

(

(

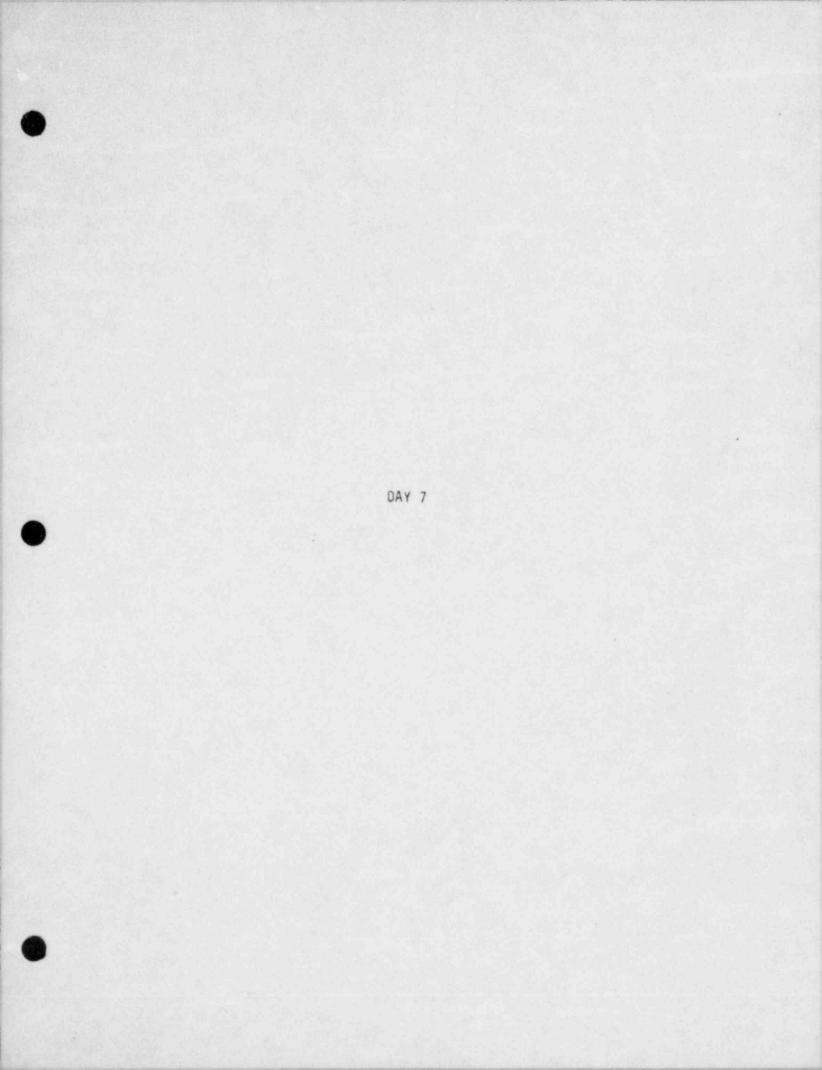
1

(

Page 1

	LESSON OUTLINE	NOTES AND REFERENCES
IN	TRODUCTION	
Α.		
	Upon completion of this unit, the student	
	will have acquired the knowledge necessary	
	for starting the turbine generator and	
	loading the plant to 100 percent power.	1995년 - 1997년 1 1997년 - 1997년 1 1997년 - 1997년 1 1997년 1997년 199
	The student will also be able to explain	
	how to perform a secondary heat balance	
	calculation.	
в.		
	Perform a reactor startup to 2 percent	
	power. Provide the students with the	
	ECC. Perform a 1/M plot during the	
	startup. Continue plant power increase to	
	full load. Perform a secondary heat	
	balance calculation during the power	
	increase.	
с.	MALFUNCTIONS SCHEDULED:	
	NONE	
STA	TE THE NEED TO ASK QUESTIONS AS THEY ARISE	
STA	TE BASIC PRESENTATION FORMAT	
REV	IEW (Optional)	
Α.	Review the homework assignment	
Β.	Summarize the plant operations > 2 percent	
	power by having a student present a basic	
	outline.	
С.	Review plant load change procedures in	
	GOP-4	
	- Purpose	
	- Precautions	
	- Initial conditions	

-	LESSON OUTLINE	
		NOTES AND REFERENCES
	- Instructions	
	- Final conditions	
D.	Review procedure for performing a	
	secondary heat balance calculation,	
	STP-102.002*	
	- Purpose	그렇게 집에 가지도 않는 것을 수 없다.
	- Precautions	
	- Initial conditions*	
	- Procedure	
	Note to Instructors: Stress importance	
	that initial conditions be met in order to	한 것 같은 것 같은 것 같이 가슴을 망망했다.
	obtain the desired accuracy.	
Ε.	Review the following technical	2 - C.
	specifications (Administrative Section):	한 것이 많은 것이 같은 것이 같은 것이 같을 것이다.
	- Responsibility (6.1)	
	- Organization (6.2)	
	- Offsite (6.2.1)	그는 것이 아들에 가지 않는 것이 많이 하네?
	- Unit staff (6.2.2)	
F.	Discuss upcoming simulator operations	
III. PROD		
. A.	Put the plant in 1C set for MOL, hot stand- by and conduct a shift turnover	
Β.	Have the students calculate an ECC and	물건 이 전 것이 같은 것이 가지 않는 것 같은 것이 없다.
	perform a startup guided by a 1/M plot,	
	discuss:	
	- Alarms received and cleared during the	
	course of the startup	
	- Technical specification requirements	
	- Various factors that can affect the	
	ECC such as	
	o Changing RCS boron concentration	


INSTRUCTOR'S LESSON PLAN Page 3 LESSON OUTLINE NOTES AND REFERENCES o Inadvertent opening of steam dump valves Excessive feeding of steam generators Manual rod control Doubling Indications of criticality C. Scheduled STPs: - STP-102.002 STP-122.002 D. Increase power to 10⁻⁸ amps, discuss: Data taken at  $10^{-8}$  amps, and why it is taken Permissive P-6 NIS overlap E. Increase power to 2 percent - Indications of the point of adding heat Effects of doppler and  $\alpha_{\rm T}$  on start up rate F. Secondary plant startup - Start additional condensate pump Start a main feedwater pump - Establish SGWLC with main feedwater bypass valves Secure and realign emergency feedwater - Warm and roll main turbine - Increase reactor power to 12-15 percent - Synchronize generator to 5 percent G. Load generator to 100 percent Increase load and reactor power to ~ 10 percent o Loading rate: 0.5 percent/min 1 o P-10, P-13, P-7 o Block IR Hi ø, PR Hi ø-Lo

0958L:4

	1 500011 0100	AN Page 4
	LESSON OUTLINE	NOTES AND REFERENCES
-	Increase load to 140-145 MW,	
	reactor power to 15 percent	
	o Rate: 0.5 percent/min	
	o Shift from bypass valves to main	
	feed reg valves	
	o Verify plant computer AFD operable	
	Increase load to 190 MW _e , 20 percent	
	reactor power	한 김왕은 그는 물건을 받았어?
	o Place rods in Auto on:	
	+ C-5	
	+ $T_{avg} = T_{ref} \pm 1^{\circ}F$	
	o Steam dump in Tavg mode	
•	Load to 50 percent power	
	o Start remaining pumps:	
	+ Condensate	
	+ Feedwater booster	
	+ Feedwater	
	Perform Component Cooling Pump Test	STP-122.002
	38 percent power: P-8	
(	Remove condensate polishing system	
	from service	
(	Perform calorimetric at 50 percent	STP-102.002
- L	oad to 75 percent (~ 710 MW_)	
	Borate/dilute to maintain AI	
c	MSR in full service	
c	Perform calorimetric at 75 percent	STP-102.002
- L	oad to 90 percent (~ 900 MW_)	
0		
0	Borate/dilute to maintain AI	
- L	oad to 100 percent (~ 950 MW_)	
0	B	
0		STP-102.002

INSTRU	CTOR'S	LESSON	PLAN
--------	--------	--------	------

LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>H. Final condition: 100 percent power</li> <li>I. Students conduct shift turnover to instructor. Check for knowledge of current plant condition</li> <li>IV. CRITQUE</li> </ul>	1 hour
( A. Review overall operations and condu	ct.
(	
(	
0958L:4	
0958L:4	Rev 0 1/83



## SOUTH CAROLINA ELECTRIC & GAS COMPANY

### PHASE III PROGRAM

# NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

# Power Operations and Reactor Trip Recovery

### Overview

Occasionally during nuclear plant operation, conditions will arise which result in automatic shutdown of the unit. The automatic actions will place the nuclear plant in a safe condition. However, proper operator response is required to place the plant in a stable shutdown condition.

This unit will provide a review of plant and system response to a reactor trip and subsequent recovery. It will discuss proper operator actions following a unit trip along with subsequent requirements and actions in returning the plant to operation.

## Terminal Objective

The student will be able to describe nuclear plant response to a reactor trip including precautions and requirements for plant recovery and return to power. Evaluation will be performed by the program instructor's observation and student's oral response to questions.

Rev 0 1/83

#### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- describe automatic actions which occur following a reactor trip.
- 2)- describe, in general terms, the operator actions required to place the unit in a stable condition following a reactor trip.
- 3)- describe the precautions for performing a reactor startup.
- 4)- describe ECC requirements for reactor startup following a trip.
- 5)- describe the sequence of events during a reactor startup.
- 6)- describe reactor plant response upon return to power operation in relation to boron and xenon concentrations.
- 7)- perform a reactor trip recovery from power, applying the appropriate off-normal or emergency procedures.

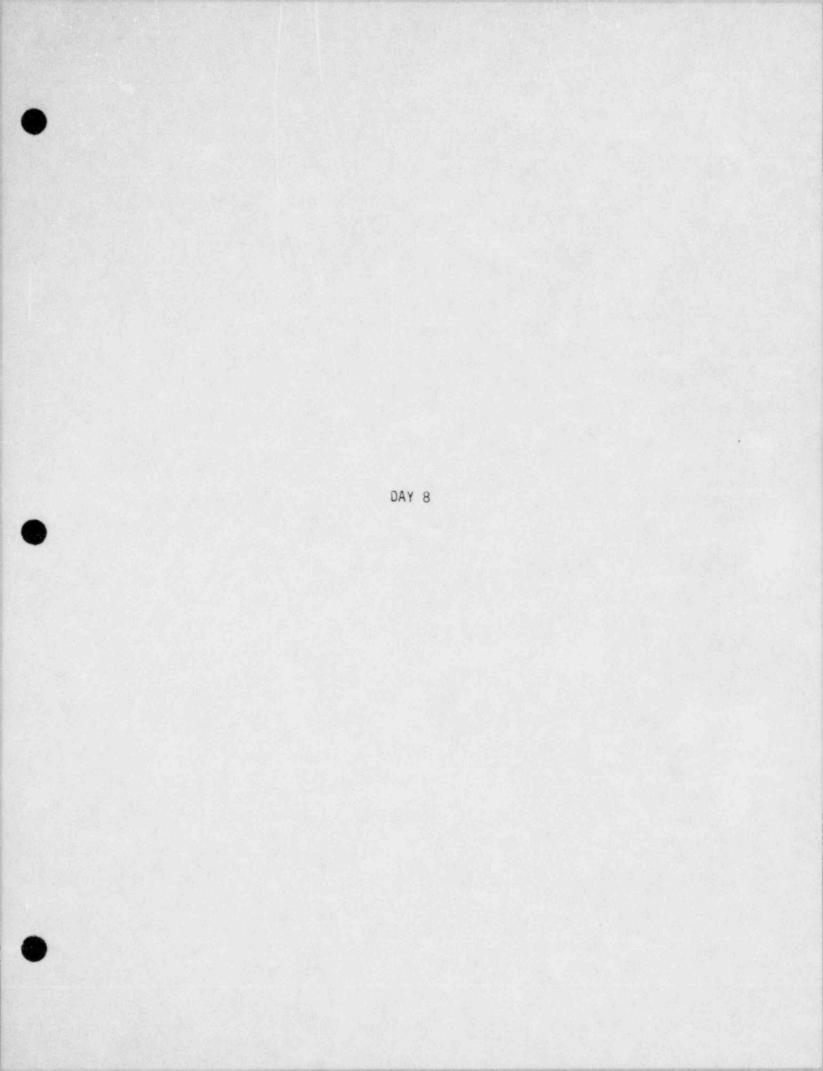
#### References

- 1. Virgil C. Summer Phase III Training Materials
- 2. Technical Specifications
- 3. South Carolina Electric & Gas Company Phase II Training Materials
- 4. Precautions, Limitations, and Setpoints Document
- Virgil C. Summer Training Simulator EOP-5, GOP-2, GOP-3, GOP-4, SOP-102, SOP-403, SOP-404, STP 122.002, and 134.001

INSTRUCTOR'S GUIDE

(

(


LESSON OUTLINE	NOTES AND DESER
	NOTES AND REFERENCES
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to describe	
nuclear plant response to a reactor trip	
including precautions and requirements for	
plant recovery and return to power. Eval-	
uation will be performed by the program	
instructor's observation and student's	
oral response to questions.	
B. OPERATIONS PLAN:	
Perform plant shutdown from previous day's	승규는 아파 가지 않는 것을 수 있다.
operation	
C. MALFUNCTIONS SCHEDULED:	
- Selected meter failure	
- CVC-14 seal injection filter plugged	
- RCS-8 RCS RTD failure (T _H , high)	
- TUR-12 Turbine impulse pressure trans-	
mitter failure	
- NIS-5 Source range hi voltage failure	
to disconnect	
- FWM-15 FW control valve position	
failure	
NOTE: In addition to the above listed mal-	
functions, any of the malfunctions scheduled	
on previous simulator sessions can also be used.	
used.	
STATE THE NEED TO ASK OUTSTAND IN THE	
STATE THE NEED TO ASK CUESTIONS AS THEY ARISE	
STATE BASIC PRESENTATION FORMAT	
REVIEW (Optional) A. Review reactor theory homework	

1.11	LESSON OUTLINE	NOTES AND REFERENCES
В.	. Present overview of simulator	
	operations	
	- Plant shutdown from 50 percent	
	- Reactor trip	
	- Hot Standby	
	- RCD, SDM, ECC	
	- Reactor startup	
	- Turbine loading	
С.	Discuss system response and operation	장님은 것이 같은 것을 수 없는 것
	following a reactor trip	[일이 : 2011] - 11 202 - 202
	- Main steam system	: ^ · · · · · · · · · · · · · · · · · ·
	o Steam valves	
	o Atmospheric reliefs, safeties	
	o Extraction steam check valves	한 집에 가지 않는 것이 않는 것을 가 없다.
	- Steam dumps	
	o T _{avg} , Pressure control - Feedwater system	
	o Feedwater isolation	
	o Feedwater pumps	
	- Emergency feedwater	
	o Auto start	
	o Flow control	
	o Operator actions	김 씨는 감독을 가지 않는 것 같아.
	- Reactor coolant system and	
	pressurizer, factors which help limit	
	pressure excursion	
	o Control heaters off	
	o Pressurizer sprays	
	o PORV	
	o Safeties	철상 영화 가지 않는 것 같아. 것 같아. 것

LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>Review xenon transient following</li> <li>reactor trip and return to power</li> <li>o Buildup</li> <li>o Decay</li> </ul>	
o Burnout	
D. Discuss SOP-404 NIS malfunction Off-Normal	
- Symptoms	
- Automatic actions	
- Immediate corrective actions	
- Followup actions	
- Use of instrument failure guide	
E. Discuss reactor trip, EOP-5	
- Symptoms	
- Automatic actions	
- Immediate actions	
- Followup actions	
F. Review ECC requirements	
- Data for calculation	
- Time requirements	: 김 사이 있는 것은 가장한 것 !
G. Review GOP-03 startup precautions	
H. Discuss Technical Specification 3/4.3.1 - •	
NIS Instrumentation requirements for S/U PROCEDURE	
A. Set up plant in IC from previous day and	
conduct shift turnover	
- Shift	
- Initial conditions:n 50 percent, MOL	
- Load dispatch orders: shutdown by end	
of shift	
B. Scheduled STPs	
- STP-122.002 Component Cooling Pump Test	
	1

	LESSON OUTLINE	NOTES AND REFERENCES
	- STP-134.001 Shutdown Margin	
	Calculations	
С.	Have students continue plant shutdown	
	Fail selected meter(s) for each operator	
	and allow him to detect and determine	
	meter via instrument failure	
Ε.	Return meter to service after detected	
F.	Initiate CVC-14, seal injection filter	
	plugged	방송가 있는 것 같은 영상가 없는 것
	- Discuss effects on RCP, seals	
	- Ensure student contact auxiliary	
	operator for repair	
G.	Initiate NIS-5, source range hi voltage	
	failure to disconnect, below P-10	그는 그 그는 그는 것을 알았는 것이 같이 했다.
н.	Initiate RCS-8, RCS RTD failure (T _H control	
	channel, high)	
	- Discuss effects on control, protection	
	- Ensure students contact I&C tech for	
	repair, bistable trips	
Ι.	Initiate TUR-12, turbine impulse pressure	
	transmitter failure	
	- Discuss effects on control	
	- Ensure students contact turbine	
	building operator for repair	
J.	Respond to reactor trip IAW EOP-5	
	- Have students perform a Shutdown	STP-134.001
	Margin Calculation before beginning	가장 집에 다 한 것이라. 관계 나는 것이라.
	reactor startup	
Κ.	Perform a reactor startup, discuss	
	precautions and expected NIS response	
	- During startup have BOP do a Component	STP-122.002
	Cooling Pump Test	

-		I CANIN
	LESSON OUTLINE	NOTES AND REFERENCES
(	<ul> <li>L. At 10⁻⁸ amps discuss actions for NIS-5 and effects on operation</li> <li>M. Continue to POAH and commence secondary plant startup and turbine loading</li> <li>N. Initiate EVM-15. EV second and</li> </ul>	
(	N. Initiate FWM-15, FW control valve position failure	전 성격이 가슴 방법을 통해.
	<ul> <li>O. Following shiftover to main feed reg valve and discovery of faulty FRV, discuss:</li> <li>Actions taken</li> <li>Possible causes</li> <li>Note in procedure to verify proper valve response</li> </ul>	
	- Clear malfunction P. Continue plant loading as time permits	
	<ul> <li>Q. Students conduct shift turnover to instructor. Check for knowlege of current plant situation</li> </ul>	
IV.	CRITIQUE	1 hour
	A. Review overall operations.	1 Hour
	B. Review malfunction responses.	



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

PHASE III PROGRAM

# NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

Reactor Startup During Xenon Transients

### OVERVIEW

Nuclear plant startups are significantly affected by certain variables. Xenon, a reactivity variable over which the operator has no control, is the major variable for which the operator calculates and compensates. In order to perform a startup within the Estimated Critical Condition calculation (ECC) guidelines, the operator has to be familiar with the calculations and procedures involved. In addition, he has to insure all requirements are established for a startup, and be aware of maintenance tasks in progress so that he can adequately estimate plant startup time.

This unit is designed to allow the students to perform the required calculations and reactor startup during a xenon transient, thus experiencing the uniqueness of a startup which requires a timely completion of the procedures.

## Terminal Objective

The student will be able to satisfactorily explain and analyze xenon transient effects on reactor startups as evaluated by the program instructor's observation and oral response to questioning.

1

Rev 0 1/83

#### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- describe xenon reactivity effects on a reactor startup.
- 2)- discuss how the operator can vary charging and letdown flow.
- 3)- recall the technical specifications which apply to reactor startups.
- 4)- explain the operator actions if criticality occurs outside ECC limits.
- 5)- manipulate the chemical and volume control system to compensate for changes in core xenon concentrations.

#### References

- Virgil C. Summer Training Simulator GOP-3, GOP-4, SOP-102, SOP-403, and STP 123.002.
- 2. Virgil C. Summer Phase III Training Material
- 3. Technical Specifications
- 4. South Carolina Electric & Gas Company Phase II Training Material
- 5. Precautions, Limitations, and Setpoints Document

INSTRUCTOR'S GUIDE

100 1

or contraction

(

(

	LESSON OUTLINE	NOTES AND REFERENCES
INTR	COUCTION	
	UNIT TERMINAL OBJECTIVE:	
	The student will be able to satisfactorily	
	explain and analyze xenon transient	
	effects on reactor startups as evaluated	
	by the program instructor's observation	
	and students oral response to questioning.	
В.	OPERATIONS PLAN:	
	Perform plant startup from hot standby to	
	full power during xenon transient with	
	simple malfunctions.	
	MALFUNCTIONS SCHEDULED	
	- CRF-4 Dropped rod (one)	
	- CVC-17 Charging pump trip	
	- CVC-7 Loss of normal letdown	
ATE BASIC	EED TO ASK QUESTIONS AS THEY ARISE	
ATE BASIC . REVIE	EED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional)	
ATE BASIC . REVIE A. R	REED TO ASK QUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework	
ATE BASIC . REVIE A. R B. P	REED TO ASK QUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator	
ATE BASIC . REVIE A. R B. P	REED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations	
ATE BASIC . REVIE A. R B. P o	REED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon	
ATE BASIC . REVIE A. R B. P o -	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup	
ATE BASIC . REVIE A. R B. P o -	REED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading	
ATE BASIC . REVIE A. R B. P o - - C. R	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading eview CVCS	
ATE BASIC A. REVIE A. R B. P o - - C. R	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading eview CVCS Letdown	
ATE BASIC . REVIE A. R B. P o - - C. R	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading eview CVCS Letdown o Valve and pump interlocks	
ATE BASIC . REVIE A. R B. P o - - C. R	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading eview CVCS Letdown o Valve and pump interlocks o VCT level program	
ATE BASIC . REVIE A. R B. P o - - C. R	NEED TO ASK OUESTIONS AS THEY ARISE PRESENTATION FORMAT W (Optional) Neview . reactor theory homework resent overview of simulator perations Reactor startup at peak xenon Continue secondary startup Turbine loading eview CVCS Letdown o Valve and pump interlocks	

*

.

INSTRUCTOR'S LESSON PL.	AN Page 2
LESSON OUTLINE	NOTES AND REFERENCES
c TV -143	
o TV -144	
0 LCV-115A	
- Charging	
o Pumps	
o Flow paths	
o Seal injection	
o Operation of	
+ FV-122	
+ HV-186	
- Excess letdown	
- BCMS	
o Operation	
o Accuracy	
o Sample points	
- Procedures	
o CVCS Malfunction SOP-102	
Note to Instructors: In the above	
discussions, ensure that the indications	
and operator actions for the following are	
covered:	
- LCV-115A failure	
- PV -145 failure	
- FV -122 failure	
o Loss of Seal Water	
o Loss of Normal Letdown	
D. Review RCP Seal System	
Injection and leakoff flow path	
- Types of individual seals	
- Seal pressure requirements	
- Seal precautions	

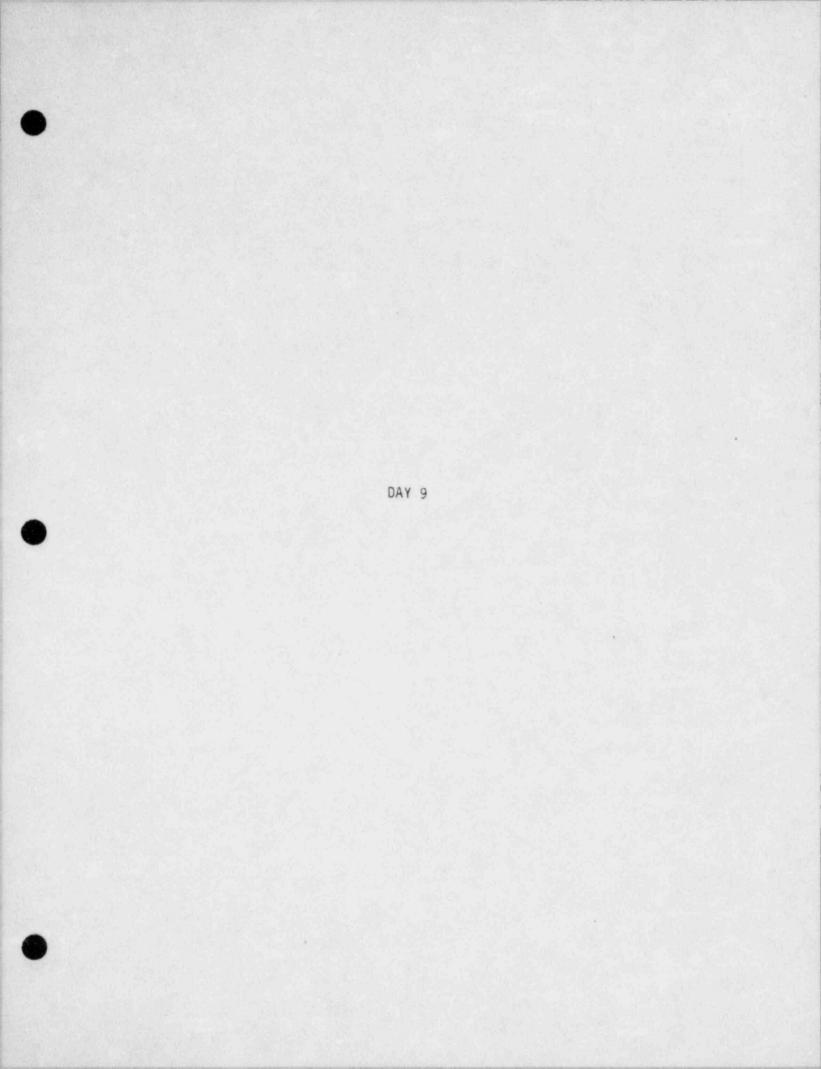
LESSON OUTLINE	NOTES INSTATIS
	NOTES AND REFERENCES
E. Xenon transient during startup	
- Xe buildup	
- Xe decay	
- Xe peak	
I. PROCEDURE	
A. Set up plant in IC Set for HZP and conduct	
a shift turnover	
- Shift	
- Initial conditions: Hot standby,	
about 4 hours after a reactor trip	
from 180 days of continuous operation;	
T _{avg} = 557°F, P = 2235 psig, ARI	
- Load dispatch orders: 100 percent by	
the end of the shift	
B. Scheduled STPs	
- STP 123.002 Service Water System Pump	
Test	
C. Perform a reactor startup	
- Students calculate ECC	
- Discuss Xe transient due to reactor	
trip and the effects of Xe burnout	
after power is achieved	
- Increase power to 10 ⁻⁸ amps	
D. Increase power to 2 percent	
E. Startup secondary plant	
- Start additional condensate pump; one	
main feed pump	
- Maintain S/G level with main feedwater	
bypass valves	
- Secure, realign emergency feedwater	
- Warm, roll main turbine	

.

LESSON OUTLINE NOTES AND REFERENCES Increase reactor power to 12-15 percent Synchronize generator to 5 percent F. Load generator to 100 percent - Increase load to 10 percent Initiate malfunction CVC-7, loss of Evaluate using a copy of normal letdown Attachment I; SOP-102 - Increase load to 15 percent Clear CVC-7 Increase load to 20 percent Rods in Auto > 15 percent Steam dumps in Tavg mode 0 Increase load to 50 percent o Condensate, FW booster, and feedwater pumps 0 P-8 o Perform calorimetric o Perform Service Water System Pump STP-123.002 Test Initiate malfunction CRF-4, one 0 Attachment I dropped rod at ~ 40 percent power SOP-403 + Recognition + Corrective action + Clear malfunction Increase load to 75 percent o AT ~ 65 percent power initiate Attachment I malfunction CVC-17, charging pump SOP-102 trip + Recognition + Corrective action + Tech specs

Clear malfunction

Perform calorimetric at 75 percent 0


1

Page 4

Page 5

LESSON OUTLINE	NOTES AND REFERENCES
- Increase load to 90 percent	
o Borate/dilute for AI	
o Rods in manual at 90 percent	
Increase load to 100 percent	
G. Final condition: 100 percent power	
H. Students conduct shift turnover to	
instructor. Check for knowledge of	
current situation.	
CRITIQUE	
A. Review overall operations and conduct.	
B. Review malfunction response. :	김 정도는 법법은 것이 많은 물질을 받았다.

(



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

#### PHASE III PROGRAM

# NORMAL OPERATIONS WITH MINOR MALFUNCTIONS

#### Power Operations and Turbine Trip Recovery

#### Overview

Occasionally during nuclear plant operation, conditions will arise which result in automatic shutdown of the unit. The automatic actions will place the nuclear plant in a safe condition. However, proper operator response is required to place the plant in a stable shutdown condition.

This unit will provide a review of plant and system response to a turbine trip and subsequent recovery. It will discuss proper operator actions following a unit trip along with subsequent requirements and actions in returning the plant to operation.

#### Terminal Objective

The student will be able to describe nuclear plant response to a turbine trip including precautions and requirements for plant recovery and return to power. Evaluation will be performed by the program instructor's observation and 'student's oral response to questions.

Rev 0 1/83

### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- describe automatic actions which cccur following a turbine trip.
- describe, in general terms, the operator actions required to place the unit in a stable condition following a turbine trip.
- 3)- describe the precautions for performing a plant startup.
- 4)- describe ECC requirements for reactor startup following a trip.
- 5)- describe the sequence of events during a reactor startup.
- 6)- describe reactor plant response upon return to power operation in relation to boron and xenon concentrations.
- 7)- perform a turbine trip recovery, applying the appropriate off-normal or emergency procedures.

#### References

- 1. Virgil C. Summer Phase III Training Materials
- 2. Technical Specifications
- 3. South Carolina Electric & Gas Company Phase II Training Materials
- 4. Precautions, Limitations, and Setpoints Document
- Virgil C. Summer Training Simulator SOP-102, SOP-118, SOP-214, SOP-403, SOP-404, and STP-105.004.



(

(

(

(

INSTRUCTOR'S GUIDE

Page 1

	INSTRUCTOR'S LESSON PLAN	Page 1
0	LESSON OUTLINE	NOTES AND REFERENCES
Ι.	<ul> <li>INTRODUCTION</li> <li>A. <u>UNIT TERMINAL OBJECTIVE</u>: The student will be able to describe nuclear plant response to a reactor trip including precautions and requirements for plant recovery and return to power. Evaluation will be performed by the program instructor's observation and student's oral response to questions.</li> <li>B. <u>OPERATIONS PLAN</u>:</li> </ul>	
•	Perform plant unloading from 50 percent to 25 percent with simple malfunctions. C. <u>MALFUNCTIONS SCHEDULED</u> - Selected meter failure - CCW-1 letdown heat exchanger tube leak - CCW-1 letdown heat exchanger tube leak - CRF-7 stuck rod - TUR-1 inadvertent turbine trip NOTE: In addition to the above listed malfunctions, any of the malfunctions scheduled on previous simulator sessions can also be used. <u>STATE NEED TO ASK OUESTIONS AS THEY ARISE</u> <u>STATE BASIC PRESENTATION FORMAT</u>	
п.	<pre>REVIEW (Optional) A. Review reactor theory homework B. Present overview of simulator operations - Plant unloading from 50 percent to 25 percent - Turbine trip - Hot standby - RCD, SDM, ECC</pre>	

Page 2 LESSON OUTLINE NOTES AND REFERENCES Reactor startup Turbine loading C. Discuss system response and operation * llowing a turbine trip Reactor trip Main Steam System o Steam valves o Atmospheric reliefs, safeties o Extraction steam check valves Steam dumps Tavg, pressure control 0 Feedwater System Feedwater isolation 0 Feedwater pumps Emergency feedwater o Auto start o Flow control o Operator actions Reactor coolant system and pressurizer, factors which help limit pressure excursion o Control heaters off o Pressurizer sprays · PORV Safeties 0 D. Review xenon transient following reactor trip and return to power E. Discuss turbine trip in SOP-214 - Symptoms Automatic action Immediate action Subsequent action

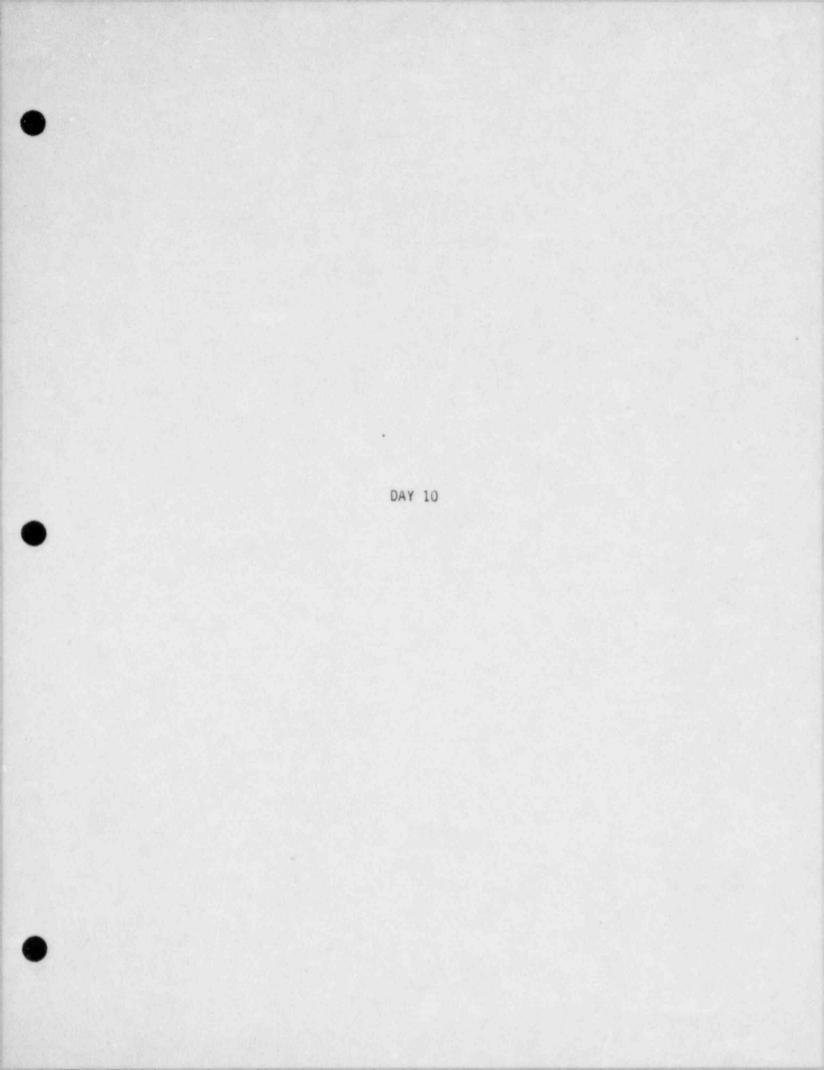
Page 3

•		INSTRUCTOR'S LESSON PL	AN Page 3
	161	LESSON OUTLINE	NOTES AND REFERENCES
	F.	Discuss CCW off normals in SOP-18	
		- Symptoms	
		- Automatic actions	
		- Immediate actions	
		- Followup actions	
	G.	Discuss rod control off normals in SOP-403	
		- Symptoms	
		- Automatic actions	
		- Immediate actions	
		- Followup actions	
	Η.	Discuss IR NIS off normals in SOP-404	김 명리는 것은 것을 많이 많이 많이 했다.
		- Symptoms	양말 아이는 아이들을 걸려가 봐야요.
		- Automatic actions	
		- Immediate actions	
•		- Followup actions	
-	Ι.	Review ECC requirements	
		- Data for calculation	
		- Time requirements	
		Review startup precautions	
	Κ.	Discuss Technical Specifications 6.6	
		through 6.9	
III.		DCEDURE	
	Α.	Put plant in IC set (later) and conduct	
		shift turnover	
		- Shift	
		- Plant status: 50 percent, equilibrium xenon	
		- Load dispatch orders: 25 percent at	
		end of shift	
	Β.	Scheduled STPs	
		- STP-105.004 RHR pump test	
	С.	Have students conduct plant unloading IAW	
		GOP-4	
09601			
03001	1.0		Paul 0 1/02

Page 4 LESSON OUTLINE NOTES AND REFERENCES D. Fail selected meter(s) for each operator and allow him to detect and determine meter vice instrument failure E. Return meter to service after detected F. Initiate CRF-7, stuck rod - Discuss effects on AI Ensure students consult procedures Evaluate response - Clear malfunction G. Initiate CCW-1, letdown heat exchanger tube leak - Discuss effects on continued plant operation Ensure students notify auxiliary operator Evaluate response H. Initiate TUR-1, inadvertent turbine trip - Discuss plant response Evaluate response I. Recover from trip and perform a reactor startup J. Initiate NIS-4, IR under compensation - Discuss effects on operation - Evaluate response K. Continue to POAH and begin secondary plant startup L. Discuss effects of xenon transient on

startup

INSTRUCTOR'S LESSON PLAN		PLAN Page 5
LESSON OUTLINE		- NOTES AND REFERENCE
M. Continue loading as time permits	.	
N. Perform RHR pump test		STP-105.004
CRITIQUE		1 Hour
A. Review overall operations.		
B. Review malfunction response		


(

. .

Ç.

(

10



# SCUTH CAROLINA ELECTRIC & GAS COMPANY

### PHASE III PROGRAM

PLANT TRANSIENT RESPONSE

Load Rejection Transients and Accident Assessment and Identification

#### Overview

During power operations a control room operator can be confronted with various degrees of load rejections. The operator should be able to determine the degree of change in system parameters following various degrees of change in load. In addition to these transients, abnormal conditions sometimes occur which the control room operator will have to detect and evaluate. The seriousness of each event will largely depend upon the type of malfunction. However, the actions of the operator can significantly affect the consequences of that malfunction. The operator is relied upon to detect, identify and for operation in returning the plant to a safe and stable condition.

This unit will accomplish two goals:

- It will provide the student with the experience of plant operation during load rejection under a wide range of initial conditions, thus improving his ability to detect, evaluate and respond to this type of transient.
- 2. This unit will present the student with the various procedures available to enable him to identify and respond to various accident conditions. In addition, it will allow the students the opportunity to apply these procedures to actual accident or abnormal conditions and increase his awareness of plant response and control room atmoshphere during accident conditions.

Rev A 1/97

#### Terminal Objective

5

When the student completes this unit he will be able to predict expected plant parameter changes during varying degrees of load rejection. The student will be capable of detecting load changes and discussing system transient analysis associated with the major parameters. The student will discuss plant technical specifications applying to systems and operations covered during this unit.

The student will also be able to adequately explain the different types of procedures available in the control room and be able to correctly use the applicable procedure during an accident or abnormal condition as evaluated by the program instructor's personal observation and questioning.

#### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- discuss automatic control system response to a 10 percent load step change.
- 2) discuss plant response to a 50 percent load rejection.
- 3) explain plant parameter changes during load changes.
- discuss plant response during load rejections when automatic control systems are in manual.
- respond properly to a load rejection following the appropriate plant procedures.
- 6) describe the balic sections of the Emergency Procedures.
- demonstrate an .bility to use the Control Room procedures during accident or abnormal conditions.
- identify the major accidents using the indications on the Main Control Board.

#### References

- 1. Virgil C. Summer Simulator EOPs.
- 2. Virgil C. Summer Phase III Training Material
- 3. Virgil C. Summer Phase III Training Material.
- 4. Technical Specifications.

22620:4

INSTRUCTOR'S GUIDE

. .

7

(

(

Page 1

INSTRUCTOR'S LES	SON PLAN
LESSON OUTLINE	NOTES AND REFERENCES
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
When the student completes this unit he	
will be able to predict the expected plant	
parameter change during varying degrees of	
load rejection. The student will be able	김 한 동맹은 감독을 한 것을 수 있는 것을 했다.
to detect load changes and discuss the	
system transient analysis associated with	
the major parameters. The student will	
discuss plant technical specifications	김 김 씨는 것 같은 것 같은 것을 많이 갔다.
that apply to system and operations	
covered during this unit.	그는 그는 것 같은 것 같은 것 같이 많지?
- Explain the different types of	
procedures available in the control	
room and be able to correctly use the	
applicable procedure during an	
accident or abnormal condition as	1
evaluated by the program instructor's	
personal observation and questioning.	
B. OPERATIONS PLAN:	
- Allow the students to maintain	
reactivity balance during 100 percent	
power peak Xe burnout. Initiate 10	and the second
percent step changes to demonstrate	
response without auto rod control or	
steam dumps. Perform the same with 60	and the second
percent load rejection.	
- Allow the students the opportunity to	
experience the major accidents from an	
observer viewpoint. Report any	
accident as you feel necessary and	
have students follow the emergency	
procedures. Slow simulator speed to	and the second second second second second
help students observe more indications	
during the accident.	
1.4	

22620:4

Page 2

#### INSTRUCTOR'S LESSON PLAN

LESSON OUTLINE NOTES AND REFERENCES MALFUNCTIONS SCHEDULED: C. CVC-1 Boric acid flow transducer failure RCS-5 LOCA (large) RCS-2 S/G tube break MSS-3 Steam break inside containment FWM-8 Feed break inside containment STATE NEED TO ASK QUESTIONS AS THEY ARISE STATE BASIC PRESENTATION FORMAT NOTE: In addition to the above listed malfunctions, any of the malfunctions scheduled on previous simulator sessions can also be used. REVIEW (Optional) 11. A. Present overview of simulator operations Load rejection transients o 100 percent power peak xenon burnout Transient response 10 percent step 0 + Without auto rod control + Without steam dumps o Transient response 50 percent rejection + With auto rod control and steam dumps Without auto rod control Without steam dumps + . Accident identification/assessment Observe plant response 0 0 Procedure use

-	INSTRUCTOR'S LESSON PL	AN Page 3
	LESSON OUTLINE	NOTES AND REFERENCES
~	o Observe major accidents	
(	+ LOCA	
	+ Tube break	
	+ Steam break	
-	+ Feed break	
(	NOTE: The above presentation is to be	
-	evaluated by the instructor based upon the	
	students knowledge of the diagram,	
	effectiveness of his communication method,	
	and ability to explain system	
	interrelations.	지 않는 것 같은 것 같
L	<ul> <li>B. Discuss plant response during the following:</li> <li>10 percent step reduction without auto rod control <ul> <li>o Steam dump</li> </ul> </li> </ul>	
	o Makeup system	
	o Nuclear power response	
	<ul> <li>Reactivity effects</li> <li>AI limits</li> </ul>	김 씨는 것 같은 것 같아요. 이렇
	<ul> <li>10 percent step reduction without steam dumps</li> </ul>	
	o Rod Control	
	o Makeup system	
	o Nuclear power response	
	o Reactivity effects	
	o AI limits	
	- 50 percent load rejection	
	o Steam dumps	
	o Rod control	

.

.

*

INSTRUCTOR'S LESSON PL	AN
LESSON OUTLINE	NOTES AND REFERENCES
o Makeup system	
ο ΔI limits	
• Nuclear power response	
- 50 percent load rejection without auto	
rod control	
o Steam dumps	
<ul> <li>Reactivity effects</li> </ul>	
o Nuclear power response	
- 50 percent load rejection without	
steam dumps	
o Rod control	
<ul> <li>Reactivity effects</li> </ul>	
o Nuclear power response	
C. Discuss procedures concerning	
load-rejection	
D. Discuss Emergency Operating Procedure	그는 그는 그는 것을 못했다.
EOP-1.	
- Purpose	
- Symtoms	
- Automatic actions	
<ul> <li>Immediate operator actions</li> </ul>	
- Follow up action	
E. Discuss the Technical Specification 3/4.5	
· FRUIEDURE	
A. Set up plant in IC Set (later) and conduct	
a shift turnover	
- Shift	
- Initial conditions: 100 percent power	
B. Scheduled STPs	
NONE	
C. With the plant at 100 percent power,	
perform a 10 percent step load rejection	
with and without auto rod control.	

.

	LESSON OUTLINE	NOTES AND REFERENCES
	- Trend the following parameters	
	o T _{avg}	
	o PZR level	
	o PZR pressure	
	o S/G level (1)	
	o S/G pressure (1)	
	o \$T(1)	
	- Once the plant has stabilized, review	
	the transient with the students using	
	the trend results	
D.	Reinitialize and perform a 10 percent step	
	load rejection without steam dumps. Trend	
	and review transient as per step C	
Ε.	Reinitialize and perform a 50 percent load	
	rejection trend and review the transient	
	as per step C	
F.	Reinitialize and perform a 50 percent load	
	rejection without rod control. Trend and	
	review the transient as per step C	
G.	Reinitialize and perform a 50 percent load	
	rejection without steam dumps trend and	
	review the transient as per step C	
н.	Reinitialize and explain plant conditions	
	and objectives to students	
	- System lineups	
	- Plant parameters	
	- Operational status	
161	- Power history	
Ι.	Allow students to utilize makeup system to	
	maintain AI limits	
J.	During a boration initiate CVC-1 boric	
	acid flow transducer failure	
	- Discuss method of continued boration	
	of desired quantity	

. . .

.

Page 6

<ul> <li>Evaluate response using a copy of Attachment I.</li> <li>K. Reinitialize at 100 percent.</li> <li>L. Initiate DBA RCS-5, discuss: <ul> <li>Indications</li> <li>ECCS response</li> <li>Procedure application</li> <li>Operator actions</li> </ul> </li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate = 660 gpm and ramp of long enough time to</li> </ul>	NOTES AND REFEREN
Attachment I. K. Reinitialize at 100 percent. L. Initiate DBA RCS-5, discuss: - Indications - ECCS response - Procedure application - Operator actions M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break N. Reinitialize and initiate RCS-2 leak rate = 660 gpm and ramp of long enough time to	
<ul> <li>L. Initiate DBA RCS-5, discuss:</li> <li>Indications</li> <li>ECCS response</li> <li>Procedure application</li> <li>Operator actions</li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
<ul> <li>L. Initiate DBA RCS-5, discuss:</li> <li>Indications</li> <li>ECCS response</li> <li>Procedure application</li> <li>Operator actions</li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
<ul> <li>Indications</li> <li>ECCS response</li> <li>Procedure application</li> <li>Operator actions</li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2'leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
<ul> <li>Procedure application</li> <li>Operator actions</li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
<ul> <li>Operator actions</li> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
<ul> <li>M. Reinitialize and, if desired, repeat RCS-5 at reduced simulator speed or smaller break</li> <li>N. Reinitialize and initiate RCS-2 leak rate</li> <li>= 660 gpm and ramp of long enough time to</li> </ul>	
at reduced simulator speed or smaller break N. Reinitialize and initiate RCS-2 leak rate = 660 gpm and ramp of long enough time to	
at reduced simulator speed or smaller break N. Reinitialize and initiate RCS-2 leak rate = 660 gpm and ramp of long enough time to	
N. Reinitialize and initiate RCS-2 leak rate = 660 gpm and ramp of long enough time to	
= 660 gpm and ramp of long enough time to	Contraction of the second second second
abaaana daddaaana	
observe indications prior to trip.	
Discuss:	물건에 물건 성태가 연락했다.
- Indications	
- Procedure application	
- Operator actions	
- Plant response	A State of the second
O. Reinitialize and initiate MSS-3 steam	
break inside containment, again with a	
ramp time long enough for evaluation prior	
to the trip. Discuss:	
- Plant response	
- Indications	
- Procedure application	
- Operator actions	
P. Reinitialize initiate FWM-8 and discuss:	
- Indications	
- Plant response	
- Procedure application	
- Operator actions	

•


- 14	INSTRUCTOR S LESSON PLAN	
	LESSON OUTLINE	NOTES AND REFERENCES
(	Q. Reinitialize and repeat any of the major casualties or minor malfunctions with no operator actions and observe plant response	
v.	CRITIQUE A. Review overall operations.	1 Hour

B. Review malfunction response.

.

22007

Page 7



# SOUTH CAROLINA ELECTRIC & GAS

#### PHASE III PROGRAM

# PLANT CASUALTY TRAINING

# Reactor Startup to Power, Malfunctions

#### Overview

The proper operation of a nuclear power plant is dependent upon many electrical, electronic, and mechanical support systems. A failure of any particular instrument or device will probably have an effect on some system and subsequently affect plant operation. The consequences of a failure will largely depend upon the type of failure and the system(s) affected. However, the operator will provide a significant contribution to subsequent plant operation. An astute and knowledgeable operator should be capable of diagnosing the failure and taking appropriate action as specified in operation procedures and technical specifications.

This unit is designed to give the prospective control room operator experience in dealing with plant malfunctions. These are conditions which pose no immediate hazard to plant operation or safety. However, without operator action, they could develop into a serious condition involving possible plant trip.

In addition, during this unit, one student will receive a startup examination. This is an examination performed by the program instructor and conducted in accordance with the guidelines adopted for the final certification startup exam.

Rev 0 1/83

#### Terminal Obje.live

The student will be able to identify system malfunctions that affect nuclear instrumentation and control of reactor operations. The operator will be able to utilize proper system abnormal operating procedures to place the plant in a safe condition. The operator will develop a philosophy of operations which will enable him to combat any unsafe plant condition.

#### Enabling Objectives

Upon completion of this unit the student shall be able to:

- identify plant malfunctions through use of alarm and control board indication.
- 2)- recall the proper immediate operator actions for the particular plant problem and refer to the appropriate abnormal operating procedure for appropriate subsequent operator actions.
- 3)- recall any technical specifications limitations associated with the particular plant failure and apply these limitations to subsequent plant operations.
- 4)- develop a basic plan outlining an operator philosophy in dealing with minor plant problems and systems malfunctions.
- 5)- perform a safe reactor startup as evaluated by the program instructor.

#### References

- Virgil C. Summer Training Simulator SOP-102, SOP-405, SOP-403, EOP-10, STP-102.003, STP-125.002.
- 2. Technical Specifications
- 3. NIS System diagrams

INSTRUCTOR'S GUIDE

15

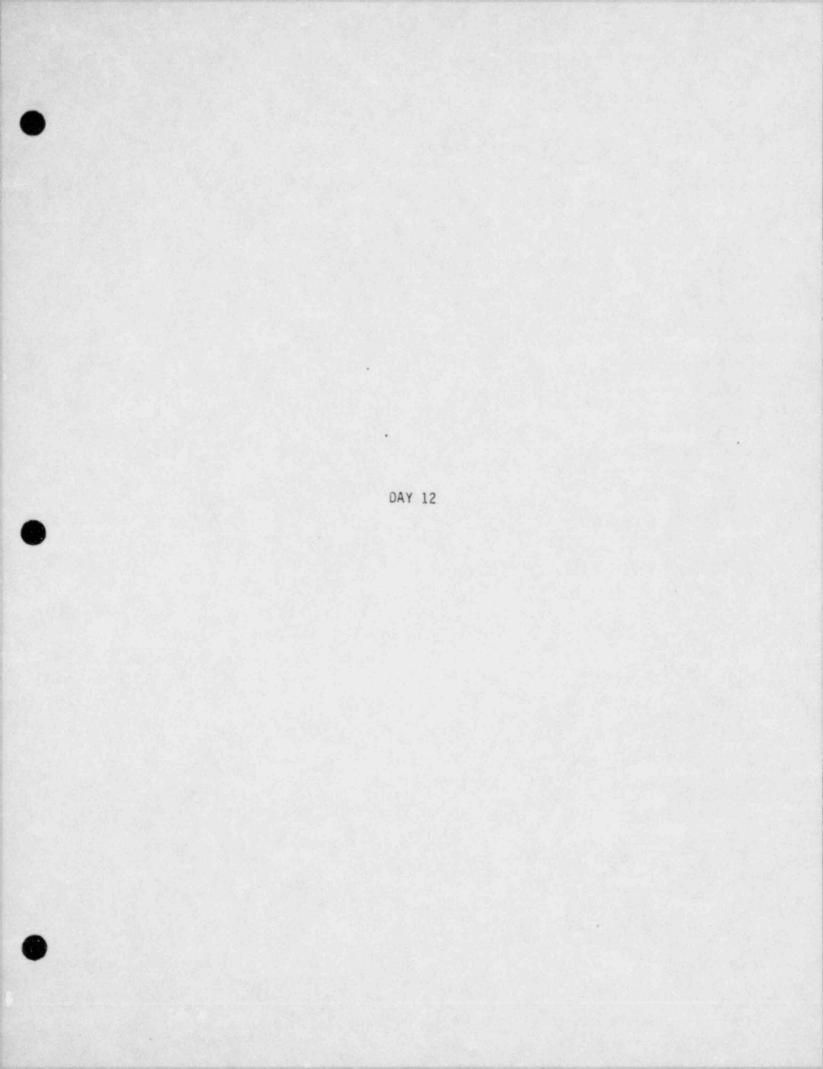
1. 1. 1.

(

(

LESSON OUTLINE	NOTES AND REFERENCE
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to recognize,	
diagnose and respond correctly to various	
plant malfunctions. This ability will be	
evaluated by instructor observation and	
the student's oral response to questions.	
B. OPERATIONS PLAN:	
Conduct a control board misalignment if	
desired. Perform a Reactor Startup	
Evaluation of one student. Terminate	
evaluation once 2 percent power has been	
attained. Conduct normal plant loading	
towards 100 percent power. Conduct the	
scheduled malfunctions.	
C. MALFUNCTIONS SCHEDULED:	
- NIS-1 - Source range channel failure	
- CRF-3 - T reference failure (rod	
control)	
- CND-2 - Hotwell level transmitter	
failure	
- CVC-3 - Makeup control failure in all	
modes	
- CVC-17 - Loss of charging pump	
- TUR-6 - EHC first-stage pressure	
transmitter failure	
- FWM-6 - FW booster pump trip	
OTE: In addition to the above listed	
alfunctions, any of the malfunctions	
cheduled on previous simulator sessions may	
lso be used.	
TATE THE NEED TO ASK CUESTIONS AS THEY ARISE	

LESSON OUTLINE	
	NOTES AND REFERENCES
PRESENTATION	
REVIEW (Optional)	
A. Review homework assignment	
B. Present overview of simulator	
operations	
<ul> <li>Reactor startup evaluation</li> </ul>	
- Normal plant loading towards 100	
percent	
- Selected malfunctions -	
C. Review SOP-405 Nuclear Instrumentation	
System malfunction	
- Review Tech Specs 3/4.3	
D. Review SOP-403, EOP-10 Rod Control System	
Malfunctions	
- Review Tech Specs 3/4 1.3, 3/4.2	
E. Review SOP-102 CVCS Malfunction	
- Review Tech Specs 3/4.5.2, 3/4.5.3 PROCEDURE	
A. Initialize at (Later)	
Conduct a shift turnover and explain plant	
<pre>conditions and objectives to students - System lineups</pre>	
- Plant parameters	
- Operational status	
- Power history	
B. Scheduled STPs	
- STP-102.003 IR range analog channel test	
- STP-125.002 diesel generator	
operability test	


Page 3

LESSON OUTLINE	NOTES AND REFERENCES
C. Continue plant loading towards 100 percent power, discussing boration/dilution requirements	
<ul> <li>Perform an IR analog channel test</li> <li>Perform a diesel generator oper. test</li> <li>D. Initiate CVC-3, makeup control failure discuss:</li> </ul>	STP-102.003 STP-125.002
<ul> <li>Effect on plant operation</li> <li>Continue operations with Makeup System in manual, or clear malfunctions to simulate repairs as desired.</li> </ul>	
<ul> <li>E. Once Rod Control is in auto, initiate CRF-8. T reference failure (rod control) discuss:</li> <li>Input to rod control</li> </ul>	
<ul> <li>Effect on plant operation</li> <li>Clear malfunction upon request for repair</li> </ul>	
<ul> <li>F. Continue plant loading, initiate CND-2 hotwell level transmitter failure, discuss:</li> <li>Manual control of level - makeup and reject</li> <li>Clear malfunction upon request for</li> </ul>	
repair G. Continue plant loading, ensure EHC is in first-stage pressure feedback. Initiate TUR-6 EHC first-stage pressure transmitter	
<ul> <li>failure, discuss:</li> <li>EHC response i.e., cause for possible load change</li> <li>Clear malfunction upon request for</li> </ul>	

Page 4

#### INSTRUCTOR'S LESSON PLAN

<ul> <li>H. Continue plant loading, initiate FWM-6 FW booster pump trip, discuss: <ul> <li>Effect on plant capability</li> <li>Clear malfunction upon request for repair</li> </ul> </li> <li>I. Initiate CVC-17 loss of charging pump, select operating charging pump, discuss: <ul> <li>Technical Specifications</li> <li>Effects on PZR level, letdown temperatures, seal flow and VCT level.</li> </ul> </li> <li>J. Student conduct shift turnover to instructor</li> <li>CRITIQUE</li> <li>A. Review overall operations conduct.</li> <li>B. Review malfunction responses</li> </ul>		LESSON OUTLINE	NOTES AND REFERENCES
repair I. Initiate CVC-17 loss of charging pump, select operating charging pump, discuss: - Technical Specifications - Effects on PZR level, letdown temperatures, seal flow and VCT level. J. Student conduct shift turnover to instructor CRITIQUE A. Review overall operations conduct.	н.	<ul><li>booster pump trip, discuss:</li><li>Effect on plant capability</li></ul>	
<pre>select operating charging pump, discuss: - Technical Specifications - Effects on PZR level, letdown temperatures, seal flow and VCT level. J. Student conduct shift turnover to instructor CRITIQUE A. Review overall operations conduct.</pre>		repair	
temperatures, seal flow and VCT level. J. Student conduct shift turnover to instructor CRITIQUE A. Review overall operations conduct.		select operating charging pump, discuss:	
<pre>J. Student conduct shift turnover to     instructor CRITIQUE A. Review overall operations conduct.</pre>			
A. Review overall operations conduct.	J.	Student conduct shift turnover to	
	. CRI	TIQUE	
	Α.	Review overall operations conduct.	



# SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

# PLANT CASUALTY TRAINING

# Reactor Startup to Power, Malfunctions

#### Overview

The operation of a nuclear power plant normally involves maintaining steady state conditions. On those occasions when the plant deviates from normal operation, the operators will have to react to correct the problems and bring the plant back to a stable condition. This unit is designed to teach the operator how to properly react to various malfunctions during varying plant conditions to bring the plant back to a safe and stable condition.

Also during this unit, one student will receive a startup examination. This is an examination performed by the program instructor and conducted following the same guidelines as the final certification startup exam.

# Terminal Objective

The student will be able to identify control system failures and take proper action to return the plant to a safe condition.

### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- discuss Rod Control Abnormal Operating Procedures.
- review any technical specifications applicable to movable control assemblies.
- 3)- perform a safe reactor startup as evaluated by the program instructor.

### References

5

(

(

- 1. Rod Control Abnormal Operating Procedures, STP-105.004
- 2. SCE & G Phase III training material
- 2. Technical Specification on movable control assemblies.

INSTRUCTOR'S GUIDE

1

. .

F

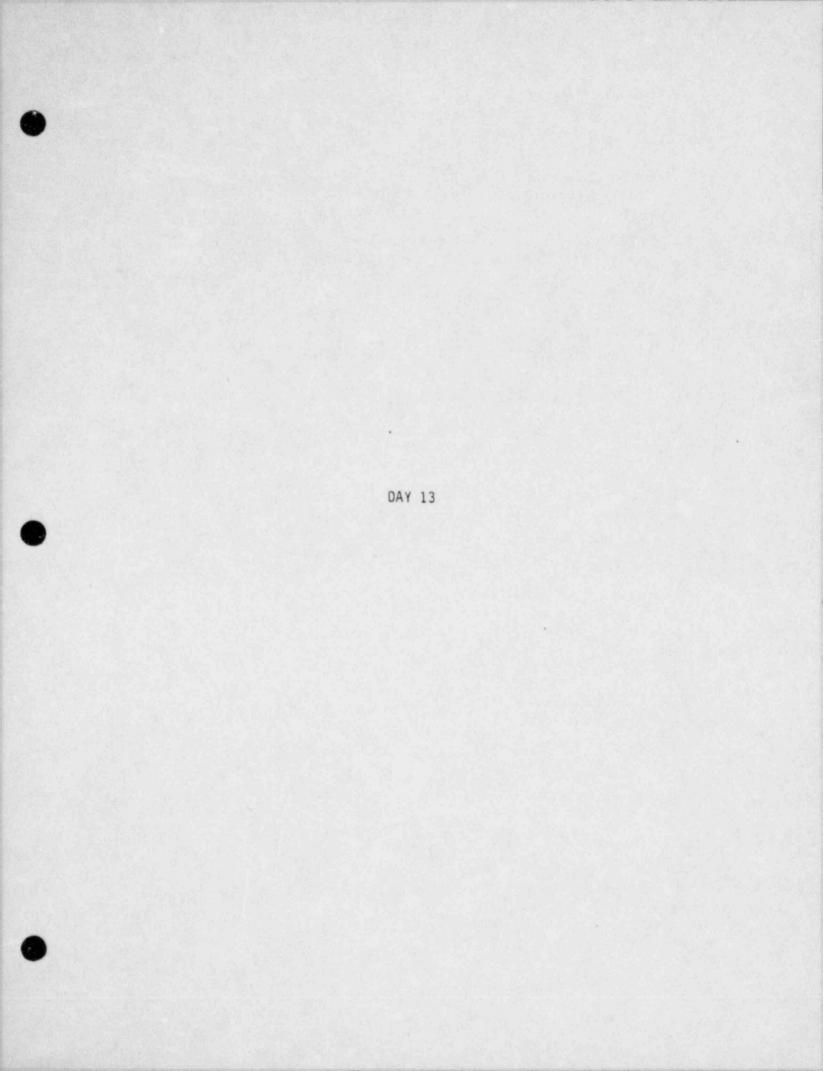
(

(

.

(

(


Page 1

LESSON OUTLINE	NOTES AND REFERENCES
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to recognize,	
diagnose and respond correctly to various	
plant malfunctions. This ability will be	
evaluated by instructor observation and	
the student's oral response to questions.	
B. OPERATIONS PLAN:	
Conduct a control board misalignment if	
desired. Perform a reactor startup	
evaluation of one student. Terminate	생활 이 가지 않는 것 같아. 것 같아.
evaluation once 2 percent power has been	
attained. Conduct plant loading towards	
100 percent power from a point where the	
generator is ready to synchronize to the	
grid. Conduct the scheduled malfunctions.	
C. MALFUNCTIONS SCHEDULED:	
- NIS-6 - Noisy source range channel (on	
startup)	
- FWM-5 - Main feedwater pump speed	
malfunction	
- CRF-7 - Stuck rod	
- FWM-9 - Tube leak in feedwater heater	
- RCS-9 - Faulty primary RTD	
- TUR-1 - Inadvertant turbine trip	
NOTE: In addition to the above listed	
malfunctions, any of the malfunctions	
scheduled on previous simulator sessions	
may also be used.	
STATE THE NEED TO ASK QUESTIONS AS THEY	
ARISE	

•

	LESSON OUTLINE	NOTES AND REFERENCES
Л.	REVIEW (Optional)	
	A. Review homework	
	B Present an overview of simulator	
	operations	
	- Reactor startup evaluation	
-	- Normal plant loading towards	
	100 percent	
	- Selected malfunctions	
	C. Review failure of control bank(s) to move	
	procedure (EOP-10).	
	- Re-review Tech Spec 3/4.1.3	
	않는 승규는 이번 말했다. 엄마가 집에 가지 않는 것이 많이 많이 많이 했다.	
	D. Review Rod Position Indication Malfunction	
	Procedure (SOP-403).	
	E. Review Turbine Trip Procedure (SOP-214).	
11I.	PROCEDURE	
	A. Initialize at (Later) and perform a shift	
	turnover. Explain plant conditions and	
	objectives to students:	
	- System lineups	
	- Plant parameters	
	- Operational status	
	- Power history B. STPs scheduled	
	- STP 105.004 RHR pump test	
	C. Continue plant loading towards 100 percent	
	power, discussing boration/dilution requirements	
	- Perform RHR pump test	
	D. Initiate FWM-5, main feedwater pump speed,	STP-105.004
	discuss:	
	- Effect on plant operation 1.e., power	
	capability of emergency feedwater, and one main feed pump	

LESSON OUTLINE	NOTES AND REFERENCES
- Clear malfunction upon request for	
repair	
E. Initiate CRF-7, stuck rod, discuss:	
- Tech Spec implications, i.e., shutdown	
margin determination, continuation of operator	
- Clear malfunction upon attempt to	
realign the rod	
F. Initiate FWM-9, tube leak in feedwater	
heater, discuss:	
- Isolation of the heater	
- Effect on plant operation	
- Continue operation with heater	
isolation	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20
G. Initiate RCS-9, faulty primary RTD,	
discuss:	
- Effect on plant operation	
- Tripping of bistables	이 방법 가슴이 잘 가슴 가슴 감독
H. Initiate TUR-1 inadvertant turbine trip,	
discuss:	
- Proper plant response, i.e., P-8	
- Proper operator response with respect	
to Rx trip	영양한 그는 물건을 수 있는 것
I. Students conduct shift turnover to	
instructor	
CRITIQUE	
A. Review overall operation conduct.	
B. Review malfunction responses	



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

### PHASE III PROGRAM

### PLANT CASUALTY TRAINING

# Reactor Startup to Power, Malfunctions

#### Overview

The Nuclear Steam Supply System for a typical Pressurized Water Reactor (PWR) is designed to operate properly with little or no operator assistance. Normal plant conditions are maintained by automatic systems and controls. Unsafe conditions, when detected, cause alarms and other indications to initiate a sequence of events culminated by an operator taking the necessary actions to correct the problem or to safely shutdown the plant. Reliability is guaranteed through necessary and proper training in this response oriented technique.

This unit is designed to train the prospective plant operator to respond properly and in a timely manner to minor plant malfunctions. These malfunctions are defined to be conditions which pose no immediate hazard to plant operation or safety. However, with no operator action, they could develop into a serious condition involving possible plant trip.

During this unit, one student will receive a startup examination

#### Terminal Objective

1

The student will be able to identify various system malfunctions and be able to take the proper actions to maintain proper plant performance at all times.

# Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- discuss the loss of Feedwater System Abnormal Operating Procedure.
- 2)- analyze plant conditions to identify malfunctions through the use of alarms and control board indications.
- 3)- recall related technical specifications.
- 4)- perform a safe reactor startup as evaluated by the program instructor.

#### References

- 1. Abnormal Operating Procedures, STP-133.001, STP-125.002
- 2. System diagrams for Main Feedwater System
- 3. SCE & G Phase III training material

INSTRUCTOR'S GUIDE

1

.

DÉ

(

(

(

(

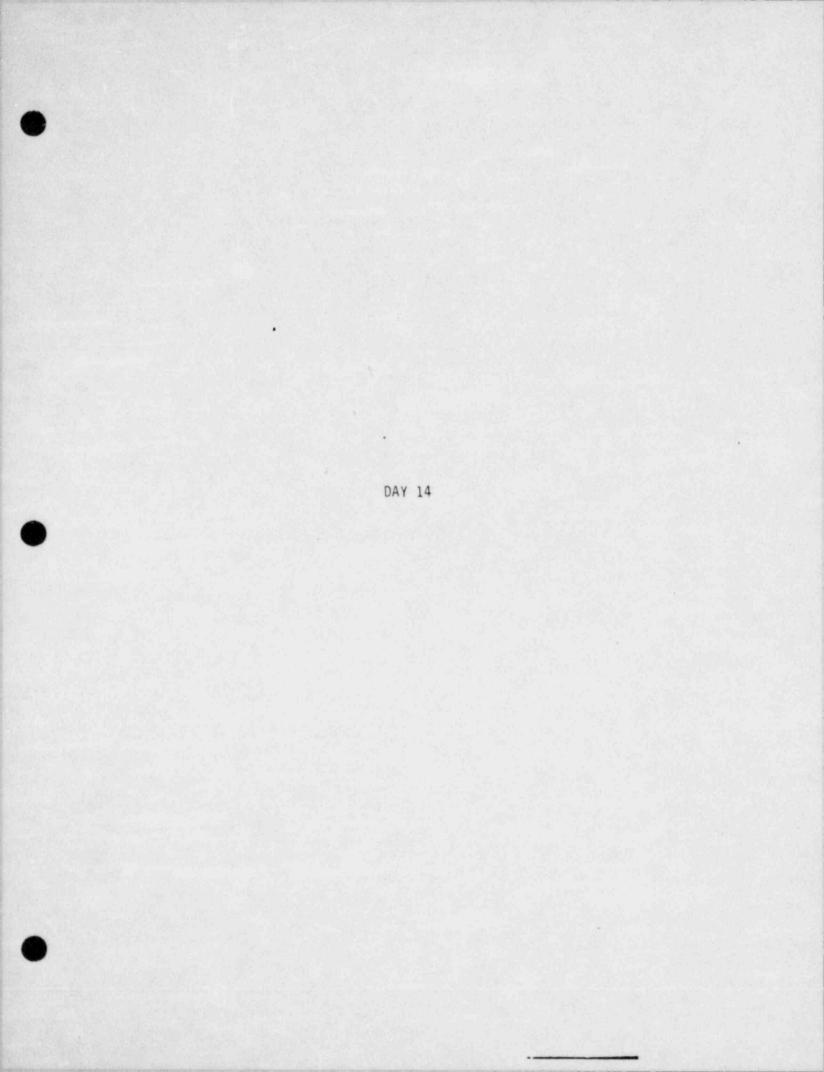
INSTRUCTOR'S LESSON PL	
	NOTES AND REFERENCES
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to recognize,	
diagnose and respond correctly to various	
plant malfunctions. This ability will be	
evaluated by instructor observation and	
the student's oral response to questions.	
B. OPERATIONS PLAN:	
Perform a Reactor Startup Evaluation of	
one student. Terminate evaluation once	
2 percent power has been attained.	
Conduct normal plant loading towards 100	
percent power. Conduct the scheduled	
malfunctions.	
MALFUNCTIONS SCHEDULED:	
- NIS-5 - Failure of source range high	
voltage to disconnect	
- MSS-5 - Steam dump control valves fail	
- PRS-1 - Pressurizer pressure channel	
failure	
- FWM-1 - Trip of main feedwater pump	
- MSS-7 - Steam generator relief valve	
opens	
- PRS-3 - Pressurizer spray valve failure	
NOTE: In addition to the above listed	
malfunctions, any of the malfunctions	
scheduled on previous simulator sessions	
may also be used.	
STATE THE NEED TO LONG	
STATE THE NEED TO ASK QUESTIONS AS THEY	
ARISE	
STATE BASIC PRESENTATION FORMAT	이 것이 같은 것이 같은 것이 많이 많이 같은 것이 없다.

3.

Page 2

INSTRUCTOR'S LESSON PLAN LESSON OUTLINE NOTES AND REFERENCES TT. REVIEW (Optional) A. Review homework assignment Present an overview of simulator operations Normal plant loading towards 100 percent Selected malfunctions B. Review EOP-02 loss of secondary coolant without SI C. Review SOP-210 loss of one feedwater pump D. Review SOP-210 loss of feedwater system III. PROCEDURE: A. Initialize at (Later) and perform a shift turnover. Explain plant conditions and objectives to students: System lineups Plant parameters Operational status Power history B. STPs scheduled - STP -133.001 Axial Flux Difference Calculation STP -125.002 Diesel Generator Operability test C. Continue plant loading towards 100 percent power, discussing boration/dilution requirements Perform a Diesel Generator STP-125.002 Operability test D. Initiate MSS-5, steam dump control valve fails, discuss: Indications of problem

INSTRUCTOR'S LESSO	PLAN	
LESSON OUTLINE	NOTES AND REFERENCES	
- Effects on plant		
- Clear malfunctions upon request for		
repair		
E. Initiate PRS-1, pressurizer pressure		
channel failure, discuss:		
- Failure's effect on pressure control		
- Bistables associated with failure		
- Clear malfunction upon request for		
repair		
F. Continue plant loading, initiate MSS-7		
steam generator relief valve opens (100	방송 문화가 잘 지각했다.	
percent), discuss:		
- Indications of problem	방법 의원이 가격을 통하는 것을	
<ul> <li>Isolation capabilities</li> <li>Effect of continued</li> </ul>		
<ul> <li>Effect of continued operation i.e., safety related</li> </ul>		
- Clear malfunction some time after		
repairs are requested	한 경험 수 있는 것 같아? 여행 정말 것	
G. Perform an Axial Flux Difference	CTT	
Calculation	STP-133.001	
H. Continue plant loading, initiate PRS-3		
pressurizer spray valve failure (with		
manual control), discuss:	이 그는 것은 그가 가지 않는 것이야.	
- Indications of problem		
- Isolation (if possible) or reduction		
of flow if no manual operation		
- Ability to continue operation		
- Clear malfunction upon request for repair		
<ul> <li>Continue plant loading, at approximately</li> <li>75 percent, initiate FWM-1 trip of main</li> </ul>		
feedwater pump, discuss:		
recondeer pamp, discuss.		


.

0966L:4

.

	22227

	INSTRUCTOR'S LESSON PLAN	Pace 4
1.	LESSON OUTLINE	NOTES AND REFERENCES
(	<ul> <li>Effect on operations, i.e., turbine runback, steam dump actuation, control rod response</li> </ul>	
	<ul> <li>Clear malfunction upon request for investigation and repair</li> </ul>	
	J. Students conduct shift turnover to instructor.	
IV.	CRITIQUE .	
	<ul><li>A. Review overall operation conduct.</li><li>B. Review malfunction responses</li></ul>	



# SOUTH CAROLINA ELECTRIC 3 GAS COMPANY PHASE III PROGRAM PLANT CASUALTY TRAINING

Load Follow Operation With Malfunctions

#### Overview

Power changes because of load follow operations in a PWR causes problems with xenon oscillations and the effect on maintaining  $\Delta I$  within its operating band. Day 14 and 15 are designed to give the student experience of plant operations during load follow operations.

During this session the student will decrease load from 100%. While power is being decreased, xenon is being produced and the operator will have to compensate for the xenon buildup. The operator will have to respond to minor plant malfunctions. These malfunctions are defined to be conditions which pose no immediate hazzard to the plant operation or safety. However, with no operator action they could develop into serious conditions involving possible plant trip.

At the end of this day, a SNAP of the final conditions will be taken for Day 15.

#### Terminal Objective

The student will be able to change power and maintain  $\Delta I$  within its limits while maintaining proper plant performance.

#### Enabling Objectives

Demonstrate the actions to decrease power as xenon builds in.

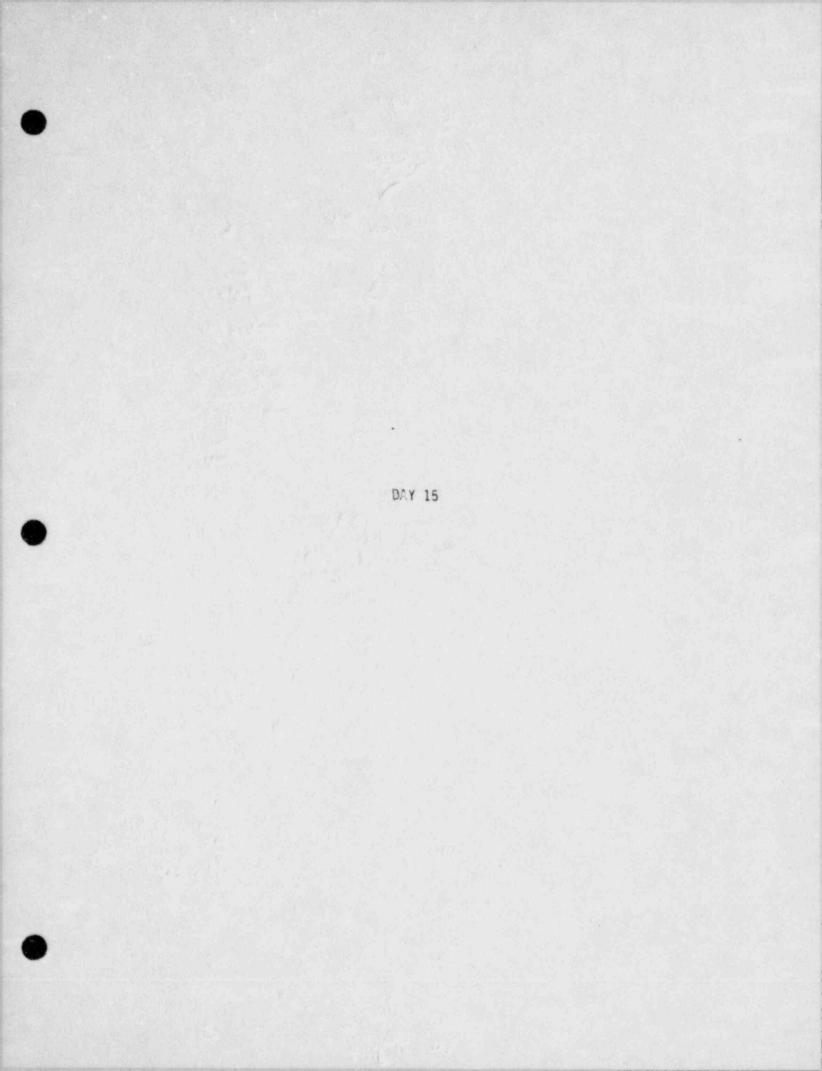
Discuss the applications of Technical Specifications in regards to  $\Delta I$  limits.

Demonstrate the ability of controlling  $\Delta I$  without control rods movement.

INSTRUCTOR'S GUIDE

	INSTRUCTOR S LESSUN PLAN	Page 1
LESSON OUTLINE		NOTES AND REFERENCES
INT	RODUCTION	
Α.	UNIT TERMINAL OBJECTIVE:	
	The student will be able to maintain AI within	
	limits during load follow operation with	
	various malfunctions.	
Β.	OPERATIONS PLAN:	
	Conduct load follow operations. On request	
	from dispatcher, ramp generator output from 930	
	MWe to 450 MWe over a two hour period.	
	Maintain 450 MWe until load increase requested	
	from dispatcher (to be continued during Day	
	15).	
с.	MALFUNCTIONS SCHEDULED:	
	RCS-11 Accumulator Leakage	
	RCS-12 Reactor Vessel Flange Leakage	
	MSS-12 Steam Header Pressure Transmitter	
	Failure	
	FWM-2 Condensate Pump Trip	
	CRF-11 Power Cabinet Urgent Failure	
	CVC-16 Charging Flow Control Valve Failure	
	NOTE: In addition to the above listed	
	malfunctions, any of the malfunctions scheduled	
	on previous simulator sessions may also be	
	used.	
	STP Schedule:	
	None.	
ROCI	EDURE:	
	Initialize at 100% and perform a shift	
1	turnover and explain plant conditions and	
(	objectives to students.	
	- System Lineups	
	- Plant Paramaters	
	- Operational Status	
	- Power History	

	LESSON OUTLINE	NOTES	AND REFERENCE
В.	Dispatcher ask for a 450MW decrease in power over a two hour period. Ensure operators are aware of iodine sampling requirements.		
с.	As load decreases, initiate FWM2 (condensate pump trip) with reactor power at >95%. - Discuss Operation of Condensate System - Discuss Condensate Pump Trips		
D.	- Clear Malfunction on Request Initiate RCS-11 (Accumulator Leakge) Discuss:		
	<ul> <li>Technical Specifications</li> <li>SOP's</li> <li>Operators Drain to Limit</li> </ul>		
ε.	<ul> <li>Possible Dilution Problem</li> <li>Initiate RCS-12 &lt;10 gpm leakage (Reactor Vessel</li> <li>Flange Leakage)</li> </ul>		
F.	Discuss Technical Specifications. Perform Leak Rate Calculation. Initiate CRF-11 (Power Cabinet Urgent Failure)		
	Discuss ways to control power without rod motion.		
	Initiate MSS-12 (Steam Header Pressure Transmitter Failure). Suggest failing low with ramp. Discuss effect on speed control. Operators should take manual control of speed controller.		
۱.	Clear when repaired. Initiate CVC-16 (charging flow control valve failure).		
	Operator can take manual control of FCV-122 and maintain PZR level.		
	At end of Day write SNAP to be used in Day 15.		


Page 3

LESSON OUTLINE	NOTES AND REFERENCES
III. Critique	

A. Review overall operations conduct.

3.

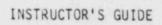
B. Review malfunction responses with students.



# SOUTH CAROLINA ELECTRIC & GAS COMPANY PHASE III PROGRAM PLANT CASUALTY TRAINING

Plant Load Follow Operations with Malfunctions

#### Overview

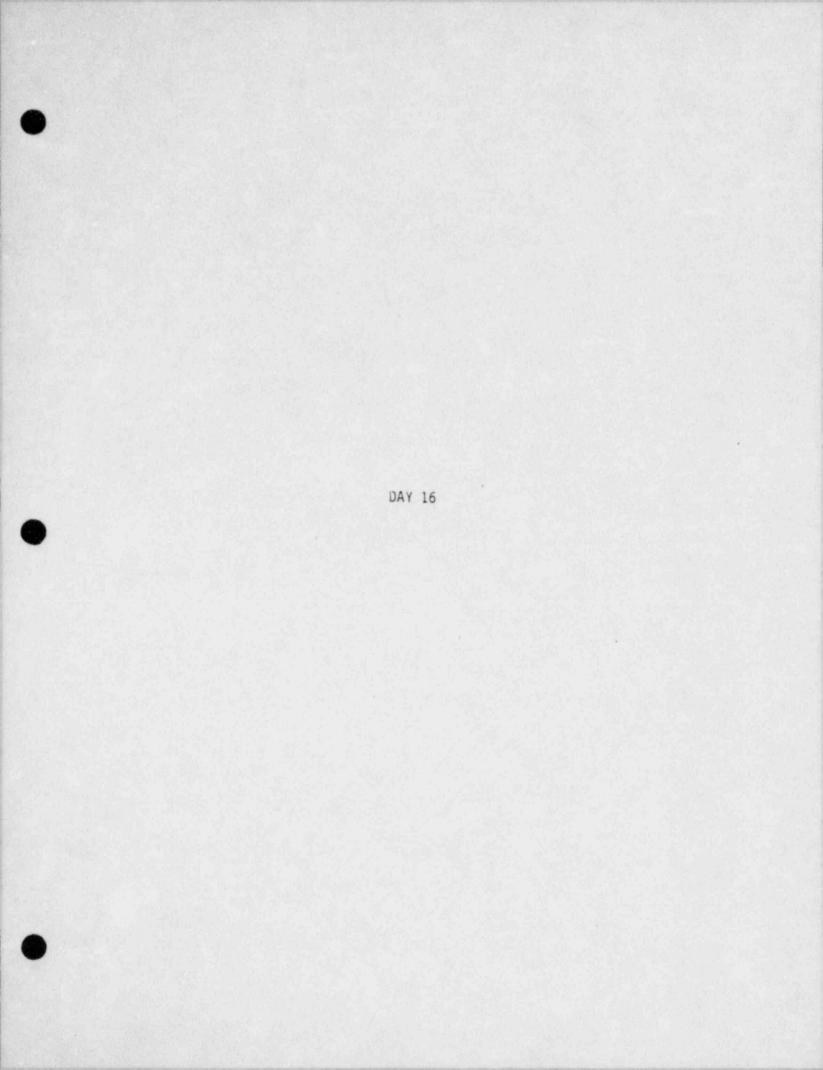

This is a continuation of Day 14. During this training session the load follow operations will continue with the problems of maintaining  $\Delta I$  within limits. Because of the time it takes for xenon to peak after power manipulation this session consists of 2 days.

#### Terminal Objective

The student will be able to change power and maintain  $\Delta I$  within the limits set forth by the operating curves.

#### Enabling Objectives

Demonstrate the actions to decrease power as xenon builds in. Discuss the applications of Technical Specifications in regards to  $\Delta I$  limits. Demonstrate the ability of controlling  $\Delta I$  without control rods movement.




Page 1

	LESSON OUTLINE	NOTES AND REFERENCE
		HUTES AND REFERENCE
	RODUCTION	
Α.	UNIT TERMINAL OBJECTIVE	
	The student will be able to maintain $\Delta I$	
	within limits during load follow operation.	
Β.	OPERATIONS PLAN	
	Continue with load follow operations from Day	
	14. Increase generator load from 450 MWe per	
	dispatcher instructions with various	
	malfunctions.	
с.	MALFUNCTIONS SCHEDULED	
	CRF-2 Auto Rod Speed Failure	
	CCW-8 Seal Water Heat Exchanger Leak	
	FWM-15 FW Control Valve Position Failure	
	EPS-6 Diesel Generator Trip	
	PRS-3 Pressurizer Spray Valve Sticks	
	EPS-13 Generator Breaker Fails to Trip	
С.	STP SCHEDULED	
	STP-125.002 - Diesel Generator Operability	
	Test	
	CEDURE	
Α.	Initiate in SNAP written at end of Day 14.	
	Review:	
	- Plant Conditions	
	- Power History	
	- Operational Status	
в.	Perform STP-125.002. During STP initiate	
	EPS-6 (diesel generator trip).	
	Discuss:	
	- Technical Specifications	
	- Requirement to Verify Other Diesel	
	- Operability	
	- Clear when Repaired	

Page 2

	ON OUTLINE	NOTES AND REFERENCES
C. Initiat		
	te CCW-8 (seal water heat exchanger)	
Discuss	s the possibility of cromates in the	
	ear when repaired.	
D. Dispato	ther ask for load increase to 930 MWe	
over tw	vo hour perid.	
E. As load	increases, initiate FWM-15 (FW	
control	valve position failure). Suggest	
failing	valve position "as is" with manual	
control	allowed.	
F. Initiat	e CRF-2 (auto rod speed failure) with	
	ailed to 72 steps per minute.	
	d of session, initiate EPS-13	
	tor breaker fails to trip) and then	
	e PRS-3 (pressurizer spray valve	
	). Evaluate operator actions with	
	to spray valve sticking open and on	
reactor		
Discuss		
	diate actions of EOP-5	
	ibility of reducing power to <38% and	
	ring RCP.	이 같은 것은 것은 것이 같이 같이 같이 같이 없다.
CRITIQUE		
	overall operations conduct.	
B. Review n	nalfunction responses.	



# SOUTH CAROLINA ELECTRIC & GAS COMPANY

PHASE III PROGRAM

### PLANT CASUALTY TRAINING

Power Operations, Malfunctions RCP Trip and Recovery, Accident Analysis Part 1

#### Overview

The American Nuclear Society has divided nuclear plant operations into four conditions. Up to this point in training the prospective operator has mainly concentrated on Condition I - Normal Operation and Operational Transients. It is becoming increasingly more important for an operator to experience operation in the other three conditions. These conditions deal with faults of increasing severity which have not been emphasized during the past operator training courses. Because of the importance placed upon an operator's ability to recognize and properly respond to fault conditions, this unit will stress the Condition II type faults and the design analyses behind them. The prospective operator will experience Condition II faults of increasing severity, thus enhancing his ability to correctly handle the same category faults during actual operation.

### Terminal Objective

The student will be able to discuss typical Condition II faults including immediate operator actions required and follow the appropriate procedures to perform subsequent operator actions maintaining nuclear plant safety at all times.

1

D ... 0 1/01

#### Enabling Objectives

Upon completion of this unit the student shall be able to:

- 1)- discuss types of faults included in Condition II operation.
- 2)- identify Condition II faults from Main Control Board (MCB) annunciators and indications.
- 3)- demonstrate the use of Abnormal and Emergency Procedures in response to Condition II faults.
- 4)- relate fault conditions to technical specification limits.

#### References

(

- 1. Virgil C. Summer Training Simulator
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications
- 6. Abnormal Operating Procedures
- 7. STP 102.002

INSTRUCTOR'S GUIDE

· · · ( · (

(

.

Page 1

	LESSON OUTLINE	NOTES AND REFERENCES		
INT	RODUCTION -			
Α.	UNIT TERMINAL OBJECTIVE:			
	The student will be able to recognize,			
	diagnose, and respond correctly to various			
	plant malfunctions. This ability will be			
	evaluated by instructor observation and			
	the student's oral response to questions.			
В.	OPERATIONS PLAN:			
	Commence plant unloading from 100 percent			
	to <50 percent power. Conduct the			
	scheduled malfunctions.			
	1. CVC-1 - Boric acid flow transducer			
	failure			
	2. PCS-3 - Steam generator level control			
	failure			
	3. CRF-1 - Rods fail to move			
	4. NIS-7 - Power range detector failure			
	5. MSS-4 - Steamline break outside the			
	reactor building			
	NOTE: In addition to the above listed			
	malfunctions, any of the malfunctions			
	scheduled on previous simulator sessions			
	may also be used.			
	STATE THE NEED TO ASK QUESTIONS AS			
	THEY ARISE			
	STATE BASIC PRESENTATION FORMAT			

Page 2

#### INSTRUCTOR'S LESSON PLAN

LESSON OUTLINE NOTES AND REFERENCES REVIEW (Optional) Review homework assignment Α. Β. Present an overview of simulator operations: Plant unloading from 100 percent to ( <50 percent Selected malfunctions C. Review EOP-10, misalignment of full length rods, with respect to a Condition II fault and analysis, i.e., RCCA misalignment. D. Review EOP-10 dropped rod - Re-review Tech Specs 3/4.1.3 E. Review Reactor Coolant Makeup Control System malfunction, with respect to a Condition II fault and analysis, i.e., uncontrolled boron dilution. Review Tech Specs 3/4.1.2 -F. Re-review EOP-2, loss of secondary coolant G. Review SOP-101, RCP Trip, with respect to a Condition II fault and analysis, i.e., partial loss of RCS flow and startup of inactive RCP. III PROCEDURE A. Initialize at (Later), perform a shift turnover, and explain plant conditions and objectives to students: System lineups Plant parameters . Operational status Power history B. STPs scheduled STP 102.002 NIS power range heat balance

r	INSTRUCTOR'S LESSON P	Page 3
	LESSON OUTLINE	NOTES AND REFERENCES
r	C. Commence plant unloading towards 50 percent.	
r	<ul> <li>Have students perform heat balance before commencing downpower STP 102.002</li> <li>D. Initiate CVC-1, boric acid flow transducer fails high, discuss:</li> </ul>	
•	Inability to borate, i.e., how extensive?	
	<ul> <li>Alternate means to borate</li> <li>Clear malfunction when problem is located and request for repair is made</li> </ul>	
-	<ul> <li>E. Initiate PCS-3, steam generator level control failure, discuss:</li> <li>Manual control and load follow problems</li> <li>Clear malfunctions upon request for</li> </ul>	
	<ul> <li>repair</li> <li>F. Initiate CRF-1, rods fail to move, (manual control allowed) discuss: <ul> <li>Means to control T_{avg} if no manual rod motion</li> <li>Tech Spec requirements</li> <li>Clear malfunction upon request for measure</li> </ul> </li> </ul>	
-	<pre>repair G. Initiate NIS-7, power range detector failure, discuss: - Effect on protection - Purpose of various switch manipulations taking place at NIS panels</pre>	
	<ul> <li>Required bistable tripping</li> <li>Clear malfunction upon request for</li> </ul>	

22227

repair

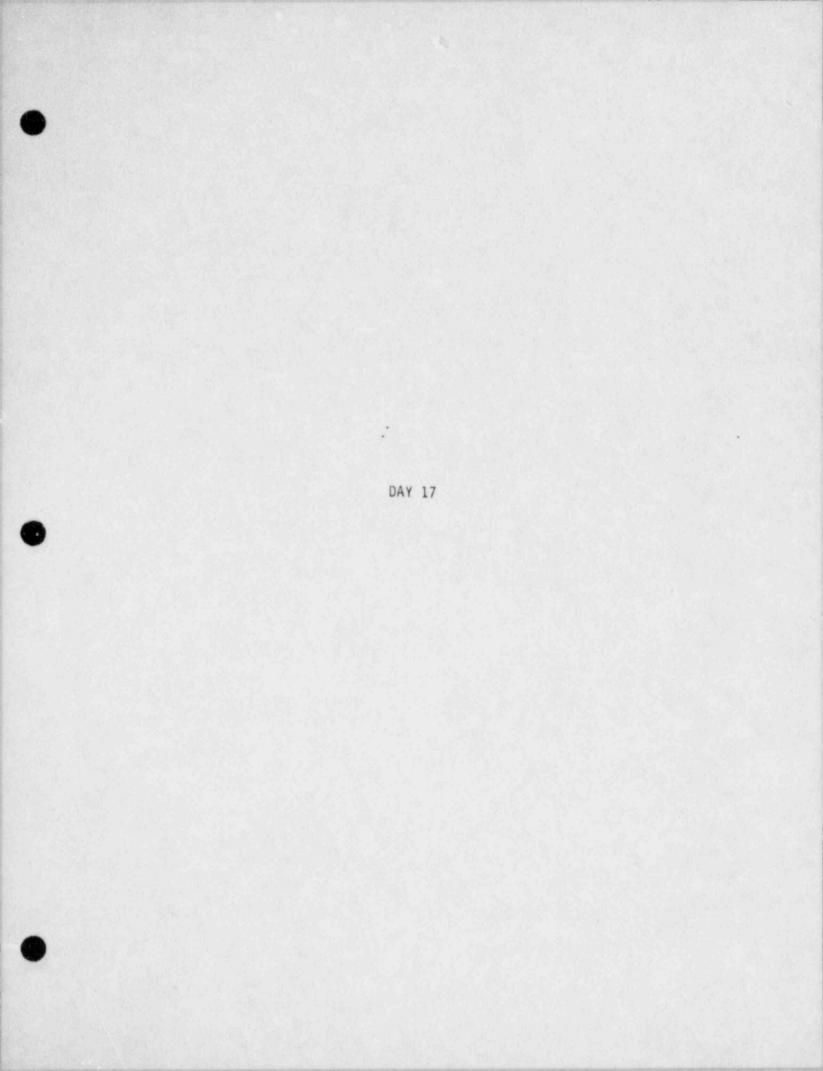
.(

-

# Page 4

22227

### INSTRUCTOR'S LESSON PLAN


LESSON OUTLINE	NOTES AND REFERENCES
H. Initiate MSS-12, main steam header steam leak, discuss:	
<ul> <li>Identification difficulties</li> <li>Isolable versus non-isolable</li> <li>Means to minimize energy release</li> <li>Continue plant shutdown/cooldown to the end of the period</li> <li>I. Students conduct a shift turnover to</li> </ul>	
instructor V CRITIQUE	
<ul><li>A. Review overall operations conduct.</li><li>B. Review malfunction responses</li></ul>	
비행 방법에 관련되었는 것 같아요. 그는 것 같아요. 그는 것 같아요. 것이 같아요.	같이 이렇게 엄마 같은 것을 가지? 영어

18800:4

-

(

(



#### SOUTH CAROLINA ELECTRIC & GAS

#### PHASE III PROGRAM

#### PLANT CASUALTY TRAINING

Power Operations, Malfunctions Small RCS Leak

#### Overview

(

(

In the nuclear power industry there have been several utilities that have experienced small amounts of leakage from the Reactor Coolant System (RCS). To prepare the operator to properly identify and isolate such a leak, the student will be exposed to several types of RCS leaks and will be required to identify and take proper corrective actions by following the Abnormal Operating Procedures for an RCS leak.

#### Terminal Objective

The student will be able to discuss and describe indications of RCS leakage along with operator actions required to place the plant in a safe and stable condition.

### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- discuss the Reactor Coolant System Abnormal Operating Procedure for reactor coolant leakage.
- 2)- describe indications of a small RCS leak.
- 3)- recall RCS leakage technical specifications limits and their bases.

### References

(

- 1. Virgil C. Summer Training Simulator
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications
- 6. Abnormal Operating Procedures
- 7. STP 114.002

INSTRUCTOR'S GUIDE

2

(

(

-

(

-	INSTRUCTOR'S LESSON PLAN			
) _	LESSON OUTLINE	NOTES AND REFERENCES		
С ^{А.} СВ.	LESSON OUTLINE         TRODUCTION         UNIT TERMINAL OBJECTIVE:         The student will be able to recognize,         diagrisse and respond correctly to various         plant malfunctions. This ability will be         evaluated by instructor observation and         the student's oral response to questions.         OPERATIONS PLAN:         Commence plant loading from 20 percent to         100 percent power. Conduct the scheduled         malfunctions.         MALFUNCTIONS SCHEDULED:         1. PCS-8 - Failure of reactor trip switch         2. MSS-6 - Steam generator isolation         valve closes         3. CVC-17 - Loss of charging pump         4. RCS-3 - RCP Trip         5. CRF-4 - Dropped full length rod         6. RCS-6 - Leak         7. PCS-4 - Unstable steam generator level         controller         NOTE: In addition to the above listed         malfunctions, any of the malfunctions         scheduled on previous simulator sessions         may also be used.         STATE THE NEED TO ASK QUESTIONS AS THEY         ARISE         STATE BASIC PRESENTATION FORMAT	NOTES AND REFERENCES		
. REV A. B.	IEW (Optional) Review homework assignment. Re-review SOP-403, Dropped Rod (evaluate student response)			
- 11 - A		Rev 0 1/83		

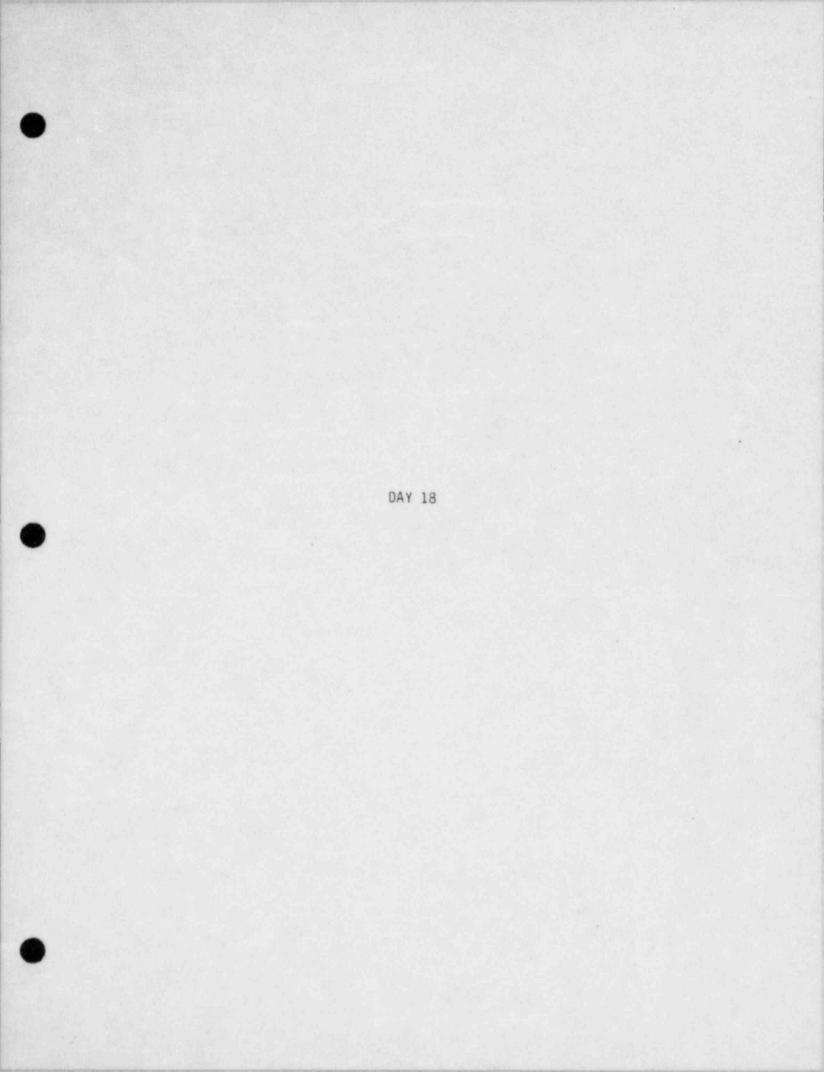
Page 2

22237

# INSTRUCTOR'S LESSON PLAN

-		INSTRUCTOR'S LESSON PL	AN
		LESSON OUTLINE	NOTES AND REFERENCES
	с.	Re-review SOP-102, loss of charging	
	·	(evaluate student response)	
(	n	Review EOP-6, emergency boration	
		- Re-review Tech Specs 3/4.5	
		- Stress when emergency boration is	
1		required	
(	E.	Review EOP-12, Reactor Coolant System -	
		Excessive Coolant Leakage	
		- Review Tech Specs 3/4.4.6	
II.	PRO	DCEDURE	
	Α.	Initialize at (Later) and perform a shift	
		turnover and explain plant conditions and	
		objectives to students:	
		- System lineups	
1		- Plant parameters	
)		- Operational status	
		- Power history	
	Β.	STPs scheduled	
		- STP 114.002 Operability Leak Test	
	С.	Commence plant loading towards 100 percent.	
	D.	Initiate PCS-8, failure of reactor trip	
		switch	
	Ε.	Initiate CVC-17, loss of charging pump,	그는 것 같은 것 것 같아요. 영향 것 같은 생생
		following a shift to a CCP, discuss:	
		- Tech specs associated with ECCS	
		- CCW operating in both trains prior to	
		start	
		- Seal injection	
		- Clear malfunction upon request for	
		repair	
	F.	Initiate CRF-4, dropped full length rod,	
		discuss:	
		- Causes and plant limitations	
		- Related tech specs	
744	4		Rev 0 1/83

Page 3


	LESSON OUTLINE	NOTES AND REFERENCES
	<ul> <li>Urgent/nonurgent failures and alarm reset</li> <li>Allow recovery of rod by procedure</li> </ul>	
	Ensure malfunction is cleared prior to attempting rod recovery	
• .	Initiate PCS-4, unstable steam generator level controller; discuss:	
	<ul> <li>Manual control and load change relationships</li> <li>Elements of level control</li> <li>Clear malfunction upon request for repair</li> </ul>	
	<pre>Initiate MSS-6, steam generator isolation valve closes, discuss: - Indications - Effect on plant operations at low versus high power levels, i.e., reason for plant trip</pre>	
	<ul> <li>If plant trips, backup prior to malfunction and continue plant loading</li> <li>If plant does not trip, clear malfunction, reopen the MSIV, and continue plant loading</li> </ul>	
	<ul> <li>Initiate RCS-3, RCP Trip, discuss:</li> <li>Effect on plant operations at low versus high power levels</li> <li>If plant does not trip, clear</li> </ul>	
	malfunction, restart pump, and continue plant loading	
	Initialize at (Later) and explain plant conditions	

-				
D	a	-	-	
-	10	-	-	-
•	-	- 14		

	LESSON OUTLINE	NOTES AND REFERENCES
	- System lineups - Plant parameters	
	- Operational status - Power history	
к.	Have students perform an Operational Leak Test STP 114.002	
L.	<pre>Initiate RCS-6, LOCA (small), ramp leak rate up to allow leak rate determination and location identification - Determine proper procedure, i.e.</pre>	
	within CCP capabilities	
Μ.	Students conduct shift turnover to instructor	
CRI	ITIQUE	
Α.	Review overall operations conduct.	
	Review malfunction responses	

(

.(



### SOUTH CAROLINA ELECTRIC & GAS

### PHASE III PROGRAM

### PLANT CASUALTY TRAINING

Power Operations, Malfunctions Small Steam Generator (S/G) Tube Leak

#### Overview

Identification of nuclear plant faults, as evidenced in the past few units, requires the use of several interrelated indications. This unit is a continuation of the same type of faults. One indication or annunciator will be a symptom of the problem, but the identification of the specific problem requires operator awareness and knowledge of system interrelations. A steam generator (S/G) tube leak is one fault which will be identified by the association of several different indications. Although it may seem unrealistic to discuss a particular fault immediately prior to experiencing it, the discussion and application will complement one another such that the result will be a student familiar with a particular problem and the proper response such that he can properly react to the fault.

#### Terminal Objective

The student will be able to discuss indications of steam generator tube leakage along with operator actions required to place the plant in a stable condition. In addition he will be able to identify this type of fault as a control room operator and use the proper procedure as guidance in further plant operations.

### Enabling Objectives

Upon completion of this unit the student shall be able to:

- 1)- describe indications of a steam generator tube leak.
- 2)- identify the particular steam generator involved.
- 3)- describe operator actions in response to a steam generator tube leak.
- 4)- demonstrate an ability to perform actions as a control room operator during a steam generator tube leak.

### References

- 1. Virgil C. Summer Training Simulator
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications
- 6. Abnormal Operating Procedures
- 7. STP 204.001

INSTRUCTOR'S GUIDE

*

(

(

(

(

Page 1

LESSON OUTLINE	NOTES AND REFERENCES
INTRODUCTION .	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to recognize,	
diagnose and respond correctly to various	
plant malfunctions. This ability will be	
evaluated by instructor observation and	이 내가 집을 알려요. 그는 것은 것이다.
the student's oral response to questions.	
B. OPERATIONS PLAN:	
Commence plant loading towards 20 to 100	
percent power. Conduct the scheduled	
malfunctions.	
C. MALFUNCTIONS SCHEDULED:	이 물 전화로 관계 도망한 감독이 있
1. TUR-12 - First stage pressure	
transmitter failure	
2. CVC-1 - Boric acid flow transmitter	
failure	
3. PRS-2 - Pressurizer level channel	
failure	
4. CVC-4 - RCP #1 seal leak	
5. CVC-8 - Leak inside containment	
6. RCS-2 - Steam generator tube leak	
(small)	
NOTE: In addition to the above listed	
malfunctions, any of the malfunctions	
scheduled on previous simulator sessions may	
also be used.	
STATE THE NEED TO ASK QUESTIONS AS THEY ARISE	
STATE BASIC PRESENTATION FORMAT	
REVIEW (Optional)	
A. Review homework assignment	

.

# Page 2

INSTRUCTOR'S LESSON PLAN

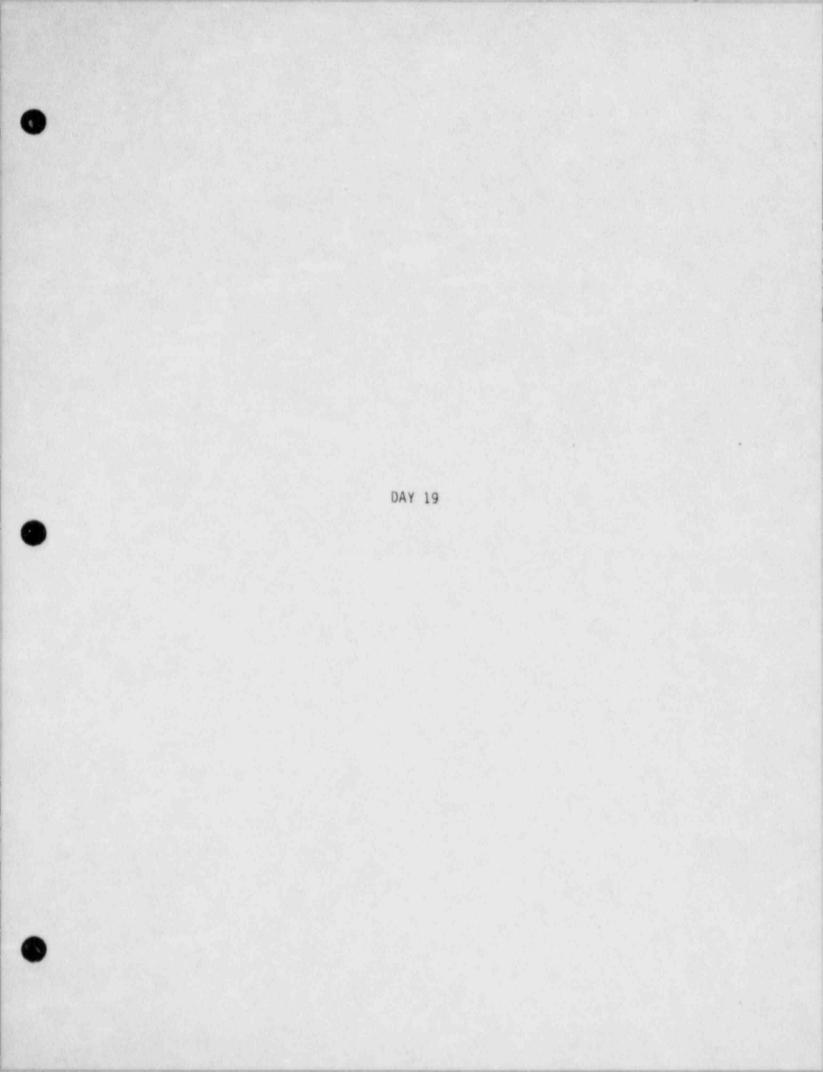
-	INSTRUCTOR'S LESSON PLAN				
	LESSON OUTLINE	NOTES AND REFERENCES			
(	<ul> <li>B. Review EOP-03, steam generator tube leak</li> <li>- Review tech specs</li> <li>C. Re-review Reactor Coolant Makeup Control</li> </ul>				
	System malfunction (evaluate student response)				
(	D. Re-review SOP-101, reactor coolant pump - off normal procedure (evaluate student response)				
	E. Re-review EOP-12, reactor coolant system - excessive coolant leakage (evaluate student response)				
III.	PROCEDURE				
	A. Initialize at (Later) and perform a shift turnover. Explain plant conditions and				
ć	objectives to students: - System lineups				
	<ul> <li>Plant parameters</li> <li>Operational status</li> </ul>				
	<ul> <li>Power history</li> <li>B. STPs scheduled</li> <li>STP 204.001 Hot Channel Factor test</li> </ul>				
	C. Commence plant loading towards 100 percent				
	D. Initiate TUR-12, first stage pressure				
(	<pre>transmitter failure, discuss: - Effect on all associated systems, i.e., P-13, P-7, C-5, C-7, auto rod control</pre>				
(	- Clear malfunction after proper bistables have tripped and				
	request for repair has been made E. Initiate CVC-1, Boric Acid Flow Transmitter Failure, discuss:				
Ď	- Investigation as to cause				

# Page 3

### INSTRUCTOR'S LESSON PLAN

	LESSON OUTLINE	NOTES AND REFERENCES
	- Limitations that this problem imposes	승규는 것은 것은 것을 것이다.
	clear malfunction upon request for	
	repair	
F.	Initiate PRS-2, pressurizer level channel	
	failure, discuss:	
	- Manual manipulations of pressurizer	일을 하는 것은 것 같은 것이다.
	level in response to load changes	
	- Limitations imposed upon operator	
	- Allow for a period of manual operation,	
	then clear malfunction upon request for	
	repair	
G.	Initiate CVC-4, RCP #1 seal leak, discuss:	
	- Use of indications to determine cause	
	- Orderly shutdown	
	- Upon determination of steps to be	
	followed, terminate malfunction and	
	backup to a point prior to the seal	
	leak. Continue plant loading towards	
	100 percent.	
Η.	Initiate CVC-8, leak inside the reactor	
	building (letdown line), discuss:	
	- Source of leak and possible isolation	
	- Significance of loss of letdown, i.e.,	
	load follow, plant chemistry, etc.	
	- Terminate malfunction when proper	
	action has been started.	
	Re-initialize at (Later) explain plant	
	conditions	
	- System lineups	
	- Plant parameters	
	- Operational status	

*


.

4....

# INSTRUCTOR'S LESSON PLAN

	LESSON OUTLINE	NOTES AND REFERENCES
J.	Have students perform a Hot Channel Factor	
	STP 204.001 Test	
к.	Initiate RCS-2 steam generator tube leak,	
	discuss:	
	- First indications versus determining	
	indications, i.e., radiation alarms in	
	conjunction with flow changes, and	
	apparent difficulties	
	- Leak-rate determination	
	- Proper procedure (EOP-12)	
	- Carry out malfunction as long as time	
	allows :	고 있는 것이 같은 것이 없는 것이 없다.
L	Students conduct shift turnover to	신 김 사람은 것이라. 영화 문화
	instructor	이 것 같은 것은 그렇는 것이 많이 했다.
CRI	TIQUE	
Α.	Review overall operations conduct.	
Β.	Review malfunction responses	

(



### SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

PLANT CASUALTY TRAINING

Power Operations, Malfunctions

Loss of Site Power and Recovery, Establish Natural Circulation

### Overview

The casualty training presented in weeks one, two, and three has concentrated on minor malfunctions for which the operator could usually take corrective action and continue plant operation. Although it is unlikely for a major accident to occur in a nuclear plant, the possibility does exist. Therefore, operators have to be knowledgeable of accident conditions, responses and procedures in order to place the plant in as safe and stable a condition as possible without causing further damage or public hazard.

A loss of site power requires the control room operator to verify a safe shutdown condition and actuation of all required emergency components. In addition the operator will have to establish conditions which enhance natural circulation and monitor core conditions to ensure that core heat removal is adequate.

#### Terminal Objective

Upon completion of this unit the student will be able to describe the symptoms and automatic actions during a loss of site power (blackout). The student will also be able to perform and justify the immediate operator action required of a control room operator for a loss of site power and other plant malfunctions. Successful completion of this unit will be based on satisfactory evaluation by the program instructor based on observation and the student's oral responses to questions.

### Enabling Objectives

Upon completion of this unit the student will be able to:

- list the symptoms or indications associated with a loss of site power (blackout).
- 2)- describe plant response to a station blackout (loss of site power) including all automatic actions that will occur.
- 3)- list the immediate operator actions required following a loss of site power (blackout).
- 4)- demonstrate an ability to perform the immediate actions during control room operations.
- 5)- perform the subsequent operator actions while using the applicable procedures for a loss of site power (blackout).
- 6)- discuss conditions which enhance natural circulation.

### References

- 1. Virgil C. Summer Training Simulator EOP-4, SOP-306, STP 102.003
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

(

(

1

(

(

Page 1

LESSON OUTLINE	NOTES AND REFERENCES
INTRODUCTION	
A. UNIT TERMINAL OBJECTIVE:	
The student will be able to describe the	
symptoms and automatic actions during a	
loss of site power. The student will also	
be able to perform and justify the	
immediate action required of a control	
room operator for a loss of site power and	
other plant malfunctions. Successful	
completion of this unit will be based on	
satisfactory evaluation by the program	
instructor based on observation and the	
student's oral responses to questions.	
B. OPERATIONS PLAN:	
Initiate at 100 percent power equilibrium	
conditions and complete a shift turnover.	
Initiate minor malfunctions as scheduled.	
Have the load dispatcher inform the	3
control room of a severe weather watch	
involving the possibilities of tornados.	
Initiate a station blackout. Respond to	
the blackout including observation and	
discussion of natural circulation flow in	
the RCS. Continue with subsequent plant	
recovery as time permits.	
C. MALFUNCTIONS SCHEDULED:	
1. NIS-3 Power range channel failure	
2. FWM-21 HP feed heater bypass valve	
3. CRF-9 DRPI loss of voltage	
4. FWM-3 Emergency feedwater pump trip	
5. PRS-4 PZR PORV failure	
6. FWM-4 Feed flow transmitter failure	

-

Page 2

)	LESSON OUTLINE	NOTES AND REFERENCES
(	7. EPS-1 station blackout NOTE: In addition to the above listed malfunctions, any of the malfunctions scheduled on previous sessions may also be used. <u>STATE THE NEED TO ASK QUESTIONS AS THEY</u> <u>ARISE</u> <u>STATE BASIC PRESENTATION FORMAT</u>	
	VIEW (Optional)	
	Review thermodynamics homework	
ь.	Present a basic overview of simulator operations.	
-	<ul> <li>Power operation at 100 percent with</li> </ul>	
	minor malfunctions and a station blackout.	
с.	Discuss emergency procedures for station	
	blackout (EOP-4)	
	- Ask the students to list the symptoms,	
	automatic actions, and immediate	
	operator actions.	
	- Discuss the subsequent operator	
- 57	actions to place the plant in a more stable condition.	
D.	Discuss the mechanism, indications, and	
	plant conditions related to natural	
	circulation flow.	
	- This review should include a	
	discussion of plant design to promote	
	natural circulation flow along with	
	the various parameters which should be	
	observed:	
	o Pzr pressure	
97L:4		Rev 0 1/83
		100 1/00

.

Page 3

22:27

1	INSTRUCTOR'S LESSON PL	LAN Page 3
) _	LESSON OUTLINE	NOTES AND REFERENCES
	o Pzr level	
	o Wide range temperature recorders	
(	o In-core thermocouples	
-	o S/G pressure	
	o S/G level	
( E.	Review the following technical	
(	specifications	
	- S/G safety valves emphasizing	
	necessary actions if one or more	
	valves are inoperable.	
	- Review specification 3.0.4	
	- Emergency Feedwater System	
	- Condensate storage tank	
F.	전 승규는 것 같아요. 그 것 같아요. 이 것 같아. 가지, 말 그 것 같아. 그 것 같아. 그 것 같아. 이 것 같아. 이 것 같아.	
r	procedure	같은 김 가슴은 것 것 같아? 김 사람들이 한
)	- Diesel Generator Procedures SOP 306	
II. PRO	CEDURE	
Α.	Set up the plant in (LATER) and conduct a	
	shift turnover emphasizing the current	
	conditions - steady state 100 percent	
	power; no testing in progress.	
	- Power history	
	- Systems status	
	- Tests/evolutions in progress	
-	- Equipment inoperability	
В.	STPs scheduled	
	- STP 102.003 I.R. Analog Channel	
	Operability Test	
- c.	Initiate a power range channel failure	
	(NIS-3), such that the channel fails to a	
	minimum output.	
	- Have the students explain how the	
	channel signal is utilized in Rod	
	Control, SGWLC and Rx Protection.	
897L:4		Day 0 1/03

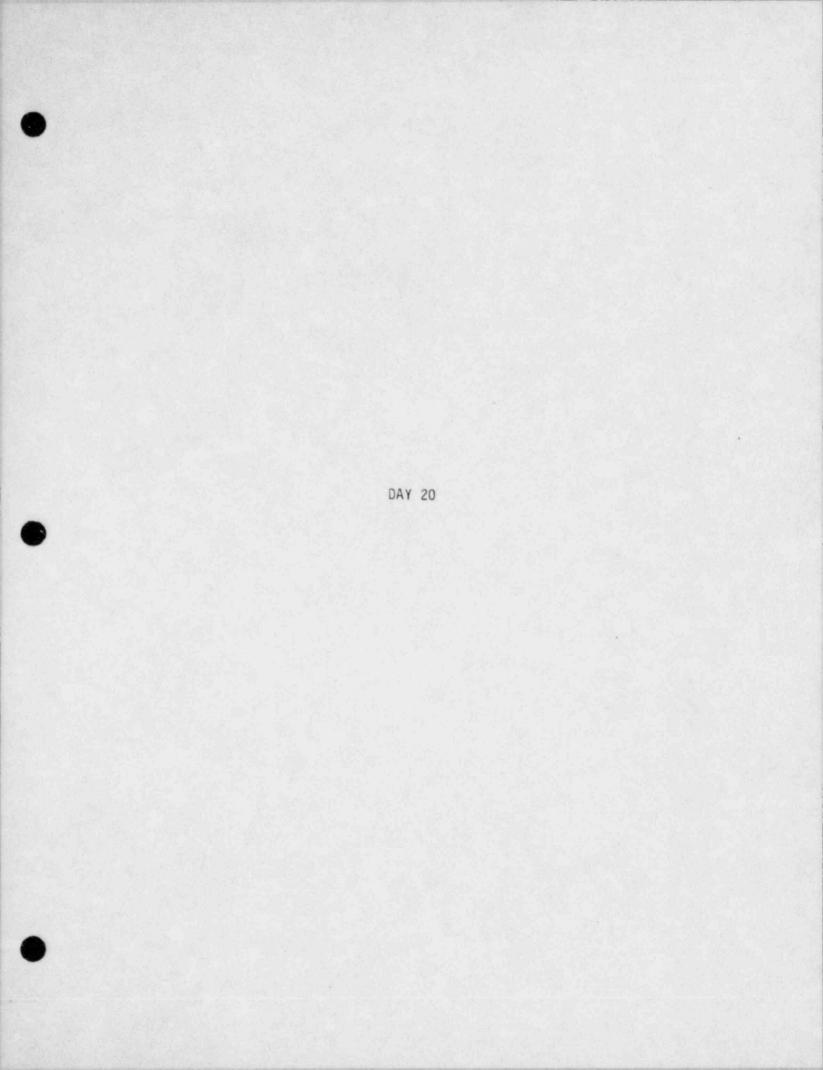
0897L:4

Page 4

NOTES AND REFERENCES

Page 5

	INSTRUCTOR'S LESSON PLAN	Page 5
	LESSON OUTLINE	NOTES AND REFERENCES
G.	Initiate a PORV failure (PRS-4), such that the selected valve fails open without	
	interlock to 100 percent position.	
	- Students should isolate the faulty	
	valve; if not the plant will trip and	
	SI will occur.	
	<ul> <li>Operator action will depend on immediate actions</li> </ul>	
	- Discuss tech specs limitations on	성장 그 가슴 가슴 감독 가슴
	continued operations.	
н.	Continue plant operations at 100 percent	
	power.	
Ι.	Initiate a feed flow transmitter failure	
	(FWM-4). Fail the transmitter used for	
	SGWLC to a high flow value.	
	- Operators should take manual control	
	of S/G level or switch to an alternate feed channel. If not, a low-low S/G	
	level should result.	
	- Review the inputs to and operation of	
	SGWLC.	
	- Review any tech specs limitations	
	- Trip the selected bistables and	
	continue plant operations	
	Initiate a emerg. feed pump trip (FWM-3)	
	malfunction due to loss of elect. power.	
	Have students perform an I.R. range channel test STP STP-102.003	요즘 옷을 가지 않는 것이 같아요.
	Initiate a Station Blackout (EPS-1), due	
	to inclement weather.	
	- When the loss of site power occurs, a	
	generator trip - turbine trip - Rx	요즘 것이 많은 것을 못 할 수 있다.
	trip results.	


-

Page 6

LESSON OUTLINE	NOTES AND REFERENCES
- Discuss blackout recovery actions	
- Review vital loads which should start	
on a blackout.	
When (If) emerg. feed pump failure is	승규는 것 같은 것이 같아? 영화 관계
noticed and local help is requested, clear	
the malfunction to simulate reclosing the	
pump breaker locally.	
- Review Emerg. Feed System drawing	해 집에는 것을 다 한 것이 같은 것이 없다.
Continue subsequent recovery actions from	
the blackout as time permits.	
- Discuss and calculate a shutdown	
margin.	
- Review tech specs for electrical power	
system.	
Note to Instructors: The simulator	그는 이번 나는 것에 많을 가지?
session should be conducted with as many	한 글 동안 없는 것이 가지 않는 것이다.
questions as possible being asked of the	
operators regarding plant systems,	
procedures, tech specs, etc. The sessions	
should be representative of the final	
audit operational exam.	
Students conduct shift turnover to	
instructor	
ITIQUE	
Review overall operations conduct.	
Review malfunction responses	

Review Questions

- 1. What automatic actions occur upon a loss of site power (blackout)?
- List the immediate operator actions required for a loss of site power (blackout).
- 3. Describe the plant conditions that enhance natural circulation.
- 4. Describe indications of natural circulation being established.
- 5. What is the design bases for the capacity of the condensate storage tank?
- Describe a method of cooldown if the Emergency Feedwater System was not available.
- Describe the operability requirements for the S/G safety valves in various modes.
- 8. What signals will automatically start the emergency feedwater pumps?
- 9. Why does feedwater isolation occur on P-4 and low  $T_{avg}$  signals?



### SOUTH CAROLINA ELECTRIC & GAS

### PHASE III PROGRAM

### PLANT CASUALTY TRAINING

### Power Operations, Malfunctions

Pressurizer Steam Space Leak, Accident Analysis Review Part 2

#### Overview

Since the occurrence of the Three Mile Island Incident, a significant amount of attention has been focused on pressurizer (PZR) steam space leaks. The control board indications of a steam space leak differ from those of a water piping leak and therefore warrant special consideration and training. This unit concentrates on the unique indications of this type of accident and allows the student to evaluate and respond to it. In addition, other Condition III type faults and their analyses will be discussed.

#### Terminal Objective

The student will be able to describe the symptoms and automatic actions during a pressurizer steam space leak. The student will be able to perform and justify the immediate operator actions required of a control room operator for a small Reactor Coolant System (RCS) leak and other plant malfunctions. Successful completion of this unit will be based on a satisfactory evaluation by the program instructor based on observation and the student's oral responses to questions.

### Enabling Objectives

Upon completion of this unit the student will be able to:

- 1)- discuss the symptoms of a pressurizer steam space leak.
- 2)- describe operator actions for a small loss of coolant accident.
- 3)- describe what is meant by Condition III faults.
- 4)- list the types of faults considered to be Condition III faults.
- 5)- perform the subsequent operator actions while using the applicable procedure(s) for small loss of coolant accident.

### References

(

- Virgil C. Summer Training Simulator EOP-1, EOP-2, EOP-5, EOP-12, SOP-404, SOP-403, STP 108.001
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

# INSTRUCTOR'S GUIDE

*

2

(

(

1

(

(

Page 1

LESSON OUTLINE	NOTES AND REFERENCES	
INTRODUCTION		
A. UNIT TERMINAL OBJECTIVE:		
The student will be able to describe the		
symptoms and automatic actions during a		
pressurizer steam leak. The student will		
also be able to perform and justify the		
immediate operator actions required of a		
control room operator for a small RCS leak		
and other plant malfunctions. Successful		
completion of this unit will be based on		
satisfactory evaluation by the program		
instructor based on observation and the		
student's oral responses to questions.		
B. OPERATIONS PLAN:		
Initiate minor malfunctions as scheduled.		
Eventually a plant and Rx shutdown will be		
required due to a Pzr steam space leak.		
Continue with plant cooldown as time		
permits.		
C. MALFUNCTIONS SCHEDULED:		
1. CRF-7 Stuck rod		
2. NIS-8 Source range high voltage		
failure		
3. NIS-7 Power range detector failure		
4. PRS-1 Pzr pressure channel failure		
5. MSS-5 Steam dump control failure		
6. FWM-1 Main feedwater pump trip		
7. MSS-7. S/G relief failure		
8. RCS-6 RCS·leak		
NOTE: In addition to the above listed		
malfunctions, any of the malfunctions		
scheduled on previous sessions may be used.		
STATE THE NEED TO ASK QUESTIONS AS THEY ARISE		
STATE BASIC PRESENTATION FORMAT		

Page 2

•	LESSON OUTLINE	NOTES AND REFERENCES
( R	EVIEW (Optional)	
A		
	minor malfunctions and a small RCS leak.	
c	. Discuss emergency procedures for immediate action and diagnostics (EOP-1) and loss of primary reactor coolant (EOP-12)	
	<ul> <li>Ask the students to list the symptoms, automatic actions, and immediate operator actions for each emergency.</li> <li>Discuss the subsequent operator</li> </ul>	
D	actions to place the plant in a more stable condition. . Discuss Condition III - Infrequent Faults - Review each Condition III fault	
	emphasizing any applicable emergency or off-normal operator actions: o Minor steam system piping failure	
(	(EOP-2) • Complete loss of forced reactor coolant flow (EOP-4)	
(	<ul> <li>Rod cluster control assembly</li> <li>misalignment (SOP-403)</li> <li>Improper fuel loading and operation</li> </ul>	
,	<pre>o Small break loss of coolant accidents (EOP-12)</pre>	
•	<ul> <li>Radioactive gas waste system leak</li> <li>Radioactive release due to liquid tank failure</li> </ul>	
0900L:4		Rev 0 1/83

Page 3

	LESSON OUTLINE	NOTES AND REFERENCES
	o Spent fuel cask drop accidents	
Ε.	For each event in item D above, discuss	
	any applicable tech specs sections:	
	- Movable Control Assemblies Group Height	
	- Design Features Section 5.3 Reactor	
	Core	
	- Reactor Coolant System Leakage Section	
	- Refueling Operations Section Crane	
	Travel-Spent Fuel Storage Pit Building.	
F.	Review the aspects of a Pressurizer steam	
	space leak to include the following:	
	- Indications to the Operators	
	- System Design	
	o Isolable PORVs	
	o RTDs for safety valve/PORV leakage	
	o Acoustic leak monitor	
	- Ability to maintain plant pressure and	
	continue plant operations	
	- Effects on level indication of a level	
	standpipe/condensing pot leak.	
	- Overall review of leak rate determina-	
	tion and subsequent plant shutdown if	
	tech specs limits are exceeded.	
PRO	CEDURES	
Α.	Set up the plant in (Later) and conduct a	
	shift turnover emphasizing the current	
	conditions - steady state 100 percent	
	power; no testing in progress.	
	- Power history	김 이 나라 이 가 있었다.
	- Systems status	
	- Tests/evolutions in progress	
	- Equipment inoperability	
Β.	STPs scheduled	
	- STP-108.001 Quadrant Power Tilt Ratio	

(

Page 4

		LESSON OUTLINE	NOTES AND REFERENCES
(		Initiate a stuck rod malfunction due to mechanical failure (CRF-7) in a shutdown bank. Initiate a source range high voltage	
(		<pre>failure (NIS-8) Select the source range channel chosen for the audio count rate circuit. Failure of HV power supply. NOTE: In the event of a reactor trip, the stuck rod should initiate an</pre>	
5		immediate boration action from the operators if noticed and the source range failure will result in a loss of power indications once the source range instruments reenergize (~ 15 minutes after the trip).	
	E.	<pre>Initiate a power range detector failure (NIS-7) such that the lower detector fails to a high value Student should take manual rod control    to terminate rod insertion. Review    Lost Failure Personne Manual</pre>	
(		<ul> <li>Inst. Failure Response Manual</li> <li>Review Rod Control System inputs</li> <li>Perform followup actions of AOP-15 NIS Malfunction</li> <li>Review methods of monitoring power in the affected quadrant of the core.</li> <li>Trip the associated bistables and</li> </ul>	
	F.	<ul> <li>initiate repairs</li> <li>Discuss power range detector current compartor circuit Quadrant Power Tilt.</li> <li>Initiate a pressurizer pressure channel failure (PRS-1) such that the controlling</li> </ul>	
0.001		pressure channel fails high.	

Page 5

-	INSTRUCTOR'S LESSON I	PLAN Fage 5
) —	LESSON OUTLINE	NOTES AND REFERENCES
	NOTE: A pressure channel low failure will	
	result in a OTAT Rx Trip. If students	
(	trip bistables for this failure an	
•	inadvertent OTAT Rx Trip will result.	
	- Students should respond to take manual	
1	control of Pzr sprays and heaters to	
	stop the pressure decrease or select	
	an alternate controlling channel.	
	- Discuss Pzr pressure control	
	system/PORV interlocks	
	- Review Inst. Failure Response Manual	
	for failed channel.	
	- Review tech specs limitations for	
	pressure channel failures.	
r	NOTE: Operators cannot meet tech	
)	specs limitations for minimum operable	그는 사람이 가지 않는 것이 없는 것이 없다.
	channels unless in Surveillance	
	Testing. Therefore plant shutdown is	
	required; if bistables are tripped	
	with 1 hour, a plant trip will result.	
	- If a trip occurs, follow Rx Trip	
	procedure and discuss stuck rod and	
	NIS failure. Then reset to 100	
·	percent power.	
G	Commence plant shutdown in accordance with	
ч.	normal procedures.	
н.		
	functional testing, then stop the power	
	decrease.	
	- Reset bistables for power range	
	- Trip selected bistables for failed	
	pressure transmitter.	
	전 김 사장님 아이들은 것이 아이들은 것을 다 가지 않는 것을 하는 것을 하는 것을 다 나라.	
	- Continue plant operations - increase	
	power toward 100 percent slowly.	
900L:4		Rev 0 1/83

. Rev 0 1/83

Page 6

22337

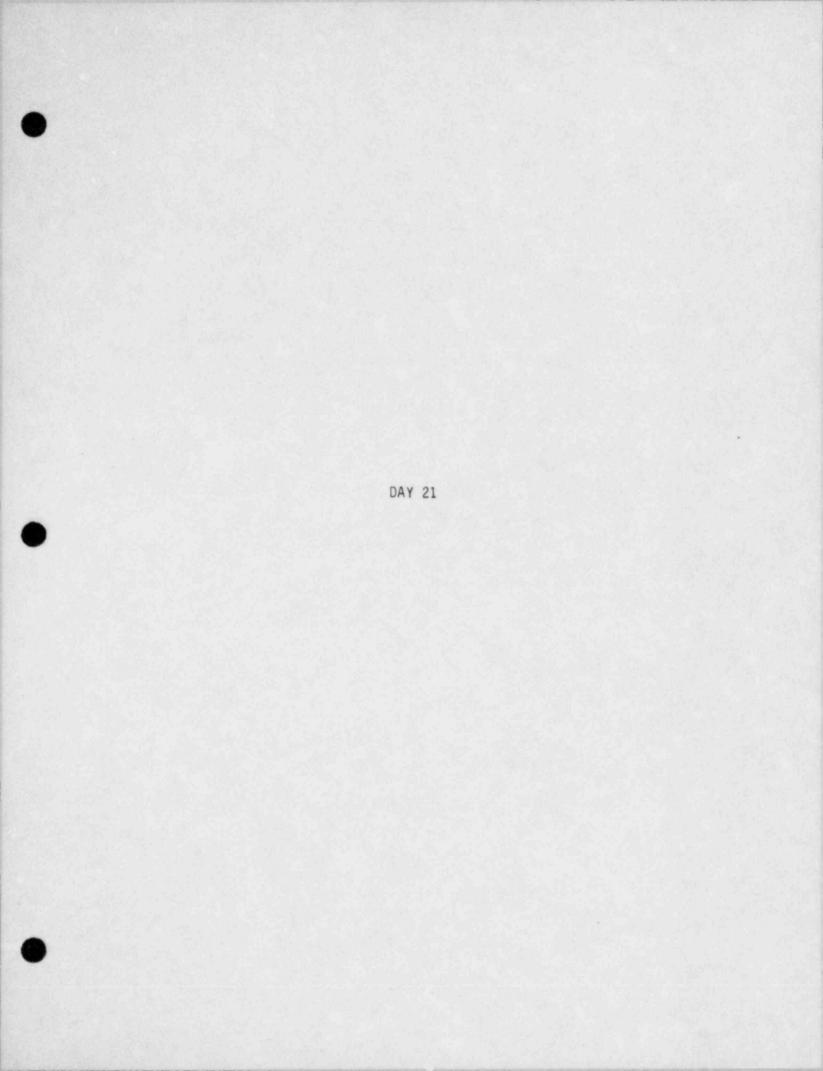
-		INSTRUCTOR'S LESSO	NPLAN	Page b
		LESSON OUTLINE	NOTES AN	D REFERENCES
	Ι.	Have student perform a Quadrant Power Tilt Ratio	STP-108.00	1
(	J.	Initiate a steam dump control failure		
		(MSS-5) such that the cooldown valves		
		(Group 1) ramp open. Failure is due to a		
(	1.1	failure of I/P converter for selected		
		group of valves.		
		<ul> <li>Increased steam demand should cause power increase</li> </ul>		
		- Students should terminate system		
		operation by taking manual control or		
		turning the system off.		
		- Discuss limitations on Rx power		
		output, S/G swell, Pzr response to		
-		transient.		
		<ul> <li>Continue operations with the system off.</li> </ul>		
		- Discuss effect on load rejection		
		capabilities with the steam dump		
21		system inoperable.		
	К.	Initiate a feedwater pump trip (FWM-1) due		
		to a failure in the pump trip circuit.		
1		- Students should perform immediate and		
(		subsequent actions of SOP-210 (loss of		
		main feedwater)		
		- The Rx may trip from S/G low low		
•		level. If so, follow EOP-5; discuss		
(		stuck rod and SR failures. Reset at		
		previous power level and continue		
		power increase.		
1		- If no trip occurs, ensure operators		
		return Steam Dump System to normal		
		after the transient, discuss Steam		
		Dump System operation.		

-

Page 7

	LESSON OUTLINE	NOTES AND REFERENCES
	<ul> <li>Investigate MFP trip; restart the pump and start restoring power to 100 percent.</li> <li>Review ΔI and RIL relative to Rod Control response to insert control</li> </ul>	
	rods. Initiate a S/G relief valve failure	
L.	without manual control. (MSS-7) - Students should have the valve	
	<ul> <li>isolated locally</li> <li>Discuss tech specs limitations for relief valves and/or S/G safety valves.</li> </ul>	
М.	<pre>Initiate a RCS leak (RCS-6). The leak size is variable. Recommend a value &lt; 40 gpm to start Students should respond to decreased</pre>	
	<ul> <li>pressure and level and reactor</li> <li>building rad monitors</li> <li>Observe proper actions for EOP-12 loss</li> <li>of reactor coolant without S.I. Start</li> <li>additional charging pumps</li> </ul>	
Ν.	<ul> <li>Monitor for leak location; calculate leak rate</li> <li>Review tech specs limitations</li> <li>Commence plant shutdown in accordance with</li> </ul>	
	<ul> <li>normal procedures.</li> <li>As shutdown continues, slowly increase the size of the leak to &gt; 200 gpm.</li> <li>Discuss methods of determining leak size and location.</li> </ul>	
0.	같은 것	

Page 8


4

	LESSON OUTLINE	NOTES AND REFERENCES
Þ.	Proceed with EOP-1 to stabilize plant conditions as time allows.	
2.	If no previous Rx trip, discuss stuck rod and Source Range failures. Note to Instructors: The simulator	
	session should be conducted with as many questions as possible being asked of the operators regarding plant systems, procedures, tech specs, etc. The sessions should be representative of the final audit operational exam.	
ι.	Students conduct shift turnover to instructor	
RI	TIQUE	감사 전에서 관계 그 이 모습을 가 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
١.	Review overall operations conduct.	
3.	Review malfunction responses	

I١

(

C



### SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

## MAJOR PLANT CASUALTY TRAINING

Loss of Secondary Coolant Inside the reactor building, Accident Analysis Review - Part 3

### Overview

In previous units, faults of increasing severity have been discussed. The remaining accident events to be considered are those included in Condition IV Events - Limiting Faults. These are the most drastic events. Although not expected to occur, these accidents are postulated because their consequences include the potential for radioactive material release. It is the Condition IV accident which the plant is designed to protect. The plant's protection and safeguards systems will automatically provide initial safe shutdown; however, the operator is relied upon to correctly diagnose the accident and perform the required actions specified in the emergency procedures.

This unit is designed to review the accidents in the Condition IV category and allow students to experience selected faults as control room operators.

### Terminal Objective

Upon completion of this unit, the student will be able to describe the symptoms and automatic actions during a loss of secondary coolant (inside the reactor building) and other Condition IV events. The student will also be able to perform and justify the immediate operator actions required of a control room operator for a loss of secondary coolant accident and other plant malfunctions. Successful completion of this unit will be based on a satisfactory evaluation by the program instructor based on observation and the student's oral response to questions.

### Enabling Objectives

Upon completion of this unit, the student shall be able to:

- 1)- describe what is meant by Condition IV events.
- 2)- list faults included in the Condition IV category.
- 3)- describe indications of a feedline break inside the reactor building.
- 4)- discuss assumptions used in the feedwater break analysis.
- 5)- describe operator actions for a loss of secondary coolant.
- 6)- describe plant response to a steam line rupture.
- 7)- describe the major indication differences between steam and feed breaks inside the reactor building.
- 8)- perform the subsequent operator actions while using the applicable procedures for a loss of secondary coolant.

References

(

- 1. Virgil C. Summer Training Simulator
- 2. SCE&G Phase III Training Material
- 3. SCE&G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

(

(

( )

## INSTRUCTOR'S LESSON PLAN

-	INSTRUCTOR'S LESSON PLAN			
-	LESSON OUTLINE	NOTES AND REFERENCES		
Ι.	INTRODUCTION			
-	A. UNIT TERMINAL OBJECTIVE:			
•	The student will be able to describe the			
	symptoms and automatic actions during a			
	loss of secondary coolant (inside the			
-	reactor building). The student will be			
•	able to perform and justify the immediate			
	operator actions required of a control			
	room operator for a loss of secondary			
	coolant accident and other plant malfunc-			
	tions. Successful completion of this unit			
	will be based on a satisfactory evaluation			
	by the program instructor based on obser-			
	vation and the student's oral response to			
	questions.			
-	B. OPERATIONS PLAN:			
	Initiate at 50 percent power during xenon			
	transient and complete a shift turnover.			
	Initiate minor malfunctions as scheduled.			
	Major accidents will include a steam break			
	and a feed break inside the reactor			
	building, with each event involving safety			
	injection system actuation. Discuss			
	emergency plans with students for each			
-	major accident.			
	C. MALFUNCTIONS SCHEDULED:			
	1. CRF-10 DRPI open or shorted coil			
	2. PRS-6 Failure of PZR backup heaters			
-	3. CVC-2 VCT divert valve control failure			
	4. MSS-3 Steam break inside containment			
	5. FWM-4 Feedwater flow transmitter			
	failure			
-				

Page 2

	INSTRUCTOR S LESSON F LA	Page 2
a starter and a starter a	LESSON OUTLINE	NOTES AND REFERENCES
	6. CRF-8 T _{ref} failure	
	7. RCS-8 RTD failure (T _H -control)	
	8. FWM-8 Feedline break inside	
	containment	
	9. FWM-3 Emergency feed pump trip	
NOTE	: In addition to the above listed	
	malfunctions, any of the malfunctions	
	scheduled on previous simulator	
	sessions may also be used.	
STAT	E THE NEED TO ASK QUESTIONS AS THEY ARISE	
STAT	E BASIC PRESENTATION FORMAT	
. REVI	EW (Optional)	
Α. Ι	Review thermodynamics homework.	
B. 1	Present a basic overview of	
	simulator operations.	
	- Increasing load from 50 percent during	
	a xenon transient with minor	
	malfunctions and Loss of Secondary	
	Coolant Accidents.	
C. (	Discuss Condition IV events	
	- Review each Condition IV fault	
	emphasizing any applicable emergency	
	for off-normal operator actions:	
	o Major steam system piping failure	
	(EOP-2)	
	o Feedwater system pipe break (EOP-2)	
	o RCP shaft seizure (SOP-101)	

### INSTRUCTOR'S LESSON PLAN

(

	LESSON OUTLINE	NOTES AND REFERENCES
	o RCP shaft break (SOP-101)	
	<ul> <li>Rod ejection accidents</li> </ul>	
	o Steam Generator Tube Failure	
	(EOP-3)	
	o Large Break Loss of Coolant	
	Accident (EOP-1)	
	o Refueling Emergency (EOP-7)	
	- Emphasize the ability to diagnose	
	plant conditions/indications and	
	identify the various faults.	
D.	For each event in item 4 above, discuss	
	any applicable Tech Specs sections: This	
	review should encompass the Tech Specs	
	sections for Rx Protection Systems and ESF	
_	Instrumentation 3/4.3.1 and 3/4.3.2.	
ε.	Review overall indications and plant	
	response to the following:	
	- Steam Break Inside the reactor building	
1	- Feed Break Inside the reactor building	
Ε.		
G.	and immediate operator actions.	
ч.		
	<pre>Procedure (EOP-2) - Ask the students to list the immediate</pre>	
	그 같은 그 것을 것을 것 같아요. 다섯 만들었다. 것 것이 아내는 것을 것 같아요. 가지 않는 것을 가 많다. 것을 것 같아요.	
	operator actions for this emergency procedure.	
н.	Review steamline and feedline isolation	
	signals and their bases. Review Tech	
	Specs 3/4.7.1.	
	- Steamline Isolations	
	o High 2 Containment Pressure	
	o Low steamline pressure	

## INSTRUCTOR'S LESSON PLAN

INSTRUCTOR'S LESSON PL	AN
LESSON OUTLINE	NOTES AND REFERENCES
<ul> <li>A High Steam Pressure Rate - Decreasing</li> <li>Feedline Isolation <ul> <li>S/G High Level Override P-14</li> <li>Feedwater Isolation</li> <li>A R Tripolit Low Tay signal</li> <li>P - 12</li> </ul> </li> <li>11 PROCEDUR <ul> <li>An on the signal of the signa</li></ul></li></ul>	
	0901L:4

## INSTRUCTOR'S LESSON PLAN

*.

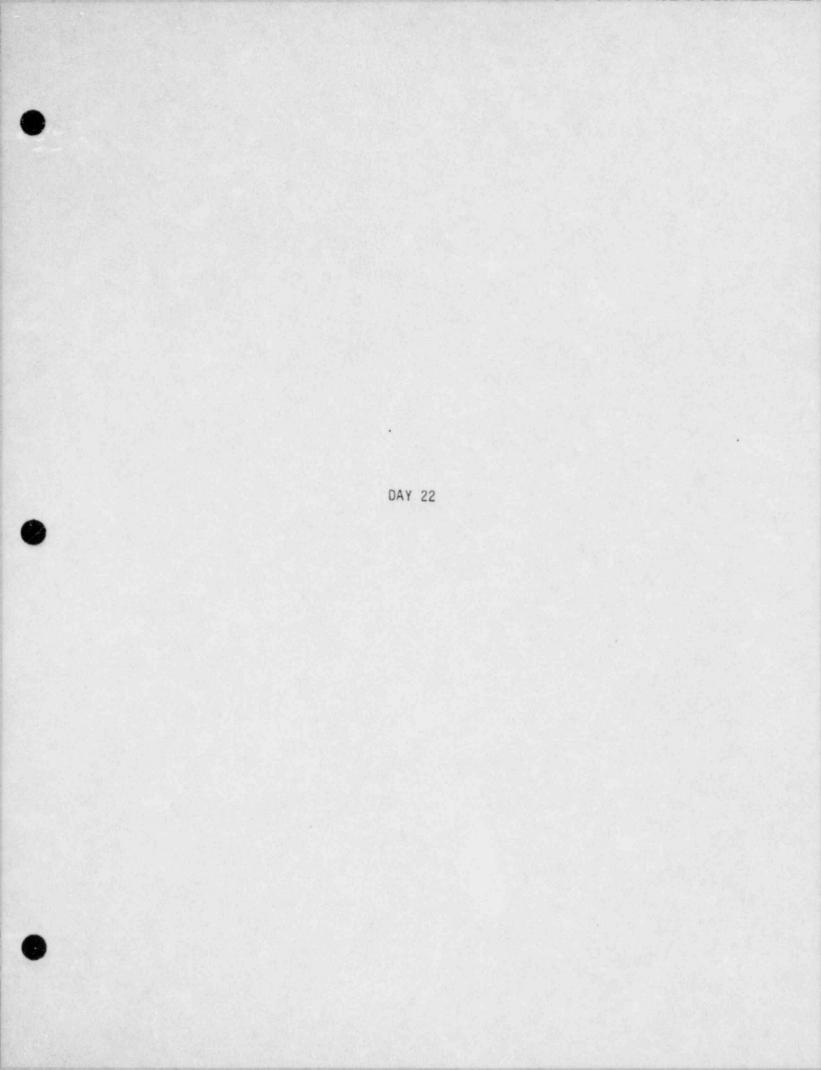
(

	LESSON OUTLINE	NOTES AND REFERENCES
	- Clear malfunction ~5 minutes after request for repair.	
Ε.	Initiate a failure of Pzr backup heaters	
	(PRS-6).	
	<ul> <li>Discuss Pzr pressure control system response.</li> </ul>	
	- Operators should take proper action to	
	stabilize plant pressure	
	<ul> <li>Initiate repairs and continue operations</li> </ul>	
F.	Initiate a failure of VCT divert valve	
	such that valve fails to HUT.	
	<ul> <li>Students should take manual control of VCT divert valve.</li> </ul>	
	- Alternative actions are to isolate	
	normal charging and letdown, reduce	
	charging flow to minimum and establish	
	excess letdown.	
	- Discuss CVCS flowpaths/flow	
	balance/excess letdown system	
	- Discuss the ability to dilute/borate	
	in this condition	
G.	Continue plant loading; initiate a	
	steamline break inside the reactor	
	building (MSS-3) Recommend 6 x 10 ⁶ 15/Hr	
	over a 30 minute ramp.	
	- Observe operator actions; diagnostics	
	- When students are in subsequent	
	actions of EOP-2 freeze the conditions	
	and critique the evolution.	
н.	Reinitialize at 50 percent power or a	
	backup SNAP >50 percent power if desired	
	to maintain previous plant conditions.	
	co maintain previous plant condicions.	

## INSTRUCTOR'S LESSON PLAN

-	INSTRUCTOR'S LESSON PLAN				
	LESSON OUTLINE	NOTES AND REFERENCES			
	NOTE: Remove the steamline break if inserted				
	with time delay.				
	I. Continue plant loading; initiate a				
	feedwater flow transmitter failure (FwM-4)				
	such that a feed valve fails closed in				
	automatic. (Manual control is available).				
	- Proper operator response should				
	restore S/G level in manual control.				
	- If S/G level trip occurs, follow EOP-5				
	then reset in Backup and repeat the				
	failure.				
	- Discuss indications of failure	그는 그는 것을 가장한 것을 가장하는 것을 가장했다.			
	o Loop AT decrease				
	o Steam flow increase due to				
	increased steam pressure.				
	o T _{avg} increase - control rod insertion.				
	- Review S/G swell and shrink.				
	J. Continue plant operations in manual S/G				
	control; initiate a failure low (CRF-6).				
	- Operators should respond to control				
	rod insertion and switch to manual rod				
	control				
	- Continue operations in manual rod				
	control				
	K. Continue plant loading; initiate a RTD				
	failure such that loop 3 T _H RTD fails				
	low (RCS-8).				
	- Discuss indications of failure				
	(T _{avg} , AT analysis)				
	- Discuss affects on Rod Control, Pzr				
	Level Control, RIL circuitry (AT)				
-					

٠.


(

## INSTRUCTOR'S LESSON PLAN

	LESSON OUTLINE	NOTES AND REFERENCES
	- Review Tech Specs operability	
	requirements	
	- Trip selected bistables and initiate	
	repairs	
L.	Initiate an Emergency Feed Pump Failure	
	(FWM-3) due to a feed breaker failure.	
	(Motor Pump Failure)	
	- This failure should be noticed during	
	subsequent SI and corrective action	
	taken to cross-connect the motor	
	driven pump headers or attempt to	
	start the pump locally.	
Μ.	Continue plant loading; initiate a	
	feedline break inside the reactor building	
	(FWM-8); break is downstream of check	
	valve inside the reactor building. Leak	
	rate of 6 x 10 ⁵ 1b/hr and a ramp of	
	30 minutes are recommended.	
	- Observe operator actions; diagnostics	
	- When students are in subsequent	
	actions of EOP-2, discuss overall	
	operations	
	- Review Emergency Feed Pump operability	
	requirements (Tech Specs)	
N.	Continue subsequent actions as time	
	permits.	
0.	Students conduct shift turnover to	
	instructor.	
	Note to Instructors: The simulator	
	session should be conducted with as many	
	questions as possible being asked of the	
	operators regarding plant systems,	

Page 8

	LESSON OUTLINE	Page 8
	LESSON COTLINE	NOTES AND REFERENCES
	procedures, Tech Specs, etc. The sessions	
	should be representative of the final audit operational exam.	
IV. CR	ITIQUE	
Α.	Review overall operations conduct.	
Β.	Review malfunctions responses.	
	밖에서 생각한 것은 것을 같아. 이번 날 것은 것은	
	영화 영상 영상 것이 다 여기가 많다.	
	밖에 잘 많아요. 그는 것 같아요. 말 같아.	
	김 사람 가슴 옷을 넣는 것이 많다. 그는 것이 같이 많이	
	방법은 김 사람은 것이 가지 않는 것이 같이 많다.	
		0901L:4



### SOUTH CAROLINA ELECTRIC & GAS

## PHASE III PROGRAM

## MAJOR PLANT CASUALTY TRAINING

# Loss of Secondary Coolant Outside the Reactor Building

### Overview

Day 21 discussed, in detail, a loss of secondary coolant inside the reactor building. To fully develop this analysis the same basic accident occurring at different locations outside the reactor building must also be discussed. Several control room indications and operator actions will differ depending on the break location. This unit is designed to enhance the prospective operator's ability to identify, locate, and respond to a loss of secondary coolant.

### Terminal Objective

Upon completion of this unit, the student will be able to describe the symptoms and automatic action during a secondary steam break. The student will also be able to perform and justify the immediate operator actions required of a control room operator for a loss of secondary coolant and other plant malfunctions. Successful completion of this unit will be based on a satisfactory evaluation by the program instructor based on observations and the student's oral response to questions.

1.

### Enabling Objectives

Upon completion of this unit the student will be able to:

- 1)- describe indications for feedwater breaks in the following locations:
  - immediately downstream of flow transmitte:
  - immediately upstream of flow transmitter
  - common feedwater header
  - discharge of feedwater pump
- 2)- describe indication of a steam line break outside the reactor building.
- 3)- list the immediate actions required of the control room operators for a loss of secondary coolant accident.
- 4)- diagnose feedwater and steamline break accidents as a control room operator.
- 5)- perform the required immediate and subsequent actions as a control room operator for a loss of secondary coolant.

### References

- 1. Virgil C. Summer Training Simulator EOP-1, EOP-2, SOP-211
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

22227

	INSTRUCTOR'S LESSON PL.	AN Page 1
	LESSON OUTLINE	NOTES AND REFERENCES
. INTI	RODUCTION	
	UNIT TERMINAL OBJECTIVE:	
	The student will be able to describe the	
	symptoms and automatic actions during a	
	secondary system break. The student will	
	also be able to perform and justify the	
	immediate operator actions required of a	
	control room operator for a loss of	
	secondary coolant and other plant malfunc-	
	tions. Successful completion of this unit	
	will be based on a satisfactory evaluation	
	by the program instructor based on obser-	
	vation and the student's oral responses to	
	questions.	
в.	OPERATIONS PLAN:	
	Initiate at 15 percent load and complete a	귀엽 이 이 것 이 것 않는 것 같아.
	shift turnover. Initiate minor malfunc-	
	tions as scheduled. Have the operators	
	continue plant loading toward 100 percent.	
	Major accidents will include a steam break	병원이는 것은 것 같아요. 것의
	and feed break outside containment. If	
	additional time remains, other steam/feed	
	break drills can be initiated at the	1. S.
	discretion of the instructor. Discuss	
	emergency plans for each major accident.	
С.	MALFUNCTIONS SCHEDULED:	
	1. EPS-6 Diesel generator failure	
	2. EPS-5 Loss of ESF bus	
	3. FWM-9 H.P. feedwater heater tube leak	
	4. CRF-7 Stuck rod	
	5. NIS-4 IR gamma compensation	
	6. FWM-4 Feed flow transmitter failure	
	7. PCS-3 S/G level control failure	
	8. PCS-6 Inadvertent phase A isolation	
98L:4	9. CCW-4 Loss of CCW to letdown H/X	

INSTRUCTOR'S LESSON PLAN Page 2 LESSON OUTLINE NOTES AND REFERENCES 10. CND-1 Loss of condenser vacuum 11. CVC-8 Letdown line leak inside the reactor building 12. MSS-4 Steam break outside the reactor building NOTE: In addition to the above listed malfunctions, any of the malfunction scheduled on previous simulator sessions may also be used. STATE THE NEED TO ASK QUESTIONS AS THEY ARISE STATE BASIC PRESENTATION FORMAT II. REVIEW (Optional) A. Review Day 22 thermodynamics homework B. Present a basic overview of Day 22 simulator operations. - Increasing load from 15 percent with minor malfunctions and loss of secondary coolant accidents. C. Review Feedwater System Components Flow path S/G level control Feed pump speed control o Bases for programmed AP Operation of system System procedures D. Discuss feed line break accidents at various locations: Have the students list the appropriate indications to determine the following break locations. Between feed flow transmitter and 0 feed isolation valve

Page 3

•	LESSON OUTLINE	NOTES AND REFERENCES
•	<ul> <li>LESSON OUTLINE</li> <li>Between feed rag. valve and flow transmitter</li> <li>In the common feedwater line before branching to feed reg. valves</li> <li>Between feed pump discharge and feed discharge check valve.</li> <li>In H.P. feedwater heaters</li> <li>Review Emergency Feedwater System</li> <li>Components</li> <li>Flow paths (Have a student draw the system)</li> <li>Flow control - normal system lineup SOP-211</li> <li>Sources of water</li> <li>System response to a feed line break</li> <li>Discuss indications for steamline breaks outside the reactor building.</li> <li>Compare or contrast these indications with those for a feedline break</li> </ul>	NOTES AND REFERENCES
	outside the reactor building. Review the emergency procedure for a Loss of Secondary Coolant (EOP-2), and Accident Diagnostics (EOP-1).	
III. PROC	EDURE	
	Set up the plant in (Later) 15 percent load during a normal startup and conduct a shift turnover emphasizing the current conditions - 15 percent load during a normal plant startup, no testing in progress.	
0898L:4	<ul> <li>Power history</li> <li>Systems status</li> <li>Tests/evolutions in progress</li> <li>Equipment inoperability</li> </ul>	. Rev 0 1/83

Page 4 LESSON OUTLINE NOTES AND REFERENCES NOTE: The instructor may initiate with equipment inoperable as long as applicable surveillance requirements are being met for continued plant operations. B. STPs scheduled STP 202.001 Target Axial Flux Difference Measurement C. Continue plant loading toward 100 percent power in accordance with normal procedures. D. Initiate a diesel generator failure (EPS-6) on DG A due to mechanical failure. E. Initiate a ESF bus trip (EPS-5) on bus 1DA due to a failure in the supply breakers mechanical latching mechanism. Discuss DG failure; students should attempt to restore power to the bus. Upon request, clear the DG malfunction to allow the bus to be restored to power. Discuss reports; tech specs requirements for loss of power supply to ESF Bus: DG failure. Clear ESF bus supply failure and restore affected equipment to normal status. F. Continue plant loading toward 100 percent; initiate an H.P. feedwater heater tube lean (FWM-9). Select the maximum break size with minimum ramp time. Observe proper immediate actions/ diagnostics

Start to restore plant conditions

Page 5

	LESSON OUTLINE	NOTES AND REFERENCES
G.	Reinitialize at 50 percent load (Later) and continue plant loading toward 100 percent.	
н.	Have students perform a Target Axial Flux Difference Measurement	STP 202.001
Í.	Initiate a stuck rod malfunction (CRF-7) due to mechanical failure.	
J.	Initiate an intermediate range gamma compensation failure (NIS-4 on IR N35 with	
	<ul> <li>a + 10⁻¹⁰ amps value.</li> <li>These failures will be noticed only during any subsequent plant trip. IR under compensation will result in a failure of the SR to reenergize.</li> <li>Operators should immediately borate for the stuck rod if the Rx trips.</li> </ul>	
к.	Continue plant loading; initiate a feedwater flow transmitter failure (FwM-4). - Select the flow transmitter being used	
	<ul> <li>for SGWLC to fail low with minimum</li> <li>ramp time.</li> <li>Review SGWLC system operation.</li> </ul>	
	<ul> <li>Operators should take manual control to stabilize conditions and select an alternate channel for control.</li> </ul>	
L.	<ul> <li>Initiate repairs to the failed channel.</li> <li>Initiate a S/G level control failure</li> <li>(PCS-3) such that level input to the</li> <li>control system fails "as is".</li> <li>Affected S/G level will change during</li> </ul>	
	<ul> <li>load change until an alternate level channel is selected.</li> <li>Discuss level input to SGWLC system.</li> <li>Trip selected bistables; initiate</li> </ul>	
8L:4	repairs.	

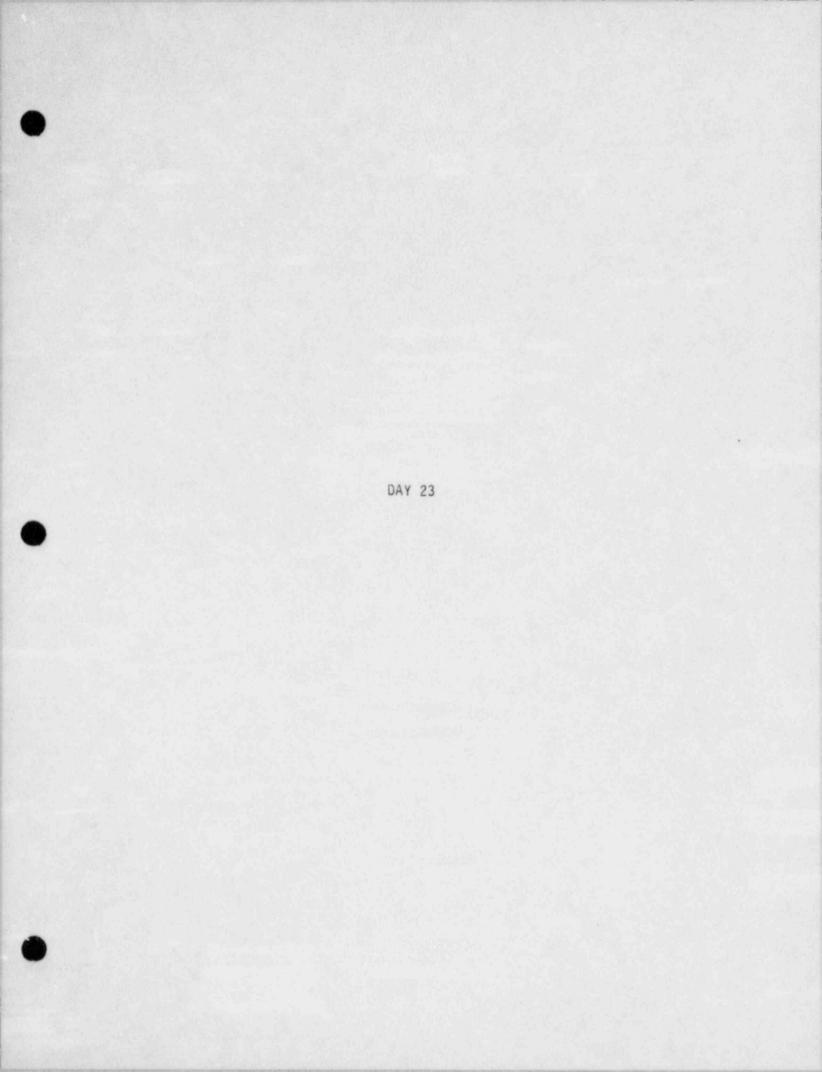
Page 6 INSTRUCTOR'S LESSON PLAN LESSON OUTLINE NOTES AND REFERENCES M. Continue plant loading; initiate an inadvertent containment Phase A isolation signal in one train during periodic SI system testing (PCS-6). Once the operators have identified the problem, clear the malfunction and restore systems to normal lineup: CVCS, blowdown, reactor building ventilation. Review containment Phase A signal generation and systems affected. Review tech specs limitations. N. Initiate a simultaneous loss of CCW to Letdown HTX (CCW-4) and loss of condenser vacuum (CND-1). Loss of CCW failure should be in automatic control only. Loss of condenser vacuum should be caused by a slow leak on the steam seal unloading valve. Recommend a 10 percent failure on the unloading valve. Operators should take manual control of CCW to the letdown HTX to restore temperatures to normal. Discuss effect of increased flow of CCW to the letdown H/X to other system components. Upon request or announcement for Local Action for loss of condenser vacuum, clear the malfunction. Allow vacuum to stabilize: discuss vacuum pump and gland seal steam system operation.

0898L:4

Page 7

	LESSCN OUTLINE	NOTES AND REFERENCES
	- Discuss other possible causes for low vacuum; e.g. low C.W flow, high C.W.	
	temp, leaks on valves (vacuum breaker).	
0.	Continue to increase load; initiate a	
	small CVCS letdown leak inside the reactor	
	building CVC-8. Recommend a small leak in	
	order to evaluate leak rate and diagnosis.	
	- Students may not identify the leak	
	location, but should commence an	
	orderly plant shutdown.	
	- Review tech specs leadage requirements	
	and definitions.	
Ρ.	Commence shutdown; initiate a steamline	
	break outside the reactor building;	
	recommend a 30 minute ramp to 2 x 10 ⁶ 1bm/hr.	
	- Observe diagnosis, manual SI if	
	applicable.	
	- Once the plant is stabilized; main	
	steam lines are isolated and	
	subsequent actions are being	
	performed; affected S/G is boiled dry:	
	o Discuss differences between feed	
	break and steam break	
	o Discuss core protection provided	
	by ECCS.	
	o Review the emergency procedures	
	a' the students overall	
	performance.	
).	Students conduct shift turnover to	
	instructor.	

LESSON OUTLINE	NOTES AND REFERENCES
Note to Instructors: The simulator session	
should be conducted with as many questions as	
possible being asked of the operators regard-	
ing plant systems, procedures, tech specs,	
etc. The sessions should be representative of	
the final audit operational exam.	
. CRITIQUE	
A. Review overall operations conduct.	
	김 씨는 가슴 가슴에 앉아 지난 것이 물었다. 나는 것이 많이 많이 많이 없다.


B. Review malfunction responses

* *



0898L:4

Page 3



## SOUTH CAROLINE ELECTRIC & GAS

### PHASE III PROGRAM

## MAJOR PLANT CASUALTY TRAINING

## Loss of Coolant Accident - Inadequate Core Cooling

### Overview

The next major nuclear plant fault that must be discussed in detail and actually performed is a loss of primary coolant accident (LOCA). Although this particular accident and small Reactor Coolant System (RCS) leaks have been previously observed, the required actions for . loss of coolant accident have not been performed. During this unit, the Emergency Core Cooling Systems (ECCS) and operator actions during a loss of coolant accident will be discussed.

### Terminal Objective

Upon completion of this unit, the student will be able to describe the symptoms and automatic actions during a loss of coolant accident (LOCA) including systems used and mechanisms of heat removal. The students will also be able to perform and justify the immediate operator actions required of a control room operator for a LOCA and other plant malfunctions. Successful completion of this unit will be based on a satisfactory evaluation by the program instructor based on observations and the student's oral response to questions.

### Enablic: Objectives

Upon completion of this unit, the student will be able to:

- 1)- list indications of a loss of reactor coolant accident.
- 2)- distinguish between primary and secondary loss of coolant accidents.
- 3)- describe operator immediate actions for a LOCA.
- 4)- demonstrate an ability to perform immediate and subsequent actions as a control room operator during a LOCA.
- 5)- describe ECCS flow paths, flow rates, and injection pressures for each ECC system.
- 6)- describe the basic steps required to shift ECCS from injection mode to recirculation mode.
- 7)- discuss conditions that enhance natural circulation.
- 8)- discuss the problems associated with inadequate core cooling and how to combat those problems.

## References

- 1. Virgil C. Summer Training Simulator EOP-1, SOP-115
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

..

(

(

Page 1

L	ESSON OUTLINE	NOTES AND REFERENCES
		and the second second second second
INTRODUCT	ION	
A. UNIT	TERMINAL OBJECTIVE:	
The s	tudent will be able to describe the	
sympt	oms and automatic actions during a	
loss	of coolant accident (LOCA). The	이 그는 것은 것은 것을 가장하지 않는 것을 가 없다.
stude	nts will also be able to perform and	
justi	fy the immediate operator actions	
requi	red of a control room operator for a	
LOCA	and other plant malfunctions.	
Succe	ssful completion of this unit will be	
based	on a satisfactory evaluation by the	
progr	am instructor based on observation	
and t	he student's oral response to	
quest	ions.	
B. OPERA	TIONS PLAN:	
Initi	ate at 100 percent power and complete	
a shi	ft turnover. Initiate minor	
malfu	nctions as scheduled. The objective	
of th	is unit is to have the students	
ident	ify and carry out the emergency	
proce	dure for a large LOCA including	1 - 1 - 2 · 1 · 1 · 2 · 2 · 2 · 2 · 1 · 3 · 2
shift	over to recirculation mode of	
opera	tion. Discuss emergency plans for	
each i	najor accident.	and the second
C. MALFUI	NCTIONS SCHEDULED:	and the second
1. N	IS-4 Int. Range Gamma Compensation	
2. N	IS-3 Power Range Channel Failure	
3. CI	ND-2 Hotwell Level Transmitter	
	Failure	2011년 - 11월 11일 - 11일 전 11일
4. R(	CS-5 Large LOCA (DEA)	Martin State of the State of th
5. F	M-3 Em. Feed Pump Trip	
6. R	CS-5 Large LOCA (DBA)	
7. R	iR-1 RHR Pump Trip	

Page 2 LESSON OUTLINE NOTES AND REFERENCES NOTE: In addition to the above listed malfunctions, any of the malfunctions sc eduled on previous simulator sessions may also be used. STATE THE NEED TO ASK OUESTIONS AS THEY ARISE STATE BASIC PRESENTATION FORMAT II. REVIEW (Optional) A. Review . Thermodynamics Homework B. Present a basic overview of simulator operations. Operations at 100 percent power with minor plant malfunctions Large LOCA event carried out through recirculation mode (1.5 - 2 hours). As time permits, additional operations with malfunctions. C. Review ECCS Have the students draw the systems on the board for use in further discussion and critique the drawing. Review the following: o System flow paths for: + Injection mode + Cold Leg recirculation mode + Hot leg recirculation mode Flow rates at varying system 0 pressures

	INSTRUCTOR'S LESSON PLAN	Page 3
LE	SSON OUTLINE	NOTES AND REFERENCES
0	Technical Specifications and Bases	
	Section 3/4.5	
	+ Accumulators	
	+ ECCS Subsystems Tavg 2177°C	
	+ ECCS Subsystems Tavg < 177°C	
	+ Boron Injection System	
	+ RWST	
	Safety Injection Actuation (EOP-1)	
	view Immediate Actions of EOP-1	
	tline on the board a general	
	quence of events involved in	
	bsequent operator actions:	
0	Precautions and Notes	
0	Verify sump level indication	
0	Regulate Emerg. Feed Flow	
0	Isclate PORV's	
0	(inconstruint)	
	+ RCS Pressure > 2000 psig	
	+ Pzr level > 50 percent of span	
	+ RCS subcooling > 50°F	
	+ Sufficient water level in at	
	least one S/G.	
0	If SI terminated, plant recovery	
	follows with orderly plant cooldown	
0	For legitimate SI, proceed to cold	
	leg recirculation	
	+ Notes, Precautions	
	+ Automatic Shiftover to cont.	
	recirculation sump	
	+ Realignment of ECCS suction flow paths to RHR	

Page 4 LESSON OUTLINE NOTES AND REFERENCES Initiation of reactor building 0 spray recirculation At < 24 Hours, switchover to hot 0 leg recirculation mode. NOTE: The instructor should review these procedures in detail using the system drawing and asking questions about various steps in the procedure: e.g. Why shift to hot leg recirculation mode? E. Review RHR Loss of Flow Off-Normal Procedure SOP-115. F. Review Loss of Emergency Feedwater Off-Normal Procedure. G. Discuss the G-module review self-evaluation. Handout copies for students to fill out and return to the instructor. III. PROCEDURE A. Set up the plant in (LATER) (100 percent power, Equilibrium Xenon). B. Conduct a shift turnover emphasizing the current conditions - 100 percent load. equilibrium Xenon, Power Range functional testing in progress by Instrument Maintenance personnel. *Turbine Driven Emerg. Feed Pump 0.0.5 due to oil leaks. Power History Systems Status Tests/Evolutions in Progress Equipment Inoperability

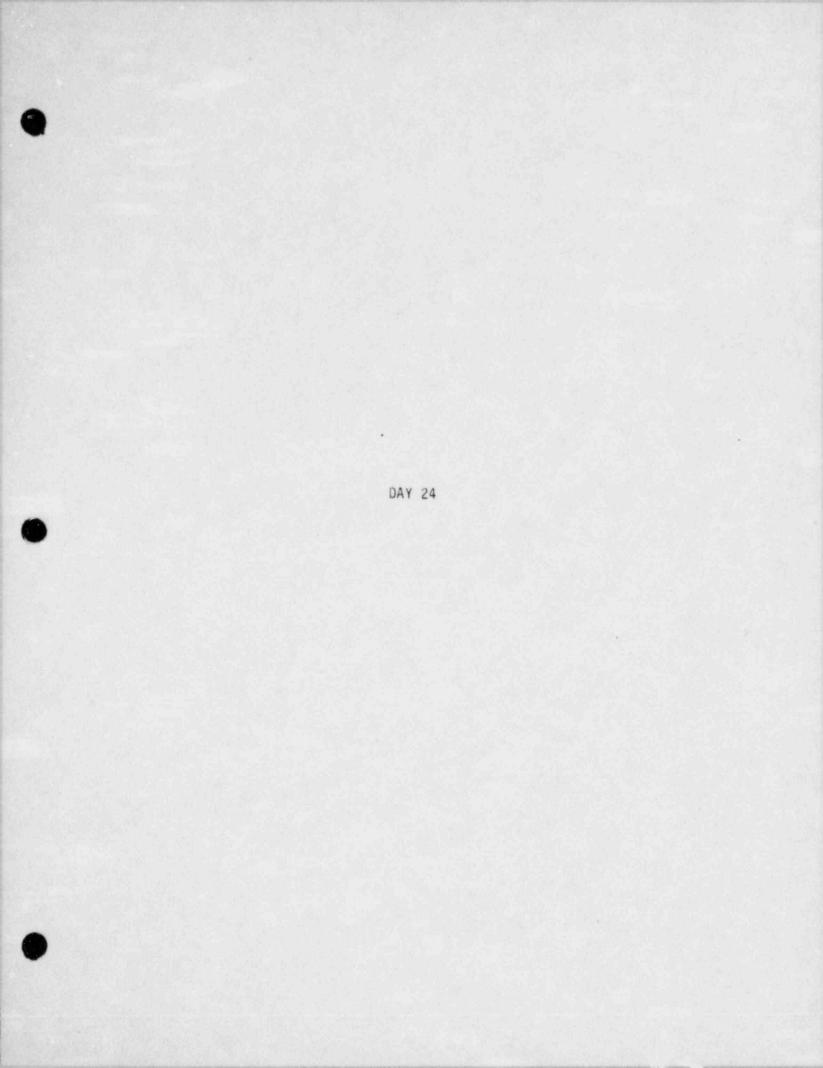
0893L:4

Page 5

	LESSON OUTLINE	NOTES AND REFERENCES
	NOTE: The instructor may initiate with equipment inoperable as long as applicable surveillance requirements are being met for	
	continued plant operations.	
C.	Initiate an Int. Range gamma compensation problem on channel N36 (NIS-4).	
	<ul> <li>Recommend overcompensation with a value of (-10⁸ amps)</li> </ul>	
	- Students should observe the problem and check Tech Specs.	
	<ul> <li>Continued operation allowed; initiate repairs</li> </ul>	
þ.	When repairs are requested, clear the malfunction and then undercompensate the same channel with a $\pm 10^{-10}$ amps value -	
	for subsequent plant trip. Initiate a Power Range channel failure	
	(NIS-3), such that channel N44 fails to 200 percent value due to a summing amp output failure.	
	<ul> <li>Observe student's response</li> <li>Discuss Instrument Failure Reference Manual (IFRM)</li> </ul>	
	<ul> <li>Review Rod Control System inputs</li> <li>Trip selected bistables and consult Tech Specs for operational limitations</li> </ul>	
	- Review overpower rod stop ckt.	
	- Discuss methods of monitoring quadrant power.	
	Continue operations at 100 percent power.	

Page 6

22337


LESSON OUTLINE		NOTES AND REFERENCES	
G.	Initiate a Hotwell Level Transmitter		
	Failure (CND-2), such that the level		
	transmitter fails to 0 percent.		
	- Upon manual action to control hotwell		
	level, clear the malfunction.		
	- Discuss the design and operation of		
	the Hotwell Level Control System		
	- Discuss adverse effects of high or low		
	hotwell level.		
١.	Initiate a trip of emergency feed pump		
	(FWM-3).		
Ι.	Initiate a Large LOCA (DBA) in Loop 1		
	(RCS-5). This evolution should take 1.5 -		
	2 hours.		
	- When requested to restore Emerg.		
	Feedwater, clear FWM-3.		
	- Carry out the immediate and subsequent		
	actions to the point of waiting for		
	shiftover to hot leg recirculation.		
	- Simulate time lapse of 24 hours and		
	shift to hot leg recirculation mode.		
	- Discurs procedures, notes, and		
	precautions as you handle this		
	accident.		
	- Discuss loss of all emergency		
	feedwater system and alternate methods		
	of feeding S/G's or providing cooling		
	for the RCS.		
	- Use system drawings/CRT's for emphasis		
	during system realignment.		
	- Discuss undercompensated IR when SR		
	fails to reset.		

Page 7

LESSON OUTLINE		NOTES AND REFERENCES
J. Reinitialize at 100 pe	ercent power;	
stabilize plant condit	tions instructor can	
backup.		
K. Initiate a RHR Pump Tr	in (or fail to	
start) (RHR-1).		
L. Initiate a large LOCA	(RCS-5).	
- Operator should ca	arry out immediate	
actions including	ensuring Rx Trip.	
- Discuss loss of RH	IR train affect on	
ECCS functional ca	pabilities.	
- Review ECCS criter	ia from 10CFR50.	
o Peak clad temp	. 2200°F	
o Max H ₂ generat	ion < 1 percent	
o Max clad oxida	tion < 17 percent	
o Coolable core	geometry	
o Long term cool	ing	
M. Students conduct shift	turnover to	
instructor.		
Note to <u>Instructors</u> : The		
should be conducted with a		
possible being asked of th		
regarding plant systems, p	rocedures, Tech	
Specs, etc. The sessions	should be	
representative of the fina	1 audit operational	
exam.		
CRITIQUE		
A. Review overall operati	ons conduct.	
B. Review malfunction res		
Attachemnt I.		

1

. 916



### SOUTH CAROLINA ELECTRIC & GAS

PHASE III PROGRAM

MAJOR PLANT CASUALTY TRAINING

Steam Generator Tube Rupture

#### Overview

During normal operations, several nuclear plants have experienced varying degrees of steam generator (S/G) tube failure up to an actual rupture. A tube rupture alone represents a serious problem, however the consequences of that rupture depend significantly upon actions performed by the operators. Because of the frequency of occurrence and importance of the operator actions, it becomes imperative for operators to receive training in both discussion and implementation of tube rupture procedures and actions. This unit is designed to provide the prospective operator with a thorough discussion of the procedures supplemented by operations during a steam generator tube rupture.

#### Terminal Objective

The student will be able to identify a steam generator tube rupture and describe the symptoms and automatic actions of this event. The student will also be able to perform and justify the immediate operator actions required of a control room operator for a S/G Tube Rupture and other plant malfunctions. Successful completion of this unit will be based on a satisfactory evaluation by the program instructor based on observation and the student's oral response to questions.

1

### Enabling Objectives

Upon completion of this unit, the student will be able to:

- 1)- list indications of a steam generator tube rupture.
- 2)- describe how an operator can identify and verify the affected S/G.
- 3)- describe operator actions required for a tube rupture.
- 4)- explain the bases for each of the required operator actions.
- 5)- demonstrate an ability to perform the required immediate actions as control room operator during S/G tube rupture.
- 6)- perform the subsequent operator actions while using the applicable procedures for a steam generator tube rupture.

## References

- 1. Virgil C. Summer Training Simulator EOP-1, EOP-3
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

(

(

# INSTRUCTOR'S LESSON PLAN

	LESSON OUTLINE	NOTES AND REFERENCES
INT	RODUCTION	
Α.	UNIT TERMINAL OBJECTIVE:	
	The student will be able to describe the	
	symptoms and automatic actions during a	
	S/G Tube Rupture. The student will also	
	be able to perform and justify the	
	immediate operator actions required of a	
	control room operator for a S/G Tube	
	Rupture and other plant malfunctions.	
	Successful completion of this unit will be	
	based on a satisfactory evaluation by the	
	program instructor based on observation	, 영상, 그는 것이 없는 것이다.
	and the student's oral response to	
	questions.	
Β.		
	Initiate at 50 percent power and complete	
	a shift turnover. Initiate minor	
	malfunctions as scheduled.	
	The objective of this unit is to gain	
	familiarity in handling S/G Tube Rupture	
	events. The session will provid the	
	opportunity to utilize emergency and	
	subsequent actions for a S/G Tube Rupture	
	event. Discuss emergency plans for each	
	major accident.	
С.	MALFUNCTIONS SCHEDULED:	
	1. MSS-8 Stuck steam dump valve	
	2. CND-4 Circulation Water Pump trip	
	3. CVC-2 VCT Divert Valve control	
	failure	

.

(

(

22337

Page 1

# INSTRUCTOR'S LESSON PLAN

L	ESSON OUTLINE	NOTES AND REFERENCES
5. P 6. F 7. C 8. M 9. R 9. R NOTE: I M S S STATE THE	CS-2 S/G Tube Rupture CS-5 Inadvertent SI actuation WM-1 Main Feed Pump Trip VC-4 RCP Number 1 Seal Failure SS-7 S/G Relief Valve Failure CS-2 S/G Tube Leak n addition to the above listed alfunctions, any of the malfunctions cheduled on previous simulator essions may also be used. <u>NEED TO ASK QUESTIONS AS THEY ARISE</u> IC PRESENTATION FORMAT	
B. Preser simula - Po	Thermodynamics Homework nt a basic overview of ator operations. ower operations at 50 percent power	
Ru - S/ SH	ith minor malfunctions and S/G Tube upture. /G Tube Leak and Diagnosis Plant nutdown	
	in secondary systems)	
L:4		Rev O

(

(

		LESSON OUTLINE	NOTES AND REFERENCES
	-	Plant response	
		o LOCA	
		o Rx Trip and SI	
		o Required operator actions to	
		isolate the affected S/G	
		o Minimizing airborne releases	
		o Condenser Off-gas system	
	-	Analysis	
		o Tech Specs Bases for S/G Activity	
		Sec. 3/4.7.1	
		o Tech Specs on S/G's and Bases Sec.	
		3/4.4.5	
		o S/G Pressure/Temperature	
		Limitations Sec. 3/4.7.2	
	-	Emergency Procedure (EOP-1)	
		o Diagnostics (EOP-1)	
	-	RCS Leak from S/G Tube	
		o EOP-03	
C	). Di	iscuss the Inadvertent SI Abnormal	
	Pr	rocedure	
I. P	ROC .C	DURE	
A	. Se	et up the plant in (Later) (50 percent	
	ρο	ower, Equilibrium Xenon)	
В	. Co	onduct a shift turnover emphasizing the	아이는 것 같은 것 같은 것 같은 것 같이 없다.
	cu	urrent conditions - steady state	
	eq	quilibrium Xenon for 50 percent power, no	
	te	esting in progress.	
	-	Power History	
	-	Systems Status	
	-	Tests/Evolutions in Progress	
	-	Equipment Inoperability (if desired by	
		instructor)	

22237

<ul> <li>surveillance requirements are being met for continued plant operations.</li> <li>C. Commence load increase toward 100 percent; initiate a stuck steam dump valve (MSS-8) due to mechanical failure. <ul> <li>Isolate valve (LOA) upon request.</li> <li>Discuss steam dump systems operation and indications.</li> </ul> </li> <li>D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. <ul> <li>Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> </ul> </li> <li>E. Initiate a failure of VCI Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. <ul> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation or take manual control of system.</li> </ul> </li> </ul>		
<pre>equipment inoperable as long as applicable surveillance requirements are being met for continued plant operations. C. Commence load increase toward 100 percent; initiate a stuck steam dump valve (MSS-8) due to mechanical failure. - Isolate valve (LOA) upon request. - Discuss steam dump systems operation and indications. D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. 5. Clear the Circ. Water Pump malfunction; 5. Clear the</pre>	NOTE: The instructor may initiate with	
<pre>surveillance requirements are being met for continued plant operations. C. Commence load increase toward 100 percent; initiate a stuck steam dump valve (MSS-8) due to mechanical failure. - Isolate valve (LOA) upon request. - Discuss steam dump systems operation and indications. D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. 5. Clear the Circ. Water Pump malfunction; 5. Clear the</pre>		
<pre>continued plant operations. C. Commence load increase toward 100 percent; initiate a stuck steam dump valve (MSS-8) due to mechanical failure. - Isolate valve (LOA) upon request. - Discuss steam dump systems operation and indications. D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review WCT Level control system - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. 5. Clear the Circ. Water Pump malfunction;</pre>		
<ul> <li>C. Commence load increase toward 100 percent; initiate a stuck steam dump valve (MSS-8) due to mechanical failure.</li> <li>Isolate valve (LOA) upon request.</li> <li>Discuss steam dump systems operation and indications.</li> <li>D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent.</li> <li>Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCI Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
<pre>initiate a stuck steam dump valve (MSS-8) due to mechanical failure. - Isolate valve (LOA) upon request. - Discuss steam dump systems operation and indications. D. Continue load increase; initiate a Circulation Water Pump trip (CND+4) once plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. Clear the Circ. Water Pump malfunction;</pre>		
<ul> <li>due to mechanical failure.</li> <li>Isolate valve (LOA) upon request.</li> <li>Discuss steam dump systems operation and indications.</li> <li>Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review WCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>Isolate valve (LOA) upon request.</li> <li>Discuss steam dump systems operation and indications.</li> <li>Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent.</li> <li>Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>Initiate a failure of VCI Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>Discuss steam dump systems operation and indications.</li> <li>D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>and indications.</li> <li>D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>D. Continue load increase; initiate a Circulation Water Pump trip (CND-4) once plant load is above 80 percent. Associated condenser shell pressure will increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCI Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>		
<pre>Circulation Water Pump trip (CND+4) once plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review VCT Level control system - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. F. Clear the Circ. Water Pump malfunction;</pre>		
<pre>plant load is above 80 percent. Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review VCT Level control system - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. F. Clear the Circ. Water Pump malfunction;</pre>		
Associated condenser shell pressure will increase. - Discuss circ. water system requirements - Discuss steam dump valve failure when noticed. - Initiate repairs on CW Pump breaker. E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter. - Review VCT Level control system - Review Boron Recycle System-capacity of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. F. Clear the Circ. Water Pump malfunction;		
<ul> <li>increase.</li> <li>Discuss circ. water system requirements</li> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>Discuss steam dump valve failure when noticed.</li> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>	- Discuss circ. water system requirements	
<ul> <li>Initiate repairs on CW Pump breaker.</li> <li>E. Initiate a failure of VCI Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>E. Clear the Circ. Water Pump malfunction;</li> </ul>		
<ul> <li>E. Initiate a failure of VCT Divert valve with full flow to RHUT (CVC-2) due to a failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>	noticed.	
<pre>with full flow to RHUT (CVC-2) due to a failed I/P converter Review VCT Level control system - Review Boron Recycle System-capacity     of RHUT - Observe operator's awareness of     excessive auto makeup system operation - Initiate repairs; clear malfunction or     take manual control of system. 5. Clear the Circ. Water Pump malfunction;</pre>	- Initiate repairs on CW Pump breaker.	
<ul> <li>failed I/P converter.</li> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>	E. Initiate a failure of VCT Divert valve	그는 것이 생각되었는 것이 없는
<ul> <li>Review VCT Level control system</li> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>F. Clear the Circ. Water Pump malfunction;</li> </ul>	with full flow to RHUT (CVC-2) due to a	이 이 이 것 않는 것 같은 것 같아요.
<ul> <li>Review Boron Recycle System-capacity of RHUT</li> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>	failed I/P converter.	
of RHUT - Observe operator's awareness of excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. F. Clear the Circ. Water Pump malfunction;	- Review VCT Level control system	
<ul> <li>Observe operator's awareness of excessive auto makeup system operation</li> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>	- Review Boron Recycle System-capacity	
excessive auto makeup system operation - Initiate repairs; clear malfunction or take manual control of system. Clear the Circ. Water Pump malfunction;		
<ul> <li>Initiate repairs; clear malfunction or take manual control of system.</li> <li>Clear the Circ. Water Pump malfunction;</li> </ul>		
take manual control of system. 5. Clear the Circ. Water Pump malfunction;		
. Clear the Circ. Water Pump malfunction;		
continue load increase.	[12] 전 [1] 동안 [2] 전상] 전상 이번 경험 전성 시작이다. [2] 전 전 [2] 전 [2] 전 [2] 전 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	
	continue load increase.	

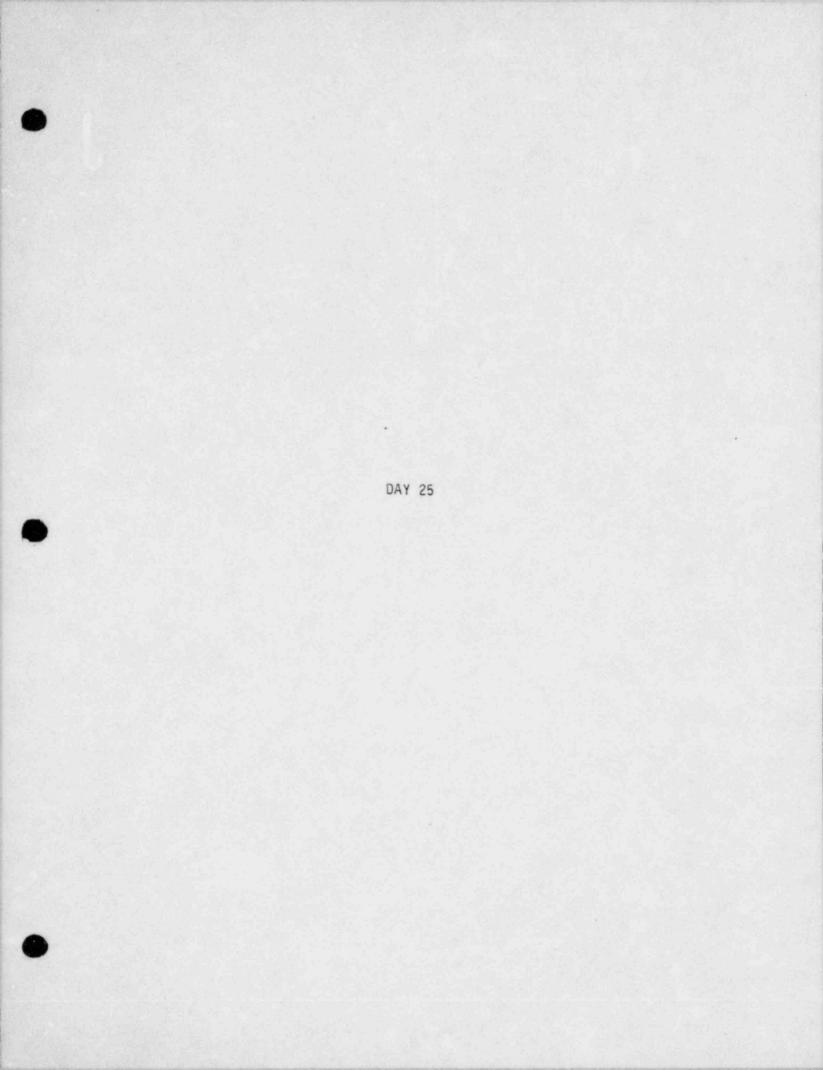
# 22337

Page 5

	LESSON OUTLINE	NOTES AND REFERENCES
G.	Initiate a S/G Tube Rupture (RCS-2);	
	recommend max leak rate with minimum ramp	
	time.	
	- Observe proper operations in	
	accordance with EOP-1.	
	- Continue the transient until RCS	
	Tavg is below 507°C and RCS	
	pressure is below the S/G safety valve setpoints.	
	<ul> <li>Freeze and discuss the overall event.</li> </ul>	
н.	Reinitialize at 100 percent power with ail	
	malfunctions cleared. Conduct a shift	
	turnover of plant conditions.	
Ι.	Initiate an inadvertent SI actuation	
	(PCS-5), due to an accidental short	
	circuit in Train B.	
	- Operators should respond to Rx trip	
	- Discuss indication that an operator	
	can utilize to determine an	
	inadvertent SI from a legitimate plant	
	transient.	
	o Pzr Pressure	
	o Reactor Building Parameters	
	o S/G Parameters	
	- Reset SI signal and stop affected	
	equipment	
	- Discuss EOP-1 recovery from spurious SI	
١.	Reinitialize at 100 percent power;	변경 이 것이 같은 것이라. 홍영
	initiate a MFP trip (FwM-1) due to a	
	failure in the pump trip circuit.	
	- Once plant conditions are stabilized,	
	discuss what things can cause a MFP	
	trip.	

LESSON OUTLINE	NOTES AND REFERENCES
- Discuss administration	
- Discuss administrative requirements	
for reports, etc.	
K. Repair the MFP (clear malfunction), and	
continue operation.	
L. Continue plant operation; initiate a RCP	
No. 1 seal failure (CVC-4). Recommend the max value.	
- Isolate affected No. 1 seal	
- Commence plant shutdown	
- Discuss RCP seal construction and operation, evaluation of seal	
performance.	
1. Initiate a S/G Tube Leak on A S/G	
(RCS-2). Shortly after the leak is	
noticed, initiate a failure of the S/G	
Relief valve on A S/G (MSS-7).	
- Recommend a small leak rate (< 100 gpm)	
to allow unit shutdown).	
- Discuss release of activity through	
failed relief valve	
- Follow EOP-03 as time permits.	
- Discuss Radiological Problems and	
Actions	
. Continue plant shutdown following EOP-03	
as time allows.	
. Students conduct shift turnover to	
instructor	
ote to Instructors: The simulator session	
hould be conducted with as many questions as	
ossible being asked of the operators	
egarding plant systems, procedures, Tech	

## INSTRUCTOR'S LESSON PLAN


INSTRUCTOR'S LESSON F	PLAN	
LESSON OUTLINE	NOTES AND REFERENCES	
Specs, etc. The sessions should be representative of the final audit operational exam. . CRITIQUE A. Review overall operations conduct		
B. Review malfunction responses		

.

Page 7

### Review Questions

- What actions could be taken for a stuck open S/G relief valve during a S/G tube break? Safety valve?
- 2. What advantage/disadvantage could be gained by stopping the Reactor Coolant Pump (RCP) in the loop with a S/G tube rupture?
- 3. Describe how the S/G is isolated following a tube break.
- 4. What is the basis for the rapid 50°F cooldown of Reactor Coolant System (RCS)?
- 5. Describe what actions the operator will perform to implement the Station Emergency Plan.
- What limits are imposed on secondary system activity? Explain the bases for these limits.
- 7. What is the maximum allowed S/G tube leakage permitted by Technical Specification?
- 8. What radiation monitors are used to detect S/G tube leakage?
- Do any of the radiation monitors in question no. 8 above have automatic functions? Describe these functions.
- 10. What actions are necessary in order to sample S/G's following a S/G tube rupture assuming all radiation monitors function properly? Explain.



#### SOUTH CAROLINA ELECTRIC & GAS

PHASE III PRCGRAM

## MAJOR PLANT CASUALTY TRAINING

## Integrated Power Operations

#### Overview

During the South Carolina Electric & Gas Training Program for Phase III the student has been subjected to approximately 100 plant malfunctions and a wide assortment of discussion topics. At this point in the plant operator's training, the operator should feel relatively competent and knowledgeable regarding plant routine operations and casualties. From this point on, specific scheduled malfunctions will not be discussed prior to the simulator operations period.

This unit includes time for a review of any topic deemed necessary by the program instructor. Simulator operations with malfunctions selected by the program instructor will be administered based upon individual/class needs.

#### Terminal Objective

The student will be able to maintain nuclear plant safety during normal and casualty plant operation while fulfilling the duties and responsibilities of a control room operator. Satisfactory completion of this unit will be determined by the instructor based on observation and the student's oral response to questions.

1

#### Enabling Cbjectives

Upon completion of this unit, the student shall be able to:

- perform functions as a control room operator during Nuclear Steam Supply System (NSSS) and secondary plant faults.
- 2)- describe how any NSSS fault affects plant safety.
- 3)- describe how any secondary plant fault affects plant safety.
- 4)- recall technical specifications related to NSSS and secondary plant faults.
- 5)- recall operator actions for a plant fire.
- 6)- recall operator actions for control room inaccessibility.

## References

- 1. Virgil C. Summer Training Simulator
- 2. SCE & G Phase II Training Material
- 3. SCE & G Phase III Training Material
- 4. Westinghouse Phase III Training Material
- 5. Technical Specifications

INSTRUCTOR'S GUIDE

.

(

(

(

	INSTRUCTOR'S LESSON PL	Page 1
	LESSON OUTLINE	NOTES AND REFERENCES
IN	TRODUCTION	
Α.	UNIT TERMINAL OBJECTIVE:	
	The student will be able to maintain nuclear	
	plant safety during normal and casualty	
	plant operation while fulfilling the duties	
	and responsibilities of a control room	
	operator. Satisfactory completion of this	
	unit will be determined by the instructor	
	based on observation and the student's oral	
	response to questions.	
В.	OPERATIONS PLAN:	
	Initialize at power and conduct a shift	
	turnover - follow the scheduled malfunction	
	scenarios. Conduct this session in the same	
	manner as a final operational audit exam	
	with as many questions as possible to all	
	the operators. <u>Review Radiologial Emergency</u>	
	Response and Implementation Plans as	
	applicable.	
C.	MALFUNCTIONS SCHEDULED:	
	NOTE: These scenarios can be run in any	
	order. Additional malfunctions can	
	be added or conditions modified at	
	the instructor's discretion.	
	1. RCS-2 & CND-1 - S/G Tube Rupture with	
	Loss of Vacuum	
	2. CRF-8 - T _{ref} Failure Low	
	TUR-7 - Stator Water Cooling Trouble	
	CVC-7 - Loss of Normal Letdown	
	TUR-1 & PCS-8 - Inadvertent Turbine Trip	
	with Failure of Manual Rx Trip Switch	

(

(

1

## INSTRUCTOR'S LESSON PLAN

. .

	INSTRUCTOR'S LESSON PL	AN
	LESSCN CUTLINE	NOTES AND REFERENCES
	3. RMS-2 & CCW-1 - Failed Rad Monitor in	
	CCW with Letdown Hx Leak	
	TUR-2 - Turbine Vibration	
	MSS-8 - Stuck Open Steam Dump Valve	
	4. RCS-6 - RCS Leak (Small LOCA)	
	RMS-3 - Area Monitor Failure (Item No.	
r	10)	
-	RMS-2 Process Radiation Monitor	
	Failure (Item No. 13)	
	STATE NEED TO ASK QUESTIONS AS THEY ARISE	
	STATE BASIC PRESENTATION FORMAT	
II. REV	/IEW (Optional)	
À.	Review Day 25 Thermodynamics Homework	
В.	Present a basic overview of Day 25 simulator	
6 B.	operations	
	- C Module self-evaluation sheets	
	- Power Cperations with selected	
	malfunctions and transients	
С.	Discuss the Emergency Procedures for Control	
	Room Inaccessibility and Fire	
	- Ask the students to list the immediate	
	actions for control room inaccessibility	
	- Review the organization and procedure for	
	the Fire Emergency Procedure	
	o Organization and Responsibilities	
	o How to Report a Fire	
	o Actions to be Taken During a Fire	
	o Fire in a Radiation Area	

LESSON OUTLINE		NOTES AND REFERENCES
D. Discuss the Fire Suppress Section 3/4.7.9	sion Tech. Specs.	
<ul> <li>Fire Suppression Water</li> <li>Spray and/or Sprinkler</li> </ul>		
- Low Pressure CO ₂ Syste - High Pressure CO ₂ Syst		
<ul> <li>Halon Systems</li> <li>Fire Hose Stations</li> </ul>		
- Penetration Fire Barri PROCEDURE		
Note to Instructors: The fol combinations of events are in multiple failures for operato	tended to provide r diagnosis and	
response. These events were performed at power (50 percen with power being changed. Sy	t - 100 percent)	
being outside their normal ba the diagnostic process and the changes are desirable. Other	nd may complicate erefore power	
conditions and sequence of evi discretion of the instructor.		
A. Set up the plant at power recommended for peak Xenor percent power.		
<ul> <li>B. Conduct a shift turnover e current conditions and the - Power History</li> </ul>		
- Systems Status		
<ul> <li>Tests/Evolutions in Pr</li> <li>Equipment Inoperabilit</li> </ul>	:y	
*Recommend that various ec inoperable as appropriate.		

22331

# INSTRUCTOR'S LESSON PLAN

. .

	LESSON OUTLINE	NOTES AND REFERENCES
C. Scenar	rio #1 - S/G Tube Rupture with Loss of	
Vacuur		
- A1	t power (25-100 percent), initiate a	
S,	/G Tube Rupture in B S/G (RCS-2) of	
	500 gpm with minimum ramp time.	
S	imultaneously initiate a loss of	
co	ondenser vacuum (CND-1.)	
- Ot	oserve operator response	
0	EOP-0 immediate actions and	
	diagnostics	
0	Stop RCP's below 1500 psig if	
	necessary; natural circulation	
0	Proceed to EOP-1 Procedure	
0	Stabilize RCS conditions	
0	Attempt to determine faulty S/G	
0	Stop emergency feed flow to faulty S/G	
0	Stop RCP in affected loop	
0	Cooldown using three atmospheric	
	relief valves	
0	Reset SI - stop selected pumps	
0	Restore pressurizer level	
0	When T reaches 507°F reduce plant pressure	
0		
0	Equalize Primary and Secondary	
	pressures	
- St	op the evolution and conduct a short	
	itique	
	operators; reinitialize at power	
	mend (Later) 25 percent power);	
	t a shift turnover.	

#### INSTRUCTOR'S LESSON PLAN

LESSON OUTLINE NOTES AND REFERENCES E. Scenario #2 - Minor malfunctions with Turbine Trip, Failure of Rx Trip Switch and Loss of Condenser Vacuum Increase plant load toward 100 percent Initiate a Traf Failure (CRF-8) to 500°F o Operators should take manual rod control Discuss followup course of action 0 Initiate a Stator Water Cooling Trouble (TUR-7) event such that the temperature control valve fails to a full divert position. o Observe Generator Panel Trouble alarm on CEP o Stator water return and supply temperature on CBP increase Review System - when asked to take local action, clear the malfunction Initiate CVC-7, Loss of Normal Letdown o Observe operators reaction to loss of letdown flow o Valve failure is due to loss of air (broken air line) Initiate repairs; reduce charging; 0 establish excess letdown o After some operating period, clear the malfunction to simulate repair completion. Initiate an Inadvertent Turbine Trip (TUR-1) after failing the Rx Trip Switch (PCS-8)

# INSTRUCTOR'S LESSON PLAN

۰.

	LESSON OUTLINE	NOTES AND REFERENCES
0	Initiate a loss of condenser vacuum (CND-1) Operators should attempt to trip the Rx by any method	
	<ul> <li>+ If they deenergize Rod Drive MG sets, rods will drop</li> <li>+ If not, T increase will shutdown the Rx to low power and operators should borate to complete</li> </ul>	
0 0	the shutdown Loss of vacuum will result in a loss of secondary heat sink to condenser Observe operation to atmospheric reliefs/safeties	
sto cri	n plant conditions are stabilized, p the evolution and conduct short tique	
load (L . <u>Scenari</u> Failure stuck o - Inc - Ini (RM	operators; reinitialize at 25 percent ater); conduct a shift turnover. <u>o #3</u> - Small RCS Leak, Rad Monitor s, Turbine Vibration (Trip) with pen steam dump valve. rease plant load toward 100 percent tiate Rad Monitor Failure in CCW S-2) RCS activity will not cause any	
- Ini	monitor alarms upon system leakage tiate a Letdown Hx Leak (CCW-1) of percent Rad Monitor System monitoring the letdown line will see the reduced activity and cause a rad monitor failed low alarm	

-2321

# INSTRUCTOR'S LESSON PLAN

• •

	LESSON OUTLINE	NOTES AND REFERENCES
	o Comp Cooling Surge Tank level will	
	increase	
	- Initiate a Turbine Vibration problem	
	(TUR-2) such that #2 bearing exceeds 12	
	mils in <5 minutes.	
	- Initiate a stuck open steam dump	
	cooldown valve (MSS-8) to the 100	
	percent position.	
	o When the turbine trip occurs,	
	excessive cooldown should result,	
	causing pressurizer pressure and	
	level to decrease.	
	o Operators may respond to failure as	
	a LOCA rather than a cooldown -	
	steam break type accident	
	o Observe <u>diagnosis</u> and operator	
	response	
	o If operator response is improper,	
	stop the drill and critique the	
	plant conditions	
	o If operators find the stuck valve	
	and request isolation locally,	
	terminate the drill, discuss plant	
	conditions and critique the	
	operators performance.	
н.	Rotate operators; reinitialize at power	
	(recommend 100 percent power, Later);	
	conduct a shift turnover.	
	Scenario #5 - Small LOCA with Failed Rad	
**	Monitor System	

22337

Page 8

## INSTRUCTOR'S LESSON PLAN

(

INSTRUCTOR'S LESSON PLAN	NOTES AND REFERENCES
LESSON OUTLINE	
<ul> <li>Initiate a Small LOCA (RCS-6) with Area Monitor Failure (RMS-3) Item No. 10 and Process Monitor Failure (RMS-2) Item No.</li> </ul>	
<ul> <li>13</li> <li>o Recommend a gradually increasing leak rate from 10 gpm and a short ramp time to minimize duration</li> <li>o No rad monitor indication inside the reactor building; so could be a</li> </ul>	
steam/feed leak except Tavg remains essentially constant Observe operator actions to diagnose conditions as time permits Terminate drill before end of shift and critique	
J. Students conduct shift turnover to instructor Note to Instructors: The simulator session should	
be conducted with as many questions as possible being asked of the operators regarding plant systems, procedures, Tech Specs, etc. The sessions should be representative of the final audit operational exam. IV. CRITIQUE A. Review overall operations conduct. B. Review malfunction responses	