Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides

Annual Progress Report July 1982 - June 1983

Prepared by J. A. Mewhinney

Inhalation Toxicology Research Institute Lovelace Biomedical and Environmental Research Institute

Prepared for U.S. Nuclear Regulatory Commission

> 8408160125 840731 PDR NUREG CR-3870 R PDR

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can us fally be obtained from these libraries.

Documents such as theses, dissertations, for eight reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-3870 LMF-109 RH

Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides

Annual Progress Report July 1982 - June 1983

Manuscript Completed: June 1984 Date Published: July 1984

Prepared by J. A. Mewhinney

Inhalation Toxicology Research Institute Lovelace Biomedical and Environmental Research Institute Albuquerque, NM 87185

Prepared for Division of Radiation Programs and Earth Sciences Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN A1031

- Radiation Exposure and Risk Estimates for Inhaled Airborne Radioactive Pollutants Including Hot Particles, Actual Progress Report, 1976-1977, NUREG/CR-0010, 1978.
- Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides, Annual Progress Report, 1977-1978, NUREG/CR-0673, 1979.
- Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides, Annual Progress Report, 1978-1979, NUREG.CR-1458, 1980.
- Comparison of Physical Chemical Properties of Powder and Respirable Aerosols of Industrial Mixed Uranium and Plutonium Oxide Fuels, NUREG/CR-1736, 1980.
- In <u>Vitro</u> Dissolution of Respirable Aerosols of Industrial Uranium and Plutonium Mixed Oxide Nuclear Fuels, NUREG/CR-2171, 1981.
- Particle Analysis of Mixed-Oxide Nuclear Fuel Materials by Energy Dispersive X-Ray Flucrescence, NUREG/CR-1871, 1981.
- Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides, Annual Progress Report, 1979-1980, NUREG/CR-2246, 1981.
- Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides, Annual Progress Report, 1980-1981, NUREG/CR-2512, 1982.
- Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides, Annual Progress Report, 1981-1982, NUREG/CR-3313, 1983.

ABSTRACT

The objective of this project is to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals after inhalation and to provide prediction of health consequences in humans from airborne radioactivity that might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of uranium and plutonium. Two research reports summarize the progress of current research. The first paper details results from the completed radiation dose distribution studies in which dogs, monkeys and rats were exposed to either $UO_2 + PuO_2$ treated at 750°C, $(U,Pu)O_2$ treated at 1750°C, or PuO_2 treated at 850°C. This paper focuses on analysis of the data from the last animals sacrificed in the study and updates earlier analyses of lung retention, tissue distribution, and excretion.

The second paper details preliminary analyses of the lung retention in Fischer-344 rats exposed to either $(U,Pu)O_2$ or to PuO_2 at one of three levels of projected dose to lung for each aerosol. This paper presents the methods and the application of a rigorous statistical procedure allowing detection of similarities and differences in the lung retention of rats at different dose levels and for different aerosols. This preliminary work is necessary before final analyses of these data can be done when all animals have died. The paper presents complete development of the data to allow calculation of radiation dose to lung and other tissues for animals in these studies and will lead to the analysis of dose-response relationships.

TABLE OF CONTENTS

	Page
ABSTRACT	111
LIST OF FIGURES	vi
LIST OF TABLES	vii
ACKNOWLEDGMENTS	viii
EXECUTIVE SUMMARY	1
1. RETENTION AND DISTRIBUTION OF PU BY BEAGLE DOGS AND CYNOMOLGUS	
MONKEYS AFTER INHALATION OF INDUSTRIAL AEROSOLS	2
2. DOSE-RESPONSE STUDIES IN FISCHER-344 RATS	11
APPENDIX A - STATUS OF INHALATION STUDIES	21

	Page
Figure 1-1. Lung retention of Pu in dogs and monkeys after inhalation	
of 750°C-treater UO_2 + PuO ₂ , 1750°C-treated (U,Pu)O ₂	
or 850°C-treated "pure" PuO2. Each curve represents a non-	
linear least squares fit to the grouped data for a given species	. 6
Figure 1-2. Uptake and retention of Pu in the liver of dogs and monkeys	
after inhalation of 750°C-treated UO2 + PuO2, 1750°C-treated	
(U,Pu)O, or 850°C-treated PuO,. Each curve represents a non-	
linear least squares fit to the grouped data for a given species	. 7
Figure 1-3. Uptake and retention of Pu in the skeleton of dogs and monkeys	
after inhalation of 750°C-treated UO ₀ + PuO ₀ , 1750°C-treated	
(U.Pu)O, or 850°C-treated PuO,. Each curve represents a non-	
linear least squares fit to the grouped data for a given species	. 7
Figure 2-1. Cumulative percentage survival of rats exposed to graded levels	
of initial lung burden: (a) inhaled material was (U.Pu)0.	
and (b) inhaled material was PuD	14
Figure 2-2, Lung retention of Pu component of $(U, Pu)D_{1}$ and PuD_ in	
Fischer-344 rats sacrificed at selected times from 32 to 730	
days after inhalation. Each curve represents the result of	
a non-linear least squares fit of a two-component exponential	
function to data for one aerosol	15
Eliquee 2-3 lung retention of Pu component of (II Pu)0 or Pu0 in	. 15
Fighter 2.3. Long recention of ra component of (0,ru/o ₂ of ruo ₂ in	
(PDD) studies and rate that died or ware authanized in	
the 125-rad projected dece to lung group in the	
corresponding dose perpense (DP) studies. Curves are	
the result of a fit to all data for DDD and DD studies	
the result of a fit to all data for KUP and UK studies	
	. 16
Figure 2-4. Lung retention of Pu component of (U,Pu)U2 aerosol in	
Fischer-344 rats exposed in the DR studies at all three	
levels of projected dose to lung. Curves are the result	
of independant fits of a single-component exponential	
function to data for each of the three dose levels	. 17
Figure 2-5. Lung retention of Pu component of PuO ₂ aerosol in	
Fischer-344 rats exposed in the DR studies at all three	
levels of projected dose to lung. Curve is the result	
of fitting a single component exponential function to	
combined data from all three levels	. 17
Figure 2-6. Lung retention of Pu component of (U,Pu)02 and Pu02	
aerosols in Fischer-344 rats exposed at all three levels	
of projected dose to lung in the DR studies combined	
with the RDP data. Curves are the result of fitting a	
two-component exponential function to data for each	
aerosol independently	. 18

LIST OF TABLES

n .

								raye
Table 1-1.	Summary of disposition of reserve animals in the three							
	radiation dose pattern studies							3
Table 1-2.	Analysis of lung retention of Pu after inhalation of							
	different Pu aerosol forms by Beagle dogs and Cynomologus							
	monkeys							5
Table 1-3.	Analysis of liver uptake and retention of Pu after							
	inhalation of different Pu aerosol forms by Beagle dogs							
	and Cynomolgus monkeys				1			5
Table 1-4.	Analysis of skeletal uptake and retention of Pu after							
	inhalation of different Pu aerosol forms by Beagle dogs							
	and Cynomolous monkeys							6
Table 2-1.	Experimental design for dose-response studies of							
	Fischer-344 rats that inhaled (U,Pu)O2 or PuO2							12
Table 2-2.	Status of dose-response studies in which Fischer-344 rats							
	were exposed to graded levels of initial lung burden of							
	either (U,Pu)0, or Pu0,	1					. 1	13
Table 2-3.	Analysis of Pullung retention in dose-response studies in							
	which Fischer-344 rats received graded levels of dose to							
	lung		1	÷				15
Table 2-4.	Analysis of Pu lung retention in dose-response studies in							
	which Fischer-344 rats received graded levels of dose to							
	lung							16
Table 2-5.	Analysis of Pullung retention in dose-response studies in			1		Ĵ		
	which Fischer-344 rats received graded levels of dose to							
	lung							20
		*		٠	*	*	*	20

ACKNOWLEDGMENTS

Personnel Contributing to the Research

Senior and Associate Staff

J.	Α.	Mewhinney, Ph.D.	Radiobiologist
Β.	8.	Boecker, Ph.D.	Radiobiologist
Α.	F.	Eidson, Ph.D.	Chemist
Ο.	н.	Gray, M.S.	Radiochemist
F.	F.	Hahn, D.V.M., Ph.D.	Pathologist
н.	с.	Redman, D.V.M., M.P.V.M.	Veterinarian

Technical Staff

M.F. Conrad Y.N. Knighton Laboratory Technician Radiochemistry Analyst

It should be emphasized that a listing such as this is rarely comprehensive in acknowledging individuals who have made important contributions to the research. In the unnamed catagory are the many highly skilled animal care, maintainance, shop, administrative, and secretarial personnel whose efforts are essential to the continuation of a productive research project. Research is performed in facilities fully accredited by the American Association for the Accreditation of Laboratory Animal Care.

EXECUTIVE SUMMARY

This annual progress report, consisting of two research papers details research conducted in the project "Radiation Dose Estimates and Hazard Evaluations for Airborne Radionuclides". The two papers describe the status of the two major animal studies, one completed and one under way. An attempt has been made to describe the research in substantial detail in each paper to indicate clearly the state of the research and to provide interpretations of the results where possible. The reader is advised that in many cases these interpretations are preliminary, and final, more complete interpretations and comparison must await completion of the individual research studies.

The objective of this research project is to conduct confirmatory research on aerosol characteristics that may modify the biological fate, patterns of radiation dose and predicted health consequences of airborne radioactivity that may be released in normal operations or under accident conditions in the nuclear fuel cycle. The project involves physical, chemical and biological characterization of aerosols present in different segments of the nuclear fuel cycle. Because it involves actual aerosols produced in industrial operations, this work provides a key link between studies with idealized, laboratory-produced aerosols and derived radiation protection standards and hazard analyses. Industrially-collected aerosol materials are aerosolized in the laboratory to determine the patterns of deposition, retention, and translocation in laboratory animals as a function of time after an inhalation exposure. The aerosols used for these studies are characterized using a number of physical and chemical techniques to determine possible differences between aerosols, and the corresponding bulk material that might help to explain the observed patterns in the animals after exposure. Multiple species (rats, dogs, and monkeys) are being used to strengthen the eventual extrapolation to man.

The first paper describes the incorporation of data describing the retention, translocation and excretion of the Pu component of three aerosol materials, $UO_2 + PuO_2$, $(U,Pu)O_2$ and PuO_2 obtained from dogs and monkeys sacrificed at up to 5.5 years after inhalation. Incorporation of these new data, covering long times after inhalation, allowed extension of the biomathematical model used to describe retention, distribution, and excretion of the Pu component from these aerosols with only minor changes to a few rate constants. These additional data also allow a more rigorous statistical treatment of the pulmonary retention, hepatic and skeletal uptake and retention to highlight similarities and differences when the aerosol form and the species of animal are intercompared.

The second paper reports the current status of dose-response studies in which Fischer-344 rats were exposed to achieve graded levels of projected dose to lung from retention of either $(U,Pu)O_2$ or PuO_2 . An analysis of lung retention data from the several groups of rats exposed in these studies, using an F statistic to determine similarities and differences, has shown that the form of the aerosol material may influence retention of the Pu component. The analysis showed that the level of projected dose to lung did not influence lung retention of Pu. This analysis, although accomplished on incomplete data sets (73 animals remain alive), has formed the basis upon which subsequent determination of the absorbed radiation dose to lung and other tissues will be based upon completion of the study and incorporation of all data.

1. RETENTION AND DISTRIBUTION OF PU BY BEAGLE DOGS AND CYNOMOLGUS MONKEYS AFTER INHALATION OF INDUSTRIAL AEROSOLS

Abstract — Beagle dogs and cynomolgus monkeys received inhalation exposure to one of three aerosols derived from industrial production of mixed U, Pu oxide nuclear fuels. Sacrifice of dogs and monkeys at times up to 5.5 years after inhalation have

PRINCIPAL INVESTIGATORS J. A. Mewhinney A. F. Eidson

resulted in information on lung retention, tissue distribution, and modes of excretion at longer times after inhalation. Biomathematical models developed from data up to 4 years after inhalation have been extended to encompass these new data. That incorporation has not led to significant changes in the model parameters. These new data also have allowed a more rigorous statistical analysis to test for the potential role of aerosol form and animal species on the retention and distribution of Pu after inhalation of the three aerosols. Results of these analyses confirm earlier conclusions about similarities and differences among the different aerosols and the species used in the studies, i.e., the aerosol form does not influence lung retention of the Pu component of these aerosols, whereas significant differences in lung retention do exist when dogs are compared to monkeys.

Three completed studies provide information about the biological fate, associated distribution of radiation dose to tissue, and the implications for potential health consequences of an inhalation exposure involving mixed U, Pu oxide nuclear fuels. Within each study, differentiated by different forms of aerosol used but conducted using a common protocol, Beagle dogs and cynomolgus monkeys inhaled either 750° C-treated $U0_2 + Pu0_2$, 1750° C-treated $(U, Pu)0_2$ or 850°C-treated $Pu0_2$. In the original experimental protocol, two dogs and one monkey were to be sacrificed at each scheduled sacrifice (4 hour, 4 and 64 days, 1, 1.5, and 2 years after inhalation). Six additional dogs and three additional monkeys inhaled identical amounts of each of the three aerosols at the same time as all other animals in the study. These reserve animals could then be substituted at any sacrifice time for each study, sufficient reserve animals were available for an additional set of sacrifices (2 dogs and 1 monkey) at 4 years after inhalation for two of the three studies. In the study involving the 850°C-treated Pu0₂ aerosol, only one dog was sacrificed at 4 years (because of an error) along with one monkey.

To bring the studies to an orderly conclusion, the four dogs and three monkeys still alive were sacrificed during November and December of 1982. Exact times to sacrifice for these animals and for all others in the studies can be found in Appendix A of this report. A summary of animals sacrificed at times equal to or greater than 4 years after inhalation is presented in Table 1-1.

Lung retention, tissue distribution, and mode of excretion of Pu have been quantified using data obtained by radiochemical analysis of tissue and excreta samples from animals that died after the 4-year sacrifices or from animals that were sacrificed during November and December of 1982.

This report updates an earlier one that described data available through 4 years after exposure (Ref. 1). The resulting additional data describing the retention, distribution, and excretion of Pu have been incorporated into the data base, and the biomathematical models have been extended in time. The result of incorporation of these new data has been to confirm earlier

			and the second second second second	The second second second second	and the second	and the second sec			
			Died	Before					
	4	-Year	Sch	eduled	Sacr	ificed to			
Study	Saci	rifices	Sacrifice		Terminate Study		Totals		
Aerosol	Dog	Monkey	Dog	Monkey	Dog	Monkey	Dog	Monkey	
750°C	2	1	4	2	0	0	6	3	
1750°C	2	1	3	0	1	2	6	3	
850°C	1	1	2	1	3	1	6	3	

Table 1-1. Disposition of Reserve Animals Living at Least 4 Years After Exposure in the Three Radiation Dose Pattern Studies

conclusions that no differences can be discerned between dogs and monkeys in the lung retention of the Pu component of these aerosol forms. In contrast, for a single aerosol form, differences do exist in the retention, distribution, and excretion of the Pu component when dogs are compared to monkeys.

METHODS

The inhalation exposure procedures and the physical chemical characteristics of the three aerosols used have been described (Ref. 2,3), as have the <u>in vitro</u> dissolution rates of Pu, Am, and U from these materials in several solvents (Ref. 4). The biomathematical model used to describe these data sets at times up to 4 years after inhalation has been reported (Ref. 1).

An additional statistical treatment of the biological data has been completed using the completed study data set for each aerosol and each species. The treatment is based on a nonlinear least squares regression fit of appropriate functions to data sets to determine the degree of similarity of data sets. The method is based on a generalized F statistic that uses the residual sums of squares of the fitted function to test the null hypothesis that two or more data sets describing retention of an element in an organ or tissue are from the same population. The results of this statistical treatment provide a firmer basis for comparing the data than does use of the biomathematical model alone.

The generalized F statistic is calculated as follows;

 $F = \frac{\frac{RSS_{g} - \sum RSS_{i}}{(m-1)p}}{\frac{\sum RSS_{i}}{n-mp}}$

(Eq. 1-1)

where RSS_g = the residual sums of squares of the function fitted to the grouped data set, RSS_q = the sum of the residual sums of squares of the function fitted separately to

- each subset of data,
- m = number of subsets of data in group,
- n = total number of data points in grouped data set,
- p = number of parameters in the fitted function.

Applying the generalized F test to linear models involves determining the critical F value from standard statistical tables with (m-1)p degrees of freedom in the numerator and n-mp degrees of freedom in the demoninator. This method is appropriate for comparisons of lung retention when a single-component exponential function is fitted to the data. To apply the generalized F test to the situation in which nonlinear models are used (as for the hepatic and skeletal uptake and retention), a modified critical value must be determined (Ref. 5). The corrected critical value is calculated as follows;

$$C^* = 1 + F_{(\alpha;q,n-p)} \frac{q}{n-mp}$$
 (Eq. 1-2)

where $F(\alpha;q,n-mp)$ = the tabulated F statistic for α level of confidence, with q degrees of freedom for the numerator and n-mp degrees of freedom for the denominator.

The test of the null hypothesis that the data subsets are from a single population (and therefore not different) is based on either a tabulated F value or a corrected critical value as appropriate. At the stated level of confidence, the null hypothesis cannot be rejected when the calculated F value is less than the appropriate tabulated F value or the corrected critical value.

RESULTS

The subsets of Pu lung retention data for individual dogs exposed to one of the three aerosols were fitted to a single-component exponential function. The data for all dogs were then grouped and fitted to the same function. Lung retention data for monkeys exposed to the same aerosols were treated identically. Table 1-2 presents, 1) the fitted parameters, residual sums of squares, number of data points for each of these fits to the subsets of data; 2) the results of fitting the same function to the grouped Pu lung retention data for each species exposed to all three aerosols; 3) the results of fitting the combined data for both species; and, 4) the calculated F statisitic for the data and the tabular critical value of F for each of the combined data fits.

In a similar manner, the data describing uptake and retention of Pu in liver and skeleton of both dogs and monkeys were fitted by a functional form that has provided an adequate description of 241 Am hepatic uptake and retention of 241 Am in dogs after inhalation of 241 AmO₂ (Ref. 6). The function was

$$x_{ILB} = A_1 e^{-\lambda_1 t} 1 - e^{-\lambda_2 t}$$
 (Eq. 1-3

Results of the analysis to determine whether either aerosol or species were important in hepatic uptake and retention are presented in Table 1-3, and the identical analyses for skeleton are presented in Table 1-4.

The combined data sets for dogs and monkeys with the individual fitted functions for each species for lung, liver, and skeleton are illustrated in Figures 1-1, 1-2 and 1-3, respectively.

			Residual			Critical
	Fitted	Parameters	Sum of		Calculated	F
Data Set	A	λ ₁	Squares	N	F	(95%)
			Dogs			
750°C	83.0	-5.68E-04	1160	14		
1750°C	77.5	-6.69E-04	1180	14		
850°C	86.4	-6.34E-04	792	14		
Combined	81.9	-6.14E-04	3560	42	1.27	2.63
			Monkeys			
750°C	70.3	-1.19E-03	1220	7		
1750°C	48.7	-2.01E-04	362	7		
850°C	60.7	-3.97E-04	1180	7		
Combined	53.6	-3.48E-04	3560	21	1.10	3.06
			Both Species			
Combined	71.8	-5.30E-04	10060	63	12.2	3.15

Table 1-2. Analysis of Lung Retention of Pu After Inhalation of One of Three Aerosol Forms by Dogs or Monkeys

T.

Ç

· 1. .

1

Table 1-3. Analysis of Liver Uptake and Retention of Pu After Inhalation of One of Three Aerosol Forms by Dogs and Monkeys

				Residual			Critical
	Fitt	ted Paramete	rs	Sum of		Calculated	F
Data Set	A	×1	×2	Squares	N	F	(95%)
				Dogs			
750°C	0.0403	3.28E-03	-0.458	3.01	14		
1750°C	0.389	1.62E-03	-1.63	1.77	14		
850°C	0.0336	3.45E-03	-43700	3.80	14		
Combined	0.100	2.60E-03	-0.230	11.9	42	2.12	1.43
				Monkeys			
750°C	0.514	6.19E-04	-29.7	0.639	7		
1750°C	0.0416	1.81E-03	-5.43	0.828	7		
850°C	0.00579	2.53E-03	-1.58	0.806	7		
Combined	0.0213	1.92E-03	-5.45	3.97	21	1.49	2.50
			Во	th Species			
Combined	0.0522	2.56E-03	-1.21	27.2	63	14.2	1.15

	Fit	ted Paramete	rs	Residual Sum of		Calculated	Critical F
Data Set	A	۸ ₁	×2	Squares	N	F	(95%)
				Dogs			
750°C	0.122	7.47E-04	-98.8	0.561	14		
1750°C	0.929	2.998-04	-11800	1.38	14		
850°C	0.0281	1.63E-03	-10.0	0.572	14		
Combined	0.160	8.18E-04	-3.71	11.1	42	20.5	1.39
				Monkeys			
750°C	0.0610	1.24E-03	-4480	0.657	7		
1750°C	0.0663	1.02E-03	-1.47	0.621	7		
850°C	0.213	4.11E-04	-4.68	0.820	7		
Combined	0.098	4.72E-04	-3.33	2.97	21	0.83	2.50
			Во	th Species			
Combined	0.139	7.00E-04	-0.724	15.8	63	2.28	1.15

Table 1-4. Analysis of Skeletal Uptake and Retention of Pu After Inhalation of Three Aerosol Forms by Dogs and Monkeys

100 m

Sec. 1

Figure 1-2. Uptake and retention of Pu in the liver of dogs and monkeys after inhalation of 750°C-treated UO_2 + PuO_2 , 1750°C-treated $(U,Pu)O_2$ or 850°C-treated PuO_2 . Each curve represents a non-linear least squares fit to the grouped data for a given species.

Figure 1-3. Uptake and retention of Pu in the skeleton of dogs and monkeys after inhalation of 750°C-treated UO₂ + PuO₂, 1750°C-treated (U,Pu)O₂ or 850°C-treated PuO₂. Each curve represents a non-linear least squares fit to the grouped data for a given species.

These studies were designed to determine the distribution of radiation dose to tissues after inhalation of one of three industrial aerosols formed during fabrication of mixed uranium and plutonium oxide nuclear fuel. Three species of laboratory animals were exposed to each aerosol form in groups with scheduled sacrifice of Fischer-344 rats extending through two years after exposure and sacrifices through four years after exposure for Beagle dogs and cynomolgus monkeys. For the latter two species, additional reserve animals were placed on study to allow for substitution into the experiment in the event of unplanned deaths within the original experimental design. After the 4-year sacrifices were completed, the remaining reserve animals were kept on study with semiannual excreta collections obtained. At times ranging up to 2079 days (dogs) and 1947 days (monkeys) after inhalation, these reserve animals were sacrificed in the standard manner, and analysis of tissue and excreta samples for Pu content completed.

This report includes the preliminary analysis of data from these studies with completed experimental phases. The information from the Fischer-344 rat portion of the studies has been fully reported (Ref. 1) and will not be included herein.

The grouped Pu lung retention data for dogs and monkeys and the fitted curves are shown in Figure 1-1, with no distinction among the aerosol types. As shown in Table 1-2, the calculated F statistic for the fit to the combined data set for all aerosols inhaled by dogs was less than the critical value, confirming the earlier conclusion that the aerosol form did not lead to differences in lung retention. The same conclusion was apparent in the F test for lung retention in monkeys (Table 1-2). However, when the grouped data for dogs was compared with the grouped data for monkeys, the calculated F value was greater than the critical value, indicating that the null hypothesis could be rejected at the 95% confidence level. This confirmed the earlier conclusion based on data through four years after inhalation (Ref. 1) that the retention of Pu in lung was different in the two species of animals. It appears, from inspection of Figure 1-1, that the differences between species are due to differences in the percentages of the initial lung burden associated with long-term retention and the associated half-times of retention. The half-time of lung retention for all aerosols in dogs was approximately 1100 days, whereas the half-time in monkey was approximately 2000 days. Because of differences in the early phase of lung clearance, the percentage of the initial lung burden available for clearance with these long half-times was lower in monkeys than in dogs.

Data describing uptake and retention of Pu in liver of dogs and monkeys follow the same course. Figure 1-2 presents the data for dogs and monkeys and the associated fits of the function (Eq. 1-3) to each grouped data set. The results of the individual fits for each aerosol in each species are detailed in Table 1-3. When the liver uptake and retention of Pu in dogs were individually compared among the three aerosol forms, the F test indicated that the null hypothesis could not be rejected, that is, the three data sets were not from one population. Examination of the data indicated that the dogs exposed to the 1750° C-treated (U,Pu)O₂ aerosol had greater initial uptak. of Pu than was evident for the other two aerosol forms. An exact conclusion regarding this difference in liver uptake and retention for this aerosol form cannot be made at this time. Using an F statistic at the 95% confidence level would always allow for a rejection of the null hypothesis when it was inappropriate in 5% of the cases (Type I error). For monkeys, the F test indicated that no differences among the three aerosol forms were influencing liver uptake and retention.

Differences were apparent when the grouped data for dogs and monkeys were compared. Figure 1-2 shows that the uptake of Pu in the liver of monkeys is less than for dogs at all times. This difference may be due to two factors. Less Pu is available for transport from lung to liver in

monkeys at all times (Fig. 1-1), and the retention half-time for actinide elements in the liver of monkeys is reported to be less than for dogs (Ref. 7). The true retention half-times of Pu in liver of either dogs or monkey cannot be assessed from these studies because uptake of Pu is continuing through the time span of these experiments.

The fit of the function (Eq. 1-3) to the grouped data for uptake and retention of Pu in the liver of dogs is not entirely satisfactory. Examination of the data and fitted curve in Figure 1-2 shows that at times from 1000 to 1500 days after inhalation, the fitted curve underestimates the data. Plots of the residuals of the data to fitted curve show a definite pattern, indicating the function is not providing an unbiased estimate in the time frame. Attempts to weight the data to provide an improved fit were not fruitful. This phenomenon is still under investigation.

A similar analysis of the data for uptake and retention of Pu in the skeleton of dogs and monkeys (Fig 1-3 and Table 1-4) provided comparable results. That is, the fit to grouped skeletal uptake and retention data for all aerosols inhaled by dogs indicated that the data were not from a single population. Again, the data for the $(U,Pu)O_2$ aerosol appear to be different from those for the other two aerosols for the same reason cited above for the liver. When the data describing uptake and retention of Pu in the skeleton of monkeys were subjected to the F test, no difference among the aerosol forms was apparent.

With the potential for a Type I error in mind and the result of no difference indicated for monkeys, the data were grouped by species. Then the calculated F value was greater than the critical F value, indicating that a difference between the two species was evident in skeletal uptake and retention. To provide a check on the effect of inclusion of the data for the 1750° C-treated (U,Pu)O₂ aerosol upon the conclusion of a difference between species, the data for the 1750° C aerosol were excluded, and a second calculated F value was determined. This comparison still indicated a difference between species in skeletal uptake and retention.

SUMMARY

The inclusion of additional data describing the retention, distribution, and excretion of Pu in dogs and monkeys at long times after inhalation of either 750° C-treated $UO_2 + PuO_2$, 1750° C-treated $(U,Pu)O_2$ or 850° C-treated PuO_2 has confirmed earlier conclusions regarding the fate of Pu in the lung, liver, and skeleton of these species. No effect of aerosol form on lung retention of the Pu component of these aerosols could be discerned within either of the two species, whereas differences were confirmed when the grouped data for each species were compared. The long-term lung retention of Pu present in all three aerosol forms appears to involve retention of a larger percentage of the initial lung burden in lung for somewhat shorter half-times in dogs than in monkeys. Uptake and retention of Pu in the liver and skeleton appears to be greater in the dog than in the monkey, regardless of the aerosol form. The greater initial uptake of Pu after inhalation of the $(U,Pu)O_2$ aerosol in dogs does not appear to account for the difference noted between species.

REFERENCES

J. A. Mewhinney and A. F. Eidson, "Models of Retention, Distribution and Excretion of Pu, Am and U by Beagle Dogs, Cynomolgus Monkeys and Fischer-344 Rats Following Inhalaion of Industrial Aerosols," <u>Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne</u> <u>Radionuclides</u> - Annual Progress Report for Period 1 July 1981 to 30 June 1982, NUREG/CR-3313, 1983.*

- 2. A. F. Eidson, "Generation of Aerosols of Mixed Uranium-Plutonium Oxides from Dry Powders for Animal Inhalation Exposures," <u>Radiation Exposure and Risk Estimates for Inhaled Airborne</u> <u>Radioactive Pollutants Including Hot Particles</u> - Annual Report for the Period 1 July 1976 to 30 June 1977, NUREG/CR-0010, 1978.*
- A. F. Eidson, "Physical Chemical Analysis of Industrial Mixed Uranium, Plutonium Oxide Fuels," <u>Health Physics</u> 42, 531-535 (1982).
- A. F. Eidson and J. A. Mewhinney, "<u>In Vitro</u> Dissolution of Respirable Aerosols of Industrial Uranium and Plutonium Mixed-Oxide Nuclear Fuels," <u>Health Physics</u> 45, 1023-1037 (1983).
- 5. A. R. Gallant, "Nonlinear Regression," American Statistician 29, 73-81 (1975).

e.

ಸ್ಥೆ ಇತ್ತಿ-ತ್ರ ಕ್ಷೇತ್ರ-ತ್ರ

- J. A. Mewhinney, W. C. Griffith, and B. A. Muggenburg, "The Influence of Aerosol Size on Retention and Translocation of ²⁴¹Am Following Inhalation of ²⁴¹AmO₂ by Beagles," <u>Health Physics</u> 42, 611-627 (1982).
- P. W. Durbin, "Metabolism and Biological Effects of the Transplutonium Elements," <u>Uranium</u>, <u>Plutonium and the Transplutonium Elements</u>, Handbook of Experimental Pharmacology, Springer-Verlag, New York, 1973.

*Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555 and from the National Technical Information Service, Springfield, VA 22161.

2. DOSE-RESPONSE STUDIES IN FISCHER-344 RATS

Abstract — Two studies are unde: way in which groups of Fischer-344 rats received inhalation exposure to either 1750° C-treated $(U, Pu)O_2$ or 850° Ctreated PuO_2 aerosols to determine the relationship of radiation dose to biological response. In each study, groups of rats were exposed to achieve one

PRINCIPAL INVESTIGATORS J. A. Mewhinney A. F. Eidson F. F. Hahn

of three initial lung burdens to produce doses of 25, 125, or 625 rads to lung during the median lifespan. Additional groups of rats are being maintained as controls. This report provides an updated summary of the current status of the animals in these studies. The major focus of this paper consists of a series of evaluations designed to determine the appropriateness of combining data describing the lung retention of the Pu component of these aerosols for the animals sacrificed at selected times after exposure with the lung retention measured at death in the animals in the dose-response groups. Additional evaluations are presented to determine if the lung retention data for the three levels of projected dose to lung groups can be combined and if all lung retention data for all levels of projected dose to lung and for both aerosols may be combined.

The objective of this experiment is to determine the relationship of radiation dose to biological response after inhalation of one of two forms of aerosol produced during normal operation of an industrial facility fabricating mixed uranium-plutonium (U,Pu) nuclear fuel. One aerosol consisted of 1750°C-treated (U,Pu)O₂; the second aerosol consisted of 850°C-treated PuO₂. The rationale leading to the design and execution of the study has been presented previously (Ref. 1).

This report presents a summary of the current status of the study and a preliminary analysis of data describing the lung retention of the Pu component of the two aerosols. Specifically, a series of evaluations are reported that assist in the determination of the appropriateness of combining lung retention data from the radiation dose pattern (RDP) groups of animals with the animals that died or were euthanized in the dose-response (DR) studies. Similarly, the appropriateness of combining the lung retention data for the dose-response animals among the three levels of initial lung burden for each aerosol and for both aerosols is evaluated.

METHODS

The experimental design for these studies is summarized in Table 2-1. Methods used in the statistical design, inhalation exposure, aerosol characterization, and determination of the initial lung burdens for each exposure group have been presented (Ref. 2). Lung content of Pu for each animal was expressed as a percentage of the initial lung burden determined from the mean lung content of Pu for eight rats from each exposure group sacrificed at seven days after inhalation exposure (Ref. 2). Cumulative percentage of survival after exposure was calculated by a life table method (Ref. 3).

The method used to evaluate the lung retention data for the several groups of animals has been described (this report, $pp \ 2 \ to \ 10$). Briefly, the residual sums of squares of the function fitted to data sets are compared using an F statistic to determine whether the two or

Table 7-1. Experimental Design of Dose-Response Studies in Fischer-344 Rats that Inhaled (U,Pu)O₂ or PuO₂

	Initial Lu	ng Burden	Number of	Animals
Lung Dose (rad)	(U,Pu)0 ₂	Pu02	(U,Pu)0 ₂	Pu02
625	0.013	0.020	52 ^a	52
125	0.0026	0.005	104(+24 RDP) ^b	104(+24 RDP)
25	0.00052	0.0008	156 ^C	156
Control	0	0	80 ^d	80

^dAnimal group = 40(DR*) + 8 (7 day sacrifice) + 4 (spares)

= 1 exposure run per aerosol

DAnimal group = 80(DR) + 16 (7 day sacrifice) + 8 (spares) + 24 (RDP**)

= 2 exposure runs per aerosol

^CAnimal group = 120(DR) + 24 (7 day sacrifice) + 12 (spares)

= 3 exposure runs per aerosol

^dAnimal group = 80 (control)

= 2 exposure runs per aerosol

*DR = dose response animals. **RDP = radiation dose pattern animals.

more data sets are from a single population. When the calculated F value is less than the critical value at the appropriate confidence level, the null hypothesis cannot be rejected. It is assumed, then, that the data sets are from one population and that a fit to the combined data sets is an appropriate representation of the data. When the opposite result is obtained, it indicates that the data sets must be treated separately.

Lung retention data for the RDP rats in both studies sacrificed through two years after inhalation exposure were fitted separately and then as a combined group. A two-component negative exponential function was fitted in each case using a nonlinear least squares routine in which the function was constrained to pass through 100% retention at 7 days after inhalation. This time corresponds to the time of determination of the initial lung burder by measurement of the lung content of Pu in eight animals sacrificed from each exposure group.

The same function was fitted to the combined lung retention data for the RDP and DR animals exposed to each aerosol separately and to the combined data for the two aerosols.

For rats that died or were euthanized in the dose-response s'udies involving exposure to one of three levels of initial lung burden for each aerosol, similar data were fitted to a single-component exponential function with no constraints. This was because the deaths of these animals occurred more than 150 days after inhalation. At 150 days or more, the early, rapid phase of clearance from lung measured in the sacrifice series was complete. Each dose group for each aerosol was fitted separately; then the three dose groups for a given aerosol were fitted as a single group. The data for all dose groups for both aerosols were then grouped, and an overall f' was obtained.

The sequence of statistical evaluations accomplished for this report were, 1) determine whether the lung retention of the Pu component of the two aerosols was similar or different when only the data for animals sacrificed at preselected times was considered; 2) determine whether the

lung retention of the Pu component of the two aerosols was similar or different when the data for sacrificed animals was combined with data from the animals that died or were euthanized in the dose-response studies at the projected level of 125 rad to lung; 3) determine whether the lung retention data for the three dose levels for either aerosol could be combined into a single group; and, 4) determine whether the lung retention data for all dose levels and both aerosols could be combined.

RESULTS

A summary of the current status of animals in the studies is presented in Table 2-2. The results of the life table analysis of rats in the studies as of 30 June 1983 is illustrated in Figure 2-1.

The values for the variables in the function fitted to the lung retention data, when only RDP animals were considered, are given in the first portion of Table 2-3, as are the values for the function fitted to the combined data. Also shown are the calculated and critical F values. These results are presented graphically in Figure 2-2. In the second portion of Table 2-3 the fitted values obtained when the RDP and DR animals were combined for each aerosol and when both data sets were combined are shown along with the calculated and critical F values. These results are illustrated in Figure 2-3.

Table 2-4 presents similar results of fitting a single exponential function to the lung retention measured in DR animals only at each of the levels of lung dose, followed by the individual values obtained when the data for the three levels are combined. The first portion of Table 2-4 presents the results for animals exposed to the $(U,Pu)O_2$ aerosol; the second portion gives the results for animals exposed to PuO_2 . These results are illustrated graphically in Figures 2-4 and 2-5, respectively, for the two aerosols. The last portion of Table 2-4 presents the result for all DR groups combined into a single data set. The results of this overall combination of the DR lung retention data are illustrated in Figure 2-6.

Aerosol	Projected Dose to Lung (rad)*	Days After Inhalation	Number of Animals Entered In Exp.	Number of Deaths	Number Surviving	Percent Survival
(U,Pu)0 ₂	25	1015	131	122	9	7
	125	1016	88	83	5	6
	625	1014	44	44	0	0
	Control	1014	80	76	4	5
Pu02	25	976	128	120	8	6
·	125	975	88	81	7	8
	625	800	44	26	18	41
	Control	974	80	71	9	11
	Over-exposed	974	44	44	0	0

Table 2-2. Status of Dose-Response Studies in Which Fischer-344 Rats Were Exposed to Graded Levels of Initial Lung Burden of Either (U,Pu)0, or Pu0, (as of 30 June 1983)

*Lung dose projected to 900 days after exposure.

equil 2

· • • • •

• ,

.

1

Figure 2-1. Cumulative percentage survival of rats exposed to graded levels of initial lung burden; (a) inhaled material was $(U,Pu)O_2$ and (b) inhaled material was PuO_2 .

Figure 2-2. Lung retention of Pu component of $(U, Pu)O_2$ and PuO_2 in Fischer-344 rats sacrificed at selected times from 32 to 730 days after inhalation. Each curve represents the result of a non-linear least squares fit of a two-component exponential function to data for one aerosol.

Table 2-3.	Analysis of	Lung	Retention	in	Dose-Response	Studies	in	Which	Fischer-344	Rats	Were
	Exposed to (Graded	Levels of	Pro.	jected Dose to	Lung					

		Fitted (Parameter	rs	Residual Sum of		Calculated	Critical
Data Set	A	×1	A2	×2	Squares	N	F	Value
a. Animals	from	Radiation Dose	Pattern	Study				a states
(U,Pu)0 ₂	146	-5.96E-02	4.04	-1.24E-03	3.54	27		
Pu02	117	-2.86E-02	4.23	-3.89E-19	2.04	27		
Combined	125	-3.64E-02	3.00	-9.812-05	6.93	54	3.87	1.18
b. Animals	from	Radiation Dose	Pattern	and 125-rad	Dose Response	Studies		
(U,Pu)02	146	-6.05E-02	4.20	-5.89E-04	12.3	97		
Pu02	117	-2.66E-02	2.80	-3.75E-05	16.4	99		
Combined	125	-3.75E-02	3.50	-3.65E-04	29.6	186	1.79	1.04

18. St. - 1

Figure 2-3. Lung retention of Pu component of (U,Pu)O2 or PuO2 in Fischer-344 rats sacrificed from radiation dose pattern () studies and rats that died or were euthanized in the 125-rad projected dose to rung group in the corresponding dose-response (DR) studies. Curves are the result of a fit to all data for RDP and DR studies for each aerosol independently.

Table 2-4. Analysis of Lung Retention in Dose-Response Studies in Which Fischer-344 Rats Were Exposed to Graded Levels of Projected Dose to Lung

			Residual			
	Fitted	Parameters	Sum of		Calculated	Critical
Data Set	A	λ _l	Squares	н	F	F
a. (U,Pu)0 ₂						
25 rad	6.93	-7.88E-04	19.02	111		
125 rad	10.1	-1.66E-03	8.082	70		
625 rad	61.0	-3.27E-03	9.793	32		
Combined	12.5	-1.61E-03	38.90	213	2.81	2.41
b. PuO ₂						
25 rad	4.88	-7.81E-04	35.60	108		
125 rad	2.56	-6.54E-20	14.02	76		
625 rad	5.42	-8.48E-20	2.231	17		
Combined	4.68	-6.92E-05	53.23	201	1.30	2.41
All or Data	7.39	-1.11E-03	93.82	414	3.76	3.02

Figure 2-4. Lung retention of Pu component of (U,Pu)O2 aerosol in Fischer-344 rats exposed in the DR studies at all three levels of projected dose to lung. Curves are the result of independant fits of a single-component exponential function to data for each of the three dose levels.

Figure 2-5. Lung retention of Pu component of PuO₂ aerosol in Fischer-344 rats exposed in the DR studies at all three levels of projected dose to lung. Curve is the result of fitting a single component exponential function to combined data from all three levels.

Figure 2-6. Los retention of Pu component of $(U, Pu)U_2$ and PuU_2 aerosols in Fischer-344 rats as a. d at all three levels of projected dose to lung in the DR studies combined with the ... UP data. Curves are the result of fitting a two-component exponential function to data for each aerosol independently.

DISCUSSION

The survival of rats in the dose-response study continues to indicate that no discernible differences exist between the experimental and control groups, with the single exception of the "over-exposed" group, which was replaced in the experiment. This survival pattern conforms to that desired in the original design of the experiment (Ref. 4). It also appears from the survival patterns that the study will be completed during the next fiscal year.

Lung retention of the Pu component of the two aerosols used in these dose-response studies is being characterized in two ways. First, to provide description of the time course of lung retention at early times after exposure, rats randomly selected from the groups exposed to each aerosol at the 125-rad projected dose to lung level were sacrificed at times from 32 to 730 days after inhalation.

The first concern stemming from the need for accurate description of the radiation dose absorbed in lung of animals in the DR studies is to determine the extent of similarity or differences in lung retention when the two groups of RDP animals (one for each aeroso?) are compared. Table 2-3 'ists the fitted parameters obtained when the lung retention data for each group were fitted separately to a two-component exponential function. Also given in Table 2-3 are the fitted parameters obtained when the two data sets were combined and the calculated F values and corrected critical values used to determine whether the two data sets are from a single population. Figure 2-2 shows the two data sets and the individual fitted curves for each. Because the calculated F statistic is greater than the critical value, the null hypothesis that the two data sets are from a single population can be rejected at the 95% confidence level. Thus, it would appear from the RDP lung retention data alone that some difference exists in the lung retention of the two aerosols. The second and more nearly complete method for description of the lung retention of the Pu component in these aerosols is to combine the data from RDP animals with the data from the animals that died or were euthanized in the DR study at the same level of projected radiation dose to lung. Because the RDP and DR animals were exposed simultaneously and the RDP animals were randomly selected after the exposure, the combining of lung retention data for the two groups exposed to the identical aerosol should need no statistical confirmation. This combination of data for both the RDP and DR animals provides a complete description of lung retention during the experiment. Table 2-3 lists the values derived from fitting the RDP plus DR data sets individually for each aerosol and the values obtained when the RDP + DR data sets for both aerosols were combined. As shown in Table 2-3, the calculated value of the F statistic was greater than the corrected critical value for this latter combination, indicating that when the RDP + DR data sets for each aerosol were combined, the null hypothesis could be rejected at the 95% confidence level. This indicates that in the lung retention of Pu, differences do exist that may be ascribed to the inhaled aerosol form. Therefore, Figure 2-4 shows the RDP plus DR data sets for each aerosol and the two curves resulting from a fit to the data for each aerosol.

Another set of assessments was performed to determine if the level of projected lung dose caused a difference in lung recention among the three levels of projected lung dose for each aerosol. For this comparison, the lung retention data for each projected dose to lung group was fitted separately using a single exponential function. The results are shown in Table 2-4 for the two aerosols. Also shown are the fitted values and the calculated and critical F statistics for the curve fit in which the data for the three projected dose groups were combined for each aerosol. These results indicate that for the $(U,Pu)O_2$ aerosol, the different levels of projected dose to lung led to discernable differences in lung retention. In contrast, the results for the PuO₂ aerosol do not indicate that projected dose to lung influences lung retention of the Pu component. The data sets for the DR animals exposed to the $(U,Pu)O_2$ aerosol at three levels of projected dose to lung are shown in Figure 2-4, along with the curves representing the fits to the data for each level of projected dose to lung. The data sets and the resultant single curve that for the PuO₂ aerosol are illustrated in Figure 2-5.

Considering the above results, an assessment was made to determine if the lung retention of the Pu component of the aerosols for the DR data was influenced by the form of the inhaled aerosol. Thus, the data for all DR animals for both aerosols and all projected dose to lung levels were combined, and the single component exponential function was fitted. The results are given in Table 2-4. The calculated F statistic was greater than the critical F statistic, leading to the conclusion that the entire data set was not from a single population. Thus, aerosol form, as well as projected dose to lung level, may have influenced lung retention for the DR animals.

The last assessment involved the combining of the RDP and DR data at all three dose levels for each aerosol and fitting them with a two-component exponential function. These two data sets were then combined, and an overall fit to all lung retention data was obtained. The results are given in Table 2-5 and illustrated in Figure 2-6. This assessment led to the conclusion that all lung retention data for both RDP and DR animals at all levels of projected dose to lung and for both aerosols cannot be combined into a single population of data. Therefore, the two curves shown in Figure 2-6 represent the fit to the separate data for each aerosol.

Although it is understood that the above assessments are made with incomplete data (73 animals remain alive, Table 2-2), it is unlikely that data from the relatively few animals to be included at termination of the experiment will have a profound influence in changing the conclusions. However, this will be rigorously checked at the appropriate time.

These preliminary results indicate that the level of projected dose to lung may have influenced lung retention of the Pu component of the two aerosols. Also, the aerosol form may

		Fitted	Paramet	ters	Residual Sum of		Calculated	Critical
Data set	A	۶J	A2	×2	Squares	N	F	Value
		All RDP +	DR An	imals	All Dose	Levels		
(U,Pu)0,	149	-6.558-02	5.7	-6.54E-04	44.19	240		
Pu02	117	-2.83E-02	4.2	-5.412-04	55.38	224		
Combined	126	-3.988-02	5.0	-6.23E-04	101.5	464	2.65	1.02

Table 2-5. Analysis of Lung Retention in Dose-Response Studies in Which Fischer-344 Rats Were Exposed to Graded Levels of Projected Dose to Lung

have an influence on lung retention, as noted when only the RDP data are compared, when only the DR data are compared, and when the RDP and DR data are combined. In view of these results, and subject to reanalysis when the studies are completed, it appears that separate retention functions will be required to provide an accurate description of the lung retention data for each aerosol.

REFERENCES

- J. A. Mewhinney, A. F. Eidson, and F. F. Hahn, "Dose Response Studies in Fischer-344 Rats," <u>Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides</u> - Annual Progress Report for Period i July 1981 to 30 June 1982, NUREG/CR-3313, LMF-105, 1983.*
- 2. J. A. Mewhinney, A. F. Eidson, F. F. Hahn and W. C. Griffith, "Dose Response Studies in Fischer-344 Rats," <u>Radiation Dose Estimates and Hazard Evaluations for Inhaled Airborne</u> <u>Radionuclides</u> - Annual Progress Report for the Period 1 July 1980 to 30 June 1981, NUREG/CR-2512, LMF-92, 1982.*
- S. J. Cutler and F. Ederer, "Maximum Utilization of the Life Table Method in Analyzing Survival," J. Chronic Dis. 8, 699-712 (1958).
- 4. W. C. Griffith, "Design of Dose-Response Studies in Fischer-344 Rats," <u>Radiation Dose</u> <u>Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides</u> - Annual Progress Report for the Period 1 July 1979 to 30 June 1980, NUREG/CR-2246, LMF-86, 52-57, 1981.*

*Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555 and from the National Technical Information Service, Springfield, VA 22161

APPENDIX A Status of Inhalation Studies

Status of Inhalation Studies of Aerosols of PuO, Heat-treated at 750°C	Page
Mixed with UO ₂ and Ball Milled at HEDL in Beagle Dogs, Monkeys	
and Fischer-344 Rats	22
Status of Inhalation Studies of 1750°C Heat-treated (U,Pu)01.96 Aerosols	
from the Pellet Grinding Operation at HEDL in the Beagle Dogs,	
Monkeys and Fischer-344 Rats	24
Status of Inhalation Studies of 850°C Heat-treated Pu02 Aerosols from the	
V-Blending Operation at Babcock and Wilcox in Beagle Dogs, Monkeys	
and Fischer-344 Rats	26
Status of Inhalation Studies of 850°C Heat-treated PuO2, Mixed with UO2 and	
Organic Binders (pellet pressing at Babcock and Wilcox) in Fischer-344	
Rats (Pilot Study)	28

STATUS OF INHALATION STUDIES OF AEROSOLS OF PUOZ HEAT-TREATED AT 750°C. MIXED WITH UO2 AND BALL MILLED AT HEDL IN BEAGLE DOGS. MONKEYS AND FISCHER-344 RATS

	COMMENT	S-			1 0		100		E-LIN	1	D-LTR	-	E-LTR	-0	E-LTR	1.0	1.02				1		1.0	1 0	1.0	1 1	D-CASTRIC TORSTON	D-FIR PLEURITIS		S-	-0	D-MAL MESO THORAX	D-SOU. CELL CARC.	-0-1		E-+ 18. SUB.		S-UNEXP. CUNTRUL	100	1.00	-8-	5	2		
ALIVE	A-30-83	20-22-0																																											
	ure.	•		••		100		***	1044	1462	1217	1462	2079	65	1825	729	365	161	367	249	0	14/0		200	140	-	200	005	0	367	705	417	E64	*	367	207	161	*	367	0	0	63	*		
DEATH	DAIE	AACAT	*****	00001	D+50/	COIR/	10001	1+011	19297	80350	80106	60351	82237	77049	81349	78349	772:50	78352	ECELL	18170	45011	81048	17104	0408/	19262	C+0//	Dener	11082	77042	78044	79017	78094	78170	77046	78044	17249	79043	77046	78044	77042	77042	20144	77046		
PRON	Dec	1				540		40	-	1462		1462		44		130	345	064	365	349	0	140%	40	200	140	-	130		0	365				*	345		130	4	345	0	0	64	*	w	
EROSOL	SIGNA		14.1		1. 68	1.60	1.70	1. /4	1. 77	1. 73	1. 67	2.38	1. 62	1. 58	1. 66	1.71	1.73	1. 73	1.81	1.96	1 62	1. 53	1.34	1. 36	00	50.1	00 .	00 00	1 77	1 77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1. 77	1.77	1.77	1. 77	1.77	EXPOSURE	
EXP. A	AMAD			K. 10	*B	1.68	4	N 04	2.50	2.33	2.10	2.61	2.67	2.47	2.18	2.18	5.34	2.22	1.79	5 33	1.61	1. 53	1 10	1. 37	1. 22	1. 61	1. 41	N	200	100	2.32	2.32	2.32	2.32	2.32	2.32	2. 32	2. 32	2.32	2.32	2.32	2.32	2.32	ICHT AT	
URE	-IM	IDW)	06 5	10.1	11.4	8	8	en vi	7.2	6.9	10 3	8 0	10.2	10.9	6.9	12.8	11.7	6.9	11.0	8.9	4.83	3. 13	4	3.7	9	4	-	2	e															ODY WE	
EXPOS	AGE	(DAYS)	802	3629	1656	884	3648	892	989	896	910	106	897	910	872	868	929	688	884	615	S-7YRS-B	3-5YRS	S-7YRS	B-SYRS-B	B-SAAS-E	S-7YRS-B	3-5485-B		B-CHAL-C	SUNC	SMMG	SMM6	SMMA	SMM6	SXM6	SMM6	SXM6	SMM6	SAMAS	SMM6	SMMS	SMM6	SMM6	D FROM B	
		DATE	76344	76344	76344	16345	76349	76349	76349	76349	76350	76350	76350	05092	16692	76351	16692	76352	76352	76352	4E011	6E022	77040	77040	77040	77041	77041	140/1	040/1	24011	77042	77042	77042	77042	77042	77042	77042	77042	77042	77042	77042	77042	77042	TIMATE	
	-	SEX	r	E	E	u	x	4	u	£	r	u	E	r	L	r	E	L	u	r	E	r	r	E	r	r						: 2	r	r	r	E	£	E	E	£	E	r	r	E E	
	IBER	RADIO	10-5261	20-5661	E0-SE61	1936-02	10-1661	20-2061	E0-4641	1937-04	1938-01	1938-02	E0-8641	1938-04	10-6661	20-6661	E0-6E61	1940-01	1940-02	E0-0461	2087-01	2087-02	2088-01	2088-02	2088-03	2089-01	2089-02	50-680-5	2090-01	10-9802	20-9802	2086-04	2086-05	2086-06	2086-07	2086-08	2086-09	2086-10	2086-11	2086-12	2086-13	2086-14	2086-15	WILD. AG	
	NUN	1100	8710	2190	6358	8211	217E	8171	8235	812A	803A	8100	8118	8044	8281	8114	199B	8255	826T	8020	216	23	21	26	24	918	27	53	168															N THE	
	SPECIES		BEAGLE DOG	REACHE DOG	BEAGLE DOG	BEAGLE DOG	BEAGLE DOG	BEAGLE DOG	BEACLE DOG	BEAGLE DOG	BEAGLE DOG	BEAGLE DOG	RHESUS MONKEY	NOMOLGUS MONKEY	NOMOLOUS MONKEY	NOMOLOUS MONKEY	NOMOLOUS MONKEY	RHESUS MONKEY	NOMOLOUS MONKEY	NOMOLOUS MONKEY	RHEBUS MONKEY	ISCHER-344 RAIS	ISCHER-344 RAIS	TICHER-344 RATS	TISCHER-344 RATS	TISCHER-344 RATS	TISCHER-344 RATS	ISCHER-344 RATS	TISCHER-344 RATS	TISCHER-344 RATS	TISCHER-344 RATS	TISCHER-344 RATS	TSCHER-344 RATS	TISCHER-344 RATS	ISCHER-344 RATS	PRIMATE CAUGHT I	FUTHANIZED								

STATUS OF INHALATION STUDIES OF AEROSOLS OF PUD2 HEAT-TREATED AT 750°C. MIXED WITH UD2 AND BALL MILLED AT HEDL IN BEAGLE DOGS, MONKEYS AND FISCHER-344 RATS (CONTINUED)

						EXPO	SURE	EXP.	AEROSOL	PROJ.	DEATH		AL TUE	
SPECIES		NUI	MBER			AGE	WT.	AMAD	SIGMA	SAC.	DATE	DPF	DPF	
and the second se		TTOO	RADIO.	SEX	DATE	(DAYS)	(KG)	(UM)		DPE			6-30-83	COMMENT
FISCHER-344	RATS		2086-16	M	77042	9WKS		2.32	1.77	4	77046	4	0 00 00	CUMPENT
FISCHER-344	RATS		2086-17	M	77042	9WKS		2.32	1.77	4	77046			
FISCHER-344	RATS		2086-18	M	77042	9WKS		2.32	1.77	64	77105	43		6- C
FISCHER-344	RATS		2086-19	H	77042	9WKS		2.32	1.77		78304	627		5-
FISCHER-344	RATS		2086-20	M	77042	9WKS		2.32	1.77	64	77105	64		D-ADENO. LUNG
FISCHER-344	RATS		2086-21	F	77042	9WKS		2 32	1 77	547	79223	544		5-
FISCHER-344	RATS		2086-22	F	77042	9WKS		2 32	1.77	730	79043	731		8-
FISCHER-344	RATS		2086-23	F	77042	9WKS		2 32	1 77	0	77043	/31		8-
FISCHER-344	RATS		2086-24	F	77042	9WKS		2 32	1 77	•	77374	204		8-
FISCHER-344	RATS		2086-25	F	77042	PHKS		2 32	1 77		77320	204		D-RAD PNEUM , PUL FI
FISCHER-344	RATS		2086-26	F	77042	PHKS		2 32	1 77		77234	407		D-RAD PNEUM , PUL FI
FISCHER-344	RATS		2086-27	F	77042	PLKS		2 32	1 77	745	701/4	441		D-SQU. CELL PAPILLON
FISCHER-344	RATS		2086-28	F	77042	PLIKS		3 32	1 77	363	78044	367		S-
FISCHER-344	RATS		2086-29	F	77042	SHAR		3 33	1 77		78230	223		D-SQU. CELL CARC.
FISCHER-344	RATS		2086-30	F	77042	OLINE		2 32	1.77	770	78219	242		D-PUL FIBROSIS
FISCHER-344	RATS		2086-31	F	77042	OUKS		2 32	1. 77	/30	79043	731		S-
FISCHER-344	RATS		2084-32	-	77042	OUKC		2 32	1 77		78340	663		D-SQU. CELL CARC.
FISCHER-344	PATE		2004-32	-	77042	THE		2.34	1. //	-	78176	499		D-SQU. CELL CARC.
FISCHER-344	DATE		2086-33	1	77042	THAS		2.32	1. 77	547	78223	546		S-
FISCHER-344	DATE		2000-34	5	77042	AMK2		2.32	1. 77	1. The second	78115	438		D-ADENO. LUNG
FISCHER-344	DATC		2000-33	-	77042	AMNO		2.32	1. 77	0	77042	0		S-
ETECHER-JAA	BATE		2080-30	-	77042	AMK2		2.32	1. 77	365	78044	367		S-
FICCHER-344	BATE		2086-37		77042	YWKS		2.32	1.77	64	77105	63		6-
FISCHER-344	BATC		2086-37	1	77042	9WK5		2.32	1.77	64	77105	63		S-
FIGCHER-344	RAIS		2086-38		11042	9WKS		2.32	1.77		79023	711		D-SQU CELL CARC
FISCHER-344	RAIS		2086-40	F	11042	9WKS		2.32	1.77	730	79043	731		8-

B-PRIMATE CAUGHT IN THE WILD. AGE ESTIMATED FROM BODY WEIGHT AT EXPOSURE D-SPONTANEOUS DEATH E-EUTHANIZED S-SACRIFICED LTR-LONG TERM RESERVE

				EXPOSU	RE	EXP.	AEROSOL	PROJ.	DEATH	DDC	ALIVE	
SPECIES	NUMBER			AGE	-18	INTER IN	21010	DPE		4	-30-83	COMMENT
	NIGHN OOLI		TTANT	1741	0 01	4 0	4 0	10	77083	0		-S-
BEAGLE DUG			COULL	1724	0	-	1 7	4	77087	*		-S
BEAGLE DUG	O-DITA WEED		CHOLT	1147	0	-	1.6	64	77147	**		10
	0-0110 0/01		1700A	1745	10 3	-	1.6	0	77084	0		S-
	0-6110 5174		77084	1730	11.4	1.3	1.7	•	77068	*		-s
	0-6110 5764	. 4	77084	1037	10.01	0	1.6	64	77147	69		-9
BEACI E DOG	7838 2120-0		77088	1102	8.7	*	1.6	365	78088	365		- 55
BEACLE DOO	794 2120-0		77088	1069	10.3	5.3	1.7	547	78270	547		S-
BEAGLE DOO	883C 2120-0	E	77088	763	9.8	* .2	1.7		82167	1905		E-LTR
REACLE DOG	9618 2122-0		77090	324	12.0	3.1	1.8	730	68064	729		-s
BEACLE DOO	7975 2122-0		77090	1035	8.3	2.7	1.6	365	78090	365		-8
NEADLE DOG	7981 2122-0	4	77090	1034	8.6	9.0	1.6	547	78272	547		-s
BEACLE DOG	791A 2123-0		19077	1063	6.6	*	1.7	1462	81092	1462		ż.
BEACLE DOG	802U 2123-0	-	19077	1020	9.2	5.9	1.8	230	79092	IEL		-5
BEAGLE DOG	8537 2124-0	4 1	77096	900	9.6	0.0	1.9		78207	476		D-LTR
BEAGLE DOG	863C 2124-0	E	77096	857	10.2	2 8	1.7	2030	82306	2036		1 00 1
BEAGLE DOG	8035 2124-0	LL CO	77096	1022	4.6	9 6	1.8	1462	81100	1465		-8
BEAGLE DOG	8886 2124-0	4	77096	754	8.8	6	1.7		29162	197		D-LTR
CYNOMOLOUS MONKEY	36 2256-0		77236	3-5YRS-8	3.3	0	1.6	365	78236	365		1.00
RHESUS MONKEY	900 2257-0	. 1	77237	5-7VRS-B	7.5	3	1.7	0	77237	0		-
CVNOMOLOUS MONKEY	35 2257-0	N	77237	B-SAYE-E	3.7	5	1.7	64	10677	44		- -
CVNOMOL GUS MONKEY	39 2257-0	E E	77237	8-SAYS-6	3.1	*	1.7	547	E6061	246		1
CANDHOLOUS MONKEY	38 2257-0	1	77237	S-SARS-E	3	*	1.7	0E4	79239	732		-0
RHESUS MONKEY	914 2258-0		77238	5-7YRS-B	7.0	2.3	1.8	4	77242	•		-
CANDHOLOUS MONKEY	34 2258-0	R O	77238	8-SAYE-E	3.8	5	1.7	1462	81245	1468		
CANONDI QUS MONKEY	31 2258-0	E	97238	B-SAYS-E	3.8	*	1.7	1952	85348	1936		1
CYNDMOLOUS MONKEY	44 2258-0		77238	5-7YRS-8	4.7	8 8	1.7	1952	82330	1938		- n
FISCHER-344 RAT	2100-0	4 1	77055	SMMS		3	1.7	140	16781	140		5
FISCHER-344 RAT	2100-0	4 0	77055	SMMA		2	1.7	0	22022	0		20
FISCHER-344 RAT	2100-0	4 0	77055	SMMS		2	1.7	OEL	BCOA/	EE/		
FISCHER-344 RAT	2100-0	*	77055	SMMS		2	1.7	-	411/2			b
FISCHER-344 RAT	2100-0	-	77055	SMMS				205	CCOR/	205		
FISCHER-344 RAT	2100-0	2	22022	SMMAS								1 1
FISCHER-344 RAT	2100-0	4	22022	9WKS				205	CODEL	100		
FISCHER-344 RAT	2100-0	8	25077	SMMA					****			
TLUCTER-DAA RAT	2100-0		25077	SMMA		ni e			CCO//			
FISCHER-344 RAT	2100-1		CC0//	D MARK		10			10011			1
FISCHER-344 RAT	2100-1	-	CC0//	CXMA				VEL	10002	CEL		-
FISCHER-344 RAT	2100-1	-	CC0//	C THE		9 C		22	70100	00		4
FISCHER-344 RAT	2100-1	5	660/2	DAMP?		10		2075	DATE:	846		1
FISCHER-344 RAT	2100-1	4	17033	SMMA				200	C1102	100		D-ADFND LUN
FISCHER-344 RAT	2100-1	-	CC0//	DYMAN A				•	01001			-8-
FISCHER-344 RAT	2100-1	9	66011	SMMA		10			L'ANDI			D-COLL CELL
FISCHER-344 RAT	2100-1	4 2	77055	SMMS		1	1.7		1078/	110		0-300. VELL
TUDITY STATE	THE UTLD.	ADE E	TAMITS	TD FROM BO	DV WE	I GHT A	T EXPOSUR					
DECONSTANEOUS DEA												
E-EUTHANIZED												
S-SACRIFICED												
LTR-LONG TERM RES	ERVE											
and the second second second												

CARC. LUNG

9

STATUS OF INHIALATION STUDIES OF 1750°C HEAT-TREATED (U.PU)D1.96 AEROSOLS FROM THE PELLET GRINDING OPERATION AT HEDL IN BEAGLE DOGS, MOMMEYS AND FISCHER-344 RATS

24

13	-
13d	
THF	
FROM	
SOLS	DATO
AFRC	24.4
96	-uce
U101	610
(U. P	AND
EATED	DNKEVG
T-TRI	S. M
HEA	DOG
1750 00	BEAGLE
8	NI
TUDIES	IT HEDL
S NO	NON A
I NHALATI	OPERATIC
OF	ONIC
STATUS	GRINE

SPECIES NUMBER AGE MI AMAD SIGM SIGM SIGM DFE <				EXPOSURE	EXP.	AEROSOL	PROJ	DEPTU		ALIVE	
TTOD RADIO SKA Date (UM) Dec Compare	NUMBER			AGE WT	GAMA .	SIGMA	SAC	DA	DPE	DPE	
FISCHER-344 RAT 2100-18 F 77035 9MKS 2.3 1.7 730 79036 733 FISCHER-344 RAT 2100-210 F 77035 9MKS 2.3 1.7 730 79036 733 FISCHER-344 RAT 2100-221 H 77035 9MKS 2.3 1.7 730 79036 733 FISCHER-344 RAT 2100-221 H 77035 9MKS 2.3 1.7 730 79036 733 FISCHER-344 RAT 2100-221 H 77055 9MKS 2.3 1.7 730 730 730 733 365 FISCHER-344 RAT 2100-221 H 77055 9MKS 2.3 1.7 730 703 9M 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0	TTOO RADIO.	X3S	DATE	(DAYS) (KG	(MO) (DPF		-		COMMENT
F1SCHER-344 RAT 2100-19 F 77035 9445 23 17 730 7906 733 F1SCHER-344 RAT 2100-22 H 77035 9445 23 17 740 7906 733 F1SCHER-344 RAT 2100-22 H 77035 9445 23 17 357 7906 733 F1SCHER-344 RAT 2100-22 H 77035 9445 23 17 355 78035 365 F1SCHER-344 RAT 2100-22 H 77055 9445 23 17 365 78035 365 F1SCHER-344 RAT 2100-22 H 77055 9445 23 17 7825 365 78035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 770	44 RAT 2100-18	4	77055	9 MMS	e c	1 7		37044	~	70-07-0	CURRENT
FISCHER-344 RAT 2100-20 F 77035 9445 23 17 7327	44 RAT 2100-19	4	77055	OLMS	10		VEL	00000			1
FISCHER-344 RAT 2100-22 H 77055 9445 23 17 64 7711 55 FISCHER-344 RAT 2100-22 H 77055 9445 23 17 64 7711 55 78055 365 FISCHER-344 RAT 2100-22 H 77055 9445 23 17 365 78055 365 FISCHER-344 RAT 2100-22 H 77055 9445 23 17 365 78055 0 FISCHER-344 RAT 2100-22 H 77055 9445 23 17 0 77055 0 770	14 PAT 2100-20	. u	77044	DUNC			200	DEDL			1
FISCHER-344 RM1 2100-22 7 77035 74445 23 17 36 78234 564 FISCHER-344 RA1 2100-22 7 77035 9445 23 17 365 78035 365 FISCHER-344 RA1 2100-22 7 77035 9445 23 17 365 78035 365 FISCHER-344 RA1 2100-22 7 77035 9445 23 17 365 78035 0 FISCHER-344 RA1 2100-22 7 77035 9445 23 17 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 0 77035 17 77035 17 77035 17 77035 17 77035 17				Cumt	20			1478/	100		D-SOU. CELL CARC. LU
FISCHER-344 RAT Z100-22 T7095 94KS Z3 177 365 78055 365 FISCHER-344 RAT Z100-22 H 77095 94KS Z3 177 78254 564 FISCHER-344 RAT Z100-22 H 77055 94KS Z3 177 78254 564 FISCHER-344 RAT Z100-22 H 77055 94KS Z3 177 78254 564 FISCHER-344 RAT Z100-22 H 77055 94KS Z3 177 0 77055 0 FISCHER-344 RAT Z100-22 H 77055 94KS Z3 177 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 13 77055 13	17-0017		CC0//	SAMA	m Ni	1.7	64	77119	64		100
FISCHER-344 RAT 2100-23 T7095 9MKS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-23 T77055 9MKS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-24 T77055 9MKS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-26 T77055 9MKS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-27 T77055 9MKS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-27 T77055 9MKS 2.3 1.7 77055 0 FISCHER-344 RAT 2100-30 T77055 9MKS 2.3 1.7 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77	44 RAT 2100-22	£	77055	SMMS	2.3	1.7	365	78055	365		- 07
FISCHER-344 RAT 2100-24 T7035 944KS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-25 H 77055 944KS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-26 H 77055 944KS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-27 H 77055 944KS 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-27 H 77055 944KS 2.3 1.7 78297 607 FISCHER-344 RAT 2100-37 H 77055 944KS 2.3 1.7 78297 607 FISCHER-344 RAT 2100-37 H 77055 944KS 2.3 1.7 7935 907 FISCHER-344 RAT 2100-31 H 77035 944KS 7337 417 73037 417 7333 7415	44 RAT 2100-23	r	77055	SMMS	0.0	1.7		78254	544		D-I VMDU I EINCMTA
FISCHER-344 RAT 2100-25 H 77055 0 77055 0 FISCHER-344 RAT 2100-26 H 77055 944K5 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-26 H 77055 944K5 2.3 1.7 0 77055 0 FISCHER-344 RAT 2100-27 H 77055 944K5 2.3 1.7 77055 0 77055 0 FISCHER-344 RAT 2100-27 H 77055 944K5 2.3 1.7 77055 0 77055 13 77055	44 RAT 2100-24	r	77055	SWMS	2.3	1.7	0	77055	-		C-CHITCH LEUNENIA
FISCHER-344 RAT 2100-26 M 77055 0 77055 0 FISCHER-344 RAT 2100-27 M 77055 944KS 23 1.7 77055 0 FISCHER-344 RAT 2100-27 M 77055 944KS 23 1.7 77055 0 FISCHER-344 RAT 2100-27 M 77055 944KS 23 1.7 77055 0 FISCHER-344 RAT 2100-30 F 77055 944KS 2.3 1.7 77055 0 FISCHER-344 RAT 2100-31 F 77055 944KS 2.3 1.7 77055 0 FISCHER-344 RAT 2100-31 F 77055 944KS 2.3 1.7 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77055 0 77056 0 </td <td>44 RAT 2100-25</td> <td></td> <td>77055</td> <td>94MS</td> <td>0</td> <td>1 7</td> <td>0</td> <td>77055</td> <td></td> <td></td> <td>5 6</td>	44 RAT 2100-25		77055	94MS	0	1 7	0	77055			5 6
FISCHER-344 RAT 2100-27 H 77035 944K5 23 1<7	44 RAT 2100-26	E	77055	9WKS	0	1 7		77055			
FISCHER-344 RAT 2100-28 H 77055 00 FISCHER-344 RAT 2100-29 H 77055 00 FISCHER-344 RAT 2100-29 H 77055 9445 FISCHER-344 RAT 2100-20 F 77055 9445 FISCHER-344 RAT 2100-32 F 77055 9445 FISCHER-344 RAT 2100-32 H 77055 947 FISCHER-344 RAT 2100-33 H 77055 947 FISCHER-344 RAT 2100-35 H 77055 947 FISCHER-344 RAT 2100-35 H 77055 947 FISCHER-344 RAT 2100-35 H 77055 947	44 RAT 2100-27		77055	9WKS	10		2	10001			
FISCHER-344 RAT 2100-29 H 77035 9445 23 1.7 77035 0 FISCHER-344 RAT 2100-30 F 77035 9445 23 1.7 77035 0 FISCHER-344 RAT 2100-31 H 77035 9445 23 1.7 730 730 FISCHER-344 RAT 2100-32 H 77035 9445 23 1.7 730 740 733 FISCHER-344 RAT 2100-33 H 77035 9445 23 1.7 78237 347 FISCHER-344 RAT 2100-33 H 77035 9445 23 1.7 78237 347 FISCHER-344 RAT 2100-33 H 77035 9445 23 1.7 64 77039 FISCHER-344 RAT 2100-34 H 77035 9445 23 1.7 64 77039 41 76 77039 41 77039 41 77039 41 77039 41 77039 41 77039	44 RAT 2100-28	x	77055	OUKS	10			173055	100		U-SUU CELL CARC. LU
FIGCHER-344 RAT 2100-30 F 77035 9445 23 1 7	14 RAT 2100-00		77044	OFFIC							D-DURING EXPOSURE
FISCHER-344 RM 2100-30 7 7005 9MKS 2.3 1.7 4 77039 9MKS 7.3 1.7 730 79059 74 FISCHER-344 RAT 2100-31 7<70059		= 1		CUM	n v	1.1		660/1	0		D-DURING EXPOSURE
FISCHER-344 RAT 2100-31 77035 94MS 23 17 730 7908 733 FISCHER-344 RAT 2100-32 77035 94MS 23 17 730 78105 7119 78105 7119 54 FISCHER-344 RAT 2100-33 77035 94MS 23 17 54 77119 54 FISCHER-344 RAT 2100-34 77035 94MS 23 17 54 77119 54 FISCHER-344 RAT 2100-35 H 77035 94MS 23 1.7 54 77119 54 FISCHER-344 RAT 2100-37 H 77035 94MS 23 1.7 57 78217 527 FISCHER-344 RAT 2100-37 H 77035 94MS 23 1.7 77039 4 77039 4 77039 4 77039 4 77039 4 77039 4 77039 4	44 KMI \$100-30		25022	9WKS	2.3	1.7	4	77059	*		-0
FISCHER-344 RAT 2100-32 77035 9MKS 2.3 1.7 78105 415 FISCHER-344 RAT 2100-33 77035 9MKS 2.3 1.7 547 78237 547 FISCHER-344 RAT 2100-33 77055 9MKS 2.3 1.7 547 78237 547 FISCHER-344 RAT 2100-35 77055 9MKS 2.3 1.7 64 77119 64 FISCHER-344 RAT 2100-35 77055 9MKS 2.3 1.7 64 77059 64 FISCHER-344 RAT 2100-35 77055 9MKS 2.3 1.7 78217 527 FISCHER-344 RAT 2100-37 777055 9MKS 2.3 1.7 77059 4 FISCHER-344 RAT 2100-37 777055 9MKS 2.3 1.7 77059 4 FISCHER-344 RAT 2100-37 777055 9MKS 2.3 1.7	44 RAT 2100-31	x	22022	9WKS	2 3	1.7	OEL	79058	733		1.0
FISCHER-344 RAT 2100-33 M 77055 94KS 2.3 1.7 547 78237 547 78237 547 78236 77119 64 77119 64 77119 64 77119 64 77119 64 77119 64 77119 64 77119 64 77119 64 77119 64 77105 7487 23 1.7 64 77059 74 77055 7487 78217 527 78217 527 78217 527 78217 527 78217 527 78217 527 78217 517 78207 510 78207 510 78207 510 78207 510 78207 510 78207 510 78207 517 78207 510	44 RAT 2100-32	r	77055	94KS	2.3	17		78105	415		D-ADEND 1 1110
FISCHER-344 RAT 2100-34 H 77055 9WKS 2 3 1 7 64 77119 64 FISCHER-344 RAT 2100-35 H 77055 9WKS 2 3 1 7 64 77119 64 FISCHER-344 RAT 2100-36 H 77055 9WKS 2 3 1 7 7 7059 4 FISCHER-344 RAT 2100-37 H 77055 9WKS 2 3 1 7 7 72059 4 FISCHER-344 RAT 2100-38 H 77055 9WKS 2 3 1 7 7 72070 517	44 RAT 2100-33	ε	77035	9MKS	2.3	17	547	78237	547		N-MUCHUL LUNG
FISCHER-344 RAT 2100-35 M 77055 9WK5 2.3 1.7 4 77059 4 FISCHER-344 RAT 2100-36 M 77055 9WK5 2.3 1.7 79217 527 FISCHER-344 RAT 2100-37 M 77055 9WK5 2.3 1.7 79207 517 FISCHER-344 RAT 2100-38 M 77055 9WK5 2.3 1.7 77059 4	44 RAT 2100-34	r	77055	9WKS	2.3	1.7	64	77119	44		
FISCHER-344 RAT 2100-36 M 77055 9WKS 2.3 1.7 78217 527 FISCHER-344 RAT 2100-37 M 77055 9WKS 2.3 1.7 4 77059 4 FISCHER-344 RAT 2100-38 M 77055 9WKS 2.3 1.7 77059 4 FISCHER-344 RAT 2100-39 M 77055 9WKS 2.3 1.7 77050 507	44 RAT 2100-35	r	77055	SMMS	0.5	1.7	4	77059			
FISCHER-344 RAT 2100-37 M 77055 94MS 2.3 1.7 4 77059 4 FISCHER-344 RAT 2100-38 M 77055 94MS 2.3 1.7 78207 517 FISCHER-344 RAT 2100-39 M 77055 94MS 2.3 1.7 78207 517	44 RAT 2100-36	z	77055	SMMS	2.3	1.7	1	78217	507		Leon feit and
FISCHER-344 RAT 2100-38 M 77055 94KS 2.3 1.7 78207 517 FISCHER-344 RAT 2100-39 M 77055 94KS 3.3 1.7 72010 510	44 RAT 2100-37	r	77035	9WKS	2.3	1.7	*	77059			D-SWY. LELL LARL. LU
FISCHER-344 RAT 2100-39 M 77055 9UKS 2 3 1 7 70210 40	44 RAT 2100-38	E	77055	9WKS	0	1.7		78207	517		
	44 RAT 2100-39	£	77055	9WKS	0.0	1.7		78210	005		DECKI CELL CARC. LU
FISCHER-344 RAT 2100-40 M 77055 94KS 2.3 1.7 547 78237 547	44 RAT 2100-40	x	77055	9WKS	5	1.7	547	78237	547		B

EXPOSUR

99 0

B-PRIMATE CAUCHT IN THE DEPENDIAREDUS DEATH E-EUTHANEZUS DEATH S-SACRIFICED LTR-LONG TERM RESERVE

EFFC EFFC MADIO EFFC <th< th=""><th></th><th>83 COMMENT</th><th>-02</th><th>S-</th><th>8-</th><th>D-LTR</th><th>S-</th><th>¢.</th><th>8-</th><th>-S-</th><th>-8-</th><th>°-</th><th>-8-</th><th></th><th>D-LIR</th><th></th><th>1.0</th><th></th><th>D-LTR</th><th>2-2</th><th>100</th><th>-2</th><th>P</th><th>-b</th><th>-n</th><th>- 00</th><th>-5</th><th>D-LIN</th><th>D-SOULCELL CARC LUND</th><th>S-</th><th>-2</th><th>D-SOU. CELL PAPILLOMA</th><th>-0-</th><th>1.0</th><th></th><th></th><th>-22</th><th>s-</th><th>S-</th><th>-0-1</th><th>D-SOU CELL CARC LUND</th><th>D-SQU. CELL CARC. LUNG</th><th>D-DURING EXPUSINE</th><th>D-SOU. CELL CA. ADENU.</th><th></th><th></th><th></th><th></th><th></th></th<>		83 COMMENT	-02	S-	8-	D-LTR	S-	¢.	8-	-S-	-8-	°-	-8-		D-LIR		1.0		D-LTR	2-2	100	-2	P	-b	-n	- 00	-5	D-LIN	D-SOULCELL CARC LUND	S-	-2	D-SOU. CELL PAPILLOMA	-0-	1.0			-22	s-	S-	-0-1	D-SOU CELL CARC LUND	D-SQU. CELL CARC. LUNG	D-DURING EXPUSINE	D-SOU. CELL CA. ADENU.					
MILE ELPOSINE EVAIL EVAIL EVAIL PROL DATH 0 AADIO SEX MT 7179 110.6 97.2 219 952 7373 95.2 199.2 253 199.3 365 793 793 <th>DPE</th> <th>-06-4</th> <th></th>	DPE	-06-4																																															
CFF OBJACE CFF OBJACE CFF OBJACE CFF OBJACE OLIVIT SLOW	DPE		365	E\$61	64	2	0	129	64	*	1953	1462	547	547	1034	130	0/5	No. A	1183	4	550	1460	130	0	64	365	1947	104	.00*	010	67	528	*	0000	100	14	*	0	365	67	200	115	0	692					
REPROSING AMDIO 17 22211-020 177700 11163 1016 111 100 20 11462 1462 18 22221-020 177700 11163 111 100 20 11462 11462 18 222	DATE		E6182	82320	77257	77196	26177	19194	77259	77200	82323	81197	79017	11062	60139	10241	907A/	CUCLL	00500	77206	79054	81233	79234	77235	77299	78235	82336	10228	20013	20111	77262	78358	66111	21062	CA18/	CYCLL	77199	77195	26182	77262	79163	78341	24142	19157					
Exposure	SAC	DPE	365	1952	64		0	730	64	4	1952	1462	547	547		730	COD.	No. 1	>	4	547	1462	730	0	64	365	1952		•	•			•	547	100			0	365	40									
EXPOSURE EXPOSURE EXPOSURE EXPON MAD 00 RADIO SEX DATE (LOTS) R.C. WI MAD 10 2218-01 M 77193 1166 R 2 2 11 2219-01 F 77193 10059 9 7 2 2 11 2220-021 F 77193 10059 9 7 2 2 11 22220-031 F 77195 10059 9 7 2	STOMA		0 1	1.9	1.8	1.7	1.7	1.8	1.8	1 8	1.8	1.6	1.8	1.8	1.7	1.8			00	8 1	2 1	1.8	1.7	1.8	1.8	1.9	8	1.7				0	2.0	0				0 0	2.0	2.0	2.0	0 7	5.0	2.0	EXPOSURE				
EKPOSURE CAC MI 0.0 RADIO. SEX DATE (DAYS) R.G. 10 2218-01 M 77193 1166. R.G. 20 RADIO. SEX DATE (DAYS) R.G. R.G. 21 2218-01 F 77193 1166. R.G. R.G. 21 22219-01 F 77193 1006 R.G. R.G. 21 22220-01 F 77195 1059 9 7 22 22221-01 F 77195 1059 9 7 22 22221-02 F 77195 1061 10 2 22 22221-03 H 77195 1055 9 7 22 22221-03 H 77195 1061 10 2 22 77200 1163 7 10 2 2 22 77200 1163 7 10 2 22 2223-03 H 77234 3-7485-8 3 22 2223-03 H 77234 3-7485-8 3 22 2223-03 H 77233 3-7485-8 3 <t< td=""><td>AMAD A</td><td>(184)</td><td>4</td><td>53</td><td>*</td><td>2 1</td><td>2.0</td><td>2 2</td><td>2.0</td><td>2</td><td>1 1</td><td>2.3</td><td>2 2</td><td>2</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>2.1</td><td>5 4</td><td>2 2</td><td>9.6</td><td>5 3</td><td></td><td></td><td></td><td></td><td>101</td><td>2 2</td><td>2</td><td></td><td>vo</td><td>10</td><td>10</td><td>2</td><td>2.2</td><td>2</td><td>2 2</td><td>2 2</td><td>2</td><td>OHT AT</td><td></td><td></td><td></td><td></td></t<>	AMAD A	(184)	4	53	*	2 1	2.0	2 2	2.0	2	1 1	2.3	2 2	2	0							-	2.1	5 4	2 2	9.6	5 3					101	2 2	2		vo	10	10	2	2.2	2	2 2	2 2	2	OHT AT				
CMMBER C.P. DSU CMMBER AGE CMMBER 77193 CMMBER 77194 CMMBER 77195 CMMBER 77195 CMMBER 77195 CMMBER 77195 CMMBER 77195 CMMBER 77195 CMMBER 77200 CMMBER 77201 CMMBER 77202 CMMBER 77201 CMMBER 77201 CMMBER 77201	LT.	(80)	a	0	7 9	8.6	9.7	9.7	12.2	10.6	1.6	12.4	6.1	13.0	10.2	*	0.0		10.0	4 11			8 6	8.3	9.0	3.7	4.1	9.0	4																DV WEI				
WIMBER WARDER MADIO SEX DATE 28 2219-01 F 77193 28 2219-01 F 77193 28 2220-02 F 77195 28 2220-03 H 77195 28 2220-03 H 77195 28 2220-03 H 77195 28 2222-03 H 77195 28 2222-03 H 77195 2221-03 H 77201 2222-03 H 77201 2223-03 H 77234 22217-03 H 77234 22217-03 H 77234 22217-03 H 77235 22217-03 H 77235 22217-03 H 77235 22217-03 H 77195 22217-03 H 77195 22217-03 H 77195 22217-04 H 77195 22217-05 H 77195 22217-05 H 77195 22217-05 H 77195 22217-05 H 77195 22217-06 H 77195 22217-06 H 77195 22217-07 H 77195 22217-10 H 77195 2217-10 H 77195 2217-10 H 77195 2217-10 H 77195 2217-10 H 77195 2217-11 H 77195 221	ADE	(DAVE)	1144	806	209	1058	1059	1055	1176	1061	1140	762	1061	1168	817	1163	1017	610	1001	202	0000		R-SANS-E	8-27YRS-8	2-4YRS-8	8-SAYS-6	S-7YRS-B	8-SAKS-B	S-7YRS-B	SWNS	SMM2	SMM6	SMMAS	SMMS	SMM6	SMM6	C MANO	SMMA	94KS	SMMS	SMMAS	SMM6	SMM6	SMMA	D FROM BO				
WUMBER WUMBER WADIO. SEX 2218-01 F 2228-01 F 25 2219-01 F 25 2220-01 F 25 2220-01 F 25 2220-01 F 26 2220-02 F 28 2221-02 F 28 2221-02 F 28 2223-01 F 28 223-01 F		DATE	27103	20143	27193	77194	24142	77195	27195	77196	77196	77196	77200	77200	77200	77201	77201	77201	20211	20211	20711	+C2/1	17234	77235	77235	77235	77235	17236	77238	24142	26111	20142	27195	77195	26122	26111	CA1//	20144	27195	77195	77195	77195	77195	25175	TIMATE				
AUMBER AUMBER		NSO	-	: 1	: 4	. 44	. 44	4	r	4	r	z	u	£	u.	r			EI	. 1				r	E	x	×	£	E					E	r		. 1			E	x	r	r	r	E ES				
		CTURE C			E0-8100 11	10-0100 3	10-022 S	T 2220-02	C 2220-03	S 2221-01	18 2221-02	A 2221-03	U 2222-01	18 2222-02	1 2222-03	A 2223-01	S 2223-02	E0-6222 A	88 2224-01	- 2224-02	A 2224-03	10-5622 68	ED-ESCC V	1 2254-01	3254-02	1 2254-03	5 2254-04	0 2255-02	4 2265-01	2217-01	2217-02	2017-04	2217-05	2217-05	2217-07	2217-08	2217-09	11-2100	21-1100	2217-13	2217-14	2217-15	2217-16	2217-17	E WILD. AG	A REAL PROPERTY AND INC.			
		arecies		BENGLE DOG			BEADI F DOO	BFACI E DOG	BEACLE DOG	BEACLE DOG	BEADLE DOG	BEADLE DOG	BEADLE DOG	BEACLE DOG	BEAGLE DOG	BEAGLE DOG	BEAGLE DOG	BEAGLE DOG	BEACLE DOG	BEAGLE DOG	BEAGLE DOG	RHESUS MONKEY	VNUMULAUS NUMER	PHERIC MONEY	VNOMOLOUS MONKEY	VNOMO OUS MONKEY	VNOMOLOUG MONKEY	THOMOLOUS MONKEY	RHESUS MONKEY	FISCHER-344 RATS	FISCHER-344 RATS	FISCHER-344 MAIS	FISCHER-344 RATS	FISCHER-GAA MAIN	STOCHER PAC-SCALE	FTACHER-344 RATS	CTCCHER-344 RATS	FISCHER-344 RATS	CTCHER-344 RATS	FISCHER-344 RATS	-PRIMATE CAUGHT	TANK TANG TO DEA	THE PART AND UND VERY	-SPUNIANEUUU VEN	E-EUTHANI ZED				

STATUS OF INHALATION STUDIES OF 850°C HEAT-TREATED PUO2 AEROSOLS FROM THE V-BLENDING DECEMATION AT BARCOCK AND WILCOX IN BEAGLE DOGS. MONKEYS AND FISCHER-344 RATS

STATUS OF INHALATION STUDIES OF 850°C HEAT-TREATED PUD2 AEROSOLS FROM THE V-BLENDING OPERATION AT BABCOCK AND WILCUX IN BEAGLE DOGS, MONKEYS AND FISCHER-344 RATS (CONTINUED)

					EXPOS	URE	EXP.	AEROSOL	PROJ.	DEATH		ALIVE	
SPECIES	N	UMBER			AGE	WT.	AMAD	SIGMA	SAC	DATE	DPF	DPE	
	TTOO	RADIO.	SEX	DATE	(DAYS)	(KG)	(UM)		DPE			6-30-83	COMMENT
FISCHER-344 R	ATS	2217-18	m	77195	9WKS		2.2	2.0		79158	673		D-SCU CELL CARC LUNC
FISCHER-344 R	ATS	2217-19	M	77195	9WKS		2.2	2.0	547	79015	550		S-
FISCHER-344 RA	ATS	2217-20	M	77195	9WKS		2.2	2.0		77195	0		D-DURING EXPOSURE
FISCHER-344 R	ATS	2217-21	F	77195	9WKS		2.2	2.0	365	78195	365		S-
FISCHER-344 R	ATS	2217-22	F	77195	9WKS		2.2	2.0	547	79015	550		5-
FISCHER-344 RA	ATS	2217-23	F	77195	9WKS		2.2	2.0	730	79197	732		S-
FISCHER-344 RA	ATS	2217-24	F	77195	9WKS		2.2	2.0	64	77262	67		8-
FISCHER-344 RA	ATS	2217-25	F	77195	9WKS		2.2	2.0	0	77195	0		8-
FISCHER-344 RA	ATS	2217-26	F	77195	9WKS		2.2	2.0	64	77262	67		8-
FISCHER-344 R	ATS	2217-27	F	77195	9WKS		2.2	2.0	365	78195	365		8-
FISCHER-344 RA	ATS	2217-28	F	77195	9WKS		2.2	2.0	4	77199	4		8-
FISCHER-344 RA	ATS	2217-29	F	77195	9WKS		2.2	2.0		78225	395		D-HEMANOTOSARC LUNC
FISCHER-344 RA	ATS	2217-30	F	77195	9WKS		2.2	2.0		79054	589		D-HEMANCIOSARC LUNC
FISCHER-344 R	ATS	2217-31	F	77195	9WKS		2.2	2.0		78352	522		D-HEMANOIOSARC DI FURA
FISCHER-344 RA	ATS	2217-32	F	77195	9WKS		2.2	2.0	0	77195	0		S-
FISCHER-344 RA	ATS	2217-33	F	77195	9WKS		2.2	2.0	4	77199	4		8-
FISCHER-344 RA	ATS	2217-34	F	77195	9WKS		2.2	2.0	730	79197	732		S-
FISCHER-344 RA	ATS	2217-35	F	77195	9WKS		2.2	2.0	730	79197	732		6-
FISCHER-344 RA	ATS	2217-36	F	77195	9WKS		2.2	2.0	547	79015	550		8-
FISCHER-344 RA	ATS	2217-37	F	77195	9WKS		2.2	2.0	365	78195	365		S-
FISCHER-344 RA	ATS	2217-38	F	77195	9WKS		2.2	2.0	730	79197	732		S-
FISCHER-344 RA	ATS	2217-39	F	77195	9WKS		2.2	2.0		79062	597		D-SOU CELL CARC LUNG
FISCHER-344 RA	ATS	2217-40	F	77195	9WKS		2.2	2.0	4	79199	4		S-
FISCHER-344 RA	ATS	2217-46	F	77195	9WKS		2.2	2.0	0	77195	0		8-
FISCHER-344 RA	ATS	2217-49	F	77195	9WKS		2.2	2.0		78234	404		D-FIBROSARC. PLEURA

B-PRIMATE CAUGHT IN THE WILD, AGE ESTIMATED FROM BODY WEIGHT AT EXPOSURE D-SPONTANEOUS DEATH E-EUTHANIZED S-SARCIFICED LTR-LONG TERM RESERVE

27

						FXPOS	INF	EXP	AEROSOL	PROJ	DEATH		AL IVE	
SPECIES		NUM	BER			AGE	WT.	AMAD	SIGMA	SAC	DATE	DPE	Dr.E	
		1100	RADIO	SE	X DATE	(DAYS)	(NG)	(WD)		DPE			68-(+)-9	COMMENT
FISCHER-344 R	ATS		0-6661	E	76348	SMMKS		1.7	9 (1	0	76348	0		S-
FISCHER-344 R	InTS		1933-0	E	76348	SMM6		1.7	5.6	0	76349	0		S-
FISCHER-344 R	ATS		0-02661	E	76348	SMM6		1.7	5.6	0	76348	0		S-
FISCHER-344 R	ATS		0-0661	4 5	76348	SMM6		1.7	9.6	0	76348	0		S-
FISCHER-344 R	ATS		0-0261	4	76348	SMM6		1.7	2.6	0	76348	0		S-
FISCHER-344 R	ATS		1933-04	5	76348	SMM6		1.7	5.6	8	76356	8		2- -
FISCHER-344 R	ATS		0-0241	4 4	76348	SMM6		1.7	3.6	8	76356	8		S-
FISCHER-344 R	ATS		1933-01	LL m	76348	SMM6		1.7	9.6	8	76356	8		8-
FISCHER-344 R	ATS		0-6661	LL P	76348	SMM6		1.7	9.6	8	76356	8		8-
FISCHER-344 R	ATS		1-6661	L D	76348	SMM6		1.7	9 68	8	76356	8		8-
FISCHER-344 R	ATS		1-6661	H	76348	SMM6		1.7	9.6	16	76364	16		S-
FISCHER-344 R	ATS		1-0061	M	76348	SMM6		1.7	5.6	16	76364	16		-8-
FISCHER-344 R	ATS		1-8661	L	76348	SMM6		1.7	9.6	16	76364	16		S ¹
FISCHER-344 R	ATS		1-6661	4	76348	SMMAS		1.7	9	16	76364	16		S-
FISCHER-344 R	ATS		1-6661		76348	9WKS		1.7	5	16	76364	16		S-
FISCHER-344 R	ATS		1-6661	E	76348	SMMS		1.7	9 (1	64	77046	64		S-
FISCHER-344 R	ATS		1-0061	4 4	76348	SMM6		1.7	9 6	64	77046	64		S-
FISCHER-344 R	ATS		1-EE61		76348	SMM6		1.7	200	64	77046	49		-s-
FISCHER-344 R	ATS		1-0061	4	76348	9MKS		1.7	5.6	32	12014	33		S ⁻
FISCHER-344 R	ATS		1933-2(-	76348	SMM6		1.7	9.6		78108	491		D-SQU. CELL CA. , PAPIL
FISCHER-344 P	ATS		1933-2		76348	SMM6		1.7	9.10		78070	453		D-SQU. CELL PAPILLOMA
FISCHER-344 R	ATS		1933-2:	E	76348	SMM6		1.7	9 7	64	77046	64		S-
FISCHER-344 R	ATS		2-0661	E	76348	9WKS		1.7	9 6		79071	819		E-ADENDCARC, LUNG
FISCHER-344 R	ATS		1933-2		76348	SMM6		1.7	4	32	77014	33		°-
FISCHER-344 R	ATS		2-0061		76348	SMM6		1.7	9.6		78253	636		D-SQU. CELL CARC.
FISCHER-344 R	ATS		1933-24	8	76348	SMMS		1.7	9	32	77014	32		4
FISCHER-341 R	ATS		1933-2	E	76348	SMM6		1.7	5	64	77046	64		S-
FISCHER-344 R	ATS		1933-26	E	76348	SMM6		1.7	5 6	32	77014	32		\$- -
FISCHER-344 R	ATS		2-0061	E	76348	SMMS		1.7	3.6		16677	369		D-LARGE LUNG MASS
FISCHER-344 R	ATS		E-EE61	E	76348	SHM6		1.7	5	32	77014	32		S-
FISCHER-344 R	ATS		E-0061	E	76348	SMM6		1.7	9 7		77192	210		D-ADENDCARC. LUNG
FISCHER-344 H	ATS		E-0061	*	76348	9WKS		1.7	5.6		78118	201		D-BOU. CELL CARC. LUNG
D-SPONTANEDUS S-SACR IF I CED E-EUTHANI ZED	DEAT													

-

STATUS OF INHALATION STUDIES OF 850°C HEAT-TREATED PUO2, MIXED WITH UO2

28

NEC FORM 335 U.S. NUCLEAR REG.	CLATORY COMMISSION I PEPORT NUMBER	A IASSigned by TIDC add Voi No -I anyl
BIBLIOGRAPHIC DATA SHEET	LMF-109	9, Vo. 1
Fadiation Dose Estimates and Hazard Evaluations for Inhaled Airborne Radionuclides Annual Progress Report July 1982-June 1983	4 RECIPIENT'S ACC S DATE REPORT CO MONTH June	ENTON NUMBER DMPLETED VEAR 1984
J. A. Mewhinney	DATE REPORT ISS	VEAR 1984 ORK UNIT NUMBER
s PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include 20 Code) Inhalation Toxicology Research Institute Lovelace Biomedical & Environmental Research Inst	titute TO FIN NUMBER	
Albuquerque, New Mexico 87185	FIN No.	A1031
Division of Radiation Programs and Earth Sciences	128 TYPE OF REPOR	cal
U.S. Nuclear Regulatory Commission Washington, D.C. 20555	1 July 198	ED (Inclusive dates) 32-30 June 1983
D SUPPLEMENTARY NOTES		
The objective of this project is to conduct characteristics and the resulting radiation dose and to provide prediction of health consequences that might be released in normal operations or un of nuclear fuel composed of mixed oxides of urani summarize the progress of current research. The completed radiation dose distribution studies in posed to either UO ₂ + PuO ₂ treated at 750°C, (U,P at 850°C. This paper focuses on analysis of the the study and updates earlier analyses of lung re excretion. The second paper details preliminary Fischer-344 rats exposed to either (U,Pu)O ₂ or to dose to lung for each aerosol. This paper presen rigorous statistical procedure allowing detection lung retention of rats at different dose levels a	confirmatory research o distribution in animals in humans from airborne der accident conditions um and plutonium. Two first paper details res which dogs, monkeys, an u)O ₂ treated at 1750°C, data from the last anim tention, tissue distrib analyses of the lung re PuO ₂ at one of three l ts the methods and the of similarities and di nd for different aeroso	n aerosol after inhalation radioactivity during production research reports ults from the d rats were ex- or PuO ₂ treated als sacrificed in ution, and tention in evels of projected application of a fferences in the ls.
mixed oxide, aerosol, airborne radioactivity inhalation, exposure, dose, solubility biological effects, health consequences risk estimates	rats, Beagles, mo uranium, plutoniu	onkys
anlimited	17 SECURITY CLASSIFICATION (The report) Unclassified	18 NUMBER OF PAGES
	In SECURITY CLASSIFICATION	20 PRICE \$

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20655

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

FOURTH-CLASS MAIL POSTAGE & FEES PAID USNRC WASH D.C PERMIT No. <u>G.67</u> NUREG/CR-3870

120555078877 1 1ANIRH US NRC ADM-DIV DE TIDC POLICY & PUB MGT BR-PDR NUREG W-501 WASHINGTON DC 20555

RADIATION DOSE ESTIMATES AND HAZARD EVALUATIONS FOR INHALED AIRBORNE RADIONUCLIDES

JULY 1984