D MOD	NUCLEAR GROUP OCTYPE 061		S. Responsible Branch	ION COVER SHEET					1. Calculation No. <u>LM - 526</u> Page 1 2. <u>DK</u> LGS 0 PBAPS UNIT(S) <u>1+2</u> ge No: <u>4# 7</u> 1. <u>Calculation No.</u> <u>LM - 526</u> Page 1 UNIT(S) <u>1+2</u> UNIT(S) <u></u>		
* Othe	r. N/A	· worst ca	se radiological	impacts of	4 usin	s soli	Ic. I	9. System/Top	-/94 bic No.: 00	1,011,012,068,	
a vest	taken t	rom cooling	Lower basins,	HoldingBows	y way	SPRAY		Structure:	N/A		
	Pond, A	llita					Ī	Component	= NA		
				RECORD O	F REV	ISIONS					
10				12. Vendor Ca	lic.	13 Assurt	ptions	14.	S	gnatures	
Rev. No.	11.	Description of Rev	rision	Number	Rev.	Yes	No	Preparer	Reviewer	Approver/Date	
0	Original	ne fifetre e		AN	0	X		(RNI)	(RNI)	J.R. berec (PN-1) 1116195	
					1					TUB Vilance	
										1.12.13. 1 1. 1. 1.	
	Assess Actual /1	antion Tarys	- Aren, groundunter	NIA	1,	X		P.T. Reichert	affor	J.R. pick (RA 5)2/24/	
1	timeport							(Mri)	PONT	TER IN D I'RA	
										The JA Datalio	
	Aller in on the	NUPER	Co 5510 (10/92) - 0					Pr Reubert	mudayorth	Sul will a ITP BARS.	
2	NURE G 1500 fo	r Decommiss	ioning Considerations	NA	2	×		(RAI)	(Rul) C	Im Jasaulio	
										JABASILIO 11/13/95	
								1			
	r			1		I	l	I	18	O Magual	
15.	Provides Info to:	NA							ia.	C Matrice	
Related										application and unation	
Numbers	Receives Info from:	NA							G	ASPAR (n.C011) Rev. 0	
17. Prov	ides Info to UFSAR/ Tech. Spec :	NONE							18. (D	Total Pages: S Use)	

1.

9511270344 951115 PDR ADDCK 05000352 P PDR Effective Date: 9/4/94

- -

		Exhibit	NE-C-42	10-3, Rev. 1 Page 1 of 1 RAS/kmm
2	CALC. #	M-526		REV. 2
	DCD #	V/A	DATE :	

CALCULATION REVIEW CHECKLIST

x x x x x x	x x x x	CALCULATION IS THE APPROPRIATE BASIS FOR THE ACTIVITY CALCULATION ASSUMPTIONS, CONSIDERATIONS, AND METHODOLOGY CONFORM TO APPLICABLE DESIGN REQUIREMENTS SOURCES OF DATA AND FORMULAS WERE REVIEWED AND VERIFIED TO BE CORRECT AND COMPLETE INPUT DATIA IS CORRECT AND USED PROPERLY THE ANALYTICAL METHOD USED IN THE CALCULATION HAS BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	yes yes yes -
x x x x x	x x x	CALCULATION ASSUMPTIONS, CONSIDERATIONS, AND METHODOLOGY CONFORM TO APPLICABLE DESIGN REQUIREMENTS SOURCES OF DATA AND FORMULAS WERE REVIEWED AND VERIFIED TO BE CORRECT AND COMPLETE INPUT DATA IS CORRECT AND USED PROPERLY THE ANALYTICAL METHOD USED IN THE CALCULATION HAS BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	yes yes yes
x x x x	x X	SOURCES OF DATA AND FORMULAS WERE REVIEWED AND VERIFIED TO BE CORRECT AND COMPLETE INPUT DATE IS CORRECT AND USED PROPERLY THE ANALYTICAL METHOD USED IN THE CALCULATION HAS BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	<u>yes</u> <u>-</u> -
x x x	x	INPUT DATIA IS CORRECT AND USED PROPERLY THE ANALYTICAL METHOD USED IN THE CALCULATION HAS BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	<u>468</u> <u>-</u> -
x x x		THE ANALYTICAL METHOD USED IN THE CALCULATION HAS BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	-
x		MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED) A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	
x		 A) COMPLETE CHECK OF EACH COMPUTATION B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION 	nam. Anaratti di Anaratti anaratti di Anaratti Anaratti di Anaratti di Anaratti
x		 B) SPOT CHECK OF SELECTED COMPUTATIONS C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION 	
х		C) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION	
X		(ATTECHED)	
	X	CALCULATION RESULTS WERE CHECKED AGAINST APPLICABLE DESIGN CRITERIA AND WERE FOUND TO BE IN COMPLIANCE	yes
Х	х	EXISTING CALCULATIONS REQUIRING REVISION AS A RESULT OF THIS CALCULATION HAVE BEEN IDENTIFIED & DOCUMENTED	NONE
	х	THE ANALYTICAL METHODS DESCRIBED IN THE COMPUTER CALCULATION SUMMARY IS PROPER FOR THE INTENDED USE	yes
х	х	ALL SYSTEM AND TOPIC NUMBERS ASSOCIATED WITH THE CALCULATION ARE LISTED	yes
•	х	COMPUTATIONAL ACCURACY HAS BEEN CHECKED AND IS CORRECT (INDICATE METHOD USED)	-yes
		A) CHECK SAMPLE CALCULATION USING DATA OTHER THAN THAT USED IN THE SAMPLE	nan and An an
		B) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION (ATTACHED)	-
		C) DESCRIBE OTHER METHOD USED: Rev 2 entries charges to selectic correctioned ecilculations	<u>925</u>
		These were checked for accuracy using applicable	
	Х	PROGRAM USED IS APPROPRIATE, INPUT IS VALID, AND OUTPUT IS REASONABLE CONSIDERING THE INPUT	- yes
х	Х	BASE CALCULATION HAS BEEN REVIEWED AGAINST CURRENT DRAWING REVISIONS AND POSTED DCDS TO IDENTIFY SIGNIFICANT DIFFERENCES	NIT
'he crit	eria list i to limit	ted above are the minimum criteria to be considered and are t the initiative of the reviewer to consider other criteria	not
appropri	tes applid iate colu	cable to manual and computer calculations are noted by an • mn.	X* in the
list the	e documen	ts used to support this review. Review of derident calcular	tions
Corneres		The second	and an experience of the second second second
of me	x refere	were where in there is	
	1	PEUTEWED DY. The Grand (ANI)	ATE: 11-10-9

Raw	Magaza	GENERAL		CALCI	ULATION SI	ET NO.	REV.	COMP. BY	CHK'D. B
Engine	ers & Constructors	COMPUTATION	623.341	LM	-526			PPR	TSV
		SHEET		PRELIM.	FINAL	DIOV	2	PATE	DATE
ROJECT	COOLING TOWER, HOL	DING POND AND SPE	& 2 IAY POND		X			11.0/12	11-11-1
	DETERMINE WORST CA	SE RADIOLOGICAL T	MPACTS OF	SHEET	3 OF	22		DATE	DATE
SUBJECT	BASINS, HOLDING PON	D, AND SPRAY POND	, AS FILL	J.O. 71	98.600				
		and the later	and the fact of the second						
		CALCULATION C	HANGES IN F	REVISION	2 TO LN	1-526			
1.	NUREG/CR-5512, da	ated Jan. 1990 w	as used in Re	v. O and F	Rev. 1 as	a basis	for:		
	a. Resuspension ra	ites above the so	ids fill area.						
	b. Dose conversion	factors to determ	ine whether t	he planned	d place m	ent of th	ese so	lids is com	patable
A	with eventual pi	ant decommission	ning.						
	NUREG/CR-5512 (1	(90) has been su	perceded by N	UREG/CR	-5512 (10/92).	The r	newer vers	ion still
	provides a basis for NUREG-1500 (8/94	resuspension rate	assumptions	. Dose co	nversion	n factors	are n	ow obtain	ed from
	Decommissioning:	NRC Staff's Draft	for Comment	", and from	m Federa	al Guidar	n Rei	ease Crite ports 11 a	and 12.
2.	This calculation pro	vides a conservat	ive "Level 1"	Screening	n as de	scribed i	O NUS	250 1500	of the
	proposed limits on	solids activities.	This is done	to confirm	n that t	hese sol	ids, a	s placed,	will not
	interfere with plant of	decommissioning.	Only the wo	rst case "	Resident	tial Use S	Scenar	io" is eval	uated.
з.	Revise design criteri	a to delete referen	nce to the hol	ding pond	, which	does not	colled	et runoff fr	om the
	placement area.								
4.	An intruder dose is o	calculated.							
5.	Raytheon Cover She	ets, no longer rec	uired by proc	edure, are	deleted				
6.	The Action Request	(A/R) to assure the	nat solids plac	ement on	erations	are with	in the	calculation	a basac
	is identified. This A	R also requires co	onfirmation of	results w	hen the	final reg	ulatory	guide on	release
	criteria for decommis	ssioning is issued							
7.	The following pages	are added, revise	d, or deleted i	n Rev. 2.					
	PAGE		CHANGE						
	1-14		Revised, Re	enumbered	i, or Ref	ormatteo	i		
	21-22		Revised						
	Attachmen	t 4, pgs 1-23	Replaced						
	Attachmen	t 4, pgs 24-41	Deleted						
	Attachmen	t 5, pgs 1-13	Replaced						
	Attachmen	(b, þýs 14-16	Deleted						

Engineers & Constructors	Raytheon GENERAL COMPUTATION		CALCULATION SET NO.			COMP. BY	CHK'D. BY
Engineers & Constructors SHEET		LM	-526		2	PTR	TSN
	LIMERICK GENERATING STATION - UNITS 1 & 2		FINAL	VOID			DATE
PROJECT COOLING TOWER, HOLDIN	TATION - UNITS 1 & 2 NG POND AND SPRAY POND		X			11/10/45	11-10-45
DETERMINE WORST CASE	DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF		SHEET 4 OF 22]	DATE	DATE
SUBJECT BASINS, HOLDING POND.	AND SPRAY POND, AS FILL	J.O. 7198.600			1.	UNIE	UATE

Radiological impact considered are:

12

(1) Airborne concentrations and doses due to wind borne erosion of the flowable solids pile. These concentrations will be compared with 10CFR20 [Ref.1] limits, and doses compared with 10CFR50 [Ref. 2] limits. It is desirable that these concentrations and doses should be negligible compared with these limits, to support the use of the Solids Activity Limits as screening criteria.

times the Effluent Lower Limits of Detectability (LLD). This calculation determines worst case radiological impacts, if the flowable solids radioactivity concentrations were at the Solids Activity Limits.

- (2) Groundwater transport of activity to the Schuylkill River. No consideration of groundwater transport to well locations is necessary, since all offsite and onsite wells are upgradient from the locations where this flowable solids may be placed.
- (3) Evaluation of water caused erosion impacts.
- (4) Worst case dose rate to workers directly over the flowable solids, due to direct shine and inhalation.
- (5) Dose to an unauthorized intruder onto the solids fill area.
 - (6) Worst case dose rate for a hypothetical residential use of the flowable solids placement area. This data will provide an indication of the potential for free release of the areas where these flowable solids are used, after plant decommissioning.
 - (7) Offsite doses due to airborne releases for pathways other than inhalation.

2.0 SUMMARY OF RESULTS AND CONCLUSIONS

This calculation analyzes radiological impacts of a conservatively characterized system for using flowable solids as onsite fill. Radioactivity in solids to be placed onsite will be less than the Solids Activity Limits, as described in Attachment 1.

Wind caused airborne releases from the fill area can cause only a negligible contribution to offsite doses. The calculated inhalation dose commitment to an individual at the site boundary is 1.82E-4 mrem/yr. Doses to other pathways, modeled using GASPAR, are all at or below 0.101 mrem/yr, with a very conservative isotopic mix.

Worst case concentrations in releases from the solids to groundwater will be near (2.93 MPC) the regulatory limits for effluents, even if all isotopes are at the Solids Activity Limits. Concentrations of about 0.021 of the 10CFR20 Maximum Permissable Concentration (MPC) will result at the site boundary when credit for the transit time of 194 years [based on Sr-90] is taken. No onsite or offsite wells will be impacted.

Potential release concentrations due to erosion will be less than an MPC.

Rau	man	GENERAL	CAL	CULATION S	ET NO.	REV.	COMP. BY	CHK'D. BY
Engine	ers & Constructor	COMPUTATION	LA	1-526			PFP	m# 5 60.
	LIMERICK GENERAT	ING STATION - UNITS 1 & 2	PRELIM.	FINAL	VOID	2	1/13/95	DATE
PROJECT	DETERMINE WORST	CASE RADIOLOGICAL IMPACTS OF	-	5	22	-		
SUBJECT	USING SOLIDS, TAK	EN FROM THE COOLING TOWER	SHEET	00 00	22	1.	DATE	DATE
	and the second r	OND, AND SPRAT FUND, AS FILL	_ (J.O. /	198.600		1		L
	Dose rates to ope Airborne activity	rators during handling this mate will also be negligible.	erial will be	far below	10CFR2	20 res	tricted are	a limits.
	The dose to a pos be 0.75 mrem.	tulated unauthorized intruder wit	th 24 hours	/yr occup	ancy on	the so	olids fill are	a would
	Placement of thes decommissioning levels.	e conservatively characterized and free release. Some decay	flowable so time may b	olids as fi e necessa	ll should ary, depe	not ir anding	nterfere wi I on actual	th plant activity
3.0 1	DESIGN BASES / II	NPUT / CRITERIA						
3.1 (DESIGN BASES / II	NPUT						
	The design bases	for this calculation are:						
	(1) The fill area	size upper bound is 70,000 sq	. ft., and 1,	120,000	cu. ft.;			
	(2) Radioactivit 5.1.2, and	y concentrations will be controlle Attachment 1 for limit derivation	ed to the pro	posed So	lids Acti	vity Li	mits. (See	Section
A	 (3) The grounds (1) foot this smaller area should be explored 	vater transport calculation basis ok layers covering 70,000 sq. is would reduce the diluting in valuated to assure that:	assumes th ft. Solids filtering wa	at the sol place in ater. The	ids are pl thicker arefore,	laced l layers placer	in one over nents	
	FRACT VOLU PLACE	TION OF THE LIMIT FOR THE W ME OF SOLIDS PLACEMENT (ft ³ MENT AREA (ft ²)	ORST CAS	E ISOTOI	PE *			
	is less than	one (1).						
	(4) The area for used for oth	solids placement will be located er than groundwater sampling.	d down-grae	dient fron	n any off	site w	vell, or ons	ite well
	A/R A0970339 h appropriate PECO	as been initiated to ensure th s programs and/or procedures.	nat the abo	ove desig	n bases	are	incorporate	ed into
3.2 C	DESIGN CRITERIA							
	(1) Doses to on: limits and Al	site personnel from any radioact LARA.	ivity in the	flowable	solids sł	hall be	within 10	CFR20
	(2) Offsite airbo small fractio	rne concentrations due to dusti n of 10CFR20 unrestricted area	ng from the concentrat	e flowabi ions.	e solids	fill are	ea shall be	a very
	(3) Offsite dose resulting from	s due to dusting from the flowat m other sources at LGS.	ole solids ar	ea shall b	e a very	small	fraction of	doses

FORM 5007 REV 4/91

(4) Groundwater concentrations, due to any radioactivity transport from the flowable solids, shall be less than 10CFR20, Appendix B limits, upon discharge to the Schuylkill River. ORM 5007 REV 4/91

Ravt	GENERAL COMPUTATION Engineers & Constructors		CALCI	JLATION SI	ET NO.	REV.	COMP. BY	CHK'D. BY
Enginee			LM	-526			PTR	TIN
		SHEET	PRELIM.	FINAL	VOID	2	PATE	DATE
PROJECT	LIMERICK GENERATING	STATION - UNITS 1 & 2 DING POND AND SPRAY POND		×	1	-	1/10/15	,1-10-41
	DETERMINE WORST CA	ASE RADIOLOGICAL IMPACTS OF	SHEET	6 OF	22		DATE	DATE
SUBJECT	BASINS, HOLDING PON	ID, AND SPRAY POND, AS FILL	J.O. 71	98.600				UAIL
1.0								

Activity in stormwater runoff shall have radioactivity concentration levels less than 10CFR20, (5) Appendix B limits, upon discharge to the Schuylkill River.

It is preferable that the flowable solids not require any additional handling upon LGS (6) decommissioning, to allow free release of the flowable solids use area. Free release criteria published in the USNRC proposed rule on Radiological Criteria for Decommissioning [Ref. 3] shall be used in this determination.

4.0 ASSUMPTIONS / UNVERIFIED ASSUMPTIONS

4.1 ASSUMPTIONS

as

The total flowable solids removal rate is conservatively set at 70,000 ft³ per year. A total of 16 (1) placements are assumed for a total of 1,120,000 ft³. This total allowance for the remaining 30 years of plant life is approximately 10 times the solids removed over the first 10 years of plant life. The compressed schedule of placement is used to maximize the calculated groundwater effects and to minimize potential that bases for this calculation could delay solids placement. See Section 5.1.1 for discussion of historical solids removal.

(2) These solids are unlikely to be spread over more than 70,000 ft² (1.61 acres). [See Section 3.1 4, 5.1.3.1 pmc 1/13/95

94 UNVERIFIED ASSUMPTIONS

The Dose Conversion Factors taken from NUREG-1500 should be verified as still accurate once the final regulatory guide on release criteria for decommissioning is issued. A/R A0970339 has been initiated to ensure that this verification is done.

5.0 DETAILS OF CALCULATIONS

5.1 MATERIALS HANDLED

5.1.1 FLOWABLE SOLIDS REMOVAL RATES

Flowable solids may be taken from the cooling tower basins, the holding pond, and the spray pond. Discussion with PECO personnel provided historical solids generation data, as discussed below.

12

The most recent operation (1994) on the holding pond yielded 7,900 cu. ft. of material. This operation is expected to occur every three years.

The cooling tower basins are expected to be the dominant source of material. The only historical operation on a cooling tower basin (Unit 1, 1991) yielded 68,000 cubic feet of dewatered sludge. Another cleaning may be required in 1998. The Unit 2 cooling tower appears less prone to flowable solids buildup and has never required cleaning.

The spray pond has not yet required flowable solids removal. The spray pond has a design margin of 3 inches of flowable solids, displacing 0.68 million gallons of water [UFSAR, Section 9.2.6.4.2.5]. Thus, if cleaning were ever required, and the entire margin were to be restored, approximately 91,000 cu. ft. of material would be removed.

CALCULATION SET NO. REV COMP. BY GENERAL CHK'D. BY Bavmeon COMPUTATION LM-526 PTX TSN Engineers & Constructors SHEET PRELIM FINAL VOID 2 DATE DATE 11-10-95 LIMERICK GENERATING STATION - UNITS 1 & 2 COOLING TOWER, HOLDING POND AND SPRAY POND 11/10/95 X PROJECT DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF 7 22 OF SHEET USING SOLIDS, TAKEN FROM THE COOLING TOWER DATE DATE SUBJECT BASINS, HOLDING POND, AND SPRAY POND, AS FILI 7198.600 .0.

For this analysis an enveloping assumption of 70,000 cubic feet of total material in each placement. To minimize the potential that the calculation could cause a delay in material placement, this amount is assumed to be deposited each year, for 16 years. This compressed schedule maximizes calculated concentrations in groundwater. The total assumed placement would be 1,120,000 cubic feet, which is more than 10 times that historically observed over the first 10 years of plant life. These values are expected to envelope any cooling tower and holding pond requirements. This is also a more realistic amount for a spray pond cleaning operation.

5.1.2 WORST CASE RADIOACTIVITY CONTENT

Little or no radioactivity has been found in these flowable solids in the past, and they have been disposed of as non-radioactive, non-hazardous wastes. To establish a conservative estimate of the amounts and isotopic breakdowns of the postulated radioactive material dispersed within the flowable solids, Table 1 was developed. This table shows (1) Solids Activity Limits which would be used as a screening criteria, for a range of isotopes which have been found in various plant process fluids and waste streams; and (2) the 10CFR20, Appendix B limits on effluent concentrations in air and water.

5.1.3 LOCATION AND LAYOUT FOR MATERIAL PLACEMENT

The location for the placement of this material has been selected to be in an area of approximately 1.5 acres in size and is to the northwest of the spray pond and southeast of the meteorology tower No. 1. For this analysis, the material is assumed to be spread over an area of not greater than 70,000 sq. ft. (1.61 acres).

5.2 POTENTIAL AIRBORNE RELEASES TO OFFSITE AREAS

5.2.1 AIRBORNE RELEASE MECHANISMS FROM FLOWABLE SOLIDS FILL AREA

Any airborne releases from the flowable solids fill area are expected to be due to wind caused dusting of this material. Attachment 2, taken from Reference 6, describes the physical processes involved, and the methods of assessment performed by the USNRC for uranium milling tailing piles.

Additionally, Ref. 7 indicates that an air dust loading of 10⁻⁴ gm/cu. meter can be used for airborne activity above the contaminated soil under normal dusty conditions. A loading of 5x10⁻⁴ gm/cu, meter can be used for soil being worked, such as might be the case for grading, or residential use gardening.

5.2.2 OFFSITE AIRBORNE CONCENTRATIONS AND INHALATION DOSES

Table 1A shows the resulting inhalation dose rate to an individual at the nearest site boundary to the solids fill, to be 1.82x10⁻⁴ mrem/yr, based on the above normal dust loading.

FORM 5007 REV. 4:91

The inhalation dose rate above the fill is low enough to be considered a negligible contribution to offsite dose rates resulting from other LGS activities.

5.2.3 OFFSITE DOSES DUE TO INGESTION PATHWAYS

Attachment 7 is a GASPAR run output, calculating doses due to various ingestion pathways. X/Q values are based on several factors. Releases are assumed to be 370 gm/yr/sq. meter, conservatively based on uranium mill tailing analyses from Reference 6, and shown in Attachment 2, page 6. This yields a release of 2.406x10⁶ gm/yr, or 0.07625 gm/sec. [See Table 18.]

Rave	GENERAL		CALC	ULATION SI	ET NO.	REV.	COMP. BY	CHK'D. BY
Engineers & Constructors		COMPUTATION	LM-526				AVR	TSN
	LIMERICK GENERATING	SHEET STATION - UNITS 1 & 2	PRELIM.	FINAL	VOID	2	0ATE 11/10/95	DATE
PROJECT	COOLING TOWER, HOL	DING POND AND SPRAY POND			1	_	and the second s	Name and Address and Address and Address of
	DETERMINE WORST CA	SE RADIOLOGICAL IMPACTS OF	SHEET	8 OF	22		DATE	DATE
SUBJECT	BASINS, HOLDING PON	D, AND SPRAY POND, AS FILL	J.O. 71	98.600			VAIL	DATE

Using the 10^{-4} gm/cu. meter normal dust loading, a X/Q of 1.312×10^{-3} sec/cu. meter is calculated. As shown in Table 1A, additional credit can be taken for wind direction frequency toward a location on the nearest site boundary, and for the additional lateral dispersion. No credit is taken for vertical dispersion or for any deposition effects in route to the site boundary. The X/Q is therefore adjusted by 0.103 to account for wind frequency and 0.68 for lateral dispersion, yielding an net X/Q of 9.189x 10^{-5} .

Default pathway parameters are used and are conservative for the LGS site.

Doses from the GASPAR analysis in no case exceed 0.101 mrem/yr, and are extremely conservative.

5.3 RELEASES THROUGH GROUNDWATER

FORM 5007 REV 4/91

5.3.1 BEHAVIOR OF GROUNDWATER RELEASES

No consideration of groundwater transport to well locations is necessary, since all offsite and onsite wells are up-gradient from the location where these flowable solids may be placed. Only consideration of groundwater transport to the Schuylkill River is needed.

Removal of any radioactivity from the flowable solids fill to groundwater is the result of radionuclide leaching from the contaminated zone. The leached radioactivity is assumed to be carried by the infiltered water. Attachment 3 [Ref. 8], Equation E.4, is used to determine the infiltration rate. The annual average precipitation rate [P,] used is from UFSAR Table 2.3.1.4, and is 43.9 inches of water. This would be 1.12 m/yr. The standard evapotranspiration and runoff coefficients [C, and C,] were used. No irrigation was assumed. The resulting infiltration rate is 0.448 m/yr. Over the 70,000 ft² fill surface, this provided a water flow of 2.91E + 09 ml/yr.

Attachment 3, taken from Ref. 8, also provides a basis for assessing this leaching phenomena. Table 2A shows the derivation of leach rates from the solids.

Table 2B shows the ratio of the resulting concentration to 10CFR20, Appendix B Effluent Limits. Assuming that all material placements, for all isotopes, are at the Solids Activity Limits, the calculated releases to underlying groundwater is 2.93 MPC.

To determine the groundwater transport time the same methodology was used as was applied to radwaste tank spillages in UFSAR Section 2.4.13. The information below shows the application for both the radwaste tank and the solids area.

DETERMINATION OF ISOTOPE TRANSPORT TIME TO SCHUYLKILL RIVER FOR GROUNDWATER BORNE ACTIVITY:

- 130 Groundwater Elevation below Tank (ft) [UFSAR Analysis]
- 240 Groundwater Elevation below Solids Placement Area (ft) [UFSAR Fig. 2.4-15]
- 800 Tank Distance to River (ft.) [UFSAR Analysis]
- 1000 Solids Placement Area Distance to River (ft.) [UFSAR Figure 2.4-1]
- 105 Average River Elevation (ft.) [UFSAR Analysis]

12

390 Permeability of underlying material (ft/yr) [UFSAR Analysis]

Rayt	heon	GENER. COMPUTA	AL	CALC	CULATION SE	T NO.	REV.	COMP. BY	CHK'D. BY
PROJECT	LIMERICK GENERATING	SHEE	T	PRELIM.	FINAL	VOID	2	9ATE 11/10/95	DATE
	DETERMINE WORST C. USING SOLIDS, TAKEN	ASE RADIOLOG	CAL IMPACTS OF	SHEET	9 _{OF}	22		DATE	DATE
			ground-	ground- water	Sr-90				
		liant	ground- water	ground- water travel	Sr-90 travel				
	grac	lient	ground- water velocity (ft/yr)	ground- water travel time (yrs)	Sr-90 travel time (vrs)				

As shown in Table 2B, it is expected that the additional decay in transit from below the fill area to the Schuylkill River will be sufficient to assure that discharges of groundwater would meet these limits.

1053

It should also be noted that this groundwater flow of 2.91E+09 ml/yr will be diluted by an average of 1.60E + 15 ml/yr of river flow (UFSAR Pg. 2.4-2, 1793 cfs * 3.16E + 07 sec/yr * 2.83E + 04 ml/ft3), for an average concentration reduction of 1.8E-06.

0.950

194

For the above reasons, the Groundwater pathway from the flowable solids is considered negligible.

5.4 RELEASES THROUGH EROSION

COD44 E007 001 1 0

5.4.1 NORMAL RAINFALL CONDITIONS

0.135

The fill area is expected to be graded and seeded to minimize erosion. Erosion control fencing will also be used as appropriate.

For worst case evaluation purposes, erosion by way of runoff will contain one (1) percent by weight solids. A runoff coefficient of 0.2 is used, consistent with the groundwater assessment above. With the 1.12 m/yr precipitation rate, and a 6503 sq. m. area, the total water runoff would be 1.46E+09 ml/yr. Using the worst case 1 percent solid as a conservative upper bound, 1.46E+07 gm/yr of the fill material would be eroded. Note that this solids loading (10,000 ppm) is on the order of 100 times that typically in estuaries such as the Delaware (Ref 9].

For further illustration purposes, this erosion rate would yield a loss of about 0.38 percent of the nominal 70,000 ft³ fill load each year, or about 1.2 mm average surface loss. Reference 9 estimates of soil loss for the Delaware River basin averages approximately 50 metric tonnes/sq. km, or only about 0.025 mm. The Schuylkill River Basin would be expected to be comparable.

A 1 percent slurry will yield a combined radionuclide concentration within 10CFR20, Appendix B limits, as shown in Table 6.

Given the demonstrated conservatism of runoff loading assumptions, and the resulting acceptability of calculated doses, the standard erosion control measures described above should be ample to assure that regulatory limits are not exceeded.

5.4.2 PROBABLE MAXIMUM PRECIPITATION (PMP) CONDITIONS

UFSAR Table 2.4-7 indicates that the initial 6 hour PMP is 26.8 inches of rainfall. Under PMP conditions, virtually all of this rainfall will run off.

The PMP rainfall 3 times the normal 8.8 inches (1.12 meters/yr * 0.2 runoff coef. * 39.4 in./meter) of rainfall runoff that was calculated to "run off with 1 percent" of the nominal fill load over a three year period as described in Section 5.4.1 above. Thus, concentrations leaving the fill area would be no

Ravi	heon	GENERAL	CALC	JLATION S	ET NO.	REV.	COMP. BY	CHK'D. 8
Enginee	rs & Constructors	COMPUTATION	LM	-526	16.15		ATR	TSN
	LIMERICK GENERATING	SHEET	PRELIM.	FINAL	VOID	2	11/10/95	DATE
PROJECT	COOLING TOWER, HOL DETERMINE WORST CA	DING POND AND SPRAY POND		10	22	-		
SUBJECT	USING SOLIDS, TAKEN	FROM THE COOLING TOWER	SHEET		6.6		DATE	DATE
10000001	SASINS, HOLDING FOR	ID, AND SPRAT POND, AS FILL	[J.O. /1	98.600		1		
	worse than the cont this conclusion cons be expected to actu beyond the site bou discharge concentra Limits.	dition shown in Table 6, unle siders dilution only by rainfall ally mix with and be diluted ndary. The total site area is stions, even with severe eros	ess significan falling direct by runoff fro 595 acres. sion, would l	tly more ly on the om surro Therefor be unlike	e erosion e 1.61 a ounding a e, for thi ely to ex	occur cre fill reas l s seve ceed	red. Addi area. Rur before disc are event, 10CFR20	tionally, hoff can charging average Effluent
5.L C	CCUPATIONAL DO	SE RATES DURING MATERIA	L HANDLIN	G				
	Table 3 shows exter infinite slab. Also sl commensurate with	nal exposure dose rates for co nown are calculated doses du this material being worked.	ontact with the total ation of the second seco	he flowa on, base	ble solid d on sus	s fill, r pende	nodeled as d airborne	a semi- activity
	The worst case exte be considered a radia be required.	rnal exposure dose rate is lea ation area. The inhalation dos	ss than 0.03 se rates are s	1 mrem/ uch that	hr, and t respirate	therefory pro	ore this wo	ould not ould not
5.6	DOSES TO AN INTR	UDER						
A	For the duration of t and will be posted, noticed in routine s determined by assum in a year. The result	he LGS license, the property This location is not in a fre ecurity patrols that cover the ning that 8 hours is spent dire ting dose would be 0.75 mre	containing the equently trave he site. The actly on the s m.	ne solids eled are e dose t olids pla	will rem a and an to an int cement a	ain un intru ruder area, c	der PECO der is likel is conser on three oc	control, y to be vatively casions
	Radiological impact t residential use as de	to an intruder, after the LGS d scribed below.	lecommissior	ning is er	nveloped	by co	nsideration	n of the
5.7 R	ESIDENTIAL USE DO	DSE ASSESSMENTS						
A	An additional concer handling during plan "Level 1" screening of case assumption is a as a function of ti decommissioning. D described in NUREG. Relevant portions of	n with the use of flowable so at decommissioning and even of the activity limits is perform residential use of the solids p me after shutdown and co ose conversion factors are tro /CR-5512 "Residual Radioact these references are in Attac	blids, is whet ntual site fre- ned, as defin- lacement are ompares the m NUREG-15 tive Contamin chment 7.	her this e release ed in NU a. The e m with 500, whi hation fr	material e. In or REG-150 evaluatio the 15 ich imple om Deco	might der to OO (Re n dete mren ments ommis	require ad determine f. 10]. The rmines dos n/yr criter the metho sioning" [f	ditional a this a e worst se rates ion for odology Ref. 7].
	The limiting exposur	e scenario of residential use i	includes dose	es from:				
61	(1) External gamma	shine to resident, both inside	and outside	of the r	esidence	;		
7	(2) Inhalation doses;							
	(3) Food ingestion fr	om garden grown in this soil.						
6	The doses from the deposit. The design 15 mrem/yr and ALA	surface soil scenario are give criteria for free release is tak ARA below that level. Table	en in Table 4 ken from Ref. 4 shows that	, and are 3, and t, within	e control requires 10 year	led by that d s of th	the last n loses be le ne last plac	naterial ss that cement

of material, the solids placement area would meet the residential use screening criterion.

FORM 5007 REV 4/91

A

GENERAL COMPUTATION		LM-526			REV.	COMP. BY	CHK'D. BY
& Constructors	SHEET	PRELIM.	PRELIM. FINAL VOID		2	DATE	DATE
IMERICK GENERATING	STATION - UNITS 1 & 2 DING POND AND SPRAY POND	1.00	х		-	11/10/95	11-110-95
DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF		SHEET 11 OF 22			DATE	DATE	
ASINS, HOLDING PON	D, AND SPRAY POND, AS FILL	J.O. 7198.600				serie	VATE
	MERICK GENERATING OOLING TOWER, HOL ETERMINE WORST CA SING SOLIDS, TAKEN ASINS, HOLDING PON	SHEET MERICK GENERATING STATION - UNITS 1 & 2 OOLING TOWER, HOLDING POND AND SPRAY POND ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SING SOLIDS, TAKEN FROM THE COOLING TOWER ASINS, HOLDING POND, AND SPRAY POND, AS FILL	SHEET PRELIM. IMERICK GENERATING STATION - UNITS 1 & 2 OOLING TOWER, HOLDING POND AND SPRAY POND ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SING SOLIDS, TAKEN FROM THE COOLING TOWER ASINS, HOLDING POND, AND SPRAY POND, AS FILL J.O. 715	SHEET PRELIM. FINAL MERICK GENERATING STATION - UNITS 1 & 2 OOLING TOWER, HOLDING POND AND SPRAY POND ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SING SOLIDS. TAKEN FROM THE COOLING TOWER ASINS, HOLDING POND, AND SPRAY POND, AS FILL J.O. 7198.600	SHEET PRELIM. FINAL VOID IMERICK GENERATING STATION - UNITS 1 & 2 OOLING TOWER, HOLDING POND AND SPRAY POND X X ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SING SOLIDS. TAKEN FROM THE COOLING TOWER ASINS, HOLDING POND, AND SPRAY POND, AS FILL SHEET 11 0F 22	SHEET PRELIM. FINAL VOID 2 IMERICK GENERATING STATION - UNITS 1 & 2 X X X OOLING TOWER, HOLDING POND AND SPRAY POND X X X ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SHEET 11 0F 22 SING SOLIDS, TAKEN FROM THE COOLING TOWER ASINS, HOLDING POND, AND SPRAY POND, AS FILL J.O. 7198.600	SHEET PRELIM. FINAL VOID 2 PATE IMERICK GENERATING STATION - UNITS 1 & 2 OOLING TOWER, HOLDING POND AND SPRAY POND X X 11/10/95 ETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SHEET 11 OF 22 SING SOLIDS, TAKEN FROM THE COOLING TOWER SHEET 11 OF 22 ASINS, HOLDING POND, AND SPRAY POND, AS FILL J.O. 7198.600 DATE

- (2) The residual radioactivity is likely to be substantially less;
- (3) The material in its final configuration will be easily surveyed and evaluated to confirm its acceptability for free release.
- (4) Free release of this site within 10 years of shutdown is unlikely, given reasonably expected decommissioning schedules.
- (5) This property is likely to have considerable value to PECO, even after shutdown, given available transmission and other facilities. Transfer of this property for residential use in any time frame of concern is unlikely.

The more likely scenario would be that the site would remain PECO property, in a free-release configuration, and requiring little or no maintenance. Doses to PECO employee would likely be on the order of the doses assessed for an intruder (< 1 mrem/yr), particularly with consideration of decay in place.

Impacts of PECO use of the free released site for a structure would be enveloped by the residential use scenario, since occupancy would be less than for a residence.

6.0 REFERENCES

- (1) 10CFR20, "Standards for Protection Against Radiation", Appendix B.
- (2) 10CFR50, Appendix I.
- (3) USNRC Proposed Rule on Radiological Criteria for Decommissioning (Federal Register, Vol 59, pages 43200-43232, August 22, 1994.
- (4) PECO supplied estimates of material taken from holding pond and cooling tower.
- (5) LGS UFSAR, Current as of 11/01/94, as indicated in calculation text.
- (6) NUREG-0706, "Final Generic Environmental Impact Statement on Uranium Milling", Volume III, Appendix G, Pages G-7 to G-11, Sept, 1980
- NUREG/CR-5512, "Residual Radioactive Contamination from Decommissioning" Vol. 1, Oct. 1992.
 - (8) ANL/EAD/LD-2, "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD, Version 5.0", September 1993.
 - (9) Ecology and Restoration of the Delaware River Basin, Pennsylvania Academy of Sciences, 1988

1044	6000	1000	4.15.1
Courses.	2001	11/10/14	

A

Raytheon		GENERAL	CALCULATION SET NO.			REV.	COMP. BY	CHK'D. BY
		COMPUTATION					PTR	TSN
	LIMERICK GENERATING	SHEET	PRELIM.	FINAL	VOID	2	DATE ILIONS	DATE
PROJECT	COOLING TOWER, HOL	DING POND AND SPRAY POND			-	-	an and consider a second	
141.11.51	DETERMINE WORST CA	SE RADIOLOGICAL IMPACTS OF	SHEET	12 OF	22		DATE	DATE
SUBJECT	BASINS, HOLDING PON	D, AND SPRAY POND, AS FILL	J.O. 71	98.600				
6.42.0								

- (10) NUREG-1500, "Working Draft Regulatory Guide on Release Criteria for Decommissioning: NRC Staff's Draft for Comment", August 1994.
- (11) Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion", 1988.
- (12) Federal Guidance Report No. 12, "External Exposure to Radionuclides in Air, Water, and Soil", 1993.

7.0 LIST OF ATTACHMENTS

- (1) PECO Provided Effluent LLD and Solids Activity Limits Derivations
- (2) Reference 6.
- (3) Appendix E, "Water Pathway Factors", of Reference 8.
- A (4) Portions of References 7 and 10 used in this calculation.
 - (5) Portions of 10CFR20, Appendix B.
 - (6) Computer Disclosure Sheet and Spreadsheet Verification
 - (7) GASPAR Run Output

FORM 5007 REV. 4 91

ALL CONTRACTOR	GEN	ERAL	CALC	ULATION S	ET NO.	REV	COMP. BY	CHK.D
Pers & Constr	COMPUTATION		LM	LM-526			OTR	TSN
ours or soliat	SH SH	EET	PRELIM.	FINAL	VQID	2	DATE	DAT
LIMERICK GE	NERATING STATION -	UNITS 1 & 2 AND SPRAY POND		X			11/8/95	11-10
DETERMINE	WORST CASE RADIOL	OGICAL IMPACTS OF	SHEET	13 OF	22			
CT BASINS HOL	S. TAKEN FROM THE DING POND, AND SP	COOLING TOWER	10 71	00 800		1	DATE	DAT
TABLE 1A -	ASSESSMENT OF COOLING TOWER	INHALATION DOSE RAT BASINS, SPRAY POND, SOTOPES ARE AT THE	TE ABOVE S	OIL TAR	EN FROM			
	Solide	100PP20	SULIDS AC	TIVITY	T	_		
	Activity	Ann. 9 Limite					100	
Nuclide	Limite	Air	Frentin	n of	1			1
	uCi/g(dry)	UCi/m)	Aim Ti	mit	Ann	DET DO	JSe .	2
Fe-55	18-05	35-09	1 12	07	118	75 0	em	1
Mn-54	58-06	18-09	5.05	07	1	50 0		
Co-58	58-06	15-09	5.05	07	1	58 0		
Fe-59	58-06	58-10	1.05	.06	5	05.01		
Co-60	58-06	58-11	1.05	.05		05-0		
Zn-65	58-06	48-10	1.38-	-06	6	38-01		
Sr-89	5E-07	2E-10	2.58-	.07	1	.38-0	5	16
Sr-90	5E-07	6E-12	8.3E-	-06	4	.2E-0	4	12
Mo-99	5E-06	28-09	2.58-	-07	1	.38-0	5	
C8-134	52-06	2E-10	2.58-	-06	1	.3E-0		
C8-137	5E-06	2E-10	2.5E-	-06	1	.3E-0	4	
Ce-141	5E-06	8E-10	6.3E-	-07	3	.1E-0	5	
Ce-144	5E-06	2E-11	2.52-	-05	1	.3E-0	3	
			5.3E-	-05	2	.7E-0	3	
 Assuming for dust Given th to yield correspo To credi 	airborne dust 1 y outside condit at the 10CFR20 of 50 mrem/yr effe nd to an annual t dispersion to	coading of 1.0E-04 lions, per NUREG/CR concentration limit active dose equival dose commitment of the site boundary	g/cu. mete -5512. s are thos ent, the a 2.7E-03 m the placem	er, de proje dir tota drem/yr. ment are	ected 1 should	d		A
Prostod	as having a late	aral extent of no g	reater the	n 100 m 11e 22.5	degree			
A virtua sector w at 250 m boundary from the this dis could cr Based on 0.047+0. placemen addition	ould encompass the eters back from to the placement tance winds from oss the placement UFSAR Table 2.1 5*(0.060+0.051) t area can be ac al lateral diam	the source. This v the distributed so it area is approxim in between the ENE a the SW and 1/2 of at area and impact 3.2-2, the total wi = 0.103. Therefor djusted to account area on (250 / (120)	irtual sou urce. The lately 400 and NNE of the SSW 8 a receiver nd frequent to the dose for wind f	ft, (12 ft, (12 firection www.set at the above frequence	Id be it site in M) ons. At octors bounda: d be the the ry and a	ry. 1so,		1 4

FORM 5007 REV 4-91

Raytheon		GENERAL COMPUTATION	CALCU	JLATION SE	T NO.	REV.	COMP. BY	CHK'D. BY
C N N N N N N N N N N N N N N N N N N N	LIMERICK GENERATING	SHEET STATION - UNITS 1 & 2	PRELIM.	FINAL	VOID	2	11/8/95	DA12 1/10-95
PROJECT	DETERMINE WORST CA	DING POND AND SPRAY POND	SHEET	14 OF	22			
SUBJECT	BASINS, HOLDING PON	FROM THE COOLING TOWER D, AND SPRAY POND, AS FILL	J.O. 71	98.600		1	DATE	DATE

A

TABLE 1B -	- IDENTIFICATI	ON OF AIRBORNE RELEASES	
370	= (gm/m^2-yr)	MASS AREAL RELEASE RATE	
6503.2128	= AREA OF STO	RAGE (m ²)	
2.41E+06	= MASS RELEAS	E RATE (GM/YR)	
	Solids		
	Activity	Annual	
Nuclide	Limits	Release	
	uCi/g(dry)	(Ci)	
Fe-55	1E-05	2.4E-05	
Mn-54	5E-06	1.2E-05	
Co-58	5E-06	1.2E-05	
Fe-59	5E-06	1.1E-05	
Co-60	5E-06	1.2E-05	
Zn-65	5E-06	1.2E-05	
Sr-89	5E-07	1.2E-06	
Sr-90	5E-07	1.2E-06	
Mo-99	5E-06	1.2E-05	
Cs-12:	5E-06	1.2E-05	
Cs-137	SE-06	1.2E-05	
Ce-141	51-06	1.2E-05	
Ce-144	5E-06	1.2E-05	
Areai rel	ease rate is t	that calculated in the Final	

Areal release rate is that calculated in the Final Environmental Impact Statement on Uranium Milling. [NUREG-0706] and is considered conservative compared to this application. FORM 5007 REV 4/91

aytheon	GENE	RAL	CAL	CULATION SET	NO.	REV.	COMP. BY	CHK.D
gineers & Construct	OFS SHE	ET	POELIA	L EINAL L	VOID		MAN	724
LIMERICK GENER	ATING STATION - L	UNITS 1 & 2	FRELIM	X	VOID	0	1/13/95	1 Ink
DETERMINE WOR	ST CASE RADIOLO	GICAL IMPACTS OF	SHEET	15 OF	22			
USING SOLIDS, T	AKEN FROM THE C	OOLING TOWER	10 7	198 600			DATE	DATE
	Province and the first second s		<u> </u>	130.000				
	ana ang kang sang sang sang sang sang sang sang s	TABLE 2	A		er elastative til ved Shikar svæ			
APPLICATION OF AN	TACHMENT 3	POULATIONS P 3						
0.448	= Infiltra	tion Rate (m/s	- E.6 TO DE	TERMINE WO	ORST CA	ASE LI	EACH RATI	ES
0.3048	= initial	thickness of a	(I)					
2.25	= contamin	stad material	oncaminacio	on zone (m	• / /			
	Tb1. E.2	Tbl. E.2	Tbl. E.2	Eq. E.7	Eq.	E.6		
	K sat	THETA sat	b	R sat	Thete	A (CZ	,	
Sand	5.55E+03	0.395	4.05	0.428	0.	169	used b	elow
Loamy sand	4.93E+03	0.410	4.38	0.453	0.	186	1	
Sandy loam	1.09E+03	0.435	4.90	0.544	0.	237		
Silty loam	2.272+02	0.485	5.30	0.633	0.	307		
Loam	2.192+02	0.451	5.39	0.638	0.	288	1	
Sandy clay loam	1.992+02	0.420	7.12	0.702	0.	295		
Silty clay loam	5.36E+01	0.477	7.75	0.772	0.	368	1.1	
Clay loam	7.73E+01	0.476	8.52	0.773	0.	368		
Sandy clay	6.84E+01	0.426	10.40	0.810	0.	345		
Silty clay	3.262+01	0.492	10.40	0.835	0.	411		
Clay	4.05E+01	0.482	11.40	0.840	0.	405	used b	elow
Detendetion Protocol						ode later Canada angra		
Recardación ractor	Determinatio	on for Element	s of Intere	st	R.a.	F 3	- Pa	5 2
	Table E.3	Table 5.3	Eg. E.8	Eg. 8.8	ay.	5.3	Ed.	5.12
			-4		T.			
	K d (sand)	K d (clay)	R di	R di	1.88	nd)	(01	*
Element	(m1/g)	(m1/g)	(sand)	(clay)	Ivr	^-1)	1.02	-1)
Fe	100	1000	1332	5559	6.51	E-03	6.59	-04
Mn	20	200	267	1113	3.31	E-02	3.38	-03
Co	100	1000	1332	5559	6.51	8-03	6.57	-04
Zn	2	20	28	112	3.11	E-01	3.28	-02
Sr	3	30	41	168	2.11	E-01	2.28	-02
Zr	100	1000	1332	5559	6.51	8-03	6.58	-04
Cs	80	500	1066	2780	8.21	5-03	1.38	-03
								and the second sec

Regarding flowable solids densities, the ground below the site is described in the UFSAR, Table 2.4-20, as having a bulk density of 2.65 gm/ml and a 0.05 porosity. The flowable solids are assumed to be similar material, except with a porosity of 0.3. This porosity is identified in Ref. 7, Page B.12, as a value applicable to only partially compacted soils. This value is used for the Ref. 7 waste/soil mixtures in drinking water scenario assessments. The resulting bulk densities for the flowable solids would be 1.95 gm/ml (totally dry), and 2.25 gm/ml (saturated).

1.95 70,000 .98E+09 .50E+07 0.448	ASSESSMENT GROUNDWATE INFILTRATI - Volume a - Volume a - Arsa of - Infiltra	OF GROUNDWA R BASED ON A ON. SIXTEES flowable sol nd Area of s f solids depos tion Rats (s	TER INGEST PPLICABLE I LOADS ARE ids densit solids dspo ositsd sve ited (sq. o sters/yr)	IOH DOSE RA LEACH RATES ASSUMED, H y (gm/cc) sited every ry year (ml cm.)	TE, ASSUMIH , WITH CRED ITH CREDIT YOAT (CU.)	G ACTIVITY I IT FOR DECAY FOR LOSSES E ft. & sq. ft	S RELEASE , AND HIX Y DECAY A	G FROM THE CONTAMINA ED IN THE EXPECTED P ND LEACHING, UNTIL T	TED IONE TO RECIPITATION HE LAST LOAD	IS PLACED.		ECT BASINS, HOLDING POND, AND	DETERMINE WORST CASE RADI	LIMERICK GENERATING STATIO	meers & Constructors COM
Nuclide	- Total In Solida Activity Limits	Activity Leach Rate	ml/yr) Loss Rates Balf Life	Decay + Leach Constant	Activity at Placement	Activity After 16 Placements	10CFR20 APP. B Water	Release from Solids to Groundwater Fraction of	Parcent of	Fraction of Water Limit with 194 yr		PRAY PO	OLOGICA	N-UNITS	UTATIC
	uCi/g(dry)	(yr-1) @	(yr)	(-yr-1)	(uCi)	(uCi)	uCi/ml	Water Limit	MPC Total	of decay	1	NO			ž
0-33	18-05	6.5E-03	2.7	-2.638-01	3.92+04	1.658+05	1E-04	3.67E-03	0.138	8.6E-25		E	1 SI	2ª	
0-58	58-06	3.3E-02	0.856	-8.438-01	1.92+04	3.398+04	32-05	1.288-02	0.448	7.65-71		5	A		
	58-06	6.58-03	0.122	-5 682400	1.92+04	1.996704	18.05	1.112-03	0.086	2.18-304		m	n - C	5	
0-60	58-06	6.58-03	5.27	-1.368-01	1.92.04	1.378.05	12-05	4.33E-03	0.156	0.02+00	1	F		5	
n-45	58-06	3.18-01	0.688	-1.328+00	1.92+04	2.648+04	58-06	5.628-01	16 158	7 38-84			T		
r-89	58-07	2.18-01	0,138	-5.238+00	1.98+03	1.948+03	88-06	1.758-02	0.608	0.05+00		1			
r-90	58-07	2.18-01	29.12	-2.348-01	1.92+03	9.052+03	58-07	1.302+00	44.498	1.38-02					
8-134	5E-06	8.2E-03	2.06	-3.45E-01	1.92+04	6.602+04	92-07	2.06E-01	7.048	9.28-30	1	-	L. I		-
8-137	5E-06	8.2E-03	30	-3.13E-02	1.92+04	2.478+05	12-06	6.95E-01	23.718	7.98-03		6	HS	2	4
e-141	58-06	6.28-03	0.089	-7.792+00	1.92+04	1.932+04	32-05	1.378-03	0.058	0.0E+00	1	F	m	E	1
e-144	5E-06	6.2E-03	0.778	-8.97E-01	1.92+04	3.262+04	32-06	2.312-02	0.798	2.0E-77	1	1	Γ I	M	
							TOTAL MPC	2.93		0.021	1	198	-		≤
e Worst	case sand	leach rate f	rom Table 1	A.								in	0	1	N
											1	Ő		XX	0
SUMMARY	OF RESULTS	Even with no	credit fo	r decay in	transit to	the site box	undary, th	e activity level les	ving the acc	unulated		0	F		1
		solids will	only be 2.	93 MPC. 8-	65, Sr-90,	and Cs-137 a	befanisoi	at this point in tis				1	1 1		1
		Based on the	a calculate	d transit t	ine to the	Schuylkill	River of 1	94 years, the activi	ty at releas		1		N	<	1
		would be 0.4	121 MPCs.			and the second		an and an an and					$ ^{\sim} $	00	1
		notcable contri	button at the A	the activit	y would be	dominated by	y Sr-90.	ce-137, though shows	above as m	sking a	1				
												F		Ι.	T
											1	1		-	
													1	2	P
												1 1	0	140	31
														Tor D	1.7

DATE

CHK'D

		GENERAL	1.	CALCU	JLATION SE	T NO.	REV.	COMP. BY	CHK'D. B
ngineers &	Constructors	COMPUTATION SHEET	-		-526			MOK	TEN
LIMI	RICK GENERATING	STATION - UNITS 1 & 2 DING POND AND SPRAY	POND		X			1/10/95	11 -10-4
DET	ERMINE WORST CA	SE RADIOLOGICAL IMPA	ACTS OF SI	HEET	17 OF	22		DATE	OATE
BJECT BAS	INS, HOLDING PONI	D, AND SPRAY POND, A	S FILL J.	0. 71	98.600			SAIL	
TABLE 3 -	ASSESSMENT O LGS COOLING ASSUMING THA [OCCUPATIONA	F DOSE RATE ABOVE TOWER BASIN, SPRA T ALL ISOTOPES AF L DOSE ASSESSMENT	SOIL TAKEN Y POND, & H RE AT SOLIDS	FROM T	TH E 3 Pond, ITY LIM	IT ¥¥			
	Solids								
	Activity		External	4.1		- A-	Inhal	ation	
Nuclide	Limits	*	Dose Rate				Dose	Rate	
Fe-55	lE-05	0.005+00	mrem/hr		7 768 1		mren	1/hr	- 11 L
Mn-54	58-06	2 768-17	3.08-03		1.20E-1	0	1.68	-08	
Co-58	58-06	3 105-17	3.02-03		1.816-0	9	2.01	-08	
Fe-59	58-06	1.00E-17	3.5E-03		2.94E-0	9	3.3E	-08	
Co-60	58-06	9.602.17	4.48-03		4.00E-0	9	4.4E	-08	
20-65	58-06	1 098-17	9.4E-03		5.91E-0	8	6.6E	-07	
Sr-89	55-07	1.905-17	2.1E-03		5.51E-0	9	6.1E	-08	
Sr-90	58-07	4.00L-20	5.3E-07		1.12E-0	8	1.2E	-08	
Mo-99	58-06	4.758-10	4.1E-08		3.51E-0		3.9E	-07	
Ce-134	58-06	5 078-17	5.16-04		1.072-0	9	1.28	-08	
Ce-137	58-06	1.078-17	5.56-03		1.25E-0	8	1.48	-07	
Ce=141	58-06	1.708-18	1.98-04		8.03E-0	9	9.68	-08	1/2
Ce-144	5E-06	3.84E-19	4.2E-05		1.01E-0	7	1.15	-08	-
			,			<u> </u>	* • * *		
		Total =	3.1E-02	T	otal =		2.6E	-06	
*	from FGR Repo (use highest Dose assumes This correspond Soil Volume S from FGR Repo contaminated	rt 11 [Ref. 11], effective value (dust loading over nds to conditions ource External Do rt 12 [Ref. 12] T to an infinite de	Table 2.1. (from D,W,Y of pile of 5E- where soil ose Rate Conv Table III.7 f opth. (Sv/sec	Sv/Bq (lass) 4 gm/(is be) (ersion for so: 5 per 1	inhale cu. met ing wor) n Factor il 3q/m^3)	d) er. ked. rs			

FORM 5007 REV 4/91

Raytheon Engineers & Constructors

	CALC	JLATION SE	T NO.	REV.	COMP. BY	CHK'D. BY
	LM-526				RTR	TEN
2	PRELIM.	FINAL	VOID	2	11/8/95	DATE
ACTS OF	SHEET	18 OF	22		DATE	
S FILL	J.O. 71	98.600			UATE	DATE

PROJECT	LIMERICK GENERATING STATION - UNITS 1 & 2 COOLING TOWER, HOLDING POND AND SPRAY POND
SUBJECT	DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF USING SOLIDS, TAKEN FROM THE COOLING TOWER BASINS, HOLDING POND, AND SPRAY POND, AS FILL

GENERAL COMPUTATION SHEET

Lvity aits T 1 (dry) (yr -05 0. -06 0. -06 0. -06 5	e 15 1 /2 Resid s) Scen 2.7 1.1 856 1.2 194 2.5 122 3.2	nrem/yr ential ario# 1E+04 2E+01	0 (yrs) 1.4E-02	Decay 10 (yrs) 1.0E-03.	Time 20 (yrs)	30 (yrs)
aits T 1 (dry) (yr -05 0. -06 0. -06 0. -06 5	/2 Resid s) Scen 2.7 1.1 856 1.2 194 2.5 122 3.2	ential ario# 1E+04 2E+01	0 (yrs) 1.4E-02	10 (yrs) 1.0E-03.	20 (yrs)	30 (YES)
-05 -06 0. -06 0. -06 0. -06 5	B) Scen 2.7 1.1 856 1.2 194 2.5 122 3.2	ario# 1E+04 2E+01	(yrs) 1.4E-02	(YTS) 1.0E-03.	(yrs)	(958)
-05 -06 0. -06 0. -06 0.	2.7 1.1 856 1.2 194 2.5 122 3.2	1E+04 2E+01	1.4E-02	1.0E-03.	0.00	170.00 1
-06 0. -06 0. -06 5	856 1.2 194 2.5 122 3.2	2E+01			8.0E-05	5.1F-06
-06 0. -06 0. -06 5	194 2.5 122 3.2		6.1E+00	1.95-03	5.7E-07	1 78 10
-06 0. -06 5	122 3.2	7E+01	2.95+00	8.9E-16	2.78-31	0 75 47
-06 5		0E+01	2.3E+00	5.0E-25	1.05-49	0.22-4/
	.27 2.9	7E+00 ·	2.5E+01	6.8E+00	1 88+00	4.0E-14
-06 0.	688 1.2.	2E+01	6.1E+00	2.68-04	1 12 09	4.92-01
-07 0.	138 2.5	4E+03 .	3.05-03	4.58-25	7 05 47	4.06-13
-07 29	.12 1.1	4E+01	6.6E-01	5 28-01	1 18 01	1.12-08
E-13 2.13E	+05 5.2	E+01	5.28-08	5 28 08	4.1E-01	3.2E-01
-06 2	.06 4.9	0E+00	1.55+01	5 38 01	1 88 03	5.2E-08
-06	30 1.0	7E+01	7.08+00	5.58-01	1.02-02	5.3E-04
-06 0.1	8.8	E+02	8 58-02	1 38 35	4.42+00	3.58+00
-06 0.	778 1.5	2E+02	4.9E-01	6.7E-05	9.0E-09	1.2E-12
		Totals =	66	13	6.7	4.3
	E-13 2.13E -06 2 -06 2 -06 0.1 -06 0.1 -06 0.1	E-13 2.13E+05 5.24 -06 2.06 4.96 -06 30 1.01 -06 0.089 8.85 -06 0.778 1.52	E-13 2.13E+05 5.24E+01 -06 2.06 4.90E+00 -06 30 1.07E+01 -06 0.089 8.81E+02 -06 0.778 1.52E+02 Totals = E Equivalance Factors for Residenti	E-13 2.13E+05 5.24E+01 6.6E-01 -06 2.06 4.90E+00 1.5E+01 -06 30 1.07E+01 7.0E+00 -06 0.089 8.81E+02 8.5E-02 -06 0.778 1.52E+02 4.9E-01 Totals = 66 e Equivalance Factors for Residential Use (S	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

* see page as for farmulae 905, 113195 11/13/95 FORM 5007 REV. 4/91

Raytheon		GENERAL	CALCULATION SET NO.			REV.	COMP. BY	CHK'D. BY
		COMPUTATION					PAR	TEN
en sfin se o	ra de conservicions	SHEET	PRELIM.	FINAL	VOID	2	DATE	DATE
LIMERICK GENERATIN		STATION - UNITS 1 & 2	1	×			11/9/95	11-10-91
PHOJECT	DETERMINE WORST CA	SE RADIOLOGICAL IMPACTS OF	SHEET	19 OF	22		DATE	DATE
SUBJECT	BASINS, HOLDING PON	FROM THE COOLING TOWER	J.O. 71	98.600		1	CAIL	DATE
1.5.1.1.1								

TABLE 5 is Deleted in Rev. 2, since Residential Use Scenario is more limiting than a Drinking Water Scenario

2

FORM 5007 REV 4 91

Ravtheon	GENERAL	CALCU	JLATION
IST ALL OF	COMPUTATION	LM	-526
Engeneers & Constructors	SHEET	PRELIM.	FINAL
LINEDICK CENEDATING	STATION UNITE 1 8 2		×

PROJECT	COOLING TOWER, HOLDING POND AND SPRAY POND
	DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF
	USING SOLIDS, TAKEN FROM THE COOLING TOWER
SUBJECT	BASINS, HOLDING POND, AND SPRAY POND, AS FILL

CALCULATION SET NO.		REV.	COMP. BY	CHK'D BY	
			PTR	VIIIS	
PRELIM.	FINAL	VOID	1	1/21/95	2/23/95
SHEET 20 OF 22				DATE	DATE
J.o. 7198.600					

TABLE 6 -	RUNOFF BORNE	RADIOACTIV	ITY CONCENTRA	TIONS	
1.46E+07	= SOLIDS IN	RUNOFF (gm	n/yr)		
1.402+09	= RUNDFF (m1/yr)				
	Activity	ADD D	Runoit		
Muglide	Timita	Wator	Conc	Franklin	
NUCIIde	Limits	water	conc.	Fraction	
	uC1/g(dry)	uC1/m1	uC1/ml	of Limit	
Fe-55	1E-05	1E - 04	1.0E-07	1.0E-03	
Mn-54	5E-06	3E-05	5.0E-08	1.7E-03	
Co-58	5E-06	2E-05	5.0E-08	2.5E-03	
Fe-59	5E-06	1E-05	5.0E-08	5.0E-03	
Co-60	5E-06	3E-06	5.0E-08	1.7E-02	
Zn-65	5E-06	5E-06	5.0E-08	1.0E-02	
Sr-89	5E-07	8E-06	5.0E-09	6.3E-04	
Sr-90	5E-07	5E-07	5.0E-09	1.0E-02	
Mo-99	5E-06	2E-05	5.0E-08	2.5E-03	
Cs-134	5E-06	9E-07	5.0E-08	5.6E-02	
Cs-137	5E-06	1E-06	5.0E-08	5.0E-02	
Ce-141	5E-06	3E-05	5.0E-08	1.7E-03	
Ce-144	5E-06	3E-06	5.0E-08	1.7E-02	
			Total =	1.7E-01	

A

ORM 5007 REV. 4/91 CALCULATION SET NO. REV COMP. BY CHK'D. BY GENERAL Ravmeon LM-526 COMPUTATION PAR TSN Engineers & Constructors DATE 11/8/2S SHEET VOID 2 PRELIM. FINAL LIMERICK GENERATING STATION - UNITS 1 & 2 COOLING TOWER, HOLDING POND AND SPRAY POND X PROJECT 21 OF 22 DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SHEET DATE DATE USING SOLIDS, TAKEN FROM THE COOLING TOWER J.o. 7198.600 SUBJECT BASINS, HOLDING POND, AND SPRAY POND, AS FILI EQUATIONS FOR TABLES (SPREADSHEETS) 1A 6 TADIE Column 5's Solids Act. Lat [mil] + Airborne 1x10" m + 10" [m] IA Air Limit (Col. 3) [mLi] TAble 13 Column 3: Solids Act Lat [mai] + 2.4/x10 [m] + 10 [Li] All data and equations used are as referenced to TABLE 2AL Attachment 3 TABLE 2B Column 5: - Leach Rate [+] - Im 2 [+] Column 6: Solids Act. Limit [wei] + 1.95 [m] + 1.98+10 [=] Column 7: Column & Value [uCi] * Set * Col. 5 Column 9: Column 7[" (i] + Lench Rate (Col 3)[]-] Column 10 - obvious. - 155 x lm2 Column 11° Column 9 [unitless] * e A

ORM 8007 REV 4/9 CALCULATION SET NO REV COMP. BY CHK'D. BY GENERAL Bavtheon COMPUTATION LM-526 PVR TSN **Engineers & Constructors** SHEET PRELIM FINAL VOID 2 DATE DATE 11/8/95 -10-45 LIMERICK GENERATING STATION - UNITS 1 & 2 PROJECT COOLING TOWER, HOLDING POND AND SPRAY POND X 22 OF 22 DETERMINE WORST CASE RADIOLOGICAL IMPACTS OF SHEET DATE DATE USING SOLIDS, TAKEN FROM THE COOLING TOWER SUBJECT BASINS, HOLDING POND, AND SPRAY POND, AS FIL 1.0. 7198.600 EQUATIONS FOR TABLES (SPREADSHEETS) 1A-6, cont'd Table 3 Solids Ad Lat [aci] * Col. 3 [Sec By] * 3600[aci] * 24 hr x 10 [aci] Column H: * 2.505 ×10° [to convert from Sum? To mrem - gm] Ret. 7 day By to he pli frable = dose rate in mrem Column 6: Solids Act. Lat [4 Col. 5 [Bg inhaled] * 5×10 4 20 + 3.7×10 Bo + 10 51 = dose rate in meen *1.2= (Breathing Rate from Ret 7, Tableb. 23 TABLE 4 2 (not shown) = decay constant = In2 Column 5: Solid , Act. Lont. [m Ci] * 10 [m Ci] / Col. 4 [PCi/gm] = ANNUM lose [mrem] A Column 6;7;8: Column 5 [mrem] * e - 2 + denytime Note: Columny must be divided by 15 (see units) to yield annual dose in mrem. TABLE 5 deleted by Rev. 2. THBLE 61 At 170 by weight in solids, the runosfactivity Column 4: would be 170 of the Solids Activity Limit. Column 5: Simply the runost Activity divided by the 10 crago LIMIT