NUREG/CR-4554 UCID-20674 Vol. 3, Rev. 1

# SCANS (Shipping Cask ANalysis System) A Microcomputer Based Analysis System for Shipping Cask Design Review

Theory Manual (Lead Slump in Impact Analysis and Verification of Impact Auropes)

Prepared by R. C. Churs, T. Lo, G. C. Mok, M. C. Witte

Lawriner Livermore National Laboratory

Prepared for U.S. Nuclear Regulatory Commission



#### AVAILABILITY NOTICE

#### Availability of Reference Materials Clied in NRC Public ations

Most documente ofted in NRC publications will be svalable from one A five following sources:

- 1. The NRC Public Document Room, 2120 . Street, NW., Lovier Level, Washington, D.C. 20555.
- 2. The Superintendent of Decuments, U.S. Government Printing Office, P.O. Box 37352, Washington, CO 1295-7082
- 3. The Mational Tachinost Information Service, Furinghold, VA 22101

 Itrough the listing that follows represents Pile majority of documents blied in NRC publications, it is not intended to be extensions.

Auterences documents available for expection and capving for a fee from the NRC Fublic Document Room, anciedo NRC correspondence are interner IRC memorande, NRC builetins, obsulars, information notices, respectfor and involtigation rudens: licensee avent reports, vendor reports and correspondence, Commission papers, and epistomr, and internet documents and correspondence.

The following docy whits in the NUREC series are available for purchase from the GPD Sales Program formal NRC stall domination reports. NRC-sponenrod conference proceedings, international agreement reports, grinic sublications, and NRC booklets and brochures. Also evaluate are regulatory guides, NRC regulatoria in the Coris of Petheral Regulations, and Nucleor Regulatory Commission Issuences.

Scourcens eventeble from the National Yestwick enformation Service include NUREG-series reports and technical reports prepared by other Faderial agencies and reports prepared by the Atumic Energy Commisaion, fore-unare agency to the Nuclear Regulatory Commission.

Domenants available from public and special technical Revenue include all open literature have, such as brocks, keynal articles, and transactions. Federal Register notices, Rederal and State legislation, and congressional concerts can usually be obtained from those storates.

Recipionts such as theses, disconstions, foreign reports and translations, and non NRC contensities processings are systable for purchase from the organization sponsiting the publication ofted.

Single copies of 6RC draft reports are available free, to the extent of supply, upon written requires to the Office of Administration, Distribution and Met Bervices Section, U.R. Nucleur Regulatory Conversion, Wearington, DC 20555.

Copies of meastry orders and standards used in a substantive manner in the NRC regulatory process are membered at the NRC Library. 7920 Norfelt Avenue, Bethesda, Mary and for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or. If they are American flational Standards, from the American Standards Institute. 1430 Broadway, New York, NY, 16218.

#### DISCLASSER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government not any agency theraot, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or resp. Hability for any third party's use, or the results of such use, of any information, appendue, product or process disclosed in this report, or represents that its use by such their party wound not instringe privately prime rights.

NUREG/CR-4554 UCID-20674 Vol. 3, Rev. 1

# SCANS (Shipping Cask ANalysis System) A Microcomputer Based Analysis System for Shipping Cask Design Review

Theory Manual (Lead Slump in Impact Analysis and Verification of Impact Analysis)

Manuscript Completed: June 1991 Date Published: February 1992

Prepared by R. C. Chun, T. Lo, G. C. Mok, M. C. Witte

Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550

Prepared for Division of Safeguards and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN A0291

#### ABSTRACT

A computer system called SCANS (Shipping Cask ANalysis System) has been developed for the staff of the U.S. Nuclear Regulatory Commission to perform confirmatory licensing review analyses. SCANS can handle problems associated with impact, heat transfer, thermal stress, and pressure. A new methodology was developed to allow SCANS to analyze the lead slump behavior of lead-shielded casks during a postulated impact with an unyielding surface.

The methodology is an expansion of the existing lumped-parameter impact analysis method. In the new methodology, it is assumed that the lead and the steel cylinders are not bonded as opposed to the existing bonded-lead assumption. The lead shield is allowed to slide freely relative to the steel cylinders and interact with the steel cylinders only in the radial direction of the shipping cask.

The interface pressure between the lead and the steel, the hoop stress in the steel shells, and the reduction in shielding are among items that can be calculated. The adequacy of this lead slump methodology is established by comparing results with those obtained from rigorous finite element analyses and from cask impact tests.

The lead slump methodology described in this revision (Rev. 1) of the report is an improved version of the method documented in the original report. The main improvement is in the modeling of the lead behavior. To minimize mathematical difficulty and development cost, the lead was formerly treated as an elastic material with an effective modulus which was tuned to account for the effect of plastic deformation occurring in a cask drop. Although this method gave satisfactory results for 30-ft accident drops, it produced overconservative predictions for 1- to 4-ft normal drops. Thus, the present revision of the method was undertaken to improve the range of applicability of the method. In the improved method described in this report, the lead is trea\*ed as an elastic-plastic material and the actual elastic-plastic properties of lead are used instead.

# **FABLE OF CONTENTS**

|      |        | 이 같은 것 같은 것은 것은 것은 것은 것을 가지 않는 것 같이 있는 것 같이 없다.              | Page |
|------|--------|--------------------------------------------------------------|------|
| Absi | ract   |                                                              | iii  |
| List | of Fig | ures                                                         | vii  |
| List | of Tal | bles                                                         | viii |
| Fore | word   |                                                              | ix   |
| Ack  | nowl   | edgments                                                     | x    |
| Exec | outive | Summary                                                      | xi   |
| 1.0  | Intro  | duction                                                      | 1    |
|      | 1.1    | Background                                                   | 1    |
|      | 1.2    | Objective                                                    | 4    |
| 2.0  | Gen    | eral Description of Method of Analysis                       | 5    |
|      | 2.1    | Impact Analysis of a Cask with Donded-Lead Assumption        | 5    |
|      | 2.2    | Lead-Steel Interaction                                       | 12   |
| 3.0  | Theo   | oretical Prerequisites                                       | 15   |
|      | 3.1    | Kinematics                                                   | 15   |
|      |        | 3.1.1 Kinematics of Thin Steel Shells                        | 15   |
|      |        | 3.1.2 Lea <sup>4</sup> Kinematics                            | 15   |
|      |        | 3.1.3 Strain Relationships Between Lead and Steel            | 16   |
|      | 3.2    | Equilibrium Equations                                        | 17   |
|      |        | 3.2.1 Lead Equilibrium                                       | 17   |
|      |        | 3.2.2 Equilibrium of Thin Steel Shells                       | 18   |
|      | 3.3    | Stress-Strain Relationships                                  | 19   |
|      |        | 3.3.1 Elastic Stress-Strain Relationships                    | 19   |
|      |        | 3.3.2 Yield Condition of Lead                                | 20   |
|      |        | 3.3.3 Plastic Stress-Strain Relationships of Lead.           | 22   |
| 4.0  | Form   | nulation and Analysis of Lead Slump                          | 24   |
|      | 4.1    | Element Internal Stresses or Forces                          | 24   |
|      |        | 4.1.1 Expression of Radial and Hoop Strains of Lead in Terms |      |
|      |        | of Axial Strains                                             | 24   |
|      |        | 4.1.2 Axial Stress and Axial Force in Lead                   | 26   |
|      |        | 4.1.3 Axial Stress and Axial Force in Steel Shells           | 26   |
|      | 4.2    | Equations of Motion                                          | 27   |
|      | 4.3    | Solution and Back-Substitution Procedure                     | 28   |
|      | 4.4    | Boundary Conditions                                          | 29   |
|      |        |                                                              |      |

# TABLE OF CONTENTS (con't)

| 5.0         | Permane   | nt Lead Slump                                 | 35 |
|-------------|-----------|-----------------------------------------------|----|
| 6.0         | Verificat | tion of Impact Analysis Capabilities of SCANS | 36 |
| Ref         | erences.  |                                               | 54 |
| App         | endix A.  | SCANS' Input for Verification Problems        | 55 |
| Appendix B. |           | Additional Comparison of SCANS Results        | 71 |

# LIST OF FIGURES

|            |                                                                                                                   | Fage |
|------------|-------------------------------------------------------------------------------------------------------------------|------|
| Figure 1-1 | A typical laminated Shipping Cask and illustration of lead slump                                                  | . 2  |
| Figure 1-2 | Impact analysis of a spent fuel shipping cask                                                                     | . 3  |
| Figure 2-1 | Free body diagram of a three-mass lumped-parameter model                                                          | 6    |
| Figure 2-2 | Elements of the equation of motion                                                                                | 7    |
| Figure 2-3 | Free body diagram of a beam element in global coordinates                                                         | . 8  |
| Figure 2-4 | Free body diagram of a beam element in local coordinates                                                          | . 10 |
| Figure 2-5 | Force-deformation relationship of an impact limiter                                                               | . 11 |
| Figure 2-6 | Section property of bonded and unbonded composite beams                                                           | . 14 |
| Figure 3-1 | Stress-strain curves of lead (comparison of SCANS to published test results)                                      | . 21 |
| Figure 4-1 | Radial displacement of basic lead slump model                                                                     | . 30 |
| Figure 4-2 | Bending and shear at the edge of a clamped cylindrical shell                                                      | . 31 |
| Figure 4-3 | Displacement adjustment for simulating the effect of nonuniform radial displacement in the basic lead slump codel | . 34 |
| Figure 6-1 | A typical SCANS model of shipping cask                                                                            | . 37 |
| Figure 6-2 | Force-deformation relations of impact limiter for verification problems                                           | . 38 |
| Figure 6-3 | NIKE2D finite element model of a rail cask including impact limiters (dimensions are in inches)                   | . 44 |

# LIST OF TABLES

|             |                                                                                                                                                                                                                   | Page  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table 6-1   | Comparison of SCANS results for maximum impact limiter<br>crush and acceleration generated by impact at various angles<br>(Sample Problem 1)                                                                      | 39    |
| Table 6-2   | Comparison of SCANS results for maximum impact force/moment<br>generated by impact at varie as angles (Sample Problem 1)                                                                                          | 40    |
| Table 6-3-1 | Comparison of results for cask with bonded and unbonded lead<br>shield as obtained using the NIKE and SCANS computer programs<br>(Sample Problem 3, 90-degree impact)                                             | 42    |
| Table 6-3-2 | Comparison of results for cask with bonded and unbonded lead<br>shield as obtained using the NIKE and SCANS computer programs<br>(Sample Problem 3, 90-degree impact)                                             | 43    |
| Table 6-4-1 | Effect of Elastic, Plastic Properties of Lead on Maximum Lead Slump<br>and Principal Stresses for Cask with Unbonded Lead Shield (Comparison of<br>SCANS and NIKE results for Sample Problem 3, 90-degree Impact) | . 45a |
| Table 6-4-2 | Effect of Elastic, Plastic Properties of Lead on Maximum Lead-Slump<br>Stresses for Cask with Unbonded Lead Shield (Comparison of SCANS<br>and NIKE results for Sample Problem 3, 90-degree Impact)               | . 48  |
| Table 6-5   | Comparison of results for permanent lead slump in unbonded lead shield generated by 30-ft end drop (Sample Problem 4)                                                                                             | . 51  |
| Table 6-6   | Comparison of impact analysis results for IF300 cask<br>(Sample Problem 5)                                                                                                                                        | 52    |

.

#### FOREWORD

Lawrence Livermore National Laboratory has developed a system of computer programs to analyze radioactive-material shipping casks. This system is called SCANS (Shipping Cask ANalysis System) and is developed on an IBM-PC microcomputer for use by the staff of the U.S. Nuclear Regulatory Commission to perform confirmatory analyses in their licensing review. In its current version, SCANS can handle problems associated with impact, heat transfer, thermal stress, and pressure. This report documents a newly developed methodology which can assess the effects of lead slump of a lead-shielded shipping cask during impact with an unyielding horizontal surface.

.

#### ACKNOWLEDGMENTS

The authors wish to thank C. R. Chappell and H. W. Lee, technical monitors at the U.S. Nuclear Regulatory Commission, for their support and technical direction. The authors also thank Professor R. L. Taylor of University of California, Berkeley, and Dr. G. L. Goudreau of Lawrence Livermore National Laboratory (LLNL) for their helpful consultations. Several other LLNL personnel also contributed to this work: D. J. Trummer and M. A. Gerhard, incorporating the CRAY version of the IMPASC code into SCANS; D. L. Paquette, K. Wood, and D. Socales, editing; and J. L. Prince, M. A. Carter, S. Wilson, and S. Murray, word processing.

#### EXECUTIVE SUMMARY

Lawrence Livermore National Laboratory, under contract to the U.S. Nuclear Regulatory Commission (NRC), has developed a system of computer programs called Shipping Cask ANalysis System (SCANS) for the NRC staff to perform confirmatory licensing review analyses. In its current version, SCANS can handle problems associated with impact, heat transfer, thermal stress, and pressure. This report documents a newly developed methodology which, having been fully implemented in SCANS, can assess lead slump behavior of lead-shielded casks during impact with an essentially unyielding horizontal surface. Also presented in this report are verification results for this lead slump analysis method and for SCANS' impact analysis capabilities.

The methodology is an expansion of the existing impact analysis method and consists of two parts:

(1) The first part is essentially the same as the existing dynamic lumped-parameter impact analysis, and is used to simulate the overall behavior of the cask. In this part of the impact analysis, complete bonding between steel and lead is assumed because the lead slump is believed to have insignificant effect on the overall behavior of the cask. The locations and corresponding accelerations of lumped masses are calculated in this part of the impact analysis.

(2) The lead-steel interaction is a local behavior and is studied in the second part of the impact analysis. In this analysis, no bonding between the lead and the steel cylinders is assumed. The lead and steel shells can slide freely relative to each other.

In the first part of analysis, linear elastic behavior of the lead and the steel is assumed. However, for the second analysis the lead is treated as an elastic-plastic medium.

In the lead slump analysis, kinematic relationships between the lead and the steel shells in the radial and hoop directions are first established. The equilibrium equations and the stress-strain relationships of the lead and the steel are then formulated. By a series of complicated manipulations of these equations, the axial stresses of the lead and the steel can be expressed as functions of axial strains. As in the case of impact analysis without lead slump, the equations of motion can be solved by the central difference method.

The interface pressure between the lead and the steel, the hoop stress in the steel shells, at... the amount of shielding reduction at the opposite end of impact can be calculated in addition to a.<sup>3</sup> other results available in the existing impact analysis without lead slump.

The lead slump methodology developed here for SCANS is a simplified approach. However, as shown in this report, the method can produce results that compare closely with those of a more sophisticated finite element computer program, NIKE. The amount of shielding reduction or permanent lead slump predicted by the method also agrees with the results of an Oak Ridge test.

# SCANS (Shipping Cask ANalysis System) Volume 3--Theory Manual Lead Slump in Impact Analysis and Verification of Impact Analysis\*

#### 1.0 INTRODUCTION

#### 1.1 Background

Lawrence Livermore National Laboratory has developed a system of computer programs to analyze spent fuel shipping casks. This system is called SCANS (Shipping Cask ANalysis System) and is developed on an IBM-PC microcomputer. SCANS is intended for use by the staff of the U.S. Nuclear Regulatory Commission to perform licensing-related confirmatory analyses. In its current version, SCANS can handle problems associated with impact, heat transfer, thermal stress, and pressure. Typical configuration of a laminated cask for various analyses using SCANS is shown in Fig. 1-1.

The impact portion of SCANS is composed of two computer modules, IMPASC (IMPact Analysis of Shipping Containers) and QUASC (QUasi-static Analysis of Shipping Containers). IMPASC (Refs. 1 and 2) is based on the dynamic lumped-parameter method and is an explicit finite-element computer code. IMPASC includes one type of element—the beam element. The mass of the cask is lumped at element ends and the beam element is assumed to have no mass. The cask is modeled as an elastic composite material, but the impact limiter can have nonlinear force-deflection curves. The impact limiter is not explicitly modeled in IMPASC as finite elements, but is in the form of force-deflection curves simulating various possible initial cask impact angles with the horizontal surface.

The other SCANS module, QUASC (Ref. 2), is based on a quasi-static method of impact analysis. QUASC treats casks as slender rigid beams in estimating the maximum impact force and the associated "g" load during impact. Use of QUASC is not always recommended because of its simplifying assumptions described in Ref. 2 and in Chapter 6 of this report.

A third method of impact analysis is the dynamic finite element analysis. Because this method, which is most useful for the analysis of detailed dynamic response, usually requires many accurate finite elements and the use of a mainframe computer, it is not implemented in SCANS. The lumped-parameter method described above, which is sometimes considered to be a simplified finite element approach, uses only a few elements. The dynamic finite element method and the two impact analysis methods included in SCANS are described in detail in Refs. 1 and 2. These impact analysis methods can be summarized in a flow chart as shown in Fig. 1-2.

In the case of a lead-shielded cask with lead laminated between two concentric steel shells, a perfect bonding between the lead in-fill and the steel shells of the cask is assumed in the current version of IMPASC and QUASC. While this assumption is quite reasonable for calculating the overall behavior of the cask during impact, the bonding may not be strong enough to prevent the movement of the lead relative to the steel shells. For convenience, we will use the term "lead alump" to represent the behavior of lead movement relative to steel shells.

<sup>\*</sup>This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of Understanding with the United States Department of Energy.



ł

Figure 1-1 A typical laminated Shipping Cask and illustration of lead slump.



4

Figure 1-2 Impact analysis of a spent fuel shipping cask.

Two effects of lead slump are of interest in the design of spent fuel shipping casks. Severe lead slump in the axial direction will result in a cavity at the opposite end of impact. This cavity will reduce effectiveness of the shielding function of the lead. The other effect is the hoop stress in the steel shells caused by the interface pressure between the lead and the steel shells during lead slump. Large hoop stress is objectionable because of possible material failure or buckling of steel shells.

#### 1.2 OBJECTÍVE

A task under the framework of SCANS was started in 1986. The objective was to develop a lead slump methodology for analyzing shipping casks with laminated cylindrical side walls. This methodology will be applicable not only to the lead but also to any other shielding materials. This lead slump methodology and the current impact analysis methods in which lead and steel are assumed bonded provide the bounding cases of lead behavior for evaluating shipping casks. The result of the lead slump analysis can be used to assess the integrity of the containment system of spent fuel casks by evaluating the stress level and the buckling potential of steel shells. The work on developing a buckling analysis capability in SCANS is documented in Vol. 6 of the theory manual.

This report documents the lead slump work associated with unbonded lead, which has been implemented in both the IMPASC and QUASC modules of SCANS. The output information includes shell stresses (including hoop stress) and interface pressure due to lead slump during impact.

The lead slump methodology developed here is a simplified method for confirmatory analysis. It is not intended to replace finite element analysis in calculating local stresses of a shipping cask.

# 2.0 GENERAL DESCRIPTION OF THE METHOD OF ANALYSIS

The lead slump methodology reported here is developed under the framework of impact analysis methods of the existing SCANS. We are expanding the methodology implemented in the existing IMPASC and QUASC modules to include lead slump effects. The basic principle and formulation of lead slump for the two modules are identical. Therefore, we will detail the implementation of this method only in the IMPASC module. Readers are urged to become familiar with the existing dynamic lumped parameter method documented in Ref. 1 because the method of handling large rigid-body rotation and the explicit method of integration remain unchanged.

We believe that the amount of lead slump has insignificant effect on the spatial motion (overall behavior) of the cask. The existing impact analysis of bonded lead can still be used to calculate the spatial locations of lumped mass points of a finite-element model.

The effects of lead slump, a local phenomenon, can be handled separately but concurrently with the impact analysis. In the following section (Section 2.1), we will briefly review the impact analysis. The lead slump analysis, or local impact analysis, will be described briefly in Section 2.2 and in greater detail in the remaining chapters of this report.

# 2.1 Impact Analysis of a Cask with Bonded-Lead Assumption

The impact analysis of a shipping cask without considering lead slump is documented in Ref. 1. The equation of motion has the following form:

$$[M] \{ \hat{X} \} = \{ F \} - \{ P \}, \qquad (2-1)$$

where [M] is the mass matrix of the lumped mass dynamic analysis model,  $\{P\}$  is the internal force vector of finite elements, and  $\{F\}$  is the external force vectors acting on lumped masses. The external force includes the gravitational force and the reaction force of the impact limiter. There are three degrees of freedom at each lumped mass point. A dynamic analysis model with three lumped mass points is shown in Fig. 2-1 to illustrate various parts of Eq. (2-1). For a dynamic analysis model with n lumped masses, [M],  $\{X\}$ ,  $\{P\}$ , and  $\{F\}$  can be expressed as shown in Fig. 2-2.

For a typical beam element k, shown in Fig. 2-3, the internal force vector  $\{p^k\}$  has six components, three at each end of the beam element:

-5-

$$\{p^k\} = \left\{ \begin{array}{c} p_{ix}^k \\ p_{iy}^k \\ p_{i\theta}^k \\ p_{jx}^k \\ p_{jy}^k \\ p_{j\theta}^k \end{array} \right\} . \tag{2-2}$$



Figure 2-1 Free boay diagram of a three-mass lumped-parameter model.



-7-

24



Figure 2-3 Free body diagram of a beam element in global coordinates.

The notations are shown in Fig. 2-1. These six components of  $(p^k)$  can be expressed in terms of four components of the generalized forces of the beam element in local coordinates (Fig. 2-4):

$$\{p^k\} = \begin{cases} -R\cos\alpha - V\sin\alpha \\ -R\sin\alpha + V\cos\alpha \\ M_i \\ R\cos\alpha + V\sin\alpha \\ R\sin\alpha - V\cos\alpha \\ M_i \end{cases}$$
 (2-3)

In the above formulation, R is the axial force, V is the shear force, and  $M_i$  and  $M_j$  are the end moments of the beam element. These generalized forces R, V,  $M_i$ , and  $M_j$  can be calculated using the following formulae (Ref. 3):

$$R = AE(L - L_o)/L_o, \qquad (2-4)$$

$$\begin{bmatrix} M_i \\ M_j \end{bmatrix} = \begin{bmatrix} EI/L(1+\phi) \end{bmatrix} \begin{bmatrix} 4+\phi & 2-\phi \\ 2-\phi & 4+\phi \end{bmatrix} \begin{bmatrix} \beta_i \\ \beta_j \end{bmatrix},$$
(2-5)

$$V = (M_i + M_i)/L_{,}$$
(2-6)

where

- A = the cross-sectional area of the beam,
- E = Young's modulus,
- I = moment of inertia of the beam cross section,
- $L_0 = original length of the beam element,$
- L = current chord length of the beam element,
- $\beta_i$  = chord deflections at the ends of the beam element,

$$\phi = 12 \text{EI/GA}_{s} L^{2} = 24(1+v)(\text{EI})/\text{EA}_{s} L^{2},$$

- G = shear modulus
- v = Poisson's ratio, and
- $A_s =$  effective shear area of the beam cross section.

The impact limiter force-deflection curve is modeled by a piece-wise linear function as shown in Fig. 2-5.

Equation 2-1 can be solved by the method of central difference. This integration method is documented in detail in Ref. 1.







Figure 2-5 Force-deformation relationship or an impact limiter.

#### 2.2 Lead-Steel Interaction

The loading on the cask during an oblique impact can be decomposed into axial and transverse components. End-on impact is a special case of oblique impact in which the transverse component is nil. Side impact is another special case of oblique impact. Bending due to transverse impact load is the dominant mode of failure; and no axial impact load is associated with side impact.

The axial component of loading can cause axial slumping of lead and create a cavity at the opposite end of impact. Loading in the axial direction  $i \rightarrow causes$  an interface pressure to develop between the lead and the steel shells due to axisymmetric slumping of the lead.

Compared to the axial component, the transverse impact load will have insignificant effects in terms of cavity and interface pressure creation. A cavity forming between the steel shells and the lead along the length of the cask is extremely unlikely because of the large flexibility of the lead and the steel shells in the transverse direction.

Because the transverse impact load on lead slump is insignificant, it is not considered in calculating the amouzt of lead slump. Thus, lead slump because of the axial loading component becomes the core of this lead slump methodology. Equations of motion of lead and steel in the axial direction are developed to simulate local lead and steel behavior. These axial equations of motion are in addition to those of impact analysis for bonded lead, which simulate the overall behavior of the cask. The combined equations of motion can be expressed in the following form:

$$\begin{bmatrix} M & o & o \\ o & M^{S} & o \\ o & o & M^{L} \end{bmatrix} \begin{bmatrix} \ddot{X} \\ \ddot{z}^{S} \\ \vdots \\ z^{L} \end{bmatrix} + \begin{cases} P \\ P_{z}^{S} \\ P_{z}^{L} \end{bmatrix} = \begin{cases} F \\ F_{z}^{S} \\ F_{z}^{L} \end{cases}, \quad (2-7)$$

where z is a local axial coordinate which moves along with the global coordinate X of the cask. In other words, X represents the global location of lumped-mass points, and z represents the local deformation of lead and steel shells in the axial direction in studying lead clump effects. The superscripts, S and L, represent steel and lead, respectively. Whereas the axial deformation as calculated in global coordinate X is used to calculate axial stresses, it is replaced by  $z^S$  and  $z^L$  in calculating impact with lead slump.

To study lead slump in the axial direction, the steel linings of the cask are assumed to be thin elastic shells and the lead is modeled as a linear elastic and work-hardening plastic medium. In this approach, the amount of lead slump is equal to the permanent plastic deformation of the lead column.

Using the equilibrium equations, the kinematics, and the stress-strain laws of steel and lead, the radial and the hoop strains of the lead can be expressed as the axial strains of the lead and the steel. In so doing, the internal force term in the axial equations of motion of lead and steel can be expressed as functions of axial deformations alone by eliminating all radial and hoop strains. The beauty of this mathematical manipulation is that the internal force term can be calculated easily in the central difference method of integration because the axial deformation, which is the integration variable, is the only information needed. The detail of the mathematical derivation is presented in Chapters 3 and 4 of this report.

The major lead slump effects that remain to be addressed are shear stress due to transverse impact force and normal stress due to the bending effect of this transverse force. Because no bonding is assumed between the lead and the steel, the cask needs to be concentred by two steel beams and a lead beam constrained to move together in the transverse concention at every point along the full length of the cask. These beams have the same curvature but are allowed to slide relative to each other in the axial direction.

Because these three beams are concentric and have the same neutral axis under bending, points on a plane section cut across these beams before bending will remain on a single plane after bending. Under this situation, these three beams are acting like a single composite beam whether bonded or not. Figure 2-6 further demonstrates the validity of a composite beam approach.

The shear stress distributions on these beams have the same shape. Maximum shear stresses of different values occur at the neutral axis of these beams. However, the beams all have zero shear at the top and the bottom of their respective cross sections. Interface forces develop between the steel shells and the lead due to the transverse impact force. However, these interface forces are small and can be ignored in evaluating lead slump as described earlier in this chapter.

In short, the lead slump problem during impact can be analyzed by considering axial and transverse loads separately. A methodology has been developed to study lead slump effects due to axial impact load. The reduction in shielding as the opposite end of the cask impact will be estimated. The interface pressure between the lead and the steel shells will also be calculated. The effects on lead slump due to transverse impact load will be ignored. In the transverse direction, the cask will be treated as a single composite beam. Tangential (or transverse in-plane) shear stress and normal stress in the steel shells due to bending can be calculated easily.

The effects of lead slump on steel shells will be more severe in an end-on impact than at any other cask orientation. This is because during an end-on impact, the inertial force is in the direction of lead flow. Lead slump in the secondary impact is also expected to be much less severe than in the primary impact. Thus, lead slump analysis for secondary impact will not be included in SCANS.

Details of the lead slump analysis are presented in the following two chapters. Boundary conditions of steel shells are discussed in Chapter 5, and validation of the lead slump methodology is presented in Chapter <sup>6</sup>



All three cylinders have the same deformed shape.



#### 3.0 THEORETIC/L PREREQUISITES

### 3.1 Kinematics

#### 3.1.1 Kinematics of Thin Steel Shells

In the lumped-parameter method of impact analysis the cask is divided into finite elements along the cask axis. The primary step in the lead slump at alysis is to calculate the axial positions of the steel and head of individual elements,  $z^{S}$  and  $z^{L}$ , where z is the axial displacement, and the superscripts S and L refer to steel and lead, respectively.

From our basic assumption of equal end displacements of inner and outer shells, we have the following relationship for strains in the axial direction:

$$\varepsilon_{z}^{i} = \varepsilon_{z}^{0} = \varepsilon_{z}^{S} , \qquad (3-1)$$

where the superscripts i and o refer to inner and outer steel shells, respectively, and the subscript z refers to the direction of strain.

Hoop strains of inner and outer steel shells can be found from the displacements in the radial direction, u<sup>i</sup> and u<sup>o</sup>:

$$\varepsilon_{\Theta}^{i} = \frac{u^{i}}{r^{i}} , \qquad (3-2)$$

$$\varepsilon_{\theta}^{o} = \frac{u^{o}}{r^{o}} \quad (3-3)$$

The radial strain is no. zero, but can be condensed out in a thin shell theory. See Section 3.3.2 for details. The axial strain is just the ratio of the change of the axial length to the original length of the steel shells.

#### 3.1.2 Lead Kinematics

The lead is assumed to be an electic medium. The axial strain can be calculated as the ratio of the change of the axial length to the original length of the lead in a particular element. The strains in radial and hoop directions can be expressed in terms of radial displacements of the inner and outer steel shells, u<sup>i</sup> and u<sup>o</sup>:

$$\epsilon_{\rm r}^{\rm L} = \frac{{\rm d}u}{{\rm d}r} = \frac{{\rm u}^{\rm o}-{\rm u}^{\rm i}}{r^{\rm o}-r^{\rm i}} = \frac{{\rm u}^{\rm o}-{\rm u}^{\rm i}}{r^{\rm L}} \,, \qquad (3{-}4)$$

$$\varepsilon_{\theta}^{L} = \frac{u}{r} = \frac{u^{o} + u^{i}}{2r^{L}}$$
, (3-5)

where r is the radial position, and t is the thickness of the lead:

$$r^{0} = r^{0} - r^{1}$$
, (3-6)

$$r^{\rm L} = \frac{1}{2} (r^{\rm o} + r^{\rm i})$$
 (3-7)

Expressing displacements in terms of strains, the lead kinematic relationships (Eqs. 3-4 and 3-5) can be rewritten as:

$$u^{o} = r^{L} \varepsilon_{\theta}^{L} + \frac{1}{2} t^{L} \varepsilon_{\tau}^{L} , \qquad (3-8)$$

$$u^{i} = r^{L} \varepsilon_{\theta}^{L} - \frac{1}{2} t^{L} \varepsilon_{\tau}^{L} . \qquad (3-9)$$

# 3.1.3 Strain Relationships Between Lead and Steel

Substituting Eqs. 3-8 and 3-9 for Eqs. 3-2 and 3-3, we obtain the relationships between the strains in lead and steel:

$$\varepsilon_{\theta}^{i} = \frac{r^{L}}{r^{i}} \varepsilon_{\theta}^{L} - \frac{1}{2} \frac{t^{L}}{r^{i}} \varepsilon_{r}^{L} , \qquad (3-10)$$

$$\varepsilon_{\theta}^{\circ} = \frac{r^{L}}{r^{\circ}} \varepsilon_{\theta}^{L} + \frac{1}{2} \frac{t^{L}}{r^{\circ}} \varepsilon_{r}^{L} . \qquad (3-11)$$

# 3.2 Equilibrium Equations

# 3.2.1 Lead Equilibrium

Consider the equilibrium of a lead element subjected to a virtual displacement in the axial direction:

$$(2\pi r^{i}h)(p^{i})(\delta u^{i}) + (2\pi r^{o}h)(p^{o})(-\delta u^{o}) + p_{z}^{L}(\delta u_{z}^{T} - \delta u_{z}^{B}) = \int_{V} (\sigma_{j}^{L}\delta \varepsilon_{j}^{L}) dv , \qquad (3-12)$$

where

- h = length of the lead element,
- $u_z^T$  = axial displacement at the top of the lead element,
- $u_z^B$  = axial displacement at the bottom of the lead element,
- $P_z^L$  = axial force on the lead element,
- $p^i$  = pressure on the inside surface of the lead element.
- $p^{O}$  = pressure on the outside surface of the lead element.

Since

$$\delta u_z^T - \delta u_z^B = h \delta \varepsilon_z^L , \qquad (3-13)$$

and from Eqs. 3-8 and 3-9,

$$\delta u^{o} = r^{L} \delta \varepsilon_{\theta}^{L} + \frac{1}{2} t^{L} \delta \varepsilon_{\tau}^{L} , \qquad (3-14)$$

$$\delta u^{i} = r^{L} \delta \varepsilon_{\theta}^{L} - \frac{1}{2} t^{L} \delta \varepsilon_{\tau}^{L} , \qquad (3-15)$$

we obtain the following three equations for the lead from Eq. 3-12 because  $\delta \varepsilon_{\tau}^{L}$ ,  $\delta \varepsilon_{\theta}^{L}$ , and  $\delta \varepsilon_{z}^{L}$  are arbitrary variables:

$$\sigma_{\rm r}^{\rm L} = -\frac{({\rm p}^{\rm i}{\rm r}^{\rm i} + {\rm p}^{\rm o}{\rm r}^{\rm o})}{2{\rm r}^{\rm L}} , \qquad (3-16)$$

$$\sigma_{\theta}^{L} = -\frac{(p^{i}r^{i} - p^{o}r^{o})}{t^{L}}, \qquad (3-17)$$

$$\sigma_z^L = -\frac{P_z^L}{A^L} , \qquad (3-18)$$

where A<sup>L</sup> is the cross-sectional area of the lead.

# 3.2.2 Equilibrium of Thin Steel Shells

The following simple equilibrium equations of circular cylinders under external or internal pressure are applicable to the inner and outer steel shells:

$$\sigma_{\theta}^{i} = -\frac{p^{i}r^{i}}{r^{i}} , \qquad (3-19)$$

$$\sigma_{\theta}^{o} = \frac{p^{o}r^{o}}{t^{o}} . \qquad (3-20)$$

Writing the above equations in another format, we have:

$$p^{i} = - \frac{t^{i}}{r^{i}} \sigma_{\theta}^{i} , \qquad (3-21)$$

$$p^{\circ} = -\frac{t^{\circ}}{r^{\circ}} \sigma_{\theta}^{\circ} . \qquad (3-22)$$

#### 3.3 Stress-Strain Relationships

As described in Chapter 2, the lead is treated as an elastic-plastic medium. Its stress-strain relationships consist of three parts, namely, a yield condition to determine when the plastic flow appears, and two sets of stress-strain relationships for the elastic and plastic deformations, respectively. For the elastic steel shells, only the elastic relationships are needed. Hooke's law is used for the elastic relationships. The von Mises criterion of yielding is used for the yield condition, and the Prandtl-Reuss flow rule is used as the stress-strain relationships for the plastic deformation (P.efs. 10 and 11).

#### 3.3.1 Elastic Stress-Strain Relationships

Generalized Hooke's law for a homogeneous isotopic medium can be written in the following form:

$$s_{ij} = \left(K - \frac{2}{3}G\right)\varepsilon_{aa}\delta_{ij} + 2G\varepsilon_{ij}.$$
(3-23)

where K and G are the bulk and shear moduli of the material, respectively. K and G are related to the Young's modulus E and the Poisson's ratio v of the material through the following relationships:

$$K = \frac{E}{3(1-2v)} . (3-24)$$

$$G = \frac{E}{2(1+v)}$$
 (3-25)

Applying Eq. 3-23 to the lead of the cask, we have the following elastic stress-strain relationships for lead:

$$\sigma_{r}^{L} = \left[\frac{E_{L}(1-v_{L})}{(1+v_{L})(1-2v_{L})}\right]\varepsilon_{r}^{L} + v_{L}\left[\frac{E_{L}}{(1+v_{L})(1-2v_{L})}\right]\varepsilon_{\theta}^{L} + v_{L}\left[\frac{E_{L}}{(1+v_{L})(1-2v_{L})}\right]\varepsilon_{z}^{L}, (3-26)$$

$$\sigma_{\theta}^{L} = v_{L} \left[ \frac{E_{L}}{(1+v_{L})(1-2v_{L})} \right] \varepsilon_{\tau}^{L} + \left[ \frac{E_{L}(1-v_{L})}{(1+v_{L})(1-2v_{L})} \right] \varepsilon_{\theta}^{L} + v_{L} \left[ \frac{E_{L}}{(1+v_{L})(1-2v_{L})} \right] \varepsilon_{z}^{L}, \quad (3-27)$$

$$\sigma_{z}^{L} = v_{L} \left[ \frac{E_{L}}{(1 + v_{L})(1 - 2v_{L})} \right] \varepsilon_{t}^{L} + v_{L} \left[ \frac{E_{L}}{(1 + v_{L})(1 - 2v_{L})} \right] \varepsilon_{\theta}^{L} + \left[ \frac{E_{L}(1 - v_{L})}{(1 + v_{L})(1 - 2v_{L})} \right] \varepsilon_{z}^{L}, (3 - 28)$$

where the subscript and superscript L denotes quantities of the lead.

The same stress-strain relationships (Eq. 3-26 through 3-28) are applicable to both the inner and outer cylinders.

Since the steel cylinders are assumed to be thin shells, the radial stress is equal to zero. By condensing out the radial strain,  $\varepsilon_r$ , in the equations, we obtain the following equations for either inner or outer shells:

$$\sigma_{\theta}^{i} = \left(\frac{E_{i}}{1-v_{i}^{2}}\right)\varepsilon_{\theta}^{i} + v_{i}\left(\frac{E_{i}}{1-v_{i}^{2}}\right)\varepsilon_{z}^{i} , \qquad (3-29)$$

$$\sigma_z^i = v_i \left(\frac{E_i}{1 - v_i^2}\right) \varepsilon_{\theta}^i + \left(\frac{E_i}{1 - v_i^2}\right) \varepsilon_z^i \quad (3-30)$$

where the subscript and superscript i denote quantities of the inner shell.

#### 3.3.2 Yield Condition of Lead

Applying the von Mises criterion of yielding, the yield condition of lead can be written as follows:

$$(\sigma_{z}^{L} - \sigma_{r}^{L})^{2} + (\sigma_{r}^{L} - \sigma_{\theta}^{L})^{2} + (\sigma_{\theta}^{L} - \sigma_{z}^{L})^{2} = 2(\bar{\sigma}^{L})^{2} , \qquad (3-31)$$

where  $\delta^L$  is the equivalent stress, which is related to the equivalent plastic strain  $\tilde{e}_{p}^{L}$ ; i.e.,

$$\mathfrak{S}^{\mathrm{L}} = \mathrm{H} \left( \mathfrak{E}_{\mathrm{p}}^{\mathrm{L}} \right) \quad . \tag{3-32}$$

The same function H also relates the axial stress to the axial plastic strain in the results of a simple tension test. For the present analysis, an exponential function is used; i.e.,

$$\delta^{\rm L} = \sigma_{\rm o} \ \left( \tilde{e}_{\rm p}^{\rm L} \right)^{\rm m} + \sigma_{\rm p}^{\rm L} \ , \tag{3-33}$$

where  $\sigma_p^L$  is the proportional stress limit;  $\sigma_0$  and m are constants determined by curve fitting available stress-strain curves from simple tension or compression test. The  $\sigma_p^- \sigma_0$ , and m values used in SCANS for lead shield are 250 psi, 8500 psi, and 0.503, respectively. Figure 3-1 compares this lead stress-strain curve of SCANS to some published curves (Refs. 6 through 11). The published data shows a considerable amount of scatter which is attributable to more than a few effects. However, the dominant effect appears to be of the strain rate. The data show a general trend that at a given strain higher stresses are associated with higher strain rates. The stress-strain curves at higher stress levels are from impact tests, while the curves at lower stress levels are from quasi-static tests. Figure 3-1 also shows that the SCANS stress-strain curve is located between these two sets of data from impact and static tests. Thus using the SCANS curve for lead slump analysis will produce predictions more conservative than using the impact data but not as conservative as using the static data.





#### 3.3.3 Plastic Stress-Strain Relationships of Lead

In the plastic range, a strain increment  $d\varepsilon$  of lead is composed of an elastic component,  $(d\varepsilon)_e$ , and a plastic components,  $(d\varepsilon)_p$ . Using Hooke's law for the stress-strain relationship of the elastic deformation and the Prandtl-Reuss flow rule for the relationship of the plastic deformation, the elastic-plastic stress-strain relationships for lead can be written as follows:

$$\frac{1}{E_L} d\sigma_r^L - \frac{v_L}{E_L} d\sigma_{\theta}^L - \frac{v_L}{E_L} d\sigma_z^L + \frac{3S_r^L}{2\delta^L} d\tilde{e}_p^L = d\epsilon_r^L , \qquad (3-34)$$

$$-\frac{v_L}{E_L} d\sigma_r^L + \frac{1}{E_L} d\sigma_\theta^L - \frac{v_L}{E_L} d\sigma_z^L + \frac{3S_\theta^L}{2\sigma^L} d\tilde{e}_p^L = d\tilde{e}_\theta^L , \qquad (3-35)$$

$$-\frac{v_L}{E_L} d\sigma_r^L - \frac{v_L}{E_L} d\sigma_{\theta}^L + \frac{1}{E_L} d\sigma_{z}^L + \frac{3S_z^L}{2\delta^L} d\tilde{e}_p^L = d\tilde{e}_z^L , \qquad (3-36)$$

where  $S_t^L$ ,  $S_{\theta}^L$ , and  $S_z^L$  are deviatoric stresses. A deviatoric stress is defined as the difference between a normal stress and the mean hydrostatic stress; e.g.,

$$S_t^L = \sigma_t^L - \frac{1}{3} \left( \sigma_t^L + \dot{\sigma}_\theta^L + \sigma_z^L \right). \tag{3-37}$$

As shown in Refs. 12 and 13, if the yield condition (Eq. 3-31) is rewritten in an implicit differential form, it can be combined with the elastic-plastic stress-strain relationships (Eqs. 3-34 through 3-36) to form a set of symmetrical linear matrix equations:

$$\frac{1}{E_L} - \frac{v_L}{E_L} - \frac{v_L}{E_L} \frac{3S_r^L}{2\delta^L} \left[ d\sigma_r^L \right] \left[ d\varepsilon_r^L \right]$$
(3-38)

$$-\frac{v_L}{E_L} = \frac{1}{E_L} - \frac{v_L}{E_L} = \frac{3S_{\theta}}{2\delta^L} = d\varepsilon_{\theta}^L$$
(3-39)

$$-\frac{v_{L}}{E_{L}} - \frac{v_{L}}{E_{L}} \frac{1}{E_{L}} \frac{3S_{z}^{L}}{2\delta^{L}} \left[ d\sigma_{z}^{L} \right] \left[ d\varepsilon_{z}^{L} \right] (3-40)$$

$$\frac{3S_{r}^{L}}{2\delta^{L}} \frac{3S_{\theta}^{L}}{2\delta^{L}} \frac{3S_{z}^{L}}{2\delta^{L}} -H' \left[ d\varepsilon_{p}^{L} \right] \left[ 0 \right]. (3-41)$$

This set of equations can be solved and rewritten into a form similar to Eqs. 3-26 through 3-28 for the elastic stress-strain relationships:

$$d\sigma_{r}^{L} = b_{11} d\varepsilon_{r}^{L} + b_{12} d\varepsilon_{0}^{L} + b_{13} d\varepsilon_{z}^{L} , \qquad (3-42)$$

$$d\sigma_{\theta}^{L} = b_{21} d\epsilon_{\tau}^{L} + b_{22} d\epsilon_{\theta}^{L} + b_{23} d\epsilon_{z}^{L} , \qquad (3-43)$$

$$d\sigma_{z}^{L} = b_{31} d\epsilon_{r}^{L} + b_{32} d\epsilon_{\theta}^{L} + b_{33} d\epsilon_{z}^{L} , \qquad (3-44)$$

$$d\tilde{\varepsilon}_{p}^{L} = b_{41} d\varepsilon_{r}^{L} + b_{42} d\varepsilon_{\theta}^{L} + b_{43} d\varepsilon_{z}^{L} , \qquad (3-45)$$

where the coefficients  $b_{11}$  through  $b_{43}$  are elements of matrix **B**, which is the inverse of the coefficient matrix of Eqs. 3-38 through 3-41. Equations 3-42 through 3-44 for elastic-plastic deformation are equivalent to Eqs. 3-26 through 3-28 for purely elastic deformation. The coefficients of the elastic equations are constants, but those of the elastic plastic equations vary with the state of stress and thus require te-evaluation for different load levels.

#### 4.0 FORMULATION AND ANALYSIS OF LEAD SLUMP

Chapter 3 describes all the equations governing the radial coupling of the axial lumped-mass models of the lead shield and steel cask shells. These equations can be solved with the axial equations of motion of the models to evaluate the lead slump effect. Since the solution involves plastic deformation, it must be carried out in terms of small increments of the variables involved. The solution procedure used here follows the technique developed by Marcal in Refs. 12 and 13, which the reader may refer to for information on the theoretical basis of the method. The present report is only concerned with the application of the method to the present lead slump problem. This chapter describes the major steps of this procedure and the equations used. To simplify this description, the resulting equations are only qualitatively described in functional form, and the increment of the variables used for the solution are simply represented by the variables themselves.

Just as with the bonded lead, the equations of motion of cask impact involving lead slump can be expressed in a general form:

$$[M]{X} = {F} - {P}$$
.

To solve these equations of motion by the central difference method, the internal and external force vectors {P} and {F} must be calculated at every time step. The external forces can be handled the same as without lead slump. For a free drop of a spent fuel cask, the external force includes the gravitational force and the reaction force due to the deformed impact limiter. The internal force is the force acting on the beam elements of the dynamic lumped-mass model. At a lumped-mass point, the internal force vector {P} is the vector sum of element forces at that location. Details of the central difference method are presented in Ref. 1 and will not be elaborated here.

The major task in the impact analysis with lead slump is the formulation of the internal force vector (P), which will be discussed in the following section (Section 4.1). The equations of motion in the axial direction are presented in Section 4.2. Section 4.3 describes solution procedure and the back-substitutions that are needed to solve the equations and recover various stresses and strains.

#### 4.1 Element Internal Stresses or Forces

#### 4.1.1 Expression of Radial and Hoop Strains of Lead in Terms of Axial Strains

The first step in calculating internal forces is to express radial and hoop strains of lead in terms of axial strains of both steel and lead. This is done in a series of substitutions of the equations presented in Chapter 3.

Equation 3-1 - Tead equilibrium equation) can be expressed as:

$$\sigma_{\rm r}^{\rm L} = f_1({\rm p}^{\rm i},{\rm p}^{\rm o})$$
 (4-1)

(Note: Throughout the rest of this report, the "fs" will mean "function of.")

Substituting p<sup>i</sup> and p<sup>0</sup> of the equilibrium equations of steel shells (Eqs.3-21 and 3-22) in the above equation, we have:

$$\sigma_t^{\rm L} = f_2(\sigma_{\theta}^1, \sigma_{\theta}^0) . \tag{4-2}$$

Substituting the hoop stresses of the steel stress-strain relations (Eq.3-29) in the above equation for the inner and outer shells, we obtain:

$$\sigma_t^L = f_3(\varepsilon_0^1, \varepsilon_0^0, \varepsilon_2^S)$$
 (4-3)

After substituting the hoop strains from the kinematic Eqs. 3-10 and 3-11, Eq. 4-3 becomes:

$$\sigma_r^{\rm L} = f_4(\varepsilon_r^{\rm L}, \varepsilon_\theta^{\rm L}, \varepsilon_z^{\rm S}) . \tag{4-4}$$

Through the same process, the hoop stress in lead can be obtained:

$$\sigma_{\theta}^{L} = f_{5}(\varepsilon_{\tau}^{L}, \varepsilon_{\theta}^{L}, \varepsilon_{z}^{S}) . \tag{4-5}$$

Assuming the stress condition in the lead to be within the yield limit, equating the left-hand sides of Eqs. 3-26 and 4-4, and Eqs. 3-27 and 4-5, will yield two equations with variables  $\epsilon_{T}^{L}$ ,  $\epsilon_{\theta}^{L}$ ,  $\epsilon_{z}^{L}$ , and  $\epsilon_{z}^{S}$ . Thus, we can solve these two equations simultaneously to obtain:

$$\varepsilon_1^{\rm L} = f_{6e}(\varepsilon_2^{\rm L}, \varepsilon_2^{\rm S}) , \qquad (4-6)$$

$$\varepsilon_{\Theta}^{L} = f_{\gamma_{c}}(\varepsilon_{z}^{L}, \varepsilon_{z}^{S}) , \qquad (4-7)$$

where the subscript e indicates that these equations hold only for elastic deformation. Similar equations can be derived for elastic-plastic deformation. Using Eqs. 3-42 and 3-43 in lieu of Eqs. 3-26 and 3-27, respectively, and repeating the foregoing operation will produce the following set of equations for elastic-plastic deformations:

$$\varepsilon_{\rm T}^{\rm L} = f_{\rm 6p} \left( \varepsilon_{\rm z}^{\rm L} \,, \, \varepsilon_{\rm z}^{\rm S} \right) \,, \tag{4-8}$$

$$\varepsilon_{\theta}^{L} = f_{\gamma_{p}} \left( \varepsilon_{z}^{L} , \varepsilon_{z}^{S} \right) , \qquad (4-9)$$
where the subscript p denotes that the equations are for elastic-plastic deformation. Like to coefficients  $b_{11}$ , etc., in Eqs. 3-26 and 3-27,  $f_{6p}$  and  $f_{7p}$  are stress dependent and must be reevaluated for different stress conditions.

### 4.1.2 Axial Stress and Axial Force in Lead

Using Fqs. 3-28, 4-6, and 4-7, the axial stress in lead can be expressed as a function of axial strain<sup>o</sup> lead and steel for the case of pure elastic deformation:

$$\sigma_z^L = f_{8e}(e_z^L, e_z^S) . \tag{4-10}$$

For elastic-plastic deformation, using Eq. 3-44, 4-6, and 4-7 will result in a different equation; i.e.,

$$\sigma_z^L = f_{8p} \left( \epsilon_z^L , \epsilon_z^S \right) . \tag{4-11}$$

Thus, the axial force in lead, P<sup>L</sup><sub>2</sub> is as follows:

$$P_z^L = A^L \sigma_z^L = f_{9e}(\varepsilon_z^L, \varepsilon_z^S) , \qquad (4-12)$$

or

$$P_z^L = A^L \sigma_z^L = f_{9p} \left( \varepsilon_z^L , \varepsilon_z^S \right) , \qquad (4-13)$$

where AL is the cross-sectional area of lead. Again, the function fop is stress dependent.

## 4.1.3 Axial Stress and Axial Force in Steel Shells

From Eq. 3-29, the axial stress in the inner steel shell can be written as:

$$\sigma_{z}^{4} = f_{10}(\varepsilon_{0}^{4}, \varepsilon_{z}^{5}) . \tag{4-14}$$

After substituting the steel hoop strain of the kinematic equations (Eq. 3-10) in the above, Eq. 4-14 becomes:

$$\sigma_z^i = f_{11}(\varepsilon_z^L, \varepsilon_{\Theta}^L, \varepsilon_z^S) . \tag{4-15}$$

Inserting into Eq. 4-15 the expressions of radial and hoop strains in Eqs. 4-6 and 4-7, we obtain:

$$\sigma_z^i = f_{12e}(\varepsilon_z^L, \varepsilon_z^S) . \tag{4-16}$$

The corresponding equation for elastic-plastic case can be obtained using Eqs. 4-8 and 4-10 in lieu of Eqs. 4-6 and 4-7, respectively; i.e.,

$$\sigma_z^1 = f_{12p}(\varepsilon_z^L, \varepsilon_z^S) . \tag{4-17}$$

Similarly, we get the axial stress in the outcr steel shell:

$$\sigma_z^0 = f_{13e}(\varepsilon_z^L, \varepsilon_z^S)$$
, (4–18)

$$\sigma_z^o = f_{13p}(\varepsilon_z^L, \varepsilon_z^S) . \tag{4-19}$$

Thus, we obtain the internal force on the steel shells,  $P_z^S$ , after considering the areas of inner and outer steel shells,  $A^i$  and  $A^o$ :

$$P_z^S = A^i \sigma_z^i + A^o \sigma_z^o = f_{14e}(\epsilon_z^L, \epsilon_z^S) , \qquad (4-20)$$

OT

$$P_{z}^{S} = f_{14p}(\epsilon_{z}^{L}, \epsilon_{z}^{S}) . \tag{4-21}$$

### 4.2 Equations of Motion

After the internal forces acting on the lead and the steel are obtained (Eqs. 4-9 and 4-14), we can write the local axial equations of motion for lead and for steel as follows:

$$[M^{S}]\{\ddot{z}^{S}\} + \{P_{z}^{S}\}(\varepsilon_{z}^{L}, \varepsilon_{z}^{S}) = \{F_{z}^{S}\}, \qquad (4-22)$$

$$[M^{L}]\{z^{L}\} + \{P_{z}^{L}\}(\varepsilon_{z}^{L}, \varepsilon_{z}^{S}) = \{F_{z}^{L}\}, \qquad (4-23)$$

where [M] is the mass matrix and {F} is the external force vector. Equations 4-22 and 4-23 can be solved explicitly as discussed in Ref. 1.

As described in Chapter 2, the bonded lead impact analysis is sufficient to characterize the overall behavior of the cask. Therefore, the solutions for bonded lead impact are again obtained at every integration time step of Eqs. 4-15 and 4-16 in lead slump analysis. In other words, the spatial

motion of the cask and the associated transverse shear force and bending moment are the same with or without considering lead slump.

The effects of lead slump, which are local compared to the spatial motion of the cask, can be obtained through the integration of Eqs. 4-22 and 4-23. The direct results of the integration are the axial deformations of the lead and steel shells. Other lead slump results, such as the hoop stresses and strains in the steel shells and the interface pressures, can be recovered in a series of back substitutions using formulas presented in this chapter and in Chapter 3.

## 4.3 Solution and Back-Substitution Procedure

The numerical solution of the lead slump problem using the equations developed in this chapter and Chapter 3 involves the following steps:

- 1. Evaluate the internal force P and the applied force F for the current time step and form the equations of motion (Eqs. 4-22 and 4-23) for the lead and steel shells.
- Use the central difference method to convert Eqs. 4-22 and 4-23 into a set of algebraic equations for the calculation of the axial displacements of the lead and steel shells at the next time step from the axial displacements at the current and previous time steps.
- 3. From the calculated axial displacements, evaluate the change of the axial strains ( $\varepsilon_z^L$  and  $\varepsilon_z^S$ ) of the lead and steel shells.
- Assuming elastic deformation, insert the change of axial strains into Eqs. 4-6 and 4-7 to calculate the change of radial and circumferential strains of the lead.
- 5. Inserting the lead strains into Eqs. 4-4, 4-5, and 4-10, find the change in lead stresses.
- Use the calculated stresses and the von Mises yield criterion (Eq. 3-31) to determine whether or not the yielding of the lead has occurred.
- 7. If the lead yields, revise the calculations of Steps 4 and 5, replacing Eqs. 4-6, 4-7, and 4-10 for elastic deformation with corresponding Eqs. 4-8, 4-9, and 4-11 for elastic plastic deformation. Use the stresses from Step 5 to evaluate the coefficients of the equations for plastic deformation.
- 8. Insert the new lead stresses from Step 7 into the yield condition (Eq. 3-1) to confirm the plastic state of the lead. Otherwise repeat Steps 4 through 7 until the equations used are consistent with the state of deformation of the lead.
- Once the stress and strain solution for the lead converges, other results can be obtained as follows:
  - The change of equivalent strain and stress from Eqs. 3-43, 3-32, and 3-33.
  - The axial stress and force of steel shells from Eqs. 4-16 and 4-18 for elastic lead deformation and from Eqs. 4-17 and 4-19 for elastic-plastic deformation.
  - The axial force of the lead from Eqs. 4-12 or 4-13.
- 10. After the axial forces for the lead and steel shells (P<sub>z</sub><sup>L</sup> and P<sub>z</sub><sup>S</sup>) are obtained, form the equations of 1 jotion (Eqs. 4-22 and 4-23) for the new time step.
- 11. Repeat the operation of Steps 2 through 10 for each time step until the end of the cask impact.

# 4.4 Boundary Conditions

One important aspect of the impact analysis with lead slump that was not discussed in the previous section is the boundary conditions at both ends of the cask where the radial displacement of the steel shells is restrained due to the massive cask bottom and upper forging as shown in Fig. 1-1. The following local boundary conditions of the steel shells at one end of top and bottom elements should be met: (1) zero radial displacement; and (2) zero angular rotation relative to the cask axis.

To meet the boundary conditions, the foregoing lead-slump analysis model must be modified to include the effect of non-uniform radial displacement of the steel shells. As depicted in Fig. 4-1, the lead slump model assumes the radial displacement to be uniform within each element, but the displacement can be different for different elements. Thus a discontinuity of radial displacement can exist between two adjoining elements, and the possible effect of this discontinuity is normally small compared to the main effect of lead slump and is ignored in the basic model. To incorporate this secondary effect in the model without effecting a drastic change in the basic assumption and approach of the lead-slump analysis method, an average adjustment or correction to the radial displacement of each element of the lead-slump model is used. The size of this adjustment depends on the discontinuity of radial displacement between the adjoining elements. Since the basic lead slump solution provides an estimate of this discontinuity, its results are used to obtain the necessary displacement adjustment.

To derive the equations for the calculation of the adjustment, formulas given in Ref. 14 are used. The formulas to determine the radial displacement u and the edge rotation  $\psi$  of a cylinder when the cylinder is subjected to an edge shear V<sub>o</sub> or an edge moment M<sub>o</sub> at one end (Fig. 4-2); i.e.,

$$y = -\frac{V_o}{2D\lambda^3} e^{-\lambda x} \cos \lambda x , \qquad (4-24)$$

$$\psi = \frac{V_o}{2D\lambda^2} e^{-\lambda x} \left( \cos\lambda x + \sin\lambda x \right), \qquad (4-25)$$

$$y = \frac{M_o}{2D\lambda^2} e^{-\lambda x} (\sin\lambda x - \cos\lambda x), \qquad (4-26)$$

$$\psi = \frac{M_o}{D\lambda} e^{-\lambda x} \cos \lambda x , \qquad (4-27)$$







Figure 4-2 Bending and shear at the edge of a clamped cylindrical shell.

where

$$\lambda = \left[ \frac{3(1 - v^2)}{R^2 t^2} \right]^{0.25},$$

$$D = Et^3/12(1-v^2),$$

E = Young's modulus,

v = Poisson's ratio,

- R = radius of the shell,
- t = thickness of the shell, and
- x = axial distance from the end where the boundary condition is being considered.

If the edge of the cylinder is displaced radially without a rotation as shown in Fig. 4-2, the edge shear and moment must be related as follows:

$$V_{\rm p} = 4D\lambda^3 u_{\rm p} , \qquad (4-28)$$

$$M_{\alpha} = -2D\lambda^2 u_{\alpha} , \qquad (4-29)$$

where  $u_0$  is the radial displacement at the cylinder end. Equations 4-24 and 4-26 can be integrated over the element length  $\ell$  to give the average radial displacement produced by the applied shear and moment in the element; i.e., for an end with an applied shear,

$$\bar{u} = \frac{u_o}{2\lambda \varrho} \left[ 1 + e^{-\lambda \varrho} \left( \sin \lambda \varrho - \cos \lambda \varrho \right) \right] , \qquad (4-30)$$

where uo is the radial displacement at the end.

For a fixed end, where the rotation vanishes and the shear is related to the moment according to Eqs. 4-28 and 4-29

$$\bar{u} = \frac{u_o}{\lambda l} e^{-\lambda l} \sin \lambda l . \qquad (4-31)$$

These equations for average displacement are used to obtain the necessary displacement adjustment for simulating the effect of non-uniform radial displacement. For Case 1 of the two cases shown in Figure 4-3, where the element for which the displacement correction is obtained is identified as the ith element and is located between two adjoining elements, the (i-1) and (i+1)th elements, the displacement correction uc to be added to the basic lead-slump solution is given as follows:

$$u_{c} = \frac{1}{4} \left( u_{i-1} + u_{i+1} - 2u_{i} \right) \left[ \frac{1 + e^{-\lambda \hat{k}} \left( \sin \lambda \hat{k} - \cos \lambda \hat{k} \right)}{\lambda \hat{k}} \right]. \quad (4-32)$$

where  $u_{i,1}$ ,  $u_i$ ,  $u_{i+1}$  are the radial displacement of the (i-1), i, and (i+1)th elements, respectively. These displacements are given by the basic lead-slump solution.

Similarly, for the other case (Case 2) in Fig. 4-3, where the (i-1)th element is replaced by a fixed boundary (u = 0 and  $\psi = 0$ ), the displacement  $u_c$  can be obtained as follows:

$$u_{c} = \frac{1}{4} (u_{i+1} - u_{i}) \left[ \frac{1 + e^{-\lambda \hat{k}} (\sin \lambda \hat{k} - \cos \lambda \hat{k})}{\lambda \hat{k}} \right] - u_{i} \frac{e^{-\lambda \hat{k}} \sin \lambda \hat{k}}{\lambda \hat{k}} .$$
 (4-33)

Using the corrected radial displacement of the element as u<sub>0</sub>, the shear and moment at the fixed end of this element is obtained from Eqs. 4-28 and 4-29, respectively.



Figure 4-3 Displacement adjustment for simulating the effect of nonuniform radial displacement in the basic lead slump model.

# 5.0 PERMANENT LEAD SLUMP

The maximum permanent deformation produced by an impact in the lead shield of a shipping cask is important to the design of the cask because such a deformation can produce a sufficiently wide gap in the shield to damage the cask's capability for shielding radiation. In the present analysis, this change of the permanent deformation of the lead shield (LS: lead slump) can be calculated as the sum of the changes in permanent axial deformation of all lead elements of the analysis model; i.e.,

$$d LS = \sum_{i=1}^{n} (d\epsilon_{zp}^{L})_{i} \ell_{i}$$
(5-1)

where the subscript i is used to identify the quantities of the ith lead element;  $\varepsilon_{zp}^{L}$  is the plastic axial strain of the lead element; and l is the current element length.

The equation for calculating the change of plastic strain at each time step is given by the Prandtl-Reuss flow rule (Eq. 3-36); i.e.,

$$d \varepsilon_{zp}^{L} = \frac{3}{2} \frac{S_{z}^{L}}{\delta^{L}}$$
(5-2)

Using Eq. 5-2, the permanent axial strain of a lead element can be determined after the stresses of the element are found (Step 8 in Section 4.3).

In SCANS, the lead slump is calculated and accumulated at each solution time step. The total lead slump is saved at specified time interval for plotting. Only the lead slump at the time of cask rebound is printed. The final lead slump can be smaller than the maximum valu ' occurring during the impact because of possible reversed plastic flow produced by the high circumferential stress of the steel shells.

### 6.0 VERIFICATION OF IMPACT ANALYSIS CAPABILITIES OF SCANS

The SCANS computer program's quasi-static and dynamic analysis capabilities for impact study have been verified using hand calculations and the results of another computer program, NIKE (Ref. 15). Available analysis and test data found in the literature have also been used. The results of five sample problems used for the verification are summarized herein. Further details of the input and output of these problems are given in Appendix B of this report. Additional sample problems and results of the SCANS computer program can be found in Ref. 16.

The results reported herein are for 30-ft drops of three sample casks, namely the rail cask, the IF300 cask, and the Oak Ridge reduced-scale Hallam cask. Figure 6-1 depicts the geometry of a typical SCANS model for these casks. Figure 6-2 presents the force-deformation relations used for the impact limiters of these casks. The stiffness of the limiters varies over a wide range, from a rather soft one for Problems 1 and 2 to a nearly rigid one for Problem 4.

The basic verification of the SCANS program was carried out with the rail cask, for which SCANS results were compared to those of NIKE and of hand calculations. For the IF300 cask, SCANS' output for impact acceleration was compared with that published in Ref. 17. As for the Hallam cask, SCANS' prediction of the permanent slump of the unbonded lead shield was compared with Oak Ridge's test measurement (Ref. 18). As demonstrated in the following paragraphs, SCANS' results compare favorably with the others.

For the basic verification with the rail cask, hand-calculated results were obtained and compared for all printed output of SCANS' quasi-static analysis. The verified quasi-static results were then compared with those of SCANS' dynamic analysis. The hand calculations were facilitated using the Lotus 1-2-3 spreadsheet computer program. The formulas used for SCANS' quasi-static analysis were entered into a spreadsheet with appropriate input for impact conditions and cask geometry and materials. Results were obtained for drops with the cask's longitudinal axis oriented at various angles from horizontal. The cases analyzed included a drop at an angle of 0 degrees (a side drop), a drop at 90 degrees (an end drop), a drop at an angle where the cask's center of mass is located vertically above the impact point (a C.G. drop), and five other drops at 15, 30, 45, 60, and 75 degrees (oblique drops).

Tables 6-1 and 6-2 present the results of this analysis for the maximum limiter crush, impact acceleration, and force. All other results, such as stresses, are not presented herein but can be found in tabulated form in Appendix B. As seen in these tables, the "hand-calculated" results are almost identical to those from SCANS' quasi-static analysis. This close comparison of the two sets of results, however, is expected since the formulas used for both calculations are identical. The favorable comparison simply confirms that the formulas have been correctly implemented in SCANS. The compared results cover all the printed output of SCANS, namely, the maximum impact limiter crush; the maximum rigid body accelerations; the maximum impact forces and stress intensities in the cask shells and shield; and the maximum stresses in the end caps and the closure bolts.

In the tables just described, corresponding results from SCANS' dynamic analysis are also given. The dynamic analysis result for a given quantity in the tables represents the maximum value of the quantity that is reached during the primary, or the first, impact of the cask. The dynamic analysis of SCANS obtains results at each of all time steps, but only the maxima are equivalent and comparable to the quasi-static analysis results. The data presented in the tables show that the results of quasi-static and dynamic analyses are indeed comparable for all but a few cases. The exceptions are the oblique drops at an angle smaller than 45 degrees. For drops at a small angle, relatively larger differences are observable between the two sets of results. This situation is mainly due to some simplified assumptions used in SCANS' quasi-static analysis. For all oblique impacts, SCANS' quasi-static analysis assumes that only one of the two cask ends will be impacting the ground at a given time. Thus the impact force is always only applied at one end. Laminated end cap Solid and cap for Sample Problems 1 and 3 for Sample Problem 2 1.5% 3" Closure 2.5" 4.0". Lead. 1.5" 2.5% 30.0"\_ 31.5"-35.5"-179" 38.0" Outer Inner shell 2.5% 67 Cask 1.5% bottom

Figure 6-1 A typical SCANS model of shipping cask (dimensions are shown for the rail cask of Sample Problems 1, 2, and 3).



Figure 6-2 Force-deformation relations of impact limiter for verification problems.

| Primary        | Max. I             | imiter Crus     | h (in)           | Max, Ver                   | tical Accele           | ration (g)       | Max. Rot.                  | Accel.(in/s     | ec/sec)                 |
|----------------|--------------------|-----------------|------------------|----------------------------|------------------------|------------------|----------------------------|-----------------|-------------------------|
| Angle<br>(deg) | Uuasi<br>Hand Calc | static<br>SCANS | Dynamic<br>SCANS | <u>Quasi-</u><br>Hand Calc | <u>static</u><br>SCANS | Dynamic<br>SCANS | <u>Quasi-</u><br>Hand Calc | static<br>SCANS | <u>Dynamic</u><br>SCANS |
| 0.0            | 46.1               | 46.1            | 49,2             | 14.6                       | 14.6                   | 15.6             | 0.0                        | 0.0             | 0.0                     |
| 15.0           | 47.7               | 47.7            | 41,4             | 7.1                        | 7.1                    | 11.5             | -62.2                      | -62.2           | 83.8                    |
| 30.0           | 55.4               | 55.4            | 46.9             | 8.4                        | 8.4                    | 6.9              | -55.9                      | -55.9           | -58.2                   |
| 45.0           | 61.4               | 61.4            | 56.0             | 9.4                        | 9.4                    | 8.5              | -39.7                      | -39.7           | -53.6                   |
| 60.0           | 64.7               | 64.7            | 67.6             | 10.0                       | 10.0                   | 10.4             | -15.5                      | -15.5           | -35.2                   |
| 75.0           | 64.9               | 64.9            | 68.9             | 10.0                       | 10.0                   | 10.7             | 11.9                       | 11.9            | 29.6                    |
| 90.0           | 65.2               | 65.2            | 71.4             | 10.0                       | 10.0                   | 11.1             | 0.0                        | 0.0             | 0.0                     |
| C ~            | 65.2               | 65.2            | 71.4             | 10.0                       | 10.0                   | 11.1             | -0.0                       | 0.0             | 0.0                     |

 
 Table 6-1
 Comparison of SCANS results for maximum impact limiter crush and acceleration generated by impact at various angles (Sample Problem 1).

| Primary                  | Max, A                    | xial Impact F            | orce (kip)              | Max, Impact Moment (in-kip) |                 |                  |  |  |  |  |
|--------------------------|---------------------------|--------------------------|-------------------------|-----------------------------|-----------------|------------------|--|--|--|--|
| Impact<br>Angle<br>(deg) | <u>Quasi</u><br>Hand Calc | - <u>static</u><br>SCANS | <u>Dynamic</u><br>SCANS | Quasi<br>Hand Calc          | static<br>SCANS | Dynamic<br>SCANS |  |  |  |  |
| 0.0                      | 0.0                       | 0.0                      | J.8                     | 5379.7                      | 5379.7          | 5750.9           |  |  |  |  |
| 15.0                     | -411.4                    | -411.4                   | -116.4                  | -4885.3                     | -4885.3         | 7907.5           |  |  |  |  |
| 30.0                     | -922.8                    | -922.8                   | -514.4                  | -23878.0                    | -23878.0        | -14405.8         |  |  |  |  |
| 45.0                     | -1446.3                   | -1446.3                  | -1023.8                 | -44836.7                    | -44836.7        | -32471.9         |  |  |  |  |
| 60.0                     | -1867.6                   | -1867.6                  | -1756.4                 | -63421.4                    | -63421.4        | -58938.0         |  |  |  |  |
| 75.0                     | -2090.0                   | -2090.0                  | -2278.0                 | -75498.6                    | -75498.6        | -84494.7         |  |  |  |  |
| 90.0                     | -2173.7                   | -2173.7                  | -2379.4                 | 0.0                         | 0.0             | 0.0              |  |  |  |  |
| C.G.                     | -2022.6                   | -2022.6                  | -2214.0                 | -71282.1                    | -71282.1        | -78043.1         |  |  |  |  |

 TABLE 6-2
 Comparison of SCANS results for maximum impact force/moment generated by impact at various angles (Sample Problem 1).

While this assumption holds for oblique impacts at a large angle, it may not be realistic for impacts at a smail angle, where both ends can be impacting at the same time. SCANS' dynamic analysis, on the other hand, does not make any assumption concerning impact ends; instead, it follows the development of an impact and describes the situation realistically. The dynamic analysis also evaluates while the quasi-static analysis ignores, the centrifugal forces associated with a rotating cask. This difference in the treatment of the centrifugal force explains the relatively larger discrepancies seen between the quasi-static and dynamic results for the axial force in oblique impacts. Other than the foregoing differences between the dynamic and quasi-static analyses for oblique impacts, the results of the two analyses compare closely. This favorable comparison provides some assurance that the dynamic analysis of SCANS has also been properly implemented.

The favorable comparison of the quasi-static and the dynamic analysis results can be viewed as a mutual verification of these two capabilities of SCANS, since they are completely different in solution method and programming. However, the user of the program should be informed that other cases, in addition to the foregoing cases of small-angle oblique impacts, may show quite different results from SCANS' quasi-static and commic analyses. This difference is not due to incorrect implementation of the methods in 22.4 NS, but to the basic limitation of the quasi-static analysis method. The quasi-static analysis of in pact is based on the assumption that the cask behaves similarly to a rigid body during impact. The dynamic and the quasi-static analyses would agree only if this assumption holds, as in the cases where the impact duration is satively long compared to the longest natural vibration period of the cask. Casks with relatively soft limiters usually meet this condition. Sample Problems 1–3 are such cases and their results can, therefore, be used for the mutual verification of the two analysis options of SCANS. For casks with very stiff limiters, Ref. 6 has already shown that SCANS' quasi-static analysis should not be used for casks with stiff limiters and for oblique drops at small angles.

An end drop of the rail cask (Sample Problem 3) has also been analyzed with the NIKE computer program. The results are compared to SCANS' in Tables 6-3-1 and 6-4-2. The comparison is made for casks with bonded and unbonded lead shields in the maximum limiter crush, the maximum rigid-body acceleration, and the maximum stresses. The results for the unbonded shield provide a detailed verification of SCANS' lead-slopp-analysis method as presented in this report. For both the bonded and unbonded shields, the comparison of NIKE's and SCANS' results is reasonably good, considering the vast difference between the two computer programs and models. The NIKE program is a well-known, sophisticated, finite element, mainframe computer program for general impact studies. It uses solid finite elements, compared to the beam element of SCANS.

As shown in Fig. 6-3, the N!KE computer model for the foregoing analysis is made of axisymmetric solid elements. For each of the shells and shield of the cask, 2 and 50 layers of the elements are used in the radial and longitudinal directions, respectively. The solid elements are also used to model the impact limiters. Elastic and plastic properties of the impact limiters are adjusted to match the force-deformation relation of the impact limiters given in Fig. 6-2 for SCANS model of Sample Problem 3. The NIKE stress results listed in Table 6-3-2 are average values over the radial thickness of the shells and shield. The stress is not uniform across the thickness, especially in cross sections near the two cask ends, where the end effect described in Section 4.4 of this report is expected to be prominent. In agreement with this expectation, a bending effect is evident in the distribution of the NIKE stress results. However, this bending effect is not included in all the stress results prosented.

Comparing the results presented in Tables 6-3-1 and 6-3-2 for bonded and unbonded shields, the effect of unbonded lead shield on the shell stresses can be easily recognized. As expected, without the support of the steel shells in the axial direction, the unbonded lead shield shows much higher axial stress and deformation than a bonded one. Because of the Poisson's effect in the shield material, this higher axial deformation of the unbonded shield causes higher radial deformations in

|                | Elastic<br>of Lea           | Properties<br>Id Shield |                      | Maximum                  | Maximum                  | Maximum Principal Stresses<br>(psi) Axial Location 22" from<br>Impact End |                |                |  |  |
|----------------|-----------------------------|-------------------------|----------------------|--------------------------|--------------------------|---------------------------------------------------------------------------|----------------|----------------|--|--|
| Shield<br>Type | Young's<br>Modulus<br>(psi) | Poisson's<br>Ratio      | Analysis<br>Method   | Limiter<br>Crush<br>(in) | Vertical<br>Accel<br>(g) | Inner<br>Shell                                                            | Lead<br>Shield | Outer<br>Shell |  |  |
| Banded         | 25000                       | 0.43                    | SCANS (Quasi-static) | 25.9                     | 38.2                     | 5045                                                                      | 4              | 5045           |  |  |
|                |                             |                         | SCANS (Dynamic)      | 26.5                     | 5.6                      | 6644                                                                      | 6              | 6644           |  |  |
|                |                             |                         | NIKE (Dynamic)       | 26.0                     | 43.0                     | 7532                                                                      | 7              | 5225           |  |  |
| Unbonded       | 25000                       | 0.43                    | SCANS (Quasi-static) | 25.9                     | 38.2                     | 30739                                                                     | 1051           | 21204          |  |  |
|                |                             |                         | SCANS (Dynamic)      | 26.5                     | 45.6                     | 53009                                                                     | 1127           | 24069          |  |  |
|                |                             |                         | NIKE (Dynamic)       | 25.9                     | 40.3                     | 25435                                                                     | 1066           | 19400          |  |  |
| Bonded         | 2220000                     | 0.43                    | SCANS (Quasi-static) | 25.9                     | 38.2                     | 4692                                                                      | 368            | 4692           |  |  |
|                |                             |                         | SCANS (Dynamic)      | 26.5                     | 45.5                     | 6438                                                                      | 505            | 6438           |  |  |
|                |                             |                         | NIKE (Dynamic)       | 26.3                     | 42.0                     | 7358                                                                      | 452            | 5590           |  |  |
| Unbonded       | 2220000                     | 0.43                    | SCANS (Quasi-static) | 25.9                     | 38.2                     | 3008                                                                      | 2457           | 4177           |  |  |
|                |                             |                         | SCANS (Dynamic)      | 26.5                     | 45.5                     | 4114                                                                      | 3176           | 5734           |  |  |
|                |                             |                         | NIKE (Dynamic)       | 26.3                     | 41.8                     | 4157                                                                      | 3049           | 4721           |  |  |

 Table 6-3-1 Comparison of results for casks with bonded and unbonded lead shield obtained using the NIKE and SCANS computer programs (Sample Problem 3, 90-degree impact).

Note: The lead property values used to obtain the results in this table are for parametric study only. The current SCANS program uses a different set of values for the properties and, therefore, will not reproduce SCANS results shown herein.

|                | Elastic Pr<br>of Lead       | roperties<br>Shield |                      |                 |                  | n an Cal | CA20   | ation 22" (      | from Impac     | a End           |                  |                |
|----------------|-----------------------------|---------------------|----------------------|-----------------|------------------|----------|--------|------------------|----------------|-----------------|------------------|----------------|
|                |                             | 14.1                |                      | Ir              | mer Ste          |          |        | Lead Shield      | d              | 0               | uter Steel       | Shell          |
| Shield<br>Type | Young's<br>Modulus<br>(psi) | Poisson's<br>Ratio  | Analysis<br>Method   | Axial<br>Stress | Radial<br>Stress |          | 9-44 C | Radial<br>Stress | Circ<br>Stress | Axia/<br>Stress | Radial<br>Stress | Circ<br>Stress |
| Bonded         | 25000                       | 0.43                | SCANS (Quasi-static) | -5045           | 0                | 0        | 4      | 0                | 0              | -5045           | 0                | 0              |
|                |                             |                     | SCANS (Dynamic)      | -6644           | 0                | 0        | -6     | 0                | 0              | -6644           | 0                | 0              |
|                |                             |                     | NIKE (Dynamic)       | -7550           | -18              | -440     | -18    | -12              | -11            | -5050           | -17              | 175            |
| Unbonded       | 25000                       | 0.43                | SCANS (Quasi-static, | -12634          | 0                | -30739   | -2530  | -1479            | -1725          | 0               | 0                | 21204          |
|                |                             |                     | SCANS (Dynamic)      | -12834          | 0                | -33009   | -2713  | -1586            | -1807          | -1373           | 0                | 22696          |
|                |                             |                     | NIKE (Dynamic)       | -7540           | -615             | -26049   | -2255  | -1189            | -1487          | -1385           | -566             | 18015          |
| Bonded         | 2220000                     | 0.43                | SCANS (Quasi-static) | -4692           | θ                | 0        | -368   | 0                | 0              | -4692           | 0                | 0              |
|                |                             |                     | SCANS (Dynamic)      | -6438           | 0                | 0        | -505   | 0                | 0              | -6438           | 0                | 0              |
|                |                             |                     | NIKE (Dynamic)       | -6193           | 5                | 1166     | -467   | -22              | -15            | -4715           | -36              | 875            |
| Unbonded       | 2220000                     | 0.43                | SCANS (Quasi-static) | -3008           | 0                | -265     | -2530  | -73              | -993           | -2403           | 0                | 1774           |
|                |                             |                     | SCANS (Dynamic)      | -4114           | 0                | -395     | -3267  | -91              | -1231          | -3529           | 0                | 2205           |
|                |                             |                     | NIKE (Dynamic)       | -4181           | -24              | -604     | -3152  | -103             | -1262          | -2362           | 85               | 2359           |
|                |                             |                     |                      |                 |                  |          |        |                  |                |                 |                  |                |

 Table 6-3-2
 Comparison of results for casks with bonded and unbonded lead shield as obtained using the NIKE and SCANS computer programs (Sample Problem 2, 90-degree impact).

Note: The lead property values used to obtain the results in this table are for parametric study only. The current SCANS program uses a different set of values for the properties and, therefore, will not reproduce the SCANS results shown herein.

-43-

é



Figure 6-3 NIKE2D finite element model of a rail cask including impact limiters (dimensions are in inches).

the inner and outer steel shells as well as in the shield. These higher radial deformations in turn cause more prominent hoop stresses to develop in the shells. Finally, through the Poisson's effect of the shell material, the axial stresses in the shells are also affected. The results in Table 6-3-1 and 6-3-2 are elastic solutions obtained using two greatly different values for the Young's modulus of the lead shield. Despite the large change in modulus value, the SCANS program is able to give results comparable to NIKE's for both cases. Thus one can conclude that the SCANS model developed in this report is adequate for the analysis of the lead slump effect on the stresses in the cask. This conclusion is valid even when the lead deforms plastically, as shown in the following results of a study using the NIKE computer program.

Tables 6-4-1 and 6-4-2 present the results of this study, which were obtained for lead shields having a bi-linear stress-strain relation defined by the yield stress and the Young's and plastic moduli given in the tables. Results for lead slump, and stresses of the lead and steel shells at two axial locations (22" and 44"), are given in the table for eight cases. These cases have greatly different yield stresses and moduli. The yield stress varies from 250 to 4300 psi, the Young's modulus from 2500 to 2,220,000 psi, and the plastic modulus from 500 to 25,000 psi. Despite these wide variations in lead properties, SCANS appears capable of producing results comparable to NIKE's. Both sets of results show the same general trends of change when the lead properties vary; i.e., the magnitude of the lead slump, the radial stress of the lead shield, and the hoop stress of the steel shells increase rapidly with decreasing moduli and yield stress of the lead shield. The agreement between SCANS and NIKE results, however, appears to be closer for cases with purely elastic than with elastic-plastic deformation. This better performance for e stic case is expected because the elastic-plastic deformation is difficult for SCANS' simplifical model to describe accurately. In general, the comparison of SCANS and NIKE results in Tables 6-4-1 and 6-4-2 shows that the present SCANS lead-slump model provides reasonable results for confirmatory evaluation of the lead-slump effect on shipping casks. Table 6-5 provides additional evidence for this claim. The results presented in this table shows that the SCANS prediction for the lead slump of the Hallam cask (Sample Problem 4) compares closely with the Oak Ridge test result.

Table 6-4-1 Effect of Elastic, Plastic Properties of Lead on Maximum Lead Slump and Principal Stresses for Cask with Unbonded Lead Shield (Comparison of SCAMS and NIKE results for Sample Problem 3, 90-degree Impact) - Continued

|      | Elastic I          | Properties<br>d Shield | Plastic P<br>of Lead | roperties<br>  Shield |                  | Maximm           | Maximum           | Permanent<br>Axiai<br>Deform. | Axial<br>Location | Maximum<br>At | Principal<br>Axial Loca<br>(osi) | Stresse |
|------|--------------------|------------------------|----------------------|-----------------------|------------------|------------------|-------------------|-------------------------------|-------------------|---------------|----------------------------------|---------|
|      | Young's<br>Modulus | Poisson's<br>Ratio     | Plastic<br>Nodulus   | Yield<br>Stress       |                  | Limiter<br>Crush | Vertical<br>Accel | Of Lead<br>Shield             | Distance<br>from  |               |                                  |         |
| Case |                    |                        |                      |                       |                  |                  |                   |                               | Impact            | Inner         | Lead                             | Outer   |
| 10   | (psi)              |                        | (psi)                | (psi)                 | Solution         | (in)             | (g)               | (in)                          | End (in)          | Sheil         | Shield                           | Shell   |
|      |                    | *******                | *******              | ******                | ***********      | ******           | *******           | ********                      | *******           | *****         | ******                           |         |
|      | 20000              | 0.43                   | 25000                | 4300                  | SCANS (Q-static) | 25.9             | 38.2              | 0.00                          | 22                | 3008          | 2457                             | 4177    |
|      |                    |                        |                      |                       | SCANS (Dynamic)  | 26.5             | 45.5              | 0.00                          |                   | 4114          | 3176                             | 5734    |
|      |                    |                        |                      |                       | NIKE (Dynamic)   | 26.3             | 41.8              | 0.00                          |                   | 4157          | 3049                             | 4721    |
|      |                    |                        |                      |                       | SCANS (0-static) |                  |                   |                               | 44                | 2732          | 2106                             | 3706    |
|      |                    |                        |                      |                       | SCANS (Dynamic)  |                  |                   |                               |                   | 3783          | 2738                             | 5264    |
|      |                    |                        |                      |                       | NIKE (Dynamic)   |                  |                   |                               |                   | 3937          | 2794                             | 4135    |
|      | 2220000            | 0.43                   | 25000                | 1250                  | SCANS (Q-static) | 25.9             | 30.2              | 0.42                          | 22                | 16077         | 1778                             | 13692   |
|      |                    |                        |                      |                       | SCANS (Dynamic)  | 26.5             | 45.5              | 0.37                          |                   | 14775         | 2960                             | 1508    |
|      |                    |                        |                      |                       | NIKE (Dynamic)   | 26.2             | 41.5              | 0.54                          |                   | 22185         | 1741                             | 18323   |
|      |                    |                        |                      |                       | SCANS (Q-static) |                  |                   |                               | 44                | 10412         | 1621                             | 985     |
|      |                    |                        |                      |                       | SCANS (Dynamic)  |                  |                   |                               |                   | 10664         | 2805                             | 1198    |
|      |                    |                        |                      |                       | WIKE (Dynamic)   |                  |                   |                               |                   | 15978         | 1614                             | 13767   |
|      | 2220000            | 0.43                   | 25000                | 750                   | SCANS (G-static) | 25.9             | 38.2              | 0.42                          | 22                | 25681         | 1267                             | 19268   |
|      |                    |                        |                      |                       | SCANS (Dynamic)  | 26.5             | 45.5              | 0.37                          |                   | 17276         | 2390                             | 15075   |
|      |                    |                        |                      |                       | NIKE (Dynamic)   | 26.1             | 40.0              | 1.22                          |                   | 27756         | 1483                             | 22789   |
|      |                    |                        |                      |                       | SCANS (Q-static) |                  |                   |                               | 44                | 20047         | 1177                             | 15417   |
|      |                    |                        |                      |                       | SCANS (Dynamic)  |                  |                   |                               |                   | 12514         | 2307                             | 11845   |
|      |                    |                        |                      |                       | NIKE (Dynamic)   |                  |                   |                               |                   | 25405         | 1242                             | 23655   |

Table 6-4-1 Continued

|      | Elastic I<br>of Lea | Properties<br>d Shield | Plastic F<br>of Lead | roperties<br>Shield |                  | eig<br>Haring | Naximm   | Permanent<br>Axial<br>Deform. | Axiei<br>Location | Maximum At | Principal<br>Axial Loca<br>(psi) | Stresse |
|------|---------------------|------------------------|----------------------|---------------------|------------------|---------------|----------|-------------------------------|-------------------|------------|----------------------------------|---------|
|      | Young's             | Poisson's              | Plastic              | Tield               |                  | Limiter       | Vertical | Of Lead                       | Distance          | *******    |                                  |         |
|      | Noculus             | Ratio                  | Modulus              | Stress              |                  | Crush         | Accel    | Shield                        | from              |            |                                  |         |
| Case | 110-110-1-0-2       |                        |                      |                     |                  |               |          |                               | Impect            | Inner      | Lead                             | Outer   |
| ID   | (osi)               |                        | (psi)                | (psi)               | Solution         | (in)          | (g)      | (in)                          | End (in)          | Sheil      | Shieid                           | Shell   |
|      |                     | *******                | *******              | ******              | ******           | *******       | *******  | ********                      |                   | *****      | ******                           |         |
|      |                     |                        | 35000                | 500                 | craws (D-static) | 25.9          | 38.2     | 1,16                          | 22                | 304-93     | 1045                             | 2206    |
| ¢    | 2220000             | 0.43                   | 2000                 | 200                 | SCARS (Dynamic)  | 26.5          | 45.5     | 1.47                          |                   | 28934      | 2002                             | 2258    |
|      |                     |                        |                      |                     | WIKE (Dynamic)   | 26.1          | 39.9     | 1.41                          |                   | 28314      | 1378                             | 2322    |
|      |                     |                        |                      |                     | SCANS (Q-static) |               |          |                               | 44                | 31716      | 639                              | 2383    |
|      |                     |                        |                      |                     | SCANS (Dynamic)  |               |          |                               |                   | \$1712     | 1557                             | 2384    |
|      |                     |                        |                      |                     | NIKE (Dynamic)   |               |          |                               |                   | 28059      | 1129                             | 2128    |
| 21   | 2220000             | 0.43                   | 25000                | 250                 | SCANS (Q-static) | 25.9          | 38.2     | 1.49                          | 22                | 35308      | 822                              | 2485    |
|      |                     |                        |                      |                     | SCANS (Dynamic)  | 26.5          | 45.5     | 1.91                          |                   | 32563      | 1837                             | 2490    |
|      |                     |                        |                      |                     | NIKE (Dynamic)   | 26.1          | 39.7     | 1.27                          |                   | 28498      | 1313                             | 2276    |
|      |                     |                        |                      |                     | SCANS (Q-static) |               |          |                               | 44                | 38866      | 308                              | 2683    |
|      |                     |                        |                      |                     | SCANS (Dynamic)  |               |          |                               |                   | 36659      | 1445                             | 2721    |
|      |                     |                        |                      |                     | NIKE (Dynamic)   |               |          |                               |                   | 28109      | 939                              | 2146    |
|      | 2220006             | 0.43                   | 2500                 | 500                 | SCANS (Q-static) | 25.9          | 38.2     | 1.50                          | 22                | 38764      | 663                              | 2732    |
|      |                     |                        |                      |                     | SCANS (Dynamic)  | 26.5          | 45.5     | 1.61                          |                   | 31110      | 1893                             | 2382    |
|      |                     |                        |                      |                     | NIKE (Dynamic)   | 26.0          | 40.4     | 1.37                          |                   | 28921      | 765                              | 2373    |
|      |                     |                        |                      |                     | SCANS (Q-static) |               |          |                               | 44                | 26346      | 901                              | 1817    |
|      |                     |                        |                      |                     | SCANS (Dynamic)  |               |          |                               |                   | 34525      | 1546                             | 25654   |
|      |                     |                        |                      |                     | NIKE (Dynamic)   |               |          |                               |                   | 27950      | 648                              | 2028    |

-46-

1

.

Table 6-4-1 Concluded

÷.

.

-47.

|     | Elestic | Properties | Flastic P | roperties |                  |         |          | Parmanent | Axial    | MAXIANED | Avial Loc | stresse |
|-----|---------|------------|-----------|-----------|------------------|---------|----------|-----------|----------|----------|-----------|---------|
|     | of Lee  | d Shield   | of Lead   | Shieid    |                  | Havimm  | Heriman  | Deform.   | Location |          | (osi)     |         |
|     | Variate | Beiseente  | Disetie   | Vield     |                  | Limiter | Vertical | Of Lead   | Distance |          |           |         |
|     | Young s | Porsson B  | Wadalaw   | Cirees    |                  | Crush   | Accel    | Shield    | from     |          |           |         |
|     | MODULUS | Katio      | MODULUS   | 011690    |                  |         |          |           | Impact   | Inner    | Lead      | Outer   |
| 351 | t and t |            | ineil     | (nei)     | Solution         | (in)    | (a)      | (in)      | End (in) | Shell    | Shield    | Shell   |
|     | (ps1)   |            |           |           |                  |         |          |           | *******  | *****    | ******    | *****   |
|     | 3230000 | 0.43       | 500       | 250       | SCANS (0-static  | 25.9    | 38.2     | 1,93      | 22       | 45963    | 331       | 31637   |
|     | 2220000 | 0.43       | 200       |           | SCARS (Dynamic)  | 26.5    | 45.5     | 2.07      |          | 35303    | 1604      | 26555   |
|     |         |            |           |           | NIKE (Dynamic)   | 26.0    | 42.0     | 1.94      |          | 29897    | 348       | 23762   |
|     |         |            |           |           | SCANS (G-static) | ,       |          |           | 44       | 38866    | 308       | 26832   |
|     |         |            |           |           | SCANS (Dynamic)  |         |          |           |          | 39548    | 1152      | 28949   |
|     |         |            |           |           | NIKE (Dynamic)   |         |          |           |          | 28419    | 267       | 19865   |
|     | 25000   | 0.43       | 500       | 2500      | SCANS (Q-static) | 25.9    | 38.2     | 0.00      | 22       | 30739    | 1051      | 21204   |
|     |         |            |           |           | SCANS (Dynamic)  | 26.5    | 45.6     | 0.00      |          | 33009    | 1127      | 24069   |
|     |         |            |           |           | NIKE (Dynamic)   | 25.9    | 40.3     | 0.00      |          | 25435    | 1066      | 19400   |
|     |         |            |           |           | SCANS (Q-static) |         |          |           | 44       | 26346    | 901       | 18174   |
|     |         |            |           |           | SCANS (Dynamic)  |         |          |           |          | 30026    | 1032      | 22013   |
|     |         |            |           |           | alle (Dunami )   |         |          |           |          | 22184    | 965       | 16984   |

### Table 6-4-2 Effect of Elastic, Plastic Properties of Lead on Maximum Lead-Slump Stresses for Cask with Unbonded Lead Shield (Compurison of SCANS and NIKE results for Sample Problem 3, 90-degree Impact) - Continued

|     | Elestic I<br>of Les | Properties<br>d Shield | Plastic P<br>of Lead | roperties<br>Shield |                  | Axisi<br>Location |        |         |         | Stress | ses (psi) | At Axia | l Locatio | n             |          |        |
|-----|---------------------|------------------------|----------------------|---------------------|------------------|-------------------|--------|---------|---------|--------|-----------|---------|-----------|---------------|----------|--------|
|     | ******              | *******                | *******              |                     |                  |                   | Inner  | Steel S | shell   | Le     | ead Shiel | d       | 0         | uter Ste      | el Shell |        |
|     | Young's             | Poisson's              | Plestic              | Yield               |                  | Distance          | ****** |         |         | ****** |           | ******  |           |               | ******   |        |
|     | Modul us            | Ratio                  | Modulus              | Stress              |                  | from              |        |         |         |        |           |         | Axial     | <b>Stress</b> |          |        |
| Cas | e                   |                        |                      |                     |                  | Impact            | Axiai  | Radial  | Circ    | Axiai  | Radial    | Circ    |           |               | Radial   | Circ   |
| 10  | (psi)               |                        | (psi)                | (psi)               | Solution         | End (in)          | Stress | Stress  | Stress  | Stress | Stress    | Stress  | Min.      | Max.          | Stress   | Stress |
|     | *******             | ********               | *******              | ******              | *************    | *******           | ****** | *****   | *****   | ****** | ******    | ******  |           |               | *****    | ****** |
| N   | 2220000             | 0.43                   | 25000                | 4300                | SCANS (Q-static) | 22                | - 3008 | 0       | -265    | - 2530 | -73       | - 993   | -2403     | e             | 0        | 1774   |
|     |                     |                        |                      |                     | SCANS (Dynamic)  |                   | -4114  | 0       | -395    | -3267  | -91       | -1231   | -3529     | 15            | 0        | 2205   |
|     |                     |                        |                      |                     | NIKE (Dynamic)   |                   | -4181  | -24     | -604    | -3152  | - 103     | - 1260  | -2362     | 619           | -85      | 2359   |
|     |                     |                        |                      |                     | SCANS (Q-static) | 44                | -2732  | 0       | -263    | -2169  | -63       | -848    | -2191     | 0             | 0        | 1515   |
|     |                     |                        |                      |                     | SCANS (Dynamic)  |                   | -3783  | 0       | - 360   | -2821  | -83       | -1115   | -3266     | 67            | 0        | 1998   |
|     |                     |                        |                      |                     | NIKE (Dynamic)   |                   | -3950  | -14     | -634    | -2883  | -89       | -1166   | -2139     | 639           | - 70     | 1996   |
| â.  | 2220000             | 0.43                   | 25000                | 1250                | SCANS (Q-static) | 22                | -8055  | 0       | - 16077 | -2530  | -753      | - 1680  | - 1358    | 0             | 0        | 12334  |
|     |                     |                        |                      |                     | SCARS (Dynamic)  |                   | -8099  | 0       | -14775  | -3753  | -793      | -2202   | -2699     | 1982          | 0        | 12387  |
|     |                     |                        |                      |                     | NIKE (Dynamic)   |                   | -6036  | -528    | -22713  | -2811  | - 1070    | - 1906  | -1659     | 1422          | -529     | 16664  |
|     |                     |                        |                      |                     | SCANS (Q-static) | 44                | -5998  | 0       | -10412  | -2169  | -548      | -1355   | - 1440    | 0             | . 0      | 8412   |
|     |                     |                        |                      |                     | SCANS (Cynamic)  |                   | -6658  | 0       | -10664  | -3393  | -588      | -1848   | -2639     | 1372          | 0        | 9349   |
|     |                     |                        |                      |                     | HIKE (Dynamic)   |                   | -5806  | -398    | -16376  | -2460  | -847      | - 1603  | - 1456    | 1426          | -425     | 12311  |
| 1   | 2220000             | 0.43                   | 25000                | 750                 | SCANS (Q-static) | 22                | -11067 | 0       | -25681  | - 2530 | - 1264    | -1902   | -818      | 1731          | 0        | 18450  |
|     |                     |                        |                      |                     | SCANS (Dynamic)  |                   | -8858  | 0       | -17276  | -3286  | -896      | -2057   | -1423     | 2571          | 0        | 13656  |
|     |                     |                        |                      |                     | WIKE (Dynamic)   |                   | -10194 | -902    | -28657  | -2830  | -1347     | -2146   | -1151     | 2754          | -511     | 21638  |
|     |                     |                        |                      |                     | SCANS (Q-static) | 44                | -9041  | 0       | -20047  | -2169  | - 992     | - 1578  | -865      | 993           | 0        | 14552  |
|     |                     |                        |                      |                     | SCANS (Dynamic)  |                   | -6990  | 0       | -12514  | -2971  | -664      | -1735   | - 1562    | 1817          | 0        | 10283  |
|     |                     |                        |                      |                     | WIKE (Dynamic)   |                   | -8026  | -638    | -26043  | - 2503 | - 1261    | - 1851  | - 1027    | 2764          | -62R     | 224.20 |

| F       |       |     |         |  |
|---------|-------|-----|---------|--|
| 1.36751 | - 100 | 100 | Se 18   |  |
| 1.000   |       |     |         |  |
| 1.000   |       | 100 | · · · · |  |

-49-

2

Cont inued

|      | Elastic<br>of Lea | Properties<br>d Shield | Plastic P<br>of Lead | roperties<br>Shield |                  | Axiel<br>Location |         |         |         | Stres  | ses (psi | ) At Ari | ei Loceti | on .         |          |        |
|------|-------------------|------------------------|----------------------|---------------------|------------------|-------------------|---------|---------|---------|--------|----------|----------|-----------|--------------|----------|--------|
|      | ******            | ********               | *******              |                     |                  |                   | Inne    | r Steel | Shell   | 5      | ead Shie | 14       |           | hiter St.    | and Chal |        |
|      | Young's           | Poisson's              | Plastic              | Tield               |                  | Distance          |         |         |         |        |          | *******  | أشطعاها   | outer st     | eet snet |        |
|      | Modulus           | Ratio                  | Modulus              | Stress              |                  | from              |         |         |         |        |          |          | Aria      | Strees       |          |        |
| Case |                   |                        |                      |                     |                  | Impact            | Axial   | Radial  | Circ    | Axial  | Radial   | Circ     |           |              | Radial   |        |
| 10   | (psi)             |                        | (psi)                | (psi)               | Solution         | End (in)          | Stress  | Stress  | Stress  | Stress | Stress   | Stress   | Nin       | Max          | Crees    | Strace |
| **** | ********          | ********               | *******              | ******              | ************     | *******           | ******  | *****   | ******  | ****** |          | ******   |           |              |          |        |
| ĸ    | 2220000           | 0.43                   | 25000                | 500                 | SCAWS (Q-static) | 22                | -12578  |         | 10/01   |        |          | 2012     |           |              |          |        |
|      |                   |                        |                      |                     | SCANS (Dynamic)  |                   | -11011  |         | - 2801/ | -2330  | - 1400   | -2012    | -347      | 2510         | 0        | 21515  |
|      |                   |                        |                      |                     | WIKE (Dynamic)   |                   | -9335   | -807    | -29122  | -2768  | - 1390   | -2124    | - 1351    | 5132<br>3047 | -644     | 21232  |
|      |                   |                        |                      |                     | SCANS (G-static) | 44                | -10551  | 0       | -24832  | -2169  | -1213    | - 1689   | -579      | 1755         | 0        | 17601  |
|      |                   |                        |                      |                     | SCANS (Dynamic)  |                   | -12155  | 0       | -31712  | -3115  | -1558    | -2321    | -1113     | 5546         | 0        | 22732  |
|      |                   |                        |                      |                     | WIKE (Dynamic)   |                   | -9151   | -738    | -28797  | -2548  | -1419    | -2021    | -856      | 2927         | -699     | 20431  |
| ε    | 2220000           | 0.43                   | 25000                | 250                 | SCANS (Q-static) | 22                | - 14073 | 0       | -35308  | -2530  | -1708    | -2123    | -276      | 3295         | 0        | 24581  |
|      |                   |                        |                      |                     | SCANS (Dynamic)  |                   | -12816  | 0       | -32563  | -3447  | - 1610   | -2547    | -1290     | 5549         | 0        | 23613  |
|      |                   |                        |                      |                     | NIKE (Dynamic)   |                   | -9769   | -823    | -29321  | -2704  | -1391    | -2103    | -821      | 3892         | -683     | 2194   |
|      |                   |                        |                      |                     | SCANS (Q-static) | 44                | -12056  | 0       | -29603  | -2169  | -1433    | -1799    | - 292     | 25.15        |          | 2044.0 |
|      |                   |                        |                      | 1.1.1.1             | SCAWS (Dynamic)  |                   | -13651  | 0       | -36659  | -3235  | -1790    | -2480    | -1756     | 6366         |          | 20040  |
|      |                   |                        |                      |                     | (IKE (Dynamic)   |                   | -9665   | -735    | -28844  | -2357  | -1418    | - 1927   | -769      | 3526         | -700     | 20694  |
| н    | 2220000           | 0.43                   | 2500                 | 500 5               | CANS (Q-static)  | 22                | -15199  | 0       | -38764  | -2530  | - 1867   | -2201    | -542      | 3809         | 0        | 26779  |
|      |                   |                        |                      | 5                   | CANS (Dynamic)   |                   | -12381  | 0       | -31110  | -3435  | -1542    | -2500    | -1161     | 5549         | 0        | 22661  |
|      |                   |                        |                      | N                   | IKE (Dynamic)    |                   | -9955   | -899    | - 29820 | -2256  | - 1490   | - 1906   | -984      | 4965         | -723     | 22750  |
|      |                   |                        |                      | 5                   | CANS (Q-static)  | 44                | -12728  | 0       | -31716  | -2169  | - 1530   | -1849    | -576      | 2846         | 0        | 21967  |
|      |                   |                        |                      | 5                   | CANS (Dynamic)   |                   | -12861  | 0       | -34525  | -3235  | - 1689   | -2420    | -1114     | 6041         | 0        | 24540  |
|      |                   |                        |                      |                     | IKE (Dynamic)    |                   | -10142  | -764    | -28714  | -2077  | -1428    | -1775    | -944      | 4726         | 407      | 10445  |

|        |                | 14. Aug | 100  |  |
|--------|----------------|---------|------|--|
| 100.00 | and the second | B B.    | - 2  |  |
| 1 244  | 10.0           | 22 - 46 | 1.10 |  |

Concluded

Stresses (psi) At Axial Location Axial Elastic Properties Plastic Properties Location Outer Steel Shell of Land Shield of Lead Shield Lead Shield Inner Steel Sheil Distance Young's Poisson's Plastic Yield Axial Stress from Modulus Ratio Modulus Stress End (in) Stress Stress Stress Stress Stress Min. Max. Stress Stress same same asses asses Solution (psi) (psi) ----- -----(psi) -----500 250 SCANS (0-static) 22 -17471 0 -45963 -2530 -2199 -2366 -274 1777 .7540 -1301 6247

| L, | 2220000 | 0.43 | 500 | 250  | SCANS (Q-static)<br>SCANS (Dynamic)<br>NIKE (Dynamic) | 22 | -17471<br>-13720<br>-11057    | 0<br>- 1056    | -35303<br>-30963           | -3337                   | -1733<br>-1542             | -2549<br>-1736             | - 1301<br>- 775       | 6247<br>5895         | 0<br>-725      | 25254<br>22987          |
|----|---------|------|-----|------|-------------------------------------------------------|----|-------------------------------|----------------|----------------------------|-------------------------|----------------------------|----------------------------|-----------------------|----------------------|----------------|-------------------------|
|    |         |      |     |      | SCANS (Q-static)<br>SCANS (Dynamic)<br>NIKE (Dynamic) | 44 | - 14988<br>- 14429<br>- 11057 | 0<br>0<br>-777 | -38866<br>-39548<br>-29196 | -2169<br>-3071<br>-1647 | - 1861<br>- 1919<br>- 1379 | -2014<br>-2483<br>-1507    | -291<br>-1261<br>-698 | 3981<br>6873<br>5830 | 0<br>0<br>-691 | 26542<br>27688<br>19167 |
| c  | 25000   | 0.43 | 500 | 2500 | SCANS (Q-static)<br>SCANS (Dynamic)<br>NIKE (Dynamic) | 22 | -12634<br>-12834<br>-7540     | 0<br>0<br>-615 | -30739<br>-33009<br>-26049 | -2530<br>-2713<br>-2255 | -1479<br>-1586<br>-1189    | - 1725<br>- 1807<br>- 1487 | 0<br>-1373<br>-1385   | 2430<br>6900<br>3006 | 0<br>0<br>-566 | 21204<br>22695<br>18015 |
|    |         |      |     |      | SCANS (Q-static)<br>SCANS (Dynamic)<br>NIKE (Dynamic) | 44 | - 10959<br>- 10820<br>- 7274  | 0<br>0<br>-559 | -26346<br>-30026<br>-22743 | -2169<br>-2476<br>-2076 | - 1268<br>- 1444<br>- 1111 | - 1479<br>- 1669<br>- 1371 | 0<br>- 1328<br>- 1087 | 1952<br>6369<br>2942 | 0<br>0<br>-524 | 18174<br>20685<br>15896 |

0 31363

4954

Case

10

-

.

| Method of<br>Prediction        | Total Permanent<br>Lead Shield Slump<br>(in) |
|--------------------------------|----------------------------------------------|
| SCANS Dynamic Analysis         | 0.54                                         |
| Oak Ridge Test (Ref. 18)       | 0.7                                          |
| Design Guide Formula (Ref. 18) | 0.62                                         |

 Table 6-5
 Comparison of results for permanent lead slump in unbonded lead shield generated by 30-ft end drop (Sample Problem 4).

The maximum limiter crush and acceleration results for the IF300 cask are given in Table 6-6. These results show that SCANS' quasi-static and dynamic analyses predict similar maximum values for these quantities. The similarity of results from the two SCANS analyses is also apparent in the results for the dynamic amplification factor, which show that the ratio of the dynamic to the quasi-static results for the maximum force/moment in the cask is near 1.0. The maximum value used for the calculation of the amplification factor given in Table 6-6 is the absolute maximum force/moment generated in the cask by the impact. For the 0-degree impact, the maximum moment at the center of the cask length is used. For the 90-degree impact, the maximum force at the impact end of the cask is used. For both impacts, the amplification factor has a value close to 1.0, indicating nearly equal quasi-static and dynamic solutions for the maximum force/moment of these cases. For comparison, the results given in Ref. 17 for the dynamic amplification factor and for the maximum acceleration are also listed in Table 6-6. The results compare closely with that of SCANS with only one exception: Ref. 17 gives a relatively more conservative estimate of the amplification factor for the 90-degree impact. This disagreement is probably due to the difference in analysis method and model. Reference 17 describes the reaction of the impact limiter using an assumed applied force time history, whereas the SCANS program models the impact limiter with a force-deformation relation. The effect of this difference in modeling is further amplified by the flexibility of the IF300 cask. SCANS dynamic analysis results indicate that for the impacts studied herein, the IF300 cask behaves more like a flexible body than a rigid body. Consequently, the discrepancies between the results of Ref. 17 at. SCANS are reasonable.

In summary, this chapter has presented evidence to demonstrate the reliability of the quasi-static and dynamic analysis methods of SCANS computer program. The analysis methods produce results that are not only consistent with each other, but are also comparable with other independent analyses and tests. This chapter has also pointed out some possible limitations of the quasi-static analysis method; its results should be carefully reviewed and confirmed with the dynamic analysis for casks with stiff impact limiters and for drops at a small angle. By presenting the results of a study using the NIKE computer program, this chapter has also provided some insight into the reason for the observed success of SCANS' method for lead slump analysis.

| Impact<br>Angle<br>(deg.) | Maximum<br>Limiter Deform. (in) |                  | Maximum<br>Impact Force (kip) |                  | Maximum<br>Impact Acceleration (g) |                  |         | Dynamic<br>Amp. Factor |         |
|---------------------------|---------------------------------|------------------|-------------------------------|------------------|------------------------------------|------------------|---------|------------------------|---------|
|                           | SCANS<br>Q-static               | SCANS<br>Dynamic | SCANS<br>Q-static             | SCANS<br>Dynamic | SCANS<br>Q-static                  | SCANS<br>Dynamic | Ref. 17 | SCANS                  | Ref. 17 |
| 0.0                       | 3.6                             | 3.5              | 14310                         | 14114            | 216.1                              | 213.7            | 214.0   | 1.08                   | 1.00    |
| 90.0                      | 2.6                             | 2.6              | 40140                         | 39899            | 303.5                              | 301.7            | 280.0   | 1.02                   | 2.00    |

Table 6-6 Comparison of impact analysis results for IF300 cask (Sample Problem 5).

Notes: 1. SCANS' value for the dynamic amplification factor is the ratio of the dynamic analysis result to the quasi-static analysis result for the maximum force/moment in the cask body.

2. This sample problem uses depleted uranium for radiation shield. A material file for depleted uranium must be first created before running this sample problem.

# REFERENCES

- R. C. Chun, D. J. Trummer, and T. A. Nelson, "SCANS Shipping Cask Analysis System, Vol. 2 Theory Manual, Impact Analysis," Lawrence Livermore National Laboratory, UCID-20674/Vol. 2; prepared for the U.S. Nuclear Regulatory Commission, NUREG/CR-4554 (1987).
- T. A. Nelson and R. C. Chun, "Methods for Impact Analysis of Shipping Containers," Lawrence Livermore National Laboratory, UCID-20639; prepared for the U.S. Nuclear Regulatory Commission, NUREG/CR-3966 (1987).
- J. S. Przemieniecki, <u>Theory of Matrix Structural Analysis</u>, McGraw-Hill Book Co. (1968).
- 4. R. Hill, "The Mathematical Theory of Plasticity," Ox ford Univ. Press, New York (1950).
- D. C. Drucker, "Plasticity and Viscoelasticity Basic Concepts," <u>Handbook of Engineering</u> <u>Mechanics</u>, Chapter 46, W. Flugge, editor, McGraw Hill, New York (1962).
- T. E. Tietz, "Mechanical Properties of a High Purity Lead and a 0.058 Percent Copper-Lead Alloy at Elevated Temperatures," Proc. ASTM, Vol. 59, p. 1052 (1959).
- U. S. Lindholm, "Some Experiments with the Split Hopkinson Pressure Bar," Journal of the Mechanics and Physics of Solids, Vol. 12, 1964, p. 317 (1964).
- C. H. Mok and J. Duffy, "The Dynamic-Stress Strain Relation of Metals as Determined from Impact Tests with a Hard Ball," Int. J. of Mech. Sci., Vol. 7, p. 355 (1965).
- S. J. Green, et al., "The High Strain-Rate Behavior of Face-Centered Cubic Metals," Proceedings of the Battelle Colloquium Inelastic Behavior of Solids, editor, M. Kanninen, et al., McGraw-Hill, New York (1970).
- J. H. Evans, "Structural Analysis of Shipping Casks, Vol. 8, Experimental Study of the Stress-Strain Properties of Lead Under Specified Impact Conditions," ORNL-TM-1312, Oak Ridge National Laboratory, Oak Ridge, TN (August 1970).
- J. Duffy, R. H. Hawley, and R. A. Frantz, Jr., "The Deformation of Lead in Torsion at High Rates," J. of Appl. Mech., p. 651 (1972).
- P. V. Marcal, "A Stiffness Method for Elastic-Plastic Problems," Int. J. Mech. Sci., Vol. 7, pp. 229-238 (1965).
- P. V. Marcal and W. R. Pilgrim, "A Stiffness Method for Elastic-Plastic Shells of Revolution," <u>Pressure Vessel and Piping</u>: <u>Design and Analysis</u>, Vol. 1, <u>Analysis</u>, G. J. Bohm, editor, The Amer. Soc. of Mech. Engrs., New York (1972). (Reprint from *J. of Strain Analysis*, Instn. of Mech. Engrs, 1966)
- R. J. Roark and W. C. Young, Formulas for Stress and Strain, McGraw-Hill Book Co. (1975).
- J. O. Hallquist, "NIKE2D A Vectorized, Implicit Finite Deformation Finite Element Code for Analyzing the Static and Dynamic Response of 2-D Solids with Interactive Re-zoning and Graphics," Lawrence Livermore National Laboratory, UCID-19677, Rev. 1, December 1986.

- G. C. Mok and M. C. Witte, "The Use of SCANS for Impact Studies of Transportation Packages," 29th Annual Meeting Proceedings, Institute of Nuclear Materials Management, June 26-29, 1988, Las Vegas, NV, p. 160.
- "Consolidated Safety Analysis Report for IF300 Shipping Cask," General Electric Nuclear Energy Division Report NEDO-10084, San Jose, CA, September 1984.
- L. B. Shappert, et al., "A Guide for the Design, Fabrication, and Operation of Shipping Casks for Nuclear Applications," Oak Ridge National Laboratory Report ORNL-NSIC-68, Oak Ridge, TN, February 1970.

# APPENDIX A

SCANS' Input for Verification Problems

## A.1 SCANS Input for Sample Problems

Figures A-1-1 through A-5-2 are a copy of SCANS input pages for Sample Problems 1 through 5. These pages contain all the required input values to define the basic geometry of the cask and the force-deformation relation of the impact limiters. From these pages, the user can identify the exact input values and reproduce the results presented in this report for Sample Problems 1 through 5. Only the pages that are essential for the impact analyses are shown. These pages also contain some default values that are automatically created by the program and some input values that are used for other but not the impact analyses. Input values entered on other pages but not shown herein might be required by the program, but they will have no effect on the results of the impact analyses.

| Basic Geometry Specifications ID:0001 Tod<br>General SAR Information Page 1 of 12 Last | ay is: 5/16/91<br>chgd:11/17/06          | Basic Geosetry Specifications 10:0001 7<br>Cesk Cevity/Contents Specifications Page 3 of 12 La | oday is: 5/16/9<br>at cligd: 5/27/8 |
|----------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|
| SAR title[Prob. 1, Rail Cask w/ Solid Caps & Soft Limitors                             | 1                                        | Cavity inner radius (in.) [30.<br>Cavity length (in.)                                          | T.                                  |
| SAR ducket number                                                                      |                                          |                                                                                                |                                     |
| SAR docket start date                                                                  | 1                                        | Cross weight of package (lbs)                                                                  |                                     |
| Add. infot                                                                             | 1                                        | Maximum heat generation rate of conten's (Btu/pin)                                             |                                     |
| Add. into                                                                              | 1                                        | Initial cavity charge pressure (psia)                                                          |                                     |
| Add. info(                                                                             | 1                                        | Maximum normal operating pressure (psia)                                                       | 1                                   |
| Comp addr[                                                                             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | Temperature defining stress free condition (deg.F)                                             |                                     |
| Comp addr[                                                                             | 1                                        | (Include the following to define 2-0 finite-element mesh)                                      |                                     |
| Comp addr[                                                                             | 1                                        | (mean givisiona most po even)                                                                  |                                     |
|                                                                                        |                                          | Number of each divisions along cavity inner radius                                             |                                     |

| Cash Component Configurations                             | 10:0001<br>Page 4 of 12 | Today 1s: 5/16/91<br>Last chgd:11/17/88 | Sasic Geometry Specifications<br>Cask Shell Spacifications (LAMINATED)                                                                       | 10:0001<br>Page 55 of 12  | Today<br>Last ch | 18: 5/16/91<br>lgd: 8/24/87 |
|-----------------------------------------------------------|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------------------------|
| Shell configuration                                       |                         |                                         | Shell inner layer thickness (in )                                                                                                            | (in.)(1.5                 | 1                |                             |
| T/p end cap configuration                                 |                         |                                         | Shell shield layer thickness (in.).                                                                                                          |                           |                  |                             |
| Bottom end cap configuration[5]<br>[S-molid, L-laminated] |                         |                                         | Shell shield layer material name                                                                                                             | LERD                      | 8 (j             |                             |
| Is Top impact ligiter present?                            | 17781                   |                                         | Shell outer layer thickness (in )<br>Additional thickness at end cap interface (<br>Shell outer layer actual                                 | in 1 [0                   | 1                |                             |
| Is Bottom impact limiter present?                         | [Y/W][Y]                |                                         |                                                                                                                                              |                           |                  |                             |
| Is Heutron shield / water jacket present?                 | {¥/H}                   |                                         | finclude the following to define 2-D finite-<br>(Mesh divisions must be even)                                                                | element wesh;             |                  |                             |
|                                                           |                         |                                         | Number of mesh divisions through shell inner<br>Number of mesh divisions through shell shiel<br>Number of mesh divisions through shell outer | layer<br>d Layer<br>layer |                  |                             |

Figure A-1-1 SCANS input pages for basic geometry of Sample Problem 1.

| <pre>x roy tnd cap Specifications (501.0)<br/>ap thickness (1n.1</pre>                                               | 10 00 001                      |                                          | sut cap thictness [im.1                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| jude the following to define 2-0 finite-s)<br>(Mesh divisions must be even)<br>et of mesh divisions through end cap[ | esent sout)                    |                                          | <pre>(include the following to define 2-0 finite-sh next mosh)     (Meah divisions must be even)     manor of mesh divisions through end cap[* ]</pre>                                                                                                                                                                           |
| s fl0 to copy data from other end cap ()                                                                             | f it is solub!                 |                                          | Frens Fig to copy data from other end cap (if it is Solfio)                                                                                                                                                                                                                                                                      |
| o Gaomatiy Specifications                                                                                            | 10:0003 of 12<br>Magas B of 12 | Today is: 5,15/91<br>Last chydt: 3/24/67 | hasic Geometry Specifications<br>Cask Separt Model Specifications<br>Page 12 of 12 last chodel 6/17                                                                                                                                                                                                                              |
| k Closure dolfs intermented<br>er of closure bolts (in-)<br>eter of closure bolts (in-)                              | (20)<br>(1.<br>(37             |                                          | Bumbler of elements for 1-D implect model [8]<br>909 Espace limiter weight (104)<br>907 Espace limiter weight (104)<br>917 cosited, weights are calculated based on weighte and donsity)<br>916 cosited, weights are calculated based on weighte and donsity)<br>contact immed with uper specified proporties? [7/N]<br>917 cost |
| meter of closure bolts (10-1)                                                                                        | Ę                              |                                          | (if centred, weights are cercurated when were proporties? [4/W]                                                                                                                                                                                                                                                                  |

Figure A-1-1 SCANS input pages for basic geometry of Sample Problem 1. (Continued)

· Inger a de

Impact Limiter Deflection/Force Data Impact Limiter Unloading Specification ID:0001 Today is: 5/16/91 Page 0 of 2h Last chgd: 8/24/87

Select the slope of the unloading path for impact limiters

C -- Unloading slope is maximum slope of limiter curve N -- No elastic recovery of impact limiter (Approximated by unloading slope of 5 times max slope of curve) U -- User specified unloading slope

Type of Impact Limiter Unloading ...... [N]

| Impact L<br>Bottom | imiter<br>Impact | Deflection/Force Data<br>Limiter for 0 degree impact | ID:0001<br>Page la           | of 2h           | Today is: 5/16/01<br>Last chgd:11/17/88     |
|--------------------|------------------|------------------------------------------------------|------------------------------|-----------------|---------------------------------------------|
| Press F            | 10 to            | copy Force/Deflection data 1                         | from another                 | impact          | angle                                       |
| Impact a           | ngle is          | defined as follows: SIDE i<br>END ON i               | impact angle<br>impact angle | is 0.<br>is 90. |                                             |
| Do you w           | ish to           | define a Deflection/Force cu                         | urve for this                | angle           | $i \in \{Y \not = N\}, \dots, \dots, \{Y\}$ |
|                    |                  | You must define at least 2 d                         | deflection/fo                | rce pai         | rs                                          |
| Defl               | ection           | #0 (in) .0                                           | Force #0                     | (kips)          | .0                                          |
| Def1               | ection           | #1 (in)(.)                                           | Force #1                     | (kips).         | [10. ]                                      |
| Defl               | ection           | #2 (ia)(3. )                                         | Force #2                     | (kips).         | (100. )                                     |
| Defl               | ection           | #3 (in)[0. ]                                         | Force #3                     | (kips).         | [0. ]                                       |
| Def1               | ection           | #4 (in)[0. ]                                         | Force #4                     | (kips).         | [0. ]                                       |
| Defl               | ection           | #5 (in)(0. )                                         | Force #5                     | (kips).         | [0. ]                                       |
| Defl               | ection           | #6 (in)(0. )                                         | Force #6                     | (kips).         | [0.]                                        |
| Defl               | ection           | #7 (in)[0. ]                                         | Force #7                     | (kips).         | [0. ]                                       |
| Defl               | ection           | #8 (in)[0. ]                                         | Force #8                     | (kips).         | [0. ]                                       |
| Def1               | ection           | #9 (in)[0. ]                                         | Force #9                     | (kips).         | [0. ]                                       |
| Defil              | ection           | #10 (in)[0. ]                                        | Force #10                    | (kips)          | [0.]                                        |

Figure A-1-2 SCANS input pages for limiter force-deformation relation of Sample Problem 1. The input for all impact angles are identical; therefore, only the page for 0-degree impact is shown herein.



0

ALC: NO

Figure A-2-1 SCANS input pages for basic geometry of Sample Problem 2. Other required pages not shown herein are identical to those of Sample Problem 1 (Fig. A-1-1).
| impact I | imiter  | Deflection/ | Force Data    | ID:0002 |    |    | Today  | 15:   | 5/ | 16/1 | 91 |
|----------|---------|-------------|---------------|---------|----|----|--------|-------|----|------|----|
| Impact   | Limiter | Unloading   | Specification | Page 0  | of | 2h | Last o | chgd: | 8/ | 24/1 | 87 |

Select the slope of the unloading path for impact limiters

C -- Unloading slope is maximum slope of limiter curve

N -- No elastic recovery of impact limiter

(Approximated by unloading slope of 5 times max slope of curve) U -- User specified unloading slope

Type of Impact Limiter Unloading......[N]

Impact Limiter Deflection/Force Data ID:0002 Today is: 5/16/91 Bottom Impact Limiter for 7 degree impact Page 1a of 2h Last chgd:11/17/88 Press F10 to copy Force/Deflection data from another impact angle Impact angle is defined as follows: SIDE impact angle is 0. END ON impact angle is 90. Do you wish to define a Deflection/Force curve for this angle ? [Y/N].....[Y] You must define at least 2 deflection/force pairs (kips) Deflection #0 .0 (in) Force #0 (kips) ... [10. Deflection #1 (in) ... [.3 Force #1 Deflection #2 (in) ... [3. Force #2 (kips) ... (100.

Deflection #3 (in)...[0. Force #3 (kips)...[0. Deflection #4 (in)...[0. Force #4 (kips) ... [0. Deflection #5 (in)...(0. Force #5 (kips)...(0. Deflection #6 (in)...[0. Force #6 (kips) ... [0. Deflection #7 Force #7 (kips) ... (0. (in)...[0. Deflection #8 (in) ... [0. Force #8 (kips)...[0. Deflection #9 (in)...[0. Force #9 (kips) ... [0. Deflection #1) (in) ... [0. Force #10 (kips) ... [0.

Figure A-2-2 SCANS input pages for limiter force-deformation relation of Sample Problem 2. The input for all impact angles are identical; therefore, only the page for 0-degree impact is shown herein.

| Basic Geometry Specifications<br>General SAR Information | ID:0003 Today is: 5/16/91<br>Page 1 of 12 Last chgd:11/16/88 |
|----------------------------------------------------------|--------------------------------------------------------------|
| SAR title [Prob. 3, Rail Cask w/ Unboned                 | Shield & Typical Limiter)                                    |
| SAR docket number ( ) SAR                                | report number[ ]                                             |
| SAR docket start date[7/25/88 ] SAR                      | report date[ ]                                               |
| Add. info[                                               | 1                                                            |
| Add. info[                                               | 1                                                            |
| Add. info[                                               | 1                                                            |
| Comp addr[                                               | 1                                                            |
| Comp addr[                                               | 1                                                            |
| Comp addr[                                               |                                                              |
|                                                          |                                                              |

Figure A-3-1 SCANS input pages for basic geometry of Sample Problem 3. All other input pages for this problem and for Problem 1 are identical.

| mpact Limiter Deflection/Force Data<br>Impact Limiter Unloading Specification                                                                              | ID:0003 Today is: 5/16/91<br>Page 0 of 2h Last chgd: 8/24/87 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Select the slope of the unloading path for                                                                                                                 | impact limiters                                              |
| C Unloading slope is maximum slope of<br>N No elastic recovery of impact limits<br>(Approximated by unloading slope of<br>U User specified unloading slope | limiter curve<br>ar<br>f 5 times max slope of curve)         |
| Type of Impact Limiter Unlosding                                                                                                                           | · · · · (N)                                                  |

| Bottom Impa                                | ict Liu                   | iter for 90 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | egree impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 1g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of 2h                               | Last chqd:11/17/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press F10                                  | to copy                   | y Force/Defle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ction data fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | om another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | impact                              | angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Impact angle                               | e is de                   | fined as foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ows: SIDE im<br>END GN im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pact angle<br>pact angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is 9.<br>is 90.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Do you wish                                | to def                    | ine a Deflect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion/Force cur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve for thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s angle                             | ? [Y/N][Y]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | You                       | must define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at loast 1 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flection/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orce pai                            | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Daflecti                                   | on #0                     | (in) .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips)                              | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Deflecti                                   | ion #1                    | (in)(.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. C. S. M. S. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Force #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             | [1680. ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Deflecti                                   | ion #2                    | (in)(20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             | . (2800. )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deflecti                                   | on #3                     | (in)(25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflecti                                   | ion #4                    | (in)(30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflacti                                   | lon #5                    | (in) (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflect                                    | ion #6                    | (in) (o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflacti                                   | ion #7                    | (in) (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dyflect                                    | lon (8                    | (in) i0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Force #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflect                                    | ion #9                    | (in) (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 지하는 것을 많은                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Force #9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kips).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deflecti                                   | ion #10                   | (in) [0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Force #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (kips).                             | [0. ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and an | A THE PART AND A PARTY OF | strangenetary' lower and a state of the stat | and the second se | A Design of the land of the second seco | and the second second second second | service and the objects, long that the service of the local devices and the service of the servi |

Figure A-3-2 SCANS input pages for limiter force-deformation relation of Sample Problem 3.

Seel: Geomotry Specifications General SAR Information 10:0004 Today is: 5/16/91 Page 1 of 12 Last chyd:11/15/85 Basic Gommenry Specifications 10:000+ Today is: 5/14/91 Page 3 of 12 Levi chgd:13/19/87 Cask Cavity/Contents Specifications SAR title ... (Prob. 4, Hailam Cask for Comparison with ORHL Test 18 SAN docket start data...... (8/1)/88 | SAN report date........... 1.0 Add. info.... (Cask's Geometry and test results are in ORML report ] Add. info..... (#NSIC-66, "A Guide for the Design, Fabrication, and ] Add. Info ... [Operation of Shipping Casks for Hucidar Applications" ] Comp addr ..... [ (Include the following to define 2-0 finite-element mech) (Weath divisions must be even) 3 Comp addr ..... Comp addr ..... i Number of mesh divisions along cavity inner radius......[6] Number of mesh divisions along cavity half length ......[8]

| Basic Geometry Specifications<br>Cask Component Configurations | 10:0004<br>Page 4 of 12 | Todsy is: 5/16/21<br>Lost chyd:11/12/89 | Sasic Geometry Specifications 1D:0004 Cask Shall Specifications (LANISATED) Fage 5b of 12 La | Today is: 5/16/91<br>ast chyd:11/10/87 |
|----------------------------------------------------------------|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|
| Shell configuration[1]<br>[S-solid, L=issinited]               |                         |                                         | Sheil inner læyer thickness (in.)                                                            | 1                                      |
| Top end cap configuration                                      |                         |                                         | Shell shield langth (in.)                                                                    | 1                                      |
| Rottom end cap configuration[5]<br>[S=meiid, L=laminated]      |                         |                                         | Shell outer layer thickness (in.)                                                            | 1                                      |
| is Top impact limiter present?                                 | {¥/#}{¥}                |                                         | Shell outer layer material name[55304 ]                                                      |                                        |
| is Bottom impact limiter present?                              | {¥/#}                   |                                         | (include the following to define 2-D finite-element mech)                                    |                                        |
| is Neutron shield / water jacket present?                      | t7 {Y/N}                |                                         | (Mesh divisions suct be even)                                                                |                                        |
|                                                                |                         |                                         | Number of mesh divisions through shell inner layer                                           | 1                                      |

| Basic Genestry Specifications (0:0004 Today is: 5/18/91<br>Cask Top End Cap Specifications (SDLID) Page 6s of 12 Last chyd:11/19/47 | Basic Geometry Specifications ID:0804 Today is: 5/16/81<br>Cask Bottom End Cap Specifications (SOLID) Page 7a of 12 Last cogd:11/19/87 |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| End cap thickness (in.)                                                                                                             | End cap thickness (in.)                                                                                                                |
| End cap material name                                                                                                               | End cap meterial mame(SE104 }                                                                                                          |
| ilnclude the following to define 2-D finite-element mash;<br>(Mesh divisions must be oven)                                          | (include the following to define 2-D finite-element wesh)<br>(Mesh divisions must be even)                                             |
| Number of mesh divisions through and cap[4]                                                                                         | Number of much divisions through and cap[4 ]                                                                                           |
|                                                                                                                                     |                                                                                                                                        |
| Press FID to copy data from other end cap (if it is SOLID)                                                                          | Press Fig to copy data from other end cap (if it is SOLID)                                                                             |

| Instit Geometry Specifications (D:0004 Today is: 5/16<br>Cast Closure Bolts Information Page 8 of 12 Last cbgd:11/15 | 92 Basic Geometry Specifications ID:8004 Today is: 5/16/91<br>87 Cask Impact Model Specifications Page 12 of 12 Last chyd:11/12/28 |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Number of closure bolts                                                                                              | Number of elements for 1-5 (space mode)                                                                                            |
| Diameter of closure holts (in.)                                                                                      | NOTTON Expact limiter weight (lbs)                                                                                                 |
| Closure bolt circle radius (in.)                                                                                     | Define impact model with user enaritied properties? (Y/N) (A)                                                                      |

| Innact       | Limiter | Deflection | Force Data                                                                                                      | ID:0004                                              |             |                   | Toda               | ly is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/                 | 16/            | /91           |
|--------------|---------|------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|---------------|
| Impact       | Limiter | Unloading  | Specification                                                                                                   | Page 0                                               | of          | 2h                | Last               | chgd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/                | 17/            | 186           |
| a mile a a a |         |            | And in case of the same statement of the same statement in the same statement in the same statement in the same | THE OWNER ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY. | Non-Archite | or cases in later | transmistration of | ADDRESS OF ADDRES<br>ADDRESS OF ADDRESS OF ADDR | Constraints of the | <b>Measure</b> | Concerning of |

Select the slope of the unloading path for impact limiters

C -- Unloading slope is maximum slope of limiter curve N -- No elastic recovery of impact limiter (Approximated by unloading slope of 5 times max slope of curve) U -- User specified unloading slope

Type of Impact Limiter Unloading ..... [N]

.

| mpact Limiter<br>Bottom Impact | Deflection/Force Data<br>Limiter for 90 degree impac | t Page 1g of 2h Last chgd: 8/13/88        |
|--------------------------------|------------------------------------------------------|-------------------------------------------|
| Press F10 to                   | copy Force/Deflection data                           | from another impact angle                 |
| Impact angle is                | defined as follows: SIDE<br>END ON                   | impact angle is 0.<br>impact angle is 90. |
| Do you wish to                 | define a Deflection/Force c                          | urve for this angle $?$ [Y/N][Y]          |
|                                | You must define at least 2                           | deflection/force pairs                    |
| Deflection                     | #u (in) .0                                           | Force #0 (kips) .0                        |
| Deflection                     | #1 (in)[1. ]                                         | Force #1 /kips)[258500. ]                 |
| Deflection                     | #2 (in)                                              | Force #2 (kips)[517000. ]                 |
| Deflection                     | #3 (in) [0.                                          | Force #3 (kips)[0. ]                      |
| Deflection                     | #4 (in) (0.                                          | Force #4 (kips)[0. ]                      |
| Deflection                     | 45 (in) [0 ]                                         | Force #5 (kips)[0.                        |
| Deflection                     | #6 (in) [0                                           | Force #6 (kips)(0.                        |
| Deflection                     | #0 (AN)                                              | Force #7 (kips)(0.                        |
| Deflection                     | #/ (±n)(v.                                           | Force #8 (kips)(0.                        |
| Derlection                     | \$8 (1n) (0.                                         | Force #9 (kips)[0.                        |
| Deflection                     | #a (TL) (0.                                          | Force #10 (kine) (0                       |
| Deflection                     | #10 (TU) *** [0* ]                                   | LOTOD ATO (VTBS) [A. ]                    |

Figure A-4-2 SCANS input pages for limiter force-deformation relation of Sample Problem 4.

| Basic Geometry Specifications<br>Cask Cavity/Contents Specifications                                                           | ID:0005<br>Page 3 | of                 | 12                | Today<br>Last c | / is:<br>hgd: | 5/16/91<br>9/18/87   |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|-----------------|---------------|----------------------|
| Cavity inner radius (in.)<br>Cavity length (in.)                                                                               | *******           | • • • {<br>• • • { | 18.               | 75<br>25        | )<br>]        | eroeenee wa, Alemana |
| Gross weight of package (lbs)                                                                                                  | *******           | (<br>(             | 1310              | 322.<br>72.     | ]             |                      |
| Maximum heat generation rate of contents (Btu/                                                                                 | min)              |                    | 436               | És.             | 1             |                      |
| Initial cavity charge pressure (psia)<br>Initial cavity charge temperature (deg.F)<br>Maximum normal operating pressure (psia) | ********          | * * * {            | 14.<br>70.<br>400 |                 | 1             |                      |
| Temperature defining stress free condition (de                                                                                 | g.F)              |                    | 70.               |                 | 1             |                      |
| (Include the following to define 2-D finite-el<br>(Mesh divisions must be even)                                                | ement ne          | sh)                |                   |                 |               |                      |
| Number of much distates store could be to a                                                                                    |                   |                    |                   |                 |               |                      |

Number of mesh divisions along cavity inner radius......[6] Number of mesh divisions along cavity half length.......[8]

| Basic Geometry Specifications<br>Cask Component Configurations | ID:0005<br>Page 4 | of 12 | Today is: 5/16/91<br>Last chgd:11/17/88 |
|----------------------------------------------------------------|-------------------|-------|-----------------------------------------|
| Shell configuration[L]<br>[S=solid, L=laminated]               |                   | -     |                                         |
| Top end cap configuration(L)<br>[S=solid, L=laminated]         |                   |       |                                         |
| Bottom end cap configuration[L]<br>[S=solid, L=laminated]      |                   |       |                                         |
| Is Top impact limiter present?                                 | [Y/N]             | [¥]   |                                         |
| Is Bottom impact limiter present?                              | {Y/N]             | (¥)   |                                         |
| Is Neutron shiel / water jacket present?                       | [¥/N]             | [¥]   |                                         |

Figure A-5-1 SCANS input pages for basic geometry of Sample Problem 5.

| Basic Geometry Specifications<br>Cask Shell Specifications (LAMINATED)                                                                        | ID:0305<br>Page 5b of 12    | Today is: 5/16/91<br>Last ched: 9/02/87 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|
| Shell inner layer thickness (in.)<br>Additional thickness at end cap interface (in<br>Shell inner layer material name                         |                             | }                                       |
| Shell shield layer thickness (in.)<br>Shell shield length (in.)<br>Shell shield layer material name                                           | (182.25<br>[DURANIUM]       | 1                                       |
| Shell outer layer thickness (in.)<br>Additional thickness at end cap interface (in<br>Shell outer layer material name                         | (1.5<br>(0.<br>(\$\$\$316]) | ]                                       |
| (Include the following to define 2-D finite-e)<br>(Mesh divisions must be even)                                                               | ement mesh)                 |                                         |
| Number of mesh divisions through shell inner<br>Number of mesh divisions through shell shield<br>Number of mesh divisions through shell outer | layer                       | 2 ] 4 ] 2 ]                             |

| Basic G | cometry Specifications                                                  | ID:0005 Today is: 5/16/91        |
|---------|-------------------------------------------------------------------------|----------------------------------|
| Cask T  | op End Cap Specifications (LAMINATED)                                   | Page 6b of 12 Last chgd: 9/02/87 |
| End cap | inner layer thickness (in)[1                                            | .5 )                             |
| End cap | inner layer material namo                                               | 5304 )                           |
| End cap | shield layer thickness (in.)(3                                          | .75 ]                            |
| End cap | shield layer radius (in.)(2                                             | 0. ]                             |
| End cap | shield layer material name                                              | URANIUM]                         |
| End cap | outer layer thic less (in.)[1                                           | .25 )                            |
| End cap | outer layer material name[5                                             | 3304 )                           |
| (Includ | e the following to define 2-D finite-e<br>(Mesh divisions must be even) | lement mesh)                     |
| Number  | of mesh divisions through end cap inne                                  | r layer[2])                      |
| Number  | of mesh divisions through end cap shie                                  | 1d layer[4]                      |
| Number  | of mesh divisions through end cap oute                                  | r layer                          |
| Press   | F10 to copy data from other end cap (                                   | if it is LAMINATED)              |

Figure A-5-1 SCANS input pages for basic geometry of Sample Problem 5. (Continued)

| Cask Button End Cap Specia (LAMINATED)                                                                                                        | ID:0005 Today is: 5/16/91<br>Page 7b of 12 Last chgd: 9/02/87 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| End cap inner layer thickness (in)(1<br>End cap inner layer material name                                                                     | 1.6 )<br>55304 )                                              |
| End cap shield layer thickss (in.)()<br>End cap shield layer radius (in.)                                                                     | 0.76 )<br>20. )<br>DURANIUM)                                  |
| End tap outer layer thickness (in.)()<br>End cap outer layer material name                                                                    | 1.25 )<br>\$\$304 ]                                           |
| (Include the following to define 2-D finite-(<br>(Mesh divisions must be even)                                                                | element mesh)                                                 |
| Number of mesh divisions through end cap inner<br>The of mesh divisions through end cap shist<br>Number of mesh divisions through end cap out | er layer                                                      |
| Press F10 to copy data from other end cap                                                                                                     | (if it is LAMINATED)                                          |

| Basic Geometry Specifications                                                                                                                           | ID:0005 Today is: 5/16,        | /91 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| Cask Impact Model Specifications                                                                                                                        | Page 12 of 12 Last chg2:11/17, | /88 |
| Number of elements for 1-D impact mod<br>TOP Impact limiter weight (lbs)<br>BOTTOM Impact limiter weight (lbs)<br>(If omitted, weights are calculated b | el(10)<br>(3846. )<br>         |     |

Define impact model with user specified properties?  $[V/N], \ldots, [N]$ 

1

Figure A-5-1 SCANS input pages for basic geometry of Sample Problem 5. (Continued)

| Impact Limiter Uniteding Specification Page 0 of 2h Last chyd: 9/02/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Impact Limiter Duflection/Torce Data 10:0005 T day in: 5/26/51<br>Bottom Impact Limiter for 0 degree impact Fage 1a of 26 Last chop:11/17/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select the slope of the unloading path for impact limiters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Press Fig to copy force/Deflection data from another impact angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C Unloading slope is maximum slope of limiter curve<br>B No elastic recovery of impact limiter<br>(Approximated by unloading store of the store)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Empart angle is defined an follows: SIDE impart angle is 0<br>ENF ON impart angle is 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 Oner specified unloading stope of 5 times max stope of curve!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To you wist to define a Deflection/Force curve for this angle ? [7/8][7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Type of Impact Limitor Valuating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ton must define at loast 2 definition/ferce pairs   Definition #0 (in) 0 Freese #0 (hips) 5   Definition #1 (in) 1,354 Freese #1 (hips) 5   Definition #2 (in) 1,354 Freese #2 (hips) 1,356   Definition #2 (in) 1,354 Freese #2 (hips) 1,356   Definition #2 (in) 1,355 Freese #2 (hips) 1,656   Definition #2 (in) 1,0 Freese #2 (hips) 1,666   Definition #2 (in) 1,0 Freese #2 (hips) 1,666   Definition #2 (in) 1,0 Freese #2 (hips) 1,66   Definition #2 (in) 1,0 Freese #2 (hips) 1,6   Definition #2 (in) 1,0 Freese #2 (hips) 1,6   Definition #3 (in) 1,0 Freese #3 (hips) 1,6   Definition #3 (in) 1,0 Freese #3 (hips) 1,6   Definition #3 (in) 1,0 Freese #3 (hips) 1,6   Definition #4 (in) 1,0 Freese #3 (hips) 1,6   Definition #4 (in) 1,0 Freese #3 (hips) 1,0 |
| The second state of the se | Deflection #10 (in)(0. ) Force 316 (kips)(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Sotte Impact Limiter for 96 degree in         | th:0605<br>Page 1g                 | 92 25           | Today is: 5/1./9:<br>Last chigh:31/32/88 |
|-----------------------------------------------|------------------------------------|-----------------|------------------------------------------|
| Tress F10 to copy Force/Deflection d          | sta from another                   | Impact          | aving the                                |
| impact angle is defined on follows: 5-<br>RHD | un impact mogle<br>un impact angle | is n.<br>is 10. |                                          |
| Do you wish to define a Definition/Fee.       | T CHEVE DEP TRA                    | e angle         | 7 (9/91                                  |

| Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection<br>Deflection | Box Define at   0 [10] 0   11 [10] 0   12 [10] 1253   13 [10] 210   14 [10] 210   15 [10] 210   16 [10] 210   17 [10] 10   17 [10] 10   19 [10] 10   19 [10] 10   10 10 10 | <pre>imaxt 2 definction/Incre pairs</pre> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|

A Distant and a

# APPENDIX B

Additional Comparison of SCANS Results

(Sample Problems 1 and 2)

Appendix B presents verification results that are omitted in Chapter 6 of this report. The results are for the Sample Problems 1 and 2 defined in Chapter 6. The casks used for the two problems differ only in the end caps and in the impact limiter. As depicted in Fig. 6-1 of Chapter 6, all the casks have the dimensions of a typical rail cask. The casks for Problem 1 have two identical solid end caps, but the cask for Problem 2 has two unequal laminated end caps of slightly different thickness of the lead shield. The same limiter force-deformation relation is used for Problems 1 and 2.

Problem 1 was employed to verify all printed output of SCANS quasi-static and dynamic analysis options. Supplementing Problem 1, Problem 2 was used to check the calculation of stresses in the laminated end caps.

The results of Problem 1 presented in this appendix include all the maximum stresses in the cask body, the end caps, and the top closure bolts generated by a 30-ft drop. For the cask body, the maximum axial force, shear force, and bending moment are also presented for various axial locations of the cask (Tables B-1 through B-4). The cask stresses are tabulated for a side drop (Table B-5), a 45-degree oblique drop (Table B-6), an end drop (Table B-7), and a C.G. drop (Table B-8). The end cap and bolt stresses are listed for both bottom and top impacts at four other oblique angles in addition to the foregoing ones (Tables B-9-1 through B-12). The stresses in the laminated end caps of Sample Problem 2 are tabulated in Tables B-13-1 and B-13-2.

#### Table B-1

## Comparison of SCAMS Results for Forces and Momments in a Cask Undergoing a 30 Ft. Side Drop (Sample Problem 1)

| Distance   | Maximan   | Axial Fo | rce (kip) | Haxim     | m Shear Fo | rce (kip) | Max. Bending Moment (in-kip) |          |          |
|------------|-----------|----------|-----------|-----------|------------|-----------|------------------------------|----------|----------|
| Impact End | Quasi-s   | tetic    | Dynamic   | Ques i -  | static     | Dynamic   | QLABS 1 -                    | static   | Dynamic  |
| (in)       | Hand Calc | SCANS    | SCANS     | Hand Calc | SCANS      | SCARS     | Hand Calc                    | SCANS    | SCANS    |
| ********   | ********  | *******  | ********  | ********  |            |           | *******                      | ******** | *******  |
| 0.0        | 0.0       | 0.0      | 0.5       | 1070.1    | 1070.1     | 1150.4    | 5379.7                       | 5379.7   | 5816.8   |
| 22.4       | 0.0       | 0.0      | 0.4       | 917.2     | 917.2      | 987.7     | 29323.1                      | 29322.9  | 31578.7  |
| 44.8       | 0.0       | 0.0      | 0.2       | 611.5     | 611.5      | 661.0     | 46425.5                      | 46425.1  | 50074 .B |
| 67.1       | 0.0       | 0.0      | 0.1       | 305.7     | 305.7      | 331.8     | 56686.9                      | 56586.5  | 61202.7  |
| 89.5       | 0.0       | 0.0      | 0.0       | 0.0       | 0.0        | 0.0       | 60107.4                      | 60106.9  | 64924.7  |
| 111.9      | 0.0       | 0.0      | 0.1       | -305.7    | -305.7     | -331.8    | 56686.9                      | 56686.5  | 61202.7  |
| 134.3      | 0.0       | 0.0      | 0.2       | -611.5    | -611.5     | -661.0    | 46425.5                      | 46625.1  | 50074.8  |
| 156.6      | 0.0       | 0.0      | 0.4       | -917.2    | -917.2     | -987.7    | 29323.1                      | 29322.9  | 31574.7  |
| 179.0      | 0.0       | 0.0      | 0.5       | -1070.1   | -1070.1    | -1150.4   | 5379.7                       | 5379.7   | 5816.8   |

#### Teble D-2

Comparison of SCARS Results for Forces and Moments in a Cask Undergoing a 30 Ft. 45 Degree Oblique Drop (Sample Problem 1)

| Distance   | Max issue | a Axiel Fo | rce (kip)  | Kax im.m  | Shear For | rce (kip) | Max. Ber          | cling Momen | t (in-kip) |
|------------|-----------|------------|------------|-----------|-----------|-----------|-------------------|-------------|------------|
| from       | *******   | ********   | ********** | ********* | *******   | ********* | ********          |             | *********  |
| Impact End | Quesi -   | static     | Dynamic    | QUBS 1-5  | tatic     | Dynamic   | Ques i -          | static      | Dynamic    |
|            | ********  |            | ********   | *******   | *******   | ******    | * * * * * * * * * | ********    | ********   |
| (in)       | Hand Calc | SCANS      | SCANS      | Nand Calc | SCANS     | SCARS     | Hand Cald         | SCANS       | SCANS      |
| *******    | *******   |            | *********  | ********  | ******    | ********* | ********          | *******     | ********   |
| 0          | -1226.6   | -1226.6    | -895.9     | 951.6     | 951.6     | 962.9     | -45683.1          | -45682.9    | -33405.9   |
| 22.375     | -1154.7   | -1154.7    | -831.8     | 812.1     | 812.1     | 795.9     | -24782.5          | -24782.4    | -15574.2   |
| 44.75      | -1010.9   | -1010.9    | - 709.7    | 555.7     | 555.7     | 493.1     | -10513.8          | -10513.9    | 1015/.7    |
| 67,125     | -867.0    | -867.0     | -595.1     | 344.3     | 344.3     | 266.0     | -1478.6           | -1478.7     | 14920.2    |
| 89.5       | .723.2    | .723.2     | 509.5      | 178.0     | 178.0     | 113.2     | 3330.6            | 3330.4      | 15956.2    |
| 111.875    | -579.3    | -579.3     | 488.5      | 56.6      | 56.6      | -102.6    | 4921.2            | 4921.0      | 13722.7    |
| 134.25     | -435.5    | +435.5     | 425.9      | -19.7     | -19.7     | -155.8    | 4300.6            | 4300.3      | 9588.1     |
| 156.625    | -291.6    | -291.6     | 321.1      | -51.0     | -51.0     | -155.0    | 2476.1            | 2475.9      | 4780.6     |
| 179        | -219.7    | -219.7     | 258.0      | -55.4     | -55.4     | -139.6    | 846.4             | 846.1       | 1195.2     |

#### Comparison of SCANS Results for Forces and Moments in a Cask Undergoing a 30 Ft. End Drop (Samp's & "oblem 1)

| Distance   | Maxima    | n Aximi Po | rce (kip)  | Hariman   | Shear For | ce (kip) | Max, Bend   | ing Moment          | t (iva-kip) |
|------------|-----------|------------|------------|-----------|-----------|----------|-------------|---------------------|-------------|
| from       | *******   | ********   | *********  |           | ********  | ******** | *********   |                     | *********   |
| Impact End | QUES 1-   | stetic     | Dynamic    | QUALS 1-5 | oitat     | Dynamic  | QLARS 1 - S | tetic               | Dynamic     |
|            | *******   | ********   | *******    | *******   | *******   | ******** | *********   | *******             |             |
| (in)       | Hand Cale | SCANS      | SCANS      | Hand Calc | SCANS     | SCANS    | Hand Calc   | SCANS               | SCANS       |
| *******    | *******   | ********   | ********   | ********  | ********  | ******   | ********    | * * * * * * * * * * |             |
| 0.0        | - 1843.5  | -1843.5    | -2022.3    | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 22.4       | -1735.4   | -1735.4    | - 1905 . 0 | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 44.8       | -1519.2   | -1519.2    | -1669.8    | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 67.1       | -1303.1   | -1303.1    | -1433.3    | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 89.5       | -1086.9   | -1086.9    | -1196.6    | 0.0       | 0.0       | 0.0      | .0          | 0.0                 | 0.0         |
| 111.9      | 870.7     | -870.7     | -960.0     | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 134.3      | -654.5    | -654.5     | -722.3     | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 156.6      | -438.3    | -438.3     | -483.6     | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | 0.0         |
| 179.0      | -330.2    | -330.2     | -364.6     | 0.0       | 0.0       | 0.0      | 0.0         | 0.0                 | u.0         |
|            |           |            |            |           |           |          |             |                     |             |

#### Comparison of SCANS Results for Forces and Moments in a Cask Undergoing a 30 Ft. C.G. Drop (Sample Problem 1)

| Distance   | Max inu   | m Axial Fo | rce (kip)  | Maximum    | Shear For | rce (kip) | Nax. Ber  | wing Momen | t (in-kip) |
|------------|-----------|------------|------------|------------|-----------|-----------|-----------|------------|------------|
| from       | ********  | ********   | ********** | ********** | ********* | ********* |           | *********  | ********** |
| Impact End | Ques i -  | static     | Dynamic    | Quesi-s    | tatic     | Dynamic   | QUES 1 -  | static     | Dyrumaic   |
|            |           | *******    | ********   | *********  | *******   | ********  | ********  | ********   | ********   |
| (in)       | Hand Calc | SCANS      | SCANS      | Harvd Calc | SCANS     | SCANS     | Hand Calc | SCANS      | SCANS      |
| *******    | ********  |            | ********   | *********  | ********  |           | ********  | *******    | ********   |
| 0.0        | -1715.3   | -1715.3    | -1881.7    | 675.5      | 675.5     | 742.0     | -71262.1  | -71282.1   | -78106.4   |
| 22.4       | -1614.8   | -1614.7    | -1772.6    | 635.9      | 635.9     | 698.8     | -56168.5  | -56168.6   | -61617.5   |
| 44.8       | -1413.6   | -1413.6    | -1553.6    | 556.6      | 556.6     | 611.9     | -42827.3  | -42827.4   | -47077.1   |
| 67.1       | -1212.4   | -1212.4    | -1533.6    | 477.6      | 477.6     | 525.0     | -31258.5  | -31258.6   | -34442.2   |
| 89.5       | -1011.3   | -1011.3    | -1113.3    | 398.2      | 398.2     | 438.1     | -21462.1  | -21462.2   | -23675.0   |
| 111.9      | -810.1    | -810.1     | -893.2     | 319.0      | 319.0     | 351.0     | -13438.0  | -13438.1   | - 14889.7  |
| 134.3      | -609.0    | -609.0     | -672.0     | 239.8      | 239.8     | 266.4     | -7186.3   | -7186.6    | -8030.5    |
| 156.6      | -407.8    | -407.8     | -450.0     | 160.6      | 160.6     | 179.5     | -2707.0   | -2707.0    | -3090.8    |
| 179.0      | -307.2    | -307.2     | -339.2     | 121.0      | 121.0     | 135.7     | 0.0       | 0.0        | 115.0      |
|            |           |            |            |            |           |           |           |            |            |

1. 1. 1. A.

#### Comparison of SCANS Results for Stress Intensity in a Cask Undergoing # 30 Ft. Side Drop (Sample Problem 1)

|                                          | de la composición de |         | Stres    | s Intensity | (psi) Which | h Corres; lands | i to         |        |         |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------|----------|-------------|-------------|-----------------|--------------|--------|---------|
| Distance                                 | Maximum                                                                                                        | Bending | Stress   | Ninima      | Bending 1   | stress          | ************ |        |         |
| from                                     | *********                                                                                                      |         |          | *********   |             |                 | **********   |        | ener-   |
| Impact End                               | Quasi-st                                                                                                       | etic    | Dynamic  | QUEB 1-5    | tetic       | Dyrumic         | Quesi-st     | tatic  | Dynamic |
|                                          | *********                                                                                                      | ******  | ******** |             |             | ********        |              |        |         |
| (in)                                     | Hand Calc                                                                                                      | SCANS   | SCANS    | Hand Calc   | SCANS       | SCANS           | Harvi Calc   | SCANS  | CCANS.  |
| ****                                     | *******                                                                                                        | ******* | ******** | ********    |             |                 |              | ****** |         |
|                                          |                                                                                                                |         |          |             |             |                 |              |        |         |
|                                          | Inner Steel                                                                                                    | Shell   |          |             |             |                 |              |        |         |
|                                          |                                                                                                                |         |          |             |             |                 |              |        |         |
| 0.0                                      | 291                                                                                                            | 291     | 315      | 291         | 291         | 314             | 4558         | 4558   | 4900    |
| 22.4                                     | 1588                                                                                                           | 1588    | 1710     | 1588        | 1588        | 1709            | 3907         | 3907   | 4207    |
| 44.8                                     | 2514                                                                                                           | 2514    | 2712     | 2514        | 2514        | 2711            | 2605         | 2605   | 2816    |
| 67.1                                     | 3069                                                                                                           | 3069    | 3314     | 3069        | 3069        | 3314            | 1302         | 1302   | 1413    |
| 89.5                                     | 3255                                                                                                           | 3255    | 3515     | 3255        | 3255        | 3515            | 0            | 0      | 0       |
| 111.9                                    | 3069                                                                                                           | 3069    | 3314     | 3069        | 3069        | 3314            | 1302         | 1302   | 1413    |
| 134.3                                    | 2514                                                                                                           | 2514    | 2712     | 2514        | 2514        | 2711            | 2605         | 2605   | 2816    |
| 156.6                                    | 1568                                                                                                           | 1588    | 1710     | 1588        | 1588        | 1709            | 3907         | 3907   | 4207    |
| 179.0                                    | 291                                                                                                            | 291     | 315      | 291         | 291         | 314             | 4538         | 4558   | 4900    |
|                                          | Lead Shield                                                                                                    |         |          |             |             |                 |              |        |         |
| 0.0                                      | 27                                                                                                             | 27      | 29       | 27          | 27          | 29              | 390          | 390    | 419     |
| 22.4                                     | 148                                                                                                            | 148     | 159      | 148         | 148         | 159             | 334          | 334    | 360     |
| 44.8                                     | 234                                                                                                            | 234     | 253      | 234         | 234         | 253             | 223          | 223    | 241     |
| 67.1                                     | 286                                                                                                            | 286     | 309      | 286         | 286         | 309             | 111          | 111    | 121     |
| 89.5                                     | 303                                                                                                            | 303     | 327      | 303         | 303         | 327             | 0            | 0      | 0       |
| 111.9                                    | 286                                                                                                            | 286     | 309      | 286         | 286         | 309             | 111          | 111    | 121     |
| 134.3                                    | 234                                                                                                            | 234     | 253      | 234         | 234         | 253             | 223          | 223    | 241     |
| 156.6                                    | 168                                                                                                            | 148     | 159      | 148         | 148         | 159             | 334          | 336    | 360     |
| 179.0                                    | 27                                                                                                             | 27      | 29       | 27          | 27          | 29              | 390          | 390    | 419     |
|                                          | Outer Steel                                                                                                    | Shell   |          |             |             |                 |              |        |         |
| 0.0                                      | 348                                                                                                            | 348     | 377      | 34.8        | 348         | 174             | 1028         |        | 1000    |
| 22.4                                     | 1898                                                                                                           | 1898    | 2044     | 1698        | 1808        | 2018            | 9320         | 4338   | 4900    |
| 44.8                                     | 3004                                                                                                           | 3006    | 3241     | 3004        | 3004        | 2043            | 3907         | 3907   | 4207    |
| 67.1                                     | 3668                                                                                                           | 3665    | 1405     | 2448        | 3448        | 1040            | 2005         | 2005   | 2016    |
| 89.5                                     | 3890                                                                                                           | 3890    | 4201     | 3,890       | 1000        | 6203            | 1302         | 1302   | 1413    |
| 111.9                                    | 3668                                                                                                           | 3669    | 3961     | 3448        | 3040        | 1010            | 0            | 1700   | 0       |
| 134.3                                    | 3004                                                                                                           | 3004    | 3241     | 300/        | 3004        | 3900            | 1502         | 1502   | 1414    |
| 156.6                                    | 1898                                                                                                           | 1808    | 2044     | 1808        | 1804        | 2040            | 2005         | 2005   | 2816    |
| 179.0                                    | 348                                                                                                            | 34.6    | \$27     | 1090        | 7/0         | 204 5           | 3907         | 5907   | 6207    |
| 20 C C C C C C C C C C C C C C C C C C C |                                                                                                                | 240     | 311      | 340         | 240         | 276             | 4558         | 4558   | 4900    |

10

-77-

AT MANY

Comparison of SCA4S Results for Stress Intensity in a Cask Undergoing a 30 Ft. Degree Oblique Drup (Sample Problem 1)

|                |             |                                            | Stres    | is intensily | (psi) Whi | ch Correspond | #s to              |       |          |  |
|----------------|-------------|--------------------------------------------|----------|--------------|-----------|---------------|--------------------|-------|----------|--|
| Distance       | N&X (SB.#   | Naximum Bending Stress Minimum Bending Str |          |              |           |               | ress Haximum Shear |       |          |  |
| from           | 0.mei-et    | atic                                       | Dynamic  | Dune i - P   | tatic     | Dyryanic      | Quesi-e            | tatic | Dynamic  |  |
| Improver crito |             |                                            | ******** |              | ******    | *******       |                    |       |          |  |
| (in)           | Hand Calc   | SCANS                                      | SCANS    | Hand Calc    | SCANS     | SCAMS         | Kand Calc          | SCANS | SCANS    |  |
|                | *********   |                                            | *******  | *******      | *******   | *********     |                    |       | ******** |  |
|                | Inner Steel | Shell                                      |          |              |           |               |                    |       |          |  |
| 0.0            | 1167        | 1167                                       | 861      | 3780         | 3780      | 2762          | 4259               | 4259  | 4177     |  |
| 22.6           | 112         | 112                                        | 356      | 2572         | 2571      | 1714          | 3671               | 3671  | 3462     |  |
| 44.8           | 507         | 507                                        | 646      | 1646         | 1646      | 996           | 2600               | 2600  | 2199     |  |
| 67.1           | 843         | 843                                        | 879      | 1003         | 1003      | 1081          | 1733               | 1733  | 1275     |  |
| 89.5           | 590         | 590                                        | 947      | 950          | 950       | 1069          | 1081               | 1081  | 699      |  |
| 111.9          | 350         | 350                                        | 859      | 883          | 883       | 889           | 662                | 662   | 446      |  |
| 134.3          | 231         | 231                                        | 654      | 697          | 697       | 630           | 471                | 471   | 666      |  |
| 156.6          | 176         | 176                                        | 610      | 445          | 445       | 355           | 379                | 379   | 661      |  |
| 179.0          | 188         | 188                                        | 277      | 280          | 280       | 191           | 332                | 332   | 596      |  |
|                | Lead Shield | d                                          |          |              |           |               |                    |       |          |  |
| 0.0            | 119         | 119                                        | 87       | 342          | 342       | 250           | 364                | 364   | 357      |  |
| 22.4           | 20          | 20                                         | 31       | 230          | 230       | 153           | 314                | 314   | 296      |  |
| 44.8           | 39          | 39                                         | 59       | 145          | 145       | 87            | 222                | 222   | 188      |  |
| 67.1           | 71          | 71                                         | 80       | 86           | 86        | 98            | 148                | 148   | 109      |  |
| 89.5           | 49          | 49                                         | 87       | 83           | 83        | 97            | 92                 | .92   | 60       |  |
| 111.9          | 28          | 28                                         | 78       | 78           | 78        | 89            | 57                 | 57    | 38       |  |
| 134.3          | 18          | 18                                         | 59       | 61           | 61        | 57            | 40                 | 40    | 57       |  |
| 156.6          | 14          | 14                                         | 36       | 39           | 39        | 32            | 32                 | 32    | 57       |  |
| 179.0          | 16          | 16                                         | 24       | 24           | 26        | 17            | 28                 | 28    | 51       |  |
|                | Outer Stee  | Shell                                      |          |              |           |               |                    |       |          |  |
| 0.0            | 1650        | 1650                                       | 1213     | 4262         | 4262      | 3115          | 4259               | 4259  | 4177     |  |
| 22.4           | 374         | 374                                        | 370      | 2833         | 2833      | 1877          | 3671               | 3671  | 3462     |  |
| 44.8           | 396         | 396                                        | 735      | 1757         | 1757      | 1047          | 2600               | 2600  | 2199     |  |
| 67.1           | 828         | 828                                        | 1007     | 1019         | 1019      | 1216          | 1733               | 1733  | 1275     |  |
| 89.5           | 555         | 555                                        | 1097     | 986          | 986       | 12.22         | 1081               | 1081  | 699      |  |
| 111.9          | 298         | 5×8                                        | 985      | 935          | 935       | 1026          | 662                | 662   | 666      |  |
| 134.3          | 185         | 185                                        | 740      | 742          | 742       | 715           | 471                | 671   | 666      |  |
| 156.6          | 150         | 150                                        | 661      | 471          | 471       | 392           | 379                | 379   | 661      |  |
| 170 0          | 170         | 170                                        | 278      | 280          | 280       | 200           | \$3.2              | 332   | 596      |  |

#### Table 3-7

#### Comparison of SCANS Results for Stress Intensity in a Cask Undergoing a 30 Ft. End Drop (Sample Problem 1)

Stress Intensity (psi) Which Corresponds to

|            | ********** | ******** | *********** | *********** |           | 1. 九大田北的东南风的大田县 | ********  |            |          |
|------------|------------|----------|-------------|-------------|-----------|-----------------|-----------|------------|----------|
| istance    | Naxima     | Bending  | Stress      | H i ryi HLB | a Bending | Stress          | M         | axican She | ter      |
| rom        | *********  | *******  | *********   |             | ********* |                 | ********  | *******    |          |
| Impact End | Quesi-st   | stic     | Dynamic     | Quesi-st    | tatic     | Dynamic         | QLARS 1-S | tatic      | Dynamic  |
|            | ********   | ******   |             | ****        | *****     |                 | ********  |            | *******  |
| (in)       | Hand Calc  | SCANS    | SCANS       | Hand Calc   | SCANS     | SCAMS           | Kand Calc | SCANS      | SCANS    |
| ********   | ********   | ******   | *********   | *****       | ********* |                 | ********  | *******    | ******** |
|            | Inne Steel | brieli   |             |             |           |                 |           |            |          |
|            |            |          |             |             |           |                 |           |            |          |
| 0.0        | 1963       | 1963     | 2153        | 1963        | 1963      | 2153            | 1963      | 1963       | 2153     |
| 22.4       | 1848       | 1848     | 2029        | 1848        | 1848      | 2029            | 1848      | 1848       | 2029     |
| 44.8       | 1618       | 1618     | 1778        | 1618        | 1618      | 1778            | 1618      | 1618       | 1778     |
| 67.1       | 1388       | 1388     | 1526        | 1388        | 1388      | 1526            | 1388      | 1388       | 1526     |
| 89.5       | 1157       | 1157     | 1274        | 1157        | 1157      | 1274            | 1157      | 1157       | 1274     |
| 111.9      | 927        | 927      | 1022        | 927         | 927       | 1022            | 927       | 927        | 1022     |
| 134.3      | 407        | 697      | 769         | 697         | 697       | 769             | 697       | 697        | 769      |
| 156.6      | 467        | 467      | 515         | 467         | 667       | 515             | 467       | 467        | 515      |
| 179.0      | 352        | 24       | 388         | 352         | 352       | 388             | 352       | 352        | 388      |
|            | Leed Shiel | d        |             |             |           |                 |           |            |          |
| 0.0        | 168        | 168      | 184         | 168         | 168       | 184             | 168       | 168        | 184      |
| 22.4       | 158        | 158      | 175         | 158         | 158       | 173             | 158       | 158        | 173      |
| (4.B       | 135        | 138      | 152         | 138         | 184       | 152             | 138       | 138        | 152      |
| 67.1       | 110        | 110      | 131         | 110         | 119       | 131             | 119       | 119        | 121      |
| 80.5       | 0-U        | (10      | 109         | 60          | 00        | 109             | 90        | 00         | 100      |
| 111.0      | 70         | 70       | 87          | 70          | 79        | 87              | 70        | 70         | 87       |
| 184.5      | 60         | 60       | 66          | 60          | 60        | 66              | 60        | 60         | 64       |
| 156.0      | 40         | 40       | 44          | 40          | 40        | 1               | 40        | 40         | 44       |
| 179.0      | 30         | 30       | 33          | 30          | 30        | 33              | 30        | 30         | 33       |
|            | Dutor Stee | el Shell |             |             |           |                 |           |            |          |
| 0.0        | 1963       | 1963     | 2153        | 1963        | 1963      | 2153            | 1963      | 1963       | 2153     |
| 22.4       | 1848       | 1868     | 2029        | 1848        | 1848      | 2029            | 1848      | 1848       | 2029     |
| 44.8       | 1618       | 1618     | 1778        | 1618        | 1618      | 1778            | 1618      | 1618       | 1778     |
| 67.1       | 1386       | 13.66    | 1526        | 1388        | 1386      | 1526            | 1388      | 1388       | 1526     |
| RO S       | 1457       | 1107     | 1274        | 1157        | 1157      | 1274            | 1157      | 1157       | 1274     |
| 111.0      | 927        | 927      | 1022        | 927         | 927       | 1022            | 927       | 927        | 1022     |
| 184.3      | 697        | 6.97     | 769         | 697         | 697       | 769             | 697       | 697        | 769      |
| 156.6      | 467        | 467      | 515         | 467         | 467       | 515             | 467       | 467        | 515      |
| 179.0      | 352        | 352      | 385         | 352         | 352       | 388             | 352       | 352        | 388      |
|            |            |          |             |             |           |                 |           |            |          |

é

#### Comparison of SCANS Results for Stress Intensity in a Cask Undergoing a 30 Ft. C.A. Drop (Sample Problem 1)

#### and the second second

Stress Intensity (psi) Which Corresponds to

----

AU

|                  | *********                                | *******  | *********** |           |         |          |           | ********  | ********     |
|------------------|------------------------------------------|----------|-------------|-----------|---------|----------|-----------|-----------|--------------|
| listance<br>from | sce Maximum Bendin<br>t End Quasi-static | Bending  | Stress      | Ninima    | Bending | Stress   | Ki        | ximum She | 6 <b>7</b> . |
| Impact End       | Quesi-st                                 | atic     | Dynamic     | Quasi-st  | atic    | Dynamic  | Guesi-st  | atic      | Dynamic      |
| (in)             | Hand Calc                                | SCANS    | SCANS       | Hand Calc | SCARS   | SCANS    | Hand Calc | SCANS     | SCANS        |
| ********         |                                          |          |             |           |         | ******** | ********  |           |              |
|                  | Inner Steel                              | Shell    |             |           |         |          |           |           |              |
| 0.0              | 2033                                     | 2033     | 2252        | 5686      | 5686    | 6228     | 3408      | 3408      | 3742         |
| 22.4             | 1322                                     | 1322     | 1458        | 4761      | 4761    | 5216     | 3208      | 3208      | 3524         |
| 44.8             | 814                                      | 814      | 906         | 3824      | 3824    | 4192     | 2809      | 2809      | 3081         |
| 67.1             | 401                                      | 401      | 458         | 2984      | 2984    | 3275     | 2409      | 2409      | 2644         |
| 89.5             | 85                                       | 85       | 110         | 2239      | 2239    | 2463     | 2009      | 2009      | 2204         |
| 111.0            | 135                                      | 135      | 9           | 1590      | 1590    | 1754     | 1610      | 1610      | 1770         |
| 154.3            | 259                                      | 259      | 6           | 1038      | 1038    | 1148     | 1210      | 1210      | 1338         |
| 156.6            | 208                                      | 288      | 3           | 581       | 581     | 645      | 810       | 810       | 901          |
| 179.0            | 327                                      | 327      | 2           | 327       | 327     | 367      | 610       | 610       | 681          |
|                  | Lead Shiel                               | d        |             |           |         |          |           |           |              |
| 0.0              | 203                                      | 203      | 223         | 516       | 516     | 565      | 291       | 291       | 320          |
| 22.4             | 136                                      | 136      | 150         | 430       | 430     | 472      | 274       | 274       | 301          |
| 44.8             | 87                                       | 87       | 97          | 345       | 345     | 378      | 240       | 240       | 263          |
| 67.1             | 47                                       | 47       | 53          | 268       | 268     | 294      | 206       | 206       | 226          |
| 89.5             | 16                                       | 16       | 19          | 200       | 200     | 220      | 172       | 172       | 188          |
| 111.9            | 6                                        | 6        | 1           | 142       | 142     | 156      | 138       | 138       | 151          |
| 134.3            | 19                                       | 19       | 0           | 92        | 92      | 101      | 103       | 103       | 114          |
| 156.6            | 23                                       | 23       | 0           | 51        | 51      | 56       | 69        | 69        | 77           |
| 179.0            | 28                                       | 28       | 0           | 28        | 28      | 31       | 52        | 52        | 58           |
|                  | Outer Ste                                | el Shell |             |           |         |          |           |           |              |
| 0.0              | 2786                                     | 2786     | 3058        | 6439      | 6436    | 7053     | 3408      | 3408      | 3742         |
| 22.4             | 1915                                     | 1015     | 2109        | 5354      | 5354    | 5866     | 3208      | 3203      | 3524         |
| 44.8             | 1266                                     | 1266     | 1404        | 4277      | 4277    | 4960     | 2809      | 2809      | 3081         |
| 67.1             | 732                                      | 732      | 822         | 3314      | 3314    | 3637     | 2409      | 2409      | 2644         |
| 89.5             | 312                                      | 312      | 360         | 2466      | 2466    | 2712     | 2009      | 2009      | .204         |
| 111.9            | 7                                        | 7        | 24          | 1732      | 1732    | 1911     | 1610      | 1610      | 1770         |
| 134.3            | 183                                      | 183      | 7           | 1114      | 1114    | 1232     | 1210      | 1210      | 1338         |
| 156.6            | 259                                      | 259      | 4           | 609       | 609     | 678      | 810       | 810       | 901          |
| 179.0            | 327                                      | 327      | 2           | 327       | 327     | 368      | 610       | 610       | 681          |
|                  |                                          |          |             |           |         |          |           |           |              |

#### Table 8-9-1

Comparison of SCANS Results for Stresses in Bottom End Cap Generated by a 30 Ft. Drop onto the Cask Bottom (Sample Problem 1)

| Primary | Maximum E<br>At Ce | lending St<br>inter of E | ress (psi)<br>nd Cap | Maximum Bending Stress (psi)<br>At Edge of End Cap |         |          | Maximum Shear Stress (psi)<br>At Edge of End Cap |                     |           |  |
|---------|--------------------|--------------------------|----------------------|----------------------------------------------------|---------|----------|--------------------------------------------------|---------------------|-----------|--|
| Impact  | *********          | *******                  | *********            | *************************                          |         |          | ********                                         |                     |           |  |
| Angle   | Quesi-s            | tatic                    | Dynamic              | QURSI-                                             | static  | Dynamic  | Quesi-s                                          | tatic               | Dyrumic   |  |
|         | ********           | *******                  | ********             | *******                                            | ******* | ******** | ********                                         | *******             |           |  |
| (deg)   | Hand Calc          | SCANS                    | SCANS                | Hand Celc                                          | SCANS   | SCANS    | Hand Celc                                        | SCANS               | SCANS     |  |
| ******* | *********          | *******                  | ********             | *******                                            | ******  | ******   | ********                                         | • • • • • • • • • • | ********* |  |
| 0.0     | 0.0                | 0.0                      | -2.4                 | 0.0                                                | 0.0     | 3.8      | 0.0                                              | 0.0                 | 0.6       |  |
| 15.0    | 630.6              | 630.6                    | 1380.1               | -977.7                                             | -977.7  | -2139.7  | 152.1                                            | 152.1               | 332.8     |  |
| 30.0    | 1442.4             | 1442.4                   | 2964.1               | -2236.3                                            | -2236.4 | -4595.5  | 347.9                                            | 347.9               | 714.9     |  |
| 45.0    | 2287.2             | 2287.2                   | 3257.2               | -3546.0                                            | -3546.0 | -5049.9  | 551.6                                            | 551.6               | 785.5     |  |
| 60.0    | 2969.5             | 2969.6                   | 3400.4               | -4603.9                                            | -4604.0 | -5271.9  | 716.2                                            | 716.2               | 820.1     |  |
| 75.0    | 3324.2             | 3324.2                   | 4085.7               | -5153.8                                            | -5153.8 | -6334.4  | 801.7                                            | 801.7               | 985.4     |  |
| 90.0    | 3459.0             | 3459.0                   | 3855.4               | -5362.8                                            | -5362.8 | -5977.3  | 834.2                                            | 834 2               | 929.8     |  |
| C.G.    | 3218.5             | 3218.5                   | 3587.3               | -4989.9                                            | -4989.9 | -5561.7  | 776.2                                            | 6.2                 | 865.2     |  |

#### Table 8-9-2

Comparison of SCANS Results for Stresses in Top End Cap Generated by a 30 Ft. Drop onto the Cask Bottom (Sample Problem 1)

| Primary  | Maximum Bending Stress (psi)<br>At Center of End Cap |         |            | Maximum Bending Stress (psi)<br>At Edge of End Cap |         |          | Maximum Shear Stress (psi)<br>At Edge of End Cap |          |           |
|----------|------------------------------------------------------|---------|------------|----------------------------------------------------|---------|----------|--------------------------------------------------|----------|-----------|
| Angle    | QLARE 1 - S                                          | tatic   | Dynamic    | Quesi-s                                            | tatic   | Dynamic  | Quesi-s                                          | tatic    | Dynamic   |
|          |                                                      | ******* | ****       | ********                                           | ******* | ******** | ********                                         | *******  | ********  |
| (deg)    | Hend Celc                                            | SCANS   | SCANS      | Hand Calc                                          | SCANS   | SCANS    | Hand Calc                                        | SCANS    | SCANS     |
| ******** | ********                                             |         | ********** | ********                                           | ******* | *******  | ********                                         | ******** | ********* |
| 0.0      | 0.0                                                  | 0.0     | 0.3        | 0.0                                                | 0.0     | 0.0      | 0.0                                              | 0.0      | 0.0       |
| 15.0     | 82.5                                                 | 82.5    | -159.0     | 0.0                                                | 0.0     | 0.0      | 7.8                                              | 7.8      | 15.0      |
| 30.0     | 188.7                                                | 188.7   | -335.4     | 0.9                                                | 0.0     | 0.0      | 17.8                                             | 17.8     | 31.7      |
| 45.0     | 299.2                                                | 299.2   | -401.9     | 0.0                                                | 0.0     | 0.0      | 28.3                                             | 28.3     | 38.0      |
| 60.0     | 388.5                                                | 388.5   | 34 .4      | 0.0                                                | 0.0     | 0.0      | 36.7                                             | 36.7     | 32.6      |
| 75.0     | 434.9                                                | 434.9   | 443.2      | 0.0                                                | 0.0     | 0.0      | 41.1                                             | 41.1     | 41.9      |
| 90.0     | 452.5                                                | 452.6   | 504.4      | 0.0                                                | 0.0     | 0.0      | 42.8                                             | 42.8     | 47.7      |
| c.c.     | 421.0                                                | 421.1   | 469.9      | 0.0                                                | 0.0     | 0.0      | 39.8                                             | 39.8     | 44.4      |

#### Table B-10-1

#### Comparison of SCANS Results for Stresses in Bottom End Cap Generated by a 30 Ft. Drop onto the Cask Top (Sample Problem 1)

| Primery<br>Impact | Maximum Bending Stress (psi)<br>At Center of End Cap |          |          | Maximum Bending Stress (psi)<br>At Edge of End Cap |          |         | Maximum Shear Stress (psi)<br>At Edge of End Cap |         |          |
|-------------------|------------------------------------------------------|----------|----------|----------------------------------------------------|----------|---------|--------------------------------------------------|---------|----------|
| Angle             | QUAS 1-5                                             | tetic    | Dynamic  | Quasi-s                                            | tetic    | Dynamic | Quesi-s                                          | tatic   | Dynamic  |
|                   |                                                      | *******  | ******** | *****                                              | *******  | ******* | *******                                          | ******* | ******** |
| (deg)             | Hand Calc                                            | SCANS    | SCANS    | Hand Calc                                          | SCANS    | SCANS   | Hand Calc                                        | SCANS   | SCANS    |
| *******           | ******                                               | ******** | ******** | ********                                           | ******** | ******* | ********                                         |         | ******** |
| 0.0               | 0.0                                                  | 0.0      | 0.1      | 0.0                                                | 0.0      | -0.2    | 0.0                                              | 0.0     | 0.0      |
| 15.0              | 32.3                                                 | 32.4     | -62.4    | -50.2                                              | -50.2    | 96.7    | 7.8                                              | 7.8     | 15.0     |
| 30.0              | 74.0                                                 | 74.0     | -131.5   | -114.7                                             | -114.7   | 203.9   | 17.8                                             | 17.8    | 31.7     |
| 45.0              | 117.3                                                | 117.3    | -157.6   | -181.9                                             | -181.9   | 244.3   | 28.3                                             | 28.3    | 38.0     |
| 60.0              | 152.3                                                | 152.3    | 135.0    | -236.2                                             | . 5.2    | -209.4  | 36.7                                             | 36,7    | 32.6     |
| 75.0              | 170.5                                                | 170.5    | 173.8    | -264.4                                             | -264.4   | -269.4  | 41.1                                             | 41.1    | 41.9     |
| 90.0              | 177.4                                                | 177.4    | 197.B    | - 275.1                                            | -275.1   | -306.6  | 42.8                                             | 42.8    | 47.7     |
| C.G.              | 165.1                                                | 165.1    | 184.0    | -255.9                                             | -256.0   | - 285.3 | 39.8                                             | 39.8    | 44.4     |

#### Table 8-10-2

#### Comparison of SCANS Results for Stresses in Top End Cap Generated by a 30 Ft. Drop onto the Cask Top (Sample Problem 1)

| Primary<br>Impact | Haximum B<br>At Ce   | ending Str<br>nter of Er | ness (pri)<br>nd Cap | Naximum Bending Stress (psi)<br>At Edge of End Cap |         |              | Maximum Shear Stress (psi)<br>At Edge of End Cap |         |          |
|-------------------|----------------------|--------------------------|----------------------|----------------------------------------------------|---------|--------------|--------------------------------------------------|---------|----------|
| Angle             | Quesi-static Dynamic |                          | Quesi-static         |                                                    | Dynamic | Quesi-static |                                                  | Dynamic |          |
|                   | *********            | *******                  | ********             | ********                                           | ******* | ********     | *********                                        | ******* | ******** |
| (deg)             | Hend Calc            | SCANS                    | SCANS                | Hand Calc                                          | SCANS   | SCANS        | Hand Calc                                        | SCANS   | SCANS    |
| *******           |                      | ********                 | *******              | *********                                          | ******* | ******       | ********                                         | ******  | ******** |
| 0.0               | 0.0                  | 0.0                      | -6.9                 | 0.0                                                | 0.0     | 0.0          | 0.0                                              | 0.0     | 0.5      |
| 15.0              | 1651.4               | 1651.4                   | 3613.9               | 0.0                                                | 0.0     | 0.0          | 126.6                                            | 126.6   | 277.1    |
| 30.0              | 3777.1               | 3777.1                   | 7761.7               | 0.0                                                | 0.0     | 0.0          | 289.6                                            | 289.6   | 595.1    |
| 45.0              | 5989.1               | 5989.2                   | 8529.1               | 0.0                                                | 0.0     | 0.0          | 459.2                                            | 459.2   | 653.9    |
| 60.0              | 7775.9               | 7776.0                   | 8904.1               | '0.0                                               | 0.0     | 0.0          | 596.2                                            | 596.2   | 682.7    |
| 75.0              | 8704.6               | 8704.7                   | 10698.7              | 0.0                                                | 0.0     | 0.0          | 667.4                                            | 667.4   | 820.3    |
| 90.0              | 9057.6               | 9057.7                   | 10095.6              | 0.0                                                | 0.0     | 0.0          | 694.5                                            | 694.5   | 776.1    |
| C.G.              | 8427.7               | 8427.8                   | 9393.7               | 0.0                                                | 0.0     | 0.0          | 646.2                                            | 646.2   | 720.2    |

•

#### Comparison of SCARS Results for Tensile and Shear Stresses in Top Closure Bolts Generated by a 30 Ft. Drop onto the Cask botto (Sample Problem 1)

| Primary | Maxium Tens   | ile Stres | is (psi)   | Haziman      | Shoar Stre | ess (psi) |
|---------|---------------|-----------|------------|--------------|------------|-----------|
| Impact  | ***********   | ********  | *******    | *********    | ********   |           |
| Angle   | Quesi-stat    | ic        | Dynamic    | OLMSI'-S     | tatic      | Dynamic   |
|         | ***********   | *****     | *******    | ********     | *******    | ********  |
| (deg)   | Hand Calc S   | CANS      | SCANS      | Hand Calc    | SCANS      | SCANS     |
| ******* | *********     | *******   | *******    | *******      | *****      | ********* |
|         | Uniform distr | ibution ( | of tensile | stress among | eil boit   | assumed   |
| 0.0     | Ó             | 0         | 0          | -68124       | 68124      | 73240     |
| 15.0    | 0             | 0         | 0          | -12579       | 12580      | 68866     |
| 30.0    | 0             | 0         | 0          | -9207        | 9207       | 25979     |
| 45.0    | 0             | 0         | 0          | -3524        | 3524       | 6885      |
| 60.0    | 0             | 0         | 0          | 3580         | 3580       | 3041      |
| 75.0    | 0             | 0         | 0          | 10668        | 10668      | 15315     |
| 90.0    | 0             | 0         | 0          | 0            | 0          | 0         |
| C.G.    | 0             | 0         | 0          | 7702         | 7702       | 8636      |
|         | Linear distri | bution o  | f tensile  | stress among | all bolts  | assumed   |
| 0.0     | 0             | 0         | 0          |              |            |           |
| 15.0    | 0             | 0         | 0          |              |            |           |
| 30.0    | 0             | 0         | 0          |              |            |           |
| 45.0    | 0             | - 0       | 0          |              |            |           |
| 60.0    | 0             | 0         | 0          |              |            |           |
| 75.0    | 0             | 0         | 0          |              |            |           |
| 90.0    | 0             | 0         | 0          |              |            |           |
| C.G.    | 0             | 0         | 0          |              |            |           |
|         |               |           |            |              |            |           |

.

1.11

#### Comparison of SCANS Results for Tensile and Shear Stresses in Top Closure Bolts Generated by a 30 Ft. Drop onto the Cask Top (Sample Problem 1)

| Primary | Maxium Tensile Str   | ess (psi) | Naximum Shear S  | tress (psi) |
|---------|----------------------|-----------|------------------|-------------|
| Impact  | ******************** | ********  |                  | ********    |
| Angle   | Quasi-static         | Dynamic   | Quasi-static     | Dynamic     |
|         | ***************      | ********  | ***-**********   |             |
| (deg)   | Hand Calc SCANS      | SCANS     | Hand Calc SCANS  | SCANS       |
|         | ******************   |           | **************** | *********** |

Uniform distribution of tensile stress among all boits assumed

| 0.0  | 0     | 0     | 0     | 68124 | 68124 | 73240 |
|------|-------|-------|-------|-------|-------|-------|
| 15.0 | 13172 | 13172 | 28826 | 55465 | 55464 | 57572 |
| 30.0 | 30127 | 30128 | 61910 | 61633 | 61632 | 54487 |
| 45.0 | 47771 | 47772 | 68031 | 60580 | 60578 | 61303 |
| 60.0 | 62023 | 62024 | 71022 | 51371 | 51370 | 62217 |
| 75.0 | 69431 | 69431 | 85336 | 35488 | 35488 | 31530 |
| 90.0 | 72247 | 72247 | 80526 | 0     | 0     | 0     |
| C.G. | 67222 | 67223 | 74927 | 43002 | 43001 | 47236 |

Linear distribution of tensile stress among all bolts assumed

| 0.0  | 0     | 0     | 0      |
|------|-------|-------|--------|
| 15.0 | 17637 | 17637 | 38597  |
| 30.0 | 40340 | 40340 | 82895  |
| 45.0 | 63964 | 63965 | 91092  |
| 60.0 | 83047 | 83048 | 95097  |
| 75.0 | 92966 | 92967 | 114263 |
| 90.0 | 96736 | 72247 | 80526  |
| C.G. | 90009 | 90010 | 100325 |
|      |       |       |        |

#### 1able 8-13-1

#### Comparison of Banding and Shear Stresses for Laminated Endcaps at Impact End As Obtained in Quasi-static and Dynamic Analyses (Sample Problem 2)

|         |        |                            |           | evicens necessing | torsame the l' |            |                 |             |            |           |
|---------|--------|----------------------------|-----------|-------------------|----------------|------------|-----------------|-------------|------------|-----------|
|         |        |                            | ********* | **********        |                | ********   | *********       | Maximum 1   | ihear Stre | es (pei)  |
| Primary |        | (AL )                      | Center of | Сар               | AT Edge Ne     | er Cask Ci | evity Wall      | At Edge New | er Cask Ca | wity Wall |
| Teppect |        | *****                      | ********  | ************      | ***********    | *******    | **************  | ********    | ********   | ********* |
| Angl e  |        | (Dusse i                   | -static   | Dynamic           | OLIBE I -      | static     | Dynamic         | Quesi-      | static     | Dyrvanic. |
|         | Endcap | 4.10.000 (0.000 (0.000 h)) | ********  | ********          | 10100303333333 | *******    | *******         | ********    | *******    | *******   |
| (deg)   | Layer  | Hamel (Dail c              | SCANS     | SCAMS             | Hend Calc      | SCANS      | SCANS           | Hend Celc   | SCANS      | SCANS     |
| ******* |        | *********                  | *******   | ********          | **********     | *******    | *************** | ********    | *******    |           |
| 0.0     | Inner  | 0.0                        | 0.0       | -40.5             | 0.0            | 0.0        | 62.8            | 0.0         | 0.0        | 21.4      |
|         | Shield |                            |           |                   | 1              |            |                 | 0.0         | 0.0        | 1.6       |
|         | Outer  | 0.0                        | 0.0       | 31.7              | 0.0            | 0.0        | -49.2           | 0.0         | 0.0        | 21.4      |
| 15.0    | Loner  | -472.3                     | -472.3    | -990.0            | 732.2          | 732.2      | 1534.9          | 249.0       | 249.0      | 522.0     |
|         | Shield |                            |           |                   |                |            |                 | 19.2        | 19.2       | 69.3      |
|         | Outer  | 369.9                      | 369.9     | 775.4             | -573.5         | -573.5     | - 1202 - 2      | 249.0       | 249.0      | 522.0     |
| 30.0    | Inner  | -11078.44                  | -1078.4   | -2109.3           | 1672.0         | 1672.0     | 3270.2          | 568.6       | 568.6      | 1112.1    |
|         | Shield |                            |           |                   |                |            |                 | 43.9        | 63.9       | 85.8      |
|         | Outer  | B44.6                      | B44.6     | 1652.0            | +1309.5        | -1309.5    | -2561.2         | 568.6       | 568.6      | 1112.1    |
| 45.0    | Inner  | -1100000                   | -1709.0   | -2354.9           | 2649.5         | 2649.6     | 3619.9          | 901.0       | 901.0      | 1231.0    |
|         | Shiela |                            |           |                   |                |            |                 | 69.5        | 69.5       | 95.0      |
|         | Outer  | TEBE. 5                    | 1338.5    | 1828.1            | -2075.1        | -2075.1    | -2835.1         | 901.0       | 901.0      | 1231.0    |
| 60.0    | Inver  | -2218.8                    | 8.11158-  | -2516.7           | 3440.0         | 3440.0     | 3901.8          | 1169.8      | 1169.9     | 1326.9    |
|         | Shield |                            |           |                   |                |            |                 | 90.2        | 90.2       | 102.4     |
|         | Outer  | 1737_8                     | 1737 .8   | 1971.1            | -2694.2        | -2694.2    | -3095.9         | 1169.8      | 1169.9     | 1326.9    |
| 75.0    | Inner  | -2484_8                    | -24848    | -3021.7           | 3852.4         | 3852.4     | 4684.7          | 1310.1      | 1310.1     | 1593.2    |
|         | Shield |                            |           |                   |                |            |                 | 101.1       | 101.1      | 122.9     |
|         | Outer  | 1946.1                     | 1966. 1   | 2366.6            | -3017.2        | -3017.2    | -3669.1         | 1310.1      | 1310.1     | 1593.2    |
| 90.0    | Inner  | -2585.0                    | -2585.17  | -2882.0           | 4007.7         | 4007.8     | 4468.3          | 1362.9      | 1362.9     | 1519.5    |
|         | Shield |                            |           |                   |                |            |                 | 105.1       | 105.1      | 117.2     |
|         | Outer  | 2024.6                     | 2024.6    | 2257.2            | -3138.9        | -3138.9    | -3499.6         | 1362.9      | 1362.9     | 1519.5    |
| C.G.    | Inner  | -2407.3                    | -2407.3   | -2683.9           | 3732.2         | 3732.2     | 4161.1          | 1269.2      | 1269.2     | 1415.1    |
|         | Shield |                            |           |                   |                |            |                 | 97.9        | 97.9       | 109.2     |
|         | Outer  | 1885.4                     | 1885.4    | 2102.1            | -2923.1        | - 2923.1   | -3259.0         | 1269.2      | 1269.2     | 1615.1    |
|         |        |                            |           |                   |                |            |                 |             |            |           |

35

#### Maxim.m Bending Stress (pai)

|         |        | Maximan B | ending Str<br>Center of | ess (psi)<br>Cap | Reximum<br>At Edge Ne | Sheer Jtri<br>er Cask C. | ess (psi)<br>avity Wall |
|---------|--------|-----------|-------------------------|------------------|-----------------------|--------------------------|-------------------------|
|         |        | *******   | ********                | ************     | ***********           |                          | *********               |
| Primary |        | Quesi     | -static                 | Dynamic          | QUES 1 -              | static                   | DYTIMBIC                |
| Impact  | Endcap | *******   | ********                | ********         | *********             |                          |                         |
| Angle   | Layer  | Hand Calc | SCANS                   | SCANS            | Hand Calc             | SCANS                    | SCANS                   |
| ******* |        | ********* | ********                | **********       | ************          | ********                 | **********              |
|         |        |           |                         |                  |                       |                          |                         |
| 0.0     | Inner  | 0.0       | 0.0                     | 74.7             | 0.0                   | 0.0                      | 1.5                     |
|         | Shield |           |                         |                  | 0.0                   | 0.0                      | 0.6                     |
|         | Outer  | 0.0       | 0.0                     | -20.4            | 0.0                   | 0.0                      | 1.4                     |
| 15.0    | Inner  | 849.3     | 849.3                   | -966.9           | 17.2                  | 17.2                     | 29.2                    |
|         | Shield |           |                         |                  | 6.6                   | 6.6                      | 5.3                     |
|         | Outer  | -231.5    | -231.5                  | 1611.5           | 15.6                  | 15.4                     | 38.2                    |
| 30.0    | Inner  | 1939.2    | 1930.3                  | -2067.3          | 39.3                  | 39.3                     | 62.5                    |
|         | Shield |           |                         |                  | 15.1                  | 15.1                     | 11.3                    |
|         | Outer  | -528.6    | -528.7                  | 3445.5           | 35.2                  | 35.2                     | 81.5                    |
| 45.0    | Inner  | 3073.0    | 3073.1                  | -2468.7          | 62.3                  | 62.3                     | 74.6                    |
|         | Shield |           |                         |                  | 23.9                  | 23.9                     | 13.5                    |
|         | Outer  | -837.6    | -837.7                  | 4114.5           | 55.8                  | 55.8                     | 97.4                    |
| 60.0    | Inner  | 3989.8    | 3989.9                  | 3558.7           | 80.8                  | 80.8                     | 72.1                    |
|         | Shield |           |                         |                  | 31.1                  | 31.1                     | 27.7                    |
|         | Outer  | -1087.5   | -1087.7                 | -970.1           | 72.4                  | 72.4                     | 64.6                    |
| 75.0    | Inver  | 4468.2    | 4468.3                  | 4551.1           | 90.5                  | , 90.5                   | 93.0                    |
|         | Shield |           |                         |                  | 34.8                  | 34.8                     | 35.8                    |
|         | Outer  | -1217.9   | -1218.1                 | -1251.5          | 81.1                  | 81.1                     | 83.3                    |
| 90.0    | Inner  | 464F.3    | 4648.5                  | 5184.5           | 94.2                  | 94.2                     | 105.1                   |
|         | shield |           |                         |                  | 36.2                  | 36.2                     | 40.4                    |
|         | Outer  | -1267.0   | .1267.2                 | -1413.3          | 84.3                  | 84.3                     | 94.1                    |
| C.G.    | inner  | 4328.7    | 4328.9                  | 4827.9           | 87.7                  | 87.7                     | 97.8                    |
|         | Shield |           |                         |                  | 33.7                  | 33.7                     | 37.6                    |
|         | Outer  | -1179.9   | -1180.1                 | +1316.1          | 78.5                  | 78.5                     | 87.6                    |

#### Comparison of Bending and Shear Stresses for Laminated Endcaps at Free End As Obtained in Quasi-static and Dynamic Analyses (Sample Problem 2)

Table 8-13-2

REPORI NUMBER (Assignad by NRC Add V and Addendum Number) NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 12-89) N2+CM 1102, 3261, 32402 Supp. Rev BIBLIOGRAPHIC DATA SHEET NUREG/CR-4554 (See instructions on the reverse) UCID-20674 7. TITLE AND SUBTITLE Vol. 3, Rev. 1 SCANS (Shipping Cask ANalysis System) A Microcomputer Based Analysis System for Shipping Cask Design Review Theory Manual (Lead Slump in Impact Analysis and DATE REPORT PUBLISHED MONTH YEAN Verification of Impact Analysis) 1992 February A FIN OR GRANT NUMBER A0291 5. AUTHOR(S) 6. TYPE OF REPORT R. C. Chun, T. Lo, G. C. Mok, M. C. Witte Technical 7. PERIOD COVERED Hindusive Dates! 3/15/89 - 5/31/92 8. PERFORMING DRGANIZATION - NAME AND ADDRESS III NRC. provide Division, Diffee or Region. U.S. Nuclear Regulatory Commission, and mailing address. If contractor, provide Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 SPONSORING ORGANIZATION - NAME AND ADDRESS III MRC. type "Same as above" Il contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission Division of Safeguards and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 10. SUPPLEMENTARY NOTES 11. ABSTRACT (200 words in hear) A computer system called SCANS (Shipping Cask ANalysis System) has been developed for the staff of the U.S. Nuclear Regulatory Commission to perform confirmatory licensing review analyses. SCANS can handle problems associated with impact, heat transfer, thermal stress, and pressure. A new methodology was developed to allow SCANS to analyze the lead slump behavior of lead-shielded casks during a postulated impact with an unyielding surface. The methodology is an expansion of the existing lumped-parameter impact analysis method. In the new methodology, it is assumed that the lead and the steel cylinders are not bonded as opposed to the existing bonded-lead assumption. The lead shield is allowed to slide freely relative to the steel cylinders and interact with the steel cylinders only in the radial direction of the shipping cask. The lead slump methodology described in this revision (Rev 1) of the report is an improved version of the method documented in the original report. The main improvement is in the modeling of the lead behavior. To minimize mathematical difficulty and development cost, the lead was formerly treated as an elastic material with an effective nodulus which was tuned to account for the effect of plastic deformation occurring in a cask drop. Although this method gave satisfactory results for 30-ft accident drops, it produced overconservative predictions for 1- to 4-ft normal drops. Thus, the present revision of the method was undertaken to improve the range of applicability of the method. In the improved method described in this report, the lead is treated as an elastic-plastic material and the actual elastic-plastic properties of lead are used instead. 12. KEY WORDS/DESCRIPTORS (Like words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT Unlimited Shipping Cask 14 SECURITY CLASSIFICATION Impact Analysis (This Page) Microcomputer Program

Unclassified

Unclassified

(This Reserve)

16 PRICE

Frankriken with starting for strangers for strangers of

Lead Slump

MRC FORM 335 (2-89)

THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER

-

### UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, 4300 EPECIAL FOURTH CLASE RATE PORTAGE & FEES PAID USARE PERMIT NO. 6-47

the all

hi.

â

.