NUREC/CR-4554 UCID-20674 Vol. 1, Rev. 1

SCANS (Shipping Cask ANalysis System) A Microcomputer Based Analysis System for Shipping Cask Design Review

User's Manual to Version 2a (Including Program Reference)

Philippen (J. 1.4 No. A. Electrond, El. J. Tryppener, S. J. Johnson, C. F. 19800

Lawrence Livermory Watkinal Laboratory

Non- and the state of the second s

对外14圈运动的,4条

Preparent for Lab. Alastean Sugalatory Commission

. 「「「「「「「「「「「「」」」」」」 SUAMS (SHIPPING CASK ANALYSIS NYSTEPAS A NICROCOMPUTER RASED ANALYSIS SYNTYM TOR SHEPROCI CASS DESIGN REVIEW -----The sum the state and 40 Internetic and the MERCAN-ASSA

NUREG/CR-4554 UCID-20674 Vol. 1, Rev. 1

SCANS (Shipping Cask ANalysis System) A Microcomputer Based Analysis System for Shipping Cask Design Review

User's Manual to Version 2a (Including Program Reference)

Manuscript Completed: May 1991 Date Published: February 1992

Prepared by M. A. Gerhard, D. J. Trummer, G. L. Johnson, G. C. Mok

Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550

Prepared for Division of Safeguards and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN A0291

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW , Lower Level, Washington, DC 20555
- The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications. It is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program formal NRC staff and contractor reports. NRC-sponsored conference proceedings, international agreement reports, grant publications, and NRC booklets and brochures. Also available are regulatory guides. NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited

Single copies of NRC draft reports are available free, to the extent of supply, upon written reques, to the Office of Administration, Distribution and Mall Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. 7920 Norfolk Avenue, Bethesda, Maryland, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepare. The account of work sponsored by an agency of the United States Government. Neither the United States downment nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or a sumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Abstract

iii

Version: 2a

SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and datat ases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees.

SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations (1983) and Regulatory Guides published by the U.S. Nuclear Regulatory Commission in 1977 and 1978.

Abstract concentration and and and and and and and and and an	iii
List of Tables	vii
List of Figures	vii
Acknowledgements	x
Executive Summary	xi
Revisions	xiii
Introduction	1.1
System Description	1.3
Required Hardware and Software	1.4
Installing SCANS	1.6
Running SCANS	1-2
Main Manu	1-0
Page salary Many	2+1
Using the Editor	3-1
Using the Editor manufacture and a second se	3-3
Defining the Geometry	3-5
General SAR Information	3-6
Reviewer Information	3-6
Cask Cavity/Contents Specifications	3.6
Cask Component Configurations	3-7
Cask Shell Specifications	3-8
Cask End Cap Specifications	3-10
Cask Closure Bolts Information	3-11
Cask Neutron Shield / Water Jacket Specifications	3-11
Cask Impact Limiter Specifications	3-11
Cask Impact Model Specifications	3-13
Defining Limiter F/D Curves	3.14
Defining User Material Data	3-16
Analysis Menu	4-1
Perform Impact Analysis	4.3
Generating the Finite Element Mexhes	4.7
Perform Thermal Analysis	1.9
Perform Thermally Induced Stress Analysis	4-0
Perform Precure Induced Strace Analysis	4-14
Dienlay Menu	4-10
Dist Dumania Impact Danalta	2-1
Display/Drint Elamant Marker	3-3
Display/mini Finite Element Mesnes	3-8
Piot i emperature Lastributions automation and and and and and and and and and an	5-10
Set Attributes for Video/Printer Plots	5-22
Print/Keview Menu	6-1
Selecting the Output to Print/Review	6-3
Printing the Output	6-5
Reviewing the Output	6-6
Archive Menu	7-1
Archiving Data Sets	7-2
Retrieving Data Sets	7-5
Deleting Data Sets	7-7

11 -

4 -

٠ د

•

Appendix A: The Editor	A-1
Description of Editor Pages	A-1
Getting Help	A-2
Saving the Edits and an	A-2
Ending the Edit Session	A-3
Moving Around	A-3
Entering a Value	A-4
Making Selection From a List	A-4
Copying Data From Another Editor Page	A-5
Printing an Editor Page	A-5
Handling Errors	A-5
Appendix, B: Material Properties	B-1
Strectural and Water Jacket Materials	B-2
Shielding Materials	B-5
Impact Limiter Materials	B-5
Neutron Shield Materials	B-7
Material References	B-8
Appendix C: Sample Cask and Description of Output	C-1
Description of Sample Cask	C-1
Geometry Data Summary Output	C-3
Limiter Curve Summary Output	C-8
Impact Analysis Output	C-9
Thermal Analysis Output	C-18
Thermal and Pressure Stress Analysis Output	C-24
Appendix D: Thermal Analysis Boundary Conditions	D-1
Annendie E. Preasure Polerance	17.1
Appendix E: Program Reference and	10° A
Contents of Distribution Diskettes	12-1
System Details	E-3
Description of Databases and an	E-7
Basic Geometry Database	E 14
Impact Limiter Force-Deflection Curves Database	12-12
Finite Element Mesh Node Database and the second second	12.00
Finite Element Mesh Element Database	10 21
Material Database	E-01
Impact Analysis Plot Database	12-23
Thermal Analysis Plot Database	E-30
Description of Editor Templates	E-3
Basic Geometry Template	E-4
Impact Limiter Force-Deflection Curves Template	E-4
Material Properties Template	E-4
Data Set File Naming Conventions	E-4
Appendix F: Contents of Additional Volumes	F-1

8

.

vi

.

A.,

List of Tables

7-1	Possible Error Messages during Archiving	7-4
7-2	Possible Error Messages during Retrieving	7-6

List of Figures

14	And the second se	
1-1	SCANS menu structure	1-3
1-2	Title and disclaimer screen	1-6
1-3	Cask data set summary screen	1-7
2-1	SCANS Main Menu	2-1
3-1	SCANS Geometry Menu	3-1
3-2	SCANS simplified cask model	3.5
3-3	Sample cask configurations.	3.7
3-4 .	Possible shield configurations	3-9
3-5	Possible impact limiter configurations	3-12
3-6	Isapact limiter unloading specification	3-14
3.7	Sample impact limiter data page	3-15
3-8	Material file list	3-16
3-9	Sample material data page for impact and puncture analyses	3-17
3-10	Sample temperature-dependent material data page for thermal and	
	stress analyses	3-19
4-1	SCANS Analysis Menu	4.1
4-2	Select Impact Analysis Parameters Screen	4-3
4-3	Select Thermal Analysis Case	4-8
4-4	Steady State Thermal Input Editor Page	4-10
4-5	Steady State Thermal Analysis Status Screen	4-11
4-6	Transient Fire Thermal Input Editor Page	4-12
4-7	Transient Fire Conditions Editor Page	4-13
4-8	Transient Analysis Control Parameters	4.14
4-9	Select Thermal Stress Analysis Case	4-16
4-10	Stress Free Temperature / Thermal State	4-17
4-11	Select Internal Pressure Case	4.18
4-12	Select External Pressure Case	4.19
5-1	SCANS Display Menu	5-1
5-2	Select Dynamic Impact Solution to Plot	5.3
5-3	Select Plots and Display Parameters Screen	5-4
5-4	Selecting Position Along Cask for Plotting	5-6
5-5	Axial Force Time History Plot	5-6
5-6	Plot of Position of Cask Bottom	5.7
5-7	Hoop Stress Time History Plot	5.7
5-8	Display of Thermal and Stress Meshes	5.8
5.9	Thermal Node/Element Map	5.0
5-10	Select Thermal Solution to Plot	5.10
5-11	Select Plots and Display Parameters Screen	5.11
5-12	ZOOM on Specified Coordinates	5.12
5-13	Select Materials for Plotting	\$ 14
1. A.M.	The second secon	2-14

-

ø

.

٦

List of Figures Continued

è.

5-14	Define Profile Line Between Two Nodes	5-16
5-15	Select NODES for Time History Plots	5-18
5-16	Plot of Thermal Iso-contours	5-18
5-17	Plot of Temperature Along Profile	5-19
5-18	Plot of Time History of Nodes	5-19
5-19	Plot of Material Outline	5-20
5-20	Plot of Geometry Showing Profile Line	5-20
5-21	Plot of Elements Using ZOOM	5-21
5-22	Iso-contour Plot with Y Axis Reflection	5-21
5-23	Set Video/Printer Plot Attributes	5-22
6-1	SCANS Print/Review Menu	6-1
6.2	Select Solution to Print/Review	6-4
6-3	Output Summary Screen	6-4
6-4	Reviewing the Output	6-6
7-1	SCANS Archive Menu	7-1
7-2	Summary of data set for Archive	7-2
7.3	Confirm decision to DELETE screen	7-8

Appendix A

A-1	SCANS Editor Page Layout	A-2
A-2	Select item from a list	A-5

Appendix C

C-1	Sample cask geometry and dimensions	C-2
Geome	try/Limiter Summary Output Figures	C-A
C-2	Component Specification:	C-5
C-4	Bolts F.F. Mesh and Materials	C-6
C-5	Imnact Model Description	C-7
C-6	Limiter Curve Summary Output.	C-8
Dynam	ic Impact Analysis Output Figures	
C-7	Header and Impact Summary	C-11
C-8	Maximum Forces and Moments	C-12
C-9	Stress Intensity	C-13
C-10	Interface Forces and Moments	C-14
C-11	Buckling Analysis Results	C-15
C-12	End Cap Stresses	C-16
C-13	Closure Bolt Stresses	C-17
Therm	al Analysis Output Figures	
C-14	Header and Control Data	C-20
C-15	Node/Element/Material Summary	C-21

viii

C-1 C-1	Temperature Output and Energy Balance	C-22 C-23
Ther C-1 C-1 C-2	al and Pressure Stress Output Figures Header and Nodal Results Typical Element Stresses Summary of Stresses	C-25 C-25 C-26

Acknowledgments

The authors thank the following people for their contributions to the development of SCANS.

H. W. Lee, C. R. Chappell, H. L. Graves, and W. E. Campbell of the U.S. Nuclear Regulatory Commission for their support and technical direction.

C. J. Mauck and J. F. Leonard of the U.S. Department of Energy for their support and comments.

T. A. Nelson and R. Serbin of Lawrence Livermore National Laboratory for their significant technical contributions.

N. S.S. S.

1

Executive Summary

Lawrence Livermore National Laboratory has developed a microcomputer-based analysis system to assist the Nuclear Regulatory Commission in performing confirmatory analyses for licensing review of radioactive-material shipping cask designs. SCANS documentation includes multiple volumes. This volume (Volume 1) is the user's manual and program reference. In this volume we describe the system requirements, installation and operation of SCANS, the contents of the SCANS distribution diskettes, how SCANS is implemented in a DOS environment, and the structure of SCANS databases. Volumes 2 and following are the theory documents for each analysis module. The titles and contents for each SCANS theory document are given in Appendix F.

Revisions

Date: June 1, 1989 /ersion: 1b

Page 1-4.5 Added that DOS file COMMAND.COM must be in the root directory of the hard disk drive which will contain SCANS.

Page 3-9,10 Modified Figure 3-4 and the description of the end cap shield radius to indicate that the value for the shield radius must be larger than the cavity radius.

Date: May 21, 1991 Version: 2a

All Pages

All pages were revised or reissued in order to accommodate the extensive changes associated with the additional capabilities of the program. The major new capabilities are: options to modify material data set and thermal-ann'ysis conditions; puncture analysis; elastic-plastic lead slump analysis; and buckling analysis.

4

SCANS - Shipping Cask ANalysis System*

From the inception of commercial nuclear power production to this day, spent fuel has been accumulating in reactor fuel pools across the country. When a permanent nuclear waste repository is established (as required by Federal law) this fuel will be shipped from the reactor sites to the repository. In anticipation of increased license submittals for spent-fuel shipping casks, the U.S. Nuclear Regulatory Commission requested the Lawrence Livermore National Laboratory to develop an integrated software system to conduct confirmatory analyses of the casks. The purpose of the analyses is to ensure structural integrity under a series of normal operating loads and hypothetical accident loads as specified in Title 10 of the *Code of Federal Regulations* (1983).

SCANS is a microcomputer based system of computer programs developed by LLNL for evaluating safety analysis reports on spent fuel shipping casks. The system is easy to use and provides an independent check for reviews on the analyses submitted by licensees. SCANS calculates the global response of the shipping casks to impact loads, thermal conditions and pressure loads.

SCANS is composed of a series of menus, input programs, cask analysis programs and output display programs. An analysis is performed by preparing the necessary input data and then selecting the appropriate analysis: impact, thermal (heat transfer), thermally-induced stress, or pressure-induced stress. All data is entered through fill-in-the-blank input screens with descriptive data requests. Where possible, default values are provided as specified in Fegulatory Guides published by the U.S. Nuclear Regulatory Commission (1977, 1978). The input data is evaluated for correctness before it is accepted.

Impact analyses use a one-dimensional dynamic beam model. Each node in the beam model has two translational degrees of freedom and one rotational degree of freedom. The impact code uses an explicit time-history integration scheme in which equilibrium is formulated in terms of the global external forces and internal force resultants. This formulation allows the code to track large rigid-body motion. Thus, the oblique impact problem can be calculated from initial impact through essentially rigid-body rotation to secondary impact. Lateral pressure due to lead-slump can also be calculated.

Appropriate two-dimensional finite-element meshes are automatically generated for thermal, thermal-stress, and pressure-stress analyses, based on the general geometry description. SCANS allows steady-state or transient thermal analyses, which may include phase change, time- and/or temperature-dependent material properties, time and/or temperature boundary conditions, and internal heat generation. Possible thermal boundary conditions include specified temperature, heat flux, convection, radiation, interface contact resistance, and nonlinear heat transfer to a bulk node. Thermal analyses use 4-node elements. Thermalstress and pressure-stress analyses are performed using a linear-clastic static structural

^{*}This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of Understanding with the United States Department of Energy.

analysis program which allows temperature-dependent material properties. Stress analyses use 9-node elements.

Output is displayed graphically and can also be printed. Graphic displays include: impact force, moment and shear time histories; impact animation; thermal/stress geometry outline; thermal/stress element outlines; temperature distributions as iso-contours or profiles; and temperature time histories.

System Description

SCANS uses a series of menus to coordinate input programs, cask analysis programs, output programs, data archive programs and databases. Figure 1-1 illustrates the menu structure. The menus are ordered according to the stages of an analysis.

SCANS requires only the press of a single key to make menu and subtask selections. SCANS indicates the available selections on each display screen and describes what action SCANS will take. For example: on the main menu SCANS indicates the appropriate keys to press are 1 2 3 4 5 6 and Q; the action taken after pressing key Q is to return to DOS.

Data is entered through fill-in-the-blank input screens. Full editing features are available (insert, delete, move cursor, overtype, etc.), and data items are accepted when the cursor is moved to another data field.

Figure 1-1. SCANS menu structure.

Required Hardware and Software

SCANS is designed for microcomputers compatible with the IBM-PC family of computers. The minimum required hardware configuration is:

IBM "XT" or "Compatible" with the following: 10 Mbyte hard disk drive 360 Kbyte floppy disk 640 Kbyte RAM CGA Board (Color Graphics Adapter) Color Graphics Monitor 8087 Math co-processor chip IBM or EPSON Graphics printer

SCANS performance is improved by using turbo XTs, ATs, IBM PS2s, and compatibles. SCANS functions on MS DOS computers including the new 80386 class of machines. A typical upgraded configuration is:

IBM PS2 Model 80 (80386 processor) 40 Mbyte hard disk drive 1.44 Mbyte floppy disk (High Density) 360 Kbyte floppy disk (external) 640 Kbyte RAM VGA Board (Video Graphics Array) VGA Color Monitor 80387 Math co-processor chip HP LaserJet, LaserJet+, or LaserJet Series II printer

SCANS requires the operating system DOS version 3.1 or later. The DOS command files listed below must be present in the root directory of the booting hard disk drive.

AUTOEXEC.BAT ANSI.SYS CONFIG.SYS COMMAND.COM

The DOS file COMMAND.COM must be in the root directory of the hard disk drive which will contain SCANS.

The DOS programs listed below must be available through the current PATH.

MODE.COM BACKUP.COM RESTORE.COM

The file CONFIG.SYS must include the following lines:

DEVICE=ANSI.SYS BREAK ON FILES=15 BUFFERS=15

The file AUTOEXEC.BAT must include the following path:

PATH x:\ where x is the hard disk drive which contains SCANS.

The files CONFIG.SYS and AUTOEXEC.BAT and the command PATH are described in the DOS reference manual.

1-4 Version: 2a

Introduction Installing SCANS

The SCANS release package contains four 5% inch double-density distribution diskettes (or two 5% inch high-density diskettes for AT 1.2Mb disk drives). The programs and control files on the distribution diskettes occupy approximately 2.6Mb of disk space and must be installed on a hard disk drive. NOTE: The DOS file COMMAND.COM must be in the root directory of the hard disk drive which will contain SCANS.

To install SCANS:

- (1) Insert diskette number 1 into drive A: or B: and type A:INSTALL if using drive A:. If using drive B: INSTALL.
- (2) INSTALL presents two choices:
 - Press S to select the hard disk drive where SCANS will reside Press Q to QUIT and return to DOS
- (3) INSTALL displays the available hard disk drives on your system. Press the indicated letter to select the drive where SCANS will reside or press Q to QUIT and return to DOS.
- (4) INSTALL displays the space remaining on the selected hard disk drive, creates the \SCANS subdirectory, and prompts for SCANS diskette number 1.
- (5) Insert each diskette as requested into either drive A: or B:. Press A or B as required to install that disk. Repeat for all distribution diskettes.

NOTE: Press Q at any time to abandon installing SCANS. INSTALL will ask for verification before de-installing SCANS.

The program INSTALL is provided to perform the installation operations listed below:

- (1) INSTALL determines how many hard disk drives exist on the system, lists the hard disk drives and asks for the drive that will contain SCANS.
- (2) INSTALL checks the selected hard disk drive for enough space. SCANS cannot be partially installed. If there is not enough space, either remove files from the hard disk drive to create room or select a different hard disk drive (if available).
- (3) INSTALL creates the subdirectory \SCANS on the selected hard disk. If an older version of SCANS is already installed, \SCANS is renamed to \SCANSnn (where nn is the previous SCANS version number) before \SCANS is created. If the same version of SCANS is already installed, INSTALL asks if you want to reinstall SCANS.
- (4) INSTALL copies the program and control files from the distribution diskettes. INSTALL asks for each SCANS diskette in order.
- (5) INSTALL unpacks the sample data set.
- (6) INSTALL updates the SCANS procedure to identify the selected hard disk.
- Select video type (max resolution for plots). Allows user to change video and printer setup.

Version: 2a 1-5

Running SCANS

Once installation is completed, start SCANS by typing:

SCANS (followed with Enter or Return)

SCANS will display the title and disclaimer screen shown in Figure 1-2. Press any key to continue. SCANS automatically initiates the Select Cask process and searches for cask data sets that already exist. The number of existing data sets is displayed and two choices are given:

Press Q to QUIT and return to DOS Press any other key to proceed with cask selection

If no data sets exist, SCANS requests entry of a new CASKID. The CASKID is a four digit number that identifies the cask data set. All four digits are required. For example, to specify a CASKID of 77, enter 0077. Enter Q to QUIT and return to DOS.

When only one data set exists SCANS displays a summary of the data set (Figure 1-3). Three choices are provided:

Press N to select a new CASKID by direct entry

Press P to Proceed with the indicated CASKID (SCANS displays the Main Menu)

Press Q to QUIT and return to DOS

SCANS - Shipping Cask ANalysis System

Version 2a Released May 21, 1991

Developed for

The U.S. Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards Division of Safeguards and Transportation

NRC Contact: Dr. Henry Lee Phone: (301) 492-0485 Code Developer: Lawrence Livermore National Laboratory LLNL Contact: Larry Fischer Phone: (415) 423-0159

Documentation: SCANS- Shipping Cask ANalysis System Vol 1-7 NURE0/CR-4554

This program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Press any key to CONTINUE

Figure 1-2. Title and disclaimer screen. Displayed when SCANS is started.

N

Version: 2a

1-6

Introduction Running SCANS

data

If more than one data set exists, SCANS displays a list of CASKIDs and indicates several options:

Press	N	to select a new CASKID by direct entry
Press	S	to select the highlighted CASKID and display
		set summary
Press	Q	to QUIT and return to DOS
Press	Ť	to highlight the previous CASKID
Press	4	to highlight the next CASKID

When more than one data set exists, the summary screen options are:

Press	S	to select a different CASKID (return to the
Press	\mathbf{P}	to Proceed with the specified CASKID (SCANS displays
Press	Q	to QUIT and return to DOS

After the CASKID is selected, SCANS displays the Main Menu. The first step for a new data set is to define the basic geometry. Once the geometry definitions exist, the general sequence of operations is to perform an analysis, display the graphical results (if applicable) and then print the results. Each of these operations is selected from the Main Menu.

Summary of data for CASK	9999	C,
SAR: LUNL shipping cask for nuclear fuel rods		L
Basic Geometry Impact Limiter Force/Deflection Data	** EXISTS ** Checks Okay ** EXISTS ** Checks Okay	
Thermal/Stress Finite element Meshes	** EXISTS **	
Customized Thermal Analysis Inpuls Thermal Analysis Solutions Thermal-Stress Analysis Solutions Pressure-Stress Analysis Solutions	O Case(s) Exist 1 Case(s) Exist O Case(s) Exist 1 Case(s) Exist	
impact Solutions (Dynamic) Impact Solutions (Quasi-Static)	2 Case(s) Exist O Case(s) Exist	0
N to select New CA	SK ID	(
PRESS P to proceed with t	his CASK ID	

Figure 1-3. Cesk data set summary screen.

NOTES:

Main Menu

The Main Menu (Figure 2-1) is the central hub of SCANS. It provides access to five task menus and the select cask facility. The task menus are connected only through the Main Menu. They cannot call each other directly.

PRESS 1 to Select a new CASK ID

The select cask facility is similar to the select cask process when SCANS is started. The only difference is that pressing Q returns to the Main Menu instead of leaving SCANS and returning to DOS.

PRESS 2 to Create/Modify the CASK geometry model

Select this task first for a new cask data set. SCANS displays the Geometry Menu which provides tasks for: (1) creating new (or modifying previous) basic geometry definions and impact limiter force-deflection curves; and (2) copying basic geometry or limiter curves from a different cask data set.

SCANS	MAIN MENU	SCAN	5
00555	Current CASK ID is 99	99	
PRESS	To estant a new DASK ID		
2	To Create/Modify the CASK deal	metru model	
3	To Perform CASK analyses	con a g annaire	
4	To Display analysis results and/	or geometry	
5	To Print/Review analysis outpu	ts	
6	To Archive/Retrieve/Delete CA	SK data sets	
0	To QUIT and return to DOS		1 1

Figure 2-1. SCANS Main Menu.

Main Menu

PRESS 3 to Perform CASK analyses

CASK analyses are performed after defining the cask geometry and if necessary, the impact limiter force-deflection curves. SCANS displays the Analysis Menu, which provides tasks to perform analyses involving impact loads, thermal distributions and stresses, and pressure loads.

PRESS 4 to Display analysis results and/or geometry

SCANS displays the Display Menu which provides tasks for: (1) plotting dynamic impact time-histories; (2) displaying and printing finite-element meshes used for thermal, thermal-stress and pressure-stress calculations; and (3) plotting thermal distributions as isocontours, time histories, or thermal profiles. The tinite-element meshes can be displayed before any analysis is performed. Results cannot be plotted until the appropriate analysis is performed.

PRESS 5 to Print/Review analysis outputs

SCANS displays the Print/Review Menu, which provides tasks for printing or reviewing all printable outputs (analysis results or the cask summary and data check). Printing an output sends it to the printer; reviewing an output displays it on the screen.

PRESS 6 to Archive/Retrieve/Delete CASK data sets

SCANS displays the Archive Menu which provides tasks for: (1) archiving cask data sets; (2) retrieving previously archived data sets; and (3) deleting cask data sets (complete data sets or just the output) from the hard disk.

PRESS Q to QUIT and return to DOS

SCANS terminates the session and returns to DOS in the root directory of the hard disk which contains SCANS.

Geometry Menu

The Geometry Menu (Figure 3-1) provides tasks for creating new (or modifying previous) basic geometry & finitions and impact limiter force-deflection curves.

PRESS 1 to Create/Modify basic geometry

If the basic geometry definition data set exists, editing is initiated. If the basic geometry data does not exist, SCANE creates a new data set with default values, and editing is initiated. When the basic geometry is saved, SCANS automatically performs a data check. Basic geometry definitions must be completed and pass the data check before SCANS will perform any analysis.

PRESS 2 to Create/Modify impact limiter F/D curves

If the impact limiter force-deflection curve data set exists, editing is initiated. If the limiter curve data does not exist, SCANS creates a new data set with default values, and editing is initiated. When the limiter curve data is saved, SCANS automatically performs a data check. Limiter forcedeflection curves must be defined and pass the data check before SCANS will perform an impact analysis.

SCANS	GEOMETRY MENU	SCANS
PRESS	Current CASK ID is 9999	
1 Toc	reate/Modify basic geometry	학생 전 사람
2 To C	reate/Modify impact limiter F/D	curves
3 100	opy basic geometry from differe	ntcask
4 To C	opy limiter data from different o	ask
5 TOM	lodify material data set	1999
M TOR	eturn to MAIN MENU	the state

Figure 3-1. SCANS Geometry Menu.

Geometry Menu

PRESS 3 to Copy basic geometry from different cask

Use this feature to create the basic geometry definition data set by copying it from the existing data set for a different cask. Then, modify the data set to resolve any differences between the casks.

SCANS lists the available basic geometry definition data sets from other casks. Use the cursor keys to highlight the data set to copy, then press S. If a basic geometry data set already exists for the current cask, SCANS asks for confirmation before copying the selected data set over the current one.

PRESS 4 to Copy limiter data from different cask

Use this feature to create the impact limiter force-deflection curve data set by $cc_F yi \log it$ from the existing data set for a different cask. Then, modify the data set to receive any differences between the casks.

SCANS lists the available limiter curve data sets from other casks. Use the cursor keys to highlight the data set to copy, then press S. If a limiter curve data set already exists for the current cask, SCANS asks for confirmation before copying the selected data set over the current one.

PRESS 5 to Modify material data set

Use this feature to create or modify material property data set. To create a data set, first copy it from an existing data set. Then, modify the copied set to the desired data set. Only the data sets created by the user can be modified. The built-in material data sets are locked; i.e., they cannot be modified but can be copied.

SCANS lists all available material property data sets including the built-in and user-created sets. Use the cursor keys to highlight the data set to copy, then press S. SCANS will ask the user to name the new material data set and identify the cask component for which the data is intended. If a data set with the same name already exists for the component, SCANS asks for confirmation before overwriting the old data set with the new.

PRESS M to Return to MAIN MENU

SCANS returns to the Main Menu display.

Geometry Menu Using the Editor

SCANS uses a general purpose fill-in-the-blank type editor to enter data for the basic geometry definition and the impact limiter force-deflection curve definitions. Appendix A has a complete description of the editor features, displays, and usage. A condensed description of how to use the editor is included here.

The editor title screen indicates the status of the data set. To abandon editing at this point, press Q to quit and return to the Geometry Menu. If the data set does not exist, press any other key to create the data set using default values. If the data exists, press D to delete the data set and create a new one or press any other key to edit the existing data set. When D is selected, SCANS asks for confirmation before proceeding.

The editor reads a template which describes the editor screens and, if creating a new data set, identifies each editor page as it is created with the appropriate default values. The editor then displays the first editor page. Each page contains related data, and each data field has a descriptive label indicating what to enter (units are indicated if appropriate). All fields displayed in light blue are required inputs, fields displayed in green have default values which can be changed or accepted as is.

On each page display, in the upper left hand corner, the editor displays the number of pages which must be accessed. These pages have fields that must be filled in before the data set is considered complete. The page list display also identifies these pages. Be sure to move to each field that is labeled in light blue. If necessary, enter the appropriate data.

Use the following keys to edit a field:

Characters, numbers and special symbols to enter the appropriate data (Typing in the first character position clears the field) Keypad left and right arrow keys to position the cursor

DEL and backspace keys to delete characters

INS key to toggle between insert and overtype modes

Use the following keys to accept a field and go to another:

Keypad up and down arrow keys or ENTER to move to previous or next field on current page.

Keypad PgUp and PgDn to move to first field on previous or next page.

Geometry Menu Using the Editor

Use the following keys for halp, redefaulting and special control:

- ESC to display help relating to the current field and a description of all the editing keys.
- F1 to display list of all the pages in the data set. Use the keypad up and down arrow keys to highlight the desired page and then press F1 again to move to the indicated page. The page list screen indicates which pages have data fields that must be filled in.
- F2 saves the data set, terminates the editor, and returns to the current menu.
- F3 abandons editing. SCANS asks for confirmation before proceeding.
- F4 saves the data set and continues editing.
- F5 prints the displayed page on the printer. Make sure the printer is online.

F6 resets the current field to its default value.

F7 resets all fields on the current page to their default values.

If the entered data is invalid for the specified field, the editor displays an error message at the bottom of the screen and indicates any restrictions on the data item. Press ENTER to clear the error message and return to editing.

See Appendix A for a more complete description of the editor and its features.

Geometry Menu Defining the Geometry

SCANS uses a simplified cask model comprised of seven components: (1) cask cavity; (2) shell; (3) top end cap; (4) bottom end cap; (5) top impact limiter; (6) bottom impact limiter; and (7) neutron shield and water jacket. The general form of this cask model is shown in Figure 3-2. The shell and end caps can be either solid (single layer) or laminated (top or three layers). The cavity, shell and end caps must be defined for each analysis. Impact limiters are optional but are required for impact calculations. The neutron shield/water jacket is optional and, if included, used only for thermal analyses. Mesh division values are used to generate two-dimensional finite-element meshes for thermal, thermal-stress and pressurestress analyses. The geometry definition is described in the context of the editor pages that follow.

Figure 3-2. SCANS simplified cask model.

Geometry Menu

Defining the Geometry

Basic Geometry PAGE 1 General SAR Information

The SAR title is required. Four fields are provided for other SAR information, three fields are provided for additional information, and three for the submitting company's address. All fields on this page are character type and are not checked for validity.

Basic Geometry PAGE 2 Reviewer Information

There is no required data on this page. It is provided to document the persons involved in the cask evaluation. All fields are character type and are not checked for validity.

Basic Geometry PAGE 3 Cask Cavity/Contents Specifications

The cavity dimensions and the weight specifications are required for all analyses. The maximum heat generation rate is required for thermal and thermal-stress analyses.

Cavity inner radius (inches) Required. Must be positive and less than 2000.

Cavity length (inches) Required. Must be positive and less than 2000.

- Gross weight of package (lbs) Required. Includes the cask body, impact limiters, internal structures, and spent fuel contents. Must be positive.
- Weight of spent fuel contents and internal structures (lbs) Required. Must be non-negative.
- Maximum heat generation rate of the spent fuel contents (Btu/min). Used for thermal and thermal-stress analyses. Must be non-negative.
- Initial cavity charge pressure (psia) and temperature (degrees F). Used during thermal analyses to estimate the change in internal pressure as a result of thermal loads. Pressure must be positive, and temperature must be greater than or equal to -100°F.
- Maximum normal operating pressure (psia). Used as one of the regulatory pressure-stress loading conditions. Must be positive.
- Temperature defining stress free condition (degrees F). Used for thermalstress analyses. May be changed during specification of the thermal-stress analysis. Must be greater than or equal to -100°F.
- Number of mesh divisions along cavity inner radius and along cavity half length. NOTE: Specify the mesh divisions along the half length of the cavity, not the full length. Must be even and between 2 and 30.

Geometry Menu Defining the Geometry

Basic Geometry PAGE 4 Cask Component Configurations

The default cask configuration has a solid shell and solid end caps. It includes top and bottom impact limiters, neutron shield, and water jacket. Enter L to specify a laminated shell or end caps. Enter N to exclude either limiter or the neutron shield and water jacket. Figure 3-3 shows several possible configurations.

Figure 3-3. Sample cask configurations.

Geometry Menu

Defining the Geometry

Basic Geometry Page 5 Cask Shell Specifications

Page 5a is displayed when a solid shell is specified and page 5b is displayed when a laminated shell is specified.

Solid Shell

Shell thickness (inches) Required. Total thickness of the shell. Must be positive and less than 2000.

Shell material name. Select from the displayed list of materials.

Number of mesh divisions through shell. Used to generate a 'wodimensional finite-element mesh for thermal, thermal-stress and pressure-stress analyses. Must be even and between 2 and 10.

Laminated Shell

- Shell inner layer thickness (inches) Required. Must be non-negative and less than 2000. Set to 0.0 to eliminate the inner layer.
- Additional thickness of inner layer in vicinity of the end caps (inches). Must be non-negative and less than 2000. Set to 0.0 if inner shell is not thickened. Used for impact analyses with unbonded lead shielding.

Shell inner layer material name. Select from the displayed list of materials.

Shell shield layer thickness (inches) Required. Must be non-negative and less than 2000. Set to 0.0 to eliminate the shield layer.

Shell shield length (inches) Required. Must be non-negative and less than 2000. Set to 0.0 to eliminate the shield layer. May be larger than the cavity length but should not exceed the cask body length (cavity length plus thickness of both end caps). Figure 3-4 shows the effects of various shell shield lengths. NOTE: impact analyses assume shield length is same as cavity length.

Shell shield layer material name. Select from the displayed list of materials. Shell outer layer thickness (inches) Required. Must be positive and less

than 2000.

Additional thickness of outer layer in vicinity of the end caps (inches). Must be non-negative and less than 2000. Set to 0.0 if outer shell is not thickened. Used for impact analyses with unbonded lead shielding.

Shell outer layer material name. Select from the displayed list of materials.

Number of mesh divisions through inner layer, shield layer and outer layer of the shell. If inner layer or shield layer is eliminated, number of mesh divisions is ignored. Must be even and between 2 and 10.

Geometry Menu Defining the Geometry

SHELL: Solid

END CAPS: Laminated 3 layers End cap shield radius greater than cavity radius

SHELL: Laminated 3 layers Shell Shield length less than length of cavity

END CAPS Sold

than length of cavity

END CAPS: Sold

SHELL: Laminated 3 layers Shell shield length less than length of cavity

END CAPS. Laminated 3 layers End cap shield radius greater than cavity radius

SHELL: Laminated 3 layers Shell Shield length greater than length of cavity

END CAPS: Laminated 3 layers End cap shield radius less than cavity radius

SHELL: Laminated 3 layers Shell Shield length greater than length of cavity

END CAPS: Laminated 3 layers End cap shield radius greater than cavity radius

Figure 3-4. Possible shield configurations.

Geometry Menu

Defining the Geometry

Basic Geometry Pages 6-7 Cask End Cap Specifications

Page 6a is displayed when a solid top end cap is specified. Page 6b is displayed when a laminated top end cap is specified. Pages 7a and 7b are for solid and laminated bottom end caps; these pages are identical to pages 6a and 6b.

Solid End Cip

End cap thickness (inche) Required. Total thickness of the end cap. Must be positive and less than 2000.

End cap material name. Select from the displayed list of materials.

Number of mesh divisions through end cap. Must be even and between 2 and 10.

Laminated End Cap

End cap inner layer thickness (inches) **Required**. Must be non-negative and less than 2000. Set to 0.0 to eliminate the inner layer.

End cap inner layer material name. Select from the displayed list of materials.

End cap shield layer thickness (inches) **Required**. Must be non-negative and less than 2000. Set to 0.0 to eliminate the shield layer.

- End cap shield radius (inches) **Required**. Must be non-negative and less than 2000. Set to 0.0 to eliminate the shield layer. Must be larger than the cavity radius and should not exceed the cask body outer radius (cavity radius plus shell thickness). Figure 3-4 shows the effects of various end cap shield lengths.
- End cap shield layer material name. Select from the displayed list of materials.
- End cap outer layer thickness (inches) **Required**. Must be positive and less than 2000.
- End cap outer layer material name. Select from the displayed list of materials.

Number of mesh divisions through inner layer, shield layer, and outer layer of the end cap. If inner layer or shield layer is eliminated, number of mesh divisions is ignored. Must be even and between 2 and 10.

Basic Geometry Page 8 Cask Closure Bolts Information

Number of closure bolts Required. Must be positive and less than 100.

- Diameter of closure bolts (inches) **Required**. Must be positive and less than or equal to 10.
- Closure bolt circle radius (inches) **Required**. Must be positive and less than 2006. Should be greater than the cavity radius and less than the cask body outer radius (cavity radius plus shell thickness).

Basic Geometry Page 9 Cask Neutron Shield / Water Jacket Specifications

The netwoon shield and water jacket are not included in impact, thermal-stress and pressure-stress analyses. They may be included in thermal analyses if they affect heat transfer.

Neutron shield and water jacket length (inches) **Required**. Must be nonnegative and less than 2000. Should be less than the cavity length. Set to 0.0 to eliminate the neutron shield and water jacket (same as specifying on Page 4 that they are not included).

Neutron shield thickness (inches) **Required**. Must be non-negative and less than 2000. Set to 0.0 to eliminate the neutron shield.

Neutron shield material name. Select from the displayed list of materials.

Water jacket thickness (inches) **Required**. Must be non-negative and less than 2000. Set to 0.0 to eliminate the water jacket.

Water jacket material name. Select from the displayed list of materials.

Number of mesh divisions through neutron shield and water jacket. If neutron shield or water jacket is eliminated, number of mesh divisions is ignored. Must be between 1 and 3.

Basic Geometry Pages 10-11 Cask Impact Limiter Specifications

Page 10 is displayed when a top impact limiter is included in the cask model. Page 11 is displayed when a bottom impact limiter is included. Top and bottom impact limiters are specified in a similar manner. Impact limiters are included in impact and thermal analyses. Figure 3-5 shows possible impact limiter configurations.

Impact limiter radius (inches) **Required**. Must be positive and less than 2000. Should be greater than or equal to the cask body outer radius (cavity radius plus shell thickness).

Impact limiter centerline thickness above the end cap (inches) Required. Must be positive and less than 2000.

Geometry Menu Defining the Geometry

Impact limiter overhang thickness below the end cap (inches) Required. Must be non-negative and less than 2006. Should be less than or equal to half the cask body length (cavity length plus thickness of both end caps). Set to 0.0 for no overhang. Set greater than half cask body length to surround the cask with the impact limiter. If the impact limiter radius is less than or equal to the cask body outer redius, the overhang thickness is ignored.

Impact limiter material name. Select from the displayed material list.

Number of mesh divisions through limiter centerline thickness and overhang width (impact limiter radius minus cask body outer radius). Must be between 1 and 10.

Limiter RADIUS: Greater than cask body Limiter OVERHANG: None

RADIUS: Greater than cask body OVERHANG: Included, exceeds body half length (Limiter surrounds the cask body)

Basic Geometry Page 12 Cask Impact Model Specifications

Define these values for impact analyses. They are not used for any other analysis.

- Number of elements for the one-dimensional beam impact model. Accuracy generally improves with increased number of elements. However, the more elements used, the higher the possibility of capturing unnecessary high frequency modes. The integration time step is inversely proportional to the maximum frequency of the model. Thus, high frequencies require small time steps which causes the computation time to lengthen. The number of elements also specifies where force and stress information is output. Set to 3 for output at third points. Set to 4 for output at quarter points. Set to 6 for 1/6th points. Set to 12 for quarter and third points (plus a few more). Must be between 3 and 20.
- Top impact limiter weight (lbs). Set to 0.0 to calculate top impact limiter weight based on limiter dimensions and density.
- Bottom impact limiter weight (lbs). Set to 0.0 to calculate bottom impact limiter weight based on limiter dimensions and density.
- Define impact model with user specified properties? [Y/N]. Specify N to use shell, end caps, and impact limiter dimensions for impact analyses. Specify Y to input the following impact model properties directly. These properties are described in Volume 2, SCANS Impact Analysis Theory Manual, in the section discussing the theory of impact. The weight of the contents and internal structures must be specified on the basic geometry editor page 3 (cask cavity/contents specifications).

The following properties must all be positive.

Shell translational mass (lb-sec**2/inch).
Shell rotational mass (lb-sec**2-inch).
Shell inside length (inches).
Shell E*I (composite Young's Modulus x Moment of Inertia) (lb-inch**2).
Shell A*E (composite Young's Modulus x Area) (lbs).
Shell composite Poisson's Ratio.
Top end translational mass (lb-sec**2/inch).
Top end rotational mass (lb-sec**2-inch).
Bottom end translational mass (lb-sec**2/inch).
Bottom end rotational mass (lb-sec**2-inch).

Characteristic cross-section width (inches).

Geometry Menu Defining the Impact Limiter Force-Deflection Curve

SCANS has eight predefined oblique angles for impact analyses: 0 degrees (side drop); 15; 30; 45; 60; 75; 90 (end-on drop); and CG (center-of-gravity drop). Impact limiter force-deflection curves are related to the angle of impact because limiter crush forces are based on the contact footprint. Define any or all of the limiter curves; there are eight possible curves for the top impact limiter and eight for the bottor. limiter. If curves are only defined for one limiter, SCANS will not allow side drop analyses, secondary impact analyses, or analyses specifying the end without an impact limiter as the primary impact end.

The impact limiter data set has 17 editor pages. Page 0 specifies the slope of the unloading path for the impact limiters (Figure 3-6). This slope relates the force unloaded with the amount of elastic recovery of the limiter. SCANS allows three choices: C selects the maximum slope of the limiter force-deflection curve as the unloading slope; N selects no elastic recovery of the impact limiter (for dynamic stability this is approximated by an unloading slope that is five times the maximum slope of the force-deflection curve); and U selects a user specified unloading slope (in terms of kips of unloading force per inch of elastic recover).

Select the slope of the unit	ading path f	or impact limiter	8		
C Unloading slope i N No elastic recove (Approximated U User specified un	s maximum s ny of impact by unloading loading slope	lope of limiter c limiter slope of 5 times	urve max slope c	fourve)	
Type of Impact Limiter Uni	oading	(N)			
					0

Geometry Menu Defining the Impact Limiter Force-Deflection Curve

Each of the remaining pages specifies a force-deflection curve for a specific limiter (bottom or top) at a specific impact angle. Pages 1a-1h define force-deflection curves for the bottom impact limiter, and pages 2a-2h define curves for the top limiter. Use the keypad **PgUp** or **PgDn** keys to display the page with the desired limiter and impact angle (or use the page list function key **F1** to select the page). The impact end and orientation angle are identified in the upper left corner of the screen. Then, type **Y** and press **ENTER** to activate the curve data. Fill in up to ten curve points; the first two points are required. If there are less than ten curve points, leave the remaining curve points 0.0. Enter deflections in **inches** and forces in **kips**. Data page 1c, which specifies the bottom impact limiter for a 30-degree impact, is shown in **Figure 3-7**.

Press F10 to copy curve data from a different impact angle or cask end. When SCANS displays the list of all impact angles, use the UpArrow and DnArrow keys to indicate the data to copy from and then press C to perform the copy.

Each force-deflection curve must be single valued and in increasing order. That is, each deflection point must be larger than the previous one. The impact limiter force-deflection model is described in Volume 2, SCANS Impact Analysis Theory Manual.

Sample Limiter deflection / forc Bottom Impact Limiter for 30 de	e data gree impact	(D.9999 Page 10	Today is:10/ of 2h Last chod !	05/88
Press F10 to copy Force/Defie	ction data fr	om another	impact angle	
Impact angle is defined as follow	s: SIDE imp END ON impa	act angle is ct angle is i	1 Q. 20.	L
Do you wish to define a Deflection	n/Force our	ve for this	angle ? [Y/N]	atra internet
You must define at 1	east 2 deflec	tion/force	pairs	
Deflection #0 (in) 0		Force #0	(kips) .0	
Deflection #1 (in) [0.		Forde #1	(kips)[0.	
Deflection #2 (in)[0.		Force #2	(kips)[0.	j [
Deflection #3 (in) [0.		Force #3	(kips) [0.	
Deflection #4 (in)[0.		Force # 4	(kips) (0.	
Deflection #5 (in)[0.		Force #5	(kips)[0.	1
Deflection #6 (in)_[0		Force #6	(kips)[0.	
Deflection #7 (in). [0		Force #7	(kips)[0.	
Deflection #8 (in)[0.		Force # 8	(kips). [0.	
Deflection #9 (in)[0.		Force #9	(kips). [0.	1 1 1 1 1
Deflection #10 (in)[0.	1.1	Force #10	(kips)[0.	

Figure 3-7. Sample impact limiter data page.

SCANS has eighteen built-in material data sets which can be copied in order to create a user material data set. The built-in sets comprise five materials (stainless steels 304, 310, 316, and 347) for the end-cap and shell structures; one material (lead) for the radiation shield; four materials (balsa wood - cross grained, polyfoam, polyurethane, and redwood - cross grained) for the impact limiter; six materials (carbon steel, copper stainless steels 304, 310, 316, and 347) for the water jacket; and two materials (convections in air and in water) for the neutron shield. Details of these data sets are given in Appendix B. When the option of editing material data set is selected, SCANS lists all existing material data files and identifies the eighteen built-in data sets as locked files which can be copied but not modified (Figure 3-8).

FILE	SELECT	MATERIAL FILE CASK COMPONENT	DATE	NOTES)[S
CARENIST	Carbon Steel	EndCap Shall Structure	11-27-89	AN KOULTON
\$\$304	Stainless Steel 304	EndCap/Shell Structure	11+27-89	Locked
55310	Stainless Steel 310	EndCap/Shell Structure	(1+27+89	Locked
55316	Stainless Steel 316	Endcap/Shell Structure	11-27-89	Locked
58347	Stainless Steel 347	EndCap/Shell Structure	11-27-89	Locked
U\$304	Stainless Steel 304M	EndCap/Shell Structure	12-17-90	
LEAD	Cast Lead	Shielding	2-04-91	Locked
BALSAXOR	Balsa Wood Cross Grain	impact Limiters	10-04-89	Locked
POLYFOAM	Polufoam	impact Limiters	10-04-89	Locked
PURETHAN	Poly unethene	Impact Limiters	10-04-89	Locked
REDWDXOR	Redwood Cross grain	Impact Limiters	10-04-89	Locked
CARBNSTL	Carbon Steel	Water Jacket	11-27-89	Locked
COPPER	Copper	Water Jacket	11-27-89	Locked
\$\$304	Steinless Steel 304	Water Jeckel	1)-27-89	Locked
\$\$310	Steinless Steel 310	Water Jacket	11-27-89	Locked
58316	Steinless Steel 316	Water Jacket	1-27-89	Locked
\$5347	Stainless Steel 347	Water Jacket	11-27-89	Locked
AIRCONY	Convection in Air	Neutron Shield	10-04-89	Locked
	Concentration in territory	Neutron Shield	10-04-90	Locket I

Figure 3-8. Material file list.

A new user material data set is created by copying one of the existing material files displayed by SCANS. SCANS uses a file name and a cask component name to identify the new data set. SCANS asks the user to enter a file name of his choice and to press one of the following function keys to select a component:

- F1 for end cap / shell structure
- F2 for shielding
- F3 for bolts
- F4 for impact limiters
- F5 for water jacket
- F6 for neutron shield

The bolts option is for future development of SCANS. The current version of SCANS does not require material properties for bolts. If the assigned file and component names coincide with those of an existing data set, SCANS will ask for permission before replacing the old file with the new.

All material files except the locked files can be edited. SCANS uses eleven editor pages for the editing. The pages contain all the material data needed for SCANS analyses. For a specific material, component and analysis, only a portion of the material properties listed in the editor pages are used; input values to the unused properties are not needed and have no effect on the SCANS analysis results.

Page 1 of the eleven editor pages specifies the name and density of the material. The name is used to describe and identify the material. The density is used in all SCANS analyses. The data on this page are, therefore, required for all materials and components.

Page 2 contains properties that are used for impact and puncture analyses (Figure 3-9). The impact analysis includes a buckling analysis of the inner and outer shells of the shipping cask, and a lead slump analysis of the radiation shield. The values used for the properties on this editor page should be appropriate for the temperature and strain rate of the impact or puncture phenomena being analyzed. The specific use of the properties on this page are as follows:

Material Specifications for US304 Impact, Puncture, Buckling Analysis Props	(Dimtr) Page 2 of 4h	Today is: 3/12/91 Last chigo: 10/03/89	s c
Impact Young's Modulus (psi)	00 }		
Impact Poisson's Ratio			
The following properties are used for puncture and bu	uckling		
Yield Stress (psi)	1		
Plastic Modulus (psi)			
Ultimate Stress (psi)			
do and m define the stress-strain relation at stress (evels above		
the proportional stress limit according to $\sigma = \sigma\sigma^{2}$	* ¢ * * m		
Proportional stress limit (psi)			(
oo (psi)	1		
m	1		

Figure 3-9. Sample material data page for impact and puncture analyses.

Version: 2a 3-17

The Young's modulus and Poisson's ratio are used for impact analysis and must be provided for all components of the SCANS impact model which includes the end caps, the cask inner and outer shells, and the radiation shield.

The yield stress is used only for buckling analysis of cask shells that are made of carbon steels or elestic-perfectly-plastic materials. It is required for cask shells made of these materials.

The plastic modulus was used in SCANS Version 1 for lead slump analysis and is not used in this version.

The ultimate stress is used for puncture analysis and is required for the end caps, and the outer cask shell.

The proportional limit, the material stress-strain-relation parameters, Go and m, are used for buckling analysis of cask shells that are made of austenitic steels or workhardening materials. The material properties are needed only for the cask shells made of these materials. These three material parameters are also used in the built-in lead data file for lead slump analysis. However, these lead properties cannot be modified because SCANS uses only the built-in lead file for lead slump analysis.

Pages 3 through 4h specify temperature-dependent material properties that are used for thermal, thermal stress, and pressure stress analyses. Page 3 identifies the number of temperatures for which the properties are given in Pages 4a through 4h; the maximum number allowed is eight. Each of Pages 4a through 4h defines the property values at a specified temperature (Figure 3-10). The data must be arranged in the order of ascending temperatures and must cover the entire range of temperatures that the material experiences in the analyses. Among the material data appearing on these pages, the coefficient of thermal expansion is used for thermal stress analysis; the Young's modulus and Poisson's ratio are used for both thermal and pressure stress analyses; and the thermal conductivity and specific heat are for thermal analysis.

Material Specifications for US304 Temperature 1 Properties	ID:Mitri Page 4 of 4h	Today is: 3/12/91 Lestongd 10/03/89) S C
Temperature (E)			
Section a care of 2 sector sector sector	(-58		
Young's Modulus (psi)	(29100000		
Poisson's Ratio	29		
Coefficient of thermal expansion (in	/in F) [0000087	j.	
Thermal conductivity (Blu/In min F)	[.01125		
Specific heat capacity (Btu/Ibm F)	112		
			10
			11
a al annual more a same of the and the same of		and a standard many dependence of the second state of the second second second second second second second second	0
List Pages F2 Save+END F3 QUIT	w/o Save F4 Save+	Continue F5 Print Page	
Redefault Current Field F7 Rede	fault Entire Page	ESCape for HELP	1

Figure 3-10. Sample temperature-dependent material data page for thermal and stress analysis.

NOTES:

The Analysis Menu (Figure 4-1) provides tasks to perform analyses involving impact loads, thermal distributions and stresses, and pressure loads. The basic geometry model definitions must be completed before SCANS can perform any analysis.

PRESS 1 to Perform Impact analysis

SCANS determines forces and stresses resulting from impact loads. Impact limiter force-deflection curves must be defined before SCANS can perform an impact analysis. The impact condition is specified by drop height, impact type, analysis type, shell/shield interface type, impact end, and impact angle.

PRESS 2 to Perform Thermal analysis

SCANS performs any of seven predefined regulatory thermal analyses, as well as analyses with user speci d boundary conditions. These analyses include various ambient temperatures, solar effects, contents heat loads, and fire loads.

Current CASK ID is 9999
RESS
1 To Perform IMPACT analysis
2 To Perform THERMAL analysis
3 To Perform THERMALLY-INDUCED STRESS analysis
4 To Perform PRESSURE-INDUCED STRESS analysis
M To Return to MAIN MENU

Figure 4-1. SCANS Analysis Menu.

PRESS 3 to Perform Thermally-Induced Stress analysis

SCANS determines stresses resulting from previously analyzed thermal conditions. After selecting the thermal case, specify the stress-free temperature and, for the transient case, specify the time state.

PRESS 4 to Perform Pressure-Induced Stress analysis

SCANS determines stresses resulting from the pressure difference between cavity pressure and external pressures defined by regulations.

PRESS M to Return to MAIN MENU

SCANS returns to the Main Menu display.

Perform Impact Analysis

SCANS assumes beam-column behavior for impact analyses and determines forces and stresses for both primary and secondary impacts. SCANS can perform impact analyses for oblique angles between 0 degrees (side drop) and 90 degrees (end-on drop) and for drop heights from 0 to 80 feet.

Both the basic geometry and the impact limiter force-deflection curves must be defined and complete before SCANS can perform an impact analysis (see Geometry Menu). The basic geometry must include at least one impact limiter. The Impact Analysis Title Screen indicates any missing information required before an impact analysis can be performed.

Press Q to QUIT and return to MENU, or press any other key to specify the six impact analysis parameters: drop height; impact type; analysis type; shell/shield interface type; primary impact end; and impact angle (Figure 4-2).

Impact Type [Initial Plus Secondary Impact]	F1 for 1 foot drop
	F2 for 7 fort Aron
Analysis Type	F3 for 3 foot drop F4 for 4 foot drop
Shell/Shield Interface	FS for 30 foot drop (Accident)
Primary Impact End	+ to increase drop ht.
mpact Angle (from horizontal)[0]	- to decrease drop ht.
Press any of the following ke	eys

Figure 4-2. Select Impact Analysis Parameters Screen.

Perform Impact Analysis

SCANS displays the default values for each of the six parameters. Press P to proceed and perform the analysis with the parameters as displayed, press Q to QUIT and return to the Analysis Menu or modify any of the parameters before performing the analysis. To modify a parameter, use the keypad up or down arrow keys to highlight the desired field and then press the function key that selects the desired value.

Selecting the Drop Height

Highlight the *Drop Height* field and press one of the indicated function keys to change the drop height.

F1 for a 1 foot drop
F2 for a 2 foot drop
F3 for a 3 foot drop
F4 for a 4 foot drop
F5 for a 30 foot drop (accident)

To select other drop heights not listed above, press the + key to increase and the - key to decrease the drop height from the current selection. The change is in steps of 1 foot between 0 and 30 feet, 5 feet between 30 and 40 feet, 10 feet between 40 and 80 feet.

Selecting the Impact Type

Two impact types are available, impact of one end (primary impact), and impact of one end followed by rotation of the cask and impact of the other end (secondary impact). Impact limiter geometry and force-deflection curves must be defined for both ends of the cask to perform secondary impact calculations. An impact angle of 0 degrees is always a primary and secondary impact (both ends impact at the same time). Impact angles greater than or equal to the CG angle and unbonded shell/shield interface analyses are always primary impact only.

Highlight the *Impact Type* field and press one of the indicated function keys to change the type of impact.

- F1 for initial plus secondary impact
- F2 for initia' impact only

Selecting the Analysis Type

Two analysis types can be selected: a dynamic, lumped parameter approach that accounts for the dynamic response of the cask and rigid body motion associated with oblique impact; and a quasi-static approach that treats the cask as a slender rigid bar which does not capture dynamic response. Both types are one-dimensional techniques and assume elastic response.

Highlight the *Analysis Type* field and press one of the indicated function keys to change the type of analysis.

- F1 for a Dynamic analysis
- F2 for a Quasi-static analysis

4-4 Version: 2a

Perform Impact Analysis

Selecting the Shell/Shield Interface Type

The default shell/shield interface is bonded. That is, the shield is prevented from slumping. An unbonded interface may be selected if the impact angle is greater than 0 and if the cask has a three-layer laminated shell comprised of STEEL, LEAD, and STEEL. An unbonded interface allows the lead shield to slump and contribute radial forces to the steel shells. NOTE: unbonded shell/shield interface analyses are always primary impact only.

Highlight the Shell/Shield Interface Type field and press one of the indicated function keys to change the type of shell/shield interface.

F1 for a bonded interface

F2 for an unbonded interface

Selecting the Primary Impact End

Highlight the Primary Impact End field and press one of the indicated function keys to change the primary impact end. The primary impact end can only be changed if the alternate end has an impact limiter and at least one force-deflection curve defined for that limiter.

> F1 for primary impact on bottom of cask F2 for primary impact on top of cask

Selecting the Impact Angle

Highlight the Impact Angle field and press one of the indicated function keys to change the angle of impact. The angles correspond to the force-deflection curves defined for the primary impact end that is currently specified. A 0-degree angle is a side drop, and a 90-degree impact angle is an end on drop. Side drop analyses are always a primary and secondary impact with a bonded shell/shield interface. Impact angles greater than or equal to the CG angle are always primary impact only.

Performing the Analysis

After all analysis parameters are selected, SCANS indicates whether a solution exists for this case. Press P to perform the analysis. When the analysis is complete SCANS displays the maximum impact force and acceleration for both primary impact and secondary impact (if included) and lists two options:

> Press P to Perform another impact analysis (with different parameter selections) Press Q to QUIT and return to the analysis menu

4-5 Version: 2a

Perform Impact Analysis

During dynamic analyses, SCANS displays the current simulation time, cask orientation, and analysis status. Press F3 to halt the analysis at any point (results are complete up to the point the analysis is halted). During primary impact, the analysis status indicates "Calculating PRIMARY impact". When the primary impact analysis is complete, the status is changed to "Primary impact complete". When a secondary impact is initiated, the analysis status indicates "Calculating SECONDARY impact" and displays both the cask orientation at secondary impact and the impact limiter force-deflection data set angle used for the secondary impact end. SCANS selects the F/D curve that is nearest to the actual secondary impact angle. When the secondary impact analysis is complete, the status is changed to "Secondary impact complete".

Dynamic impact analyses may indicate one of the error messages listed below:

Time limit reached

The analysis could not be completed. Probable cause is a very soft impact limiter that does not absorb all the impact energy.

Secondary impact reached, only primary requested

The secondary end of the cask impacts before the primary impact analysis is complete. Message appears only if the impact type was restricted to primary only.

Chord rotation in element "i" is too large

Indicates a numerical instability. Probable cause is a geometry or weight error.

Quasi-Static impact analyses may indicate the error message listed below:

Force becomes negative before impact energy can be dissipated The limiter Force/deflection curve does not allow the limiter to absorb all the impact energy. Probable cause is an F/D curve that ends with a negative slope.

Generating Finite Element Meshes

Thermal, thermal-stress, and pressure-stress analyses require two-dimensional finite element meshes. The first time one of these analyses is requested for a cask, SCANS automatically generates the F.E. meshes based on the dimensions and mesh gradings in the geometry definition (see Geometry Menu). The generated F.E. meshes are used automatically until any geometry definition is updated. When a pressure-stress or thermal analysis is selected after the geometry definition is updated, SCANS indicates that the F.E. mesh predates the current version of the basic geometry. SCANS displays the date and time for both the geometry definition and F.E. mesh and lists several options:

- Press C to Continue (the analysis) with the current F.E. mesh
- Press G to Generate a new F.E. mesh based on the current geometry
- Press Q to QUIT and return to the analysis menu

SCANS displays the thermal and stress meshes after generation is complete. The thermal mesh uses 4-node elements and includes all specified cask components. The stress mesh uses 9-node elements (each 9-node element is equivalent to four 4-node elements) and includes only the cask shell and end caps. The impact limiters, neutron shield, and water jacket are low-strength components which do not affect stress distributions. After displaying the meshes, SCANS lists the following choices:

- Press P to print the Graphic Display
- Press T to print the Thermal mesh as a node/element map
- Press S to print the Stress mesh as a node/element map
- Press D to Display meshes again
- Press C to Continue with the analysis
- Press Q to QUIT and return to the Analysis Menu

(Allows abort if display indicates a potential problem)

The thermal and stress mesh node/element maps are useful for reviewing results from thermal and stress analyses. These maps can also be generated from the Display Menu.

NOTE: the video display type and printer type are selected from the Display Menu.

Version: 2a 4-7

Perform Thermal Analysis

varform a thermal

The basic geometry must be defined and complete before SCANS can perform a thermal analysis (see Geometry Menu). The Thermal Analysis Title Screen indicates any missing information required before an analysis can be performed.

Press Q to Quit and return to the Analysis Menu, or press any other key to Sisplay the list of available thermal analysis cases (Figure 4-3). The case list also indicates for each of the cases whether a solution exists and whether the case has thermal conditions that are defined by SCANS or by the user. SCANS offers seven cases with predefined thermal conditions. These cases, which are described on the next page, simulate the various normal and accident conditions required for shipping cask analyses. All cases, except the fire accident, include convection and radiation heat transfer to the environment. The fire accident case excludes convection heat transfer during the fire and reinstates it after the fire.

Cold Soak Cold Soak Normal Cold Normal Cold Normal Hot Normal Hot	Contents heat No contents Contents heat No contents Contents heat Contents heat	No solar effects No solar effects No solar effects No solar effects Solar effects No solar effects	Solution Exists
Fire Accident	Contents heat	No solar effecta	Solution Exists
ald Soak	Contents heat	No solar effects; New C	ase UA
ectronometry mescations, and	ENDING IT AN EXTENSION TRAVELOW	ая дамаларыны акстиционаларынанынынынынынынынынын	CONTRACTOR STATE AND ADDRESS OF A DESCRIPTION OF A

Figure 4-3. Select Thermal Analysis Case.

Perform Thermal Analysis

Cold Soak, Contents Heat, No Solar Effects Ambient temperature: -40°F Contents Heat: As specified in the geometry definition Solar effects: None Analysis type: Steady State

Cold Soak, No Contents, No Solar Effects Ambient temperature: -40°F Contents Heat: None Solar effects: None Analysis type: Steady State

Normal Coid, Contents Heat, No Solar Effects Ambient temperature: -20°F Contents Heat: As specified in the geometry definition Solar effects: None Analysis type: Steady State

Normal Cold, No Contents, No Solar Effects Arabient temperature: -20°F Contents Heat: None Solar effects: None Analysis type: Steady State

Normal Hot, Contents Heat, Solar Effects Ambient temperature: 100°F Contents Heat: As specified in the geometry definition Solar effects: Included Analysis type: Steady State

Normal Hot, Contents Heat, No Solar Effects Ambient temperature: 100°F Contents Heat: As specified in the geometry definition Solar effects: None Analysis type: Steady State NOTE: Required as the initial condition for fire accident

Fire Accident, Contents Heat, No Solar Effects Ambient temperature during fire: 1475°F Ambient temperature after fire: 100°F Contents Heat: As specified in the geometry definition Solar effects: None Analysis type: Transient 360 minutes in duration Duration of fire: 30 minutes NOTE: Requires case Normal Hot, Contents Heat, No Solar Effects as the initial condition before the fire

Perform Thermal Analysis

Use the keypad up or down arrow keys to highlight the desired case. If the case can be used without any modification of the thermal conditions, press S to select and perform the analysis. Otherwise, press C to create a new case from the indicated case and to display the User Specified Thermal Input page for editing (Figure 4-4). SCANS automatically assigns a case ID for the new case and displays it as the last two letters of the case title. This case ID remains unchanged even if the case title is altered. The case ID is used to name all the input and output files of this analysis case. The Input page contains all thermal conditions, except the contents heat, that can be modified by the user. The contents heat is specified on the Basic Geometry Editor Page 3. The user should refer to Appendix D of this manual and Volume 4 of the SCANS theory manual for a precise definition of the parameters listed on the Editor page. To modify a parameter, use the keypad up or down arrow keys to highlight the desired field, and then enter the desired value or use the indicated key to select the desired value. After editing the Thermal Input page, press the function key, F1, to save and perform the thermal analysis. Otherwise, press the key F2 or F3.

SCANS automatically generates the necessary finite element mesh if one has not been previously generated (see Generating Finite Element Meshes).

	lser Specified Thermal input	S
Case Title . [Cold Soak C	ontents Heat No Solar Effects New Case	A [AUA]
Include the Contents Heat () Btu/Min) [Y/N][Y]	
Ambient Temperature (*F).	heren and the state of the stat	1
Convection	방법은 가슴을 비행하는 것이 같이 많이 가 없다.	
on Flat Surfaces	Coefficient (Btu/in 2min *F)[.0000215	99]
on Culindrical Surfaces	Coefficient (Btu/in ² min *F) 1000020	83 1
	Exponent [3333	1
Rediation Emissivity of Cas	k ing ninan ana sa mana sa mang S	1
Solar Heat Flux (Btu/in ² mi	n) Cash Selito (for op Solar)	1
Chegariye Hux adde hear tr	ress anu of the following keys	
Fi to Save input and continu	e T to move to previo	ous field
2 to Save input and QUIT	4 to move to next f	ield .
r3 to QUIT without saving r	odifications	leid

Figure 4-4. Steady State Thermal Input Editor Page

4-10

Perform Thermal Analysis

All thermal cases, except the fire accident, are steady state analyses. SCANS initiates steady state analyses after the case selection is made (and after mesh generation, if necessary) and displays the steady state thermal analysis status screen (Figure 4-5). Since the analysis is nonlinear, SCANS iterates to converge on the correct solution. The iteration number and convergence achieved are updated on the display after each iteration. Also displayed is the maximum number of iterations that SCANS will perform. When the solution converges, SCANS displays the minimum and maximum temperatures and indicates where they occurred. To abort the steady state analysis (and delete the output) before convergence is achieved, press F9. SCANS asks for confirmation before aborting the analysis. Press F1 to abort the analysis. Press F9 to continue the analysis. After the analysis is finished, SCANS lists the following options:

Press P to Perform another thermal analysis (redisplays the case list screen) Press Q to QUIT and return to the Analysis Menu

Performing THERMAL ANALYSIS Solving for Steady State condition Convergence of .7834 after iteration 3 Maximum number of iterations is 15 Press F9 to ABORT analysis (output deleted) COMPUTING

Figure 4-5. Steady State Thermal Analysis Status Screen.

Perform Thermal Analysis

The transient fire accident analysis requires the steady state case Normal Hot, Contents Heat, No Solar Effects as the initial condition. Similar to the steady state thermal analysis cases, if the transient fire accident case can be used without any modification of the predefined thermal conditions, press S to select the analysis. Otherwise, press C to create a new case and to display the User Specified Thermal Input and Fire Conditions pages for modification (Figures 4-6 and 4-7). Similar to the steady state case, the created transient fire case is automatically assigned a unique case ID. The contents of the Thermal Input Editor page are identical for all thermal cases. The Fire Conditions Editor page is available only for the transient fire accident case. Press the function key, F4, to switch between these two Editor pages. The user should refer to Appendix D of this manual and Volume 4 of the SCANS theory manual for a precise definition of the parameters listed on the Editor pages. To modify a parameter, use the keypad up or down arrow keys to highlight the desired field, and then enter the desired value or use the indicated key to select the desired value. After editing, press the key F1 to save and perform the thermal analysis. Otherwise, press the key F2 or F4.

User Specified The	ermal input	Is
Case Title [Cold Soak Contents Heat No	Solar Effects New Case UA]	A
Include the Contents Heat (0. Btu/Min) [Y/N	() commenced and (Y)	
Ambient Temperature (*F)		
Convection on Flat Surfaces on Cylindrical Surfaces Coefficient (Btu/in con Cylindrical Surfaces Exponent	(in ² min *F)[00002199] ² min *F)[3333 (in ² min *F)[00002083] [3333]	
Radiation Emissivity of Cask	nonnonnon [.8	
Solar Heat Flux (Btu/in ² min)	or no Solar)	
Press any of the fo	llowing keys	
F2 to Save input and CUIT	The conditions to move to previous field	
F3 to QUIT without saving modifications	1 to move to next field)

Figure 4-6. Transient Fire Thermal Input Editor Page.

Perform Thermal Analysis

Figure 4-7. Transient Fire Conditions Editor Page.

After the analysis is selected, SCANS displays a list of transient analysis control parameters with their default values (Figure 4-8). Press P to proceed and perform the analysis with the parameters as displayed, press Q to QUIT and return to the Analysis Menu, or modify any of the parameters before performing the analysis. To modify a parameter, use the keypad up or down arrow keys to highlight the desired field, and then use the indicated keys to select the desired value. When the displayed parameter values are correct, press P to perform the transient analysis. SCANS displays a transient analysis status screen that is similar to the steady state status screen. The transient analysis status screen also includes the current solution time, solution time limit, and minimum and maximum temperature for the previous solution time. To end the transient analysis after the current time step, press F5. To abort the transient analysis. Press F1 to end or abort the analysis. Press F9 to continue the analysis. After the analysis is finished, SCANS lists the following options:

Press P to Perform another thermal analysis (redisplays the case list screen) Press Q to QUIT and return to the Analysis Menu

Perform Thermal Analysis

Figure 4-8. Transient Analysis Control Parameters.

Specifying the Printed Output Interval

Highlight the *Printed Output Interval* field. Use the + and - keys to change the time interval between saving thermal states for printing. Printed output can be very long. A printout interval of 30 minutes or longer is recommended.

Specifying the Plotted Output Interval

Highlight the *Plotted Output Interval* field. Use the + and - keys to change the time interval between saving thermal states for plotting.

Specifying the Iteration Convergence Tolerance

Highlight the *Iteration Convergence Tolerance* field. Use the + and - keys to change the solution convergence tolerance. Increasing the tolerance reduces the number of iterations (and computation time) for solution convergence, but may result in a less accurate solution.

Perform Thermal Analysis

Specifying the Iteration Relaxation Parameter

Highlight the *Iteration Relaxation Parameter* field. Use the + and - keys to change the relaxation parameter. The relaxation parameter guides the temperature estimate for the current iteration by using a fraction of the temperature change during the previous iteration. Decrease the relaxation parameter to 0.75 or less to dampen highly oscillatory solutions.

Specifying the Time Step Type

Highlight the Variable Time Step field. Press Y to use a variable time step or N to use a fixed time step. If a fixed time step is selected, SCANS displays the fixed time step parameter. If a variable time step is selected, SCANS displays maximum allowable time step, maximum allowable temperature change during any time step, and time step modification factor.

Specifying the Fixed Time Step Parameter

Select N for the Use Variable Time Step parameter and highlight the Fixed Time Step field. Use the + and - keys to change the fixed time step. Small time steps will converge faster, requiring fewer iterations. However, the transient analysis duration will be divided into more time steps.

Specifying the Maximum Allowable Time Step for Variable Time Step

Select Y for the Use Variable Time Step parameter and highlight the Maximum Allowable Time Step field. Use the + and - keys to change the maximum allowable time step. This places a ceiling on the time step size that SCANS can select during the transient analysis.

Specifying the Maximum Allowable Temperature Change During Any Time Step

Select Y for the Use Variable Time Step parameter and highlight the Maximum Allowable Temperature Change During Any Time Step field. Use the + and - keys to change the maximum allowable temperature change during any time step. SCANS uses the temperature change to determine when it is necessary to change the time step size.

Specifying the Maximum Allowable Temperature Change During Any Time Step

Select Y for the Use Variable Time Step parameter and highlight the Time Step Modification Factor field. Use the + and - keys to change the modification factor. When the time step is increased, the new time step is the current time step multiplied by the modification factor. When the time step is reduced, the new time step is the current time step divided by the modification factor.

Perform Thermally-Induced Stress Analysis

SCANS requires at least one completed thermal analysis to perform thermally-induced stress analyses. The number of thermal analysis solutions is indicated on the Thermai Stress Analysis Title Screen. The module used for stress analyses is based on SAP80 from Computers & Structures, Inc. (used by permission).

Press Q to QUIT and return to the Analysis Menu or press any other key to display the list of available thermal stress cases (Figure 4-9). The case list also indicates whether a solution exists for each case. Use the keypad up or down arrow keys to highlight the desired case, and then press S to select the indicated case. SCANS will then display the stress-free temperature as specified in the geometry definition (Figure 4-10). Use the keypad + or - keys to change this value (allowable range is -40°F to +400°F). For the fire accident transient analysis, the thermal stress analysis may be calculated for any thermal state (the states correspond to the temperatures saved at the plotting interval). Use the keypad up or down arrow keys to select a thermal statr. SCANS indicates which state contains the maximum temperatures on any cask component. Press P to perform the analysis with the displayed stress-free temperature (and indicated thermal state, if applicable).

When the thermal stress analysis is complete, press P to perform another thermal stress analysis or Q to QUIT and return to the Analysis Menu.

>>> HEIGHARGHEIGHAR	Contents heat	Solar effects	Solution Exists	
Normal hot	Contenta heat	No solar effects	Solution Exists	
Fire accluent	Contents heat	No solar effects		
			retung arave cape atoms and arreaded account data and defined	
				0.001/000
	Ernene anu of	the following koue		0.0000

Perform Thermally-Induced Stress Analysis

Figure 4-10. Stress Free Temperature / Thermal State.

Perform Pressure-Induced Stress Analysis

The external pressure conditions are established by the regulatory guidelines. However, the internal pressure conditions are established by the maximum normal operating pressure (input during geometry definition) or the internal pressure resulting from a thermal analysis. SCANS estimates the change in internal pressure using Ideal Gas Laws, based on the initial cavity charge pressure and temperature (input during geometry definition). The Pressure Stress Analysis Title Screen indicates the number of thermal solutions that exist for the cask. The module used for stress analyses is based on SAP80 from Computers & Structures, Inc. (used by permission).

Press Q to QUIT and return to the Analysis Menu, or press any other key to display the list of available internal pressure conditions (Figure 4-11). The internal pressure list consists of the Maximum Normal Operating Pressure and the internal pressures estimated by existing thermal analyses. Use the keypad up or down arrow keys to highlight the desired internal pressure. Press S to select the indicated internal pressure and display the list of available external pressure conditions. These pressure conditions are defined by the regulatory guidelines. Use the keypad up or down arrow keys to highlight the desired external pressure. Below the selection list, SCANS displays the selected internal and external pressures and whether a solution exists for this pressure condition. Press P to proceed with the analysis using the indicated internal and external pressure conditions; press S to select the indicated external pressure and display the list of available internal pressure conditions; or press Q to QUIT and return to the Analysis Menu.

	and the second	ar nyene en	a de constante a para de 196 - Presidan de Constante da presidencia de la constante da porte de la constante d		
23	Maximum Norms Normal hot Normal hot fire accident	I Operating Press Contents heat Contents heat Contents heat	ure Solar effects No solar effects No solar offects	100 0 psia 18.9 psia 17.6 psia 20.5 psia	
_	Current Pressur	e case : internal Solution	100.0 psia Extern n Exista	ial 3.5 psia	0

Perform Pressure-Induced Stress Analysis

When the pressure stress analysis is complete, press P to perform another pressure stress analysis or Q to QUIT and return to the Analysis Menu.

Figure 4-12. Select External Pressure Case.

NOTES:

The Display Menu (Figure 5-1) provides options for plotting dynamic impact analysis results, displaying and printing finite element meshes, plotting thermal analysis results, and setting video and printer attributes.

PRESS 1 to Plot Dynamic Impact results

Plot the axial force, shear force, bending moment, position of cask top or bottom, cask orientation, and animation of the cask drop. For casks with an unbonded shell/shield interface, plot lead slump, and shell axial and hoop stresses.

PRESS 2 to Display/Print finite element meshes

Display the thermal and stress finite element meshes (generated during thermal or pressure stress analyses). Print the meshes as node element maps.

PRESS 3 to Plot Temperature distributions

Plot temperature distributions as iso-contours, time histories, and thermal profiles.

SCANS	DISPLAY MENU	SCANS
PRESS	Current CASK ID is 9999	
To Plot	DYNAMIC IMPACT PROVIDE	
2 To Disp	play/Print finite element meshes	
3 To Plot	TEMPERATURE distributions	
4 To Set	Attributes for Video/Printer Plo	its
M To Retu	ITN TO MAIN MENU	

Figure 5-1. SCANS Display Menu.

PRESS 4 to Set Attributes for Video/Printer Plots

Select video display (CGA or EGA), printer plot resolution (low or high) and type of printer (IBM/Epson graphics printer or HP LaserJer).

PRESS M to Return to MAIN MENU

SCANS returns to the Main Menu display.

Plot Dynamic Impact Results

SCANS displays the Plot Dynamic Impact Results Title Screen indicating the number of dynamic impact solutions. Press Q to QUIT and return to the Display Menu, or press any other key to select the dynamic impact solution to plot.

SCANS lists the available dynamic impact solutions and indicates the shell/shield interface, impact type, impact end, drop height, impact angle, date, and time (Figure 5-2). An unbonded shell/shield interface allows the lead shield to slump. A primary/secondary impact type includes impact of both ends. The impact end indicates the end that impacts first. Impact angles are relative to the horizontal (i.e., 0 degrees is a side drop). Use the keypad up and down arrow keys to highlight the desired case. Press S to select the indicated solution for plotting.

SCANS displays the Select Plots and Display Parameters Screen (Figure 5-3) and lists the following options:

- Press S to Select a different dynamic impact case
- Press Q to QUIT and return to the Display Menu
- Press 1 to move to previous choice field
- Press 4 to move to next choice field
- or Press any of the keys indicated in the options box

INTERFACE	D IMPACT TYPE	END	DROP	ANGLE	DATE	TIME
Unbonded Bonded	Primary - Primary -	Bottom	30 /	90 45	10-12-88 10-02-88	2:30p 3:06p
	And the set of the set				Conception of the local division of the loca	and the second division of the second divisio

Figure 5-2. Select Dynamic Impact Solution to Plot.

Display Menu Plot Dynamic Impact Results

Figure 5-3. Select Plots and Display Parameters Screen.

Selecting the Plot to Display or Print

Highlight the Select Plot to Display field to display plots. Highlight the Select Plot to Print field to display and print plots. Press one of the following function keys to display the desired plot.

- F1 to plot Axial Force (Figure 5-5)
- F 2 to plot Shear Force
- F3 to plot Bending Moment
- F4 to plot Position of Cask Top
- F5 to plot Position of Cask Bottom (Figure 5-6)
- F6 to plot Cask Orientation
- F7 to plot Animation of Cask Drop
- F8 to plot Lead Slump in the Lead Shield (unbonded only)
- F9 to plot Axial Stress in the Inner Shell (unbonded only)
- F10 to plot Axial Stress in the Outer Shell (unbonded only)
- ALT-F1 to plot Hoop Stress in the Inner Shell (unbonded only)
- ALT-F2 to plot Hoop Stress in the Outer Shell (unbonded only) (Figure 5-7)

Plot Dynamic Impact Results

Dynamic impact results are plotted as a function of time. The axial force, shear force, and bending moment are calculated for the total cross section of the cask. Plots of force, bending moment, and stress are at the selected position along the cask. Cask orientation plots are relative to the horizontal (0 degrees). Animation of the cask drop displays the position and orientation of the cask at discrete steps during the impact analysis.

Selecting the Lower and Upper Time Limits

Adjusting the time limits will zoom in on a portion of the time history. Highlight the Set Lower Time Limit field to change the lower time limit. Highlight the Set Upper Time Limit field to change the upper time limit. Use the + and - keys to change the selected value (times are in seconds). The lower time limit must be greater than or equal to 0, and less than the upper time limit. The upper time limit must be greater than the lower time limit and less than or equal to the maximum time limit.

Resetting the Time Limits to Full Range

Highlight the *Reset Time Limits to Full Range* field and press F1 to reset the time limits to the full range. Used to display full time histories after time limits have been adjusted.

Selecting the Position Along Cask for Plotting

Highlight the Select Position Along Cask field and use the + and - keys to change the position along the cask where axial force, shear force, bending moment and stresses are plotted (Figure 5-4). Position 0.0 corresponds to the cask bottom.

Display Menu Piot Dynamic Impact Results

Plot Dynamic Impact Results

Display Menu Display/Print Finite Element Meshes

SCANS displays the Display/Print Finite Element Mesh title screen and indicates the status of the F.E. meshes. Mesh displays are always based on the basic geometry description for the TOP end of the cask and use axisymmetry. Thermal meshes use 4-node elements and include all cask components. Stress meshes use 9-node elements and include only the cask shell and end caps. Press Q to QUIT and return to the Display Menu or any other key to display the finite element meshes (Figure 5-8). Press ENTER after reviewing the meshes and select one of the following options:

- Press P to print the Thermal mesh as a node/element map
- Press T to print the Thermal mesh as a node/element map (Figure 5-9).
- Press S to print the Stress mesh as a node/element map
- Press D to Display the meshes again
- Press Q to QUIT and return to the Display Menu

Figure 5-8. Display of Thermal and Stress Meshes.

Display/Print Finite Element Meshes

CASK ID: 9999 NODE/ELEMENT map of THERMAL MESH SCANS Version 2a Generated on S/09/91 at 5:57:55 SAR: Sample spent fuel shipping cask (demonstration only) NOT TO SCALE

der der gewennen.

NOTE -- Mesh is axisymmetric model for TOP half of cask

Material numbers ... (printed in corner of each element)

3.些	Inner	Shell	- A =	End	cap.	inner layer	7.6	Neutron Shield
2+	Shell	shield	5=	End	cap	shield layer	自然	Water Jacket
3.8	Outer	Shell	6.4	End	cap	outer layer	9.4	Impact Limiter

139-8 -- 196---197---198---199---200---201---202---203---205---205---208---207---208---209---210---210---212---21 103.8 -- 18-----102.5 ...
 123
 124
 125
 126
 127
 128
 129
 130
 131
 152
 135
 134
 135
 136
 183
 164
 185

 100.0
 54
 55
 56
 57
 58
 59
 60
 61
 62
 62
 63
 66
 65
 66
 67
 53
 238
 230
 210
 38.8 ... 87.5 ... 96.3 ... 16 61 85.8 ... 53 54 #2 #2 00--- 07---17 18 15.3 ... 108-105 ton. 51 52 75 76 165 166 167 m2 m2 m2 m3 m3 m9 m0 m0 m0 01--- 02--- 03--- 106---- 1--- 227-- 226---15 16 50 49 10 64.8 ... 100-101. 354 73 #3 07 13 14 45 82 46 82 47 48 74 84 25. 5 ... 12 44 42 43 4 -82 15.0 46.3 ... 40 82 -87 . 10 \$7 34 3.8 1.5 70 13 37.0 ... al la . 81 85 82 27.8 --31 31 65 30 -13 18 5 ÷., 25 27 28 63 9.3 ... 23 22 24 #2 54 2,81 21 61 62 83 83 1.

x 1.0 4.3 6.5 x2.6 x2.5 21.4 25.6 26.7 26.6 27.6 26.6 20.5 30.5 31.6 32.0 41.8 30.0 60.0

Figure 5-9. Thermal Node/Element Map.
Plot Temperature Distributions

SCANS displays the Plot Thermal Analysis Results Title Screen and indicates the number of thermal solutions. Press Q to QUIT and return to the Display Menu, or press any other key to select the thermal solution to plot.

SCANS lists the available thermal solutions and displays the thermal case description, contents heat, date, and time for each solution (Figure 5-10). The case description indicates the external temperature condition and the status of contents heat and solar effects. The applied contents heat is in Btu/min. Use the keypad up or down arrow keys to highlight the desired case and press S to select the indicated solution for plotting.

After the case is selected, SCANS displays the Select Plots and Display Parameters Screen (Figure 5-11) and lists the following options:

- Press S to select a different thermal case Press Q to QUIT and return to the Display Menu Press [↑] to move to previous choice field
- Press to move to next choice field
- Press any of the leave indicated in the option
- or Press any of the keys indicated in the options box

Figure 5-10. Select Thermal Solution to Plot.

5 - 10

Version: 2a

Plot Temperature Distributions

Figure 5-11. Select Plots and Display Parameters Screen.

NOTE: Enter values in the same manner as entering values when editing the geometry or impact limiter curves (see Appendix A).

Selecting the Plot to Display or Print

Highlight the Select Plot to Display field to display plots. Highlight the Select Plot to Print field to display and print plots. Press one of the following function keys to display the desired plot.

- F1 to plot Thermal Iso-contours (Figure 5-16)
- F 2 to plot Temperature along a Profile (Figure 5-17) (only if Line for Profile Plot is defined)
- F3 to plot Time History of Nodes (or Elements) (Figure 5-18) (only if Items for Time History Plots are defined)
- F4 to plot Material Outline (Figure 5-19)
- F 5 to plot Finite Element (F.E.) Mesh
- F6 to plot F.E. Mesh with Material Numbers
- F7 to plot F.E. Mesh with Element Numbers
- F8 to plot F.E. Mesh with Node Numbers
- F9 to plot Geometry showing Profile Line (Figure 5-20)
 - (only if Line for Profile Plot is defined)

Plot Temperature Distributions

Thermal iso-contours are lines of constant temperature plotted on the geometry material outline. Plots of temperature along a profile are: (1) the temperature profile along a line cutting the geometry (the line may be defined by XY coordinates or nodes numbers); or (2) temperature plotted for specified nodes as a function of distance between the nodes. Time history plots of nodal temperatures or averaged element temperatures are only available for the transient fire case. Up to six time histories per plot are allowed. Cask components are represented as different materials. Material outline plots are composed of outlines for each component selected for display. The finite element mesh can be plotted showing the mesh only, the mesh with material numbers, the mesh with element numbers, and the mesh with node numbers. Use the ZOOM option to isolate portions of the mesh when element or node numbers overlay one another. When a temperature profile line has been defined, the line can be plotted on the cask material outline to verify its location.

Selecting the Time for Iso-contour and Profile Plots

Highlight the *Time for Iso-contour and Profile Plots* field and use the + and - keys to change the time state for plotting. If the case is a steady state solution (all cases except transient fire) the time cannot be changed.

Setting the Zoom for plots with geometry

Highlight the Set Zoom field and press one of the indicated function keys to change the zoom for geometry displays. Zoom on small portions of the geometry for more detailed views (Figure 5-21). This is helpful when displaying the finite element mesh with node or element numbers.

- F1 to Automatically center and display the full geometry
- F 2 to ZOOM on specified coordinates
- F3 to ZOOM on a specified node

For zoom on specified coordinates (Figure 5-12), enter the X and Y coordinates which define the center of the plot and the width of the geometry to plot around the plot center. For zoom on a specified node, enter the number of the node which defines the center of the plot instead of X Y coordinates. After specifying the zoom conditions, press one of the following keys:

- Press D when DONE entering values
- Press A to revert to Automatic centering and display full geometry
- Press Q to QUIT and return to the Display Menu

Plot Temperature Distributions

Figure 5-12. ZOOM on Specified Coordinates.

Selecting the Symmetry Displays

Highlight the Select Symmetry Displays field and press one of the indicated function keys. SCANS uses an axisymmetric model of the TOP end of the cask to represent the thermal geometry. Reflect about the Y axis to simulate the geometry full width. Reflect about the X axis to simulate the geometry full length. Reflect about both the X and Y axes to simulate the full cask geometry.

- F1 for NO symmetry reflections
- F2 to reflect about the Y axis (Figure 5-22)
- F3 to reflect about the X axis
- F4 to reflect about the X and Y axes

Selecting the Materials to Include for Geometry and Iso-contour Plots

Highlight the *Select the Materials to Include* field and press one of the indicated function keys. SCANS represents each cask component as a different material. Use this option to isolate cask components for iso-contour and outline plots.

- F1 to Include ALL Materials in the Plots
- F2 to Select Materials for Plots

	54	llect Material	s for Plots		C
PRESS	PRESS		rieteria)		L
Include	Qmit.	Number	Nome	Status	
F1 F2 F3 F6 F9	Alt=F1 Alt=F2 Alt=F3 Alt=F6 Alt=F9	1 24 85 65 99	inner Shell Shell Shield Outer Shell Endcap Outer Layer Impact Limiter	Omitted Included Omitted Included Omitted	
	Pre	iss any of the	following keys		
	0 v A 1 0 1	when DONE sel o include ALL o QUIT and net	ecting materials materials turn to MENU		

Plot Temperature Distributions

Figure 5-13. Select Materials for Plotting.

When selecting materials, SCANS displays a list of all cask components indicating the material number, component name, and whether the component is included or omitted for isocontour and outline plots (Figure 5-13). Press the indicated function keys to include specific components or press ALT and the function key to omit components. To complete material selections, press one of the following:

- Press D when DONE selecting materials
- Press A to include ALL materials
- Press Q to QUIT and return to the Display Menu

Specifying the Iso-contour Plot Limits

Highlight the Specify the Iso-contour Plot Limits field and press one of the indicated function keys to specify the contour range. Use the + and - keys to change the number of evenly spaced contour lines.

- F1 to set to Automatic ranging
- F2 to specify the contour range
- + to increase the number of contour lines (maximum is 8)
- to decrease the number of contour lines (minimum is 2)

Plot Temperature Distributions

Automatic ranging sets the contour range based on the minimum and maximum temperatures of the components included for display. For a specified contour range, enter values for the FIRST and LAST contour lines. The remaining contour lines are evenly spaced in between. Enter values in the same manner as entering values when editing the geometry or impact limiter curves. NOTE: the value of the FIRST contour line must be less than the value for the LAST contour line. After specifying the contour range, press one of the following:

Press D when DONE entering values Press A to revert to Automatic ranging Press Q to QUIT and return to the Display Menu

Defining a Line for a Profile Plot

Highlight the *Define Line for Profile Plot* field and press one of the indicated function keys to define one of the three types of temperature profile lines. Profile lines defined between XY coordinates or between two nodes produce plots of the temperature profile along the defined line where it crosses the geometry. Profile lines defined as a series of nodes produce plots of temperature for the specified nodes as a function of the distance between the nodes. The temperature profiles between successive nodes in the series are drawn as a straight lines and do not reflect the actual temperature profiles between nodes.

- F1 to Define a Line Between XY Coordinates
- F2 to Define a Line Between Two Nodes (Figure 5-14)
- F3 to Define a Line as a Series of Nodes

When defining a profile line between XY coordinates, enter X and Y coordinates for both ends of the line. **NOTE**: the line must have a finite length (the coordinates of the first point must not equal the coordinates of the second point). When defining a profile line between two nodes, enter a node number for each end. **NOTE**: the first node must not equal the second node. When defining a profile line as a series of nodes, enter node numbers for each node in the series. If the series has less than 12 nodes, terminate the list with a node number of zero. After defining the profile line, press one of the following keys:

- Press D when DONE entering values
- Press A to ABANDON line definition
- Press Q to QUIT and return to the Display Menu

Display Menu Plot Temperature Distributions

Define Temperature Profile Line As Spries of Nodes	S
Fill in the HIGHLIGHTED fields with the appropriate values	A
Range of Available Node Numbers: 1 to 279	L
Number of Node 1	
Number of Node 2	14 Mar
Number of Node 3	
Number of Node 4	
Number of Node 5 [0]	
Number of Node 6 [0]	
Number of Node 7	12153
Number of Node 8	
Number of Node 9	
Number of Node 10	
Number of Node 11 [0]	
Number of Node 12	100
Press any of the following keys	
D when DONE defining line	T. Carl
A to ABANDON line definition T to move to previous field	
Q to QUIT and return to MENU 1 to move to next field	1 Charles

Figure 5-14. Define Profile Line Between Two Nodes.

Specifying Profile Plot Limits

Highlight the *Specify Profile Plot Limits* field and press one of the indicated function keys to specify the temperature range for the temperature profile plots.

- F1 to set to Automatic ranging
- F 2 to specify the Temperature range

Automatic ranging sets the temperature range based on the minimum and maximum temperatures along the profile line. For a specified temperature range, enter values for the LOWER and UPPER temperature limits. **NOTE:** the value of the LOWER temperature limit must be less than the value for the UPPER temperature limit. After specifying the profile temperature range, press one of the following:

- Press D when IN the entering values
- Press A to revert to Automatic ranging
- Press Q to QUIT and return to the Display Menu

Plot Temperature Distributions

Defining Items for Time History Plots

Highlight the *Define Items for Time History Plots* field and mess one of the indicated function keys to select the nodes or elements for time history plots. Up to six nodes or elements may be plotted on a single time history plot. Element temperatures are calculated as the average of the temperatures of the nodes defining the element. Time history plots are only available for transient fire case solutions.

- F1 to Specify NODES for Time History Plots (Figure 5-15)
- F2 to Specify ELEMENTS for Time History Plots

Enter up to six node or element numbers. If the list has less than six node or element numbers, terminate the list with a node or element number of zero. After specifying items for time history plots, press one of the following keys:

- Press D when DONE selecting items
- Press A to ABANDON selections
- Press Q to QUIT and return to the Display Menu

Specifying Time History Plot Limits

Highlight the Specify Time History Plot Limits field and press one of the indicated function keys to specify the temperature range for time history plots.

- F1 to set to Automatic ranging
- F2 to specify the Temperature range

Automatic ranging sets the temperature range based on the minimum and maximum temperatures of the nodes or element for the full time history. For a specified temperature range, enter values for the LOWER and UPPER temperature limits. NOTE: the value of the LOWER temperature limit must be less than the value for the UPPER temperature limit. After specifying the time history temperature range, press one of the following:

- Press D when DONE entering values
- Press A to revert to Automatic ranging
- Press Q to QUIT and return to the Display Menu

Version: 2a 5-17

Plot Temperature Distributions

Figure 5-16. Plot of Thermal Iso-contours.

9

-

4

Plot Temperature Distributions

۵

13

Figure 5-18. Plot of Time History of Nodes 196 and 48.

Version: 2a 5-19

Display Menu Plot Temperature Distributions

Figure 5-20. Plot of Geometry Showing Profile Line, Version: 2a

5-20

Plot Temperature Distributions

Display Menu Set Attributes for Video/Printer Plots

SCANS displays the Set Attributes for Video/Printer Plots Screen shown in Figure 5-23. To modify the current attributes, use the keypad up or down arrow keys to highlight the desired field and then use the indicated keys to select the desired attributes as follows, and press D when done.

Selecting the Display Type

Press F1 for Color Graphics Adapter (one color, 640 x 200 pixels)

Press F2 for Enhanced Graphics Adapter (three colors, 640 x 350 pixels)

Press F3 for Video Graphics Array Display (three colors, 640 x 480 pixels)

Selecting the Printer Type

Press F1 for Hewlett Packard LaserJet printer

Press F2 for IBM/Epson graphics type dot matrix printer

SCANS can utiliz y dot matrix printer that uses the same graphics commands as the IBM Proprinter and Epson FX-85.

Set Attributes for Video/Printer Plots

SCANS uses the three Hewiett Packard LaserJet printer models in a limited fashion. Node/element mesh maps are printed using the standard Courier font (10 characters per inch) and the Line Printer font (16.66 characters per inch). LOW resolution plots are drawn using 150 dpi (dots per inch) graphics mode. HIGH resolution plots are drawn using 300 dpi graphics mode. Each LaserJet model is deviated below with its particular limitations and possible remedies.

LaserJet

- The Line printer font is not an internal font. Provide a font cartridge which contains the Line Printer font for mesh maps.
- (2) The maximum graphics mode resolution is 75 dpi. Both LOW and HIGH resolution printer plots are printed piecemeal on several pages. If the LaserJet upgrade is installed, printer plots are printed on one page.

LaserJet+

(1) The maximum graphics mode resolution is 150 dpi. LGW resolution printer plots are printed on one page and HIGH resolution plots are printed piecemeal on several pages. If the LaserJet+ upgrade is installed, HIGH resolution plots are printed on one page.

LaserJet Series II

(1) The maximum graphics mode resolution is 150 dpi. LOW resolution printer plots are printed on one page and HIGH resolution plots are printed piecemeal on several pages. If a 1 Mbyte memory board is installed, HIGH resolution plots are printed on one page.

Selecting the Printer Plot Resolution

Press F1 for LOW resolution printer plots Press F2 for HIGH resolution printer plots

Printer plots are for graphics displays and require a printer that supports graphics. High resolution plots take up to 10 times longer to print than low resolution plots.

Hint:

Use low resolution plots until report-quality plots are required. Switch to high resolution for report-quality plots, then return to low resolution.

Version: 2a 5-23

NOTES:

The Print/Review Menu (Figure *) provides options for printing and reviewing the Cask Summary/Data Check and outputs i. om Impact, Thermal, Thermal Stress, and Pressure Stress analyses. Output for Thermal, Thermal Stress, and Pressure Stress can also be printed as an abbreviated output summary. The review function displays the output on the screen. The outputs are discussed in Appendix C.

PRESS 1 to Print/Review Impact Output

Print or Review Dynamic or Quasi-Static Impact analysis output.

PRESS 2 to Print/Review Thermal Output

Print or Review Thermal output. Abbreviated prints skip the summary of input, printing the temperature output with flux balances.

PRESS 3 to Print/Review Thermal Stress Output

Print or Review Thermal stress output. Abbreviated prints skip nodal displacements and element stresses, printing the summary of maximum stresses and stresses corresponding to Impact nodal locations.

SCAN	S PRINT/REVIEW MENU SCANS
PRES	Current CASK ID is 9999 S
	To Print/Review IMPACT outputs
2	To Print/Review THERMAL outputs
3	To Print/Review THERMAL STRESS outputs
4	To Print/Review PRESSURE STRESS outputs
5	To Privit/Review Cask summary and data check
[11]	To return to MAIN MENU

Figure 6-1. SCANS Print/Review Menu.

PRESS 4 to Print/Review Pressure Stress output

Print or Review Pressure stress output. The abbreviated print skip: the nodal displacements and element stresses and includes a table of maximum stresses and the stresses corresponding to Impact nodal locations.

PRESS 5 to Print/Review Cask Summary and Data Check

Print or Review the geometry summary / data check for basic geometry and impact limiter force/deflection curve data.

PRESS M to Return to Menu

SCANS returns to the Main Menu display.

Version: 2a

6-2

Selecting the Output to Print/Review

Press the appropriate Menu key to select the output type. SCANS displays the Print/Review Title Screen indicating the number of outputs available for printing or review. Press Q to QUIT and return to the Print/Review Menu, or press any other key to select a particular output case to print or review. SCANS lists the available outputs and displays a description, date, and time for each output (Figure 6-2).

For Impact, the case descriptions indicate the analysis type, shell/shield interface, impact type, impact end, drop height, and impact angle. An unbonded shell/shield interface allows the lead shield to slump. A primary/secondary impact type includes impact of both ends. The impact end indicates the end that impacts first. Impact angles are relative to the horizontal (i.e., 0 degrees is a side drop).

For Thermal and Thermal stress, the case descriptions indicate the external temperature condition, the status of the applied contents heat, and the status of solar effects. The applied contents heat is in Btu/min.

For Pressure stress, the case descriptions indicate the internal and external pressures. The internal pressure is the maximum normal operating temperature (input during geometry definition) or the internal pressure resulting from a thermal analysis. The external pressure is established by regulatory guidelines.

For Summary / Data Checks, the description indicates the basic geometry specifications or impact limiter force/deflection curves.

Use the keypad up or down arrow keys to highlight the desired case. Press S to select the indicated solution to print or review.

After the output is selected, SCANS displays an Output Summary Screen indicating the number of pages in the output, if abbreviated output is available, and the output header (Figure 6-3). The output header indiceres the type of analysis, date and time the output was generated, and a brief description of the parameters defining the output. SCANS then lists the following options:

Press P to Print the OUTPUT

Press R to Review the OUTPUT on the screen

Press S to Select a different OUTPUT to Print/Review

Press Q to QUIT and return to the Print/Review Menu

Selecting the Output to Print/Review

Figure 6-3. Output Summary Screen.

Version: 2a

6-4

Printing the Output

After pressing P on the Output Summary Screen, SCANS displays a reminder to make sure the printer is ON-LINE and set to the TOP-OF-PAGE. Press one of the following keys:

Press P to Print the complete output

Press A to print the Abbreviated output (if available)

Press Q to QUIT and return to the Print/Review Menu

As the output is printed, SCANS indicates the current page being printed. Press any key to suspend printing. When printing is halted, SCANS lists the following options:

Press C to Continue Press Q to QUIT and return to the Print/Review Menu

After printing is finished, SCANS lists the following options:

Press P to Print/Review another case (redisplays the case list screen for current output type) Press Q to QUIT and return to the Print/Review Menu

Reviewing the Output

After pressing R on the Output Summary Screen, SCANS displays the first 20 lines of the full output on the screen (Figure 6-4). SCANS can review up to 4000 lines of output (the entire output can be printed). The review control options are:

Press	S	to print the 20 lines displayed on the screen
Press	ESC	to exit (end review)
Press	Р	to print the output (see Printing the Output)
Press	1	to scroll screen down, displaying previous line at top
Press	1.1	to scroll screen up, displaying next line at bottom
Press	Home	to display first 20 lines of output
Press	End	to display last 20 lines of output
Press	PgUp	to display previous 20 lines of output
Press	PgDn	to display next 20 lines of output

The symbol <FF> represents form feeds used to prginate the output. Press ESC to terminate reviewing the output. SCANS lists the following options:

PressPto Print/Review another case
(redisplays the case list screen for current output type)PressQto QUIT and return to the Print/Review Menu

Press S to print Screen E 1 for previous line H 1 for next line E 1 M	s any of the f SC to exit ome for first nd for last sc PACT_SU	ollowing ki screen reen MMAR)	eys P to Print output PgUp for previous screen PgDn for next screen	SCAN
PRIMARY IMPACT (Cask Sott	om)			•
Impact Velocity	-	527.5	in/sec	
Impact Angle	=	90.0	degrees	
CG Over Corner Angle		72.5	degrees	
Maximum Limiter Crush	#	30.3	Inches	
Maximum Rigid Bodu Accelera	tions			
Vertical Acceleration	=	34.8	g's	10
Horizontal Acceleration	-	0	gʻs	
Rotational Acceleration	a.	0	rad/sec**2	
Maximum Impact Forces				68
Axial Force In Cask	=	-6370.7	kips	
Po	sition in out	out: 13%		

The Archive Menu (Figure 7-1) provides options for archiving cask data sets to diskettes, retrieving archived cask data sets, and deleting cask data sets from the hard disk.

PRESS 1 to Archive CASK data set on diskettes

Creates a compressed data set archive containing the basic geometry, impact limiter force-deflection curve data, finite-element meshes and all analysis output for the selected cask. Then writes the data set archive to diskettes.

FRESS 2 to Retrieve CASK data set from diskettes

Retrieves a compressed data set archive from diskettes and uncompress, restoring the data set to the hard disk.

PRESS 3 to Delete CASK data set from hard disk

Deletes either a complete data set or analysis output for the selected cask.

PRESS M to Return to MAIN MENU

SCANS returns to the Main Menu display.

SCANS	ARCHIVE MENU	SCANS
RESS	Current CASK ID is 9999	
1 To Arc	hive CASK data set on diskettes	
2 To Ret	rieve CASK data set from diskettes	
3 To Den	ete CASK data set from hard disk	
M To Retu	urn to MAIN MENU	
an ann a su an an an an ann ann an ann an ann an an		

Figure 7-1. SCANS Archive Menu.

Archiving Data Sets

SCANS archives data sets by creating a compressed data set archive and then writing the archive to a diskette. If the archive is larger than a single diskette, SCANS automatically uses the DOS utility *BACKUP* to save the archive on more than one diskette. The module used to create the compressed archive is adapted from ARC version 5.1 from System Enhancement Associates (used by permission). All existing data sets can be archived from the Archive Menu. The number of existing data sets is indicated on the Archive Data Sets Title Screen. Press Q to QUIT and return to the Archive Menu, or press any other key to select the data set to archive

If more than one data set exists, SCANS displays a list of CASKIDs and indicates several options:

Press S to Select the highlighted CASKID and display summary

Press Q to QUIT and return to the Archive Menu

Press 1 to highlight the previous CASKID

Press ↓ to highlight the next CASKID

If only one data set exists, SCANS selects that data set. The data set summary screen is shown in Figure 7-2. Summary screen options are:

- Press A to Archive the summarized data set
- Press S to select a different CASKID (return to the CASKID list screen-- only if more than one data set exists)
- Press Q to QUTT and return to the Archive Menu

Summary of data set for CASK 9999	°c
SAR: Sample spent fuel shipping cask (demonstration only)	
Basic Geometry	
Thermal/Stress Finite Element Meshes ** EXISTS **	
Thermal Analysis Solutions	
Impact Solutions (Dynamic)	
A to ARCHIVE this data set	
PRESS Sto select a different CASK data set	
Q to QUIT and return to MENU	

Figure 7-2. Summary of data set for Archive.

Archiving Data Sets

SCANS starts the archive process by creating a compressed data set archive. This process can take up to 30 minutes if the data set is large and the PC is slow (ATs are much faster). The resulting compressed archive requires only 15 to 30 percent of the space the complete data requires. After the compressed archive is created, SCANS asks for a formatied diskette in drive A: or B:. Because of potential drive/diskette incompatibility, do not use a 360Kb diskette in a 1.2Mb drive. To proceed:

Press	A	to Select	DRIVE A:		
Press	В	to Select	DRIVE B:		
Press	Q	to QUIT	and return to the	Archive	Menu

SCANS checks the selected drive and compares the space requirements for the archive with the available space on the diskette. The error conditions that can occur are listed in Table 7-1. Archiving will not proceed until all error conditions are satisfied.

If the compressed archive will fit on a single diskette, SCANS will use *COPY* to write the archive to the diskette. If the archive will not fit on a single diskette, SCANS will use *BACKUP* to write the archive to multiple diskettes (SCANS indicates how many formatted diskettes of similar density are required). If the archive exists on the diskette, SCANS displays the date and time of the hard disk version and diskette version of the archive. Press the appropriate key to continue with archiving:

Press ENTER to write the Archive to diskette (using COPY if the archive will fit on one diskette)

(using BACKUP if the archive will not fit on one diskette)

NOTE: If archive exists on diskette, it is pre-deleted

Press S to Select different Diskette or Drive

Press Q to QUIT and return to the Archive Menu

BACKUP will request necessary number of diskettes to complete the BACKUP process. Be sure to label the diskettes with the order in which they were processed. RESTORE will request BACKUP diskettes in the order they were written.

When SCANS finishes writing the archive to diskettes, the following options are presented:

Press C to Continue (to select other data sets to archive)

Press D to DELETE cask data set (from the hard disk)

(SCANS asks for confirmation before deleting)

SCANS asks for confirmation before deleting any data set. Press F1 to delete the data set, or press F9 to continue without deleting. After archiving the data set is complete, SCANS displays the number of data sets remaining on the hard disk that may potentially be archived. If no data sets remain on disk, press ENTER to return to the Archive Menu. If one or more data sets remain on disk, press A to archive additional data sets, or press Q to QUIT and return to the Archive Menu.

Archiving Data Sets

Table 7-1. Possible Error Messages during Archiving

There is NO diskette in drive X:

Possible causes: wrong drive selected, or drive door is not closed. Make sure a diskette is in drive A: or B: and that the drive door is closed.

Diskette is UNFORMATTED or a 1.2Mb diskette is in a 360K drive

Possible causes: diskette is unformatted, diskette is damaged and unreadable, or 1.2Mb diskette is in a 360K drive. Make sure the diskette is formatted and of the correct density.

General ERROR on drive X:

Possible causes: diskette is reversed, diskette is damaged and unreadable, or drive is malfunctioning. Try a different drive and/or diskette.

Not enough space on the diskette

The compressed archive will fit on the diskette if other data is not on the diskette. Either remove data from the diskette or provide a diskette that has more space.

Diskette is a BACKUP diskette, ARCHIVE will fit on one diskette SCANS will use COPY to write the archive on a single diskette. Existing data on the diskette was written by BACKUP. Use a non-BACKUP diskette.

Diskette is a BACKUP diskette NOT for this ARCHIVE

SCANS will use *BACKUP* to write the archive on multiple diskettes. Existing data on the diskette was written by *BACKUP* for data other than this archive. Use a different diskette.

Retrieving Data Sets

SCANS retrieves compressed data sets from diskettes and then unpacks the archive, restoring the data set to the hard disk. The module used to unpack the compressed archive is adapted from ARC version 5.1 from System Enhancement Associates (used by permission). SCANS lists two options on the Retrieve Data Sets title screen:

Press Q to QUIT and return to the Archive Menu Press any other key to start retrieval of data set

Place the diskette containing the compressed data set archive (or the first *BACKUP* diskette for the archive) in either drive A: or B: and press one of the following keys:

Press A to find data sets on diskette in Drive A:

Press B to find data sets on diskette in Drive B:

Press Q to QUIT and return to the Archive Menu

SCANS checks the selected drive and searches for archived data sets. The error conditions that can occur are listed in Table 7-2. Retrieval will not proceed until all error conditions are satisfied.

If the diskette contains only one archived data set, SCANS selects that data set for retrieval. If the diskette contains more than one archived data set, SCANS displays a list of CASKIDs for the archived data sets and lists several options:

Press S to Select the highlighted CASKID for retrieval

Press Q to QUIT and return to the Archive Menu

Press 1 to highlight the previous CASKID

Press 4 to highlight the next CASKID

SCANS displays the date and time of the selected archive on the diskette and warns if this data set will replace an existing data set on the hard disk. SCANS lists the following options:

Press ENTER to retrieve the Archive

(using *COPY* if the archive was saved with *COPY*)

(using RESTORE if the archive was saved with BACKUP)

Press S to Select different Diskette or Drive

Press Q to QUIT and return to the Archive Menu

SCANS asks for confirmation before deleting the existing data set. Press F1 to delete the data set from the hard disk, or press F9 to QUIT and return to the Archive Menu. After deleting the data set (if necessary), SCANS starts retrieving the archived data set. If the archive was saved using BACKUP, SCANS uses RESTORE for retrieval. RESTORE will request the archive BACKUP diskettes in the order they were written. After the archive is retrieved from the diskette, SCANS unpacks the data from the archive. Be patient, this process may take a little while. When unpacking is complete, press R to retrieve additional data sets or press Q to QUIT and return to the Archive Menu.

Retrieving Data Sets

Table 7-2. Possible Error Messages during Retrieving

There is NO diskette in drive X:

Possible caus \approx selected the wrong drive; drive door is not closed. Make sure $r = \alpha$, rette is in drive A; or B; and that the drive door is closed.

Diskette is UNFORMATTED or a 1.2Mb diskette is in a 360K drive

Possible causes: diskette is unformatted; diskette is damaged and unreadable; 1.2Mb diskette is in a 360K drive. Make sure the diskette is formatted and of the correct density.

General ERROR on drive X:

Possible causes: diskette is reversed; diskette is damaged and unreadable; drive is malfunctioning. Try a different drive and/or diskette.

NO Archives on diskette

Diskette does not contain any compressed data set archives. Archive names have the form **xxxxDATA.ARC**, where **xxxx** is the four digit CASKID. Try a different diskette.

Deleting Data Sets

Data sets consist of basic geometry descriptions, impact limiter force-deflection curves, and analysis outputs. SCANS has two options for deleting data sets: (1) delete the complete data set, or (2) delete just the analysis outputs. All existing data sets can be deleted from this menu. SCANS indicates the number of existing data sets and lists two choices:

Press Q to QUIT and return to the Archive Menu Press any other key to select the data set to delete

If only one data set exists, SCANS selects that data set and displays a summary of the data set. If more than one data set exists, SCANS displays a list of CASKIDs and indicates several options:

Press S to Select the highlighted CASKID and display data set summary

Press Q to QUIT and return to the Archive Menu

Press 1 to highlight the previous CASKID

Press 4 to highlight the next CASKID

After the data set is selected, SCANS displays a summary of the data set. The data set summary screen options are:

Press C to delete COMPLETE data set

Press O to delete OUTPUT for the data set

Press S to select a different data set

(available only if more than one data set is on disk)

Press Q to QUIT and return to the Archive Menu

SCANS asks for confirmation before deleting the data set or output as shown in Figure 7-3. Press F1 to delete the data set or output. Press F9 to QUIT and return to the Archive Menu without deleting. If no data sets remain on disk, press ENTER to return to the Archive Menu. When SCANS has completed deleting the data set or output, if one or more data sets remain on disk, SCANS lists the following options:

Press D to Delete additional data sets (redisplays the data set list screen) Press Q to QUIT and return to the Archive Menu

Caution !!!

Once a data set or its output is deleted, it is not recoverable unless it was archived on diskettes. Be careful when deleting data sets or data set outputs.

Hint:

Consider deleting data set outputs before archiving. SCANS can reproduce analysis outputs based on the basic geometry descriptions and impact limiter force/deflection curves. Archiving just the basic geometry and limiter curves is much faster than archiving a data set with numerous outputs.

Deleting Data Sets

Figure 7-3. Confirm decision to DELETE screen.

NOTES:

The Editor

SCANS uses a general purpose fill-in-the-blank type editor to enter data for the basic geometry definition and impact limiter force-deflection curve definitions. The editor title screen indicates the status of the data set. If the data set does not exist, SCANS lists the following options:

Press Q to QUIT and return to the Menu

Press any other key to proceed with editing (creates a new data set)

If the data set already exists SCANS lists the following options:

Press Q to QUIT and return to the Menu Press D to delete current data set and create a new data set Press any other key to proceed with editing (edit the current data set)

Delete the data set to start with a fresh data set with all data set to default values. SCANS asks for confirmation before deleting the existing data set:

Press F1 to delete the data set and create a new data set (edit the new data set)
Press Q to QUIT and return to the Menu
Press F2 to proceed with editing (edit the current data set)

SCANS reads a template which describes the editor pages and how data values are saved in the data set. If creating a new data set, SCANS displays a status screen which indicates each editor page as it is created. As pages are created, all values are set to appropriate defaults. SCANS then displays the first editor page.

Description of Editor Pages

Each data set is divided into pages of related items. For example, all the items necessary to define the cask shell are on the same editor page. All pages have the same format (Figure A-1). The top line indicates the name of the data set [A], the CASK ID [B], and the current date [C]. The second line indicates the name of the editor page [D], the current page number of how many [E], and the date any item on the page was last changed [F]. The third line is a double green bar the full width of the screen. This line also indicates how many pages remain which must be accessed [G] and Insert Mode (if applicable) [H]. Below the second double green bar is a list of available function keys and their application [I].

Between the double green bars are the item requests [J]. Each item request has a descriptive label indicating what to enter (units are included if appropriate) [K], and an item field delimited by square brackets [L]. Item descriptions displayed in *light blue* require an entry, while item descriptions displayed in *green* have default values which can be accepted as is. The count of pages remaining which must be accessed indicates pages which have items requiring an entry. Once entries are made on a page for *ALL* items requiring an entry, the page need not be accessed.

Appendix A The Editor

⁸ 10,9999 E ^{Page 3} of 112	CToday is:10/20/88 Last child:10/20/88 p	SC
(25.625 (192.5	1 Market Have H	
l [180000 [56065.		
(\$00.		
[14.7 [70 [100	1 1	
(70.	1	
		(
(6.) [10]		1
	Page 3 of 112 125.625 192.5 1 180000 156065 1500 14.7 170 100 (70 (6) 100	ID:9999 C Today is:10/20/88 Page 3 of 112 Last child:10/20/88 IS:025 I IS:025 I I:180000 I I:500. I I:4.7 I I:00. I

Figure A-1. SCANS Editor Page Layout.

Getting Help

Press the ESC key to display the *HELP* screens. The first screen indicates the current item type and restrictions placed on the item and describes the use of the function keys. The second *HELP* screen indicates the data entry and editing keys. The third *HELP* screen indicates the keys used to move between item fields and editor pages.

Saving the Edits

Save the changes made during the editing session using the following keys. The value in the current item field must be a valid item before SCANS will save the edits.

F2 (function key)

Save the data set as is, end the editing session and return to the current menu.

F4 (function key)

Save the data set as is and redisplay the current page to continue editing. Use this feature to save the edits periodically during a protracted editing session. SCANS will lose all edits not saved if a power failure interrupts the operation of the PC.

The Editor

Ending the Edit Session

End the editing session by pressing one of the following function keys:

F2 (function key)

Save the data set as is, end the editing session, and return to the current menu.

F3 (function key)

Abandon all edits during this session (or since the previous save), end the editing session and return to the current menu. SCANS asks for confirmation before proceeding: press F1 to QUIT, abandoning the edits; or press F9 to return to editing.

Moving Around

The blinking solid cursor identifies the current item field expecting an entry. The entry in the item field is checked for validity when the carsor is moved from this field to another. The entry must be valid before SCANS will allow the cursor to leave the current item field. Use the following keys to accept the current entry and move to another item field:

UP Arrow (on the keypad)

Move to the previous item field on the current page. If the current item field is the FIRST on the page, move to the LAST item field.

DOWN Arrow (on the keypad) of ENTER

Move to the next item field on the current page. If the current item field is the LAST on the page, move to the FIRST item field.

PgUp (on the keypad)

Move to the FIRST item field on the previous page. If the current page is the FIRST editor page, move to the FIRST item field on the current page.

PgDn (on the keypad)

Move to the FIRST item field on the next page. If the current page is the LAST editor page, move to the FIRST item field on the current page.

F1 (function key)

Display list of all pages in the data set. Use the keypad UP Arrow and **DOWN Arrow** keys to highlight the desired page, and then press F1 to move to the FIRST item field on the indicated page. The page list indicates which pages have items requiring an entry.

The Editor

Entering a Value

Enter values by typing in the item field (typing in the first character position clears the field). Enter character string type items using letters, numeric digits and special character (\$,%,#, etc.). Enter integer number type items using the form **nnn**. The sign is optional; **n** is any numeric digit (0-9). Enter real number type items using either the form **nn.mmm** or **nn.mmmEjj** (scientific notation). The sign, decimal point and exponent are optional; **n**, **m**, and **j** are any numeric digit (0-9). Use the following keys to assist editing values in the item field.

LEFT Arrow (on the keynad)

Accept the character under the cursor and move the cursor to the left one character (can move as far left as the first character position).

RIGHT Arrow (on the keypad)

Accept the character under the cursor and move the cursor to the right one character (can move as far right as the last character position).

DEL (on the keypad)

Delete the character under the cursor and shift the remaining characters to the left.

BACKSPACE (above ENTER)

Delete the character to the left of the cursor and shift the remaining characters to the left.

INS (on the keypad)

Toggle insert mode on and off. When insert mode is on, INSERT appears in the upper right corner of the screen on the double green bar. All new characters are inserted at the cursor, shifting the remaining characters to the right. When insert modes is off, new characters are inserted at the cursor, and they write over previous characters.

F6 (function key)

Set the current item to the SCANS default (NOT the previous saved value).

F7 (function key)

Set all items on the current page to the SCANS defaults (NOT the previous saved values).

Making Selections From a List

Certain items are restricted to values presented in a list (Figure A-2). Une the following keys to change the selection indicated in the item field:

- N or n Move blinking highlight cursor to the NEXT list item.
- **P** or **p** Move blinking highlight cursor to the *PREVIOUS* list item.
- S or s Select the item indicated by the blinking highlight cursor.

The Editor

Figure A-2. Select item from a list.

Copying Data From Another Editor Page

If the item requests displayed on the current editor page are the same as those on another editor page, press F10 to copy data from another page. SCANS displays a list of all pages that are appropriate for copying and indicates the current page. Use the UpArrow and DnArrow keys to indicate the page to copy from, and then press C to perform the copy. Press R to return without performing a copy.

Printing an Editor Page

Press the F5 function key to print a copy of the current page. Make sure the printer is online and ready before printing the page.

Handling Errors

If an entry is invalid for the specified item, SCANS displays an error message at the bottom of the screen and indicates any restrictions on the item. Press ENTER to clear the error message and return to editing.

NOTES:

Appendix B

Material Properties

The material sets used in SCANS contain all the information required to perform Impact, Thermal, Thermal-Stress, and Pressure-Stress analyses. These materials are built into SCANS and cannot be modified. The next version of SCANS will provide the ability to extend the material sets.

Impact analyses use dynamic Young's Modulus, Poisson's Ratio, and material density (used for component weight calculations). Puncture evaluations also use the dynamic ultimate stress. Buckling and lead slump analyses use the dynamic proportional stress limit, the dynamic plastic stress-strain parameters σ_0 and m. Thermal analyses use temperature dependent properties for thermal conductivity and specific heat capacity. Thermal stress analyses use temperature dependent properties for Young's Modulus, Poisson's Ratio and coefficient of thermal expansion. Pressure stress analyses use the thermal stress properties at 70 degrees F.

Material

References

Structural and Water Jacket Materials		2	
Stainless Steel 304	1	2	8 11
Stainless Steel 310	5	6	7 8
Stainless Steel 316	5	6	7 8 11
Stainless Steel 347	5	6	7 8 11
Copper (Water Jacket Only)	5,	6,	7, 8
Shielding Materials			
Lead	1,	2,	10, 12
Impact Limiter Materials			
Polyfoam	9		
Polyurethane	2		
Balsa Cross-Grained	2		
Redwood Cross-Grained	4		
Neutron Shield Materials			
Air Convection	3		
Water Convection	3		

Material Properties

Structural and Water Jacket Materials

Carbon Steel Set name: CARBNSTL

Dynamic	Young's Modulus:	2.800E+07 psi
Dynamic	Poisson's ratio:	0.2900
Dynamic	Yield Stress:	3.600E+04
Dynamic	Ultimate Stress:	7.000E+04
Density:		0.2820 1b/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)	Young's Modulus (psi)	Poisson's Ratio	of Thernal Expansion (in./in.°F)
-100.	.025000	.1130	2.900E+07	.2900	6.600E-06
68.	.034700	.1130	2.790E+07	.2900	6.639E-06
200.	.034700	.1130	2.770E+07	.2900	6.670E 06
300.	.03400 '	.1130	2.740E+07	.2900	6.870E-05
400.	.033300	.1130	2.700E+07	.2900	7.070E-06
500.	.032600	.1130	2.640E+07	.2900	7.250E-06
600.	.031500	.1130	2.570E+07	.2900	7.420E-06
700.	.029600	.1130	2.480E+07	.2900	7.590E-06

Stainless Steel 304

Set name: SS304

Dynamic	Young's Modulus:	2.830E+07 psi
Dynamic	Poisson's ratio:	0.2900
Dynamic	Yield Stress:	3.000E+04 psi
Dynamic	Ultimate Stress:	7.500E+04 psi
Dynamic	Proportional Stress Limit:	2.300E+04 psi
Dynamic	Plastic Stress-Strain Parameter, σ_o :	9.245E+04 psi
Dynamic	Plastic Stress-Strain parameter, m:	0.19955
Density:		0.2841 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)	Young's Modulus (psi)	Poisson's Ratio	of Thermal Expansion (in./in.°F)
-58.	.011250 .	.1200	2.910E+07	.2900	8.700E-06
68.	.011400	.1230	2.840E+07	.2900	8.700E-06
212.	.012083	.1238	2.760E+07	.2900	8.700E-06
392.	.012083	.1275	2.660E+07	.2900	8.700E-06
572.	.013056	.1312	2.560E+07	.2900	8.700E-06
752.	.013889	.1350	2.390E+07	.2900	8.700E-06
1112.	.015278	.1425	2.250E+07	.2900	8.700E-06
1472.	.018056	.1500	2.250E+07	.2900	8.700E-06

B-2 Version: 2a

Material Properties

Structural and Water Jacket Materials (continued)

Stainless Steel 310 Set name: SS310

Dynamic Young's Modulus:	2.820E+07 psi
Dynamic Poisson's ratio:	0.2900
Dynamic Yield Stress:	3.000E+04 psi
Dynamic Ultimate Stress:	7.500E+04 psi
Dynamic Proportional Stress Limit:	2.300E+04 psi
Dynamic Plastic Stress-Strain Parameter, oc:	9.245E+04 psi
Dynamic Plastic Stress-Strain parameter, m:	0.19955
Density:	0.2870 lb/cu.inch

Temp Conductivity Heat Capacity Modulus Ratio (°F) (BTU/in.min°F) (BTU/lbm°F) (psi)	Expansion (in./in.°F)
-50010400 .0880 2.820E+07 .2900	7.576E-06
68010600 .0880 2.820E+07 .2900	8.056E-06
300012200 .0880 2.820E+07 .2906	9.001E-06
600014800 .1055 2.820E+07 .2900	9.159E-06
900017700 .1200 2.820E+07 .2900	9.175E-06
1200021100 .1300 2.820E+07 .2900	9.230E-06
1600 025400 .1310 2.820E+07 .2900	9.531E-06
2000025400 .1310 2.820E+07 .2900	9.889E-06

Stainless Steel 316 Set name: SS316

Dynamic Young's Modulus:	2.810E+07 psi
Dynamic Poisson's retio:	0.2900
Dynamic Yield Stress:	3.000E+04 psi
Dynamic Ultimate Stress:	7.500E+04 psi
Dynamic Proportional Stress Limit:	2.300E+04 psi
Dynamic Plastic Stress-Strain Parameter, o.	9.245E+04 psi
Dynamic Plastic Stress-Strain parameter, m:	0.19955
Density:	0.2870 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)	Young's Modulus (psi)	Poisson's Ratio	of Thermal Expansion (in./in.°F)
-50.	.010100	.0980	2.810E+07	.2900	7.997E-06
68.	.010900	.1080	2.810E+07	.2900	8.321E-06
300.	.012600	.1170	2.810E+07	.2900	8.958E-06
600.	.015200	.1310	2.810E+07	.2900	9.605E-06
900.	.016700	.1360	2.810E+07	.2900	9.921E-06
1200.	.019200	.1400	2.810E+07	.2900	1.028E-05
1600.	.021600	.1550	2.810E+07	.2900	1.051E-05
2000.	.021600	.1620	2.810E+07	2900	1.173E-05
					the state of the state of the state

Material Properties

Structural and Water Jacket Materials (continued)

Stainless Steel 347 Set name: SS347

Dynamic Young's Modulus:	2.820E+07 psi
Dynamic Poisson's ratio:	0.2900
Dynamic Yield Stress:	3.000E+04 psi
Dynamic Ultimate Stress:	7.500E+04 psi
Dynamic Proportional Stress Limit:	2.300E+04 psi
Dynamic Plastic Stress-Strain Parameter, o.:	9.245E+04 psi
Dynamic Plastic Stress-Strain parameter, m: Density:	0.19955 0.2860 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)	Young's Modulus (psi)	Poisson's Ratio	of Thermal Expansion (in./in.°F)
-50.	.011400	.0980	2.820E+07	.2900	8.502E-06
68.	.011900	.1080	2.820E+07	.2900	8.786E-06
300.	.012700	.1200	2.8201+07	.2900	9.345E-06
600.	.015100	.1310	2.820E+07	.2900	9.831E-06
900.	.016700	.1370	2.820E+07	.2900	1.019E-05
1200.	.018800	.1440	2.820E+07	.2900	1.044E-05
1600.	.020500	.1590	2.820E+07	.2900	1.086E-05
2000.	.020500	.1640	2.820E+07	.2900	1.229E-05

(Water Jacket Only)

Copper

0.3240 lb/cu.inch Density:

Set name: COPPER

Thermal Specific l'emp Conductivity Heat Capacity (BTU/lbm°F) (°F) (BTU/in.min^oF) -100. .331900 .0851 68. .320800 .0917 260. .313900 .0951 440. .311100 .0974 620. .306900 0998 .1020 800. .302800 1160. .291700 1067 .1091 .286100 1340.

Material Properties

Shielding Materials

Cast Lead Set name: LEAD

Dynamic Y	foung's Modulus:	2.420E+06	psi
Dynamic H	Poisson's ratio:	0.4300	
Dynamic Y	field Stress:	6.230E+02	psi
Dynamic I	Proportional Stress Limit:	2.500E+02	psi
Dynamic P	lastic Stress-Strain Parameter, o.	8.500E+03	psi
Dynamic F	Nastic Stress-Strain Parameter, m:	0.5030	
Density:		0.4110 lb/c	u.inch

Temp (°F)	Thermal Conductivity (BTU/m.min°F)	Specific Heat Capacity (BTU/lbm°F)	Young's Modulus (psi)	Poisson's Ratio	Coefficient of Thennal Expansion (in./in.°F)
-58.	/J28888	.0300	2.000E+06	.4200	1.600E-05
68.	.028000	.0307	2.000E+06	.4200	1.600E-05
212.	.026800	.0315	2.000E+06	.4200	1.600E-05
392.	.025278	.0326	2.000E+06	.4200	1.600E-05
572.	.023889	.0337	2.000E+06	.4200	1.600E-05
630.	.016806	.0340	2.000E+06	.4200	1.600E-05
717.	.013472	.0339	2.000E+06	.4200	1.600E-05
1276.	.012028	.0337	2.000E+06	.4200	1.600E-05

Impact Limiter Materials

Polyfoam Set name: POLYFOAM

Density: 0.0116 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)
-58.	.000278	.3000
68.	.000278	.3000
1300.	.000278	.3000

Material Properties

Impact Limiter Materials (continued)

Polyurethane Set name: PURETHAN

Density: 0.0021 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min ^o F)	Specific Heat Capacity (BTU/lbm°F)
-58.	.000034	,4200
68.	.000034	.4200
1300.	.000034	.4200

Balsa Cross-Grained Set name: BALSAXGR

Density: 0.0162 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity) (BTU/lbm°F)	
ins no inc.			
-58	.000067	.5500	
68.	.000067	.5500	
1300.	.000067	.5500	

Redwood Cross-Grained Set name: REDWDXGR

Density: 0.0150 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)
-58.		.6900
68.	.000088	,6900
1300.	.000088	.6900

Material Properties

Neutron Shield Materials

Air Convection Set name: AIRCONV

Density: 0.0000 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min®F)	Specific Heat Capacity (BTU/lbm°F)
-38.	.000139	.2400
68.	.000139	.2401
263.	.000139	.2421
533.	.000139	.2482
803.	.000139	.2568
983.	.000139	.2621
1253	.000139	.2704
1523.	.000139	.2770

Water Convection

Set name: H2OCONV

Density: 0.0347 lb/cu.inch

Temp (°F)	Thermal Conductivity (BTU/in.min°F)	Specific Heat Capacity (BTU/lbm°F)
-58.	.000182	.4100
68.	.001200	.9990
150.	.020500	1.0000
200.	.024100	1.0050
300.	.028900	1.0300
400.	.032400	1.0760
500.	.035500	1.1820
600.	.038500	1.3700

Version: 2a B-7

Material Properties

Material References

- 1. Rohsenow, W. M. and J. P. Hartnett, ed., Handbook of Heat Transfer, McGraw-Hill, New York, NY (1973).
- Edwards, A. L., A Compilation of Thermal Property Data for Computer Heat-Conduction Calculations, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50589 (1969).
- Turner, W. D., HTAS1: A Two-Dimensional Heat Transfer Analysis of Fuel Casks, Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-0200, Volume 1, Section H1, ORNL/NUREG/CSD-2/V1 (1985).
- VanSani, J. H., Conduction Heat Transfer Solutions, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-52863 (1980).
- 5. Touloukian, Y. S., et al., Thermophysical Properties of Matter, Volume 1, Thermal Conductivity, Metallic Elements and Alloys, 1FI/Plenum, New York, NY (1970).
- 6. Touloukian, Y. S., et al., Thermophysical Properties of Matter, Volume 4, Specific Heat, Metallic Elements and Alloys, IFI/Plenum, New York, NY (1970).
- Touloukian, Y. S., et al., Thermophysical Properties of Matter, Volume 12, Thermal Expansion, Metallic Elements and Alloys, IFI/Plenum, New York, NY (1970).
- American Society of Metals, Metals Handbook Ninth Edition, Volume 3, Properties and Selection: Stainless Steels, Tool Materials and Special Purpose Metals, Metals Park, OH (1978).
- 9. Perry, J. H., Chemical Engineers Handbook, 4th edition, McGraw-Hill, NY (1963).
- Adams, C. R., et al., A Comparison of Analytical Techniques for Analyzing a Nuclear-Spent-Fuel Shipping Cask Subjected to an End-On Impact, Sandia National Laboratories, Albuquerque, NM, NUREG/CR-2018, SAND80-1870 RT (1981).
- Rack, H. J. and Knorovsky, G. A., An Assessment of Stress-Strain Data Suitable for Finite-Element Elastic-Plastic Analysis of Shipping Containers, USNRC Report NUREG/CR-0481, September 1978.
- 12. SCANS Theory Manual, Vol. 3, Rev. 1 (1992).

Sample Cask and Description of Output

Description of Sample Cask

This sample spent fuel shipping cask is included in the SCANS release. The CASKID is 9999. The cask geometry includes a long cylindrical cask body, top and bottom end caps, and top and bottom impact limiters. The cask body has an inner shell layer of Stainless Steel 304, a Lead shielding layer, and an outer shell layer of Stainless Steel 304. Both end caps are solid Stainless Steel 304. The impact limiters overhang the cask body and are constructed of Polyfoam. This sample cask does not include a neutron shield and water jacket. Cask dimensions are shown in Figure C-1. Component weights, closure bolt information, and impact limiter force-deflection data are listed below.

Weights (in pounds)

Gross package:	180000
Contents/internals:	56065
Top impact limiter:	10000
Bottom impact limiter:	- 10000

Closure Bolts (for Top End Cap)

Number of bolts:	32	
Boh diameter:	1.5	inches
Bolt circle radius:	29.5	inches

Impact Limiter Force-Deflection Dat.

NOTE: The following data is for Top and Bottom limiters for all impact angles.

Deflection	Force
(inches)	(kips)
0.5	250.
13.0	1700.
26.5	4000.
30.0	6000.
33.5	10000.

Appendix C Sample Cask and Description of Output

Figure C-1. Sample cask geometry and dimensions.

Version: 2a

Sample Cask and Description of Output

Geometry Data Summary Output

This output is produced during the data check performed when the basic geometry is saved (Geometry Menu). It is a complete summary of all specifications for the cask. Warning and error messages appear when specified weights differ from calculated weights and when geometry dimensions are inconsistent. This output does not have any warning messages. The output format follows.

(1) Header

Indicates Geometry Data Summary, page number of how many, date and time the output was generated, and SCANS version number. The header shown in Figure C-2 is printed at the top of every page of output.

Data Set Status

Indicates whether the Basic Geometry data set is *COMPLETE* (Figure C-2). The data set has items requiring an entry if the status indicates *INCOMPLETE*.

(3) General Information

Lists general SAR information, general cask and contents specifications, and cask component weights (Figure C-2). The general SAR information includes the SAR title, report information, additional information, licensee's address, and names of review team members.

(4) Component Specifications

Summary of geometry specifications for each cask component (Figure C-3).

(5) Closure Bolts

Lists the number of bolts, bolt diameter, and bolt circle radius (Figure C-4).

(6) Finite Element Mesh Grading

Lists the number of mesh divisions through each cask component (Figure C-4). The output also indicates the status and size of the meshes. The Finite Element meshes are used for 2-D Thermal and Stress analyses.

(7) Material Properties

Tables listing properties for each material (Figure C-4). The output also indicates the components using the material.

(8) Impact Model Description

Lists the geometry of the simplified Impact mode' (Figure C-5).

(9) Puncture Evaluation

Tabulates results of puncture evaluation of cask exterior surfaces (Figure C- ξ).

Version: 2.

Appendix C Sample Cask and Description of Output

GEOMETRY DATA SUMMARY FOR CASK 9999 Page 1 of 8 SCANS VERSION. 28 01 GENERATED ON 3/21/91 AT 9:46:20 5 Basic geometry data set is COMPLETE DENERAL SAR INFORMATION 0 0 SAR: Semple spont fuel shipping cask (demonstration only) 123 Volume I. Report number. Report date: 9/80/ Docket number: 9999 9/30/88 0 Docket stert dete: 9/30/86 0 0 0. CASE GENERAL DIMENSIONS AND SPECIFICATIONS Cavity inner radius 25.625 inches Cavity length: 192.500 inches 0 Cesk body outer redius: 32.750 inches Cesk body length: 207.500 inches 0 Top impact limiter is included in model Bottom impact limiter is included in model 0 Neutron shield is not included in model Water jacket is not included in model 0 0] Contents maximum heat generation rate: 500.00 Blu/minute Temperature defining stress free condition: ... 70. depress F initial cavity charge pressure. 14.70 0 initial cavity charge pressure 14.70 initial cavity charge temperature. 70.00 psia degrees F 0 Maximum normal operating pressure: 100.00 psis CASK WEIGHTS (By component) 0 Gross package 180000 lbs Contents/internals 56065 lbs Top impact limiter: 10000 lbs Boltom impact limiter: 10000 lbs 0 Ū. Cask shell / and caps 103935 lbs Top and cap 7266 lbs Bottom and cap 7266 lbs 0 Gross wt - (Contents+Limiters) 0 Shell 89398 lbs ġ.]

Figure C-2. Cask Geometry Summary Output -- General Information.

Sample Cask and Description of Output

机偏白棉

and a set of

.

Figure C-3. Cask Geometry Summary Output -- Componen. Specifications.

Sample Cask and Description of Output

0 1	CLOSURE BOLTS		
ġÌ.			
0	Bolt diameter 1.500 Bolt circle radius 29,500		
ø į			
01	FINITE ELEMENT MESH ORADING (Applies to 2+b Thermal end wiress of	Elculations)	
61	Cavity		
0	Number of mesh divisions along three radius Number of mesh divisions along cavity half length	10	
0	Number of mesh divisions through inner leyer	2	
1	Number of mesh divisions through shield layer	4	
1	Top End Cap	1.1	
0	Number of mesh divisions through end cap Bottom End Cap	6	
0	Number of mesh divisions through and cap.	0	
0	Number of mesh divisions through center-line thickness: Number of mesh divisions through overhang width	3	
0	Bottom Impact Limiter		
0	Number of mesh divisions through overhang wigth	3	
0	Finite element meshes were generated on 10-02-88 at 3.17p		
0	Thermal mesh has 282 nodes and 245 4-node el Stress mesh has 195 nodes and 41 9-node el	emente	
Ő.			
0	MATERIAL PROPERTIES		
0	This model uses 3 different materials		
0			
0	55304 (55304)		
0	Shell outer leyer Too end can		
0	Bottom end cep		
0	Cynamic Young's Modulus	2.830E+07 psi	
0	Lynemic Yield Stress	5.000E+04 psi	
0	Dynamic Ultimate Stress Dynamic Proportional Stress Limit Dynamic Plastic Stress-Strain Multiplier	2.300E+04 psi 9.525E+04 psi	
0	Dynamic Plastic Stress-Strain Exponent	.)996	
0	Density: 2841 lb/cu inch		Coefficient
0	Thermal Specific Young's	Polsson's	of Thermal
9	F BTU/in min F BTU/ibm F psi	Noted .	in/in F
1	-58. 011250 .1200 2.910E+07	2900	8.700E-06
	68 011400 1230 2.840E+07	2900	8.700E-06
1	212. 012000 1200 27000+07	6.9.90	P.1.000-06
1	1		
h		anandromenia de la companya de la compa	standing the party of the party of

Figure C-4. Cask Geometry Summary Output -- Bolts, F.E. Mesh, and Materials.

Version: 2a

C-6

Sample Cask and Description of Output

18		10
0	MELAY MARKI APLAN ANIN.	
0	THEAT HODEL DESCRIPTION	
10	Nodel masses and chell stiffness values	
1º	Transistions) Rotational	
4	Node Position Mess Mess AE E	
Ę.	reaction according to and a think to be a the second secon	
0	1 BOT O. 74. 39578 2 48 58 04956 1.730F.10 7.655F.16	
13	3 96 58 24756 1730E+10 7.922E+12	1
19	5 TOP 193. 74. 39578 1730E*10 7.922E*12	
0		
0	chail any investigation for nodes 2 through 4	10
0	The Moment of Inertia	
	_2.8 ± 10.8 ± 0.	
	Inner Site 164 \$ 56037.	10
0	Shield 695.4, 284973 Duter Shell 447.09 223454	10
01	THE SECOND STORE SECOND	10
0		
	PUNCTURE EVALUATION OF CASK EXTERIOR SURFACES	1
		10
0	NOTE: All thicknesses and in inches and stresses in pel	0
0	NATE. The proceedings (b) being the process of the	0
0	formula given in the theory manual. It is valid for all SCANS built- in steels	10
0	and for other user-apscified ductile matals provided an everage or a smaller- than-average value is used for the tensile strength	
		1
101	Outer Lauer Recommended	0
0	Cisk Component Materia Tensila Thistopean Duration Thickness	10
0	Strength Resistence	10
0	Cask body 85304 89602 2.25 likely 2.46	0
	Top end cap 55304 89602 7.50 unlikely 2.48	1
01	pertom end rap population average 2.48	0
0		10

Figure C-5. Cask Geometry Summary Output -- Impact Model Description and Puncture Evaluation.

Sample Cask and Description of Output

Limiter Curve Summary Output

This output is produced during the data check performed when the impact limiter force/deflection data set is saved (Geometry Menu). It is a complete summary of all specifications for the cask. Error messages appear when impact limiter force-deflection curve definitions are incorrectly specified. The output format follows.

(1) Header

Indicates Limiter Curve Summary, page number of how many, date and time the output was generated, and SCANS version number. The header shown in Figure C-6 is printed at the top of every page of output.

(2) Data Set Status

Indicates whether the Limiter F/D data set is COMPLETE (Figure C-6). The data set has items requiring an entry if the status indicates INCOMPLETE.

(3) Impact Limiter Force/Deflection Curves

Lists the impact limiter force-deflection curve specifications (Figure C-6). The limiter curves are specified individually for each end of the cask and for various impact orientations.

Page 1 of 2 LIMITER CLAVE SUMMARY FOR CASK 9999 SCANS VERSION: 28 GENERATED ON 4/24/91 AT 8 22.00 0 0 Limiter F/D date set is COMPLETE 0 0 IMPACT LIMITER FORCE/DEFLECTION CURVES 0 0 Bottom Limiter 0 Side impact (C degrees) 0 Force Slope Deflection 0 inches Kiph Kips/inch 0 0 0 250.00 500 500.00 ō. 13.000 116.00 26.500 4000.00 170.37 ō. 30.000 \$71.43 6000.00 1142.86 33.500 0 0 0

Figure C-6. Limiter Curve Summary Output.

Sample Cask and Description of Output

Impact Analysis Output

This sample Impact analysis is based on a 30-foot hypothetical accident drop on the cask bottom at an initial impact angle of 45 degrees. Primary and secondary impacts are included in the analysis, and the shield/shell interface is bonded (the lead shield is not allowed to slump). The discussion of the output format includes a detailed description of output for a Dynamic Analysis. Quasi-static output is in the same format. Differences in output for an unbonded lead shield analysis are also noted.

(1) Header

Indicates the type of analysis, page number of how many, date and time the output was generated, SCANS version number, and a brief description of the parameters defining the analysis case. The header shown in Figure C-7 is printed at the top of every page of output.

(2) Impact Summary

Lists the impact velocity, impact angle, CG (center-of-gravity) over corner angle, limiter crush, rigid body accelerations, maximum cask axial and shear forces, and maximum impact moment about the cask center line for both primary and secondary impacts (Figure C-7). For an unbonded lead shield analysis, SCANS lists the permanent lead slump. For secondary impacts, SCANS lists the secondary impact angle and the impact limiter data used (the force-deflection curve for the angle closest to the actual secondary impact angle).

(3) Maximum Force and Moment Results

Tables for maximum axial force, maximum shear force, and maximum bending moment are printed for each node location along the cask body and at the cask ends (Figure C-8). These forces and moments are beam-type values for the composite cross-section of the cask.

(4) Impact Stress Intensity Results

Tables for maximum stress intensity are printed for each shell layer at each node location along the cask body. Stress intensity is the absolute value of the maximum difference between the principal stresses. Principal stresses are calculated from axial, bending, shear, hoop, and radial stresses. For bonded shell/shield interface analyses the hoop stress is assumed to be zero. Axial and shear forces and bending moments are applied to the composite cross-section of the cask in order to calculate axial bending, and shear stresses for each shell layer based on its individual stiffices. SCANS prints the stress intensity for the three maximum stress conditions listed below (Figure C-9).

A. Maximum Tension. Based on the maximum sum of the axial stress and bending stress at the extreme fiber. Shear stress is zero for this condition. This stress is the first principal stress. The second principal stress is the hoop stress.

Sample Cask and Description of Output

- B. Maximum Compression. Based on the maximum difference of the axial stress and bending stress. Shear stress is zero for this condition. This stress is the first principal stress. The second principal stress is the hoop stress.
- C. Maximum Shear. Based on the axial stress, maximum shear stress, hoop stress and radial stress, occurring at the neutral axis. The principal stresses are calculated using Mohr's circle.

(5) Interface Force and Moment Results (unbonded lead shield analysis only)

Tables for edge moments and shear forces are printed for the inner and outer shell at the bottom end cap and top closure interfaces (Figure C-10). A positive moment results in compression in the outermost fiber of the shell, and a positive shear force is directed radially inward.

(6) Buckling Analysis Results

This section of output summarizes the results of a buckling analysis of the inner and outer cask shells (Figure C-11). The radius, thickness, length, Young's Modulus, and yield stress of the shells and the factor of safety used for the analysis are tabulated. The most critical impact stresses and their buckling stress ratios are printed. Based on these stress ratios, conclusions on the possibility of buckling of the cask shells are printed as 'likely' or 'unlikely'. If one of the shells is likely to buckle, additional information will be printed to provide insight into the nature and cause of the buckling. The critical impact stresses in the axial and hoop directions are compared to the corresponding theoret cal elastic buckling stress and to the actual buckling stress. The capacity factor (alpha) and the plasticity reduction factor (eta) used to obtain the actual buckling from the theoretical buckling stress are also printed.

(7) End Cap Stresses

Lists the bending and shear stresses in the end caps (Figure C-12). The end caps are treated as circular plates with fixed boundary conditions for the bottom end cap and pinned boundary conditions for the top end cap. The inertial forces are evenly distributed across the end caps, and the impact limiters contribute no bending resistance. The shear stress is calculated as a maximum at the indicated radius.

(B) Top Closure Bolt Stresses

Indicates bolt axial and shear stresses (Figure C-13). Bolt axial stresses are calculated only when the bolts are in tension.

Sample Cask and Description of Output

DYNAMIC IMPACT OUTPUT FOR CASE 9999 Pege Lot 9 GENERATED ON 3/22/91 AT 11-14-17 SCANS VERSION 26 0 AR: Semple spent fuel shipping cask (demonstration only) 30 it accident drop on ceak bottom - primary & secondary impact Angle of primery impact is 45 degrees - whield/shell interface is bonded 6 IMPACT SUMMARY PRIMARY IMPACT (Cask Boltom) Impact Velocity = 527.5 in/sec Impact Angle = 45.0 degrees C6 Over Corner Angle = 72.5 degrees 0 01 Meximum Limiter Crush 24.7 **Inches** 0 Maximum Rigid Body Accelerations Textmum Rigid body Accelerations Vertical Acceleration = 19.5 Horizontal Acceleration = .0 Rotational Acceleration = -94.6 0 19.5 0.6 0'8 0 100/0007#2 Maximum Impact Forces Axial Force in Cask # -2362.9 kips Shear Force in Cask # 2832.3 kips Maximum Impact Moment (C.L.) = -578815 in-kips 01 0 SECONDARY IMPACT (Cesk Top) b.] 643.6 +1.0 0 (impact Velocity 100 in/865 Impact Angle 15 degrees Limiter Angle Used 01 degrees Maximum Limiter Crush . 22.1 Inches Maximum Rigid Body Accelerations 17.0 0 138.2 Vertical Acceleration * Horizontal Acceleration * Q'8. 01 0.8 Rotational Acceleration re5/sec##2 - 81 0 Maximum Impact Forces Axial Force in Cask -503.8 6 1.4 1,10.5 Shear Force in Cask + -3208.2 k ips Maximum Impact Moment (C.L.) + 7937.7 in-kips Run Time For Dynamic Analysis 19.4 seconds

Sample Cask and Description of Output

0 0 MAXIMUM FORCES AND MOMENTS 01 NOTE: Node 1 is at Cavity BOTTOM, Node 5 is at Cavity TOP 01 61 PRIMARY IMPACT (on cask bottom) 01 Node Number Axiel Publicon Max Axiel Force Max Shear Force Max Moment 0 10 (Location) (Inches) (Kips) (Kips) (in-Kips) 0
 Cesk Boitom
 *2362.9
 2832.3
 *57881.5

 1
 .0
 ~1918.4
 1451.7
 +63474.3

 2
 48.1
 ~1658.9
 961.2
 11641.4

 3
 96.3
 ~1176.1
 193.3
 29179.1

 4
 144.4
 ~721.8
 ~258.3
 19622.3

 5
 192.5
 ~503.1
 ~349.2
 6794.7

 Cesk Tup
 .0
 .0
 .0
 6. 0 10 0 0 10 SECONDARY IMPACT (on cesk top) ē. 10 0 Node Number Axial Position Max Axial Force Max Shear Force Max Moment (Location) (inches) (Kips) (Kips) (in-Kips) 0 0 0 62060 *********
 .0
 .0
 .0
 .0

 .0
 325.0
 640.6
 6206.0

 48.1
 411.8
 627.4
 38336.8

 96.3
 -505.6
 271.1
 71178.2

 144.4
 -560.1
 -762.8
 69852.9

 192.5
 -568.5
 -1409.8
 5259.3

 -503.8
 -3208.2
 7937.7
 01 Cask Bottom 0 10 0 43 4 Cask Top 0 10

Figure C-8. Dynamic Impact Output -- Maximum Forces and Moments.

Sample Cask and Description of Output

$\frac{1 \text{ RESS 5. INTENSITY}}{ NOTE: 51 IS BASED ON maximum combined sxiel 6. bending stress or maximum cheer stress or maxim$							
International problems areas NOTE: Bis a based on maximum shear atress or maximum shear atress NOTE: Node 1 is at Cevity BOTTOM, Node 5 is at Cevity TOP PRIMARY IMPACT (on cask bottom) STRESS INTENSITY BASED ON Node Number NOTE: State Cevity TOP NOTE: Node 1 is at Cevity BOTTOM, Node 5 is at Cevity TOP Node Number Arisis Dost STRESS INTENSITY BASED ON (cecition) Node Number Arisis Dost StrEss INTENSITY BASED ON (cecition) Inher Shell Outer Shell <td colsp<="" td=""><td></td><td></td><td>STRESS INTEN</td><td>SITY</td><td></td></td>	<td></td> <td></td> <td>STRESS INTEN</td> <td>SITY</td> <td></td>			STRESS INTEN	SITY		
NOTE: B1 is based on maximum steer stress or maximum steer stress NOTE: Node: 1 is at Cavity BOTTOM, Node: 5 is at Cavity TOP PRIMARY IMPACT (on cask bottom) STRESS INTENSITY BASED ON Node Number NOTE: Node: 1 is at Cavity BOTTOM, Node: 5 is at Cavity TOP NOTE: Node: 1 is at Cavity BOTTOM, Node: 5 is at Cavity TOP NOTE: Node: Number STRESS INTENSITY BASED ON (none: Shell (Inner: Shell 1 0 2 A 10 2 1 0 2 A 10 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 <td 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td></td><td></td><td>****</td><td></td><td></td></td>	<td></td> <td></td> <td>****</td> <td></td> <td></td>				****		
NOTE: Hode 1 is at Cevity BOTTOM, Hode 5 is at Cevity TOP PRIMARY IMPACT (on cask bottom) Hode Number Axist Position Plax (P/A+Mc/l) Max (P/A+Mc/l) The SED ON Inner Shell 0 2797 82.6 0001 0001 1 0 2797 82.6 0004 0001 1 0 2797 82.6 0004 0004 1 0 2797 82.6 0004 0004 1 0 2797 82.6 0004 0004 1 0 2797 82.6 0004 0004 2 46.3 1450 3958 1908 004 2 46.1 3456 2299 177 0046 1005 1299 177 3 96.3 192.5 40, 107 179 0049 2 48.1 454 3233 1068 1068 1068 3 96.3 1942.5 4955 1316 209	NOTE: SI is be or mex	ised on maximum con Imum stiesr stress	iblined exial & bendin	g stress			
Note: Hose: Site at Cavity Top STRESS INTENSITY BASED ON Node: Number Axisi Position Hax (P/A+Mp/i) Max (P/A-Mp/i) Hax (P/A-Mp/i) Inner Shell 0 2797 8216 9090 2 46.1 415. 3058 1908. 3 96.3 1450. 3058. 1908. 4 144.4 1118. 2526. 604. 5 192.5 460. 12000. 2095. 3 96.3 145. 3058. 1908. 4 144.4 1118. 2526. 604. 5 192.5 40.0 1077. 179. 2 46.1 36. 268. 152. 4 144.4 108. 229. 9359. 604. 3 96.3 1946. 4468. 1908. 4 144.4 1452. 2877. 1604. 5 192.5 495. 1315. 2095. <	NOTE HORE L	i a na an a	min a li manin.				
PRIMARY IMPACT (on cask bottom) Node Number Axisi Position Hisk (P/A+Mc/) Max (P/A+Mc/) Hisk (P/A+Mc/) 1 0 2797 8216 9090 1 0 2797 8216 9090 1 0 2797 8216 9090 1 0 2797 8216 9090 1 0 2797 8216 9090 2 46.1 415 3053 6184 3 96.3 1450 3958 1908 2 46.1 8256 1604 615 3 96.3 143 558 165 3 96.3 143 528 165 3 96.3 194.4 523.5 9090 2 46.1 434.4 523.5 165 3 96.3 194.6 446.6 1908 5 192.5 495 1315 2095 5 192.5	NUTE NODE 11	a at centy porrom.	NODE 5 18 BT CAVITY	TOP			
PRIMARY IMPACT (on cask bottom) Node Number (Location) Axisi Position (inches) Max (P/A+Mc/l) (psi) Max (P/A+Mc/l) (psi) Max Sheer (psi) 1 0 2797. 82(6. 3 66. 4 66. 5 66. 4 66. 5 66. 5 66. 6 66. 6 66. 6 66. 777. 82(6. 777. 777. 2 82(6. 777. 777. 2 82(6. 777. 777. 2 76. 6 777. 777. 777. 2 76. 777. 777. 2 76. 777. 777. 2 76. 777. 777. 777. 777. 777. 777.							
Node Number Axiel Position (inches) Hex (P/A+Mc/l) (psi) Mex (P/A+Mc/l) (psi) Mex (P/A+Mc/l) (psi) Mex Steer (psi) inter Shell 0 2797. 3 82/6. 6 9090. 6/6. 3 6/6. 6/6. 4 6/6. 6/6. 4 6/6. 6/6. 4 6/6. 6/6. 6/6. 6/6. 6/6. 6/6. 6/6. 6/6.	PRIMARY IMP	ACT (on cask bottom)					
Node Number Axisi Position Max (P/A + Mc/1)		(A.M.					
Heat Heat Plack P	Node Number	Avial Desition	MAN / STALMAYIS	LESS INTENSITY BASED (Maria Maraza		
Inner She)! 0 2797; 62/6 9090; 2 46.1 415; 3053; 6164; 3 96.3 1450; 5958; 1906; 4 144.4 1118; 2526; 1604; 5 192.5 460; 1200; 2095; 4 144.4 1008; 229; 137; 5 192.5 40; 107; 179; 0uter Sheili 0 3922; 9359; 5090; 2 46,1 434; 3233; 458; 5 192.5 40; 107; 179; 0uter Sheili 0 3959; 5090; 23959; 5090; 2 46,1 434; 1452; 2877; 1604; 5 192.5 495; 1315; 2095; 6 192.5 495; 1315; 2095; 10 677; 869; 3839; 3772; 10 677;	(Locelion)	(inches)	(psi)	(phi)	(bsi)		
Inner Shell 0 2797. 8216. 9090. 2 48.1 415. 3053. 6184. 3 96.3 1450. 3958. 1908. 4 144.4 1118. 2526. 1604. 5 192.5 460. 1200. 2095. 1 0 282. 746. 777. 2 46.1 36. 268. 529. 3 96.3 144.3 356. 165. 5 192.5 40. 107. 179. 0uter 6hell 0 3959. 9090. 2.46.1 2 46.1 434.4 3233. 5.164. 3 96.3 1946. 4466. 1968. 2 46.1 434.4 3233. 5.164. 3 96.3 192.5 2055. 2055. 5 192.5 495. 1315. 2055. 5 192.5 701. Max (P/A+Mc/I)	*******	****		**************			
1 0 2797 8216 9000 3 96.3 1455 3053 6184. 4 144.4 1118 2556 1606. 5 192.5 460. 1200. 2095. 6 1 0 282. 746. 777. 2 48.1 36. 268. 529. 3 96.3 143. 358. 163. 4 144.4 108. 229. 137. 5 192.5 40. 107. 179. 1 0 3922. 9559. 9090. 2 48.1 434. 3233. 6.84. 3 96.3 1946. 4468. 1908. 4 144.4 1452. 2877. 1604 5 192.5 495. 1315. 2095. 5 192.5 701. 1083. 8425. 6 192.5 701. 1083. 8425.	Inher Shell			1.1.1			
3 96.3 1450. 3093 6.84. 4 144.4 1118. 2526. 1604. 5 192.5 460. 1200. 2095. 1 .0 282. 746. 777. 2 48.1 36. 2668. 529. 3 96.3 143. 255. 163. 4 144.4 108. 229. 137. 5 192.5 40. 107. 179. 0uter Shell .0 3922. 9559. 9090. 2 48.1 434. 3233. 6.84. 3 96.3 1946. 4468. 1908. 4 144.4 1452. 2477. 1604. 5 192.5 495. 1315. 2095. SECONDARY IMPACT (on cask top) Inner Shell .0 671. 869. 3839. 383.9 1 .0 671. 869. 383.9		44.1	2797.	0216	9090.		
4 144.4 1118. 252.6 1604. 5 192.5 460. 1200. 2095. 6 192.5 460. 1200. 2095. 2 48.1 36. 268. 559. 3 96.3 143. 355. 165. 5 192.5 40. 107. 179. 1 .0 3922. 9559. 900. 2 48.1 434. 3233. 6.84. 3 96.3 1946. 4468. 1908. 4 144.4 14652. 2677. 1604. 5 192.5 495. 1315. 2095. STRESS INTENSITY BASED ON. (Loos time Marking) Max (P/A+Mc/.) Max (P/A-Mc/.) Max Shear (Loos time) Atial Position Max (P/A+Mc/.) Max Shear (Loos time) Atial 456. 659. 3839. 2 48.1 3577. 3810. 3772. 3 <td>3</td> <td>96.3</td> <td>1450</td> <td>30033 X07.8</td> <td>0164</td>	3	96.3	1450	30033 X07.8	0164		
S 192.5 460, 1200, 2095, Bhield .0 282, 746, 777, 2 48.1 36, 268, 529, 3 96,3 143, 358, 163, 4 144,4,4 108, 229, 137, 5 192.5 40, 107, 179, Outer Shell .0 3922, 9359, 9090, 2 48,1 434, 3233, 5,64, 3 96,3 1946, 446,6, 1908, 4 144,4 1452, 2877, 1604, 5 192.5 495, 1315, 2095, SECONDARY (MPACT (on cask top) TRESS INTENSITY 8ASED ON Inner Shell 0 671, 869, 3839, 2 46,1 3277, 3810, 3772, 3 96,3 566, 6614, 1644, 192.5 701, 1083,	City of the state	164.4	1116	2526	1604		
Ohield Construction Construction 1 0 282 746 777 3 963 143 356 163 4 1444 108 229 137 5 192.5 40 107 179 Outer Shell 0 3922 9359 9090 2 48.1 434 3233 6.64 3 96.3 1946 4468 1908 4 144.4 1652 2877 1604 5 192.5 495 1315 2095 SEECONDARY (MPACT (on cask top) FRESS (NTENSITY BASED ON	-	192.5	450.	1200	2095		
1 0 282 746. 777 2 46.1 36. 268. 529. 4 144.4 108. 229. 137. 5 192.5 40. 107 179. 1 0 3922. 935.9 9090. 2 48.1 434. 3233. 6184. 3 96.3 1946. 4468. 1908. 2 48.1 1452. 2877. 1604. 5 192.5 495. 1315. 2095. 5 192.5 495. 1315. 2095. STRESS (NTENSITY BASED ON (pt) Nade Number Axist Position Misk (P/A+Mc/1) Max (P/A-Mc/1) Max Sheer (pesi) (location) (nher Shell 0 671 669. 3839. 2 46.1 3277. 3810. 3772. 3 96.6.3 6058. 6814. 1644. 4 144.4 5008. 6691. 4556. 5 192.5 701. 1083. <td< td=""><td>Shield</td><td></td><td></td><td></td><td>10,000</td></td<>	Shield				10,000		
2 48.1 36. 268 529. 4 144.4 108. 229 137. 5 192.5 40. 107. 179. 0uter Shell 0 3922. 9359. 6090. 2 48.1 434. 3233. 5184. 3 96.3 1946. 4466. 1908. 4 144.4 1452. 2877. 1604. 5 192.5 495. 1315. 2095. STRESS INTENSITY BASED ON Node Number Axial Position Max (P/A+Mc/1) Max (P/A-Mc/1) Max (P/A-Mc/1) (ps1) Inters Shell 1 0 671. 869. 3839. 2 46.1 3277. 3810. 3772. 3 96.3 6058. 6614. 1644. 4 144.4 5608. 6691. 4556. 5 192.5 701. 1083. 8425. 3 96.3 556. 620. 3203. 4 144.4 526. 620. 320. 3 96.3 356. 631. 141. 4 144.4 526. 620. 320. 5 192.5 <td>1,55 (B. S. 194</td> <td></td> <td>282</td> <td>746.</td> <td>777.</td>	1,55 (B. S. 194		282	746.	777.		
3 96.3 143.3 35.8 163 6 192.5 40. 107 179 Duter Shell 0 3922.9 9359.9 9090.9 2 48.1 434.3233.6 6.64 3 96.3 1946.4466 1906 4 144.4 1452.2877 1604 5 192.5 495.3315 2095 STRESS INTENSITY BASED ON Node Number Axial Position Max (P/A+Mc/1) Max (P/A-Mc/1) Max Sheer (Locetion) (inches) (psi) (psi) (psi) (psi) Inner Shell 0 671 869 3839 3772 3 96.3 6058 6814 1644 1644 4 144.4 5608 6691 3839 3772 3 96.3 5066 6314 1644 1644 1 0 61 78 3228 3233 3425 3 96		481	36.	268	529		
Image: State of the s		96.3	143	358	163		
Outer Shell 0 3922 9359 9090 2 46.1 434 3233 5.84 3 946.3 1946 446.4 5192 4 144.4 1452 2477 1604 5 192.5 495 1315 2095 STRESS INTENSITY BASED ON (Incest top) STRESS INTENSITY BASED ON (Incest top) Inner Shell 0 671 869 3839 2 46.1 3277 3810 3772 3 96.3 6058 6614 1644 1 0 671 869 3839 2 46.1 3277 3810 3772 3 96.3 6058 6614 1644 5 192.5 701 1083 8425 3 96.3 566 651 141 4 144.4 526 620 390 3 96.3 7335	17 1 C 2 C 2 C 2 C	165.6	108	229	137		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Outer Shell	196.9	40.	16.4	179.		
2 48.1 434. 3233. 5:84. 3 96.3 1946. 4468. 1908. 4 144.4 1452. 2877. 1604. 5 192.5 495. 1315. 2095. STRESS INTENSITY BASED ON (Increase top) STRESS INTENSITY BASED ON (Increase top) Increase top) Increse	a a sur princip	- iii	3922	0350	0.000		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	48.1	434	3233	618.6		
4 144.4 1452 2877 1604 5 192.5 495 1315 2095 SECONDARY (MPACT (on cask top) STRESS INTENSITY BASED ON (Location) Node Number Axial Position (Inches) Max (P/A+Mc/I) (psi) Max (P/A+Mc/I) (psi) Max Sheer (psi) 1 0 671 869 3839 3 96.3 6058 6614 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 6425 5 192.5 701 1083 6425 5 192.5 62 62 390 2 46.1 315 352 328 3 96.3 566 620 390 2 46.1 315 352 328 3 96.3 566 620 390 5 192.5 62 62 720 6 92.5 768 1150 644 4 144.4 526 620	3	96.3	1946.	4468	1908		
5 192.5 495. 1315. 2095 SECONDARY (MPACT (on cask top) Node Number Axial Position Max (P/A+Mc/l) Max (P/A+Mc/l) Max Shear (psi) Node Number Axial Position Max (P/A+Mc/l) Max (P/A+Mc/l) Max Shear (psi) Inner Shell 0 671 869 3839 2 481 3277 3810. 3772 3 963 6056 6614. 1644. 5 192.5 701. 1083 8425. 5 192.5 701. 1083 8425. 3 96.3 566 631 141. 4 144.4 526. 620. 390. 5 192.5 62. 65. 720. 0 779 973. 3639. 3642. 1 0 779. 973. 3639. 448.1 4069. 4502. 3772. 3 96.3 7333. 8093. <	4	144.4	1452	2877	1604		
SECONDARY (MPACT (on cask top) Node Number Axial Position Max (P/A+Mc/l) Max (P/A+Mc/l) Max Shear (psi) Inner Shell 0 671 869 3839 1 0 671 869 3839 3 963 6056 6614 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 8425 3 963 5666 631 141 4 144.4 526 620 390 5 192.5 62 55 720 3 963 5666 631 141 4 144.4 526 620 390 5 192.5 62 55 720 5 192.5 62 55 720 4 144.4 526 620 390 5 192.5 62 55 720 3 663	5	192.5	495.	1315	2095		
SECONDARY IMPACT (on cask top) Node Number (Location) Axial Position (inches) Max (P/A+Mc/l) (psi) Max (P/A-Mc/l) (psi) Max Shear (psi) Inner Shell 0 671 3 869 963 963 9653 3839 608 608 608 1 3839 3 Inner Shell 0 671 3 869 668 6691 3839 3 1 0 671 3 869 668 6691 3839 3 2 481 335 3277 3 3810 3 3772 3 3 963 925 701 701 1083 3 8425 3 963 3 566 631 141 41 4 1444 526 526 62 720 720 2 481 4444 526 62 631 720 141 141 4 1444 526 620 5 720 720 3839 723 723 4 1444 669 4502 720 3772 720 3839 723 723 4 1444 669 4502 720 3772 720 3839 723 4 1444 664 7946 4556 720 3772 723 4 1444 7946 6844 7946 4556 720 <							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Node Number Axial Position Max (P/A+Mc/l) Max (P/A-Mc/l) Max Sheer (psi) Inner Shell 0 671 869 3839 2 48.1 3277 3810 3772 3 96.3 6058 6614 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 8425 3 96.3 556 6511 141 4 144.4 5608 6591 4556 5 192.5 701 1083 8425 3 96.3 556 631 141 6 192.5 62 323 325 3 96.3 556 620 390 6 192.5 62 5 720 0 779 973 3839 3439 4 46.1 4069 4502 3772 3 96.3 7333 8093 164	SECONDARY IM	PACT (on cask top)					
Node Number (Location) Axial Position (Inches) Max (P/A+Mc/I) (pai) Max (P/A-Mc/I) (pai) Max Shear (pai) Inner Shell 0 671 869 3839 2 48.1 3277 3810 3772 3 96.3 6058 6614 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 8425 3 96.3 5566 651 141 4 144.4 5266 6521 141 4 144.4 5266 6520 390 5 192.5 62 55 720 6 192.5 62 55 720 6 192.5 62 55 720 6 192.5 62 55 720 6 192.5 733 8093 1644 4 144.4 526 620 3722 5 192.5 768		NAMES OF TRACTOR					
Node Number (Location) Axial Position (inches) Max (P/A+Mc/l) (psi) Max (P/A-Mc/l) (psi) Max Shear (psi) inner Shell 0 671 869 3839 2 46.1 3277 3810 3772 3 96.3 6056 6814 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 8425 3 96.3 5608 6691 4556 5 192.5 701 1083 8425 3 96.3 5666 631 141 4 144.4 526 620 390 5 192.5 62 55 720 6 192.5 62 55 720 6 192.5 733.3 8093 1644 4 44.4 684.4 7946 4556 5 192.5 768 1150 8425			STR	ESS INTENSITY BASED O	Number of the second second		
(Location) (inches) (psi) (psi) (psi) inner Shell 0 671 869 3839 2 48.1 3277 3810 3772 3 96.3 6058 6814 1644 4 144.4 5608 6691 4556 5 192.5 701 1083 8425 shield 0 61 78 328 3 96.3 5666 631 141 4 144.4 526 620 390 5 192.5 62 65 720 6uter Shell 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	Node Number	Axial Position	Max (P/A+Mc/I)	Max (P/A-Mc/I)	Max Shear		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Location)	(Inches)	(ps))	(pei)	(psi)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Joner Shell		***	***************			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UNEL SHELL		621	445	2222		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	48.1	3799	8.810	3039		
4 144.4 5608 6691 4556 5 192.5 701 1083 8425 5 192.5 701 1083 8425 1 .0 61 78 328 2 48.1 315 352 323 3 96.3 566 631 141 4 144.4 526 620 390 5 192.5 62 55 720 6 192.5 62 55 720 0 779 973 3839 3772 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 68444 7946 4556 5 192.5 768 1150 8425	3	96.3	605A	6814	1644		
5 192.5 701. 1083 8425. shield 0 61 78. 328. 2 48.1 315. 352. 323. 3 96.3 566. 631. 141. 4 144.4 526. 620. 390. 5 192.5 62. 55. 720. Quter Shell 0 779. 973. 3839. 2 48.1 4069. 4502. 3772. 3 96.3 7333. 8093. 1644. 4 144.4 684.4 7946. 4556. 5 192.5 768. 1150. 8425.	4	144.4	5608	6691	4556		
Shield 0 61 78 328 2 48.1 315 352 323 3 96.3 566 631 141 4 144.4 526 620 390 5 192.5 62 55 720 Quter Shell 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	5	192.5	701.	1083	8425		
.0 61 78 328 48.1 315 352 323 3 96.3 566 631 141 4 144.4 526 620 390 5 192.5 62 55 720 Outer Shell 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	Shield						
2 48.1 315 352 323 3 96.3 566 631 141 4 144.4 526 620 390 5 192.5 62 65 720 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425		0	61	78.	328		
3 96.3 566. 631 141 4 144.4 526. 620. 390. 5 192.5 62 65. 720. 0 779. 973. 3839. 2 48.1 4069. 4502. 3772. 3 96.3 7333. 8093. 1644. 4 144.4 6844. 7946. 4556. 5 192.5 768. 1150. 8425.	C 199 8 10 10	48,1	315	352	323		
5 192.5 620 390 0 192.5 62 65 720 1 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	3	96.3	566.	631	141		
Outer Shell 0 779 973 3839 1 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425		100 5	526.	620	390.		
1 0 779 973 3839 2 48.1 4069 4502 3772 3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	Outer Shull	176.2	64.	10	120		
2 48.1 4069. 4502. 3772. 3 96.3 7333. 8093. 1644. 4 144.4 6844. 7946. 4556. 5 192.5 768. 1150. 8425.	Sector Bright	6	779	973	2420		
3 96.3 7333 8093 1644 4 144.4 6844 7946 4556 5 192.5 768 1150 8425	2	48.1	4069	4502	3772		
4 144.4 6844 7946 4556 5 192.5 768 1150 8425	3	96.3	7333	8093	1644		
5 192.5 768 1150 8425.	4.1.1	144.4	6844	7946	4556		
	\$	192.5	768	1150	8425		

Figure C-9. Dynamic Impact Output -- Stress Intensity.

Version: 2a

C-13

Ĺ

Sample Cask and Description of Output

MAXIMUM CASE SHELL / END DAP 8.1 INTERFACE FORCES AND MOMENTS A positive moment results in compression in the outermost fiber of shell. 0 A positive sheer force is directed radielly inward. 0 Edge moment of inner shell at bottom and cap = +7.473 in-kBys/in. Edge moment of outer shell at bottom and cap = 24.699 in-kips/in. 0 Edge shear of inner shell at bottom end cap \approx -3.765 kips/in. Edge shear of outer shell at bottom end cap \approx 7.539 kips/in. 0 Edge moment of inner shell at top closure * . Edge moment of outer shell at top closure * .152 in-kips/in 1.189 in-kips/in 01 Edge shear of inner shell at top closure * Edge shear of outer shell at top closure * 076 kips/in. 0 363 kips/in.

Figure C-10. Dynamic Impact Output -- Interface Forces and Moments. Note: Results based on unbonded shell/shield interface for primary impact only.

0

0

Sample Cask and Description of Output

0			80 	CRLING A	NALYS	IS OF CAS	IK BODY			
01	NOTE: AT	lengths are i	n inch énd	stresse	i in ps	i				
0	NOTE: TH	factor of se	fetų used :	for this i	bucklik	Ig eveluer	ion is 1.34	for becievent	onsition	
0	NOTE: TH	: listed stres kling snelyst	ses are co s and liste	mpressiv d es 0.	if stri	sses; ten	elle etress	es bre ignore:	I in the	
0	NOTE: For	both bonded ers are obtai	end unbon ned by tre	ded cask sting the	bodies layeri	, the buck	ling result rete shella	s for "inner" a subjected to t	nd "Outer" he stresses	
	Cask Body	Shell Dimensi	ons and M	elerial P	roper)	lies				
0	Shell	Radius Th	ick: Len	g th	1/4	L/(Rt) ⁵	Material	Young's Modulus E	Vielp Stress Su	
	inner Outer	26.13 1 31.63 2	00 192	50 50	26.1 14.1	37.66 22.82	\$5304 \$5304	28300000	30000. 30000.	
	PRIMARY IN	IPACT (on cas	k bottom)							
	Shell	Worst Buc Ax(e)	kling Stre	ssés Hoop		deximum Combines Suckling Stress Re	110	Buckling		
	According	to ASME cod	e Sect. III.	Code Car	ie N28	4				
	inner Outer	8216 9359		0		.059 .036		unlikelu unlikelu		
	According	to API buile	tin 20 (wi	th reason	al str	63663)				
	inner Outer	8216 9359		0 0		000		unlikely unlikely		
	SECONDARY	IMPACT (on c	esk top)							
		Worst Buo	kling Stre	5965	1	laximum ombined				
	Shell	Axial		loop	0.5	uckling tress Ret	10	Buckling		
							**	****		
	According	TO AGTIE COO	e pect III,	Code Cas	# N28					
	Outer	6814. 8093.		00		049		unlikely unlikely		
	According	to API bulle	(in 20 (w)	th residu	a) stre					
	inner Outer	6814. 8093		0		.000		unlikely unlikely		

Fi, .re C-11. Buckling Analysis Results.

Version: 2a

Sample Cask and Description of Output

0 END CAP STRESSIS 0 NOTE: Limiters contribute no bending stiffness to the end caps 0 inertial forces are evenly distributed across the end caps. 01 All stresses are in PSI 0 PRIMARY IMPACT (on cask bollom) 0 0 BOTTOM END CAP (based on inertia of end cap and contents) waters there 0 Solid End Cap 0 Maximum Bending Stresses At center of end cap 5713.8 At edge noar inner shell -8858.5 0 01 1728.5 Average Sheer Stresses At redius # 25 6 inches 0 TOP END CAP (based on inertia of end cap) 0 ******** Solid End Cap ********* 0 Maximum Bending Stresses At center of end cap 414.8 0 49.2 Average Shear Stresses 01 At redius = 25.6 inches 0 0 SECONDARY IMPACT (on cask top) 31 A L W L M H H H H H H H H H H H 01 BOTTOM END CAP (based on inertia of end cap) 0 Solid End Cap SOND END Cap 0) Meximum Bending Stresses Al center of end cap 110.7 At center of end cap 110.7 At edge near inner shell -171.6 0 | 01 Average Sheer Stresses 33.5 Al radius = 25.6 inches 01 0 TOP END CAP (based on inertia of end cap and contents) 0 ********* Solid End Cep 0 Maximum Bending Stresses At center of end cap 0 +7576.4 780.6 0 Average Shear Stresses At redius = 29.5 inches 0

Figure C-12. Dynamic Impact Output -- End Cap Stresses.

10

١Đ

0

ö

0

0

Ø

0

0

C-16

Version: 2a

Sample Cask and Description of Output

Figure C-13. Dynamic Impact Output -- Closure Bolt Stresses.

Version: 2a C-17

Sample Cask and Description of Output

Thermal Analysis Output

This Thermal analysis is based on the thermal case Normal Hot, Contents Heat, Solar Effects. The ambient temperature is 100°F, contents heat load is 500 Btu/min, and solar effects are included. The Thermal Analysis output format is typical for a Finite Element analysis program and is described below.

(1) Header

Indicates the type of analysis, page number of how many, date and time the output was generated, SCANS version number, and a brief description of the parameters defining the analysis case. The header shown in Figure C-14 is printed at the top of every page of output.

(2) Control Data

Lists the parameters controlling the analysis. Typical control parameters are: number of materials, nodes, and elements; type of geometry; number and type of boundary and initial conditions; and non-linear solution convergence controls. A partial summary of control parameters is shown in Figure C-14.

(3) Summary of Nodal Data

Table of nodes for the Finite Element mesh, indicating the coordinates. The mesh is an axisymmetric representation of the TOP end of the cask. A partial summary of node data is shown in Figure C-15.

(4) Summary of Element Data

Table of elements for the Finite Element mesh, is dicating the nodes which define the element, material number, and element volume. A partial summary of element data is shown in Figure C-15.

(5) Summary of Material Data

Table for each material used in the analysis, indicating the material name, cask component, material number for reference by element data, and material properties. A summary of Material 1 is shown in Figure C-15.

(6) Summary of Temperature Initial Conditions

Table of initial temperatures applied to nodes. A partial summary of initial temperatures is shown in Figure C-16.

(7) Summary of Flux Boundary Conditions

Table of flux boundary conditions applied to boundary segments. Each segment is defined by two nodes. Flux boundary conditions are applied to (1) the cavity surface to represent the contents heat and (2) the outer surface to represent solar effects. A partial summary of flux boundary conditions is shown in Figure C-16.

Sample Cask and Description of Output

(8) Summary of Convection Boundary Conditions

Table of convection boundary conditions applied to boundary segments. Each segment is defined by two nodes. Convection boundary conditions are applied to the outer surface to transfer heat between the cask and the ambient environment. A partial summary of convection boundary conditions is shown in Figure C-16.

(9) Summary of Radiation Boundary Conditions

Table of radiation boundary conditions applied to boundary segments. Each segment is defined by two nodes. Radiation boundary conditions are applied to the outer surface to transfer heat between the cask and the ambient environment. Radiation boundary conditions are also used to represent fire conditions. A partial summary of radiation boundary conditions is shown in Figure C-16.

(10) Bandwidth Minimization Information

Summary of results of bandwidth minimization, used internally for improved calculational speed.

(11) Summary of Output

Table of nodal temperatures, indicating the location and magnitude of the minimum and maximum temperatures and the cavity pressure and temperature. The cavity temperature is the average cavity surface temperature. The cavity pressure is calculated using the ideal gas law. SCANS also prints the energy transferred across each boundary condition segment, permitting an energy balance check. For the transient Fire Accident case, temperature and energy results are printed for each time specified by the printing interval. A partial summary of temperature and energy results are shown in Figure C-17.

(12) Termination Message

Indicates the total clock time in seconds for the analysis and indicates the status of the analysis (Figure C-17). Normal Termination indicates the analysis was completed. Error Termination indicates the analysis was either terminated early by the user or because of an internal error condition (e.g., unable to extract values from function curves). When the analysis ends with an error termination, the resulting output can be printed but cannot be plotted.

Sample Cask and Description of Output

THERMAL OUTPUT FOR CASE 9995 Pape 1 of 31 GENERATED ON 5/10/91 AT 13 24 30 SCANS VERSION: 28 SAR: Sample spent fuel shipping cask (demonstration only) THERMAL CASE: Normal hot Contents heat Sular effects Maximum contents heat generation: SOC OD 870/MIN 0] 6 | using the TOPAZ version compiles - 1-03-51 01 reference - Bary L Johnson ph 415-422-9323 0 ************************ **** ***** *** ****** 0 A 8 -16 16 16 4 4 . . 4 4 0 * * ×. ***** ***** . 18 . 14 0 8.4 * 16 . . **** 2 . ****** . . 0 **************** 0 0] SUMMARY OF INPUT 0 ***control dete*** 0 Q 0 number of materials 9 ii. 0 × 279 number of nodes 0 # 242 number of elements 0 temperature units eq.1: cimensionless eq.2: centigrade 0 0 eq.3: Fahrenheit 10 eq.4: kelvin 0 eq.5: renkine 1 . M. 1 type of geometry 0 eg.1: exisymmetric eg.2: plane 0 bandwidth minimization 0 10 eg 0, no minimization 0 eq.1: minimization eq.2: minimization - nodal destination 0 vector read from input file

Figure C-14. Thermal Output -- Header and Control Data.

Sample Cask and Description of Output

Figure C-15. Thermal Output -- Node/Element/Material Summary.

Version: 2a

C-21

Sample Cask and Description of Output

		*** (1.01)	(kralura)	n)))(a) ¢0	00111001	***	
1pmps	erete tita	$\approx (deg, \tau)$					
1.038	temp	note	temp	nóde	temp	node	temp
- 64.00 47.00	100.0 100.0 100.0 100.0 100.0	71 72 78 76	100.0 100.0 100.0 100.0	141 142 143 144 145	100.0 100.0 100.0 100.0	11 12 1	100.0 100.0 100.0 100.0
		*** (lux bound	ery condi	110.0 ***		
	node i	node)	curve no.	1 ~ 25	utiplier	(-multiplie)	÷
	- 949 4	2 2 4 5	0000	+ 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	371E-02 371E-02 371E-02 371E-02	-1.42371E+0 +1.6 -1.42371E+0 -1.42371E+0	The (24 (24 (24 (24
				- 1.42	9778-VE	-1420116-5	
		*** 0 0 1 4	ection be	undery to	indillon'		
node 1	node }	h curve	h multiplier	free conv exponent	t curve mu	tempi Atipitar m	lemp j ultiplier
196 197 198 199 200	197 198 199 200 201	00000	2.1990E-05 2.1990E-05 2.1990E-05 2.1990E-05 2.1990E-05	.3333 .3333 .3333 .3333 .3333	00000	100 0 100 0 100 0 100 0 100 0	100.0 100.0 100.0 100.0 100.0
		*** 1 9 1	iletion bo	undary c	ondi'ion	***	
node	node	f curve #	multiplier	temp curve #	temp i multiplie	r mult) j plier
196 197 198 199 200	197 198 199 200 201	00000	9.9192+14 9.9192-14 9.9192-14 9.9192-14 9.9192-14 9.9192-14	0 0 0 0 0	100 100 100 100	4 11 11 11 11	00. 00. 00. 00.

Figure C-16. Thermal Output -- Initial/Boundary Conditions Summary.

0

Sample Cask and Description of Output

Figure C-17. Thermal Output -- Temperature Output and Energy Balance.

Version: 2a

C-23

Sample Cask and Description of Output

Thermal and Pressure Stress Analysis Output

Thermal Stress and Pressure Stress analyses have the same output format. The sample output shown in Figures C-18, C-19, and C-20 is for a Thermal Stress analysis. The analysis is based on the thermal case Normal Hot, Contents Heat, Solar Effects. The ambient temperature is 100°F, contents heat load is 500 Btu/min, solar effects are included, and the stress free temperature is 70°F. The output format is as follows:

(1) Header

Indicates the type of analysis, page number of how many, date and time the output was generated, SCANS version number, and a brief description of the parameters defining the analysis case. The header shown in Figure C-18 is printed at the top of every page of output.

(2) Nodal Results

Table of coordinates and displacements for each node in the Finite Element mesh. The mesh is an axisymmetric representation of the TOP end of the cask. The results for the first ten nodes are shown in Figure C-18.

(3) Element Stress results

Table of stresses for each element in the meta. Stresses are calculated at element integration points. These stress are extrapolated to the nodes which define the element and printed in the output. Stresses are not calculated for nodes which lie on the axis of symmetry. The stresses for the first two elements are shown in Figure C-19. The stress components are defined as follows:

Srr	Radial stress
Szz	Axial Stress
Stt	Hoop Stress
Srz.	Shear stress in the axial cutting plane
S(MAX)	Maximum Principal Stress
S(MIN)	Minimum Principal Stress
ANGLE	Orientation of the principal stresses

(4) Summary of Output

Table of maximum and minimum stresses (radial, axial, hoop, shear), indicating the elements where they occur; table of stresses at locations corresponding to Impact model node locations. Stresses are printed for the outer radius of each shell layer along the cask body. Stresses are interpolated to the Impact node locations when necessary. The stresses at the outer radius of the Shell Inner Layer corresponding to Impact node locations are shown in Figure C-20.

Sample Cask and Description of Output

0	STRESS O GENERATE TITLE: Sar THERMAL Maximum Stress Fro	UTPUT FOR CA D ON 5/10/91 hple spent fue CASE Normal contents heat is Temp= 70.	SK 9999 AT 13.49.34 I shipping casi hat Contents peneration T Thormal State	(demonstration) theat Solar at SOO.DO BTU/M 2 at Time S	n only) fects lin .8.	Pege 1 of 19 SCANS VERSION 28
0						
0	NODAL RES	IULTS				
01	NODE	000	DINATES	DISPLA	CEMENTS	
01	NUMBER	X	Y	DX.	DY	
1	*****	****	1. (1) (1) (1) (1) (1) (1) (1) (1) (1)	$(0,1) \in \{0,1\}, (0,1) \in \mathbb{N}$	$(a,b,b) \in [a,b] \times [a,b] \times [a,b]$	
0	43 1 69	000	96.250	000003	173947	
	1 A .	9.271	96.250	009714	.173776	
1	1.2	12 818	90.200	012379	175261	
01		12:083	36,250	038351	172940	
1	6	21.354	96.250	047676	169859	
01	2	25.625	96,250	055989	168217	
	8	25.625	65.750	046316	142073	
01	9	25.625	75.250	045007	119668	
	10	25.625	64.750	.040446	.099765	
0						

ELEMEN	IT STRES	SRESULT	5					
Integre	tion poin	t stresse	s are extr	apolated t	o the element	ht hodes		
Elem	Note	Ser	1.22		244	S/MAY)	S (MILL)	ANDIE
Numb	Numb	pai	psi	pai	psi	pai .	81	EQ.
10.00	17		1486.	-3146		1486		44.04
	49	+59.	1651	-2901	6	1651	-50	28.98
	50	+113.	1810	-2665.	2	1810	-113	69.93
	16	·	1559	+3145.	-8.	1559.	1.1	-89.72
	56	- 54	1721	-2900.	+11	1721.	-54	+89.64
	57	+108	1876.	-2665	=14.	1876.	-108	-89.58
	15	6.	1632	+3144	-24	1633.	6	-89.15
	65	+49	1790.	-2900	-28	1791	- 50	-89.13
2	64	-102.	1943.	- 2665	-31.	1943.	-103	-09.13
	15	+ 15	1589.	-3150	5	1589.	+ 15.	89.83
	63	75	1741.	-2918.	-6	(74).	- 75	-89.81
	64	-133.	1858	-2586	-17.	1888	= 133	-89.53
	14	+15.	1826	-3157.	-51	1827	~16.	-88.41
	70	+59.	1958.	-2917	-63	1960.	-61	-88.20
	. 71	+101.	2085	-2686,	+75	2088	- 104	-88.04
	13	~14	2063	+3156.	~107.	2068	- 19	-87.05
	77	- 42	2175.	-2917	-121	2181	-49	- 86.90
	78	~70.	2282	-2687.	+133	2290.	-77.	-86.77

Version: 2a C-25

Sample Cask and Description of Output

SUMMARY OF OUTPUT	
SUMMARY OF OUTPUT	
Elements with minimum and maximum stress values	
Grin minimum of1263), pail occurs in element 14 st node22	
meximum of 49246, psi occurs in element 26 at node 124	
522 minimum of +13886, per occurs in element 14 et node 120	
meximum of 24241, pai occure in element 26 at node 124	
Stit minimum of -14599, per croure in element 14 et node 120	
maximum of25561, pail occurs in element _26 at node _124	
Srz minimum of +25811, pel occurs in element 20 et node 124	
meximum of 21622, per occurs in element 25 st node 120	
Stresses along Cesk body at radius of each SHELL layer	
ouresses are interpolated to IMPACT node positions	
Ceak pollom end impect node to 1 position to 0 inches	
Capit top end impest node is 5, position is 1925 inches	
ALAL ALAR LINES	
SMELL INNER LATER QUIEF FROMUNE 20.025 INCHES	
Import the first fill first fillers fillers	AND
FIGUE FOR OFF OZZ OLL OFZ OLLINA (FIN)	Anoli
Hone mon her her her her her her	Qey.
1 0 +4140 11000 1016 33E0 11000 -4041	78.00
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	68.00
100 000 000 000 000 000 000 000 000 000	44.54
TIE 82 1882 - THE SORE TATE 1874	55 95
01.0 0£ 100£ 010 2£00 07.00 *1474	80.45
33- 33- 0.85 0.860 8081 01- 808	201 T #
40.8 -10 1893 -2842 330 1948 -65	87.00
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58	87.02
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81	87.02 88.47
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117	87.02 88.47 -09.08
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117 68.5 -101 2085 -2686 -75 2088 -104	87.02 88.47 - 89.08 - 88.04
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117 68.5 -101 2085 -2686 -75 2088 -104 77.8 -118 1915 -2676 -24 1916 -118	87.02 88.47 -89.08 -88.04 -89.32
40.8 +10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117 68.5 -101 2085 -2686 -75 2088 -104 77.8 -118 1915 -2676 -24 1916 -118 87.0 +108 1876 -2665 +14 1876 -108	87.02 88.47 -89.08 -88.04 -89.32 -89.58
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117 68.5 -101 2085 -2686 -75 2088 -104 77.8 -118 1915 -2676 -24 1916 -118 87.0 -108 1876 -2665 -14 1876 -108 3 96.3 -113 1810 -2665 3 1810 -113	8702 88904 -8904 -8955 -89553
40.8 -10 1893 -2842 330 1948 -65 2 48.1 64 2283 -2692 116 2289 58 50.0 82 2382 -2654 62 2384 81 59.3 -116 2265 -2690 -38 2266 -117 68.5 +101 2085 -2686 -75 2088 -104 77.8 -118 1915 -2676 -24 1916 -118 87.0 -108 1876 -2665 -14 1876 -106 3 96.3 -113 1810 -2665 -14 1876 -108 105.5 -108 1876 -2665 -14 1876 -108	8702 88904 -88958 -89958 -89958 -89958 -89958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8702797 889004 -889004 -889998 -8899995 -889999 -889999 -889999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87027 889004 -88905283 -8899995304 -88899995304 -888999988
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8702 889042 889042 8895553 88959352 889595324 889595324 88955324 88955324 88955324 88955324 88955324 88955324 88955324
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8740042835953004 889999853004 889999853004 88999883898 8899988988 88998 88998 88998 88998 88998 88998 88998 88998 8899
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8390428399999 889999999889898 - 88999999889898 - 889999998898 - 88999998 - 889899 - 88989 - 8898 - 88989 - 8898 - 8898 - 8898 - 8899 - 889 - 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	83903595302 - 689999930487 - 6899999830087 - 689999988987 - 68898998 - 688987 - 68898 - 6898 - 68988 - 6898 - 6898 - 6898 - 6898 - 6898 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88988988988988702 - 6889899889887022 - 6888888888888888888888888888888888888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88988988888888 - 889999889889887022 - 8889999889887022 - 8888888888888 - 8888888888888 - 88888888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8898999998898702562 989899999889870548
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	889899998248722256222 98888999998898705488 9888999998898705488 98888888888888888888888888888888888
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88989999989898705488

Figure C-20. Thermal Stress Output -- Summary of Stresses.

Appendix D

Thermal Analysis Boundary Conditions

SCANS uses heat flux, convection, and radiation boundary conditions to define the thermal analysis conditions. Following is a list of the boundary condition values used for each SCANS thermal analysis.

NOTE: Refer to Volume 4, SCANS Thermal Analysis Theory Manual for a more complete description of the following terms and equations.

Convection Equation: $\tilde{q} = h (T - T_{w})^{a} (T - T_{w})$ Where:

- "q" = Surface heat flux due to convection
- h = Convection: coefficient
- a = Free convection exponent
- T = Surface temperature
- T_ = Convection flow temperature

Radiation Equation:

and

$\stackrel{\text{en}}{q} = f(T + T_{\text{sc}})(T^2 + T_{\text{sc}}^2) (T - T_{\text{sc}})$ $f = \sigma F$

Where:

"q" = Surface heat flux due to radiation

o = Stefan-Boltzmann constant

- F = characteristic exchange factor (includes effects
 - of geometry, emissivity and reflectivity)

T = Surface temperature

T_ = Radiation source temperature

Cold Soak, Contents Heat, No Solar Effects

All boundary conditions are constant

Heat Flux

Cavity: Contents heat as specified in the geometry definition Outer Surfaces (solar): None Convection

Flat surfaces

 $\begin{array}{rcl} h &=& .00002199 \ \mathrm{Btu}\,/\,\mathrm{in.^2\,min\,^\circ F} \\ a &=& .3333 \\ T_{\infty} &=& -40\,^\circ \mathrm{F} \\ \end{array} \\ Cylindrical surfaces \\ h &=& .00002083 \ \mathrm{Btu}\,/\,\mathrm{in.^2\,min\,^\circ F} \\ a &=& .3333 \\ T_{\infty} &=& -40\,^\circ \mathrm{F} \\ \end{array} \\ Radiation \\ f &=& 1.001\mathrm{E}\text{-}13 \ \mathrm{Btu}\,/\,\mathrm{in.^2\,min\,^\circ F^4} \\ T_{\infty} &=& -40\,^\circ \mathrm{F} \end{array}$

Appendix D

Thermal Analysis Boundary Conditions

Cold Soak, No Contents, No Solar Effects

All boundary conditions are constant

Heat Flux Cavity: None Outer Surfaces (solar): None Convection Flat surfaces $h = .00002199 Btu / in.^2 min ^{\circ}F$ a = .3333 $T_{\infty} = -40 \,^{\circ}F$ Cylindrical surfaces .00002083 Btu / in.2 min °F h = .3333 a = T_ = -40 °F Radiation 1.001E-13 Btu / in.2 min °F4 f = T_ = -40 °F

Normal Cold, Contents Heat, No Solar Effects

All boundary conditions are constant

Heat Flux Cavity: Contents heat as specified in the geometry definition Outer Surfaces (solar): None Convection Flat surfaces $h = .00002199 Btu / in.^2 min °F$ a = .3333 T_ = -20 °F Cylindrical surfaces .00002083 Btu / in.2 min °F h == a = .3333 $T_{\infty} = -20 \,^{\circ}\text{F}$ -20 °F Radiation 1.001E-13 Btu / in.2 min °F4 f ==

T_ = -20 °F

Appendix D

Thermal Analysis Boundary Conditions

Normal Cold, No Contents, No Solar Effects

All boundary conditions are constant

Heat Flux Cavity: None Outer Surfaces (solar): None Convection Flat surfaces h = .00002199 Btu / in.² min °Fa = .3333 T_ = -20 °F Cylindrical surfaces h = .00002083 Btu/in.2 min °F a = .3333 T_ III -20 °F Radiation 1.001E-13 Btu / in.2 min °F4 f 10 T_ = -20 °F

Normal Hot, Contents Heat, Solar Effects

All boundary conditions are constant

Heat Flux

Cavity: Contents heat as specified in the geometry definition Outer Surfaces (solar): .01065 Btu / in.2 min Convection Flat surfaces $h = .00002199 Btu / in.^2 min °F$ a = .3333 T_ = 100 °F Cylindrical surfaces h = .00002083 Btu / in.² min °F 8 == .3333 T_ = 100 °F Radiation 1.001E-13 Btu / in.2 min °F4 f 327

 $T_{\infty} = 100 \,^{\circ}F$

1.11
Appendix D

Thermal Analysis Boundary Conditions

Normal Hot, Contents Heat, No Solar Effects

All boundary conditions are constant

Heat Flux

Cavity: Contents heat as specified in the geometry definition Outer Surfaces 'rolar): None Convection Flat surfaces h = .00002199 Btu / in.² min °F a = .3333 $T_{\infty} = 100$ °F Cylindrical surfaces h = .00002083 Btu / in.² min °F a = .3333 $T_{\infty} = 100$ °F Radiation f = 1.001E-13 Btu / in.² min °F⁴ $T_{\infty} = 100$ °F

Fire Accident, Contents Heat, No Solar Effects

All boundary conditions are time dependent

```
Heat Flux Applied for complete analysis
        Cavity: Contents heat as specified in the geometry definition
        Outer Surfaces (solar): None
Convection Applied after fire (30-360 minutes)
        Flat surfaces
            h = .00002199 Btu / in.^2 min °F
             a = .3333
             T_{-} = 100 \,^{\circ}\text{F}
        Cylindrical surfaces
             h = .00002083 \text{ Btu} / \text{in.}^2 \text{min }^\circ \text{F}
             a = .3333
             T_{\infty} = 100 \,^{\circ}\text{F}
Radiation splied during fire (0-30 minutes)
            f = 1.47087E-13 Btu / in.^2 min °F^4
             T_{-} = 1475 \,^{\circ}F
Radiation Applied after fire (30-360 minutes)
             f = 1.6016E-13 Btu / in.^2 min °F^4
             T_{m} = 100 \,^{\circ}\text{F}
```


Program Reference

Contents of Distribution Diskettes

The SCANS release package contains four 5¹⁴-inch double-density (360K) distribution diskettes, listed below. Each file is identified and its function explained.

DiSK 1 (5 files) File Name

Function SCANS Disk 1 identification File

SCANS Version File

SCANSV2A.D1 SCANS.VER INSTALL.EXE SAMPLE.EXE D1.EXE

EXE Program to Install SCANS on the PC EXE Packed Sample Cask Data Set EXE First Set of Packed SCANS Program Files

DISK 2 (2 files) File Name SCANSV2A.D2 D2.EXE

Function

Function

SCANS Disk 2 Identification File Second Set of Packed SCANS Program Files

SCANS Disk 3 Identification File

DISK 3 (2 files) File Name

SCANSV2A.D3 D3.EXE

DISK 4 (2 files)

File Name D4.EXE SCANSV2A.D4 Function Fourth Set of Packed SCANS Program Files SCANS Disk 4 Identification File

Third Set of Packed SCANS Program Files

The **INSTALL** program automatically unpacks the packed files. The four packed sets of SCANS files produce the following sixty six SCANS program files:

File Name	Function	
&IRCONV.NSM	Neutron Shield Material File, Air Convection	
ALLDONE, EXE	Program for Termination Message	
BALSAXGR.ILM	Impact Limiter Material File, Balsa wood cross-grained	
CARBNSTL.STM	Shell/End Cap Material File, Carbon Steel	
CARBNSTL.WJM	Water Jacket Material File, Carbon Steel	
COPPER.WJM	Water Jacket Material File, Copper	
DOT1.COM	Program for Thermal/Pressure Stress Analysis Module	
DOT2.COM	Program for Thermal/Pressure Stress Analysis Module	
GEOMETRY, EDT	Editor Template File for Basic Geometry	
H2OCONV, NSM	Neutron Shield Material File, Water Convection	
LEAD.SHM	Shield Material File, Lead	
LIMITER.EDT	Editor Template File for Limiter Force-Deflection Curves	
MATERIAL, EDT	Editor Template File for Material Properties	
PLOTRES.LOW	Flag File for minter Plot Resolution	
POLYFOAM.ILM	Impact Limiter Material File, Polyfoam	
PRINTER.EPS	Flag File for Printer Type	
PURETHAN.ILM	Impact Limiter Material File, Polyurethane	

Program Reference

REDWDXGR.ILM	Impact Limiter Material File, Redwood cross-grained
SCANS, BAT	SCANS Main Control Batch File
SCANSAM.COM	SCANS Analysis Menu
SCANSDM.COM	SCANS Display Menu
SCANSEM.COM	SCANS Archive Menu
SCANSGM.COM	SCANS Geometry Menu
SCANSMM.COM	SCANS Main Menu
SCANSPM.COM	SCANS Print Menu
SS304.STM	Shell/End Cap Material File, Stainless Steel 3.4
SS304.WJM	Water Jacket Material File, Stainless Steel 304
SS310.STM	Shell/End Cap Material File, Stainless Steel 310
SS210.WJM	Water Jacket Material File, Stainless Steel 310
SS STM	Shell/End Cap Material File, Stainless Steel 316
SS316 WJM	Water Jacket Material File, Stainless Steel 316
SSR47 STM	Sheu/End Can Material File, Stainless Steel 347
SSR47 W.TM	Water Jacket Material File, Stainless Steel 347
TIRGTPZI	Thermal Analysis B.C. File, Cold Soak, Contents, No Solar
T2RGTPZI	Thermal Analysis B.C. File, Cold Soak, No Contents, No Solar
TRRGTPZI	Thermal Analysis B.C. File, Normal Cold, Contents, No Solar
TARGTEZT	Thermal Analysis B.C. File, Normal Cold, No Contents, No Solar
TSRGTPZI	Thermal Analysis B.C. File, Normal Hot, Contents, Solar
TERCTPRI	Thermal Analysis B.C. File, Normal Hot, Contents, No Solar
TTRGTPZI	Thermal Analysis B C File, Fire Accident, Contents, No Solar
VIDEO CGA	Flag File for Video Display Type
ARCSCANS EXE	Program to Compress/Expand Data Sets for Archive
ACOLTO FYF	Program for Thermal/Pressure Analysis module
ASOLTOF FYE	Program for Thermal/Pressure Analysis module
COPYFI, FXF	Program to Copy Geometry/Limiter Data Files
DATACK FYF	Program to Create Cask Summary and Data Check
DISCLAIM FYF	Program to Display Disclaimer
PLOID FYF	Program to Initialize Editor for Geometry and Limiter Data
FOTTOP FYF	Program to Edit Geometry Limiter and Material Data Files
EDMAT FYF	Program to Initialize Editor for Material Data
CETTO EXE	Program to Select CASK ID
TMDACT FYF	Program to Perform Impact Analysis
MATTOR FYF	Program to Perform Data Check on Material
MOUNCD EVE	Program to Generate and Display Finite Element Meshes
DITONU EVE	Program to Ploy Dynamic Impact Analysis Results
DACTD7 EVE	Program to Plot Thermal Analysis Results
DEFTODAT EVE	Program to Create or Select Thermal Case and Control Thermal Analysis
DETNETE EVE	Program to Print and Review Outputs
CADINDE EVE	Program to Create Thermal Stress Analysis Innut
CADDUTER EVE	Program for Thermal/Pressure Analysis mytule
CAPPRINE . EAL	Program to Create Pressure Analysis Incuite
SAFEDSS.LAL	Program to Archive/Detrieve/Delate Date Sate
OPPUTDEO EVE	Program to Select Video/Printer type
COLUEI EVE	Program for Thermal/Pressure Analysis module
COLVEL, EXE	Program for Thermal/Pressure Analysis module
BULVEZ EAE	Program to Darform Thermal Analysis months
IOFAZ, EAE	Program to Perform Therman Analysis

Program Reference

System Details

SCANS uses a DOS BATCH command file to coordinate the menus, input programs, cask analysis programs, output programs, data archive programs and databases. A BATCH file is a file containing commands that DOS executes one at a time. The SCANS BATCH file is controlled using menu programs. Each menu program displays a list of options and waits until one of the indicated keys is pressed. After accepting the key, the menu program sets the DOS ERRORLEVEL to indicate which key was pressed. The BATCH file branches based on ERRORLEVEL, to perform the selected task.

SCANS has six menu programs. Each menu program is written in Assembly Language, making it small, fast, and flexible. All other programs in SCANS are written in FORTRAN. The FORTRAN programs use a set of FORTRAN callable Assembly Language routines to provide access to DOS and BIOS functions. These functions include manipulating the video screen, sending data to the printer, managing disk files, and obtaining disk space and directory information.

The SCANS BATCH file is listed below with comments identifying the flow of control.

C: FROMPT \$e[1;37;40m ECHO OFF MODE CO80	Switch to hard disk containing SCANS Clear prompt, set white text over black background Turn off echo feature of batch file Set video mode to CGA
REM ***** TEST FOR COMMAND.COM ON :	SCANS DRIVE *****
IF EXIST \COMMAND.COM GOTO CHNGDIR	Go to directory change, if COMMAND.COM exists in root directory
ECHO ECHO ECHO	
ECHO ERROR CANNOT INITIALIZE SC	ANS
ECHO COMMAND.COM DOES NOT EXIST IN ECHO DRIVE WHICH CONTAINS SCANS ECHO ECHO	THE ROOT DIRECTORY OF THE
PROMPT SpSg	If COMMAND.COM does not exist, set prompt to
GOTO END2	display drive and path and go to END of session
REM ************************************	*******
:CHNGDIR	
CD\SCANS	Change to SCANS subdirectory
OFTID	Display SCANS disclaimer
IF NOT FYIST CASE TO COTO PHD	Select CASK ID
T. HOT PATRI CAPACID GOID END	I II no CASK ID selected, go to end SCANS

E-3

Program Reference

***** MAIN MENU ****** REM :MAIN SCANSMM Display MAIN MENU Check ERRORLEVEL and branch IF ERRORLEVEL 7 GOTO END IF ERRORLEVEL 6 GOTO SAVE IF ERRORLEVEL 5 GOTO PRINTER IF ERRORLEVEL 4 GOTO DISPLAY IF ERRORLEVEL 3 GOTO ANALYZE IF ERRORLEVEL 2 GOTO GEOMETRY GET NEW CASK ID REM :INIT Select CASK ID GETID 1 and return to MAIN MENU GOTO MAIN REM **** GEOMETRY MENU ****** REM : GEOMETRY IF EXIST EDITOR.EDM DEL EDITOR.EDM Delete EDITOR control file Display GEOMETRY MENU SCANSOM IF ERRORLEVEL 6 GOTO MAIN IF ERRORLEVEL 5 GOTO EDITM IF ERRORLEVEL 4 GOTO COPYLM IF ERRORLEVEL 3 GOTO COPYBG IF ERRORLEVEL 2 GOTO EDITL EDIT THE CASK GEOMETRY DATA FILE AND PERFORM DATA CHECK REM :EDITG Setup to extit GEOMETRY EDGLP G If control file missing, return to GEOMETRY MENU IF NOT EXIST EDITOR.EDM GOTO GEOMETRY EDITOR Edit GEOMETRY IF NOT EXIST DATACHCK GOTO GEOMETRY If not doing data check, return to GEOMETRY MENU DATACK G Perform data check on basic geometry and return to GEOMETRY MENU GOTO GEOMETRY EDIT THE IMPACT LIMITER DATA FILE AND PERFORM DATA CHECK REM :EDITL Setup to edit LIMITER EDGLP L IF NOT EXIST EDITOR.EDM GOTO GEOMETRY If control file missing, return to GEOMETRY MENU Edit LIMITER EDITOR IF NOT EXIST DATACHCK GOTO GEOMETRY If not doing data check, return to GEOMETRY MENU Perform data check on limiter F/D curves DATACK L and return to GEOMETRY MENU GOTO GEOMETRY E-4 Version: 2a

Program Reference

REM COPY BASIC GEOMETRY FROM DIFFERENT CASK

:COPYBG COPYFL B GOTO GEOMETRY

Copy GEOMETRY from different data set and return to GEOMETRY MENU

Copy LIMITER from different data set

and return to GEOMETRY MENU

REM COPY LIMITER DATA FROM DIFFERENT CASK

:COPYLM COPYFL L GOTO GEOMETRY

REM EDIT MATERIAL DATA SET

:EDITM EDMAT S IF NOT EXIST EDITOR.EDM GOTO GEOMETRY EDITOR IF NOT EXIST DATACHCK GOTO GEOMETRY MATCK GOTO GEOMETRY

Set up to edit MATERIAL
If control file missing, return to GEOMETRY MENU
Edit MATERIAL
If not doing data check, return to GEOMETRY MENU
Perform data check on material
and return to GEOMETRY MENU

REM **************

REM ***** ANALYSIS MENU *****

:ANALYZE SCANSAM IF ERRORLEVEL 5 GOTO MAIN IF ERRORLEVEL 4 GOTO PSTRESS IF ERRORLEVEL 3 GOTO TSTRESS IF ERRORLEVEL 2 GOTO THERMAL

Display ANALYSIS MENU Check ERRORLEVEL and branch

REM

PERFORM IMPACT ANALYSIS

:IMPACTIT IMPACT GOTO ANALYZE

Perform IMPACT analysis and return to ANALYSIS MENU

REM

PERFORM THERMAL ANALYSIS

:THERMAL PRETOPAZ IF NOT EXIST TOPAZ.CMD GOTO ANALYZE TOPAZ IF EXIST CONTINUE.TPZ GOTO THERMAL GOTO ANALYZE

Prepare or select case for THERMAL analysis
 If no case selected, return to ANALYSIS MENU
 Perform THERMAL analysis
 If performing another, go to select case

Program Reference

REM

PERFORM THERMAL STRESS ANALYSIS

:TSTRESS SAPINPT IF NOT EXIST TEMPCASK GOTO ANALYZE SAPPHIRE ASOLID DOT1 SOLVE1 >TEMPCASK.JNK DOT2 SOLVE2 >>TEMPCASK.JNK ASOLIDF DEL TEMPCASK.* DEL SYSTEM IF EXIST CONTINUE.TSC GOTO TSTRESS GOTO ANALYZE

Select case for THERMAL STRESS analysis If no case selected, return to ANALYSIS MENU Perform THERMAL STRESS analysis

Delete temporary files

If performing another, go to select case else return to ANALYSIS MENU

REM

PERFORM PRESSURE STRESS ANALYSIS

:PSTRESS SAPRESS IF NOT EXIST TEMPCASK GOTO ANALYZE SAPPHIRE ASOLID DOT1 SOLVE1 >TEMPCASK.JNK DOT2 SOLVE2 >>TEMPCASK.JNK ASOLIDF DEL TEMPCASK.* DEL SYSTEM IF EXIST CONTINUE.TSO GOTO PSTRESS GOTO ANALYZE

REM ***

REM ***** DISPLAY MENU *****

:DISPLAY SCANSDM IF ERRORLEVEL 5 GOTO MAIN IF ERRORLEVEL 4 GOTO ATTRIB IF ERRORLEVEL 3 GOTO PLOTT IF ERRORLEVEL 2 GOTO PMESH

REM PLOT IMPACT RESULTS

:PLOTI PLTDYN GOTO DISPLAY

E-6 Version: 2a

Select case for PRESSURE STRESS analysis If no case selected, return to ANALYSIS MENU Perform PRESSURE STRESS analysis

Delete temporary files

If performing another, go to select case else return to ANALYSIS MENU

Display DISPLAY MENU Check ERRORLEVEL and branch

Plos DYNAMIC IMPACT ANALYSIS results and return to DISPLAY MENU

Appendix E Program Reference

REM PLOT FINITE ELEMENT MESHES	3
:PMESH PLOT FINITE ELEMENT MESHES MSHDSP D GOTO DISPLAY	Display FINITE ELEMENT meshes
REM PLOT THERMAL DISTRIBUTIONS	
:PLOTT POSTPZ GOTO DISPLAY	Plos THERMAL ANALYSIS results
ALM SEI VIDEO AIIRIDOILS	
:ATTRIB SETVIDEO GOTO DISPLAY	Select Video/Printer type and plot resolution and return to DISPLAY MENU
REM ************************************	******************
REM ***** PRINT/REVIEW MENU ***	***
:PRINTER SCANSPM IF ERRORLEVEL 6 GOTO MAIN IF ERRORLEVEL 5 GOTO PRINTD IF ERRORLEVEL 4 GOTO PRINTP IF ERRORLEVEL 3 GOTO PRINTS IF ERRORLEVEL 2 GOTO PRINTT	Display PRINT/REVIEW MENU Check ERRORLEVEL and branch
REM PRINT IMPACT RESULTS	
:PRINTI PRINTIT I GOTO PRINTER	Print IMPACT ANALYSIS results and return to PRINT/REVIEW MENU
REM PRINT THERMAL RESULTS	
:PRINTT PRINTIT T GOTO PRINTER	Print THERMAL ANALYSIS results 1 and return to PRINT/REVIEW MENU
REM PRINT THERMAL STRESS RES	ULTS
:PRINTS PRINTIT S GOTO PRINTER	Print THERMAL STRESS ANALYSIS results] and return to PRINT/REVIEW MENU
REM PRINT PRESSURE STRESS RE	SULTS

Version: 2a

Program Reference

:PRINTP Print PRESSURE STRESS ANALYSIS results PRINTIT P GOTO PRINTER and return to PRINT/REVIEW MENU PRINT CASK SUMMARY AND DATA CHECK REM :PRINTD Print CASK SUMMARY/DATA CHECK PRINTIT D and return to PRINT/REVIEW MENU GOTO PRINTER REM ***** REM ***** ARCHIVE MENU ***** :SAVE Display ARCHIVE MENU SCANSFM IF ERRORLEVEL 4 GOTO MAIN Check ERRORLEVEL and branch IF ERRORLEVEL 3 GOTO DELETE IF ERRORLEVEL 2 GOTO GET ARCHIVE CASK DATA SET REM :PUT ARCHIVE data sets SAVER A and return to ARCHIVE MENU GOTO SAVE RETRIEVE CASK DATA SET REM :GET RETRIEVE data sets SAVER R GOTO SAVE and return to ARCHIVE MENU DELETE CASK DATA SET REM :DELETE DELETE data sets SAVER D GOTO SAVE and return to ARCHIVE MENU REM **** ***** END OF THE SCANS PROCESS ***** REM Terminate SCANS :END IF EXIST CASK.ID DEL CASK.ID Delete CASK ID identification file Set prompt to display drive and path PROMPT \$p \$g ALLDONE Display termination message :END2 End of Sersion

Program Reference

Description of Databases

SCANS uses integrated databases to pass information between various programs. These databases describe the cask geometry, impact limiter force-deflection curves, material properties, boundary conditions for Thermal analyses, analysis results for plotting, and analysis results for printing. All databases, with the exception of printable output, are *random access* files with fixed record lengths. Thus, each program that utilizes the database has access to individual elements in the data base, identified by record number. Following is a description of each *random access* database.

Basic Geometry Database

 Purpose:
 Contains all geometry specifications for the cask.

 Used by:
 IMPACT. DATACK, PRETOPAZ, SAPINPT, SAPRESS, MSHDSP

 Created by:
 EDITOR

 Modified by:
 EDITOR, RETOPAZ

 Record Length:
 12

NOTE: Record types are as follows:

Real	-	Real Number
Int	-	Integer Number
Char	-	Character string
List	-	Single Character which

List = Single Character which must match specific choices Name = Value is selected from a file name list

Header

Record 1 2 \	Description Scans Id	Type	Length	Comments Must be 'Scans gei'
31 41 51	Database name	Char	60	
61				
8	File creation date	Char	8	Form 'rom/dd/vv'
9	File creation time	Char	8	Form 'hh:mm:ss'
10	Editor code name	Char	8	Editor
11	Editor version no.	Char	3	2.1
12	Editor compile date	Char	8	Form 'mm/dd/vv'
13	Geometry template file name	Char	12	Geometry edt
14	Unused at this time			o contra y teat
15	Data file status	Char	12	'Complete' or 'Incomplete
16	Page 1 mod date, PGACC, PGREQ	Char	811	Form 'mm/dd/vy AR'
17	Page 2 mod date, PGACC, PGREQ	Char	811	Form 'mm/dd/yy AR'

NOTE: See TEMPLATE for definition of PGACC & PGREQ

45

Page 45 mod date, PGACC, PGREQ

Char 811

Form 'mm/dd/yy AR'

Version: 2a

E-9

Program Reference

General SAR Information and Reviewer Information

ecord	Description	Туре	Length	Restrictions	Default
46 \					
471	nam cuto				Alashi
48 1	SAR uue	Char	24		(Diank)
491					
51	CAD ranged number	Char	12		(blank)
50	SAR report date	Char	8		(blank)
52	SAP docket number	Char	7		(blank)
54	SAR docket start date	Char	8		(blank)
551	UTER COMPLEX DEALS CALLS				
561					
57 1	Additional SAR info Line 1	Char	54		(blank)
581					
59/					
60 \					
611					
62 1	Additional SAR info Line 2	Char	54		(blank)
631					
64 /					
65 \					
661					
67 1	Additional SAR info Line 3	Char	54		(blank)
681					
69 /					
70 \					
711					(hlank)
72 1	Submitters address Line I	Char	24		(Diank)
731					
141					
751					
771-	Submitters address Line 2	Char	54		(blank)
781	Subminers and ess care a				(a data in
79/					
80 \					
81					
821	Submitters address Line 3	Char	54		(blank)
831					
84 /					
85	Cask review leader name	Char	24		(blank)
86	(cont'd)				
87	Thermal analyst's name	Char	24		(blank)
88	(cont'd)				
89	Structural analyst's name	Char	24		(blank)
90	(cont'd)				
91	Nucleonics analyst's name	Char	24		(blank)
0.0	(mont)d)				

93-99 Unused at this time

E-10 Version: 2a

Program Reference

Cask Cavity/Contents Specifications

Record	Description	Type	Length	Restrictions	Default
100	Gross weight of package (lbs)	Real	12	Positive	0.
101	Cavity radius (inches)	Real	12	.001 s X s 2000	0
102	Cavity radius mesh divisions	Int	2	Even $2 \le 1 \le 20$	6
103	Cavity length (inches)	Real	12	.001 s X s 2000	0.
104	Half length mesh divisions	Int	2	Even $2 \le I \le 40$	8
105	Weight of contents (lbs)	Real	12	Positive	0
106	Max contents heat (btu/min)	Real	12	0 s X	0
107	Initial cavity pressure (psia)	Real	12	0 s X s 500	14.7
108	Initial cavity temperature (°F)	Real	12	-100 s X < 300	70
109	Maximum Normal Operating Pressure (psia)	Real	12	0 s X s 2000	14.7
110	Stress free temperature (*F)	Real	12	$-100 \le X \le 300$	70

Cask Component Configurations

Record	Description	Type Le	ngth	Restrictions	Default
111	Shell configuration	List	1	S or L	S
112	Top end cap configuration	List	1	S or L	S
113	Bottom end cap configuration	List	1	S or L	S
114	Top limiter present?	List	1	Y or N	Y
115	Bottom limiter present?	List	1	Y or N	Ŷ
116	Neutron shield/water jacket?	List	1	Y or N	Y

117-120 Unused at this time

Cask Shell Specifications

Record	Description	Type	Length	Restrictions	Default
The follo	owing 3 records are for Solid Shells (1 laver)				
121	Shell thickness (in.)	Real	12	.001 ≤ X ≤ 2000	0.
122	Shell material	Name	8	List from * STM	\$\$304
123	Shell mesh divisions	Int	2	Even $2 \le I \le $	4
The follo	wing 12 records are for Laminated Shells (1-3 Iz	(vers)			
124	Shell inner layer thickness (in.)	Real	12	0. < X < 2000	0.
125	Shell inner layer material	Name	8	List from *.STM	\$\$304
126	Shell inner layer mesh divisions	Int	2	Even 2 s I s 10	2
127	Shell shield thickness (in.)	Real	12	0. ≤ X ≤ 2000	0.
128	Shell shield length (in.)	Real	12	$0. \le X \le 2000$	0.
129	Shell shield material	Name	8	List from *.SHM	LEAD
130	Shell shield mesh divisions	Int	2	Even $2 \le I \le 10$	4
131	Shell outer layer thickness (in.)	Real	12	.001 ≤ X ≤ 2000	0.
132	Shell outer layer material	Name	8	List from *.STM	SS304
133	Shell outer layer mesh divisions	Int	2	Even $2 \le I \le 10$	2
134	Inner Shell additional thickness (in.)	Real	12	$0. \le X \le 2000$	0.
135	Outer Shell additional thickness (in.)	Real	12	$0. \le X \le 2000$	0.

Version: 2a

Program Reference

Cask Top End Cap Specifications

Record	Description	Type	Length	Restrictions	Default
The follo	owing 3 records are for Solid Top End Caps (1 la	iyer)			
136	Top End Cap thickness (in.)	Real	12	.001 s X s 2000	0.
137	Top End Cap material	Name	8	List from *.STM	\$\$304
138	Top End Cap mesh divisions	Int	2	Even 2 s 1 s 10	4
The follo	wing 10 records are for Laminated Top End Car	s (1-3 laye	rs)		
139	Top End Cap inner layer thickness (in.)	Real	12	$0. \le X \le 2000$	0.
140	Top End Cap inner layer material	Name	8	List from *,STM	SS304
141	Top End Cap inner layer mesh divisions	Int	2	Even 2 ≤ 1 ≤ 10	2
142	Top End Cap shield thickness (in.)	Real	12	$0. \le X \le 2000$	0.
143	Top End Cap shield length (in.)	Real	12	$0. \le X \le 2000$	0.
144	Top End Cap shield material	Name	8	List from *.SHM	LEAD
145	Top End Cap shield mesh divisions	Int	2	Even $2 \le 1 \le 10$	-4
146	Top End Cap outer layer thickness (in.)	Real	12	$.001 \le X \le 2000$	0.
147	Top End Cap outer layer material	Name	8	List from *.STM	SS304
148	Top End Cap outer layer mesh divisions	Int	2	Even 2 s I s 10	2
149-150	Unused at this time				
Cask 1	Bottom End Cap Specifications				
Record	Description	Type	Length	Restrictions	Default

110 10	nowing a records are for some bottom and caps (I myer)		had tak takan	
151	Bottom End Cap thickness (in.)	Real	12	$.001 \le X \le 2000$	0.
152	Bottom End Cap material	Name	8	List from *.STM	\$\$304
153	Bottom End Cap mesh divisions	Int	2	Even 2 s I s 10	4
The fo	llowing 10 records are for Laminated Bottom End	Caps (1-3 la	yers)		
154	Bottom End Cap inner layer thickness (in.)	Real	12	$0. \le X \le 2000$	0,
155	Bottom End Cap inner layer material	Name	8	List from *.STM	SS304
156	Bottom End Cap inner layer mesh divisions	Int	2	Even $2 \le I \le 10$	2
157	Bottom End Cap shield thickness (in.)	Real	12	$0. \le X \le 2000$	0.
158	Bottom End Cap shield length (in.)	Real	12	$0. \le X \le 2060$	0.
159	Bottom End Cap shield material	Name	8	List from *.SHM	LEAD
160	Bottom End Cap shield mesh divisions	Int	2	Even $2 \le I \le 10$	4
161	Bottom End Cap outer layer thickness (in.)	Real	12	$.001 \le X \le 2000$	0.
162	Bottom End Cap outer layer material	Name	8	List from *.STM	\$\$304
163	Bottom End Cap outer layer mesh divisions	Int	2	Even 2 ≤ 1 ≤ 10	2

164-167 Unused at this time

Program Reference

Cask Closure Bolts Information

Record 168 (169 1 170 1	Description Closure bolt circle radius (in.) Number of closure bolts Diameter of closure bolts (in.)	Type Real Int Real	Length 12 2 12	Restrictions .001 s X s 2000 1 s I s 99 .001 s X s 10	Default 0. 0
170 1	Diameter of closure bolts (in.)	Real	12	$.001 \le X \le 10$	0.

171-175 Unused at this time

Cask Neutron Shield / Water Jacket Specifications

Record	Description	Type	Length	Restrictions	Default
176	Neutron shield / Water Jacket length (in.)	Real	12	0. s X s 2000	0.
177	Neutron shield thickness (in.)	Real	12	0. s X s 2000	0
178	Neutron shield material	Name	8	List from *.NSM	H2OCONV
179	Neutron shield mesh divisions	Int	2	25159	1
180	Water jacket thickness (in.)	Real	12	0. s X s 2000	0
181	Water jacket material	Name	8	List from *.WJM	\$\$304
182	Water jacket mesh divisions	Int	2	$2 \le I \le 9$	1

183-185 Unused at this time

Cask Top Impact Limiter Specifications

Record	Description	Type	Length	Restrictions	Default
186	Top limiter outer radius	Real	12	$.001 \le X \le 2000$	0
187	Top limiter centerline thickness (in.)	Real	12	.001 < X < 2000	0
188	Top limite, centerline mesh divisions	înt	2	2 s I s 10	4
189	Top limiter overhang thickness (in.)	Real	12	0. s X s 2000	0
190	Top limiter overhang mesh divisions	Int	2	2 ≤ 1 ≤ 10	- 1
191	Top limiter material	Name	8	List from *.ILM	POLYFOAM

192-195 Unused at this time

Cask Bottom Impact Limiter Specifications

Record	Description	Type	Length	Restrictions	Default
196	Bottom limiter outer radius	Real	12	.001 ≤ X ≤ 2000	0.
197	Bottom limiter centerline thicknes: (in.)	Real	12	.001 s X s 2000	0.
198	Bottom limiter centerline mesh divisions	Int	2	2 ≤ I ≤ 10	4
199	Bottom limiter overhang thickness (in.)	Real	12	0. < X < 2000	0
200	Bottom limiter overhang mesh divisions	Int	2	2 < 1 < 10	3
201	Bottom limiter material	Name	8	List from *.ILM	POLYFOAM

202-205 Unused at this time

Program Reference

Cask Impact Model Specifications

Record	Description	Type	Length	Restrictions	Default
206	Number of elements for 1d model	Int	2	$3 \le I \le 20$	4
207	Top limiter weight (lbs)	Real	12	0 ≤ X	0.
208	Bottom limiter weight (lbs)	Real	12	0 ≤ X	0.
209	Define model with user properties ?	List	1	Y or N	N
210	Shell translational mass (lb-sec**2/in.)	Real	12	POSITIVE	0.
211	Shell rotational mass (lb-sec**2-in.)	Real	12	POSITIVE	0.
212	Shell inside length (in.)	Real	12	POSITIVE	0.
213	Shell composite E*I (lb-in.**2)	Real	12	POSITIVE	0.
214	Shell composite A*E (lb)	Real	12	POSITIVE	0.
215	Top End translational mass (lb-sec**2/in.)	Real	12	POSITIVE	0.
216	Top End rotational mass (lb-sec**2-in.)	Real	12	POSITIVE	0.
217	Bottom End translational mass (lb-sec**2/in.)	Real	12	POSITIVE	0.
218	Bottom End rotational mass (lb-sec**2/in.)	Real	12	POSITIVE	0.
219	Characteristic cross-section (in.)	Real	12	POSITIVE	0.

220 Unused at this time

Thermal Transient Analysis Control Parameters

NOTE: These parameters cannot be modified using the EDITOR

Record	Description	Type	Length	Restrictions	Default
221	Allow phase change ?	List	1	Y or N	N
222	Print output interval (min)	Real	12	$10 \le X \le 3603$	0.
223	Plot output interval (min)	Real	12	$2 \le X \le 30$	5.
224	Use variable time step ?	List	1	Y or N	N
225	Iteration convergence tolerance	Real	12	.001 ≤ X ≤ .1	.001
226	Iteration relaxation parameter	Real	12	$.3 \le X \le 1$.	1.
227	Maximum allowable time step (min)	Real	12	$5 \le X \le 30$	30.
228	Maximum allowable temperature change (°F)	Real	12	$25 \le X \le 50$	100.
229	Time step modification factor	Real	12	$2 \le X \le 6$	2.
230	Fixed time step size (min)	Real	12	.25 s X s 5	.5

Program Reference

Impact Limiter Force-Deflection Curves Database

 Purpose:
 Contains all limiter force-deflection curve specifications

 Used by:
 IMPACT, DATACK

 Created by:
 EDITOR

 Modified by:
 EDITOR

 Record Length:
 12

NOTE: Record types are as follows:

Real = Real Number

Int = Integer Number

Char = Character string

List = Single Character which must match specific choices

Name = Value is selected from a file name list

Header

Recor	d Description	Type	Length	Comments
1	Scans Id			Must be 'Scans Imi'
2)				
31				
41	Database name	Char	60	
51				
6/				
8	File creation date	Char	8	Form 'mm/dd/vv'
9	File creation time	Char	8	Form 'hh:mm:ss'
10	Editor code name	Char	8	Editor
11	Editor version no.	Char	3	2.1
12	Editor compile date	Char	8	Form 'mm/dd/vv'
13	Limiter template file name	Char	12	Limiter edi
14	Unused at this time			
15	Data file status	Char	12	Complete' or 'Incomplete
16	Prge 1 mod date, PGACC, PGREQ	Char	811	Form 'mm/dd/vv AR'
17	Page 2 mod date, PGACC, PGREQ	Char	811	Form 'mm/dd/yy AR'
16 17	Prige 1 mod date, PGACC, PGREQ Page 2 mod date, PGACC, PGREQ	Char Char Char	8 1 1 8 1 1	Form 'mm/dd/yy AR' Form 'mm/dd/yy AR'

. NOTE: See TEMPLATE for definition of PGACC & PGREQ

45 Page 45 mod date, PGACC, PGREQ Char 8 1 1 Form 'mm/dd/yy AR'

Impact Limiter Unloading Specification

Record	Description	Туре	Length	Restrictions	Default
48	Type of limiter unloading	List	1	N or U or C	N
49	User unloading slope (kips/in.)	Real	12	FOSITIVE	0.

Program Reference

Bottom Impact Limiter Curve for a 0-Degree Impact

Record	Descrip	tion		Type	Length	Restrictions	Default
50	Is this limit	er defi	ned ?	List	1	Y or N	N
51	Deflection (#1 (in.))	Real	12	POSITIVE	0.
52	Force	#1	(kips)	Real	12	POSITIVE	0.
53	Deflection	#2	(in.)	Real	12	POSITIVE	0.
54	Force	#2	(kips)	Real	12	POSITIVE	0.
55	Deflection	#3	(in.)	Real	12	0. s X	0.
56	Force	#3	(kips)	Real	12	0. ≤ X	0.
57	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
58	Force	#4	(kips)	Real	12	0. s X	0.
59	Deflection	#5	(in.)	Real	12	0. ≤ X	0.
60	Force	#5	(kips)	Real	12	0. ≤ X	0.
61	Deflection	#6	(in.)	Real	12	0. s X	0.
62	Force	#6	(kips)	Real	12	0. s X	0.
63	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
64	Force	#7	(kips)	Real	12	0. s X	0.
65	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
66	Force	#8	(kins)	Real	12	0. s X	0.
67	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
68	Force	#9	(kips)	Real	12	0. s X	0.
69	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
70	Force	#10	(kips)	Real	12	0. ≤ X	0.
71-74	Unused a	at this	time				

Bottom Impact Limiter Curve for a 15-Degree Impact

Record	Descrip	tion		Type	Length	Restrictions	Default
75	Is this limit	er defi	ned ?	List	1	Y or N	N
76	Deflection	#1	(in.)	Real	12	POSITIVE	0.
77	Force	#1	(kips)	Real	12	POSITIVE	0.
78	Deflection	#2	(in.)	Real	12	POSITIVE	0.
79	Force	#2	(kips)	Real	12	POSITIVE	0.
80	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
81	Force	#3	(kips)	Real	12	0. ≤ X	0.
82	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
83	Force	#4	(kips)	Real	12	$0. \le X$	0.
84	Deflection	e	(in.)	Real	12	0. ≤ X.	0.
85	Force	#5	kips)	Real	12	0. ≤ X	0.
86	Defiection	#6	in.)	Real	12	0. ≤ X	0.
87	Force	#6	(kips)	Real	12	0. s X	0.
88	Deflection	#7	(in.)	Real	12	$0. \le X$	0.
89	Force	#7	(kips)	Real	12	0. ≤ X	0.
90	Deflection	.90	(in.)	Real	12	0. s X	0,
91	Force	#8	(kips)	Real	12	0. ≤ X	0.
92	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
93	Force	#9	(kips)	Real	12	0. ≤ X	Э.
94	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
95	Force	#10	(kips)	Real	12	0. s X	0.
96.99	Unused a	at this	time				

E-16 Version: 2a

Program Reference

K

Record	Descript	tion		Type	Length	Restrictions	Defaul
100	Is this limite	er defin	ned?	List	1	Y or N	N
101	Deflection	#1	(in.)	Real	12	POSITIVE	0.
102	Force	#1	(kips)	Real	12	POSITIVE	0.
103	Deflection	#2	(in.)	Real	12	POSITIVE	0.
104	Force	#2	(kips)	Real	12	POSITIVE0.	
105	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
106	Force	#3	(kips)	Real	12	0. ≤ X	0.
107	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
108	Force	#4	(kips)	Real	12	0. ≤ X	0.
109	Deflection	#5	(in.)	Real	12	0. ≤ X	0.
110	Force	#5	(kips)	Real	12	0. s X	0.
111	Deflection	#6	(in.)	Real	12	0. ≤ X	0.
112	Force	#6	(kips)	Real	12	0. s X	0.
113	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
114	Force	#7	(kips)	Real	12	0. s X	0.
115	Deflection	#8	(in.)	Real	12	0. s X	0.
116	Force	#8	(kips)	Real	12	0. s X	0.
117	Deflection	#9	(in.)	Real	12	0. s X	0.
118	Force	#9	(kips)	Real	12	0. ≤ X	0.
119	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
120	Force	#10	(kips)	Real	12	0. ≤ X	0.
121-124	Unused a	t this t	ime				

Bottom Impact Limiter Curve for a 30-Degree Impact

Bottom Impact Limiter Curve for a 45-Degree Impact

Record	Descript	ion		Type	Length	Restrictions	Default
125	Is this limite	er defu	ned ?	List	1	Y or N	N
126	Deflection	#1	(in.)	Real	12	POSITIVE	0.
127	Force	#1	(kips)	Real	12	POSITIVE	0.
128	Deflection	#2	(in.)	Real	12	POSITIVE	0
129	Force	#2	(kips)	Real	12	POSITIVE	0.
130	Deflection	#3	(in.)	Real	12	0. < X	0.
131	Force	#3	(kips)	Real	12	0. < X	0.
132	Deflection	#4	(in.)	Real	12	0. s X	0
133	Force	#4	(kips)	Real	12	0. < X	0
134	Deflection	#5	(in.)	Real	12	0. s X	0.
135	Force	#5	(kips)	Real	12	0. s X	0.
136	Deflection	#6	(in.)	Real	12	0. < X	0.
137	Force	#6	(kips)	Real	12	0. s X	0
138	Deflection	#7	(in.)	Real	12	0. < X	0.
139	Force	#7	(kips)	Real	12	0. < X	0
130	Deflection	#8	(in.)	Real	12	0. < X	0
141	Force	#8	(kips)	Real	12	0. < X	0
142	Deflection	#9	(in.)	Real	12	0. s X	Û.
143	Force	#9	(kips)	Real	12	0. s X	0
144	Deflection	#10	(in.)	Real	12	$0. \leq X$	0
145	Force	#10	(kips)	Real	12	0. < X	0
146.140	a hasual (t this t	ime				

Program Reference

Bottom Impact Limiter Curve for a 60-Degree Impact

Record	Descript	tion		Type	Length	Restrictions	Default
150	Is this limits	er defi	ned ?	List	1	Y or N	N
151	Deflection	#1	(in.)	Real	12	POSITIVE	0.
152	Force	#1	(kips)	Rcal	12	POSITIVE	0.
153	Deflection	#2	(in.)	Real	12	POSITIVE	0.
154	Force	#2	(kips)	Real	12	POSITIVE	0.
155	Deflection	#3	(in.)	Real	12	0. s X	0.
156	Force	#3	(kips)	Real	12	0. ≤ X	0.
157	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
158	Force	#4	(kips)	Real	12	0. s X	0.
159	Deflection	#5	(in.)	Real	12	0. s X	0.
160	Force	#5	(kips)	Real	12	0. ≤ X	0.
161	Deflection	#6	(in.)	Real	12	0. ≤ X	Çi,
162	Force	#6	(kips)	Real	12	0. ≤ X	0.
163	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
164	Force	#7	(kips)	Real	12	0. ≤ X	0.
165	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
166	Force	#8	(kins)	Real	12	0. s X	0.
167	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
168	Force	#9	(kins)	Real	12	0, ≤ X	0.
169	Deflection	#10	(in.)	Real	12	$0. \le X$	υ.
170	Force	#10	(kips)	Real	12	0. ≤ X	0,
171-174	I loused a	this t	ime				

Bottom Impact Limiter Curve for a 75-Degree Impact

Record	Descript	tion		Type	Length	Restrictions	Default
175	Is this limite	er defi	ned ?	List	1	Y or N	N
176	Deflection	#1	(in.)	Real	12	POSITIVE	0.
177	Force	#1	(kips)	Real	12	POSITIVE	0.
178	Deflection	#2	(in.)	Real	12	POSITIVE	0.
179	Force	#2	(kips)	Real	12	POSITIVE	0.
180	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
181	Force	#3	(kips)	Real	12	0. ≤ X	0.
182	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
183	Force	#4	(kips)	Real	12	0. ≤ X	0.
184	Deflection	#5	(in.)	Real	12	0. ≤ X	0.
185	Force	#5	(kips)	P.eal	12	0. ≤ X	0.
186	Deflection	#6	(in.)	Real	12	0. ≤ X	0.
187	Force	#6	(kips)	Real	12	0. s X	0.
188	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
189	Force	#7	(kips)	Real	12	0. ≤ X	0.
190	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
191	Force	#8	(kips)	Real	12	0. ≤ X	0.
192	Deflection	#9	(in.)	Real	12	0. s X	0.
193	Force	#9	(kips)	Real	12	0. ≤ X	0.
194	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
195	Force	#10	(kips)	Real	12	0. s X	0.
106 100	I Innead a	t this	ima				

E-18 Version: 2a

Program Reference

Bottom Impact Limiter Curve for a 90-Degree Impact

Record	Descripti	ion		Туре	Length	Restrictions	Default
200	Is this limiter	r defi	ned ?	List	1	Y or N	N
201	Deflection	#1	(in.)	Real	12	POSITIVE	0.
202	Force	#1	(kips)	Real	12	POSITIVE	0.
203	Deflection#2		(in.)	Real	12	POSITIVE	0.
204	Force	#2	(kips)	Real	12	POSITIVE	0.
205	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
206	Force	#3	(kips)	Real	12	0. ≤ X	0.
207	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
208	Force	#4	(kips)	Real	12	0. s X	0.
209	Deflection	#5	(in.)	Real	12	0. s X	0.
210	Force	#5	(kips)	Real	12	0. s X	0.
211	Deflection	#6	(in.)	Real	12	0. s X	0.
212	Force	#6	(kips)	Real	12	0. ≤ X	0.
213	Deflection	#7	(in.)	Real	12	0, s X	0.
214	Force	#7	(kipr)	Real	12	0. s X	0.
215	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
216	Force	#8	(kips)	Real	12	0. s X	0.
217	Deflection	#9	(in.)	Reai	12	0. s X	0.
218	Force	#9	(kips)	Real	12	0. ≤ X	0.
219	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
220	Force	#10	(kips)	Real	12	0, s X	0.
221-224	Unused at	this t	ime				

Bottom Impact Limiter Curve for a C.G. Degree Impact

Record	l Descript	tion		Type	Length	Restrictions	Defauit
225	Is this limit	er defi	ned ?	List	1	Y or N	N
226	Deflection	#1	(in.)	Real	12	POSITIVE	0.
227	Force	#1	(kips)	Real	12	POSITIVE	0.
228	Deflection	#2	(in.)	Real	12	POSITIVE	0.
229	Force	#2	(kips)	Real	12	POSITIVE	0.
230	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
231	Force	#3	(kips)	Real	12	0. ≤ X	0.
232	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
233	Force	#4	(kips)	Real	12	0. s X	0.
234	Deflection	#5	(in.)	Real	12	0. s X	0.
235	Force	#5	(kips)	Real	12	0. ≤ X	0.
236	Deflection	#6	(in.)	Real	12	0. s X	0.
237	Force	#6	(kips)	Real	12	0. s X	0.
238	Deflection	#7	(in.)	Real	12	0, ≤ X	0.
239	Force	#7	(kips)	Real	12	0. s X	0.
230	Deflection	#8	(in.)	Real	12	0. s X	0.
241	Force	#8	(kips)	Real	12	0. ≤ X	0.
242	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
243	Force	#9	(kips)	Real	12	0. ≤ X	0.
244	Deflection	#10	(in.)	Real	12	0. s X	0.
245	Force	#10	(kips)	Real	12	0, ≤ X	0.
246-249	Unused at	this t	ime				

Program Reference

Top Impact Limiter Curve for a 0-Degree Impact

Record	Descrip	tion		Туре	Length	Restrictions	Default
250	Is this limit	er defi	ned ?	List	1	Y or N	N
251	Deflection	#1	(in.)	Real	12	POSITIVE	0.
252	Frace	#1	(kips)	Real	12	POSITIVE	0.
253	Deflection	#2	(in.)	Real	12	POSITIVE	0.
254	Force	#2	(kips)	Real	12	POSITIVE	0.
255	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
256	Force	#3	(kips)	Real	12	0. ≤ X	0.
257	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
258	Force	#4	(kips)	Real	12	0. ≤ X	0.
259	Deflection	#5	(in.)	Real	12	0. ≤ X	0.
260	Force	#5	(kips)	Real	12	0. ≤ X	0.
261	Deflection	#6	(in.)	Real	12	$0. \le X$	0.
262	Force	#6	(kips)	Real	12	0. s X	0.
263	Deflection	#7	(in.)	Real	12	0. s X	0.
264	Force	#7	(kips)	Real	12	0. s X	0.
265	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
266	Force	#8	(kins)	Real	1.2	0. s X	0.
267	Deflection	#9	(in.)	Real	12	0. s X	0.
268	Force	#9	(kips)	Real	12	0. s X	0.
269	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
270	Force	#10	(kips)	Real	12	0. ≤ X	0.
271.22	1 Ilouend a	t this t	ime				

Top Impact Limiter Curve for a 15-Degree Impact

Record	Descrip	tion		Type	Length	Restrictions	Default
275	Is this limit	er defi	ned ?	List	1	Y or N	N
276	Deflection	#1	(in.)	Real	12	POSITIVE	0.
277	Force	#1	(kips)	Real	12	POSITIVE	0.
278	Deflection	#2	(in.)	Real	12	POSITIVE	0.
279	Force	#2	(kips)	Real	12	POSITIVE	0.
280	Deflection	#3	(in.)	Real	12	0. ≤ X	0,
281	Force	#3	(kips)	Real	12	0. < X	0.
282	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
283	Force	#4	(kips)	Real	12	0. ≤ X	0,
284	Deflection	#5	(in.)	Real	12	0. ≤ X	0.
285	Force	#5	(kips)	Real	12	0. ≤ X	0.
286	Deflection	#6	(in.)	Real	12	0. s X	0.
287	Force	#6	(kips)	Real	12	0. ≤ X	0.
288	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
289	Force	#7	(kips)	Real	12	0. ≤ X	0.
290	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
291	Force	#8	(kips)	Real	12	0. s X	0.
292	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
293	Force	#9	(kips)	Real	12	0. ≤ X	0.
294	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
295	Force	#10	(kips)	Real	12	0. ≤ X	0.
206.200	I Inneed a	+ this +	ima				

E-20 Version: 2a

Program Reference

Top Impact Limiter Curve for a 30-Degree Impact

Recor	d Descrip	tion		Type	Length	Restrictions	Default
300	Is this limit	er defi	ned ?	List	1	Y or H	N
301	Deflection	#1	(in.)	Real	12	POSITIVE	0
302	Force	#1	(kips)	Real	12	POSITIVE	0
303	Deflection	#2	(in.)	Real	12	POSITIVE	0.
304	Force	#2	(kips)	Real	12	POSITIVE0.	
305	Deflection	#3	(in.)	Real	12	0. s X	0
306	Force	#3	(kips)	Real	12	0. s X	0.
307	Deflection	#4	(in.)	Real	12	0. s X	0
308	Force	#4	(kips)	Real	12	0. s X	0.
309	Deflection	#5	(in.)	Real	12	0. s X	0.
310	Force	#5	(kips)	Real	12	0. s X	0.
311	Deflection	#6	(in.)	Real	12	0. s X	0.
312	Force	#6	(kips)	Real	12	0. s X	0.
313	Deflection	#7	(in.)	Real	12	0. s X	0.
314	Force	#7	(kips)	Real	12	0. ≤ X	0.
315	Deflection	#8	(in.)	Real	12	0. s X	0.
316	Force	#8	(kips)	Real	12	0. ≤ X	0.
317	Deflection	#9	(in.)	Real	12	0. s X	0.
318	Force	#9	(kips)	Real	12	0. s X	0.
319	Deflection	#10	(in.)	Keal	12	0. s X	0.
320	Force	#10	(kips)	Rea.	12	$0, \leq X$	0.
321-32	4 Unused a	t this t	ima				

Top Impact Limiter Curve for a 65-Degree Impact

Record	Descript	lion		Type	Length	Restrictions	Default
325	Is this limite	er defi	noë e	List	1	Y or N	N
326	Deflection	#1	(m.)	Real	12	POSITIVE	0.
327	Force	#1	(kir	Real	12	POSITIVE	0.
328	Deflection	#2	(in.	Real	12	POSITIVE	0.
329	Force	#2	íki .	Real	12	POSITIVE	0.
330	Deflection	#3	(in.)	Real	12	0. s X	0.
331	Fosce	#3	(kips)	Real	12	0. s X	0.
332	Deflection	#4	(in.)	Real	12	0. s X	0.
333	Force	#4	(kips)	Real	12	0. ≤ X	0.
334	De + stion	#5	(in.)	Real	12	0. s X	0.
35	FL æ	#5	(kips)	Real	12	0. s X	0.
336	Deflection	#6	(in.)	Real	12	0. ≤ X	0.
337	sorce.	#6	(kips)	Real	12	0. ≤ X	0.
3.	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
339	Force	#7	(kips)	Real	12	0, ≤ X	0.
330	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
341	Force	#8	(kips)	Real	12	0. s X	0.
342	Deflection	#9	(in.)	Real	12	0. s X	0.
343	Force	#9	(kips)	Real	12	0. s X	0.
344	Deflection	#10	(in.)	Real	12	0. s X	0.
345	Force	#10	(kips)	Real	12	0. ≤ X	0.
146. 240	I Inneed at	this t	ime				

Version: 2a

E-21

Program Reference

Top Impact Limiter Curve for a 60-Degree Impact

Record	Descrip	tion		Type	Length	Restrictions	Default
350	Is this limit	er defi	ned ?	List	1	Y or N	N
351	Deflection	#1	(in.)	Real	12	POSITIVE	0.
352	Force	#1	(kips)	Real	12	POSITIVE	0.
353	Deflection	#2	(in.)	Real	12	POSITIVE	0.
354	Force	#2	(kips)	Real	12	POSITIVE	0.
355	Deflection	#3	(in.)	Real	12	0. s X	0.
356	Force	#3	(kips)	Real	12	0. s X	0.
357	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
358	Force	this	(kips)	Real	12	0. ≤ X	0.
359	Deflection	#5	(in.)	Real	12	0. s X	0.
360	Force	#5	(kips)	Real	12	0. ≤ X	0.
361	Deflection	#6	(in.)	Real	12	0. ≤ X	0.
362	Force	#6	(kips)	Real	12	0. s X	0.
363	De/lection	#7	(in.)	Real	12	0, ≤ X	0.
364	Frace	#7	(kips)	Real	12	0. s X	0.
365	Deflection	#8	(in.)	Real	12	0. s X	0.
366	Force	#8	(kips)	Real	12	0. ≤ X	0.
367	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
368	Force	#9	(kips)	Real	12	0. ≤ X	0.
365	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
370	Force	#10	(kips)	Real	12	0. s X	0.
371-374	Linused a	t this t	ime				

Top Impact Limiter Curve for a 75-Degree Impact

Record	Descrip	tion		Type	Length	Restrictions	Default
375	Is this limit	ter def	ined ?	List	1	Y or N	N
376	Deflection	#1	(in.)	Real	12	POSITIVE	0.
377	Force	#1	(kips)	Real	12	POSITIVE	0.
378	Deflection	#2	(in.)	Real	12	POSITIVE	0.
379	Force	#2	(kips)	Real	12	POSITIVE	0.
380	Deflection	#3	(in.)	Real	12	0. s X	0.
381	Force	#3	(kips)	Real	12	0. ≤ X	0.
382	Deflection	#4	(in.)	Real	12	0. ≤ X	0.
383	Force	#4	(kips)	Real	12	0. ≤ X	0.
384	Deflection	#3	(in.)	Real	12	0. ≤ X	0.
385	Force	#5	(kips)	Real	12	0. ≤ X	0.
386	Deflection	#6	(in.)	Real	12	0. ≤ X	0.
387	Force	#6	(kips)	Real	12	0. ≤ X	0.
388	Deflection	#7	(in.)	Real	12	0. ≤ X	0.
389	Force	#7	(kips)	Real	12	0. ≤ X	0.
390	Deflection	#8	(in.)	Real	12	0. ≤ X	0.
391	Force	#8	(kips)	Real	12	0. ≤ X	0.
392	Deflection	#9	(in.)	Real	12	0. ≤ X	0.
393	Force	#9	(kips)	Real	12	0. ≤ X	0.
394	Deflection	#10	(in.)	Real	12	0. ≤ X	0.
395	Force	#1C	(kips)	Real	12	0. ≤ X	0.
206 200	Linused a	at this	time				

E-22 Version: 2a

Program Reference

1	OD I	mpact	Limiter 4	Curve	for a	90-1	legree]	Impaci
							and the second sec	a construction of the second second

Record	Descrip	tion		Type	Length	Restrictions	Default
400	Is this limit	ter de	fined ?	List	1	Y or N	N
401	Deflection	#1	(in.)	Real	12	POSITIVE	0
402	Force	#1	(kips)	Real	12	POSITIVE	0
403	Deflection	#2	(in.)	Real	12	POSITIVE	0
404	Force	#2	(kips)	Real	12	POSITIVE	0
405	Deflection	#3	(in.)	Real	12	0. < X	0
406	Fune	#3	(kips)	Real	12	0. s X	0.
407	Deflection	#4	(in.)	Real	12	0. ≤ X	0
408	Force	#4	(kips)	Real	12	0. s X	0
409	Deflection	#5	(in.)	Real	12	0. s X	0
410	Force	#5	(kips)	Real	12	0. ≤ X	0.
411	Deflection	#6	(in.)	Real	12	0. s X	0
412	Force	#6	(kips)	Real	12	0. s X	0
413	Deflection	#7	(in.)	Real	12	0. s X	0
414	Force	#7	(kips)	Real	12	0. s X	0
415	Deflection	#8	(in.)	Real	12	0. s X	0
416	Force	#8	(kips)	Real	12	0. s X	0
417	Deflection	#9	(in.)	Real	12	0. s X	0
418	Force	#9	(kips)	Real	12	0. < X	0
419	Deflection	#10	(in.)	Real	12	0. < X	0
420	Force	#10	(kips)	Real	12	0. s X	0
421-424	Unused a	a this	time			100 P	

Top Impact Limiter Curve for a C.G. Degree Impact

Record	d Descrip	tion		Type	Leng	th Restrictions	Default
425	Is this limit	ter de:	fined ?	List	1	Y or N	N
426	Deflection	#1	(in.)	Real	12	POSITIVE	0
427	Force	#1	(kips)	Real	12	POSITIVE	0
428	Deflection	#2	(in.)	Real	12	POSITIVE	0
429	Force	#2	(kips)	Real	12	POSITIVE	6
430	Deflection	#3	(in.)	Real	12	0. < X	0
431	Force	#3	(kips)	Real	12	0 < X	0.
.72	Deflection	#4	(in.)	Real	12	0. s X	0
435	Force	#4	(kips)	Real	12	0. s X	0
434	Deflection	#5	(in.)	Real	12	0. < X	0.
435	Force	#5	(kips)	Real	12	0. s X	0.
436	Deflection	#6	(ai.)	Real	12	0. < X	0
437	Force	#6	(kips)	Real	12	0. < X	0
438	Deflection	#7	(in.)	Real	12	0. s X	0
439	Force	#7	(kips)	Real	12	0. s X	0
430	Deflection	#8	(in.)	Real	12	0. < X	0
441	Force	#8	(kips)	Real	12	0 < X	0.
442	Deflection	#9	(in.)	Real	12	$0 \le X$	0
443	Force	#9	(kips)	Real	12	0 < X	0.
444	Deflection	#10	(in.)	Real	12	0 < X	0.
445	Force	#10	(kips)	Real	12	0 < X	0
446-450) Unused a	it this	time		1.00	N. 9 /2	

Program Reference

Finite Element Mesh Node Database

 Purpose:
 Contains all Finite Element mesh nodes, all boundary specifications

 Used by:
 TOPAZ, SAPRESS

 Created by:
 MSHDSP

 Record Length:
 65

NOTES:

- 1. Node/element lists are defined by number of first node/element, number of additional nodes/elements, and increment between nodes/elements.
- 2. Surface segment lists are defined by first node pair, number of additional segments and increment between node p 3.
- Slideline surfaces defined by first node, last node, and increment between node identified by positive length of list. Slideline surfaces defined by list of nodes, separated by commas identified by negative length of list.
- 4. FORTRAN read/write format for each data item follows the description.

Header

Record	Description (formal)	
1	Scans Id. 'Scans geo'	[9a1]
2	Title	[05a]]
3	Date of Mesh Generation	[9a1]
4	Time of Mesh Generation	[9a1]
5	Geometry DB Basic Dimensions Filename	[12a1]

6-10 Unused at this time

Node Control Data

Record	Description [formal]	10 (States and States
11	Number of Nodes (thermal)	[10]
12	Number of Nodes (stress)	[16]

13-21 Unused at this time

Program Reference

Slide Line Control Data Data

Record	Description [format]	
2.2	Number of Slidelines	[16]
23	Total Number of Slave Nodes	[16]
24	Total Number of Master Nodes	[16]
25	Number of Slave Nodes in Slideline 1	[16]
26	Number of Master Nodes in Slideline 1	[16]
26	Number of Slave Nodes in Slideline 2	[16]
28	Number of Master Nodes in Slideline 2	[16]

29 Unused at this time

Boundary and Initial Conditions Control Data Data

Description [format]	
Number of Elements with Heat Generation	Li61
Number of Nodes with Non-Zero Temperature Initial Conditions	(10)
Number of Nodes with Temperature Boundary Conditions	(16)
Number of Cavity Boundary Segments	(101)
Number of Outer Boundary Segments (Sections 2.3.4-Limiter)	(16)
Number of Outer Boundary Segments (Section 2-Limiter Ton)	(36)
Number of Outer Boundary Segments (Section 3-Limiter Side)	(i6)
Number of Outer Boundary Segments (Section 4-Limiter Bot)	[66]
Number of Outer Boundary Segments (Section 5-H2OIkt Side)	1663
Number of Outer Boundary Segments (Section 6-Limiter Bot, to shell)	List)
Number of Outer Boundary Segments (Sections 1-210-All Surf)	(16)
Number of Outer Boundary Segments (Sections 2->10-Copy Surf)	[20]
Number of Outer Boundary Segments (Sections 2-> 10-Red Surf)	[10]
Number of Outer Boundary Segments (Section 7.4' imiter side to one's)	10
Number of Outer Roundary Segments (Section 8-NSAVI top to chall)	[10]
Number of Outer Resindary Segments (Sections 0, NSAV1 (op)	(10)
Number of Outer Boundary Segments (Sections 10-Cask side)	(i6)
	Description [format] Number of Elements with Heat Generation Number of Nodes with Non-Zero Temperature Initial Conditions Number of Nodes with Temperature Boundary Conditions Number of Nodes with Temperature Boundary Conditions Number of Outer Boundary Segments Number of Outer Boundary Segments (Sections 2,3,4-Limiter) Number of Outer Boundary Segments (Section 2-Limiter Top) Number of Outer Boundary Segments (Section 3-Limiter Side) Number of Outer Boundary Segments (Section 4-Limiter Bot.) Number of Outer Boundary Segments (Section 5-H2OJkt. Side) Number of Outer Boundary Segments (Section 5-H2OJkt. Side) Number of Outer Boundary Segments (Sections 1->10-All Surf) Number of Outer Boundary Segments (Sections 2->10-Conv Surf) Number of Outer Boundary Segments (Sections 2->10-Rad Surf) Number of Outer Boundary Segments (Section 7-1.imiter side to cask) Number of Outer Boundary Segments (Section 8-NS/WJ top to shell) Number of Outer Boundary Segments (Section 8-NS/WJ top) Number of Outer Boundary Segments (Sections 9-NS/WJ top) Number of Outer Boundary Segments (Sections 10-Cask side)

47-50 Unused at this time

Slideline No. 1 Node Description

51 52 53	Description [format] First Slave Node Last Slave Node Increment between Slave Vodes	[i6] [i6] [i6]
55 56 57 58	First Master Node Last Slave Node Last Slave Node Increment between Master Nodes List of Master Nodes separated by commas	[65a] [i6] [i6] [65a]

Program Reference

Slideline No. 2 Node Description

Record	Description [format]	
59	First Slave Node	[16]
60	Last Slave Node	[16]
61	Increment between Slave Nodes	[16]
62	List of Slave Nodes separated by commas	[65a]
63	First Master Node	[16]
64	Last Slave Node	[16]
65	Increment between Master Nodes	[16]
66	List of Master Nodes separated by commas	[65a]

List of Elements With Heat Generation

Record	Description [format]	
67	First element	[16]
68	Number of additional element	[16]
69	Increment between elements	[16]

List of Nodes With Non-Zero Temperature Initial Conditions

Record	Description	[format]	
70	First node		[16]
71	Number of addition	nal nodes	[<i>i6</i>]
72	Increment between	nodes	[<i>i6</i>]

List of Nodes Temperature Boundary Conditions

Record	Description [formal]	
73	First node	[16]
74	Number of additional nodes	[16]
75	Increment between nodes	[16]

Cavity Boundary Surface Segments

Record	Description (formal)	
76	Node A of First Surface Segment	[16]
77	Node B of First Surface Segment	[16]
78	Number additional segments defined	[16]
79	Nodal increment between Node Pairs	[16]

Program Reference

Outer Boundary Surface Segments (Sections 2.3.4-Limiter)

[15] [16] [16] [16]

Record	Description [format]
80	Node A of First Surface Segment
81	Ne B of First Surface Segment
82	Nus. oer additional segments defined
83	Nodal increment between Node Pairs

Outer Boundary Surface Segments (Section 2-Limiter Top)

Record	Description [format]	
84	Node A of First Surface Segment	[16]
85	Node B of First Surface Segment	[16]
86	Number additional segments defined	[16]
87	Nodal increment between Node Pairs	[16]

Outer Boundary Surface Segments (Section 3-Limiter Side)

Record	Description [format]	
88	Node A of First Surface Segment	[16]
89	Node B of First Surface Segment	[16]
90	Number additional segments defined	[16]
91	Nodal increment between Node Pairs	[16]

Outer Boundary Surface Segments (Section 4-Limiter Bottom)

Record	Description [format]	
92	Node A of First Surface Segment	[10
93	Node B of First Surface Segment	Tit
94	Number additional segments defined	[it
95	Nodal increment between Node Pairs	lit

Outer Boundary Surface Segments (Section 5-Water Jacket Side)

[16] [16] [16] [16]

Record	Description [format]
96	Node A of First Surface Segment
97	Node B of First Surface Segment
98	Number additional segments defined
99	Nodal increment between Node Pairs

Outer Boundary Surface Segments (Section 6-Limiter Bot, to shell)

Record	Description []	[ormat]	
100	Two nodes senarated by	y a comma	[i3, 1x, i3]

Version: 2a E-27

Program Reference

List of Inner Boundary Nodes With Pressure Conditions

Record	Description [formal]	
101	First node	(16)
102	Number of additional nodes	(16
103	Increment between nodes	16

List of Outer Boundary Nodes With Pressure Conditions

Record	Description 1/c	ormat]	
104	First node		110
105	Number of additional no	odes	140
106	Increment between node	85	[10

Outer Boundary Surface Segments (Section 7-Limiter Side to Cask Top)

Record	Description	[Jormat]	
107	Two nodes separated	by a comma	[13, 1x, 13]

Outer Boundary Surface Segments (Section 8-NS/WJ Top to Shell)

Record	Description [format]	
108	Two nodes separated by a comma	[13, 1x, 13]

Outer Boundary Surface Segments (Section 9-NS/WJ Top)

Record	Description [format]	
109	Node A of First Surface Segment	(16
110	Node B of First Surface Segment	[16
111	Number additional segments defined	[16
112	Nodal increment between Node Pairs	[16

Outer Boundary Surface Segments (Section 10-Exposed Cask Side)

Record	Description [format]	
113	Node A of First Surface Segment	[16]
114	Node B of First Surface Segment	[16]
115	Number additional segments defined	[16]
116	Nodal increment b.tween Node Pairs	[16]
117-120	Unused	

Nodal Description

Record Description [format] 121 Node Coordinates (2 nodes per record for remainder of file)

> i x(i) y(i) i+1 x(i+1) y(i+1) (each record) format [(i4, 1p2e14.7, 1x, i4, 1p2e14.7)]

E-28

Program Reference

Finite Element Mesh Element Database

Contains all Finite Element mesh elements for Thermal and Stress analyses, and Purpose: contains names of materials for each cask component TOPAZ, SAPRESS

> 16] 16] 16] 8al Sal 8a." 8(21) (8a1) 8a1] (8a1) 8a1) (8al)

Used by: Created by: MSHDSP Record Length: 65

NOTES:

1. FORTRAN read/write format for each data item follows the description.

Header

lecord	Description [format]	
1 .	Scans Id. 'Scans geo'	(9a1)
2	Tide	[65a]]
3	Date of Mesh Generation	[9a7]
4	Time of Mesh Generation	[9a]]
5	Geometry DB Basic Dimensions Filename	[12a1]

6-10 Unused at this time

Node Control Data

ecord	Description (format)	
11	Number of Elements (stress) NELS	1
12	Number of Elements (thermal) NELT	
13	Number of Materials	
14	Material No. 1 ID Shell inner layer	
15	Material No. 2 ID Shell shield layer	
16	Material No. 3 ID Shell outer layer	
17	Material No. 4 ID End cap inner layer	
18	Material No. 5 ID End cap shield layer	
19	Material No. 6 ID End cap outer layer	
20	Material No. 7 ID Neutron shield	
21	Material No. 8 ID Water jacket	
22	Material No. 9 ID Impact limiter	

23-30 Unused at this time

E-29

Appendix E Program Reference

4-Node Elements For Thermal Analyses

Record	Description [formal]	
31	4-Node elements (2 per record)	[615 5x.615]

en(n) m(n) i(n) j(n) k(n) l(n) en(n+1) m(n+1) i(n+1) j(n+1) k(n+1) l(n+1)

9-Node Elements For Stress Analyses

Record	Description	(format)		
11	9-Node elements (1	per record)	. (1	115]

en(n) m(n) n1(n) n2(n) n3(n) n4/5) n5(n) n6(n) n7(n) n8(n) n9(n)

The start of 9-node elements (ii) is calculated as follows

ii = 31 + (NELT+1)/2

Program Reference

Material Database

Purpose: Contain: thermal/structural material properties MATCK, IMPACT, TOPAZ, SAPRESS, SAPINPT, DATACK EDITOR EDITOR word Length: 12

NOTE: Record types are as follows:

Real	-	Real Number
Int	10	Integer Number
Char	- 82	Character sering
List	. 62	Single Character which must match specific choices
Name	- 12	Value is selected from a file name list

Header

Record	Description Id	Туре	Length	Restrictions De Must be 'ACASK mat'	fault
31	Database name	Char	60		
6 / 8 9 10 11 12 13 14	File creation data File creation time Editor code name Editor version no. Editor compile date Material template file name	Char Char Char Char Char Char	8 8 3 8 12	Form 'mm/dd/yy' Form 'hh:mm:ss' Editor 2.1 Form 'mm/dd/yy' material.edt	
15 16 17	Data file status Page 1 mod date, PGACC, PGREQ Page 2 mod date, PGACC, PGREQ	Char Char Char	$\begin{array}{c}12\\8&1&1\\8&1&1\end{array}$	'Complete' or 'incomplete' Form 'mm/dd/yy AR' Form 'mm/d/yy AR'	

NOTE: See TEMPLATE for definition of PGACC & PGREQ

45	Page 30 mod date, PGACC, PGREQ	Char	811	Form 'mm/dd/yy AR'	
47 /	Material name	Char	24		(blank)
48 49 50	***Unused*** ***Unused*** ***Unused***				

Global Properties -- Impact and Temperature Radependent

Record 51 52 53 54 55 56	Description Density (lbm/in.**3) Dynamic Young's Modulus (psi) Dynamic Poisson's Ratio Dynamic Yield Stress (psi) Dynamic Plastic Modulus (psi) Dynamic Ultimate Stress (psi)	Type Real Real Real Real Real Real	Length 12 12 12 12 12 12 12 12	Restrictions Positive Positive .001≤X≤.499 0.≤X 0.≤X Yield stress ≤X	Default .1 .3 0. 0. 0.
--	---	--	--	--	---------------------------------------

E-31

Program Reference

Record	Description Dynamic Proportional Stress Limit (psi)	Type Real	Length 12	Restrictions Yield stress≥X	Default 0.
58	Dynamic plastic Stress-Strain parameter de (psi)*	Real	12	0. ≤X	0.
59	Dynamic plastic Stress-Strain parameter m*	Real	12	0.≲X	0.
61	Melt Temperature (F)	Real	12	-459. <x< td=""><td>10000.</td></x<>	10000.
62	Heat of Fusion (Btu/lbm)	Real	12	Positive	1.
63	Internal heat generation (Btu/in.**3 min)	Real	12	$0.\leq X$	0.
64	sst. Dougedess				
65	Material type	Int	1	x = 3	3.
1.6	Number of temperatures	Int	1	1 <x<8< td=""><td>1.</td></x<8<>	1.
67	***I micode**				
68	***I mused***				
60	***I intender*				
70	***Unused***				
Tempera	ature-Dependent, Properties				
Record	Description	Type	Length	Restrictions	Default
71	Temperature 1 (F)	Real	12	-459.sX	0.
72	Young's Modulus (psi)	Real	12	Positive	1.
73	Poisson's Ratio	Real	12	.001≤X≤.499	.3
74	Coefficient of thermal expansion (in./in.F)	Real	12		0.
75	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1.
76	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1.
77	Thermal emissivity for radiation	Real	12	$0.\leq X \leq 1.$	1.
78	***[]nused***				
70	***1 jnused***				
80	***Unused***				
81	Temperature 2(F)	Real	12	-459.≤X	0.
82	Young's Modulus (psi)	Real	12	Positive	1.
83	Poisson's Ratio	Real	12	$.001 \le X \le .499$.3
84	Coefficient of thermal expansion (in./in.F)	Real	12		0.
85	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1,
86	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1.
87	Thermal emissivity for radiation	Real	12	$0.\leq X \leq 1$.	1.
88	***Unusod***				
89	***Unused***				
90	***Unused***				
91	Temperature 3 (F)	Real	12	-459.≥X	0.
92	Young's Modulus (psi)	Real	12	Positive	1.
93	Poisson's Ratio	Real	12	.001≤X≤.499	.3
94	Coefficient of thermal expansion (in./in.F)	Real	12		0.
95	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1
96	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1.
97	Thermal emissivity for radiation	Real	12	0.≲X≤1.	1.
98	***Unused***				
99	***Unused***				
10.000					

100 ***Unused***

 σ_{0} and m are parameters in the analytical expressions, $\sigma = \sigma_{0} \epsilon^{m}$ and $\sigma = \sigma_{0} \epsilon_{p}^{m} + \sigma_{p}$, which define the dynamic-stress relation of the stainless steel and lead, respectively, at stress levels above the proportional stress limit. σ is the total stress corresponding to the total strain ϵ ; ϵ_{p} is the plastic component of ϵ and σ_{p} is the proportional stress limit.

E-32 Version: 2a

Program Reference

Record	Description Temperature 4 (F)	Type	Length	Restrictions	Default
92	Young's Modelus (nei)	Pecal	12	-459.2A	
63	Poisson's Pario	Pical	12	Positive	
0.4	Coefficient of thermal exemption (in (in E)	Deal	12	.0015X5.499	-3
05	Thermal conductivity (Busin min E)	Pical	12	Sec. Labor	0.
06	Spacific heat conscint (Decilien E)	Real	12	Positive	1.
07	Thermal emissivity for a dist or	Meal	12	Positive	1.
90	***I Immed***	Real	12	0.\$X\$1.	lo -
00	***! Inuned***				
100	***Unused***				
101	Temperature 4 (F)	Real	12	.459 SX	0
102	Young's Modulus (psi)	Real	12	Positive	1
103	Poisson's Ratio	Real	12	001 < Y < 300	1
104	Coefficient of thermal expansion (in /in F)	Real	12	1661545455	6
105	Thermal conductivity (Bau/in min Fi	Real	12	Possial on	
106	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1
107	Thermal emissivity for radiation	Real	12	0 eXel	
108	***Unused***	A STORE	1.0	Viana).	1× -
109	***Unused***				
110	***Unused***				
111	Temperature 5 (F)	Real	12	-459 >X	0
112	Young's Modulus (psi)	Real	12	Positive	1
113	Poisson's Ratio	Real	12	001 <x<400< td=""><td>1</td></x<400<>	1
114	Coefficient of thermal expansion (in /in F)	Real	12	(Vert & de extension of the	0
115	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1
116	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1
117	Thermal emissivity for radiation	Real	12	0 <x<1< td=""><td>1</td></x<1<>	1
118	***Unused***			No. of Concession, Building of	
119	***Unused***				
120	***Unused***				
121	Temperature 6 (F)	Real	12	-459.>X	-0.
122	Young's Modulus (psi)	Real	12	Positive	1
123	Poisson's Ratio	Real	12	.001 <x< 499<="" td=""><td></td></x<>	
124	Coefficient of thermal expansion (in/in.F)	Real	12	the set of	0
125	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1.1.1
126	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1.1.1
127	Thermal emissivity for radiation	Real	12	$0 \le X \le 1$	10 A A A A A A A A A A A A A A A A A A A
128	***Unused***			***********	
129	***Unused***				
130	***Unused***				
131	Temperature 7 (F)	Real	12	-459.≥X	0.
183	Young's Modulus (psi)	Real	12	Positive	
133	Poisson's Ratio	Real	12	.001≤X≤.490	3
134	Coefficient of thermal expansion (in /in F)	Real	12		0
135	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1
136	Specific heat capacity (Btu/lbm F)	Real	12	Positive	1
137	Thermal emissivity for radiation	Real	12	$0.\le X \le 1$	1
138	***Unused***		2.2	A CONTRACT OF	
139	***Unused***				
140	***[]nused***				

41

]

20

a

Program Reference

Record	Description	Type	Length	Restrictions	Default
141	Temperature 8 (F)	Real	12	-459.≥X	0.
142	Young's Modulus (psi)	Real	12	Positive	1.
143	Poisson's Ratio	Real	12	.001≤X≤.499	.3
144	Coefficient of thermal expansion (in./in.F)	Real	12		0.
145	Thermal conductivity (Btu/in.min F)	Real	12	Positive	1.
146	Specific heat capacity (Btu/lbm F)	Real	12	Pos:	1.
147	Thermal emissivity for radiation	Real	12	0.≤X	1.
148	***Unused***				
149	asal inusedasa				

150 ***Unused***

Appendix E Program Reference

Impact Analysis Plot Database

 Purpose:
 Contains time history results for Impact Analysis

 Used by:
 PLTDYN

 Created by:
 IMPACT

 Record Length:
 36

NOTES:

1. FORTRAN read/write format for each data item follows the description.

Maximum number of nodal variables (NVAR) is 8.
 If NVAR=3, variables are:

 FORCE, (2) SHEAR, (3) MOMENT
 If NVAR=8, variables are:

 FORCE, (2) SHEAR, (3) MOMENT, (4) PERM. LEAD SLUMP
 AXIAL STRESS (inner shell), (6) AXIAL STRESS (outer shell)

(7) HOOP STRESS (inner shell), (8) HOOP STRESS (outer shell)

Header

Record	Description [format]	
- 1	Scans Id. 'Scans Imp'	[9a]]
2	Title	[36a]]
3	Title (continued)	(29a1)

Control Data

Record	Description (format)	
4	Number of time states (NTS)	[215 \$10.0.15]
	Number of nodes (NNODE)	
	Length of Cask (CLEN)	
	Number of nodal variables per node (NVAR)	

Plot Variable Data (repeat for each time state)

Record ii ii+1 ii+2	Description [format] Time, X(bottom),Y(bottom) Angle, X(top), Y(top) Node 1 Variables	(3f12.0) [3f12.0] [(3f12.0)]
jj	Node i Variables	[<i>(3f72.0)</i>]
kk	Node NNODE Variables	[(3f72.0)]

Start of time history for any node N: $jj \approx 7 + (N-1)^*((NVAR+2)/3)$ Increment between time states for node: $iac \approx 2 + NNODES^*((NVAR+2)/3)$
Program Reference

Thermal Analysis Plot Database

 Purpose:
 Contains Finite Element mesh elements for Thermal and Stress analyses. Also contains Thermal Analysis results (nodal temperatures)

 Used by:
 POSTPZ, SAPINPT

 Created by:
 TOPAZ

 Record Length:
 65

NOTES:

- 1. FORTRAN read/write format for each data item follows the description.
- 2. Number of states is 2 for steady state and is greater than 2 for transient.
- 3. Maximum number of model global variables is 5.
- 4. Maximum number of material global variables is 5 for each material.
- 5. Maximum number of nodal distribution variables is 5.
- 6. Global variables can be maximums, minimums, averages, etc.

Header

Record	Description [format]	
1	Scans Id. 'Scans tpp'	[9a1]
2	Title	[65a1]
3	Date of Analysis	(9a7)
4	Time of Analysis	[9a1]
5	Geometry DB Basic dimensions filename	[12a]]
6-10 Ur	used at this time	

Control Data

Description [formal]	
Number of Nodes (thermal)	[16] NODT
Number of Nodes (stress)	(16] NODS
Number of Elements (thermal)	[16] NELT
Number of Elements (stress)	[16] NELS
Number of Materials	[16] NMAT
Material No. 1 ID Shell inner layer	[a8]
Material No. 2 ID Shell shield layer	[a8]
Material No. 3 ID Shell outer layer	[a8]
Material No. 4 ID End cap inner layer	(a8)
Material No. 5 ID End cap shield layer	[a8]
Material No. 6 ID End cap outer layer	[a8]
Material No. 7 ID Neutron shield	[<i>a</i> 8]
Material No. 8 ID Water jacket	[a8]
Material No. 9 ID Impact limiter	[aS]
	Number of Nodes (thermal) Number of Nodes (thermal) Number of Nodes (stress) Number of Elements (thermal) Number of Elements (stress) Number of Materials Material No. 1 ID Shell inner layer Material No. 2 ID Shell shield layer Material No. 3 ID Shell outer layer Material No. 4 ID End cap inner layer Material No. 5 ID End cap shield layer Material No. 6 ID End cap outer layer Material No. 7 ID Neutron shield Material No. 8 ID Water jacket Material No. 9 ID Impact limiter

Program Reference

Control Data (continued)

lecord	Description [format]
25	Unused at this time
26	Number of Time States
27	Maximum time of analysis
28	Maximum temperature, state number, time
29	Minimum pressure, state number, time
	Maximum pressure, state number, time
30	Number of Model Global Variables
31	Number of Material Global Variables
32	Number of Nodal Distribution Variables
19.19	E Image of the state of the state of the state of the state of the

33 Unused at this time

Variable Descriptors

record	Description (formal)
34	Time Descriptor and units
35	Length Descriptor and units
36	Model Global Var 1 Descriptor/units
37	Model Global Var 2 Descriptor/units
38	Model Global Var 3 Descriptor/units
3.9	Model Global Var 4 Descriptor/units
40	Model Global Var 5 Descriptor/units
41	Material Global Var 1 Descriptor/units
42	Material Global Var 2 Descriptor/units
43	Material Global Vur 3 Descriptor/units
44	Material Global Var 4 Descriptor/units
45	Material Global Var 5 Descriptor/units
46	Nodal Variable 1 Descriptor/units
47	Nodal Variable 2 Descriptor/units
48	Nodal Variable 3 Descriptor/units
49	Nodal Variable 4 Descriptor/units
50	Nodal Variable 5 Descriptor/units

Nodal Description

 Record
 Description
 [format]

 51
 Node Coordinates (2 nodes per record) i x(i) y(i) i+1 x(i+1) y(i+1) (each record)

[i4,2f14.0,1x,i4,2f14.0]

(16) NTS (f12.0) (f12.0.16,f12.0)

[2(f12.0,i6f12.0)] (i6] NUMGV [i6] NUMMV (i6] NUMMV

(2a12)[2a12] (2a12)(2a12) (2a12)[2a12] (2a12) (2a12)[2a12] (2a/2)[2a12] [2a12][2a12] (2a12) [2a12] [2a]2)(2a/2)

4-Node Elements for Thermal Analyses

Record	4-Node elements (2 per record)	1615 5 - 6151
	$en(n) m(n) i(n) j(\nu) k(n) l(n)$	[060 (0 A (060)
	en(n+1) m(n+1) i(n+1) j The start of 4-node elements (ii) is calculated	(n+1) k(n+1) i(n+1) ted as follows:
	ii = 51 + (NODT+1)/2	

Version: 2a

. Ali

E-37

000

Program Reference

9-Node Elements for Thermal Stress Analyses

RecordDescription[format]jj9-Node elements1 element per record[116]en(n)m(n)n1(n)n2(n)n3(n)n4(n)n5(n)a6(n)n7(n)n8(n)n9(n)

The start of 9-node elements (jj) is calculated as follows: jj = ii + (NELT+1)/2

Plot Variable Data (repeat for each time state)

Record Description [formal] kk Time for state [f] 2.0]

> The start of state data is calculated as follows: kk = jj + NELS

- II NUMGV model global variables 1 per record [f12.0] Model Variable 1 = Maximum temperature Mod 1 Variable 2 = Maximum pressure
 - T e start of model global variables is calculated as follows: II = kk + I
- mm

NUMMV material global variables [5f12.0] Each material variable is entered for all materials Momber of records for each variable is (NMAT+4)/5

The start of material global variables is calculated as follows: $\lim_{k \to \infty} \infty kk + 1 + NUMGV$

- r.n NUMNV nodal variables 5 nodes per record [5f12.0] Nedal Variable 1 = Nodal temperature Nodal Variable 2 = Nodal flux in global X direction Nodal Variable 3 = Nodal flux in global Y direction
 - The start of a nodal variable is calculated as follows: Rn = kk + 1 + NUMGV + NL/MMV*(NMAT+4)/5 + (NV-1)*(NODT+4)/5 where NV is the nodal variable number

Length of state is calculated as follows: LEN = 1 + NUMGV + NUMMV*(NMAT+4)/5 - NUMNV*(NODT+4)/5

Program Reference

Description of Editor Templates

The SCANS editor uses a *template* to describe the editor pages and how data values are saved in the data sets. The *template* is a *random access* ASCII file. It is divided into three sections: control information, page headers, and descriptions of each editor page. The record length for the *template* is 150. The format of the *template* and the function of *template* parameters are described below.

Control Information

lecord	Description (format)
1	Scans Id 'Scans edi' [9a]]
2	Name of the Template [65a1]
3	Date of last modification [20a]]
\$	RECTOT, PAGTOT, TRECL, MAXREC, RECLN [516]
	where RECTOT = Number of records in the template file
	PAGTOT = Number of editor pages
	TRECL = Template file record length (unused)
	MAXEEC » Number of records to create in data file
	PECT N a Path Classed layer
	KELLIN = Data me record length

5 FORTRAN read format for body of template [a127]

Page Headers

Record 6	Variable HDPGNO	Columns 1-3	Format 13	Comments Sequential page number (unused)
	PAGNUM	5-7	A3	Page number displayed with editor page
	PONAME	9-53	A45	Page identification line (end with))
	NPRECS	55-57	13	Number of records used to describe this page (If NPRECS<0, then this editor page is a copy of page LABS(NPRECS))
	PGACC	70	A1	Page access flag (reported in data file header) (Y=page always on, otherwise toggle A=on, N=off)
	PGREQ	72	A1	Required access : lag (reported in data file) (R=page must be accessed, O=optional access)
	CBYPGN	74-75	12	Page which has data which controls this page (0=this page not controlled by another)
	CBYRCN	77-78	12	Record on page CBYPON which controls this page
	CPON	80	A1	Character which defines page accessibility if record CBYRCN is character type and data is CPON
	IPON	82-83	12	Number which defines page accessibility if record CBYRCN is integer type and data > IPON
	GRCOFF	85-87	13	Global record offset in data file added to the data global record if page is copy (NPRECS<0)
	FL1OFF	89-91	13	1st default file data offset for copy pages
	FLIEXT	93-95	A3	1st default file extension to use FL1OFF
	FL2OFF	89-91	13	2nd default file data offset for copy pages
	FL2EXT	93-95	A3	2nd default file extension to use FL2OFF

Repeat record 6 for each editor page (PAGTOT)

Program Reference

Description of Editor Pages

Record	Variable	Columns	Format	Comments
11	NPG	1-2	12	Page number (reference only)
	NLINE	4-5	12	Description line number (reference only)
	GRBASE	6-9	13	Global record in data file for data item
				(Omdescription line on screen is comment,
	and so and			GRCOFF is added to GRBASE if page is copy)
	REQDAT	11	A1	Is this required data ? (must be filled in)
				(Y=yes, display cyan; N=no, display green)
	CNTRL	13	A1	Control flag for displaying rest of page
				If CNTRL=blank and DTYPE=C or L, then if
				data item matches CNTRL rest of page is avail.
	LROW	15-16	12	Row to display description (3 to 21)
	LCOL	18-19	12	Column to display description (0 to 65)
	LABEL	21-94	A74	Data item description (must end with \)
	DTYPE	96	A1	Data item type
				(blank) = comment, not a data item
				'c' = Character string
				'n' = Data item selected from name list
				"I' = Single character which must match list
				'i' = Integer number
				'r' = Real number
	DLEN	08.00	12	Length of data item field
	DROW	101-102	15	Pow for data item field (0-use [P(W/) /2.21)
	DCOL	104-105	12	Column for data item field (0.20)
	NUMCHE	107.108	4.2	Numeric data item validation requirement
	NUMERIA	10/-100	140	/ (black) - Ma shacking
				(blank) = No checking
				NO. = NO CRECKING
				GT = must be greater than NUMT
				LT = must be less than NUM1
				GE = must be greater than or equal to NUM1
				LE = must be less than or equal to NUM1
				'RG' = must be in range NUM1 to NUM2 inclusive
				'PS' = must be positive
				'ER' = must be even and in range NUM1 to NUM2
				NOTE: NUM1 and NUM2 are contained in CHK
	CHK	110-130	var	For DTYPE=T' list of appropriate characters
				(end list with a blank character)
				For DTYPE='i' or 'r' NUM1 and NUM2 are in CHK
				READ (CHK, 'f10.0,1x,f10.0') NUM1,NUM2
				For DTYPE='n' mask for file names (i.e. '*.mat')
	DFLT	131-145	var	For DTYPE='c', T or 'n' default characters
				For DTYPE='i' or 'r' numeric default is in CHK
				READ (CHK, '10.0') RDVAL
	DFLTRC	147-150	14	Record in default data file to find default value
				0 = default is specified as DFLT in template
				>0 = default data file name is in DFLT and
				DELTRC is record number in default data file
				and an and the second manners in avenue table the

Repeat record ii for each line describing the editor page (NPRECS) Repeat the set of records for each editor page (PAGTOT)

	1	đ	8			2
	4					
	ß					
	围					
	٦					
		-	а,	2	28	e

Basic Geometry Template

Program Reference

Version: 2a E-4

•	1 8 102	13 G Maximum normal operating pressure (psin))	r 12	58 RC 0.	2000	14.7		
	3 9 110	15 O Temperature defining stress free condition (deg.7))	r 12	58 RG -100	300	70	in in	
6.1	3 10 0	17 B (Include the following to define 2-D finite-element mesh))						
3	3 11 0	18 0 (Rech divisions much be event)						
	3 12 102	20 0 Number of mesh divisions along cavity inner radius)	1.2	58 F# 2.	20.			
	3 13 104	21 8 Number of mesh divisions along cavity half length	1.2	58 69 2.	40			
	4 1 111	3 0 Sheli configuration)	1.1	36 51		5	0	
	4 2 0	4 0 (Sesolid, Lelaminated)					0	
	4 3 112	6 0 Fep end cap configuration\	1.1	36 51			6	
	4 4 5	7 0 (S=solid t=laminated)					0	
	6 5 113	0 0 Rotton end cap configuration)		36 51				
	4 6 0	10 0 (S=solid, L=Laminated)						20
	5 7 116	13 0 is top impact limiter present? (Y/W1)	8.1	55 YN				8
	4 8 115	15 0 is Bottom impact limiter present? [Y/W]\	1.1	55 TH			0.2	5
	4 9 116	17 0 is Neutron shield / water jacket present? [Y/N])	1.1	55 TN				~
	5 1 121 R	3 0 Shell thickness (in.))	r 12	32 RG .001	2000.	0.		6. 6
	5 2 122	5 0 Shell material name\	n 8	32 *.stm		\$\$304	0.5	0
	5 3 0	10 0 (Include the following to define 2-D finite-element mesh)					0	3
	5 4 0	11 0 (Mesh divisions must be even)\					0	0
	5 5 123	13 O Number of mesh divisions through shells	6 Z	46 ER 2.	10.	4.	0 -	7
	6 1 124 R	3 0 Shell inner løyer thickness (in.)\	r 12	52 RG 0.	2000.	0.	0	
	6 2 134	4 0 Additional thickness at end cap interface (in.)\	r 12	52 RG 0.	2000.	0.	0	a."
	6 3 125	5 0 Shell inner layer material name\	n 8	52 *.stm		\$\$394	0 3	i i
	6 4 127 R	7 0 Shell shield layer thickness (in.)	+ 12	52 RG 0.	2000.	0.	2 7	5
	6 5 126 R	8 G Shell shield length (in.)	r 12	52 RG 0.	2000.	0.	0	22
	6 6 129	9 0 Shell shie'd layer material name\	n 8	52 *.shm		LEAD	0	0
	6 7 131 R	11 0 Shell outer layer thickness (in.)	r 12	52 RG .001	2009.	Ø.,	0	
	6 8 135	12 0 Additional thickness at end cap interface (in.)\	r 12	52 RG 0.	2000.	0.	0.	s 1 1 .
	6 9 132	13 0 Shell outer layer material name\	n 8	52 *.stm		\$5304	0	0
	6 10 0	16 0 (Include the following to define 2-D finite-element mesh))					0	
	6 11 0	17 0 (Mesh divisions must be even)\					0	12 24
	6 12 126	19 D Number of mesh divisions through shell inner layer;	1 2	62 ER 2.	10.	2.	0	0
	6 13 130	20 0 Number of mesh divisions through shell shield layer	1 2	62 ER 2.	10.	4.	0 T	
	6 14 133	21 0 Rumber of mesh divisions through shell outer layers	i 2	62 E# 2.	10.	2.	0	
	7 1 136 8	3 8 End cap thickness (in.)\	r 12	31 RG .001	2000.	0.	0	
	7 2 137	5 0 End cap material name\	n 8	31 *.stm		\$\$394	0	
	7 3 0	10 0 (Include the following to define Z-D finite-element mesh))						
	7 4 0	11 0 (Mesh divisions must be even)\					0	
	7 5 138	13 O Wumber of mesh divisions through end cap\	1 2 .	45 ER 2.	10.	- A.	0	
	7 6 0	19 0 Press F10 to copy data from other end cap (if it is SOLID))					0	
	8 1 139 R	3 0 End cap inner layer thickness (in)\	r 12	44 RG 0.	2000.	0.	0	
	8 2 140	4 0 End cap inner layer material name\	n 8	44. *.stm		\$5304	0	
	8 3 742 R	6 0 End cap shield layer thickness (in.)	r 12	44 RG 0.	2000.	0.	6	
	8 4 563 R	7 8 End cap shield layer radius (in.))	r 12	44 RG 0.	2000.	0.	0	
	8 5 144	8 0 End cap shield layer material name\	n 8	44. *.shm		LEAD		

0

Appendix E Program Reference R

E-42 Version: 2a

0

The last set of a second						
8 6 146 R	10 0 End cap outer layer thickness (in.)	r 12	44 RG .001	2000.	0.	0
8 7 147	11 0 End cap outer layer material name\	n 8	44 *.stm		\$\$304	0
880	13 D (Include the following to define 2-D finite-element mesh)\					0
890	14 0 (Mesh divisions must be even)\					0
8 10 141	16 0 Number of mesh divisions through end cap inner layers	i 2	61 ER 2.	10.	2.	0
8 11 145	17 0 Number of mesh divisions through end cap shield layer.	1.2	61 ER 2.	10.	4.	0
8 12 148	18 0 Number of mesh divisions through end cap outer layer\	1.2	61 ER 2.	10.	Ζ.	0
6 13 0	21 0 Press F10 to copy data from other end cap (if it is LAMINATED)\					6
11 1 169 R	3 6 Number of closure bolts	i Z	50 RG 1.	99.	0.	0
11 2 170 8	5 G Diameter of closure bol*s (in.)	+ 12	50 RG .091	10.	0.	0
11 3 768 8	7 0 Closure bolt circle radius (in.)	r 12	50 RG .001	2000.	0.	0
12 1 176 8	3 0 Meutron shield/waterjacket length (in.)\	r 12	52 RG 0.	2000.	0.	0
12 2 177 R	5 0 Neutron shield thickness (in.)	r 12	52 RG 0.	2000.	0.	0
12 3 178	6 0 Neutron shield material name	n 8	52 *.nsm		#20COWV	0
12 4 189 R	8 0 Water jack#t thickness (in,))	r 12	52 RG 0.	2000.	0.	0
12 5 181	9 0 Water jacket material name:	n 8	52 *.wjm		\$5304	0
12 6 0	14 8 (Include the following to define 2-D finite-element mesh)					0
12 7 179	16 D Number of mesh divisions through neutron shield).	i 2	55 RG 1.	9.	1. C	0
12 8 182	17 O Number of mesh divisions through water jacket)	÷ Z	55 RG 1.	9.	1.	0
15 1 186 R	3 0 Impact limiter radius (in.)	r 12	50 RG .001	2000.	0.	0
13 2 187 R	5 0 Impoct limiter center line thickness (in.))	+ 12	50 RG .001	2900.	0.	0
13 3 189 R	7 0 Impact limiter overhang thickness (in.)	r 12	50 RG G.	2000.	0.	.0
13 4 191	9 0 Impact limiter material name\	n 8	50 *.ilm		POLTFOAM	0
13 5 0	<pre>12 0 (Include the following to define 2-D finite-element mesh))</pre>					0
13 6 188	14 0 Humber of mesh divisions through limiter CL thickness\	1.5	63 RG 1.	10.	16. ·	0
13 7 190	16 0 Number o, mesh divisions through limiter overhang width\	i 2	63 RG 1.	10.	3.	0
13 8 0	20 O Press F18 to copy data from other impact limiter\					0
15 7 206	3 O Rumber of elements for 1-D impact models	5 2	47 RG 3.	20.	×.,	0
15 2 207	4 0 TOP Impact limiter weight (lbs)\	r 12	47 GE 0.		0.	0
15 3 208	> U BOITOM Impact limiter weight (ibs)\	+ 12	47 GE 0.		0.	0
12 4 0	6 0 (If omitted, weights are calculated based on volume and density)\					15
12 2 609 1	6 U Define impact model with user specified properties? [1/N]\	1.1	65 TN		N	0
10 0 0	V U WOTE - Weight of contents must be defined (Page 3))					0
15 7 0	10 0 No stress recovery is available for user defined casks)					0
15 8 210 K	<pre>11 > Shell (ranslational mass (ib-sec**2/in))</pre>	r 12	57 PS		-0.	10
13 9 211 8	12 > Shell rotetional mass (ib-sec**2-in))	r 12	57 PS		0.	.0
12 10 212 8	13 2 Shell Inside Length (in.)	r 12	57 PS		0.	0
15 17 213 8	14 > SHELL E-1 (10-10-2)	r 12	57 PS		0.,	0
15 18 200 0	12 2 Shell are (ID))	r 12	57 PS		0.	0
15 16 215 0	10 3 shell composite Poisson's Ratio\	r 12	57 PS		0.	0
15 16 213 R	1/ 5 Top end translational mass (ib-sec**2/in)\	r 12	57 PS		-0.	0
15 16 217 E	10 S Softee and translational mass (10-sec**2-16))	r 32	57 PS		0.	0
15 17 218 8	20 S Bottom and rotational man (ib - set (in))	r 12	57 PS		0.	0
15 18 210 9	21 5 Characteristic cross castion width (int)	r 12	57 PS		<i>a</i> .	0
the second second	·····································	r 12	77.00		- 60	100

Basic Geometry Template continued

Appendix E Program Reference

Version: 2a E-43

1				
*	16 1 221	3 0 Allow phase change? [T/N]\	L 1 57 YH	
fra.	16 2 222	5 0 Time between printed output (min.)\	r 12 57 RG 10. 360.	36.
4	16 3 223	6 0 Time between plotted output (min.)\	r 12 57 RG 2. 30.	5.
	16 4 224	8 0 Use variable time step? [Y/W]\	i 1 57 YN	Y
	16 5 225	10 0 Iteration convergence thierance	r 12 57 RG .001 .1	.001
<	16 6 226	11 0 Iteration relaxation parameter\	r 12 57 RG .3 1.	1.
ers	15 7 227	13 0 Maximum allowable time step for variable TS (min.)	r 12 57 RG 5. 30.	30.
0	16 8 228	14 O Maximum temperature change per time step (F)\	r 12 57 RG 25. 100.	100.
	16 9 229	15 O Time step modification factor for variable 15\	r 12 57 RG 2. 6.	2.
2	16 10 230	17 0 Fixed time step size for fixed TS (min.)\	+ 12 57 RG .25 5.	.5

Basic Geometry Template continued

Program Reference

Appendix

۲.

Scaris Let				
Template file for LINITED address				
05/05/86 at 4:47m by Michael Cachard				
56 17 150 450 12				
(bo,5x,14,2(1x at) 2(1x 12) 1x at 14 at 141 (3) 4				
10 Impact Limiter Unionation Constituention	1x, #14, 1x, 14)			
2 to Bottom Impact Limiter for 0 conces impact 1 24	ΥC			
3 1b Bottom Impact Limiter for 15 degree impact 1 20	TTC	0		
4 1c Bottom Impact Limiter for 10 degree impact 1 -2	X Y C	25		
5 1d Bottom Impact Limiter For 15 degree impact 1 -2	4 4 C	50		
6 le Bottom Impart Limiter for 60 degrae impact 1 -2	AAC	75		
7 1f Bottom Impact Limiter for 75 degree impact 4 -2	YYC	100		
8 10 Bottom Impact Limiter for OG degree Impact 1 -2	TTC	125		
9 1h Bottom Impact Limite - for C.C. impact 1 -2	440	150		
10 2a Top Impact Limiter for D degree impact	3 7 C	175		
11 2b Top Impact Limiter for 15 deares impact	TTC	200		
12 2c Top Impact Limiter for 10 degree impact	TTC	225		
13 2d Top Impact Limiter for 45 degree impact 1 -2	TTC	250		
14 2e Top Impact Limiter for 60 degree impact 3 -2	110	275		
15 2f Top Impact Limiter for 75 degree impact 1 -2	110	300		
16 2g Top Impact Limiter for 90 degree impact 1 -2	110	325		
17 2h Top Impact Limiter for C.G. impact 5 .2		350		
9 1 4 2 Select the slope of the inicerting onth for	Impact Clateron	3/3		
0 2 6 4 C Unloading slope is maximum slope of 11	impact vimiters)			
0 5 7 4 H No elastic recovery of import limited	miter curvel			
0 4 8 4 (Approximated by unloading slove of 5	times not about a	e an luis		
0 5 9 4 U User specified unloading slope)	comes max scope o	f curve}\		
0 6 48 U 11 3 Type of Impact Limiter Unloading)				
0 7 49 R 13 3 User specified unloading slope (kine/inchit)			50 UNC	
0 8 15 4 Unloading slope is KIPS of unloading per in	char alartic course	F 12	50 PS	0
1 1 3 0 Press F10 to copy Force/Deflection data for	ches elestic recov	ery\		
1 2 5 0 Impact angle is defined as follower sinc im	on enother impect i	ingle\		
1 3 6 0 FAD ON IM	part angle is D. t			
1 4 50 Y 8 0 Do you wish to define a Deflection/force cur	ue for this main t	internet in the		
1 5 10 13 You must define at least 2 deflection/farm	e nairel	tivel? 1 1	77 794	N .
1 6 11 6 Deflection #0 (in) .0 For	e #0 (kine) /			
1 7 51 R 12 4 Deflection #1 (in)	ce wo (wips)	n	1. A.	
1 8 52 R 12 45 Force #1 (kips))		x 12	27 PS	0.
1 9 53 R 13 4 Deflection #2 (in))		r 12	65 PS	0.
1 10 54 R 13 45 Force #2 (kips)\		r 12	ET PS	G.,
1 11 55 16 4 Deflection #3 (in)		r 12	03 PS	0.
1 12 56 14 45 Force #3 (kips)\			CT GE 0.	0_
1 13 57 15 4 Deflection #4 (ini)		F 12	0 56 0.	0

Impact Limiter Force-F. Jection Curves Template

Appendix E Program Reference

Program Reference

		ž	m	pa	ici	1	Li	m	ite	er Force-Deflection Curves Template continued	
0 9					6			0	0	•	
ý i	6 6	6	0.		ai .	9		0.	0.		
65 GE 0.	65 GF 0.	27 GE 0.	65 GE 0.	27 05 0.	00 GE 0.	KK 124 0.	27 05 0.	65 65 0.	27 6£ 0.	59 59	
r 12	r 12	r 12	r 12	r 12	1 16	21.2	r 12	r 12	r 12		
)
5 45 Force #4 (kips)\ 24 1 Datisotion #5 (int)	6 45 Force #5 (kips)	7 & Deflection 85 (in))	17 45 Force #6 (kips)\	8 4 Deflection #7 (in)\	0 42 POICE #/ (Kips)/	10 LS Forra #8 stincts	0 4 Deflection #9 (in))	D 45 Force #0 (kips))	1 & Deflection #10 (in)1	1 4,5 Force #10 (tips)	

E-46 Version: 2a

 1
 14
 58

 1
 15
 59

 1
 15
 59

 1
 16
 60

 1
 17
 61

 1
 17
 61

 1
 17
 61

 1
 17
 66

 1
 17
 66

 1
 17
 66

 1
 17
 66

 1
 17
 66

 1
 26
 65

 1
 27
 66

 1
 27
 66

 1
 27
 65

 1
 26
 67

 1
 27
 66

 1
 26
 67

 1
 26
 67

 1
 26
 67

 1
 26
 67

 1
 26
 67

 1
 26
 67

 1
 26
 67

 1
 26
 70

Program Reference

E-47

Version: 2a

ACAS	K mat							
Terry	late	for A	PICKEE Cash Canameru					
Rod	fied .	on 21	Mar 01 at 2-últen hv tavalet mob					
	20	12	163 150 12					
6	54, 14	,2(1)	.e1),2(1x,12),1x,e74,1x,e1,3(1x,12),1x,e2,1x,e21,1x,e14,1x,14)					
*	-	Mater	al tame and material density 1 2 1 8 0 0					
14	-	Inpec	L. Puncture, Buckling Anelysis Props 1, 12 7 8 9 0					
'n	-	Terryo	ature-Dependent Properties 1 2 7 8 0 0					
4	-	Tente	sture 1 Properties 1 6 M # 2 3 1					
24	4	Terpe	ature 2 Properties 1.4 w 8 5 1 2 10					
-0-	24	Tempe	sture 3 Properties 1 -4 R.R. 5 1 3 20					
-	. P.5	Tempe	ature & Properties 1.4 M # # 3 1 4 30					
60	ie .	Tempe	ature 5 Properties 1 -4 ## 3 1 5 40					
0	4.9	Tengoe	ature 6 Properties 1 -4 ## 3 7 6 50					
10	By	Tempe	sture 7 Propert.es 1 -6 ## 5 1 7 60					
11	49	Tentre T	ature 8 Properties 1 -4 # # 2 5 8 70					
12	19	Dumany	page for hidden properties 1, 11 x 0 0 0					
*	1 46	æ	4 0 Material name/	c 24	52			
	2 52		6 A Density (Ibm/in. **5))	21.12	20.25			
14	1 52		4 0 Empact Young's Modules (psi))	12. 1	54 57			
2	2 53	R.	5 0 lepact Poisson's Ratiol	- 12	42 BC 001	80	. *	
eu.	-		7 0 the following properties are used for puncture and bucklings					
N	2. 4		9 D Vield Stress (psi))	22	45 GE 0.		0.0	
14	\$ 25		0 0 Pleatic Redolus (psi))	121 -	55 年 6.		0.0	
N	6 56		1 0 Ultimate stress (psil)	21 -	\$5. 100 0		0.0	
-	*		3 0 1					
-	80		4 0 to and m define the stress-strain relation at stress levels!					
24	0		5 0 above the proportional stress limit according to [= [o = [= 0 =					
14	25 0		7 8 Propertional atress limit (psi))	+ 12	5 2 3		0.0	
1	1 58		8 0 to (psi))	1 12	5. 66. 67		0.0	
e-	5 28		9 0 ml	r 12	5. 26 0.		0.0	
-	1 66		4. 6 Number of temperature sets (max is 8)/	4	45 85.1.	é		
-	2 85		6 0 Material type (Only type 3 is available))	- 10	45 86 3.	añ.		
	12	84	4 0 Temperature (F)\	+ 12	45 62 -450.		0.0	
-9	22		6 0 Young's Modulus (psi))	1 12	5d 57		1	
-1	10		7 0 Poisson's Retiol	r 12	45 86 .001	1007	*1	
	7. 17		8 0 Coefficient of thermal expansion (in./in.f)	r 12	45		ŭ.	
4	5		0 0 Thermal conductivity (Stufin.min F)\	r 12	45 PS			
4	5 76		1 0 Specific heat capacity (Btu/Ibm F)/	r 12	K5 PS		4	
12	19 1		4 D Welt Temperature (F)\	r 12	45 55 -450.		10000	
12	28		5 0 Heat of Fusion (Btu/(bm))	1 12	54 57		£.	
12	2 63		6 0 Internal heat generation (Stu/in.**3 min)\	r 12	45 65 0.		.0	
12	22 3		7 3 Thermal emissivity for radiation's temp 1	21 1	45 86 6.	1.1		

Material Properties Template

6	12	5	87	8	0	Thermal	emissivity for radiation\	temp 2		12	45	RG	0.	2.	1.
1	12	-6	97	. 9	0	Thermal	emissivity for rediction)	temp 3	1.10	12	45	RG	0.	8.	1
	12	7	107	10	0	Thermal	emissivity for redistion\	temp 4		12	45	RG	0.	1.	ž.,
1	12	8	517	5.5	0	Thermal	emissivity for redistion	temp 5		12	45	RG	0.	1.	π
	12	9	127	12	0	Thermal	emissivity for radiation\	temp 6		12	45	86	0.	1.	1.
	12	10	137	13	0	Thermol	emissivity for radiation.	temp 7		12	45	RG	0.	1.	2.
	12	11	147	14	-0	Thermal	emissivity for redistion\	temp 8		12	45	RG	0.	1.	2.

Version, 2a

E-48

Program Reference

Appendix E

Material Properties Template continued

0000000

Program Reference

Data Set File Naming Conventions

SCANS data set files have 12 character names which specify the CASK ID, the analysis case, and the file type. File names are of the form:

Data Files

CCCC.TTT identifies the data type database:

BASE.GEI	-	Basic Geometry Database
BASE.CHK	=	Basic Geometry Data Check Output
LMTR.LMI	85	Limiter Force-Deflection Curves Database
LMTR.CHK	-	Limiter Force-Deflection Curves Data Check Output
DATA.FLG	85	Data Check Flags for Basic Geometry and Limiter Databases
NODE.GEO	÷	Finite Element Mesh Node Database
ELEM.GEO	-	Finite Element Mesh Element Database

Impact Analysis Files

CCCC.TTT identifies the analysis parameters and type and is of the form

HETDAAO

where the individual parameters are

Drop Height A=30 ft 1=1 ft 2=2 ft 3=3 ft 4=4 ft 5=5 ft \vdots 9=9 ft B=11 ft	Impact End T=Top B≈Bottom	Impact Type P=Primary only S=Primary with Secondary	Impaci Angle 0= 0 deg 1=15 deg 3=30 deg 4=45 deg 6=60 deg 7=75 deg 9=90 deg C=C.G. drop	Analysis Type QB=Quasi-Static (bonded) QU=Quasi-Static (unbonded) IB=Dynamic (bonde IU=Dynamic (unbot	Output Type O=Printable P=Plot file	
---	---------------------------------	--	---	---	---	--

Program Reference

C=12 ft : T=29 ft U=10 ft V=35 ft W=40 ft X=50 ft Y=60 ft Z=80 ft

Thermal Analysis Files

CCCC identifies the analysis case:

- T1RG = Cold Soak, Contents Heat, No Solar Effects
- T2RG = Cold Soak, No Contents Heat, No Solar Effects
- T3RG = Normal Cold, Contents Heat, No Solar Effects
- T4RG = Normal Cold, No Contents Heat, No Solar Effects
- T5RG = Normal Hot, Contents Heat, Solar Effects
- T6RG = Normal Hot, Contents Heat, No Solar Effects
- T7RG = Fire Accident, Contents Heat, No Solar Effects
- UACU = Customized thermal analysis case UA

TTT identifies the output type:

TPO == Printable output

 $\mathbf{TPP} = \mathbf{Plot} \text{ file for POSTPZ}$

Thermal Stress Analysis Files

CCCC identifies the analysis case:

- TIRG = Cold Soak, Contents Heat, No Solar Effects
- T2RG = Cold Soak, No Contents Heat, No Solar Effects
- T3RG = Normal Cold, Contents Heat, No Solar Effects
- T4RG = Normal Cold, No Contents Heat, No Solar Effects
- T5RG == Normal Hot, Contents Heat, Solar Effects
- T6RG = Normal Hot, Contents Heat, No Solar Effects
- T7RG = Fire Accident, Contents Heat, No Solar Effects

UACU = Customized thermal analysis case UA

TTT identifies the output type:

TSO = Printable output

Pressure Stress Analysis Files

CCCC identifies the internal and external pressure conditions and is of the form:

IIEE

* External Pressure

E-50 Version: 2a

Program Reference

Where the internal and external pressures are identified as follows:

Inte	rnal Pressure
MX=Maximum I	Normal Operating Pressure
Tn=Pressure from UA=Pressure from case UA	n Thermal case n m Customized Thermal

 $\begin{array}{l} TTT \text{ identifies the output type:} \\ PSO = \text{Printable output} \end{array}$

External Pressure

RP=Reduced pressure	(3.5 psia)
AP=Atmospheric pressure	(14.7 psia)
IP=Increased Pressure	(20.0 psia)
IM=Accident Immersion	(35.7 psia)

Appendix E Program Reference

NOTES:

E-52 Version: 2a

Volume 2

Impact Analysis Theory Manual

Introduction	. 1
Conventional Solution for Small Deformation and Small Rigid Body Motion	1
Large Rigid Body Rotations. Equation of Motion. Internal Force Vector {P} External Force Vector {P} Explicit Solution of Equation of Motion.	22266
Impact Code Development. Limiter Force-Deflection Representation Mass Modeling Translational Mass Rotational Mass. Stress Recovery Stress Recovery of the Cask Shell Stress Recovery of the End Caps. Bolt Stress Recov ., Theory	8 8 11 12 13 13 14 26
References	29

Appendix F

Contents of Additional Volumes

Volume 3, Rev. 1 Lead Slump in Impact Analysis Theory Manual and Verification of Impact Analysis

Introduction	1
Background	1
Objective	4
General Description of the Method of Analysis	5
Impact Analysis of A Cask With Bonded-Lead Assumption	5
Lead-Steel Interaction	12
Theoretical Preroquisites	15
Kinematics	15
Kinematics of Thin Steel Shells	15
Lead Kinematics	15
Strain Relationships Between the Lead and the Steel	16
Equilibrium Equations	17
Lead Equilibrium	17
Equilibrium of the Thin Steel Shells	18
Stress-Strain Relationships	19
Elastic Stress-Strain Relationships	19
Yield Condition of Lead	20
Plastic Stress-Strain Relationships of Lead	22
Formulation and Analysis of Lead Slump	24
Element Internal Stresses or Forces	24
Expression of Radial and Hoop Strains of Lead	
in Terms of Axial Strain	24
Axial Stress and Axial Force in the Lead	26
Axial Stress and Axial Force in the Steel Shells	26
Equations of Motion	27
Solution and Back Substitution Procedure	28
Boundary Conditions	29
Permanent Lead Slump	35
Verification of Impact Analysis Capabilities of SCANS	36
References	54
Appendix A: SCANS' Input for Verification Problems	55
Appendix B: Additional Comparison of SCANS Results	71

Volume 4 Thermal Analysis Theory Manual

Introduction	- 1
General Theory	2
Conduction of Heat in an Orthotronic Solid	5
Finite Element Formulation	2
Time Integration Scheme	2
Thermal Contact Decistance Access an	4
Interface (Slidelines)	1.1
Endering Padiation	11
Enclosure Radiation	15
Asperts of TODA?	
Paperts of TOPAL and a manufacture and a manufac	21
Bandwidth Minimization	21
Boundary Conditions	22
Bulk Fluid	24
Elepent Types	25
Energy Balances	25
Function Definitions	26
Heat Generation	27
Initial Conditions	27
Internal Boundary Elements	- 27
Material Properties	28
Mesh Generation	28
Nonlinear Analysis	29
Phase Change	29
Post Processing	30
Radiation in Enclosures	30
Slidelines - Thermal Contact Resistance	1
Across an Interface	31
Steady State Analysis	37
Thermal Stress Analysis	20
Transient Analysis	22
Unite	22
Innut Data Notes	32
input izata notesiananananananananananananananananananan	33
Interactive Controls	35
Examples	26
1 Finite Cylinder with Two Surface Temperatures	26
2 Slab with Non-linear Material Decomposition	20
3 Ordindar with Temperature and Converting Development	39
 Sympler with remperature and Convection Boundary Conditions 	42

Volume 4

Thermal Analysis Theory Manual Continued

Exam	ples (continued)	
4	. One-Dimensional Cylinder with Heat Generating Core	44
5	Finite Rod with Band Heating	47
6	Finite Cylinder with Strip Heating and Cooling	49
7	. Finite Hollow Cylinder with Inside Band Heating	51
8	. SCANS Case Normal Hot, Contents Heat, Solar Effects	53
9	SCANS Case Cold Soak, Contents Heat, No Solar Effects	. 1
Refer	**•••••••••••••••••••••••••••••••••••••	59

F-4

Volume 5

Thermal / Pressure Stress Analysis Theory Manual

Introduction	1
 Examples Unrestrained Ring with Uniform Temperature Increase Vertically Restrained Ring with Uniform Temperature Increase Radially Restrained Ring with Uniform Temperature Increase Completely Restrained Ring with Uniform Transperature Increase Long Cylinder with Linear Temperature Gradient Cask Thermal Stress Analysis Benchmarked with GEMINI Cylinder with Axial and Internal Pressure Cask Pressure Stress Analysis Benchmarked with GEMINI 	2 2 4 6 8 10 12 17 19
References	23

Volume 6 Buckling of Circular Cylindrical Shells Theory Manual

Introduction	1
Background	1
Objective	1
Approaches	1
Determination of Stress Conditions	9
Determination of Stress Constitutions	
Material Properties and Facture of Safety	11
Material Despartias	11
Malerial Properties	11
Factors of Salety	1.1
Analization of ACME Code Care N 284 to Shipping Carks	12
Application of ASME Code Case N-264 to Shipping Cases	12
Capacity Reduction Factors	10
Plasticity Reduction Factors for Carbon Steel Shells	14
Theoretical Elastic Buckling Stresses	10
Shell Buckling under Combined Loads	17
Elastic Buckling	18
Inelastic Buckling	19
Plasticity Reduction Factors for Stainless Steel Shells	20
Application of API Bulletin 2U to Shipping Casks	21
Capacity of Reduction Factors	21
Plasticity Reduction Factors for Carbon Steel Shells	22
Theoretical Elastic Buckling Stresses	23
Shell Buckling under Combined Loads	24
Application of Other Buckling Criteria to Shipping Casks	26
A vial Compression	26
A CME Code Subsections	26
PEDC Decommondations	27
Sarta Dechine	27
Elastic Buckling	- 20
Inelastic Buckling	20
External Pressure	20
ASME Code Subsections	29
SSRC Recommendations	29
Lateral Shear and Torsion	30
D. 11 . A shale of Thering Phinning Cooks	27
Bucking Analysis of Typical Shipping Casks	34
Elasuc Buckling Stresses	2.
Plasticity Reduction Factors	30
Inelastic Buckling Stresses	30
Comparison of Analytical and Experimental Axial Buckling Stresses	4
harden and the a manual has a manual manual month and the second of the second	

F-6

Version: 2a

Summary and Conclusions	56
References	57
Glossary	61

Volume 7

Puncture of Shipping Casks Theory Manual

Introduction Background Objective	$1 \\ 4$
Assessment of Cask Puncture by Tests Existing Test Data Effects of Edge Radius on Puncture Energy Statistical Analysis of Test Data	5 5 9
Assessment of Cask Puncture by Analysis. Methods of Analysis Finite Element Models Method of Analysis Mechanical Properties of Materials Failure Prediction Failure Prediction Based on Transverse Shear Stress (Method 1). Failure Prediction Based on Maximum Shear Stress (Method 2). Failure Prediction Based on Effective Stress (Method 3). Effects of Geometric Scaling. Effects of Backing Plate and Punch Material. Comparison of Test and Analysis Results.	15 16 20 21 24 24 26 30 30 43 45
Summary and Conclusions	50
References	52
Appendix A - Summary of Test Data	54

NACM 1182 3201, 3202	U.S. NUCLEAR REGULATORY COMMISS	ION 1 REPORT NUMBER Assigned by NRC Add Vol., Supp. Nev and Addendum Number, Harvel
	(See instructions on the reverse)	NUREG/CR-4554
TITLE AND SUBTITLE		UCID-20674
SCANS (Shipping Ca	CANS (Shipping Cask ANalysis System) A Microcomputer Based	
Hear's Manual to 1	nalysis System for Shipping Cask Design Review ser's Manual to Version 2a (Including Program Reference)	3 DATE REPORT PUBLISHED
vaer a minuter to i		February 1992
		4. FIN OR GRANT NUMBER
and the second		A0291
S. AUTHOR(S)		6. TYPE OF REPORT
M. A. Gerhard, D.	J. Trummer, G. L. Johnson, G. C. Mok	
		Technical
		7. PERIOD COVERED linclusive Dates
		3/15/39 - 5/31/92
PERFORMING ORGANIZATION name and mailing address.	- NAME AND ADDRESS III NRC, provide Division, Office of Region, U.S. Nuclear Regulation	y Commission, and mailing address, if contractor, pr
Livermore, CA 94	NAME AND ADDRESS (II NRC INC. Same a above in any second back	Olios as Basico 115 B
and mailing address.)	and a source of the second of the second and source of the second s	Office or Region, U.S. Nuclear Regulatory Commis
Division of Safeg	uards and Transportation	
Office of Nuclear	Material Safety and Safeguards	
U.S. Nuclear Regu	lacory Commission	
Washington, DC 2	1555	
10. SUPPLEMENTARY NOTES		
11 ABSTRACT (200 words or her)		
SCANS (S computer programs (LLNL) for evaluat to-use system that	hipping Cask ANalysis System) is a microcomp and databases developed at the Lawrence Livermo ing safety analysis reports on spent fuel shipping cash calculates the global response to impact loads, pres	outer-based system of re National Laboratory ks. SCANS is an easy- sure loads and thermal
conditions, providin	g reviewers with an independent check on analyses suf	mitted by licensees.
SCANS I- I		and the second sec
	and an mianagement of the second and have	
The system is comp display programs. descriptive data requ Federal Regulations Commission in 197	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers, is programs, and output it screens that contain lescribed in the Code of S. Nuclear Regulatory
The system is comp display programs, descriptive data requ Federal Regulations Commission in 197	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers, is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory
The system is comp display programs, descriptive data requ Federal Regulations Commission in 1977	assed on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers, is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory
The system is comp display programs, descriptive data requ Federal Regulations Commission in 197	assed on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory
The system is comp display programs, descriptive data requ Federal Regulations Commission in 1977	pased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory
The system is comp display programs. descriptive data requ Federal Regulations Commission in 1977 2 KEY WORDS/DESCRIPTORS // Microcomputer Pro Shirping Cask Structural Analys	assed on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory [12. AVAILABILITY STATEM Unlimited [14. SECURITY CLASSIFICAT (This Page)
The system is comp display programs. descriptive data requ Federal Regulations Commission in 197 22 KEY WORDS/DESCRIPTORS IN Microcomputer Pro Shirping Cask Structural Analys Impact Analysis	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory Unlimited 14. SECURITY CLASSIFICAT (The Page) Unclassified
The system is comp display programs. descriptive data requ Federal Regulations Commission in 1977 2 KEY WORDS/DESCRIPTORS IN Microcomputer Pro Shirping Cask Structural Analysis Impact Analysis Thermal Analysis	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory Unlimited 14. SECURITY CLASSIFICAT (This Page) Unclassified (This Page)
The system is comp display programs. descriptive data requ Federal Regulations Commission in 197 2 KEY WORDS/DESCRIPTORS IL Microcomputer Pro Shirping Cask Structural Analysis Impact Analysis Thermal Analysis	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory Unlimited 14. SECURITY CLASSIFICAT (This Page) Unclassified Unclassified
The system is comp display programs. descriptive data requ Federal Regulations Commission in 197 2. KEY WORDS/DESCRIPTORS IN Microcomputer Pro Shirping Cask Structural Analysis Impact Analysis Thermal Analysis	assed on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory 12. AVAILABILITY STATEM Unlimited 14. SECURITY CLASSIFICAT (This Page) Unclassified 15. NUMBER OF PAGES
The system is comp display programs. descriptive data requ Federal Regulations Commission in 1977 2 KEY WORDS/DESCRIPTORS // Microcomputer Pro Shinding Cask Structural Analysis Impact Analysis Thermal Analysis	ased on microcomputers compatible with the IBM-P osed of a series of menus, input programs, cask analys All data is entered through fill-in-the-blank input tests. Analysis options are based on regulatory cases of (1983) and Regulatory Guides published by the U and 1978.	C family of computers. is programs, and output it screens that contain lescribed in the Code of .S. Nuclear Regulatory Unlimited 14. SECURITY STATEM Unlimited 14. SECURITY CLASSIFICAT (This Page) Unclassified 15. NUMBER OF PAGES 16. PRICE

