ENTERGY OPERATIONS

WATERFORD 3

CORE OPERATING LIMITS REPORT

FOR CYCLE 8

REVISION 0

9511170002 951114 PDR ADDCK 05000382 P PDR

3

8

WATERFORD 3

1

CORE OPERATING LIMITS REPORT Cycle 8, REVISION 0

	INDEX	Page
I.	INTRODUCTION	3
П.	AFFECTED TECHNICAL SPECIFICATIONS	3
Ш.	CORE OPERATING LIMITS	4
IV.	METHODOLOGIES	7
V.	LIST OF FIGURES	8
VI.	LIST OF TABLES	18

WATERFORD 3

CORE OPERATING LIMITS REPORT Cycle 8, REVISION 0

I. INTRODUCTION

This CORE OPERATING LIMITS REPORT (COLR) has been prepared in accordance with the requirements of Waterford 3 Technical Specification 6.9.5 for Waterford 3 Cycle 8. The core operating limits have been developed using the NRC approved methodologies specified in Section IV. This is the initial issuance of the Cycle 8 COLR.

II. AFFECTED TECHNICAL SPECIFICATIONS

1)	3.1.1.1	Shutdown Margin - Any Full Length CEA Withdrawn
2)	3.1.1.2	Shutdown Margin - All Full Length CEA Fully Inserted
3)	3.1.1.3	Moderator Temperature Coefficient
4)	3.1.2.9	Boron Dilution
5)	3.1.3.1	Movable Control Assemblies - CEA Position
6)	3.1.3.6	Regulating CEA Insertion Limits
7)	3.1.3.7	Part Length CEA Insertion Limits
8)	3.2.1	Linear Heat Rate
9)	3.2.3	Azimuthal Power Tilt - Tq
10)	3.2.4	DNBR Margin
11)	3.2.7	Axial Shape Index
12)	3.9.1	Boron Concentration

III. CORE OPERATING LIMITS

The operating limits for the specifications listed are precented below:

1) 3.1.1.1 - Shutdown Margin - Any Full Length CEA Withdrawn

The SHUTDOWN MARGIN shall be greater than or equal to 5.15% $\Delta k/k$ when T_{avg} is greater than 200 °F or 2.0% $\Delta k/k$ when T_{avg} is less than or equal to 200 °F.

2) 3.1.1.2 - Shutdown Margin - All Full Length CEA Fully Inserted

The SHUTDOWN MARGIN shall be greater than or equal to that shown in Figure 1.

3) 3.1.1.3 - MODERATOR TEMPERATURE COEFFICIENT

The Moderator Temperature Coefficient (MTC) shall be within the region of acceptable operation of Figure 9.

4) 3.1.2.9 - BORON DILUTION

Limiting Condition for Operation

With one or both start-up channel high neutron flux alarms inoperable, do not operate the plant in the configurations prohibited by Table 1 through 5 for the current Mode.

Action

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 1 through 5.

Surveillance Requirements

Each required boron dilution alarm shall be adjusted to less than or equal to twice (2x) the existing neutron flux (cps) at the following frequencies:

- a. At least once per 5 hours if the reactor has been shut down less than 25 hours;
- b. At least once per 24 hours if the reactor has been shut down greater than or equal to 25 hours but less than 7 days;
- c. At least once per 7 days if the reactor the been shut down greater than or equal to 7 days.

5) 3.1.3.1 - MOVABLE CONTROL ASSEMBLIES - CEA POSITION

With one or more full-length or part-length CEAs trippable but misaligned from any other CEAs in its group by more than the Technical Specification 3.1.3.1 allowed value, operation in Modes 1 and 2 may continue, provided that core power is reduced in accordance with Figure 2.

6) 3.1.3.6 - REGULATING CEA INSERTION LIMITS

The regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits shown on Figure 3.

7) 3.1.3.7 - PART LENGTH CEA INSERTION LIMITS

The part length CEA group shall be limited to the insertion limits shown on Figure 4.

8) 3.2.1 - LINEAR HEAT RATE

The linear heat rate shall be maintained:

- a. Within the region of acceptable operation of Figure 5.
- b Within the region of acceptable operation of Figure 6, when COLSS is out of service.

9) 3.2.3 - AZIMUTHAL POWER TILT- T_a

The measured AZIMUTHAL POWER TILT shall be maintained ≤ 0.03 .

10) 3.2.4 - DNBR MARGIN

The DNBR limit shall be maintained by one of the following methods:

- a) When COLSS is in service and neither CEAC is operable: maintain COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by 13% RATED THERMAL POWER.
- b) When COLSS is out of service and at least one CEAC is operable: operate within the Region of Acceptable Operation shown on Figure 7, using any operable CPC channel.

c) When COLSS is out of service and neither CEAC is operable: operate within the Region of Acceptable Operation shown on Figure 8, using any operable CPC channel.

11) 3.2.7 - AXIAL SHAPE INDEX

The AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE

-0.22 \leq ASI \leq +0.27 for THERMAL POWERS \geq 70% of RATED THERMAL POWER -0.27 \leq ASI \leq +0.27 for THERMAL POWERS < 70% of RATED THERMAL POWER

COLSS Out of Service

-0.17 \leq ASI \leq +0.22 for THERMAL POWERS \geq 70% of RATED THERMAL POWER -0.22 \leq ASI \leq +0.22 for THERMAL POWERS < 70% of RATED THERMAL POWER

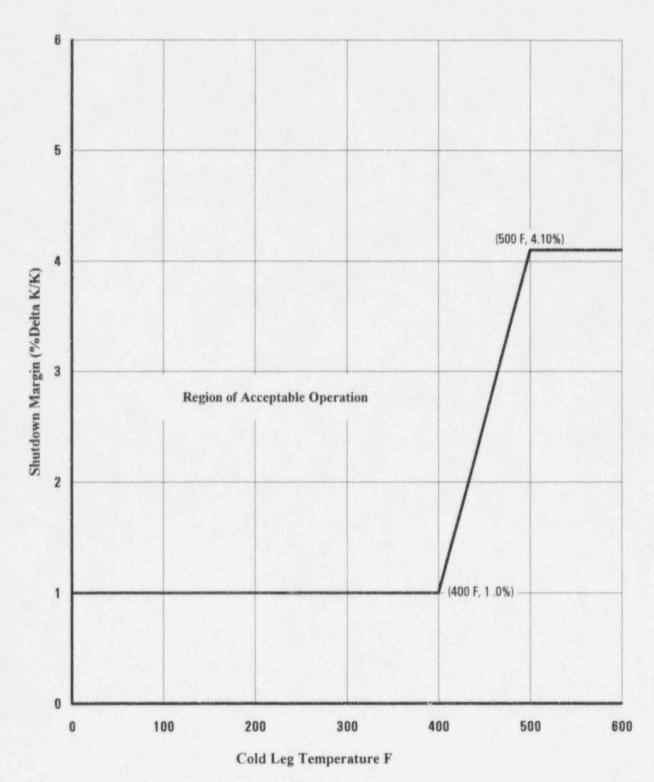
12) 3.9.1 - BORON CONCENTRATION

While in Mode 6, the RCS boron concentration shall be maintained sufficient to ensure that the more restrictive of the following reactivity conditions is met:

a. Either Keff of 0.95 or less, or

b. A boron concentration of greater than or equal to 1720 ppm.

IV. METHODOLOGI

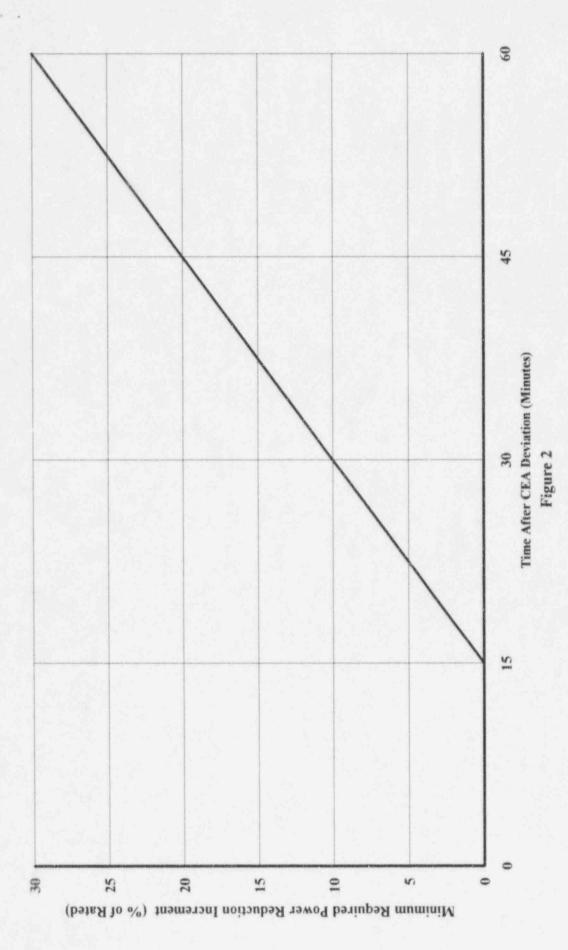

The analytical methods used to determine the core operating limits listed above are those previously reviewed and approved by the NRC in:

- "The ROCS and DIT Computer Codes for Nuclear Design," CENPD-266-P-A, April 1983; and "C-E Methodology for Core Designs Containing Gadolinia-Urania Burnable Absorber," CENPD-275-P-A, May 1988. Methodology for the limit on Shutdown Margins, MTC, and the Regulating CEA Insertion Limits.
- 2. "C-E Method for Control Element Assembly Ejection Analysis," CENPD-0190-A, January 1976. Methodology for the Regulating CEA Insertion Limits and Azimuthal Power Tilt.
- 3. "Modified Statistical Combination of Uncertainties" CEN-356(V)-P-A, May 1988, Methodology for the limits on the DNBR Margin and the ASI.
- "Calculative Methods for the C-E Large Break LOCA Calculation Model For The Analysis of C-E and <u>W</u> Designed NSSS," CENPD-132, Supplement 3-P-A, June 1985. Methodology for the limits on the MTC, Linear Heat Rate, Azimuthal Power Tilt and ASI.
- "Calculative Methods for the C-E Small Break LOCA Evaluation Model," CENPD-137-P, August 1974: Supplement 1, January 1977. Methodology for the limits on the MTC, Linear Heat Rate, Azimuthal Power Tilt and ASI.
- "CESEC Digital Simulation of a Combustion Engineering Nuclear Steam Supply System", CENPD-107, December 1981. Methodology for the limits on the Shutdown Margins, MTC, Movable Control Assemblies - CEA Position, Regulating CEA Insertion Limits, Part Length CEA Insertion Limits and Azimuthal Power Tilt.

V. LIST OF FIGURES

* *

Figure 1.	Shutdown Margin Versus Cold Leg temperature
Figure 2.	Required Power Reduction After CEA Deviation
Figure 3.	CEA Insertion Limits Versus Thermal Power
Figure 4.	Part Length CEA Insertion Limit Versus Thermal Power
Figure 5.	Allowable Peak Linear Heat Rate Versus Core Inlet temperature
Figure 6.	Allowable Peak Linear Heat Rate Versus Core Inlet temperature (COLSS Out of Service)
Figure 7.	DNBR Margin Operating Limit Based on Core Protection Calculators (COLSS Out of Service, CEAC Operable)
Figure 8.	DNBR Margin Operating Limit Based on Core Protection Calculators (COLSS Out of Service, Both CEACs Inoperable)
Figure 9.	Moderator Temperature Coefficient (MTC) Versus Core Power

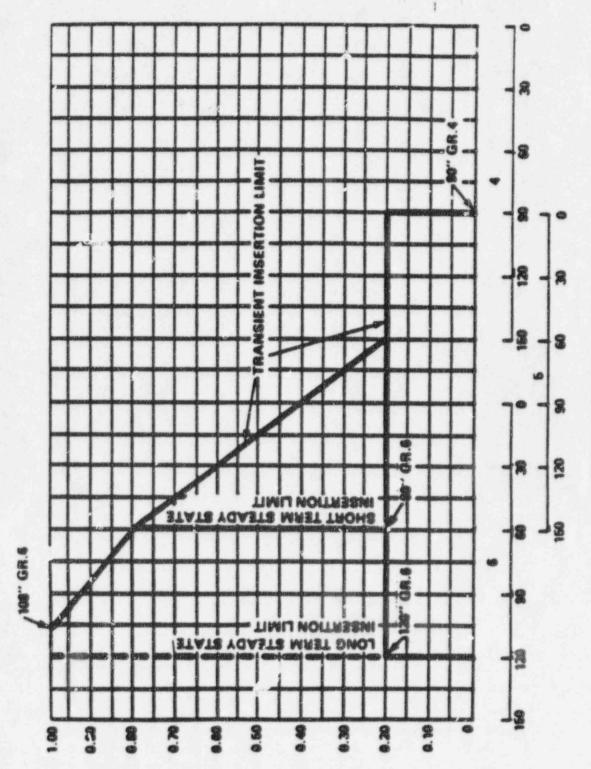

Shutdown Margin as a Function of Cold Leg Temperature

.

*

Figure 1

Required Power Reduction After Single CEA Deviation



10

FIGURE 3 CEA INSERTION LIMITS VS THERMAL POWER 11

0

REACTION OF ALTED THERMAL POWER

8 ¥

4. e.a.

٩,

3

0 9

1. 6

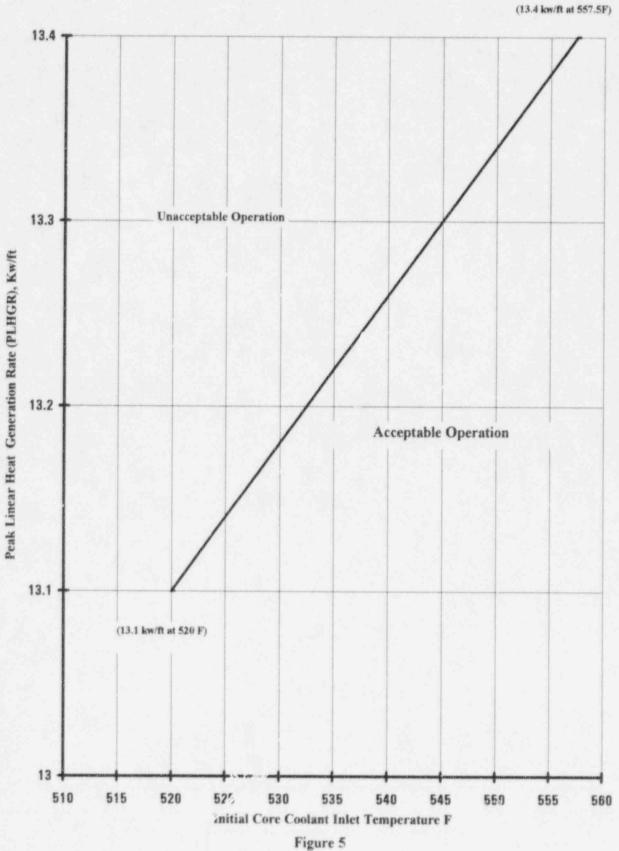
4

-

.

CEA WITHDRAWAL. INCHES

140 (sodonl 2.511) timil noitreanl Long Term Steady State 120 100 Part Longth CEA Position (Inches Withdrawn) Figure 4 80 Unrestricted Opertation Unacceptable Operation Restricted **Operation** 60 40 26 (22.5 inches) timil noitneant tneignert 100 90 80 10 80 50 40 30 20 10 0


Part Length CEA Insertion Limit vs Thermal Power

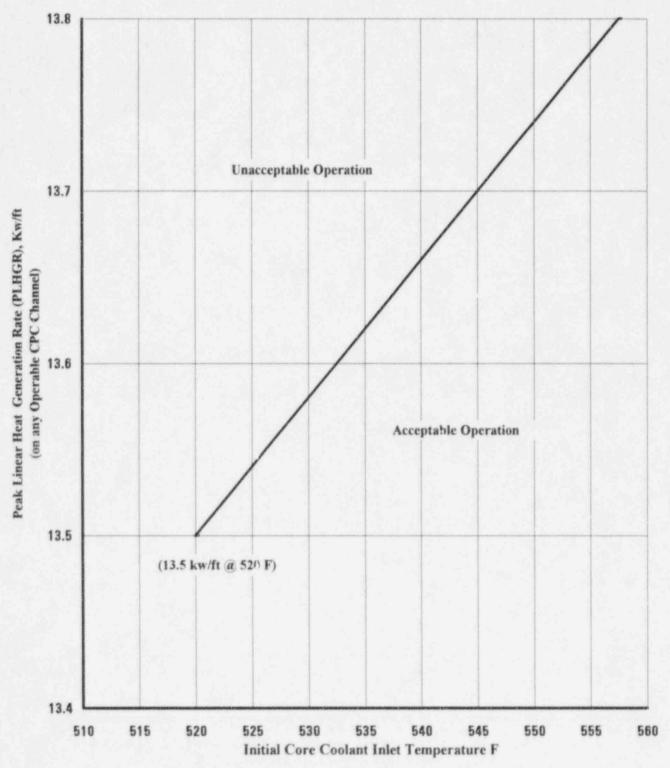
÷

÷.

(%) revver (%)

12

Allowable Peak Linear Heat Rate vs Tc


.

.

C

.

-

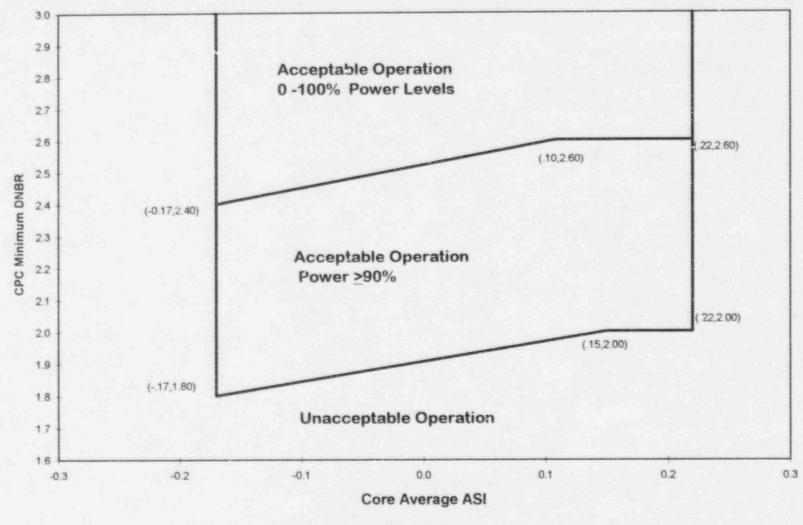
Allowable Peak Linear Heat Rate vs Tc For COLSS Out of Service

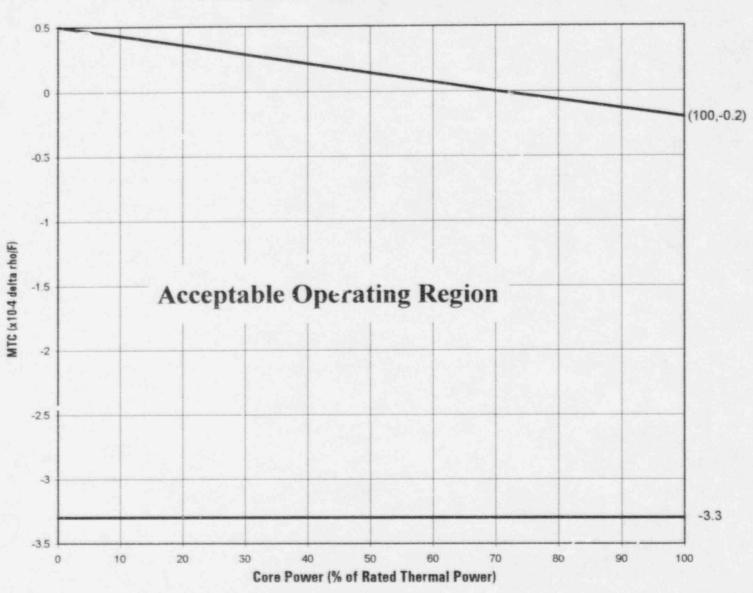
18

(13.8 kw/ft @ 557.5 F)

Figure 6

WATERFORD 3 CYCLE 8 COOS CEAC OPERABLE LIMIT LINES




Figure 7

CEAC INOFERABLE LIMIT LINES 3.2 3.1 **Acceptable Operation** 3.0 0 - 100% Power Levels 2.9 (.22,2.90) (.05,2.90) 2.8 CPC Minimum DNBR 2.7 (-0.17,2.60) 2.6 **Acceptable Operation** (22,2.50) 2.5 Power >90% (.11,2.50) 2.4 2.3 (-.17,2.20) 22 **Unacceptable Operation** 2.1 2.0 -03 -0.2 -0.1 0.0 0.1 0.2 0.3 Core Average ASI

WATERFORD 3 CYCLE 8 COOS

*

Figure 8

MTC as a Function of Core Power

Figure 9

List of Tables

- 1. Required Monitoring frequency for Backup Boron Dilution as a Function of Operating Charging Pumps and Plant Operating Modes for $K_{eff} > 0.98$.
- 2. Required Monitoring frequency for Backup Boron Dilution as a Function of Operating Charging Pumps and Plant Operating Modes for $0.98 \ge K_{eff} > 0.97$.
- 3. Required Monitoring frequency for Backup Boron Dilution as a Function of Operating Charging Pumps and Plant Operating Modes for $0.97 \ge K_{eff} \ge 0.96$.
- 4. Required Monitoring frequency for Backup Boron Dilution as a Function of Operating Charging Pumps and Plant Operating Modes for $0.96 \ge K_{eff} > 0.95$.
- 5. Required Monitoring frequency for Backup Boron Dilution as a Function of Operating Charging Pumps and Plant Operating Modes for $K_{eff} \le 0.95$.

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER-THAN 0.98

Keff >0.98

OPERATIONAL	Number of Operating Charging Pumps*					
MODE	0	1 2 3				
3	12 hours	0.75 hours Operation not allowed **				
4	12 hours	Operation not allowed **				
5 RCS filled	8 hours	Operation not allowed **				
¢ RCS partially drained	8 hours	Operation not allowed **				
6	Operation not allowed **					

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR K_{eff} GREATER-THAN 0.97 AND LESS THAN OR EQUAL TO 0.98

OPERATIONAL	Number of Operating Charging Pumps*			
MODE	0	1	2	3
3	12 hours	2.0 hours	0.5 hours	Operation not allowed**
4	12 hours	0.75 hours	Operation not allowed**	
5 RCS filled	8 hours	1.0 hours	Operation not allowed**	
5 RCS partially drained	8 hours	0.75 hours	Operation not allowed**	
6		Operation not allowed**		

 $0.98 \ge K_{eff} > 0.97$

⁶ Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

et 2

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER-THAN 0.96 AND LESS THAN OR EQUAL TO 0.97

OPERATIONAL	Number of Operating Charging Pumps*			
MODE	0	1	2	3
3	12 hours	3.0 hours	1.25 hours	0.5 hours
4	12 hours	1.5 hours	0.5 hours	Operation not allowed**
5 RCS filled	8 hours	1.5 hours	0.5 hours	Operation not allowed**
5 RCS partially drained	8 hours	0.75 hours	Operation not allowed**	
6		Operation not allowed**		

 $0.97 \ge K_{eff} > 0.96$

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER-THAN 0.95 AND LESS THAN OR EQUAL TO 0.96

OPERATIONAL	Number of Operating Charging Pumps*				
MODE	0	1	2	3	
3	12 hours	4.0 hours	2.0 hours	1.0 hours	
4	12 hours	2.25 hours	0.75 hours	Operation not allowed**	
5 RCS filled	8 hours	2.5 hours	0.75 hours	Operation not allowed**	
5 RCS partially drained	8 hours	2.0 hours	0.5 hours	Operation not allowed**	
6		Operation not allowed**			

 $0.96 \ge K_{eff} > 0.95$

Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

.....

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff LESS THAN OR EQUAL TO 0.95

Keff ≤0.95

OPERATIONAL	Number of Operating Charging Pumps*			
MODE	0	1	2	3
3	12 hours	5.0 hours	2.0 hours	1.0 hours
4	12 hours	3.0 hours	1.0 hours	0.5 hours
5 RCS filled	8 hours	3.0 hours	1.25 hours	0.5 hours
5 RCS partially drained	8 hours	2.75 hours	1.0 hours	Operation not allowed**
6	24 hours	2.25 hours	0.75 hours	Operation not allowed**

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.