Attachment 1 Millstone Nuclear Power Station, Unit No. 3 Proposed Technical Specification Changes Reactor Protection System and Engineered Safety Features Actuation System # List of the Pages Affects | - | | | | | | | |------|-----|-----|-----|------|--------------|--| | - 10 | | 200 | 66 | - 4 | A m | | | 307 | a | | 62: | - 10 | 8 :53 | | | 120 | 200 | | | -3 | | | 3/4 3-3 3/4 3-4 3/4 3-7 3/4 3-10 3/4 3-11 3/4 3-13 3/4 3-14 3/4 3-17 3/4 3-20 3/4 3-23 3/4 3-24 3/4 3-25 3/4 3-30 3/4 3-36 3/4 3-37 3/4 3-38 3/4 3-39 3/4 3-40 # REACTOR TRIP SYSTEM INSTRUMENTATION | LL STONE | FUNC | TIONAL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | APPLICABLE MODES | ACTION | |-----------|------|--|--|---|---|------------------|---------| | - UNIT 3 | 12. | Reactor Coolant FlowLow
a. Single Loop (Above P-8) | 3/loop in
each oper-
ating loop | 2/loop in
any oper-
ating loop | 2/loop in
each oper-
ating loop | 1 | 6 | | | | b. Two Loops (Above 9-7 and below P-8) | 3/loop in
each oper-
ating loop | 2/loop in
two oper-
ating loops | 2/loop
each oper-
ating loop | 1 | 6 | | 3/4 | 13. | Steam Generator Water
LevelLow-Low | 4/stm. gen.
in each oper-
ating stm.
gen. | 2/stm. gen.
in any oper-
ating stm.
gen. | 3/stm. gen.
each oper-
ating stm.
gen. | 1, 2 | 6 (1) | | 3-3 | 14. | Low Shaft SpeedReactor
Coolant Pumps
a. Four loop operation
b. Three loop operation | 4-1/pump
3-1/pump | 2 2 | 3 2 | 1** | 6 | | D | 15. | Turbine Trip a. Low Fluid Oil Pressure b. Turbine Stop Valve Closure | 3
4 | 2 4 | 2 4 | 1*** | 12
6 | | Amendment | 16. | Safety Injection Input
from ESF | 2 | 1 | 2 | 1, 2 | 13A | | No. | 17. | Reactor Trip System Interlocks
a. Intermediate Range
Neutron Flux, P-6 | Z | 1 | 2 | 2## | 8 | | 87 | | b. Low Power Reactor
Trips Block, P-7
P-10 Input | 4 | 2 | 3 | 1 | 8 | | | | P-13 Input | 2 | 1 | 2 | 1 | 8 | # TABLE 3.3-1 (Continued) # REACTOR TRIP SYSTEM INSTRUMENTATION | TINU - | FUNC | TIONAL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | APPLICABLE MODES | ACTION | |-----------|------|---------------------------------------|---|--|---------------------------------|--------------------|--------------| | ω | 17. | Reactor Trip System Interlocks | (Continued) | | | | | | | | c. Power Range Neutron
Flux, P-8 | 4 | 2 | 3 | 1 | 8 | | | | d. Power Range Neutron
Flux, P-9 | 4 | 2 | 3 | 1 | 8 | | 3/4 | | e. Power Range Neutron
Flux, P-10 | 4 | 2 | 3 | 1,2 | 8 | | 4 | 18. | Reactor Trip Breakers | 2 2 | 1 | 2 | 1, 2
3*, 4*, 5* | 10, 13
11 | | | 19. | Automatic Trip and Interlock
Logic | 2 2 | 1 | 2 2 | 1, 2
3*, 4*, 5* | 13A
11 | | Amendment | 20. | Three Loop Operation Bypass Circuitry | (1 switch per
loop in each
train) | (From different loop switches in bypass) | 8 | 1, 2 | 1 | | No. | 21. | Shutdown Margin Monitor | 2 | 0 | 2 | 30, 4, 5 | 5 | #### TABLE 3.3-1 (Continued) #### ACTION STATEMENTS (Continued) - ACTION 9 With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in at least HOT STANDBY within the next 6 hours. One channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1. - ACTION 10 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, be in at least HOT STANDBY within 6 hours; however, one channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1, provided the other channel is OPERABLE. - ACTION 11 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or open the Reactor Trip System breakers within the next hour. - ACTION 12 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied: - a. The inoperable channel is placed in the tripped condition within 6 hours, and - b. When the Minimum Channels OPERABLE requirement is met, the inoperable channel may be bypassed for up to 4 hours for reveillance testing of the Turbine Control Valves. - ACTION 13 With one of the diverse trip features (undervoltage or shunt trip attachments) inoperable, restore it to OPERABLE status within 48 hours or declare the breakr inoperable and apply ACTION 10. The breaker shall not be bypassed while one of the diverse trip features is inoperable except for the time required for performing maintenance to restore the breaker to OPERABLE status. - ACTION 13A With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable Channel to OPERABLE status within 6 hours or be in at least HOT STANDBY within the next 6 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.1.1, provided the other channel is operable. TABLE 4.3-1 REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | FUNC | CTIONAL UNIT | CHANNEL
CHECK | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP ACTUATING DEVICE OPERATIONAL TEST | ACTUATION
LOGIC TEST | MODES FOR
WHICH
SURVEILLANCE
IS REQUIRED | |------|---|---|--|--|--|-------------------------|---| | 1. | Manual Reactor Trip | N.A. | N.A. | N.A. | R(14) | N.A. | 1, 2, 3*, 4* | | 2. | Power Range, Neutron Flux
a. High Setpoint | S | D(2, 4),
M(3, 4),
Q(4, 6),
R(4, 5) | Q | N.A. | N.A. | 1, 2 | | | b. Low Setpoint | S | R(4) | S/U(1) | N.A. | N.A. | 1***, 2 | | 3. | Power Range, Neutron Flux,
High Positive Rate | N.A. | R(4) | Q | N.A. | N.A. | 1, 2 | | 4. | Power Range, Neutron Flux,
High Negative Rate | N.A. | R(4) | Q | N.A. | N.A. | 1, 2 | | 5. | Intermediate Range | S | R(4, 5) | S/U(1) | N.A. | N.A. | 1***, 2 | | 6. | Source Range, Neutron Flux | 5 | R(4, 5) | S/U(1),
Q(9) | N.A. | N.A. | 2**, 3, 4, | | 7. | Overtemperature AT | S | R | Q | N.A. | N.A. | 1, 2 | | 8. | Overpower AT | S | R | Q | N.A. | N.A. | 1, 2 | | 9. | Pressurizer PressureLow | S | R | Q(18) | N.A. | N.A. | 1 | | 10. | Pressurizer PressureHigh | S | R | Q(18) | N.A. | N.A. | 1, 2 | | 11. | Pressurizer Water LevelHigh | S | R | Q | N.A. | N.A. | 1 | | 12. | Reactor Coolant FlowLow | S | R | Q | N.A. | N.A. | 1 | | | 1.
2.
3.
4.
5.
6.
7.
8.
9.
10. | 2. Power Range, Neutron Flux a. High Setpoint b. Low Setpoint 3. Power Range, Neutron Flux, High Positive Rate 4. Power Range, Neutron Flux, High Negative Rate 5. Intermediate Range 6. Source Range, Neutron Flux 7. Overtemperature AT 8. Overpower AT 9. Pressurizer PressureLow 10. Pressurizer PressureHigh 11. Pressurizer Water LevelHigh | FUNCTIONAL UNIT 1. Manual Reactor Trip 2. Power Range, Neutron Flux a. High Setpoint 3. Power Range, Neutron Flux, High Positive Rate 4. Power Range, Neutron Flux, High Negative Rate 5. Intermediate Range 6. Source Range, Neutron Flux 7. Overtemperature AT 8. Overpower AT 9. Pressurizer PressureLow 10. Pressurizer Water LevelHigh S 11. Pressurizer Water LevelHigh S | FUNCTIONAL UNIT 1. Manual Reactor Trip N.A. N.A. 2. Power Range, Neutron Flux a. High Setpoint S. D(2, 4), M(3, 4), Q(4, 6), R(4, 5) R(4) 3. Power Range, Neutron Flux, High Positive Rate 4. Power Range, Neutron Flux, High Negative Rate S. R(4) 5. Intermediate Range S. R(4, 5) 6. Source Range, Neutron Flux S. R(4, 5) 7. Overtemperature AT S. R S. R 9. Pressurizer PressureLow S. R 10. Pressurizer PressureHigh S. R | FUNCTIONAL UNIT CHANNEL CHECK CHANNEL CALIBRATION CHANNEL TEST 1. Manual Reactor Trip N.A. N.A. N.A. 2. Power Range, Neutron Flux a. High Setpoint S D(2, 4), Q(4, 6), R(4, 5) Q(4, 6), R(4, 5) b. Low Setpoint S R(4) S/U(1) 3. Power Range, Neutron Flux, High Positive Rate N.A. R(4) Q 4. Power Range, Neutron Flux, High Negative Rate N.A. R(4) Q 5. Intermediate Range S R(4, 5) S/U(1) 6. Source Range, Neutron Flux S R(4, 5) S/U(1) 7. Overtemperature ΔT S R Q 8. Overpower ΔT S R Q 9. Pressurizer PressureLow S R Q(18) 10. Pressurizer Pressure-High S R Q(18) 11. Pressurizer Water LevelHigh S R Q | FUNCTIONAL UNIT | FUNCTIONAL UNIT CHANNEL CHECK CHANNEL CALIBRATION CHANNEL OPERATIONAL DEVICE UPERATIONAL DEVICE UPERATIONAL TEST ACTUATION | ## TABLE 4.3-1 (Continued) # REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | FUNC | TIONAL UNIT | | CHANNEL
CHECK | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP ACTUATING DEVICE OPERATIONAL TEST | MODES FOR
WHICH
ACTUATION
LOGIC TEST | SURVEILLANCE
IS REQUIRED | |------|-------------------------|-------------------------------|------------------|------------------------|--|--|---|-----------------------------| | 13. | Steam Gene
Low-Low | erator Water Level | S | R | Q(18) | H.A. | N.A. | 1, 2 | | 14. | Low Shaft
Coolant Pu | Speed - Reactor | N.A. | R(13) | Q | N.A. | N.A. | 1 | | 15. | Turbine Tr | ·ip | | | | | | | | | a. Low F1 | uid Oil Pressure | N.A. | R | N.A. | S/U(1, 10)**** | N.A. | 1 | | | b. Turbin
Closur | e Stop Valve
e | N.A. | R | N.A. | S/U(1, 10)**** | N.A. | 1 | | 16. | Safety Inj
ESF | ection Input from | N.A. | N.A. | CLA. | R | N.A. | 1, 2 | | 17. | | ip System Interlocks | | | | | | | | | Neutro | ediate Range
n Flux, P-6 | N.A. | R(4) | R | N.A. | N.A. | 2** | | | Trips | wer Reactor
Block, P-7 | N.3. | R(4) | R | N.A. | N.A. | 1 | | | Flux, | | N.A. | R(4) | R | N.A. | N.A. | 1 | | | d. Power
Flux, | Range Neutron | N.A. | R(4) | R | N.A. | N.A. | 1 | | | e. Power | | N.A. | R(4) | R | N.A. | N.A. | 1, 2 | | | | e 'rpulse Chamber
re. P-13 | N.A. | R | R | N.A. | N.A. | 1 | | | | | | | | | | | ### TABLE 4.3-1 (Continued) #### TABLE NOTATIONS - * When the Reactor Trip System breakers are closed and the Control Rod Drive System is capable of rod withdrawal. - ** Below P-6 (Intermediate Range Neutron Flux Interlock) Setpoint. - *** Below P-10 (Low Setpoint Power Range Neutron Flux Interlock) Setpoint. - **** Above the P-9 (Reactor Trip/Turbine Interlock) Setpoint. - (1) If not performed in previous 31 days. - (2) Comparison of calorimetric to excore power indication above 15% of RATED THERMAL POWER. Adjust excore channel gains consistent with calorimetric power if absolute difference is greater than 2%. The provisions of Specification 4.0.4 are not applicable to entry into MODE 2 or 1. - (3) Single point comparison of incore to excore AXIAL FLUX DIFFERENCE above 15% of RATED THERMAL POWER. Recalibrate if the absolute difference is greater than or equal to 3%. The provisions of Specification 4.0.4 are not applicable for entry into MODE 2 or 1. - (4) Neutron detectors may be excluded from CHANNEL CALIBRATION. - (5) Detector plateau curves shall be obtained, and evaluated and compared to manufacturer's data. For the Intermediate Range and Power Range Neutron Flux channels the provisions of Specification 4.0.4 are not applicable for entry into MODE 2 or 1. - (6) Incore Excore Calibration, above 75% of RATED THERMAL POWER. The provisions of Specification 4.0.4 are not applicable for entry into MODE 2 or 1. - (7) Each train shall be tested at least every 62 days on a STAGGERED TEST BASIS. - (8) (Not used) - (9) Quarterly surveillance in MODES 3*, 4*, and 5* shall also include varification that permissives P-6 and P-10 are in their required state for existing plant conditions by observation of the permissive annunciator window. #### TABLE 4.3-1 (Continued) #### TABLE NOTATIONS (Continued) - (10) Setpoint verification is not applicable. - (11) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip attachments of the Reactor Trip Breakers. - (12) (not used) - (13) Reactor Coolant Pump Shaft Speed Sensor may be excluded from CHANNEL CALIBRATION. - (14) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip circuits for the Manual Reactor Trip Function. The test shall also verify the OPERABILITY of the Bypass Breaker trip circuit(s). - (15) Local manual shunt trip prior to placing breaker in service. - (16) Automatic undervoltage trip. - (17) (not used). - (18) The surveillance frequency and/or MODES specified for these channels in Table 4.3-2 should be reviewed for applicability. - (19) Quarterly surveillance shall include verification that the Shutdown Margin Monitor is set per the CORE OPERATING LIMITS REPORT (COLR). TABLE 3.3-3 # ENGINEERED SAFFTY FEATURES ACTUATION SYSTEM INSTRUMENTATION | ONE - UN | FUN | CTION | AL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | APPLICABLE MODES | ACTION | |---------------|-----|---|--|--|---|--|------------------|--------| | UNIT 3 | 1. | . Safety Injection (Reactor
Trip, Feedwater Isolation,
Control Building Isolation
(Manual Initiation Only),
Start Diesel Generators,
and Service Water). | | | | | | | | | | a. | Manual Initiation | 2 | 1 | 2 | 1, 2, 3, 4 | 19 | | 3/4 | | b. | Automatic Actuation
Logic and Actuation
Relays | 2 | 1 | 2 | 1, 2, 3, 4 | 14 | | 3-17 | | c. | Containment
PressureHigh-1 | 3 | 2 | 2 | 1, 2, 3 | 20 | | A | | d. | Pressurizer
PressureLow | 4 | 2 | 3 | 1, 2, 3# | 20 | | Amendment No. | | e. | Steam Line Pressure
Low | 3/steam line
in each
operating
loop | 2/steam line
in any
operating
loop | 2/steam line
in each
operating
loop | 1, 2, 3# | 20 | | 5. 5.7 | 2. | Cont | tainment Spray (CDA) | | | | | | | | | a. | Manual Initiation | 2 | I with
2 coincident
switches | 2 | 1, 2, 3, 4 | 19 | # TABLE 3.3-3 (Continued) ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION | IINN - 3N | FUNC | TION | AL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | APPLICABLE MOSES | ACTION | |---------------|------|------|--|--|---|--|------------------|--------| | w | 3. | Cont | tainment Isolation (Conti | nued) | | | | | | | | | 3) Containment
PressureHigh-3 | 4 | 2 | 3 | 1, 2, 3, 4 | 17 | | | 4. | Stea | am Line Isolatio. | | | | | | | | | a. | Manual Initiation | | | | | | | 3/4 3 | | | 1) Individual | 1/steam line | 1/steam line | 1/operating
steam line | 1, 2, 3, 4 | 24 | | 19 | | | 2) System | 2 | 1 | 2 | 1, 2, 3, 4 | 23 | | | | b. | Automatic Actuation
Logic and Actuation
Relays | 2 | 1 | 2 | 1, 2, 3, 4 | 22 | | Ame | | с. | Containment Pressure
High-2 | 3 | Ž | 2 | 1, 2, 3, 4 | 20 | | Amendment No. | | d. | Steam Line Pressure
Low | 3/steam line
in each
operating
loop | 2/steam line
in any
operating
loop | 2/steam line
in each
operating
loop | 1, 2, 3# | 20 | | 46, 57 | | e. | Steam Line Pressure -
Negative RateHigh | 3/steam line
in each
operating
loop | 2/steam line
in any
operating
loop | 2/steam line
in each
operating
loop | 3**** | 20 | TABLE 3.3-3 (Continued) # ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION | TIND - 34 | FUNC | CTIONA | AL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | APPLICABLE MODES | ACTION | | |-----------|------|--------|--|---|---|---|------------------|--------|--| | ω | 5. | | oine Trip and
Water Isolation | | | | | | | | | | a. | Automatic Actuation
Logic and Actuation
Relays | 2 | 1 | 2 | 1, 2 | 25 | | | 3/4 3 | | b. | Steam Generator
Water Level
High-High (P-14) | 4/stm. gen.
in each
operating
loop | 2/stm. gen.
in any oper-
ating loop | 3/stm. gen.
in each
operating
loop | 1, 2, 3 | 20, 21 | | | -20 | | c. | Safety Injection
Actuation Logic | 2 | 1 | 2 | 1, 2 | 22 | | | | | d. | T _{ave} Low Coincident
with P-4 | | | | | | | | Amendment | | | 1) Four Loops
Operating | 1 T _{ave} /loop | 1 Tave in
any two
loops | 1 T _{ave} in
any three
loops | 1, 2 | 20 | | | nt No. 87 | | | 2) Three Loops
Operating | 1 TopePating | 1 T in
any at Wo
operating
loops | 1 T in
any two
operating
loops | 1, 2 | 16 | | # TABLE 3.3-3 (Continued) # ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION | UNIT 3 | FUNC | TION | AL UNIT | TOTAL NO.
OF CHANNELS | CHANNELS
TO TRIP | MINIMUM
CHANNELS
OPERABLE | At TICABLE MODES | ACTION | |--------|------|------|--|--------------------------|---------------------|---------------------------------|------------------|--------| | | 9. | | ineering Solety Features
uation System Interlocks | | | | | | | | | ā. | Pressurizer Pressure,
P-11 | 3 | 2 | 2 | 1, 2, 3 | 21 | | | | b. | Low-Low Tavg, P-12 | 4 | 2 | 3 | 1, 2, 3 | 21 | | 3/4 | | c. | Reactor Trip, P-4 | 2 | 2 | 2 | 1, 2, 3 | 23 | | 22 | 10. | | rgency Generator Load | 2 | 1 | 2 | 1, 2, 3, 4 | 14 | # TABLE 3.3-3 (Continued) TABLE NOTATIONS - #The Steamline Isolation Logic and Safety Injection Logic for this trip function may be blocked in this MODE below the P-11 (Pressurizer Pressure Interlock) Setpoint. - **The Safety Injection Logic for this trip function may be blocked in this MODE below the P-12 (low-Low $T_{\rm avg}$ Interlock) Setpoint. - ***The channel(s) associated with the protective functions derived from the out of service reactor coolant loop shall be placed in the tripped mode. - ****Trip function automatically blocked above P-11 and may be blocked below P-11 when Safety Injection on low steam line pressure is not blocked. #### ACTION STATEMENTS - ACTION 14 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 6 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.2.1, provided the other channel is OPERABLE. - ACTION 15 (not usea). - ACTION 16 With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed until performance of the next required ANALOG CHANNEL OPERATIONAL TEST provided the inoperable channel is placed in the tripped condition within 1 hour. - ACTION 17 With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the inoperable channel is placed in the bypassed condition and the Minimum Channels OPERABLE requirement is met. One additional channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.2.1. - ACTION 13 With less than the Minimum Channels OPERABLE requirement, within 1 hour initiate and maintain operation of the Control Room Emergency Ventilation System in the recirculation mode of operation. #### TABLE 3.3-3 (Continued) #### ACTION STATEMENTS (Continued) - ACTION 19 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. - ACTION 20 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied: - a. The inoperable channel is placed in the tripped condition within 6 hours, and - b. the Minimum Channels OPERABLE requirement is met; however, the inoperable channel may be bypassed for up to 4 hours for su:veillance testing of other channels per Specification 4.3.2.1. - ACTION 21 With less than the Minimum Number of Channels OPERABLE, within 1 hour determine by observation of the associated permissive annunciator window(s) that the interlock is in its required state for the existing plant condition, or apply Specification 3.0.3. - ACTION 22 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 6 hours or be in at least HOT STANDBY within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.2.1 provided the other channel is OPERABLE. - ACTION 23 With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within 6 hours and in at least HOT SHUTDOWN within the following 6 hours. - ACTION 24 With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or declare the associated valve inoperable and take the ACTION required by Specification 3.7.1.5. - ACTION 25 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 6 hours or be in at least HOT STANDBY within the next 6 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.2.1 provided the other channel is OPERABLE. # TABLE 3.3-4 (Continued) ## ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS | TINU . | FUNC | TIONA | AL UNIT | TOTAL
ALLOWANCE (TA) | Z | SENSOR
ERROR
(S) | TRIP SETPOINT | ALLOWABLE VALUE | |-----------|------|-------|--|-------------------------|------|------------------------|--|--| | ω | 8. | Loss | of Power | | | | | | | | | a. | 4 kV Bus Undervoltage
(Loss of Voltage) | N.A. | N.A. | N.A. | \geq 2800 volts with a \leq 2 second time delay. | \geq 2720 volts with a \leq 2 second time delay. | | 3/4 3-30 | | b. | 4 kV Bus Undervoltage
(Grid Degraded Voltage) | N.A. | N.A. | R.A. | ≥ 3710 volts with a ≤ 8 second time delay with ESF actuation or ≤ 300 second time delay without ESF actuation. | ≥ 3706 volts with a ≤ 8 second time delay with ESF actuation or ≤ 300 second time delay without ESF actuation. | | > | 9. | | neered Safety Features
lation System Interlocks | | | | | | | Amendment | | a. | Pressurizer Pressure, P- | 1 N.A. | N.A. | N.A. | ≤ 1985 psig | ≤ 1995 psig | | nent | | b. | Low-Low Tavg, P-12 | N.A. | N.A. | N.A. | ≥ 553°F | ≥ 549.6°F | | No. | | с. | Reactor Trip, P-4 | N.A. | N.A. | N.A. | N.A. | N.A. | | 12 | 10. | | rgency Generator Load
Bencer | N.A. | N.A. | N.A. | N.A. | N.A. | TABLE 4.3-2 | MILLSTONE | ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | | | | | | | | | | | |-----------|---|----------------------|------------------------|--|--|-------------------------|-------------------------|------------------------|--|--|--| | UNITE | UNCTIONAL UNIT | CHANNEL
CHECK | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP ACTUATING DEVICE OPERATIONAL TEST | ACTUATION
LOGIC TEST | MASTER
RELAY
TEST | SLAVE
RELAY
IEST | MODES FOR WHICH SURVEILLANCE IS REQUIRED | | | | 1 | . Safety Injection (Reactor
Feedwater Isolation, Cont
Building Isolation (Manua
Initiation Only), Start I
Generators, and Service W | trol
il
liesel | | | | | | | | | | | | a. Manual Initiation | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | | 3/4 3-3 | b. Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2, 3, 4 | | | | 36 | c. Containment Pressure-
High-1 | S | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | | | d. Pressurizer Pressure-
Low | S | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | | Amen | e. Steam Line
Pressure-Low | s | R | 0 | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | | 0 | . Containment Spray | | | | | | | | | | | | t No | a. Manual Initiation | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | | 46 | b. Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2, 3, 4 | | | | | c. Containment Pressure-
High-3 | S | R | 0 | N.A. | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | # TABLE 4.3-2 (Continued) # ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | LSTONE | | | | SURVEILLANCE REQUIREMENTS | | | | | | | | |-----------|------|------|--|---------------------------|------------------------|--|--|-------------------------|-------------------------|------------------------|---| | INU. | | TION | AL UNIT | CHANNEL CHECK | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP
ACTUATING
DEVICE
OPERATIONAL
TEST | ACTUATION
LOGIC TEST | MASTER
RELAY
TEST | SLAVE
RELAY
TEST | MODES
FOR WHICH
SURVEILLANCE
IS REQUIRED | | 3 | . Ci | onta | inment Isolation | | | | | | | | | | | à | . Ph | ase "A" Isolation | | | | | | | | | | | | 1) | Manual Initiation | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A | 1, 2, 3, 4 | | 3/4 | | 2) | Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2, 3, 4 | | ω
ώ | | 3) | Safety Injection | See Item | 1. above for | all Safety 1 | njection Surv | eillance Req | uirements | | | | 7 | b. | . Ph | ase "B" Isolation | | | | | | | | | | | | 1) | Manual Initiation | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A | 1, 2, 3, 4 | | Ame | | 2) | Automatic Actuation
Logic Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2, 3, 4 | | Amendment | | 3) | Containment
Pressure-High-3 | \$ | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | ₹
0.4 | . St | team | Line Isolation | | | | | | | | | | *B | à. | Mai | nual Initiation | | | | | | | | | | | | 1) | Individual | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | | 2) | System | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3, 4 | TABLE 4.3-2 (Continued) | MILLSIUNE | | | | ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | | | | | | | | |-----------|-------------------------------------|---------------|---|---|------------------------|--|--|-------------------------|-------------------------|------------------------|---| | UNI | | CHANNEL CHECK | | | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP
ACTUATING
DEVICE
OPERATIONAL
TEST | ACTUATION
LOGIC TEST | MASTER
RELAY
TEST | SLAVE
RELAY
TEST | MODES
FOR WHICH
SURVEILLANCE
IS REQUIRED | | | 4. Steam Line Isolation (Continued) | | | | | | | | | | | | | | b. | Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2, 3, 4 | | | à | c. | Containment Pressure-
High-2 | S | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | 3/4 3-30 | | d. | Steam Line
Pressure-Low | S | R | 0 | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | | e. | Steam Line Pressure-
Negative Rate-High | S | R | Q | N.A. | N.A. | N.A. | N.A. | 3 | | | 5. | | rbine Trip and Feedwate
plation | r | | | | | | | | | Amendment | Amonday | a. | Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(1) | M(1) | Q | 1, 2 | | nt No. | | b. | Steam Generator Water
Level-High-High | S | R | Q | N.A. | M(1) | M(1) | Q | 1, 2, 3 | | 161 | M 12 | С. | Safety Injection
Actuation Logic | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2 | | | | | T _{ave} Low Coincident
with Reactor Trip (P-4 | N.A.
) | R | J. | N.A. | N.A. | N.A. | N.A. | 1, 2 | # TABLE 4.3-2 (Continued) | 00 | | TABLE 4.3-2 (Continued) | | | | | | | | | | |------------------|--|--|--|--|--|-------------------------|-------------------------|------------------------|---|--|--| | 6.5
LLLS JUNE | | ENG 1 | NEERED SAFETY | INSTRUMENTATION | | | | | | | | | · UNIT 3 | FUNCTIONAL UNIT 5. Auxiliary Feedwater | CHANNEL
CHECK | CHANNEL
CALIBRATION | ANALOG
CHANNEL
OPERATIONAL
TEST | TRIP ACTUATING DEVICE OPERATIONAL TEST | ACTUATION
LOGIC TEST | MASTER
RELAY
TEST | SLAVE
RELAT
TEST | MODES
FOR WHICH
SURVEILLANCE
IS REQUIRED | | | | | a. Manual In:tiation | N.A. | N.A. | N.A. | R | N.A. | F-4 | 48.7 | | | | | | Automatic Actuation
and Actuation Relays | N.A. | N.A | N.A. | N.A. | M(1) | N.A.
M(1) | N.A.
Q | 1, 2, 3 | | | | 3/4 3-39 | c. Steam Generator Water
Level-Low-Low | 5 | R | Q | N.A. | N.A. | N.A | N.A | 1 2, 3 | | | | | d. Safety Injection | See Item 1. above for all Safety Injection Surveillance Requirements. | | | | | | | | | | | | e. Loss-of-Offsite Power | See Item | See Item 8 below for all Loss of Power Surveillance. | | | | | | | | | | | f. Containment Depres-
surization Actuation
(CDA) | Containment Depres- See Item 2. above for all CDA Surveillance Requirements. | | | | | | | | | | | 87 | Control Ruilding Isolation | | | | | | | | | | | # ₹7. Control Building Isolation | - 3 | | | | | | | | | | | |------|-----|--|------|------|------|------|------|--------|------|------------| | dmen | а., | Manual Actuation | N.A. | N.A. | N.A. | R | N.A. | N.A. | | | | nt 1 | b. | Manual Safety | N.A. | N.A. | | | | 78.75. | N.A. | All | | No. | | Injection Actuation | | 7.7. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | AB | | Automatic Actuation
Logic and Actuation
Relays | N.A. | N.A. | N.A. | N.A. | M(I) | M(1) | Q | 1, 2, 3, 4 | | | | Containment Pressure
High-1 | S | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | # TABLE 4.3-2 (Continued) # ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS | cn- | - | | | | | | | | | | |-----|---------------|--|---------------|------------------------|--|--|-------------------------|-------------------------|------------------------|---| | | LSTONE - UNIT | NCTIONAL UNIT | CHANNEL CHECK | CHANNEL
CALIBRATION | ANALOC
CHANNEL
OPERATIONAL
TEST | TRIP ACTUATING DEVICE OPERATIONAL TEST | ACTUATION
LOGIC TEST | MASTER
RELAY
TEST | SLAVE
RELAY
TEST | MODES
FOR WHICH
SURVEILLANCE
IS REQUIRED | | | ω 7. | Control Building Isolation | n (Contin | ued) | | | | | | | | | | e. Control Building Inlet
Ventilation Radiation | | R | Q | N.A. | N.A. | N.A. | N.A. | All | | | 3. | Loss of Power | | | | | | | | | | | w | a. 4 kV Bus
Undervoltage (Loss
of Voltage) | N.A. | R | N.A | M(3) | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | 3/4 3-40 | b. 4 kV Bus
Undervoltage (Grid
Degraded Voltage) | N.A. | R | N.A. | M(3) | N.A. | N.A. | N.A. | 1, 2, 3, 4 | | | 9. | Engineered Safety
Features Actuation
Sustem Interlocks | | | | | | | | | | | Ame | a. Pressurizer
Pressure, P-11 | N.A. | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | endr | b. Low-Low Tavg, P-12 | N.A. | R | Q | N.A. | N.A. | N.A. | N.A. | 1, 2, 3 | | | Amendmant | c. Reactor Trip, P-4 | N.A. | N.A. | N.A. | R | N.A. | N.A. | N.A. | 1, 2, 3 | | | 7 |).Emergency Generator
Load Sequencer | N.A. | N.A. | N.A. | N.A. | Q(1, 2) | N.A. | N.A. | 1, 2, 3, 4 |