ATTACHMENT 2 TO NSD920243 COOPER NUCLEAR STATION NRC DOCKET NO. 50–298, DPR–46

9203030441 920227 PDR ADOCK 05000298 PDR PDR

		• • •	• • •		•	6-36 NPP1- 58&-009 894
*新田市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	5151 5151 5151 51513 51513 51513 51513 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEST+GRENIER USER*VERF QUEUE*LPT DEVICE-alPS PAGES*36	PaTHM=JUDD:TUU:BEVERLT:TORPLOT 1 1 5555 5 555 5 5 5 5 2 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5	Distriction of the second of t	a05/VS II RELEASE 1.00.00.00 a05/VS II ALFT-32 REVISION 1.00.00.00	
				Q. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		

A second s	TIONS COVER SHEET		
STATION BLACKOUT WITH	Calculation No. 91 - 261 Supersedes Calc. 10. N/1	4	
N/A	Task Identification No 287		
at N/A	Design Change No. N/A		
cation: Essential	Discipline NUCLEAR		
Non-Essential	ASME Stress reports shall be app	proved by Registered	P.E.
NPPS inerated Calculation	Non NPPD Generated Calculation	anteriore, el cito de selector chiercence	
Prepared By Kent Juttin bate 25 Nov. Checked By Livin Attant Date 2/3/92 Approved By John Chanh Date 1/3/92 Third Party Review Reg'd. Ves/No	NPPD Reviewed By	Date	
 Modular Accident Anclos is Program was used to eva during a Station BLACE ut Scenario with RCIC avai be used to support the CNS response to 10CFR50.0 <u>References</u> 1. SBO 10CFR50.63 submittals for CNS. 2. Letter EEH-91-073, ENERCON Services to NPPD dated 10/17/91. 3. BWR Owners Group Emergency Procedure Guidelines, Rev. 4. 4. CNS EP5.8 (EOPs), Rev. 5. 5. Accident Sequence Delineation Document, 	lable as the sole injection source.	The results will	
 PRA-ET001, Rev. 0, Section 3.2.1 (DRAFT). 6. PRA Procedure PRA-P011 (DRAFT). 51-3-92 7. Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. 8. PRA System Notebook, PRA-SN010, Muclear Spressure Relief Systems, Rev. 0. 	5.3. ystem		
 PRA Procedure PRA-P011 (DRAFT) \$\$ 1-3-92 Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. PRA System Notebook, PRA-SN010, Muclear Sy Pressure Relief System, Rev. 0. Design Basis or References: 	5.3. ystem <u>Attauhments.</u>		
 PRA Procedure PRA-P011 (DRAFT)/S1-3-92 Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. PRA System Notebook, PRA-SN010, Muclear Si Pressure Relief System, Rev. 0. Design Basis or References: USAR	ystem		
 PRA Procedure PRA-P011 (DRAFT)#\$1-3-92 Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. PRA System Notebook, PRA-SN010, Muclear Sy Pressure Relief System, Rev. 0. Design Basis or References: 	ystem <u>Attachments.</u> _ A B		
 6. PRA Procedure PRA-P011 (DRAFT)/S1-3-92 7. Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. 8. PRA System Notebook, PRA-SN010, Muclear Si Pressure Relief System, Rev. 0. Design Basis or References: USAR <u>N/A</u> 2. TECH. SPECS. <u>N/A</u> 9. PRA System Notebook, PRA-SN018, Reactor Co Cooling (RCIC) System, Rev. 0 10. MAAP 3.0B, Rev.6 Users Manual. 11. NEDC 91-149, Rev. 0. 	ystem <u>Attachments.</u> _ A B		
 6. PRA Procedure PRA-P011 (DRAFT)/S1-3-92 7. Terry Turbine Letter to IDCORE (GE), dated 10/24/72 and GE Letter PFB-10-83, filed C25.1. 8. PRA System Notebook, PRA-SN010, Muclear Si Pressure Relief System, Rev. 0. Design Basis or References: USAR <u>N/A</u> 2. TECH. SPECS. <u>N/A</u> 9. PRA System Notebook, PRA-SN018, Reactor Co Cooling (RCIC) System, Rev. 0 10. MAAP 3.0B, Rev.6 Users Manual. 11. NEDC 91-149, Rev. 0. 	ystem <u>Attachments.</u> _ A B		

N132-0389	Nebraska Public Power District DESIGN CALCULATIONS SH	IEET Sheet / of 7
Calc. No. 91-261	NPPD Generated Calculation	Review of Non-NPPD
STATION BLACKOUT	Prepared By: Kent Section	Generated Calculations
WITH POIC AND	Date: 03/ get 1, 1991	Company's Name:
ER SEAL LEAK	Checked By: Lasting Charant	NPPD Reviewer:
	Date: 12/31/ 1991	Date: 19

0 Introduction

The effects of a station blackout (SBO) coupled with primary system leakage into the drywell were analyzed using a detailed deterministic simulation of a normal plant SCRAM initiated from a main steam isolation valve (MSIV) closure.

2.0 Purpose

A thermal-hydraulic analysis is reeded to support the CNS Station Blackout Safety Evaluation Report (SER) [Ref. 1]. The CNS SBO for 10 CFR 50.63 will assume a small LOCA in combination with loss of offsite and failure of diesel AC power. This is to simulate the NRC assumed primary system leakage of 61 gpm for CNS [Ref. 2]. Information is needed on the drywell heatup rate and in particular the drywell temperature at the end of the CNS Station Blackout coping duration. The continued operation of RCIC under these containment conditions is also of importance.

3.0 Description

The following sequence of events describes the SBO scenaric being analyzed. The operator actions modeled in this scenario are based on Rev. 4 of the BWR Owner's Group Emergency Procedure Guidelines [Ref. 3] which are incorporated into Rev. 5 of the CNS EP5.8 (EOPs) [Ref. 4].

A normal SCRAM is initiated by MSIV closure with all forms of coolant injection including Control Rod Drive Pump SCRAM flow locked out. At level 2, RCIC and HPCI are allowed to autostart on low water level. After initial injection, HPCI is secured by the operator and RCIC continues to control level between level 2 and level 8. The operator maintains RCIC suction from Emergency Condensate Storage Tank for the duration of the event. The pressure in the vessel is controlled by the safety relief valves (D/F) operating on low-low set, which adds decay energy to the suppression pool. The two SRVs (D/F) are also used to reduce reactor pressure (emergency depressurization) according to the Heat Capacity Temperature Limit (HCTL) of Graph 7, CNS EP5.8, Rev. 5 [Ref. 4]. Since no low pressure injection systems are available, the operator is directed not to depressurize the vessel to lower than 120 psig, per EOP-2 Step SP/T-5. Throughout the event, primary containment heat removal systems (RHP Cont. Vent) are considered not available.

To prevent automatic dilitation of ADS in MAAP, ADS is locked out. This is not a required operator action for this sequence since neither LPCI or Core Spray systems are available. Therefore ADS inhibit is not required. However, this input is required due to the ADS system model in MAAP which initiates on high drywell pressure or low reactor water level.

Assumptions

The T1 transient modeled in this analysis is representative of those delineated in the loss of offsite power event tree, see Section 3.2.1 of the event tree document [Ref. 5]. The following system failures and requirements are needed to follow the event tree logic path.

Calc. No STATION WITH EC	BLACKOUT	Nebraska Public Power Distric DESIGN CALCULATIONS NPPD Generated Calculation Prepared By: Date: 3/ Dec. 195	
P.R. SEAL	a second s	Checked By: Deput Sturar? Date: 2 31 199	NPPD Reviewer:
-	- Offsit	te AC power and Diesel Generators are	lost simultaneously at t=0.
-	. MSIV	Vs are locked closed at time t=0.	
	- Conti	rol rods insert upon scram signal.	
	- Recir	culation pumps frip at t=0 and coastdo	wn.
	- Core	Spray, CRD, RHR and Drywell Vent sy	stems are unavailable.
	Several othe operator acti	er assumptions were also needed to si ons.	mulate the plant response and
	1. Reset	t SRVs to low-low setpoint at t=0.	
	2. The (operator maintains RCIC suction from H	ECST.
	3. RCIC	C fails at 200°F suction temperature.	
	4. Cont two S	inuously monitor HCTL and emergency d SRVs.	epressurize following EOPs using
	5. HPC autor	I initially starts and then is manu matically.	ally secured after cycling off
	6. Dryv	vell coolers are inoperable at the onset o	of the transient and remain off.
	7. A les	ak rate of 61 gpm exists from the RR pu	mp seals at rated pressure.
	8. The rated	convection heat losses from the RPV to d conditions.	the drywell are 4.8 MBtu/Hr at
	9. The	number of reflective insulation plates is	11, each with a width of 0.292 ft.
	10. The cond	initial bulk air temperature in the dryw itions.	ell and pedestal is 140°F at rated
	11. The cond	initial bulk water temperature in the sup ensate storage tank is 90°F.	ppression pool and the emergency
5.0 <u>Meti</u>	nodology		
	(MAAP) ver	ic calculations were performed using Mo sion 3.0B computer code [Ref. 10,11]. P and BMAAP.XMP with 3-12-1991, 11: iles.	The executable code accessed is
5.1	Archive of N	AAP Analysis	
	The results (of the analysis performed in this calculat	in the second stand second second second

e,

N132-0389	DESIGN CALCULATIONS S	HEET Sheet 3 of 7
STATION BLACKOUT	NPPD Generated Calculation Prepared By: Kent Sutton	Review of Non-NPPD Generated Calculations
WITH REIC AND RR SEAL LEAK	Checked By: Suprel Class	
	Date: 12/31 1991	Date:19

PRA Procedure PRA-P011 [Ref. 6]. All input and output files are stored in *MP007C90* on WORM drive cartridge MAAP_#1, refer to Attachment A for specific file information.

5.2 Computer Code Input

The MAAP input deck was prepared to utilize the flexibility of the MIPS preprocessor for organization and structure [Ref. 12]. The bases for the MAAP input is discussed below. The MAAP(MIPS) input deck construction reflects the requirements and assumptions of Section 4.0. A brief discussion is provided for each item. Refer to Attachment C for particular items discussed.

5.2.1 Bases For Assumptions

Once the first group of SRVs lift, the SRVs reset automatically to the low-low setpoint [Ref. 8]. For this analysis, it is conservatively assumed that the SRVs go to low-low set immediately, at t=0. This will give the bounding suppression pool heatup rate for SRV low-low set operation.

2. CNS 2P5.8, Rev. 5 requires that RCIC maintain outtion on the emergency condensate storage tark. Therefore no operator action is required since the normal lineup is from the ECST.

The RCIC Terry Turbine lube oil is cooled with water taken from the suction line of the pump. The turbine design limits [Ref. 7] on the lube oil temperature indicate 200°F is the maximum oil temperature for continuous reliable operation of the turbine. Temperatures above this value would therefore cause RCIC failure (although not instantaneously). Note: this only becomes a factor when taking suction from the torus.

4.

In CNS EP5.8, Rev. 5, EOP-2 Step SP/T-5 requires RPV pressure be reduced to stay within the constraints of Graph 7, Heat Capacity Temperature Limit. To depressurize the RPV, two SRVs are opened to simulate emergency depressurization, in accordance with EOP-1, Step RCT-17. This is monitored continuously using MIPS to adjust SRV lift pressures.

For the purposes of this study it is assumed that HPCI is available initially, injecting coolant to the vessel for a single on-off cycle. After tripping off on level 8, the operator secures HPCI and vessel level control is maintained using RCIC.

The drywell coolers are dependent upon . BCCW for operation which in turn requires AC power to run, and AC is needed for fan power also. Therefore it is assumed that the drywell coolers are unavailable for the duration of the scenario.

N132-0389	Nebraska Public Power District DESIGN CALCULATIONS SH	IEET Sheet 4 of 7
Calc. No. 91-261 STATION BLACKOUT WITH RCIC AND	NPPD Generated Calculation Prepared By: Kent Jutton Date: 31 Dec. 1991	Review of Non-NPPD Generated Calculations
RE SEAL LEAK	Checked By: Savial Clauder 5 Date: 2131 1991	Company's Name:

The CNS Station Blackout as defined by the NRC assumes that the effects of primary system leakage of 61 gpm be included in the thermal-hydraulic analysis. Each Reactor Recirculation Pump seal leaks at 18 gpm, for a total of 36 gpm from the primary system to the drywell. Then, including the Technical Specifications maximum allowable identified leakage adds another 25 gpm [Ref. 1]. To model the LOCA, the MAAP input parameter ZLOCA was given the RR suction nozzle elevation (930 ft, saturated liquid leak) and ALOCA (leak area=0.00098 ft²) was adjusted to obtain a single leak of 61 gpm from the reactor recirculation pump seals at rated RPV pressure (>1000 psia).

The heat transfer rate between the reactor pressure vessel and drywell was calculated in NEDC 89-1439, Rev. 2 as 4,770,837 Btu/Hr (or roughly 4.8 MBtu/Hr). This value is based on 1989-90 operational data.

The reflective insulation thickness and number of plates is listed in the review comments of NEDC 90-326, Rev. 0 as 11 plates at a thickness of 0.292 ft. This supermedes the old value of 253 plates listed in the parameter file. The parameter file will be updated to reflect the change when Rev. 0 is approved.

7.

8.

9.

The initial bulk air temperature in the drywell and pedestal is based on NEDC 89-1439, Rev. 2 operating data from 1989-90. The maximum average air temperature is not expected to exceed 150°F during normal operation (includes zone 2A). For the purposes of the station blackout study, an average drywell temperature of 140°F is selected to prevent being overly conservative. A separate perturbation addresses the impact of 150°F initial temperature. See Section 5.4.1.

11.

The initial suppression pool water temperature is 90°F which is the same initial value used in the design basis loss of coolant accident analysis reported in the USAR. The enthalpy of the condensate storage tank water is also based on 90°F. This is considered the upper bound for the expected ambient temperatures.

5.3 Computer Code Output

The *.LOG file was reviewed for errors, warnings and diagnostic messages. No errors, warnings or diagnostics were found. Therefore program convergence is assured within all subroutines accessed.

No information was directed to the restart files. A summary of the sequence of events is given in the SUM file, refer to Attachment C. This file provides a chronological record of when trips and setpoints were reached. Important details of the analysis are summarized below, also refer to Section 5.4.

N132-0389	Nebraska Public Power District DESIGN CALCULATIONS SHEET	Sheet 5 of 7
the second s	NPPD Generated Calculation Prepared By: Kent Sutton	Review of Non-NPPD Generated Calculations
WITH ROLC AND PR	Date: 31 Dec. 1991 Comp Checked By: Neural & Stuart NPPD	
	Date: 12. [3] 1921 Date:	

Time	Description
3.5 sec	Reactor Scr. m due to high pressure.
189 sec	HPCI starts to inject.
194 sec	RCIC starts to inject.
307 sec	HPCI locked out.
15 min	Level re-established, RCIC begins to cycle as needed to maintain level.
4.0 hrs	End of run, core remains covered and containment is intact.

Graphical Results 5.4

Attachment D shows the trended results of the analyses. Variables of importance are plotted. If further information is needed additional figures can be generated using the archive files. Definitions of figure contents are provided below.

Figure 1:	TGDW -	Temperature of gas in the drywell (F).
Figure 2:	PDW -	Pressure in the drywell (psia).
Figure 3:	XWSH -	Height of water in the shroud (ref. to bottom of vessel, collapsed) (ft).
Figure 4:	TWSP .	Temperature of water in the suppression pool (F).
Figure 5:	PPS -	Pressure in primary system (psia).
Figure 6:	WWLOCA ·	Flow rate of liquid through the Recirculation Fump Seals into drywell (Mlbm/Hr).
Figure 7:	QRVDW -	Heat transfer rate between reactor pressure vessel and drywell (MBtu/Hr).
Figure 8:	PWW .	Pressure in the wetwell (psia).

General Observations 5.4.1

The RPV reference elevations in MAAP are listed below:

Level 8 High Level Trip	47.65 ft
Normal Water Level	46.0 ft
Top of Active Fuel (TAF)	29.4 ft
Vessel Bottom (I.D.)	0.0 ft (917 ft above Sea Level)

N132-0389	Nebraska Public Power District DESIGN CALCULATIONS SH	IEET Sheet 6 o	or 7
STATION BLACKOUT	NPPD Generated Calculation Prepared By: Kent Sutton	Review of Non-NPPD Generated Calculations	
WITH REIC AND	Date: 31 Dec. 1994	Company's Name:	
RR SEAL LEAK	Checked By: Stored C Start	NPPD Reviewer:	
	Date: 12 31 1991	Date:1	9

The results after progressing 4 hours into the scenario, are summarized by the following conditions:

1. Suppression pool temperature is roughly 160°F and HCTL limit is not reached, since depressurization is not required below 174°F.

2. Drywell temperature increased to 263°F and wetwell pressure increased to 26 psia, 11 psi below the RCIC turbine high exhaust pressure trip [Ref. 9].

An additional case was executed which used identical input as Attachment B, but with an initial drywell (and pedestal) air temperature of 150° F (added 10° F). This perturbation demonstrated that the final drywell temperature after 4 hours also increased 10° F.

Conclusion

6.0

The progression of the 10 CFR 50.63 station blackout scenario, using primarily RCIC for core injection, indicates that containment gas temperatures do not exceed 281°F within 4 hours.

N132-0389	Nebraska Public Power District DESIGN CALCULATIONS SH	IEET Sheet 7 of 7
Calc. No. 91 - 261 STATION BLACKOUT	NPPD Generated, Calculation Prepared By: Kent Jutton	Review of Non-NPPD Generated Calculations
WITH REIC AND RR SEAL LEAK	Date: 31 Dec 1994 Checked By: Naver Oftwart Date: 12 31 1511	Company's Nama: NPPD Revie or: Date:19

NEDC 91-261 Attachment A

This Attachment lists all of the MAAP (Rev. 6) input and output files which were part of this calculation. The date and time tags are used to determine the file revisions used for a given analysis.

FILE NAME	SIZE	DATE	TIME
SBO-S3.AUW	I	12-31-91	2:29p
SBO-S3.HUR	0	12-31-91	2:27p
SBO-S3.HUW	870	12-31-91	2:51p
SBO-S3.INP	4442	12-31-91	2:34p
SBO-S3.LOG	33139	12-31-91	2:51p
SBO-S3.PL1	84853	12-31-91	2:51p
SBO-S3.PL2	56805	12-31-91	2:51p
SBO-S3.PL3	51445	12-31-91	2:51p
SBO-S3.PL4	64231	12-31-91	2:51p
SBO-S3.PL5	72067	12-31-91	2:51p
SBO-S3.PL6	64231	12-31-91	2:51p
SBO-S3.PL7	125689	12-31-91	2:51p
SBO-S3.RSR	11111	12-31-91	2:29p
SBO-S3.RSW	50551	12-31-91	2:51p
SBO-S3.SUM	8162	12-31-91	2:51p
SBO-S3.TAB	59268	12-31-91	2:51p
COOPR6DV.PAR	120959	12-31-91	2:33p
COOPERISF	-2221	09-28-91	11:39a
COOPER.OSF	3912	09-28-91	11:45a

VERBOSE

SENSITIVITY

TITLE \SBO-53\ CNS STATION BLACKOUT WITH RR SEAL LOCA COOPER REV 6 PARAMETER FILE 12-31-91, DV DRYWELL HEATUP CALCULATION - KES, NPPD 12-31-91 SYMBOL TABLES INPUT SYMBOLS ARE IN C:\MAAPEXEC\MAAP\MIPS\COOPER.ISF OUTPUT SYMBOLS ARE IN C:\MAAPEXEC\MAAP\MIPS\COOPER.OSF PARAMETER FILE COOPRODV.PAR DO NOT LIST INPUT FOR REACTOR DEPRESSURIZATION ALONG HCTL CURVE PLEASE NOTE CONTROL BLOCK IS OVERRIDDEN BY ANY WHEN STATEMENTS THAT FOLLOW IN THE INPUT DECK, THUS MUST USE THIS HCTL WITHOUT WHEN BLOCK AS HERE. CANT USE AS ATTACH FILE HOWEVER. SRVS CONTROL PRESSURE BASED ON
HEAT CAPACITY TEMPERATURE LIMIT
FIGURE 2 -1, REV. 5 CNS EOP,
CHANGE SETPOINT AS TEMP INCREASES
REF. NEDC 89-1905, REV. 1NOTE:MODIFIED HCTL
BASED ON LOW LOW SET,
ASSUME AN SRV WILL OPEN
INITIALLY, T.S. PG 59
SRV/D 1029.7, SRV/F 1039.7 C CONTROL SRV/D LOW SETPOINT USING POOL TEMP 177.0 F 1029.7 PSIA 183.5 F 889.7 PSIA 190.7 F 739.7 PSIA 198.6 F 589.7 PSIA 207.5 F 439.7 PSIA 218.6 F 289.7 PSIA 227.3 F 199.7 PSIA 179.7 PSIA 22 .7 . CONTROL SRV/D HIGH SETPOINT USING POOL TEMP 177.0 F 1029.7 PSIA 183.5 F 889.7 PSIA 190.7 F 739.7 PSIA 198.6 F 589.7 PSIA 207.5 F 439.7 PSIA 218.6 F 218.6 F 289.7 PSIA 227.3 F 199.7 PSIA 229.7 E 179.7 PSIA CONTROL SRV/F LOW SETPOINT USING POOL TEMP 177.0 F 1039.7 PSIA

	183.5	F	899.7	PSIA
	190.7	F.	749.7	PSIA
	198.6	F	599.7	PSIA
	207.5			
	218.6			
	227.3			
	229.7			
		12	102.7	PDIA
	IND			
CONTROL	SRV/F HI	GH	SETPOINT	P
	USING PO	1L	TEMP	
	177.0	\overline{E}^*	1039.7	PSIA
	183.5	F	899.7	PSIA
	190.7	F	749.7	PSIA
			599.7	
			449.7	
			299.7	
			209.7	
		F.	189.7	PSIA
	END			

MAKE PARAMETER FILE CHANGES PRIOR TO BEGINNING CALCULATION

PARAMETER CHANGES

SET INITIAL HEAT FLUX TO NED CALC INFO, ROUGHLY 4.8 METU/HR. (NEDC 89-1439, REV 2) ALSO NOTE CHANGE TO #168 FROM PARAMETER FILE REVIEW OF NEDC 90-326. 01,167,4.8D6 01,168,11

INITIAL BULK AIR TEMPERATURE IN THE DRYWELL AND PEDESTAL, SEE NEDC 89-1439, REV. 02. SET INITIAL BULK TEMPERATURE OF SUPP. POOL AND CONDENSATE STORAGE TANK TO DBA LOCA VALUES (90 F). 03,107,58.18 09,08,140. 09,09,140.

SMOOTH CONVERGENCE OF SOLUTION

11,3,0.004 11,4,0.005

09,10,90. 09,11,90.

HIGH SUPP POOL LEVEL TO SWAP RCIC SUCTION - MAINTAIN SUCTION ON ECST

03,206,885.0

6

C SMALL-SMALL LOCA ON RECIRC PUMP SEALS IN DW C CHECK PLOT TO DETERMINE FLOW RATE (AT LLSET C REACTOR PRESSURE. C 01,47,930.0 01,48,0.00093 ASSIGN BANDWIDTH FOR LOW LOW SET, ON F AND D. SRV/D DEADBAND IS 140.0 PSI SRV/F DEADL.ND IS 150.0 PSI END PARAMETER CHANGES NOLIST NOT A RESTART PRINT TIME 4 HRS FINAL TIME 4 HRS PARALLEL WHEN BEGIN LOCA ON AC POWER OFF DIESEL GEN OFF MSIVS CLOSE DW COOLERS OFF RHR HX1 OFF RHR HX2 OFF LPCI1 OFF LPCI2 OFF LPCI3 OFF LPCS OFF RCIC AUTO S S RCIC BLOCK HPCI AUTO S S HPCI BLOCK LPCS OFF ADS OFF CRD OFF END CHANGE SRV GRP 1 (SRV/D) AND GRP 2 (SRV/F) TO NARROW MARGIN AS POOL TEMP. INCREASES. THIS WILL PREVENT DROPFING VESSEL PRESSURE BELOW 120 PSIA WHEN POOL TEMP > 225 F PARAMETER CHANGES SRV/D DEADBAND 45.0 PSI SRV/F DEADBAND 55.0 PSI END PARAMETER CHANGE

3

END

NEDC 91-261 Attachment B

-

C MANUALLY SECURE HPCI INJECTION C AFTER INITIA LY AUTO STARTING C

. 0

WHEN EVENT CODE (78) IS FALSE AND EVENT CODE (39) IS TRUE HPCI TRIP

SNL

.

-

.

NEDC 91-261 Attachment C

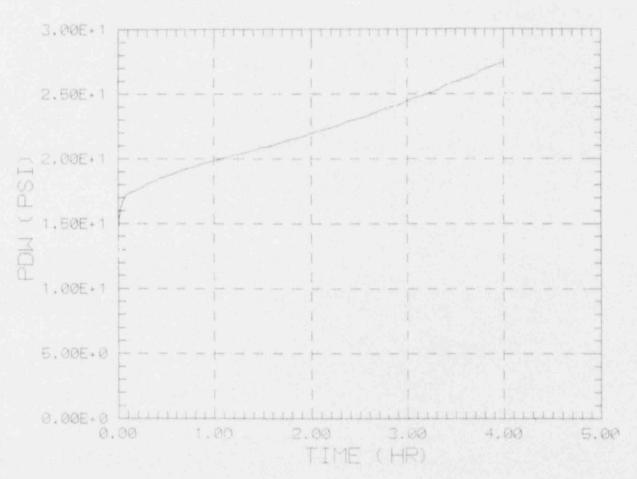
0.0	10	SCRAM SIGNAL RECIEVED
		FEEDWATER FUMP TRIPPED
		MSIV CLOSED
		LOSS OF AC POWER (LOCKED)
	65	RECIRC PUMP TRIPPED
		TURBINE STOP VALVES CLOSED
		PERMISSIBLE FOR RPT
		CRD PUMP OFF
0.0	94	RESET HIGH DRYWELL PRESSURE TRIP FOR ADS
		LPCI LOOP 1 LOCKED OFF
		LPCS LOCKED OFF
0.0	215	MSIVS LOCKED CLOSED
0.0	226	ADS LOCKED CLOSED
0.0	228	RHR HTX #1 LOCKED OFF
0.0	230	RHR HTX #2 LOCKED OFF
0.0	232	LPCI LOOP 2 LOCKED OFF
3.0	250	LOSS OF AC POWER
0.0	251	LOSS OF DIESEL POWER
0 0	266	BREAK IN PRIMARY SYSTEM (LOCA)
0.0	260	LPCI LOOP 3 LOCKED OFF
0.0	200	CRD PUMP LOCKED OFF
2.4	2	HIGH VESSEL PRESSURE SCRAM REACTOR SCRAMMED
11.0	100	LOW LEVEL FOR SCRAM
38.0	18	LOW LEVEL TRIP FOR HPCI
20.0	82	LOW LEVEL TRIP FOR RCIC
63.0		HFCI ON
		RCIC ON
135.5		
135.5	82	RESET LOW LEVEL TRIP FOR RCIC
135.6	78	LOW LEVEL TRIP FOR HPCI
135.6	82	LOW LEVEL THIP FOR RCIC
136.8	78	RESET LO' LEVEL TRIP FOR HPCI
136.8	8.2	RESET W LEVEL TRIP FOR RCIC
141.1	79	HIC" DRYWELL PRESSURE FOR HPCI
141.1	161	HIGH DRYWELL PRESSURE FOR SCRAM
226.2	7	HPCI OFF
226.2		
226.2	39	LEVEL 8 HIGH WATER LEVEL
227.1	79	RESET HIGH DW PRESS FOR HPCT
227.1	201	HPCI LOCKED OFF
1025.3	29	RCIC ON
1025.3	39	RESET LEVEL & TOTO
2159 2	29	RCTC OFF
2159.2	39	LEVEL & HICE WATED TEVET
2168 2	20	DOTO ON MAIDA DEVEL
2168 2	30	DECEM IDINEI O MOTO
2160 4	20	NEEDI DEVE. O IKIP
2160 1	20	RCIC OFF LEVEL 8 HIGH WATER LEVEL RESET HIGH DW PRESS. FOR HPCI HPCI LOCKED OFF RCIC ON RESET LEVEL 8 TRIP RCIC OFF LEVEL 8 HIGH WATER LEVEL RCIC OFF LEVEL 8 HIGH WATER LEVEL
2169.8	2.9	RCIC ON
2169.8	33	RESET LEVEL & TRIP
2924.4	29	RCIC OFF
2924.4	39	LEVEL 8 HIGH WATER LEVEL
2979.7	29	RCIC ON
2979.7	39	RESET LEVEL 8 TRIP

NEDC 91-261 Attachment C

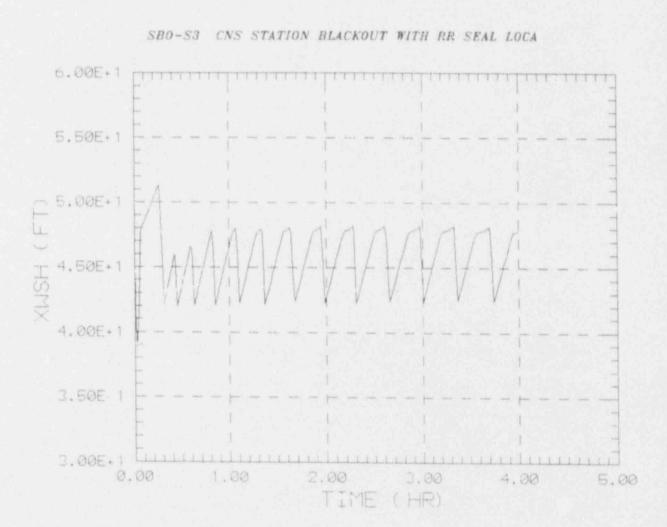
.

3752.6	29	RCIC OFF
		LEVEL 8 HIGH WATER LEVEL
3884.7	29	RCIC ON
3884.7	39	RESET LEVEL 8 TRIP
4663.9	2.9	RCIC OFF
4663.9	39	LEVEL 8 HIGH WATER LEVEL
	29	RCIC ON
4861.6	39	RESET LEVEL 8 TRIP
	29	RCIC OFF
4865.4	3.9	LEVEL 8 HIGH WATER LEVEL
4865.4	29	RCIC ON
		RESET LEVEL 8 TRIP
5637.9	29	RCIC OFF
		LEVEL 8 HIGH WATER LEVEL
5896 4	29	RCIC ON
		RESET LEVEL 8 TRIP
	22	RCIC OFF
		LEVEL 8 HIGH WATER LEVEL
		RCIC ON
		RESET LEVEL 8 TRIP
2709.2	0.2	RESET LEVEL 8 TRIP. RCIC OFF
		LEVEL 8 HIGH WATER LEVEL
		RCIC ON
		RESET LEVEL 8 TRIP
		RCIC OFF
		LEVEL 8 HIGH WATER LEVEL
		RCIC ON
		RESET LEVEL 8 TRIP
0204.2	29	RCIC OFF
0204.2	39	LEVEL 8 HIGH WATER LEVEL
		RCIC ON
		RESET LEVEL 8 TRIP
		RCIC OFF
9000.9	39	LEVEL 8 HIGH WATER LEVEL
		RCIC ON
9416.0	39	RESET LEVEL 8 TRIP
10244.1	29	RCIC OFF LEVEL 8 HIGH WATER LEVEL
10244.1	39	LEVEL 8 HIGH WATER LEVEL
10707.1	29	RCIC ON
10707.1	3.9	RESET LEVEL 8 TRIP
11529.2	2.9	RCIC OFF
11529.2	39	LEVEL 8 HIGH WATER LEVEL
12023.5	29	RCIC OFF LEVEL 8 HIGH WATER LEVEL RCIC ON
12023.5	39	RESET LEVEL 8 TRIP
12837.8	2.9	RCIC OFF
12837.8	39	LEVEL 8 HIGH WATER LEVEL
13379.6	29	RCIC ON
13379.6	39	RESET LEVEL 8 TRIP
14188.1	29	RCIC ON RESET LEVEL 8 TRIP RCIC OFF LEVEL 8 HIGH WATER LEVEL RCIC ON RESET LEVEL 8 TRIP RCIC OFF LEVEL 8 HIGH WATER LEVEL BATTERY POWER UNAVAILABLE
14188.1	39	LEVEL 8 HIGH WATER LEVEL
14400.0	159	BATTERY POWER UNAVAILARIE
	and the second second	THE REPORT OF THE PARTY OF THE REAL PRODUCTS

6

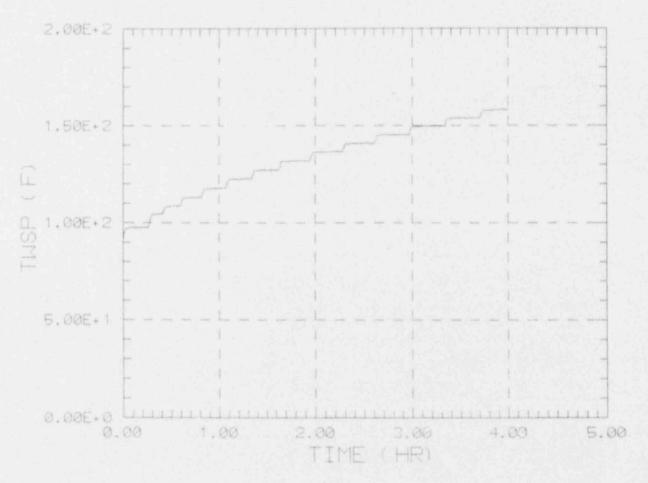

tus (c)

1

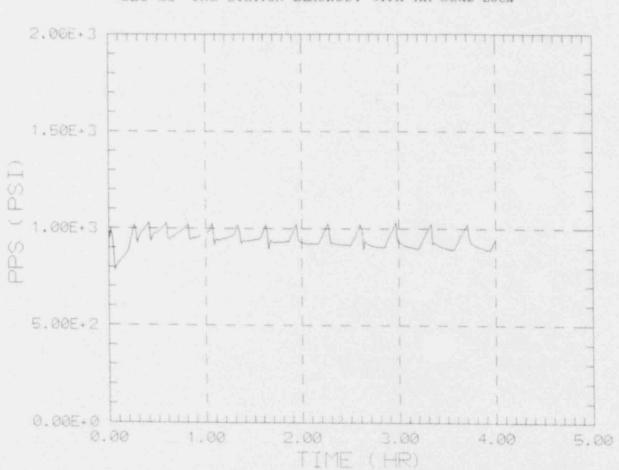

INELU-Attachment D Figure _____ of ____ SBO-S3 CNS STATION BLACKOUT WITH RR SEAL LOCA 3.00E+2 (TTTTTTT 2.50E+2 2.00E+2 1.50E+2 1.00E+2

the co

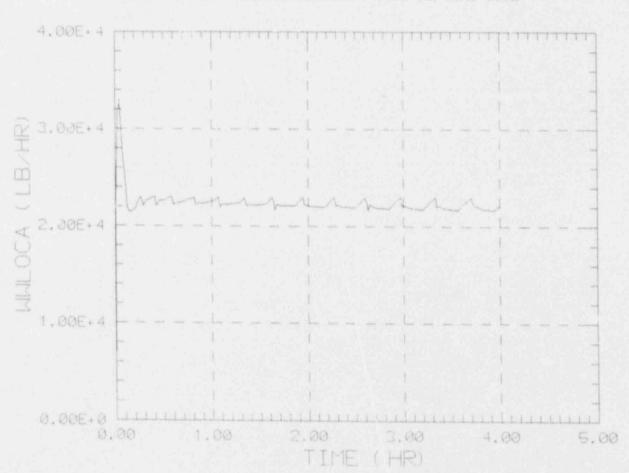
Attachment ______ Figure _____ of _____



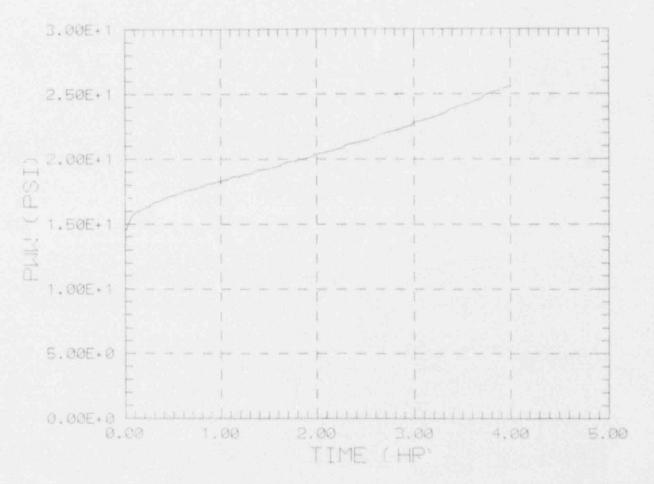
SWE Attachment of -



-


Attachment _____ Figure ______ of _

Attachment D Figure S of 8



Attachment D Figure 2 of 8

Attachment ______ Figure ______ of _____

ATTACHMENT 4	
PAGE 1 OF 1	CALCULATION DESIGN VERIFICATION
The second secon	

- 1.0 The following basic questions shall be addressed, as applicable during the performance of any design verification. These questions are taken from ANSI N45.2.11-1974.
 - 1.1 Were the design inputs, per Procedure 3.4.2, correctly selected and incorporated into the design?
 - 1.2 Are the latest applicable revisions of design documents utilized?
 - 1.3 Are assumptions necessary to perform the design activity adequately described and reasonable? When necessary, are the assumptions identified for subsequent re-verifications when the detailed design activities are complete?
 - 1.4 Are the applicable codes, standards and regulatory requirements, including issue and addenda, properly identified and are their requirements and design met?
 - 1.5 Have applicable construction and operating experience been considered?
 - 1.6 Have the design interface requirements been satisfied?
 - 1.7 Was an appropriate design method used?
 - 1.8 Is the output reasonable compared to inputs?
 - 1.9 Are the specified parts, equipment, and processes suitable for the required application?
 - 1.10 Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?
 - 1.11 Has the design properly considered radiation exposure to the public and plant personnel?
 - 1.12 Has this design adequately considered hazards such as missiles, jet impingement, etc.?
 - 1.13 Has the design adequately considered seismic requirements, barge impact, and Mark I loadings as appropriate?

Calculation Number: \underline{NEK} 91-261. Revision: \underline{O} , has been reviewed for the above design verification elements and the appropriate design verification elements have been adequately addressed.

Date: 12/31/91

Design Verifier:

						and a most select the LL in the Law descent for
PROCEDURE NUMBER	REVISION	NUMBER	2	PAGE	14 01	14
	and the part of the second		of the local division of the local divisiono			