PILGRIM NUCLEAR POWER STATION

Radioactive Effluent and Waste Disposal Report including Meteorological Data

July 1 through December 31, 1991

PILGRIM NUCLEAR POWER STATION

Radioactive Effluent and Waste Disposal Report including Meteorological Data

July 1 through December 31, 1991

BOSTON EDISON COMPANY

PILGRIM NUCLEAR POWER STATION
RADIOACTIVE EFFLUENT AND WASTE DISPOSAL REPORT
INCLUDING METEOROLOGICAL DATA
JULY 1 THROUGH DECEMBER 31, 1991

Prepared by:
K. J. Sejkora

Environmental Program Manager

IABLE OF CONTENTS

Section Page

1. Introduction 1
2. Radioactive Effluent Data 1
3. Radioactive Waste Disposal Data 9
4. Meteorological Daca 14
5. Off-site Dose Calculation Manual Revisions 47
6. References 48
Appendix AAppendix B
LIST OF TABLES
Table Page
Supplemental Information 3
IA Gaseous Effluents - Summations of All Releases 4
18
Gaseous Effluents - Elevated Release 5
IC Gaseous Effluents - Ground Level Release 6
$2 A$ Liquid Effluents - Summation of All Releases 7
$2 B$ Liquid Effluents 8
3 Solid Waste and Irradiated Fuel Shipments 10
4A-1 Distribution of Wind Directions and Speeds for the 15 33 ft . Level of the 220 ft . Tower
4A-2 Distribution of Wind Directions and Speeds for the 31 220 ft . Level of the 220 ft . Tower

BOSTON EDISON COMPANY
Pilgrim Nuclear Power Station Radioactive Effluent and Waste Disposal Report including Meteorological Data July 1 to December 31, 1991

INTRODUCTION

This report quantifies the radioactive gaseous, liquid, and radwaste releases, and summarizes the local me:eorological data for the period from July 1 to December 31, 1991. This document has been prepared in accordance with the requirements set forth in the Pllgrim Nuclear Power Station (PNPS) Technical Specifications and Revision 1 of Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solld Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluants from Light Water Cooled Nuclear Power Plants,"

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Waste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semiannual report (reporting period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological 4 mpact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification limits in Table 1A (as these limits are based on dose).

The quantity of radioactive material released from Pilgrim Station was determined from sample analyses of gaseous releases from the main stack, reactor bullding vent and turbine building, and liquid releases into the discharge canal. The quantity and volume of radioactive waste which was shipped off-site from Pilgrim Station for burial was determined from data contained on the radwaste shipping documentation. The meteorological data were obtained from instrumentation measurements from the 33 foot and 220 foot levels of the 220 foot meteorological tower located at Pilgrim Station.

GASEOUS EFFLUENTS

The gaseous radioactive releases from July 1 to December 31, 1991 are quantified in Tables $1 A, 1 B$ and $1 C$. Radioactive noble gases released during the period totaled $1.40 E+3$ curies. Releases of radioactive particulates and iodines from the main stack, reactor building vent, and turbine building, totalled $9.80 \mathrm{E}-2$ curies, and tritium releases totalled $4.28 \mathrm{E}+0$ curies. No gross alpha radioactivity was detected in gaseous effluents.

LIQUID EFFLUENTS

The 1 iquid radioactive releases from July 1 to December 31, 1991 are quantified in Tables $2 A$ and $2 B$. Liquid effluents into the discharge canal resulted in a total release to the environment (Cape Cod Bay) of 2.83E-2 curies of fission and activation products and $9.40 \mathrm{E}+0$ curies of tritium. Dissolved and entrained gases in 14quid effluents totalled $6.01 \mathrm{E}-3$ curles during the period. No gross alpha radioactivity was detected in liquid effluents.

SOLID WASTE

The solld radioactive waste that has been shipped off-site for burial during the reporting period is described and quantified in Table 3. Approximately 210 cubic meters of solid waste was shipped off-site for burial with a total activity of approximately $4.30 \mathrm{E}+2$ curies (mafor nuclides: Cr-51, Mn-54, Fe-55, Co-58, Co-60 and Cs-137). Pilgrim Station did not ship irradiated components off-site during the reporting period.

METEOROLOGICAL DATA

The meteorological data joint frequency distributions are listed in Tables $4 A-1$ and 4A-2. The percent data recovery for the period of July - December 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot meteorol. Jical tower at Pilgrim Station. Joint data recovery for the entire year of 1991 was 95.6% for the 33 foot level and 95.2% at the 220 foot level, Exceeding the Regulatory Guide 1.23 annual data recovery goal of 90\%.

The predominant wind direction was from the south-southwest, which occurred with a frequency of approximately 15% during this period. The predominant kind speed range it the 33 foot sensor was 4 to 7 mph , which occurred 55% of the time during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph , which occurred approximately 35% of the time. The predominant stability class was stability class E, which occurred about 37% of the time during this period.

CONCLUSION

The PNPS Technical Specifications contain limiting conditions for operations and operational objectives ragarding radiological environmental releases. None of the limiting conditions for operation or operational objectives associated with liquid or gaseous effluents were exceeded during this reporting period, as confirmed by conservative dose assessments performed on a monthly basis during this period. Official dose assessments will be published in a supplement to this report due 90 days following January 1, 1992. Conformance to these PNPS Technical Specifications ensures that the releases of radioactive materials in gaseous and liquid effluents were kept as low as is reasonably achievable in accordance with the Nuclear Regulatory Commission's regulation 10 CFR 50, Appendix I. Furthermore, compliance with PNPS Technical Specifications demonstrates compliance with the Environmental Protection Agency's (EPA) federal environmental regulation 40 CFR 190.10, Subpart 8 .

1. INTRODUCTION

This report is issued for the period July 1 to December 31, 1991 in accordance with the Boston Edison Company's PNPS Technical Specifications and NRC Regulatory Guide 1.21, "Measuring, Evaluating and Reporting Radioactivity in Solld Wastes and Releases of Radioactive Materials in LIquid and Gaseous Effluents from Light Water Cooled Nuclear Power Plants," Revision 1 (Reference 1).

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Waste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semiannual report (reporting period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological impact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification limits in Table lA (as these 11 mits are based on dose).

2. RADIOACTIVE EFFLUENT DATA

Radtoactive $14 q u 4 d$ and gaseous releases for the period July 1 to December 31, 1991 are given in the standard NRC Regulatcry Guide 1.21 format in Tables $1 A, 1 B, 1 C, 2 A, 2 B$, and the supplemental information form.

There were no unplanned or non-routline releases of radtoactlve effluents during this reporting period.

2.1 Gaseous Effluents

Most qaseous radioactivity is released from Pilgrim Station to the atmosphere from the main stack and the reactor building exhaust vent. Low levels of radionuclides were also detected in air exhausted from the turbine building. These releases were included in ground-level releases listed in Table 1C. These third and fourth quarter gaseous effluent releases for 1991 are summarized in Table 1A. Noble gases released during the period totaled $1,40 \mathrm{E}+3$ curies, for an average release rate of $8.86 \mathrm{E}+1 \mu \mathrm{Cl} / \mathrm{sec}$. A total of $9.80 \mathrm{E}-2$ curies of radtoactive fodines and particulates with half-lives greater than 8 days was released at an average release rate of $6.20 \mathrm{E}-3 \mu \mathrm{Ci} / \mathrm{sec}$. No alphà radioactivity was detected during this reporting period. A total of $4.28 \mathrm{E}+0$ curies of tritium was released at an average release rate of $2.71 \mathrm{E}-1 \mu \mathrm{Ct} / \mathrm{sec}$.

The main stack is an elevated release point with a height of approximately 400 feet above mean sea level. The main stack is located about 700 feet west-northwest of the reactor bullding. The third and fourth quarter elevated releases for 1991 are shown in Table 1B.

The majority of ground level releases during the period July-December 1991 occurred from the reactor building vent, but low levels of radionuclides were also detected in air exhausted from the turbine building. The reactor building exhaust vent is considered a ground level release point with a height of approximately 182 feet above mean sea level. The exhaust vent is located on the west corner of the reactor bullding. All ground level releases for the third and fourth quarters of 1991 are shown in Table 1C.

2.2 Lquid Effluents

Liquid radioactivity is released from Pilgrim Station to the Cape Cod Bay via the circulating water discharge canal. Thase effluent releases enter the Cape Cod Bay at the outfall of the canal which is located about 1100 feet north of the reactor building.

The liquid releases for the third and fourth quarters of 1991 are summarized in Table 2A. A total of approximately 2.4 milli ion liters of radioactive liquid waste (prior to dilution) containing 2.83E-2 curies of fission and activation products (excluding tritium, gases, and alpha-emitting nuclides) was discharged with a total dilution volume of approximately 3.7 billion liters of water. The liquid effluents were released at an average concentration of fission and activation products of $7.69 \mathrm{E}-9 \mu \mathrm{Cl} / \mathrm{ml}$ during the third and fourth quarters. A total of $9.40 E+0$ curies of tritium was released, for an average concentration of $2.56 \mathrm{E}-6 \mu \mathrm{Ci} / \mathrm{ml}$. Dissolved and entrained gases in liquid effluents totalled 6.01E-3 curies, for an average concentration of $1,63 \mathrm{E}-9 \mu \mathrm{Ci} / \mathrm{ml}$. Alpha radloactivity was not detected in liquid effluents during this reporting period. Quarterly release estimates and principal radionuclides in the liquid effluents are given in Table 2B.

Supplemental Information (1991)

 July - December 1991
Facility Pilgrim Nuclear Power Station

Licensee \qquad

1. Regulatory Limits

2. Maximum Permissible Concentration
a. Fission and activation gases:
b. Iodines:
c. Particulates, half-lives >8 days:
d. Liquid effluents:

10 CFR 20 Appendix B Table II
10 CFR 20 Appendix B Table II
10 CFO 20 Appendix B Table II $2 \mathrm{E}-4 \mu \mathrm{Cl} / \mathrm{ml}$ for entrained noble gases; 10 CFR 20 Appendix B Table II values for all other radionuclides.
3. Average Energy Not applicable
4. Methods used to determine radionuclide composition in effluents
a. Fission and activation gases:
b. Iodines:
c. Particulates:
d. Liquid effluents:

High-purity Ge gamma spectroscopy for all gamma emitters; radiochemistry analysis for $\mathrm{H}-3, \mathrm{Fe}-55$ (11quids onty), $\mathrm{Sr}-89$, and $\mathrm{Sr}-90$.
5. Batch Releases
a. Liquid

1. Number of batch releases:
2. Total time period for batch releases (minutes):
3. Maximum time period for a batch release (minutes):
4. Average time period for batch releases (minutes):
5. Minimum time period for a batch release (minutes):
6. Average stream flow during periods of release of effluent into a flowing stream (1iter/min):

58	14
$3.94 E+3$	$8.65 E+2$
$1.65 E+2$	$9.00 E+1$
$6.78 E+1$	$6.18 E+1$
$2.50 E+1$	$3.00 E+1$
$7.33 E+8$	$1.08 E+9$

b. Gaseous: Not applicable

6. Abnormal Releases

a. Liquid: None
b. Gaseous: None

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) GASEOUS EFFLUENTS SUMMATION OF ALL RELEASES July - December 1991

Unit	Quarter 3rd	Quarter 4 th	Est. Yotal Error. \%

A. Fission and activation gases

1. Total release	$C\{$	$1.17 E+03$	$2.32 E+02$	22%
2. Average release rate for period	$\psi C i / \sec$	$1.48 E+02$	$2.94 E+01$	$*$
3. Percent of Tech. Spec. 1 imit	$\%$	$*$	$*$	

B. Iodines

1. Total iodine-131	CI	$3.47 \mathrm{E}-03$	$8.97 \mathrm{E}-03$	20%
2. Average release rate for period	$\mathrm{uCi} / \mathrm{sec}$	$4.40 \mathrm{E}-04$	$1.14 \mathrm{E}-03$	
3. Percent of Tech. Spec. 1 imit	$\%$	$*$	$*$	

C. Particulates

1. Particul. W1th half-lives >8 days	Cl	$2.85 \mathrm{E}-03$	$4.10 \mathrm{E}-03$	21%
2. Average release rate for period	$\mu \mathrm{Ci} / \mathrm{sec}$	$3.67 \mathrm{E}-04$	$5.20 \mathrm{E}-04$	
3. Percent of Tech. Spec. 1 imit	$\%$	$*$		
4. Gross alpha radioactivity	Cl	NDA	NDA	

D. Tritium

1. Total release	Ci	$2.01 \mathrm{E}+00$	$2.27 \mathrm{E}+00$	20%
2. Average release rate for period	$\mu \mathrm{Ci} / \mathrm{sec}$	$2.55 \mathrm{E}-01$	$2.88 \mathrm{E}-01$	
3. Percent of Tech. Spec. 1 imit	$\%$	$*$	$*$	

Notes for Table 1A:

* Percent of Technical Specification Limit Values in Section A. 3 through D. 3 are to be provided in the annual supplemental dose assessment report to be issued prior to April 1, 1992.

1. NDA is no detectable activity.
2. LLD for gross alpha listed as NDA is $1 E-11 \mu \mathrm{Ci} / \mathrm{ml}$.

TABLE 18
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) GASEOUS EFFLUENTS - ELEVATED RELEASE July - December 1991

1. Fission gases

2. Iodines

$1-131$	Cl	$3.02 \mathrm{E}-03$	$7.31 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A
$1-133$	Cl	$1.79 \mathrm{E}-02$	$4.19 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Cl	$2.09 \mathrm{E}-02$	$4.92 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A

3. Particulates

4. Tritium

$\mathrm{H}-3$	Ci	$2.00 \mathrm{E}-01$	$1.12 \mathrm{E}-01$	$\mathrm{~N} / \mathrm{A}$	N / A

Notes for Table 1B:

1. NDA ts no detectable activity.
2. LLDs for nuclides listed as NDA are as follows:

Fission gases:		$\mathrm{E}-4$
Iodines:	$\mu \mathrm{Ci} / \mathrm{ml}$	
Particulates:	$1 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$	
	$1 \mathrm{E}-11 \mu \mathrm{Ci} / \mathrm{ml}$	

TABLE IC
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) GASEOUS EFFLUENTS - GROUND LEVEL RELEASE July - December 1991

1. Fission gases

2. Iodines

$\mathrm{I}-131$	Ci	$4.54 \mathrm{E}-04$	$1.66 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{I}-133$	Ci	$3.63 \mathrm{E}-03$	$1.52 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Ci	$4.08 \mathrm{E}-03$	$1.68 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A

3. Particulates

$\mathrm{Co-60}$	Ci	$2.14 \mathrm{E}-05$	NDA	N / A	N / A
$\mathrm{Sr}-89$	Ci	$1.05 \mathrm{E}-03$	$5.73 \mathrm{E}-04$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Sr}-90$	Ci	$2.80 \mathrm{E}-06$	$2.97 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Cs}-134$	Ci	NDA	NDA	N / A	N / A
$\mathrm{Cs}-137$	Ci	NDA	NDA	N / A	N / A
$\mathrm{Ba} / \mathrm{La}-140$	Ci	$3.56 \mathrm{E}-04$	$2.01 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Cl	$1.43 \mathrm{E}-03$	$2.58 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A

4. Tritium

$\mathrm{H}-3$	CI	$1.81 \mathrm{E}+00$	$2.16 \mathrm{E}+00$	$\mathrm{~N} / \mathrm{A}$	N / A

Notes for Table 1C:

1. NDA is no detectable activity.
2. LLDs for nuclides listed as NDA are as follows:

| Fisston gases: | $1 \mathrm{E}-4 \mu \mathrm{Cl} / \mathrm{ml}$ |
| :--- | :--- | :--- |
| Iodines: | $1 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$ |
| Particulates: | $1 \mathrm{E}-11 \mu \mathrm{Ci} / \mathrm{ml}$ |

TABLE 2A
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) LIQUID EFFLUENTS SUMMATION OF ALL RELEASES July - December 1991

Unit	Quarter	Quarter	Est. Total
3rd	4 th	Error, \%	

A. Fission and activation products

1. Total release (not including tritium, noble gases, or alpha)	Cl	2.72E-02.	$1.09 \mathrm{E}-03$	22.
2. Average diluted concentration during pertod	$\mu \mathrm{Cl} / \mathrm{ml}$	9.93E-09	1.16E-09	
3. Percent of applicable limit	\%			

B. Tritium

1. Total release	Ci	$8.71 \mathrm{E}+00$	$6.86 \mathrm{E}-01$	9.4%
2. Average diluted concentration during period	$\mathrm{Ci} / \mathrm{ml}$	$3.18 \mathrm{E}-05$	$7.32 \mathrm{E}-07$	
3. Percent of applicable limit	$\%$	$*$	$*$	

C. Dissolved and entrained gases

1. Total release	CI	$1.07 \mathrm{E}-03$	$4.94 \mathrm{E}-03$	16%
2. Average diluted concentration during period	$\mathrm{WCl} / \mathrm{ml}$	$3.89 \mathrm{E}-10$	$5.27 \mathrm{E}-09$	
3. Percent of applicable limit	$\%$	$*$	$*$	

D. Gross alpha radioactivity

1. Total release	Cl	NDA	NDA	34%

E.Volume of waste released (prior to dilution)	liters	$2.16 \mathrm{E}+06$	$2.23 \mathrm{E}+05$	5.7%

F. Volume of dilution water used during period

liters	$2.74 E+09$	$9.37 E+08$	10%

Notes for Table 2A:

* Percent of Technical Specification Limit Values in Section A. 3 through C. 3 are to be provided in the annual supplemental dose assessment report to be issued prior to April 1, 1992.

1. NDA is no detectable activity.
2. LLD for gross alpha listed as NDA is $1 E-7 \mu \mathrm{Ci} / \mathrm{ml}$.

TABLE 2B
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1990) LIOUID EFFLUENTS
July - December 1991

1. Fission and Activation Products

Cr-51	C4	N/A	N/A	6.24E-04	2.42E-04
Mn-54	Ci	N/A	N/A	1.17E-03	2.22E-05
Fe-55	C1	N/A	N/A	5.74E-04	5.32E-05
Fe-59	Cl	N/A	N/A	$4.77 \mathrm{E}-05$	NDA
$\mathrm{CO}-58$	Ci	N/A	N/A	$4.51 \mathrm{E}-04$	NDA
C0-60	Cl	N/A	N/A	$7.53 \mathrm{E}-03$	1.89E-04
2n-65	Ci	N/A	N/A	NDA	NDA
$5 \mathrm{r}-89$	C1	N/A	N/A	NDA	NDA
Sr-90	Cl	N/A	N/A	5.32E-05	4.18E-06
Y-92	C1	N/A	N/A	NDA	2.49E-04
2r/Nb-95	Ci	N/A	N/A	1.04E-04	NDA
Mo-99/Tc-99m	Ci	N/A	N/A	1.94E-04	$7.66 \mathrm{E}-0.5$
Ru-103	Cl	N/A	N/A	3.81E-05	NDA
I-131	Ci	N/A	N/A	$4.08 \mathrm{E}-07$	NDA
Cs-134	Cl	N/A	N/A	$7.53 \mathrm{E}-04$	NDA
Cs-137	Ci	N/A	N/A	1.50E-02	9.94E-05
Ba/La-140	Cl	N/A	N/A	1.07E-04	1.12E-04
Ce-141	Ci	N/A	N/A	5.79E-05	NDA
$\mathrm{Ce} / \mathrm{Pr}-144$	Ci	N/A	N/A	$2.17 \mathrm{E}-04$	NDA
$\mathrm{Np}-239$	Cl	N/A	N/A	2. $47 \mathrm{E}-04$	4.24E-05
Total for period	Cl	N/A	N/A	$2.72 \mathrm{E}-02$	1.09E-03

2. Dissolved and Entrained Noble Gases

$\mathrm{Xe}_{\mathrm{e}-133}$	Ci	N / A	$\mathrm{~N} / \mathrm{A}$	$2.60 \mathrm{E}-04$	$8.46 \mathrm{E}-04$
$\mathrm{Xe}_{\mathrm{e}}-135$	CI	N / A	N / A	$8.07 \mathrm{E}-04$	$4.09 \mathrm{E}-03$
Total for period	Cl	N / A	N / A	$1.07 \mathrm{E}-03$	$4.94 \mathrm{E}-03$

Notes for Table 2B:

1. NDA is no detectable activity.
2. LLDs for nuclides listed as NDA are as follows:

$\mathrm{Sr}-89$	$5 \mathrm{E}-8 \mu \mathrm{Ci} / \mathrm{ml}$
$\mathrm{I}-131$	$1 \mathrm{E}-6 \mu \mathrm{Ci} / \mathrm{ml}$
$\mathrm{Xe}-133,135$	$1 \mathrm{E}-5 \mu \mathrm{Ci} / \mathrm{ml}$
All Others	$5 \mathrm{E}-7 \mu \mathrm{Ci} / \mathrm{ml}$

3. RADIOACTIVE WASTE DISPOSAL DATA

Radioactive wastes (Reference 2) which were shipped off-site for burial during the period July 1 to December 31, 1991 are given in Table 3, in the standard NRC Regulatory Guide 1.21 format.

The semiannual total quantity of radioactivity in curies and the total volume in cubic meters for the following categories or waste types are listed in Table 3:
a. Spent resins, illter sludges, evaporator bottoms;
b. Dry compressible waste, contaminated equipment, etc.:
c. Irradiated components, control rods, etc.; and,
d. Other.

During July 1 to December 31, 1991 approximately $4.23 \mathrm{E}+2$ curies of spent resis, filter sludges, etc. with a total volume of about $9.59 \mathrm{E}+1$ cubic meters were shipped from Pilgrim Station to an approved burial site. Approximately $7.23 E+0$ curies in dry compressible waste, contaminated equipment, etc. With a total volume of about $1.14 \mathrm{E}+2$ cubic meters was shipped off-site for processing and/or burial during this period. Irradiated components and other miscellaneous low-level waste were not disposed of off-site during this reporting period. Irradlated fuel shipments were not made during this period.

Eighteen shipments to Barnwell, SC (Chem Nuclear Systems, Inc.), eight shipments to Oak Ridge, TN (six to Scientific Ecology Group; two to Quadrex Corp.), and two shipments to Wampum, PA (Alaron Corp.) were made during the period July 1 to December 31, 1991. Estimates of major radionuclides shipped off-site are listed in Table 3.

1. SOLID WASTE SHIPPED OF: SITE FOR BURIAL OR DISPOSAL

TYPE OF WASTE		UNITS	$6 \text { MONTH }$	EST, TOTAL ERROR \%
a.	Spent resins, filter, sludges evaporator bottoms, etc.	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{Ci} \end{aligned}$	$\begin{aligned} & 9.59 E+01 \\ & 4.23 E+02 \end{aligned}$	$\pm 25 \%$
b.	Dry comprossible waste, contamin,ted equipment, etc.	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 1.14 \mathrm{E}+02 \\ & 7.23 \mathrm{E}+00 \end{aligned}$	$\pm 25 \%$
c.	Irradiated components, control rods, etc.	m^{3}	$\begin{aligned} & 0.00 E+00 \\ & 0.00 E+00 \end{aligned}$	N/A
d.	Other (describe) miscellaneous low level waste	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{Ci} \end{aligned}$	$\begin{aligned} & 0.00 E+00 \\ & 0.00 E+00 \end{aligned}$	N/A

TABLE 3 (Continued)

2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (by type of waste)

a. Spent resin, filter sludges, evaporator bottoms, etc.
NUCLIDE NAME
$\mathrm{H}-3$
$\mathrm{C}-14$
$\mathrm{Cr}-51$
$\mathrm{Mn}-54$
$\mathrm{Fe}-55$
$\mathrm{Co}-58$
$\mathrm{Fe}-59$
$\mathrm{Co}-60$
$\mathrm{Ni}-63$
$\mathrm{Zn}-65$
$\mathrm{Sr}-89$
$\mathrm{Sr}-90$
$\mathrm{Nb}-95$
$\mathrm{TC}-99$
$\mathrm{Ag}-110 \mathrm{~m}$
$\mathrm{I}-129$
$\mathrm{I}-131$
$\mathrm{Cs}-134$
$\mathrm{Cs}-137$
$\mathrm{Ba}-140$
$\mathrm{La}-140$
$\mathrm{Ce}-141$
$\mathrm{Ce}-144$
$\mathrm{Pu}-238$
$\mathrm{Pu}-239 / 240$
$\mathrm{Am}-241$
$\mathrm{Pu}-241$
$\mathrm{Cm}-243 / 244$
TOTAL

CURIES	PERCENT ABUND
$3.85 E-02$	$9.00 \mathrm{E}-03$
$1.76 \mathrm{E}-01$	$4.20 \mathrm{E}-02$
$9.04 \mathrm{E}+01$	$2.14 \mathrm{E}+01$
$4.57 \mathrm{E}+01$	$1.08 \mathrm{E}+01$
$6.35 \mathrm{E}+01$	2.501
$1.22 \mathrm{E}+01$	$6.68 \mathrm{E}+00$
$2.82 \mathrm{E}+00$	$3.81 \mathrm{E}+01$
$1.61 \mathrm{E}+02$	$8.92 \mathrm{E}-01$
$3.77 \mathrm{E}+00$	$7.90 \mathrm{E}-01$
$3.34 \mathrm{E}+00$	$1.03 \mathrm{E}-01$
$4.37 \mathrm{E}-01$	$4.30 \mathrm{E}-02$
$1.81 \mathrm{E}-01$	$1.31 \mathrm{E}-01$
$5.53 \mathrm{E}-01$	$1.00 \mathrm{E}-03$
$4.53 \mathrm{E}-04$	$1.57 \mathrm{E}-01$
$6.62 \mathrm{E}-01$	$4.00 \mathrm{E}-03$
$1.54 \mathrm{E}-02$	$3.78 \mathrm{E}-01$
$1.60 \mathrm{E}+00$	$9.70 \mathrm{E}-01$
$4.10 \mathrm{E}+00$	$5.13 \mathrm{E}+00$
$2.17 \mathrm{E}+01$	$1.83 \mathrm{E}+00$
$7.73 \mathrm{E}+00$	$3.10 \mathrm{E}-02$
$1.30 \mathrm{E}-01$	$1.95 \mathrm{E}-01$
$8.24 \mathrm{E}-01$	$4.60 \mathrm{E}-01$
$1.95 \mathrm{E}+00$	$<1.00 \mathrm{E}-03$
$1.16 \mathrm{E}-03$	$<1.00 \mathrm{E}-03$
$1.71 \mathrm{E}-03$	$1.00 \mathrm{E}-03$
$2.42 \mathrm{E}-03$	$4.90 \mathrm{E}-02$
$2.09 \mathrm{E}-01$	$\leq 1.00 \mathrm{E}-03$
$6.79 \mathrm{E}-05$	$1.00 \mathrm{E}+02$

TABLE 3 (Continued)

b. Dry compressible waste, contaminated equipment, etc.

NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
H-3	7.25E-04	1.00E-02
C-14	1.45E-03	$2.00 \mathrm{E}-02$
$\mathrm{Cr}-51$	4.81E-01	$6.65 E+00$
Mn-54	$2.11 \mathrm{E}-01$	2. $92 \mathrm{E}+00$
$\mathrm{Fe}-55$	$2.97 \mathrm{E}+00$	$4.11 E+01$
CO-57	7.25E-04	1.00E-02
CO-58	1.37E-01	$1.89 E+00$
$\mathrm{Fe}-59$	4.57E-02	$6.31 \mathrm{E}-01$
$\mathrm{Ni}-59$	1.45E-03	2.00E-02
Co-60	2. $40 \mathrm{E}+00$	$3.32 E+01$
N1 63	$2.07 \mathrm{E}-01$	$2.86 \mathrm{E}+00$
2 n -65	$2.54 \mathrm{E}-02$	$3.51 \mathrm{E}-01$
Sr-89	3.63E-03	5.01E-02
$\mathrm{Sr}-90$	6.53E-03	9.02E-02
TC-99	1.45E-03	2.00E-02
$\mathrm{Ag}-110 \mathrm{~m}$	7.255-04	1.00E-02
Sb-124	2.90E-03	4.01E-02
I-129	7.25E-04	1.00E-02
C5-134	1.02E-02	1.40E-01
Cs-137	6.60E-01	9.13E+00
Ce-144	2.83E-02	$3.91 \mathrm{E}-01$
Pu-238	7.25E-04	1.00E-02
$\mathrm{Pu}-239 / 240$	7.25E-04	1.00E-02
Am-241	7.25E-04	1.00E-02
Pu-241	3.19E-02	4.41E-01
Cm-242	7.25E-04	1.00E-02
Cm-243/244	7.25E-04	1.00E-02
TOTAL	7.23E+00	1.00E+02

NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
Total	0.000	$\mathrm{~N} / \mathrm{A}$

d. Other (describe miscellaneous low-level waste).

NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
Total	0.000	$\mathrm{~N} / \mathrm{A}$

JABLE 3 (Continued)
3. SOLID WASTE DISPOSITION

4. METEOROLOGICAL DATA

Meteorological data (Reference 3) for the period July 1 to December 31, 1991 is given in Tables $4 A-1$ and $4 A-2$ in the standard joint frequency distribution format as given in NRC Regulatory Guide 1.21.

The predominant wind direction was from the south-southwest, which occurred with a frequency of about 15\% during this period. The predominant wind speed range at the 33 foot sensor was 4 to 7 mph , which occurred with a frequency of 55% during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph , which occurred approximately 35% of the time. The predominant stability class was stability class E, which occurred about 37% of the time during this period.

There were a few instances where the data recorded by the 220 foot tower were not continuous. Typically, data losses were due to loss of power, malfunction of the sensors, and/or malfunction of the digital data loggers. The net result is that the data recovery for the period of July thrnugh December 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot meteorological tower at Pilgrim Station.

When averaged over the entire period of January-December 1991, the innual joint data recovery was 95.6% at the 33 foot level and 95.2% at the 220 foot level. This exceeds the 90% or greater annual data recovery goal spectfied in Regulatory Guide 1.23.

DISTRIBUTION OF WIND DIRECTIONS AND SPEEDS FOR THE 33 FT . LEVEL OF THE 220 FT . TOWER

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT WIND DATA

STAEILITY CLASS A
CL.ASS FREQUENCY (PERCENT) = 14.00

SPEE	(MPH)	3	NNE	NE	ENE	E	ESE	SE	SSE	8	SSW	SW	WSW	1	WNW	NW	NNW	VRBL	TOTAL
	CALH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	(2)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	C-3	10	5	2	1	0	1	0	0	0	1	0	0	0	3	1	2	0	26
	(1)	3.62	1.71	.68	. 34	. 00	. 34	. 00	. 00	. 00	. 34	. 00	. 00	. 00	1.03	. 34	. 68	. 00	8.90
	(2)	. 48	. 24	. 10	. 05	.00	. 05	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 14	. 05	. 10	. 00	1.25
	4-7	27	33	26	26	9	2	1	0	4	15	21	18	20	13	8	12	0	235
	(1)	9.25	11.30	8.90	8.90	3.08	. 68	. 34	. 00	1.37	5.16	7.19	6.16	6.85	4.45	2.76	4.11	. 00	80.48
	(2)	1.29	1.58	1.25	1.25	. 43	. 10	. 05	. 00	. 19	. 72	1.01	. 86	. 96	. 62	. 38	. 58	. 00	11.27
	8-12	4	0	0	0	0	0	0	0	2	19	6	1	0	\%	0	0	0	30
	(1)	1.37	. 00	.00	.00	. 00	. 00	. 00	. 00	. 68	6.51	1.37	. 34	. 00	. 00	. 00	. 00	. 00	10.27
	(2)	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.10	. 91	. 19	. 05	. 00	. 00	. 00	. 00	.00	1.64
	13-18	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
	(1)	. 00	. 00	. 00	. 00	. 00	. 00	00	. 00	. 00	. 34	. 00	.00	. 00	. 00	. 00	.00	, 00	. 34
	(2)	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 05	.00	. 00	. 00	. 00	.00	. 00	. 00	. 05
	19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	(2)	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	cT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00
	(2)	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
ALL	SPEEDS	61	38	28	27	9	3	1	0	6	36	25	19	20	16	9	14	0	292
	(1)	14.04	13.01	9.59	9.25	3.08	1.03	. 34	. 00	2.05	12.33	8. 56	6.51	6.85	5.48	3.08	4.79	. 00	100.00
	(2)	1.97	1.82	1.36	1.29	. 43	. 14	. 05	. 00	. 29	1.73	1.20	. 91	. 96	. 77	. 43	. 67	. 00	14.00

(1) =PERCENT OF ALL GOOO OBSERVATIONS FOR THIS PAGE (2) =PERCENT OF ALL GOOD OBSERVATIONS FOR TH1S PERIOO

PILGRIM JUL91-\$EP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)
33.0 FT WIND DATA STABILITY CLASS E CLASS FREOUENCY (PERCENT) $=3.50$

UIND DIRECTIOW FROK

PILGRIM JUL91-SEP91 MET DATA JOIAT FREQUENEY DISTRIBUTION (220-FOOT TONER)
33.0 FT WIND DATA STASTLITY CLASS C CLASS FREOUCNCY (PRERCENT) = 2.45

WIND DIRECTIOW FROW

SPEED (MPK)	4	MNE	WE	ENE	E	ESE	55	SSE	\$	SSW	8W	WSW	N	UNV	WW	NWW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	. 00	. 10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
C-3	1	2	1	1	0	0	0	0	0	0	0	0	1	0	2	1	0	9
(1)	1.96	3.92	1.96	1.96	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.96	.00	3.92	1.96	. 00	17.65
(2)	. 05	. 10	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 05	. 00	. 10	.05	. 00	. 43
4-7	0	2	4	2	4	1	1	0	2	5	7	4	1	2	1	0	0	36
(1)	. 00	3.92	7.84	3.92	7.84	1.55	1.98	. 00	3.92	9.80	13.73	7.84	1.96	3.92	1.96	. 00	. 00	70.59
(2)	. 00	. 10	. 19	. 10	. 19	. 03	. 05	. 00	.10	. 24	. 36	. 19	. 05	. 10	. 05	. 00	. 00	1.73
$8-12$	0	0	0	0	0	0	0	0	1	5	0	0	0	0	6	0	0	11.76
(1)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	1.96	9.80	. 00	. 00	. 00	. 00	. 00	. 00	. 00	11.76
(2)	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 05	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 29
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00)	. 00	. 00	. 00
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00
OT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1) (2)	.00 .00	.00 .00	. 00	.00 .00	.00 .00	.00 .00	.00 .00	. 00	. .00	.50 .00	. 00	. 00	.00	.00 .00	.00 .00	. 00	. 00	. 00
ALL SPEEDS	1	4	5	3	6	1	1	0	3	10	7	4	2	2	3	1	0	51
(1)	1.96	7.84	9.80	5.88	7.84	1.96	1.96	. 00	5.88	19.61	13.73	7.84	3.92	3.92	5.88	1.96	. 00	100.00
(2)	. 05	. 19	.26	. 14	. 19	. 05	. 05	. 00	. 14	. 48	. 34	. 19	.10	. 10	. 14	. 05	. 00	2.65

(1)=PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE (2) =PERCENT OF ALL GOOO OBSERVATIONS FOR THIS PERICO

C= CALM (KIMD SPEED LESS THAN OR EQUAL TO . 95 MPH)

PILGRIM JUL91-SEPQ1 MET DATA JOINT FREQUFNCY DISTRIBUTION (220-FOOT TONER)
33.0 FT WYND DATA
STABILITY CLASS D
CLASS FREOUENCY (PERCENT) * 14.10

WIND DIRECTION FRON

SPEED (MPH)	4	NNE	NE	EME	E	ESE	SE	SSE	\$	SSW	5W	WSV	V	WNW	WW	NWH	VRB6	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	, 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	.00	.00	.00	. 00	. 00
(2)	.00	.00	.00	.00	. 00	. 00	. 00	.00	. 00	.00	. 00	.00	.00	.00	. 00	. 00	. 00	. 00
C-3	7	4	8	8	2	8	11	6	0	5	1	0	7	5	2	6	0	80
(1)	2.38	1.36	2.72	2.72	.68	2.72	3.74	2.04	. 00	1.70	.34	. 00	2.38	1.70	. 68	2.04	.00	27.21
(2)	. 34	. 19	. 38	. 38	.10	. 38	. 53	. 2.2	. 00	. 24	.05	. 00	. 34	. 26	. 10	. 29	.00	3.84
6-7	4	4	13	7	16	12	1	2	21	46	16	12	6	3	1	0	0	160
(1)	1.36	1.36	6.42	2.38	6.76	4.08	. 36	.68	7. 14	14.97	5.44	6.08	2.04	1.02	.34	.00	.00	56.42
(2)	. 19	. 19	.62	.34	.67	.58	. 05	.10	1.01	2.11	.77	. 58	. 29	.14	. 05	.00	.00	7.67
8-12	1	$1)$	0	0	0	0	0	0	1	39	7	2	0	0	1	3	0	54
(1)	.34	.00	. 00	. 00	.00	. 00	.00	.00	. 34	13.27	2.38	. 68	.00	.00	. 34	1.02	.00	18.37
(2)	. 05	.00	.00	.00	.00	. 00	.00	. 00	. 05	1.87	. 34	.10	.00	.00	. 05	. 14	. 00	2.39
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	. 00	.00	. 00	.00	.00	. 00	.00	. 00	.00	. 00	.00	. 00	.00
(2)	.00	.00	. 00	. 30	.00	.00	.00	.00	. 00	.00	.00	. 00	.00	.00	.00	. 00	. 00	.00
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	. 00	. 00	.00	. 00	.00	.00	. 00
(2)	. 00	. 00	.00	.00	. 00	.00	. 00	. 00	. 00	.00	.00	.00	.00	.00	. 00	.00	. 00	.00
GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	. 00	. 00	.00	. 00	.00	. 00	.00	.00	.80	.00	.00	.00	. 00
(2)	. 00	. 00	. 00	. 00	.00	.00	.00	.00	. 00	. .00	.00	.00	.00	.00	.00	.00	. 00	. 00
ALL SPEEDS	12	8	21	15	16	20	12	8	22	. 88	24	14	13	8	4	9	0	294
(1)	6.08	2.72	7.14	5.10	5.44	6.80	4.08	2.72	7.48	29.93	8. 16	4.76	4.42	2.72	1.36	3.06	.00	100.00
(2)	+ 38	. 38	1.01	.72	. 77	. 96	. 58	. 38	1.06	4.22	1.15	. 67	. 62	. 38	. 19	. 43	.80	14.10

[^0](2) =PERCENT OF ALL GOOO OESERVATIONS FOR THIS PERICO

C* CALM (WIND SPEED LESS THAN OR EQUAL TO . 95 MPH)

PILERIM JULPI-SEP91 MET DATh dOIET FREQUENCY DISTRIBUIION (280-F00t TOMCR)

VIND DIRLCTION FROM

SPLED (NPK)	V	NKL	WE	ENE	E	Est	85	855	8	SSV	SV	V5W	V	WWW	NV	NWV	VREL	10thi
CALS	1	0	0	2	9	1	6	t	2	0	0	1	1	0	1	0		9
(1)	. 13	, 00	. 00	. 26	. 00	, 13	. 00	. 00	. 26	, 00	. 00	.13	. 13	. 00	. 13	. 00	. 00	1.19
(2)	. 05	. 00	. 00	.10	. 00	. 05	. 00	. 06	. 10	. 00	, 00	. 05	. 05	. 00	. 05	. 06	.00	. 63
C-3	6	10	11	5	10	18	21	23	20	6	8	43	21	15	14	7	0	229
(1)	. 53	1.32	1.85		1.32	2.38	2.77	3.04	2,66	, 7	1.06	1.72	2.77	1.98	1.85	. 92	. 00	30.25
(2)	. 19	,685	. 67		. 48	.86	1.01	1.10	, 96	. 29	. 36	. 62	1.01	. 72	. 67	. 36	. 00	10.98
6-7	4	13	12		12	19	6	13	48	123	66	45	16	8	16	17	0	407
(1)	. 53	1.72	1.59	1.1.6	1.59	2.51	. 79	1.72	6.36	16.25	6.08	5.96	1.85	1.06	1.85	2.25	. 00	\$3,76
(2)	. 19	. 62	. 58	. 62	. 58	. 91	. 29	. 62	2.30	5.90	2.61	2.16	. 67	. 38	. 67	. 82	. 00	19.52
8-12	0	3	0	0	0	0	0	2	2	10	25	1	0	0	7	1	0	111
(1)	. 00	.60	. 09	. 00	. 00	. 00	. 00	. 26	. 26	9,25	3.30	, 13	, 00	. 00	. 92	. 13	. 00	14.66
(2)	.00	. 14	.00	. 00	. 00	.00	. 00	+10	+10	3.36	1.20	. 05	. 00	. 00	. 36	. 05	, 00	5.32
$13 \cdot 18$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 00	. 00	. 00	. 06	. 00	. 00	. 13
(2)	. 00	. 00	. 00	,00	.00	. 00	.00	.00	. 00	. 00	. 05	. 00	. 00	.00	. 00	. 00	. 00	. 05
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	.00	80	. 00	. 00	, 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00
(2)	. 00	, 08	. 00	+20	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
or 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	, 00	.00	. 00	. 60	,00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS					22	38	27	38	72	199	80	60	36	23	36	25	0	757
(1)	1.19	3.63	3.43	5.28	2.91	5.02	3.57	5.02	9.51	26.29	10.57	7.93	6.76	3,06	4.76	3.30	. 00	100.00
(2)	. 63	1.25	1.25	1.92	1.06	1.82	1.29	1.82	3.45	9.56	3,86	2.88	1,73	1.10	I.73	1.20	. 00	36.31

(1) APERCENT OF ALL GOCO OESERVATIONS FOR THIS PAOE
(2) EPERCENT OF ALL 0000 OBSERVATIONS FOR THIS PERICO

GE CALH (KIND SPEED LESS THAN OR EQUAL TO . 95 MPK)

TABLE 4A-1 (continued)

VIND DIRECTICM from

BPEED (MPV)	1	WNE	HE	ENE	t	ESE	SE	5st	5	85\%	SV	U5\%	V	WNW	WW	NWV	VRBL.	101at
CALH	0	0	0	0	1	0	1	1	t	0	0	0	1	1	1	0	0	6
(1)	. 00	. 00	. 00	. 00	. 21	0	. 21	. 21	. 00	. 00	. 00	. 00	. 21	. 21	. 21	. 00	. 00	1.29
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 05	. 05	. 00	. 00	.00	.00	. 05	. 05	. 05	. 00	. 00	. 29
c. 3	4	1	4	4	8	7	2	7	20	9	7	17	14	17	20	13	0	154
(1)	. 86	. 21	. 86	, 86	1.72	1.50	. 43	1.50	4.29	1.93	1.50	3.65	3.00	3.65	4.39	2.75	. 00	33.05
(2)	. 19	. 05	, 19	. 19	. 38	, 36	. 10	. 36	, 96	. 63	. 34	+82	. 67	. 82	, \%	. 62	, 80	7.39
6. ${ }^{\text {a }}$	16	11	3	1	1	6	2	6	19	49	65	38	2	3	12	9	0	245
(1)	3.63	2.36	. 6.	. 21	. 21	1.29	.63	1.72	6.08	10.52	13,95	8. 15	. 63	. 64	2.56	1.93	. 00	52.58
(2)	, 77	+ 53	. 16	. 05	. 05	. 29	, 10	,38	, 71	2.35	3.12	1.82	. 10	. 16	. 58	. 63	. 00	11.75
8-12	0	1	0	0	0	0	0	3	4	28	21	0	0	0	0	0	0	57
(1)	. 00	.21	, 00	. 00	. 00	. 00	, 00	. 64	. 86	6.01	6.51	. 00	. 00	-00	. 00	. 00	. 00	12.23
(2)	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 16	.19	1.34	1.01	. 00	, 00	. 00	. 00	. 00	. 00	2.73
43-18	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 63	. 00	+00	. 00	, 00	. 00	, B6
(2)	. 00	. 00	.00	.00	.00	. 00	. 00	. 00	. 10	. 00	. 00	. 10	. 02	, 00	. 00	. 00	. 00	. 19
19-26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	+00	.00	. 00	. 06
(2)	. 00	. 00	. 00	. 00	. 06	, 00	.00	, 80	,00	. 00	. 00	. 00	, 00	. 00	, 00	. 00	. 00	. 60
of 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	.00	.70	. 00	. 00	. 00	. 09	00	. 00	. 00	. 00	, 00	. 00	.00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	20	13	7	5	10	13	5	9	45	86	py	57	17	21	33	22	0	466
(1)	4.29	2.79	1.50	1.07	2.15	2.79	1.07	4.06	9.66	18.45	19.96	12.23	3.65	6.51	7.08	6.72	. 00	100.00
(2)	. 96	. 62	. 36	. 26	. 68	. 62	. 26	. 91	2.16	A. 12	4.46	2.73	. 82	1.01	1.58	1.06	. 00	22.35

(1) aPERCENT OF ALL 6000 OESERVATIONS FOR THIS FaCl
(2) -PERCENT OF ALL 6000 OESERVATIOUS FOK THIS PERIDO
$C=$ CALM (WIND SPEED LESE THAN OR EOUAL 10 , 95 MPH)

PILGRIM dULP1-SEPY1 MET DATA JOINT FREQUENCY DISTBIBUTION (220-FOOT TONER)

VIND DIRECTION FRON

SPEED (MPW)	W	NNE	NE	ENE	E	Est	St	58E	5	\$5N	SV	USV	v	WNW	NV	NWV	VRBL	101al
CALH	0	0	0	0	1	0	1	1	0	0	0	1	0	1	0	0	0	5
(1)	. 00	. 00	. 00	, 00	. 66	. 00	. 66	. 06	. 00	. 00	. 00	. 66	. 00	. 66	. 00	. 00	. 00	3.29
(2)	. 00	.00	.00	. 00	. 05	. 00	. 05	. 05	. 00	. 00	. 00	. 05	. 00	. 05	, 00	. 00	. 00	. 24
C-3	0	0	0	0	0	1	0	0	1	9	7	8	7	3	0	0	0	36
(1)	. 00	. 00	. 00	, 00	. 00	. 66	. 00	. 00	. 66	5.92	6.61	5.26	6.61	1.9?	. 00	. 00	. 00	23.68
(2)	. 00	, 00	. 50	. 06	.00	. 05	. 00	. 00	. 05	.43	. 34	. 38	. 36	. 14	. 00	. 00	. 00	1.73
		3	0	0	0	0	0	0	0	6	64	8	0	1	0	0	0	87
(1)	3.29	1.97	. 00	. 00	. 00	.00	. 00	. 00	. 00	3.95	62.11	5.26	. 00	. 66	. 00	. 00	. 00	57.24
(2)	. 24	. 14	. 00	. 00	. 00	. 00	. 00	.00	. 00	.29	3.07	. 38	. 00	. 05	+60	. 00	, 00	6.17
8-12	0	0	0	0	1	0	0	0	0	7	12	0	0	0	0	0	0	20
(1)	. 00	. 00	, 00	. 00	. 66	. 00	. 60	. 00	. 00	4.61	7.89	. 00	, 00	. 00	.00	.00	. 00	13.16
(2)	. 00	. 00	, 00	. 00	. 05	, 00	. 00	. 00	. 00	. 36	. 58	. 00	. 00	. 00	. 00	. 00	, 00	. 96
								0		0	0	0	0	0	0	0	0	1
(1)	.00	. 00	. 00	. 00	. 66	. 00	, 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	. 66
(2)	. 00	. 00	. 00	. 00	.05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
49-26	0	0	0	p	1	1	0	1	0	0	0	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 66	. 66	. 00	. 66	. 00	, 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	1.97
(2)	. 00	.00	. 00	,00	. 05	. 05	. 00	, 05	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 16
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 06	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL. SPEEDS	5	3	0	0	4	2	1	2	1	22	83	17	7	5	0	0	0	152
(1)	3.29	1.97	. 00	. 00	2.63	1,32	. 66	1.32	. 66	16.67	54.61	11.18	6.61	3.29	. 00	. 00	. 00	100.00
(2)	. 24	, 16	. 00	.00	. 10	. 10	. 05	, 10	. 05	1,06	3.96	. 82	. 34	. 26	. 00	. 00	. 00	7.29

(1) EPERCENT OF ALL GOCO OBSERVATIONS FOR THIS PACE (2) =PERCENT OF ALL GOC0 OESERVATIOWS FOR THIS PER!00

i : : i-1 (continued)

PILGRIM JUL91-SEPYI KET DATA JOIET FREDUENCY DISTRIBUTION (220-F001 TONER)
33.0 FT HIND DATA STAEHITY CLASE ALL CLASS YREOUTHCY (PERCENT) = 100.00

VIMD DIRECIIOW FRCW

SPEEJ (NPW)	N	NKE	NK	ENE	1	ESE	85	\$5f	8	\$5\%	SH	USN	v	UNV	WV	NHW	VREL	TOTAL
CALH	1	0	0	2	2	1	2	2	3	0	0	2	2	2	2	0	0	21
(1)	. 05	. 00	. 00	. 10	. 10	. 05	.10	. 10	. 14	. 00	. 00	. 10	.10	. 10	.10	. 00	. 00	1.01
(2)	. 05	. 00	. 00	. 10	.10	. 05	.10	, 10	. 14	. 00	, 00	. 10	.10	.10	.10	. 00	. 00	1.01
C-3	26	23	29	39	21	35	36	36	41	30	23	38	50	63	61	36	0	543
(1)	1.25	1.10	1.39	1.87	1.01	1.68	1.63	1.73	1.97	1.66	1.10	1.82	2.40	2.06	1.97	1.63	. 00	26.06
(2)	1.25	1.10	1.39	1.87	1.01	1.68	1.63	1.73	1.97	1.46	1.10	1.82	2.40	2.26	1.97	1.63	. 00	26.04
6-7	56	68	61	53	41	63	11	24	99	245	227	131	53	34	36	42	0	1224
(1)	2.69	3,26	2.93	2.56	1.97	2.06	. 53	1.15	4.75	11.75	10.89	6.28	2.56	1.63	1.73	2.01	. 00	\$8.71
(2)	2.69	3.26	2.93	2.56	1.97	2.06	, 53	4.15	4.75	11.75	10.89	6.28	2.56	1.63	1.73	2.01	. 00	\$8.71
8-12	5	6	0	0	1	0	0	5	11	176	71	6	0	0	8	6	0	287
(1)	. 24	. 19	. 00	. 00	, 05	. 00	. 00	.24	. 53	8.35	3,41	, 19	. 00	. 00	. 38	. 19	. 00	13.76
(2)	. 26	. 19	. 00	,00	. 05	.00	. 00	.26	. 53	8.35	3.61	. 19	. 00	. 00	. 38	. 19	. 00	13.76
13-18	0	0	0	0	1	0	0	0	2		1	2	0	0	0	0	0	7
(1)	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	, 10	. 05	. 05	. 10	. 00	. 00	. 00	. 00	. 00	. 34
(2)	. 00	. 00	. 00	.00	.05	. 00	. 00	. 00	. 10	. 05	. 05	. 10	. 00	. 00	. 00	. 00	. 00	. 34
19-24	0	0	0	0	1	1	0	*	0	0	0	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 05	. 05	.00	. 05	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 14
(2)	, 00	. 00	. 00	.00	. 05	. 05	. 00	. 05	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 14
ot 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	+00	. 00	.00	ci	. 00	. 00	. 00
(2)	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 06	. 00	. 00	. 00	. 00	. 00	.00	.00	. 00
AL. SPEEDS												177	105	79	87	80	0	2085
(1)	4.22	4.56	4.32	6.51	3.21	3.86	2.25	3.26	7.48	21,58	15.46	8.49	5.04	3.70	4.17	3.84	. 00	100.00
(2)	6.22	4.56	4.52	4.51	3.21	3.86	2.25	3.26	7.48	21.58	15.66	8.69	5.06	3.79	4.17	3,86	. 00	100.00

(1)=PERCENT OF ALL GOOD OESERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERICO

[^1]
TABLE 4A-1 (continued)

PILGRIM OCTP1-DECYI MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONEK)
33.0 F1 VIND DATA \$TABILITY CLASS A

CLA55 FAtoutact (PtRCENT) = 5.60 VIND DIRECTION YROM

SPEED (NPW)	n	NKE	WE	ENE	1	ESE	\$8	558	8	\$5\%	SV	WSU	V	WWV	WV	NKV	VREL	101AL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	, 00	. 00
(2)	.00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
c-3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	5
(1)	. 87	. 87	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.61	. 00	.00	6.35
(2)	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 15	.00	. 00	. 26
6-7	8	8	2	3	0	6	1	0	0	4	1	0	12	11	12	11	0	81
(1)	6.96	6.96	1.76	2,61	. 00	6.96	. 87	. 00	, 00	3.68	. 87	. 00	10.63	9.57	10.43	9.57	. 00	70,43
(2)	. 39	. 39	. 10	. 15	. 00	. 39	. 05	. 00	. 00	. 19	. 05	.00	+58	. 56	+58	. 56	. 00	3.96
8-12	1	2	1	0	0	1	0	0	0	3	0	0	0	6	6	1	0	24
(1)	. 87	1.76	. 87	, 00	. 00	. 87	. 00	. 00	. 00	2.61	. 00	.00	. 00	5.22	5.22	. 87	. 00	18.26
(2)	. 05	. 10	. 05	. 00	. 00	. 05	, 00	. 00	. 00	. 15	.00	. 00	. 00	. 29	. 29	. 05	.00	1.02
13-18	0	7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	8
(1)	. 00	6.09	, 00	. 00	. 00	. 00	. 00	+00	, 00	. 87	. 00	. 00	. 00	. 00	. 00	. 00	. 00	6.96
(2)	.00	. 34	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	.00	, D0	. 00	.00	. 00	. 00	. 00	. 39
19-26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	+00	. 00	.00	+00	+00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00
6t 24	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	+00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	.00	. 00	, 00	. 00	, 00	. 00	, 00	. 00	,00	. 00	. 00	. 00	. 00	, 00	. 00	. 00
ALL Spetbs	10	18	3	3	0	9	1	0	0	8	1	0	12	17	21	12	0	175
(1)	8.70	15.65	2.61	2.61	. 00	7.83	. 87	. 00	. 00	6.96	. 87	. 00	10.63	14.78	18.26	10.43	. 00	100.00
(2)	$\times 69$.88	. 15	. 15	. 00	. 64	. 05	.00	. 00	. 39	.05	. 00	, 58	. 83	1.02	. 58	.00	5.60

(1) - PEREENY OF ALL tooo observations for THIS PAEt
(2) =PERCENT OF ALL 0000 OBSERVATIONS F T THIS PERI00

Ce CALM (WIND SPEED LESS THAN OR EQUAL 10 . 95 MPK)

PILGRIK OCTP1-DEC91 MET DATA JOIKT FREQUENCY DISTR1BUTION (220-FOOT 1OWER)

WIND DIRECTION FRON

SPEED (MPW)	N	NNE	WE	ENE	E	ESE	86	85E	5	SSV	Ew	USV	V	UWV	WW	NWW	VREL	T01AL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	, 00	, 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	, 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00
$5 \cdot 3$	2	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	3
(1)	3.18	1.56	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.56	1.56	. 00	7.81
(2)	. 10	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	, 05	, 05	. 00	. 26
6.7	0	1	1	0	1	1	0	0	3	3	5	0	6	6	2	2	0	25
(1)	. 00	1.56	1.56	. 00	1.56	1.56	. 00	.00	4. 69	4.69	7. 81	. 00	. 00	9.38	3.13	3.13	. 00	39.06
(2)	. 06	. 05	. 05	.00	. 05	. 05	. 00	. 00	. 15	, 15	.24	. 00	. 00	. 29	. 10	. 10	. 06	1.22
8. 12	0	6	$?$	0	0	0	0	0	0	10	2	1	1	6	1	2	0	29
(1)	, 00	9. 38	3,13	. 00	. 00	. 00	. 00	. 00	. 00	15.63	3.13	1.56	1.56	6.25	1.56	3,13	. 00	45.31
(2)	. 00	. 29	. 10	. 00	. 00	.00	. 00	. 00	, 00	. 49	. 10	. 05	. 05	. 19	. 05	.10	, 00	1.41
13-18	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
(1)	1.56	6.25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	7.81
(2)	. 05	. 19	. 00	.00	. 00	. 00	. 00	. 50	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 26
19.24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 6 ¢	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
4124	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	+00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00
ALL SPEEDS							0	0	3		7		1		6	5	0	64
(1)	6.69	18.75	4. 69	. 00	1.56	1.56	. 00	. 00	4.69	20.31	10.96	1.56	1.56	15.63	6.25	7.81	. 00	100.00
(2)	.15	. 58	. 15	. 00	. 05	. 05	. 00	. 00	. 15	. 63	. 34	. 05	. 05	. 49	+19	. 24	.00	3,12

(1) WPERCENT OF ALL GOOO OESERVATIONS FOR THIS PKGE (2) -PLRCLNT OF ALL $\quad 000$ OESERVATIONS FOR THIS PERIOD

PILCRIK DCT91-DECYI MET DATA JOIET PRLOUENCY DISTRIGUTIOW (220-1001 1OMER)

VIND DIRECTIO FROM

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrrrrrrrrrrrr}
4.7 & 0 & 1 & 0 & 3 & 0 & 1 & 3 & 0 & 6 & 2 & 3 & 4 & 2 & 5 & 6 & 0 & 0 & 31 \\
(1) & .00 & 1.33 & .00 & 6.00 & .00 & 1.33 & 6.00 & .00 & 5.33 & 2.67 & 4.00 & 1.33 & 2.67 & 6.67 & 8.06 & .00 & .00 & 41.33 \\
(2) & .00 & .05 & .00 & .15 & .00 & .05 & .15 & .00 & .19 & .10 & .15 & .05 & .10 & .26 & .27 & .00 & .00 & 1.51
\end{array} \\
& \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrr}
8-12 & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 2 & 6 & 6 & 3 & 0 & 1 & 0 & 25 \\
(1) & 1.33 & 4.00 & 2.67 & .00 & .00 & .00 & .00 & .00 & .00 & 1.33 & 2.67 & 8.00 & 8.00 & 4.00 & .00 & 1.33 & .00 & 33.33 \\
(2) & .05 & .15 & .10 & .00 & .00 & .00 & .00 & .00 & .00 & .05 & .10 & .29 & .29 & .15 & .00 & .05 & .00 & 1.22
\end{array}
\end{aligned}
$$

(1) =PERCENT OF ALL GOO OBSERVATIONS FOR THIS PAGE

(2) =PERCENT OF ALL GOC0 OESERVATIONS FO THIS PERICO

33.0 VI VIND DATA ETABILITY CLASS D CLASt FRIGLENCT (PLRCENT) E 24.73

VIND DIRECTIOW FROM

EPEED(W)K	y	WWI	W	Ekt	1	Est	继	885	t	85	E	UNV	V	Why	WV	MNV	VRB!	TOTAL
caln	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0		0
(1)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	.00	, 00	.00	, 00	. 00	.60	. 00
(2)	.00	. 00	. 0.4	.00	. 00	. 00	. 00	. 00	.00	.00	,00	.00	. 00	. 00	.00	.00	. 00	.00
t-3	2	3	6	0	1	0	1	3	0	0	1	2	5	3	6	3	0	36
(1)	. 39	. 59	. 79	. 00	.20	. 00	. 20	+59	.00	.00	.20	. 59	. 96	. 59	1.18	. 50	. 00	6.69
(2)	, 10	, 15	, 19	. 60	. 05	. 00	. 05	, 15	. 00	. 00	, 05	.10	.26	+15	. 20	. 15	. 00	1.66
4.7	5	3	1	6	5	2	10	1	16	12	16	13	28	28	28	6	0	180
(1)	, 98	. 59	.20	1.18	.98	. 39	1.97	.20	3.15	2.36	3.15	2.56	5.51	5.51	5.51	1.18	. 00	35.63
(2)	. 24	. 15	+05	.20	. 26	. 10	.69	, 05	, 78	. 58	. 78	. 63	1.36	1.36	1.36	.29	, 00	8.76
8-12	2	${ }^{4}$	9	0	0	0	2	2	6	21	9	4	37	60	67	4	0	218
(1)	. 39	6.89	1.77	.00	. 00	.00	. 30	. 39	1.18	6.13	1.77	. 71	7.28	7.87	9.25	. 7	. 00	42.91
(2)	. 10	1.70	. 46	. 00	. 00	.00	. 10	. 10	. 29	1.02	. 44	.19	1.80	1.95	2.29	.19	. 00	10.61
$13-18$	4	7 37	1.88	2	0	0	0	0	0	2	2	0	10 +97	5	2	1	0	48
(1)	, 70	7.28	1.38	+39	. 00	. 00	. 00	. 00	. 00	+39	. 39	. 00	1.97	+59	. 39	. 20	. 00	13.78
(2)	${ }^{19}$	1.80	.34	.10	. 00	. 00	.00	.00	.00	. 10	.10	.00	. 69	, 15	.10	. 05	. 00	3.41
40.26	0	5	0	1	0	0	p	0	0	0	0	0	0	0	0	0	0	6
(1)	. 00	+.98	.00	. 20	. 00	. 00	. 40	+00	. 00	-60	. 00	. 60	, 00	. 00	. 00	.00	. 00	1.18
(2)	. 00	.24	.00	. 05	. 60	. 00	.00	. 00	.00	.00	.00	.00	.00	. 00	.00	. 00	.00	. 29
tt 26	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 09	. 30	. 00	. 00	. 05	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	.00	. 00
(2)	. 00	.00	+00	.00	. 00	-00	. 00	.00	. 00	.00	. 00	.00	.00	. 00	. 00	. 00	. 00	.00
4.L SPEEDS	13	83	21	9		\%		6		35	288	19	80	76	83	16	0	500
(1)	2.56	16.36	4.13	1.77	1.18	. 30	2.56	1.18	4.33	6.89	5.51	3.76	15,75	14.57	16.36	2.76	. 00	100.00
(2)	. 63	6.06	1.62	.64	.29	. 10	.63	-20	1.07	1.70	1.36	. 95	3.80	8,60	6.06	. 66	. 00	26.73

(2) Ei ERCENT IV ALL gO00 oesERVATIOWS FOL THIS PERIC0

PILGRIO OCT91-DEC9I MET DATA dOINT FREDUEKCY DISTRIBUTIOW (220-FOOT TOME)

33.0 f1 UIM DATA
 staylity cuss
 CLASS FREOURET (PERCENT) $=38.27$

VIND DIRETIOW FROW

SPEED (NPK)	v	MEE	4	EME	1	Est	8	$58 \pm$	t	SEv	5	V5\%	v	UNV	Wv	WVV	Vkel	107AL
Cals	,	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 00	. 00	. 00	. 00	. 00	, 13	. 00	. 00	. 25
(2)	. 00	. 00	. 00	.60	00	. 00	. 00	. 00	.05	. 00	. 00	,00	. 00	. 00	. 05	.00	. 00	. 10
c-3	3	7	3	1	0	6	6	8	6	11	12	12	3	11	11	6	0	102
(1)	. 38	. 89	. 38	. 13	. 00	. 76	. 51	1.02	. 76	1.60	1,53	1.53	. 38	1.40	1.60	. 51	. 00	12.98
(2)	, 15	. 36	. 15	, 65	. 00	. 20	.19	. 30	. 29	.54	, 58	. 58	,15	. 54	. 56	.19	. 00	6.97
6.7	7	V	8	3	3	10	21	60	46	35	52	92	78	39	31	17	0	689
(1)	, 89	1.15	1.02	. 38	, 38	1.27	2.67	5.09	5.60	6.65	6.62	11.70	9.92	6.96	3.96	2.16	. 00	62,21
(2)	. 36	. 64	. 30	. 15	. 15	. 69	1.08	1.95	2.16	1.79	2.53	6.48	3.80	1.90	1.51	. 83	. 00	23.81
6-12	2	9	5	0	0	0	3	0	6	45	3	23	20	11	11	2	0	171
(1)	. 25	1.13	. 66	. 00	. 00	. 00	. 38	. 00	. 76	5.73	6.33	2.93	2.56	1.60	1.60	. 25	. 00	81.76
(2)	. 10	. 66	. 26	, 00	. 00	. 00	. 15	. 00	. 29	2.10	1.66	1.12	. 97	. 56	. 86	. 10	. 00	8.33
13-18	1	7	0	2	6	2	0	0	0	1	0	0	0	0	0	0	0	19
(1)	. 13	. 89	. 00	. 25	. 76	. 25	. 00	. 00	. 00	, 13	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.62
(2)	. 05	.36	. 00	. 10	. 29	. 10	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 93
19-26	0	3	0	0	0	0	0	0	0	0	0	0	n	0	0	0	0	3
(1)	. 00	. 38	. 00	. 00	. 00	. 00	. 00	. 00	, 06	. 20	. 00	. 00	.60	. 00	. 00	, 00	. 00	, 38
(2)	, 00	. 15	. 00	,00	. 00	. 00	, 00	.00	,00	. 00	,00	. 00	. 00	.00	. 00	. 00	. 00	. 15
61 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	+00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00
ALL SPEEDS	13		16	6		18	28	48	57		98	527	101			23	0	766
(1)	1.65	6.65	2.06	. 76	1.15	2.29	3.56	6.11	7.25	11.70	12.67	16.16	12. 55	7.76	6.57	2.93	. 00	100.00
(2)	. 63	1.70	. 78	. 28	. 44	. 88	1.36	2.36	2.78	6.68	4.77	6.18	4.92	2.97	2.63	1.12	. 00	38.27

(1) aPEREENT OF ALL GOCO OESERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALG 6000 OESERVATIONS FOR THIS PERID0

PILGRIK OCTPI-DEEPI WET DATA dOINT FREQUNEY DISTRIBUTIOW (220-FOOT TONER)
83.0 FT NID BATA STABILITY CLAES $\%$ CLAES FREONNCY (PERCENT) $=20.96$ VIN DIRETION FROW

 WIND DIRECTIOE FROM

SPEED (WFV)	*	MKE	W5	ENE	1	Est	紷	851	8	859	8	W5	v	WNW	WV	NWN	VREL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00
(2)	.00	. 00	. 00	. 00	. 00	. 09	.00	.00	.00	.00	. 00	. 00	. 00	.00	.00	.00	. 00	. 00
t-3	0	0	0	0	0	0	0	1	1	2	1	1	5	0	0	t	0	9
(1)	. 00	.00	. 00	. 00	. 00	.00	. 00	1.35	1.33	2.67	1.33	1.33	6.00	. 00	. 00	. 00	.00	12.00
(2)	.00	. 00	. 00	. 00	.00	.00	.00	. 05	. 05	. 10	. 05	. 05	. 15	. 00	. 00	. 00	.00	. 46
4-7	0	0	0	0	,	0	1	0	1	4	13	E	1	0	0	0	0	28
(1)	. 00	. 00	. 00	.00	. 00	. 00	1.33	.00	1.33	5.33	17, 83	10.67	1.33	. 00	.60	.00	. 00	37.33
(2)	. 00	. 00	. 00	. 00	.00	. 00	. 05	. 00	. 05	. 19	. 63	. 39		. 00	. 00	.00	.00	1.36
8-12	1	6	0	0	0	0	0	0	0	0	11	6	0	0	0	1	0	23
(1)	1.33	8.00	. 00	. 00	. 00	.00	. 00	.00	.00	. 00	16.67	5.83	. 00	. 00	.00	1.33	. 00	30.67
(2)	. 05	. 29	.00	.00	. 00	.00	.00	.00	.00	. 00	. 54	. 19	.00	.00	.00	. 05	.00	1.12
13-18	+00	15 29.00	0	-00	00	, 00	0 00	+00	r 0	. 00	. 0	. 0	. 0	ros	+00	. 0	0	15 20.00
(1)	.00 .00	29.00 .73	.00 .00	.00 .00	.00 .00	.00 .00	.00	.00 .00	.00 .00	.00 .00	. 00	. 00	.00 .00	.00 .00	. 00	. 00	+ 00 .00	20.00 .73
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	.00	. 00	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00
(2)	.00	.00	. 00	. 00	. 00	. 00	. 00	.00	.00	.00	. 00	.00	. 00	. 00	.00	.00	.00	. 00
6i 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	+00	. 00	. 00	+00	+00	+00	. 00	+00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	+00
(2)	. 00	. 00	. 00	.00	. 00	${ }^{0} 00$,00	. 09	. 00	. 00	,00	. 00	. 00	-00	. 00	. 00	, 00	. 00
ALL SPEEDS	1	21	0	0	0	0	1	1	2	6	25	13	4	0	0	1	0	75
(1)	1.33	28.00	. 00	. 00	. 00	+00	1.33	1.33	2.67	8.00	33.33	17,33	5.33	. 00	. 00	1.33	. 00	100.00
(2)	.05	1.02	. 00	. 00	. 00	. 00	, 05	. 05	.10	. 29	1.22	. 63	. 19	. 00	. 00	. 05	. 00	3.65

(1) wPERCENT OF ALL OOCO OESERVATIOWS FOF THIS PAGE
(2) PPERCENT OF ALL GOCD OESERVATIOWS FOA THIS PERICD

C* CALM (VIND SPLED LESS THAN OR EOUAL TO . © MPK)

33.0 FT VIND DATA STABILITY CLASS ALL CLASS FREDENEY (PEACENT) 5100.00

VIND DIRECTION FECM

SPEED (WPK)	8	WWE	WE	ENE	E	Est	st	856	8	85V	5	U54	V	WNy	WV	NWV	VRel	TOTAL
CAL3	1	0	0	0	0	0	1	0	3	0	0	0	1	1	1	1	0	9
(1)	. 05	.00	. 00	. 00	.00	.00	. 05	.00	. 15	. 00	. 00	. 00	. 05	. 05	. 05	. 05	. 00	. 66
(2)	. 05	. 00	. 00	. 00	.00	. 00	.05	. 00	. 15	. 00	. 00	.00	. 05	. 05	. 05	. 05	. 00	. 64
c-3	10	14	5	5	2	γ	10	25	16	26	28	M	17	27	25	8	0	263
(1)	. 69	.66	. 64	. 26	.10	-36	. 49	1.22	. 78	1.17	1.36	1.73	. 83	1.31	1.27	. 39	. 00	12.80
(2)	. 49	.68	.64	. 26	.10	.36	. 69	1.22	. 78	1.17	1.36	1.75	. 83	1.31	1.22	. 39	. 00	12.80
6-7	30	25	22	20	10	26	61	58	101	83	127	146	130	93	66	45	0	1039
(1)	1.46	1.22	1.07	.97	. 69	1.17	2.00	2.82	4.92	4.06	6.18	7,11	6.33	6.53	6.09	2.19	. 00	50.58
(2)	1.46	1.22	1.07	.97	. 69	1.17	2.00	2.82	4.92	6.06	6.18	7.11	6.33	6.53	4.09	2.19	.00	50.58
8.12	10	70	19	0	0	2	9	6	13	90	86	50	65	. 66	66	13	0	557
(1)	. 69	3.61	. 93	. 00	. 00	. 10	. 46	+19	. 58	4.38	3.89	2.43	3.16	3.21	3.21	. 63	. 00	27, 12
(2)	.69	3.41	.93	. 00	.00	.10	. 66	+19	.63	4.36	3.89	2.63	3.16	3.21	3.21	. 63	. 00	27.12
13-18	7	102	21	6	6	2	0	0	0	4	2	0	10	4	2	1	0	165
(1)	. 36	6.97	1.02	+19	-29	. 10	. 00	. 00	. 00	. 19	.10	. 00	. 69	. 19	. 10	. 05	. 00	8. 03
(2)	.34	6.97	1.02	+19	. 29	. 10	. 00	. 00	.00	. 19	. 10	.00	. 69	. 19	. 10	. 05	.00	8. 03
19-26	0		7	1		0	0	0	0	0	0	0	0	0	0	0	0	. 21
(1)	. 00	. 83	*10	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.02
(2)	. 00	, 83	, 15	. 05	. 00	.00	.00	. 00	. 00	.00	.00	.00	. 00	. 00	. 00	.00	.00	1.02
Ct 26	0	0	0	0		0	0	0		0 00		0	0	00	0	0	0	0
(1) (2)	. 00	. 000	+00	.00 .00	+00	. 00	.00 .00	. 00	+00	.00 .00	.00	. 000	.00 .00	.00 .00	.00	. 00	. 00	.00 .00
(2)	.00	. 00	. 09	+00	. 00	. 00	. 00	. 00	. 00	*00	.00	. 00	. 00	+00	. 00	. 00	. 00	. 00
ALL SPEEDS	58	228	76	30	18	35	61	87	133	201	237	232	223	191	178	68	0	2056
(1)	2.82	11.10	3.60	1.66	. 88	1.70	2.97	4.26	6.48	9.79	11.56	11.30	10.86	9.30	8.67	3.31	.00	100.00
(2)	2.82	11.10	3.60	1.46	. 88	1.70	2.97	6.24	6.68	9.79	11.56	11.30	10.86	9.30	8.67	3.31	.00	100.00
(1) *PEREENT	or ALb	6000	OESERV	AT10wS	Fot 1	THIS PA												
(2) 2 PLERCENT	of ALL	6000	OBSERV	ATIOW5	FOM	TK15 PE	100											

PILERIM JUL91-SEP91 NET DATA JOINT FREQUENCY DISTRIBUTION (220-FDOT TONER)

VIWE DIRECTIOW FROM

SPEED (WFW)	\%	NKE	麇	ENE	E	Esf	st	585	8	85\%	N	V5\%	v	WW	W	NWV	VREL	101AL
CAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
(2)	.00	. 00	. 00	. 00	. 00	.00	.00	. 00	. 00	.00	.00	. 00	. 00	, 00	. 00	. 00	. 00	. 00
C.3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 3	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 36
(2)	. 05	. 00	. 00	.00	. 00	. 00	. 00	.00	.00	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 05
4.7	18	13	6	9	5	1	0	0	1	2	0	0	1	2	5	5	0	68
(1)	6.06	4. 18	2.02	3.03	1.68	+36	. 00	. 00	. 36	.67	. 00	, 00	. 36	. 67	1.68	1.68	. 00	22.90
(2)	+ 85	.61	.28	.42	. 24	. 05	. 00	.00	. 05	.09	.50	.00	. 05	. 09	. 24	. 26	. 00	3.20
8-12	19	3	13	7	10	6	2	0	6	7	11	17	3	11	1	15	0	12%
(1)	6.60	1.01	4.38	2.36	3.37	1.35	. 67	. 00	1.35	2.36	3.70	5.72	1.01	3.70	. 36	5.05	, 00	42.76
(2)	. 89	. 16	. 61	. 33	. 67	.19	. 09	.00	+19	.33	. 52	.80	. 16	. 52	+05	. 71	.no	5.98
13-18	6	1	1	0	0	0	0	0	11	E	11	6	10	8	3	12	0	77
(1)	2.02	. 34	. 34	. 00	. 00	. 00	. 00	. 00	3.70	2.69	3.70	2.02	3.37	2.69	1.01	4.06	. 00	25.93
(2)	. 26	. 05	. 05	.00	.00	.00	. 00	. 00	. 52	. 38	. 52	. 28	. 67	. 38	. 16	. 57	.00	3.63
19-24	2	0	0	0	0	0	0	0	3	9	0	1	0	1	0	4	0	20
(1)	. 67	. 00	. 00	. 00	, 00	.00	. 00	. 00	1.01	3.03	. 00	. 3	. 00	. 34	. 00	1.35	.00	6.73
(2)	. 09	. 00	.00	.00	. 00	. 00	. 00	. 00	. 16	. 42	. 00	. 05	. 00	. 05	.00	. 19	. 00	. 96
ET 26	0	0	0	0	0	0	0	v	0	1	0	0	0	0	0	3	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 36	. 00	. 00	. 00	. 00	. 00	1.01	. 00	1.35
(2)	. 00	.00	. 00	.00	.00	.00	.00	. 00	.00	. 05	.00	. 00	.00	.00	. 00	. 16	. 00	. 19
ALL SPEEDS	46	17	20	16	15	5	2	0	19	27	22	26	14	22	9	39	0	297
(1)	15.69	5.72	6.73	5.39	5.05	1.68	. 67	. 00	6.60	9.09	7.41	8. 08	6.71	7.61	3.03	13.13	. 00	100.00
(2)	2.17	.80	, W6	, 75	. 71	.24	.09	. 00	. 89	1.27	1.06	1.13	. 56	1.06	. 62	1.86	. 00	13.9\%

[^2](i) ERCENT OF ALL 6000 OESERVATIOWS FO IKIS PERICO

PILERIM JULG1-EEPQI MET BATA JOIET FREOUENTY DISTRIBUTIO (220-FOOT TOMEQ)

5TAEILITY CLAEt
CLA5f ffftumty (PRtCENT) = 3.69
VIUD DIRECTICN FROW

SPEED (WPN)	8	NEE	发	EME	I	Est	81	858	8	85\%	Ev	WWe	v	WV	UN	NWy	V18L	TOtAL
CALS	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0
(1)	.00	. 00	. 00	.00	. 00	.00	, 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00
(2)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	.00
C-3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	.00	1.35	. 00	.00	.00	.00	.00	. 00	1.35
(2)	.00	.00	.00	.00	.00	.00	. 00	. 00	. 00	.00	. 05	. 00	.00	.00	.00	.00	.00	. 05
$6 \cdot 7$	3	1	2	3	2	0	0	0	0	0	0	0	0	2	3	1	0	17
(1)	4.05	1.35	2.70	4.05	2.70	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	2.70	4.05	1.35	. 00	22.97
(2)	. 16	. 05	. 09	. 14	. 08	.00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 16	. 05	. 00	. 80
8-12	0	0	1	0	0	4	1	1	3	1	5	6 6	5	1	2	2	0	32
(1)	. 00	. 00	1.35	. 00	. 00	\$.61	1.35	1.35	4.05	1.35	6.76	B. 11	6.76	1.35	2.70	2.70	.00	43.26
(2)	. 00	. 00	. 05	. 00	. 00	. 19	. 05	. 05	. 16	. 05	.26	.28	.26	. 05	.05	. 08	.00	1.51
13-18	0	0	0	0	0	0	0	0	4. 6	${ }^{7}$	$2{ }^{2}$	0	${ }^{5}$, 1	0	0	0	28. 21
(1)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	E. 11	9.46	2.70	. 00	6.76	1.35	. 00	.00	.00	28.38
(2)	.00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 28	. 33	. 09	, 00	. 26	.05	. 00	. 00	. 00	. 99
49-24	0	0	0	6	0	0	0	0	0	1	0	0	1	0	0	0	0	${ }^{2}$
(1)	. 00	. 00	. 00	.00	. 00	. 00	.00	.00	- 00	1.35	.09	. 00	1.35	. 00	. 00	. 00	. 00	2.70
(2)	.00	.00	. 00	.00	.00	.00	.00	. 00	. 00	. 05	. 00	. 00	. 05	.00	. 00	. 00	. 00	. 08
81 (1)	\%	0 .00	0	0	0	0	0 00	0	0	+00	+00	${ }^{0}$	0	0	0	1.35	0	1.35
(2)	.00	. .00	. 00	.00 .00	. 00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	. 00	. 00	.00 .00	. 00	+00	1.35 .05	, 00	1.35
ALL SPEEDS	3	1	3	3	2	6	1	1	9	9	8	6	11	4	5	6	0	76
(1)	4.05	1.35	4.05	6.05	2.70	5.61	1.35	1.35	12.16	12.16	10.81	8.11	16.86	5.41	6.76	5.61	. 00	100.00
(2)	. 14	. 05	. 14	. 16	. 00	. 19	. 05	. 05	. 62	.42	* 38	.28	. 52	. 19	. 26	. 19	. 00	3.49

(1)wPERCENT OF ALL GOOD OHSERVATIOWS FOE THIS PAGE
(2) mPERCENT OF All GOCO DeSERVATIONS FOL THIS PERICD

Ce CALM (WIND SHETS LESS TKAN EQ EQAL 10 . 95 MPH)

VIND DIRETTIO FROM

PPLED(W)	*	WNI	M	EME	E	Et	${ }_{\text {kf }}$	55	8	55\%	N	V5\%	v	WN	WV	WWY	VREt	total
CALM	0	0	-	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 010
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	.00	. 00	. 00	. 00
c-3	0	0	0	0	0	O	0	0	0	0	0	0	0	1	0	0	,	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.89	. 00	. 20	. 09	1.89
(2)	.00	.00	. 00	.00	.00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	.00	. 05	. 00	. 00	. 00	. 05
4.7	1	2	1	1	2	0	0	0	0	0	0	0	4	0	1	1	0	13
(1)	1.89	3.77	1.80	1.89	3.77	. 00	. 00	. 00	. 00	. 00	. 00	. 00	7.55	. 00	1.80	1.89	. 00	26.53
(2)	. 05	.09	. 05	. 05	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 00	. 05	. 05	. 00	. 61
8-12	0	1	2	0	0	5	0	0	3	2	2	3	1	1	1	2	0	23
(1)	. 00	1.89	3.77	. 00	. 00	9.63	. 00	. 00	5.66	3.77	3.77	5.66	1,89	1.89	1.89	3.77	. 00	63.60
(2)	, 00	. 05	. 08	. 00	. 00	. 26	. 00	. 00	. 16	.09	. 09	, 16	. 05	. 05	. 05	. 09	. 00	1.08
15-18	0	0	1	0	0	0	0	0	5	2	5	0	0		0	0	0	16
(1)	. 00	. 00	1.89	. 00	. 00	. 00	. 00	. 00	9.63	3.77	9.63	. 00	. 00	1.89	. 00	. 00	. 00	26.62
(2)	. 00	. 00	. 05	.00	. 00	. 00	.00	. 00	. 26	.09	. 26	. 00	. 00	. 05	.00	. 00	.00	. 66
19-26	0	,	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.89	1.89	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.77
(2)	. 00	.00	, 00	. 00	.00	.00	. 00	,00	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00
©1 24		,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	10	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	,00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 80
Alt sperds						5	,	0	.	5	7	3	5	3	2	3	\checkmark	53
(1)	1.89	5.66	7.55	1.85	3.77	9.63	. 00	. 00	16.98	9.63	13.21	5.66	9.63	5.66	3.77	5.66	. 00	100.00
(2)	. 05	, 14	.19	. 05	. 09	. 26	.00	. 00	.62	. 26	-33	, 14	. 26	. 16	. 09	. 16	. 00	2.50

(1) wPEREENT OF ALL tocco of SERVATIONS FOR THIS PACE (2) -PERCENT Of ALL 6000 DesERVATIOWS FOR THIS PERICD

Co CALK (VIND SPEED LESS THAN OR EOUAL TO , ©5 MPH)

220.0 tナ VIU DRTA

STAE111TY CLAS5 D
(Lats fktaunct (PERCENT) * 3i** VIND DIRECTION FKOW

SPEED (WPW)	v	WWE	ni	EEE	E	ESE	8	\$5	8	EWV	EV	U5V	v	WWN	W	UWV	VhBL	T0tal
call	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	. 00	.00	. 00	. 00	.00	.00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	.60	.00	.10	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	.00	, 00	. 00	. 00	. 00	.00
C-3	0	1	3	3	0	0	0	0	0	0	0	1	0	1	1	1	0	11
(1)	.00	. 33	1.40	1.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 33	. 00	. 53	. 33	. 83	, 00	3.67
(2)	. 00	. 05	. 16	.16	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 05	. 00	. 05	. 05	. 05	. 00	+52
$6 \cdot 7$	1. 5	4	6	6	5	5	3	1	3	3	1	0	1	7	3	2	0	. 59
(1)	1.67	1.33	2.00	2.00	3.00	1.67	1.00	. 33	1.00	1.00	. 33	.00	. 33	2.83	1.00	.67	.00	19,67
(2)	. 26	. 19	. 28	. 28	. 62	. 26	. 16	.05	. 16	, 16	. 05	. 00	.05	. 33	. 14	.09	. 00	2.76
8-12	2.67	. 13	1.67	. 67	6 2.00	15 5.00	5.67	1.33	5. 16	12 4.00	1.67	8, 90	${ }^{2}$	1.67	. 0	1	0	108 36.00
(2)	2.67 .38	. 05	1.67 .26	. 67	2.00 .28	$\$.00$.71	5.67 .80	1.33 .19	5.33 .75	4.00 .57	1.67 .26	3.00 .62	. 67	1.67 .26	.00	. 33	. 00	36.00 5.09
13-18	0	2	0	0	0	2	0	2	24	40	13	6	7	2	1	2	0	9
(1)	.00	.67	.00	. 00	. 00	. 67	. 00	. 67	8.00	13.33	4.33	1.33	2.33	.67	. 35	.67	.00	33.00
(2)	. 00	.09	. 00	+60	.00	. 09	. 00	. 09	1.13	1.88	. 61	. 19	. 33	. 09	. 05	.09	.00	6.66
19-26	0	0	0	0 0	0	\% 0	00	0	0	12 4.00	0	- 27	0	$\times 3$	0	1.00^{3}	0	18 6.00
(2)	+00	+00	+00	+00	+00	-00	. 00	.00	.00	4.00	-00	. 67	+00	+ 33	. 00	1.00	. 00	6.00
(2)	. 00	. 09	. 09	. 08	. 00	+00	. 00	. 00	. 00	+57	.00	.00	, 00	. 05	. 00	. 16	.00	. 85
t1 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	0	5
(1)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	.00	. 00	. 00	. 00	.00	. 33	1.33	. 00	1.67
(2)	.00	.00	. 00	. 00	.00	. 00	.00	.00	.00	.00	. 00	.00	. 00	.00	. 05	. 19	. 00	. 24
ALL EPEDS	13	8	16	11	15	22	20	7		67	19	16	10	16	6	13	0	300
(1)	6.33	2.67	6.67	3.67	5.00	7.33	6.67	2.33	14.33	22.33	6.33	5.33	\$. 33	5.33	2.00	4.33	. 00	100,00
(2)	. 61	. 38	.66	+52	, 71	1.06	. 96	. 33	2.03	3.16	. 89	. 75	.67	. 75	. 28	. 61	.00	16,13

 (2) =PERCENT OF ALL GOOO GPSERVATIONS FOR TKIS PERIC0

Ce CALM (UIKD SPEED LESS THAN DE EQUAL TO . 95 MPH)

TABLE 4A-2 (continued)

PILGRIN JULP1-SEP91 NET GATA JOINT FEEQUENCY D18YRIBUTION (220-FOOT TOWER)

(CLA5S fetenney (PERCENT) = 35.99 VIND DIRECTIOW FROM

SPEED (NFW)	*	WNE	ME	ENE	E	ESE	$5 E$	S5if	δ	S6\%	5 N	USW	v	UNV	NV	NWV	VREL	1014.
CALH	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2
(1)	. 00	. 00	. 00	. 00	, 00	, 13	. 00	. 00	00	. 00	. 00	. 00	. 00	, 00	. 00	. 13	, 00	. 26
(2)	. 00	. 00	. 00	. 00	. 00	. 05	. 90	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 05	. 00	, 09
C-3	2	2	3	5	1	1	0	1	0	2	2	1	1	3	1	,	0	26
(1)	. 26	. 26	, 39	. 65	, 13	. 13	. 00	. 13	. 00	. 26	.26	. 13	, 13	. 39	. 13	. 13	. 00	3.60
(2)	+09	. 09	, 16	. 26	, 05	. 05	. 00	. 05	. 00	, 09	. 09	. 05	. 65	. 16	.05	. 05	, 00	1.22
6-7	2	6	6	10	16	14	13	3	6	4	4	4	6	5	5	5	0	105
(1)	.26	\%2	. 79	1.31	2.09	1.83	1.70	. 39	.79	. 52	. 52	. 52	+52	. 65	. 65	. 65	. 00	13.74
(2)	. 09	. 19	.28	.67	. 75	. 66	. 61	. 16	. 28	. 19	, 19	. 19	. 19	. 26	.26	. 26	. 00	4.95
		12	10	11	15	21	17	10	19	15	11	12	10	22	6	10	0	605
(1)	. 52	1.57	1.31	1, 64	1.96	2.75	2.23	1.31	2.49	1.96	1,66	1.57	1.31	2.88	. 70	1.31	00	26.83
(2)	. 19	. 57	. 67	, 52	. 71	. 99	. 80	. 67	. 89	.71	. 52	. 57	. 47	1.06	. 28	. 67	. 00	Q.66
13-18	4	3	8	0	2	9	16	14	29	86	30	30	22	9	10	4	0	269
(1)	. 52	, 39	.39	. 00	. 26	1.18	2.09	1.83	3.80	10.90	3.93	3.93	2.88	1.18	1.31	, 52	. 00	35.21
(2)	. 19	. 16	. 14	. 00	. 00	. 62	, 75	. 66	1.37	3.96	1.61	1,61	1.04	. 62	. 67	. 19	. 00	12.67
19.24	3	0	0	0	0	0	1	3	5	95	12	1	2	1	16	2	0	161
(1)	. 39	. 00	. 00	, 00	, 00	. 00	. 13	. 39	. 65	12.63	1.57	. 13	. 26	. 13	2.09	. 26	, 00	18.46
(2)	. 16	.00	. 00	.00	. 00	. 00	. 05	. 16	.24	6.67	. 57	. 05	. 08	. 05	. 75	. 09	. 00	6.64
6124	1	0	0	0	0	0						1	0	1	8	3	0	16
(1)	. 13	. 00	. 00	. 00	. 00	. 00	. 00	, 13	. 00	. 00	, 13	. 13	. 00	. 13	1.05	. 39	. 00	2.09
(2)	. 05	. 00	. 00	. 00	, 00	. 00	. 00	. 05	. 00	. 00	. 05	. 05	. 00	. 05	. 38	. 14	. 00	. 75
ALL SPEEDS	16	21	22	26	34	46	47	32	59	200	60	69	39	41	46	26	0	764
(1)	2.09	2.75	2.88	3.40	6.65	6.02	6.15	4.19	7.72	26.18	7.85	6.61	5.10	5.37	6.02	3.40	.00	100,00
(2)	. 75	. 99	1.06	1.22	1.60	2.17	2.21	1.51	2.78	9.42	2.83	2.31	1.84	1.93	2.17	1.22	. 00	35.99

(1) =PERCENT OF ALL GOOO OESERVATIOAS FOB THIS P: ?
(2)=PERCENT OF ALL $\mathbf{G O 0 0}$ OESERVAIIOWS FOR THIS PL. 00

PILGRIM JUL91-SEPQ1 NET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOMER)
220.0 TT VIND DATA

5TAETLITF CLAES
CLass fteautwty (fthetwT) = 22.70
VIND DIRECTION FROM

SPEED (MPH)	v	NWE	WE	ENE	E	ESE	81	6s8	8	SSV	SV	W5w	v	WW\%	WV	NWV	VREL	Total.
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
(1)	, 0	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 21	. 00	. 21
(2)	. 4	. 00	. 00	.00	. 00	.00	, 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	, 00	. 05
t-3	2	0	3	0	1	1	1	1	0	0	0	1	0	0	2	2	0	14
(1)	.61	. 00	.62	.00	.21	.21	.21	. 21	.00	. 00	. 00	.21	,00	. 00	. 61	. 61	. 00	2.90
(2)	. 07	. 05	. 16	. 00	. 05	. 05	. 05	. 05	. 00	. 00	, 00	. 05	. 00	. 00	, 09	. 09	. 00	. 66
6.7	6	2	3	6	2	5	5	3	5	6	6	6	3	6	9	8	0	73
(1)	. 83	. 41	. 62	1.26	.41	1.06	1.04	. 62	1.06	. 83	1.24	. 83	. 62	. 83	1.87	1.66	. 00	15.15
(2)	. 19	. 09	. 16	.28	. 08	. 26	. 26	. 16	. 26	. 19	. 25	+19	. 16	. 19	.62	. 38	. 00	3.64
8-12	5	2	1	0	1	8	5	3	9	6	4	5	10	9	17	10	0	95
(1)	1.06	. 61	.21	. 00	. 21	1.66	1.04	. 62	1.87	1.26	. 83	1.04	2.07	1.87	3.53	2.07	, 00	19.71
(2)	. 26	.09	. 05	. 00	. 05	. 38	. 26	. 14	. 42	. 26	. 19	. 26	.67	. 62	. 80	.47	. 00	6.67
13.18	20	5	0	1	3	2	8	10	9	26	31	28	25	21	15	11	0	213
(1)	4.15	1.04	. 00	.21	. 62	. 41	1.66	2.07	1.87	6.98	6.63	5.81	5.19	4.36	3.11	2.28	. 00	64.19
(2)	. 96	. 26	. 00	. 05	. 16	. 09	. 38	. 67	. 62	1.13	1.46	1.32	1.18	.99	. 71	. 52	. 00	10.03
19-26	1	0	0	0	1	1	5	5	2	46	11	3	1	0	2	3	0	81
(1)	. 21	. 00	. 00	. 00	. 21	.21	1.06	1.06	. 61	9.54	2.28	12	. 21	. 00	. 61	. 62	. 00	16.80
(2)	. 05	. 00	. 00	.00	. 05	. 05	. 26	. 26	. 08	2.17	. 52	, 16	. 05	. 00	, 09	. 14	. 00	3.82
6126	0	0	0	0	0	0	1	1	1	0	0	2	0	0	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 21	. 21	. 00	. 00	. 61	. 00	. 00	. 00	.00	. 00	1.04
(2)	. 00	, 00	. 00	, 00	. 00	. 00	. 05	. 05	. 05	. 00	. 00	. 09	. 00	. 00	. 00	. 00	. 00	. 24
AL6 SPEEDS	32	9	7	7	8	17	25	23	26	80	52	63	39	34	45	35	0	482
(1)	6.64	1.87	1.45	1.65	1.66	3.53	5.19	6.77	5.39	16.60	10.70	8,92	8.09	7.05	9,34	7. 26	. 00	100,00
(2)	1.51	+62	. 33	. 33	. 38	, 80	1.18	1.08	1.22	3.77	2.65	2.03	1,84	1.60	2.12	1.65	. 00	22,70

(1) -PERCENT OF ALL toOO GESERVATIOWS FOK THIS PAOE (2) mPERCENT OF ALL QOO0 '䍚SERVATIONS FOR THIS PERICD

220.0 HT VIMD DATA STAEILITY CLASS $0 \quad$ CLASS FREOUENCY (PEROENT) * 7.21 VIND DIRECTIOM FRON

SPEED (WFW)	N	WME	46	ENE	1	ESt.	5t	5st	5	SSW	EV	USW	v	UNW	NW	NWW	VREL	TOTAL
CALM	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
(1)	. 65	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	, 00	. 00	. 00	. 00	. 00	1.31
(2)	. 05	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	.00	. 00	. 00	. 00	. 00	. 00	. 09
c-3	0	1	1	0	1	0	0	1	1	1	0	0	0	1	1	1	0	9
(1)	. 00	. 65	. 65	. 00	. 65	. 00	. 00	. 65	. 65	. 65	. 00	. 00	. 00	. 65	. 65	. 65	. 00	5.85
(2)	.00	. 05	. 05	. 00	. 05	. 00	.00	. 05	. 05	. 05	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 42
4-7	1	2	0	0	2	3	$?$	1	2	0	4	2	2	0	6	1	0	26
(1)	. 65	1.31	. 00	, 00	1.31	1.96	1.31	. 65	1.31	. 00	2.61	1,31	1.31	. 00	2.61	. 65	. 00	16.99
(2)	. 05	. 09	. 00	. 00	. 09	. 16	.05	. 05	.09	. 00	. 19	. 05	. 09	. 00	+19	. 05	. 00	1.22
$8-12$	0	0	0	0	0	0	0	2	6	14	4	9	11	3	5	1	0	53
(1)	. 00	. 00	. 00	. 00	. 00	, 50	. 20	1.31	2.61	9.15	2.61	5.88	7.19	1.96	3.27	. 65	. 00	34.64
(2)	. 00	.00	. 00	.00	. 00	. 00	. 00	. 09	. 19	. 66	. 19	. 6.6	. 52	. 14	. 26	. 05	. 00	2.50
13-18	3	0	0	0	0	0	0	0	0	4	15	13	5	3	1	0	0	44
(1)	1.96	. 00	.00	. 00	.0.	. 60	. 00	. 00	. 00	2.61	9.80	8. 50	3.27	1.96	. 65	. 00	. 00	28.76
(2)	. 16	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 19	. 71	. 61	. 24	. 16	. 05	. 00	. 00	2.07
19.24	4	0	0	0	0	0	0	0	0	3	6	0	0	0	0	1	0	14
(1)	2.61	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.96	3.92	. 00	. 00	. 00	. 00	. 65	. 00	9.15
(2)	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 14	. 28	, 00	. 00	. 00	. 00	. 05	. 00	. 66
61 24	0	0	0	1	2	1	0	1	0	0	0	0	0	0	0	0	0	
(1)	. 00	. 00	.00	. 65	1.31	. 65	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	3.27
(2)	. 00	. 00	, 00	05	. 09	. 05	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 26
ALL SPEEDS	9	3	5	1	5	4	2	5	7	22	30	24	18	7	11	4	0	153
(1)	5.88	1.96	. 65	. 65	3.27	2.61	1.31	3.27	6.58	14.38	19,61	15,69	11.76	4.58	7.19	2.61	. 00	100.00
(2)	. 62	. 16	. 05	. 05	. 26	. 19	. 09	. 24	. 33	1.06	1.61	1.13	. 85	. 33	. 52	. 19	. 00	7.21
(1) $=$ PERCEMT (2) PPERCENT	or ALl	0000	observa	ATIOWS	F08	TH15 P												
	of All	6000	Qestrva	Aliows	FOR	this P	R100											
										C*	ALM (VI	IND SPE	EED LE	5 THAN	OR E	UAL 10	. 95	MPH)

PILGRIM JUL91-SEPQI MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
220.0 tT WIWO tata
\$YAstLTTY CLASS ALL
CLAES FRFOUACY (PERENT) $=100.90$

VIND DIRECTIOW FROM

SPEED(HPW $^{\text {P }}$	1	NWE	M	ENE	1	Est	56	\$8E	1	ssw	8V	USV	V	WNV	NV	NWW	VRBL	TOTAL
CALH	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2	0	5
(1)	. 05	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 05	, 00	. 00	. 00	. 00	. 09	. 00	. 26
(2)	. 05	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 05	.00	. 00	. 00	. 00	. 09	. 00	.24
C-3	5	6	10	8	3	2	1	3	1	3	3	3	1	6	5	5	0	63
(1)	. 26	. 19	.67	. 38	.16	. 09	. 05	. 16	. 05	. 16	, 16	. 16	. 05	- 28	.24	. 24	. 00	2.97
(2)	. 26	. 19	.47	+38	. 16	.09	. 05	. 14	. 05	. 16	, 16	. 16	. 05	. 28	. 26	. 26	, 00	2.97
$6 \cdot 7$	36	28	24	35	38	28	23	8	17	13	15	10	15	20	30	23	0	361
(1)	1.60	1.32	1.13	1.65	1.79	1.32	1.6s	. 38	. 80	. 61	. 71	. 47	. 71	. 94	1.61	1.08	. 00	17.00
(2)	1.60	1.32	1.13	1.65	1.79	1.32	1,08	. 38	. 60	.61	.71	. 67	. 71	, 96	1.41	1.08	. 00	17.00
5. 12	36	19	32	20	32	57	42	20	58	57	42	61	42	52	32	61	0	663
(1)	1.70	, 89	1.51	. 94	1.51	2.68	1.98	. 94	2.73	2.68	1.98	2.87	1,98	2.65	1.51	1.03	. 00	30.29
(2)	1.70	. 69	1.51	. 96	1.51	2.68	1.98	, 24	2.73	2.68	1.98	2.87	1.98	2.65	1.51	1.93	. 00	30.29
13-18	33	11	5	1	5	13	26	26	86	169	107	81	76	45	30	29	0	737
(1)	1.55	. 52	. 26	. 05	. 26	. 61	1.13	1.22	3.06	7.96	5.06	3.82	3.49	2.12	1.61	1.37	. 00	34.72
(2)	1.55	. 52	. 26	. 05	. 26	.61	1.13	1.22	3.06	7.96	5.06	3.82	3.69	2.12	1.61	1.37	. 00	34.72
$19-26$	10	0	0	0	1	1	6	8	11 52	767	29 198	$\begin{array}{r}7 \\ \hline\end{array}$	4	3	18	13	0	${ }^{278}$
(1)	.67	. 00	. 00	. 00	. 05	. 05	. 28	. 88	. 52	7.87	1.37	. 33	. 19	. 16	. 65	. 61	. 00	13.09
(2)	.67	. 00	. 00	.00	. 05	. 05	. 28	. 38	. 52	7.87	1.37	. 33	. 19	. 14	. 85	. 61	. 00	13.09
6126	1	0	0	1	2	5	1	3	1	1	1	3	0	1	9	11	0	$\begin{array}{r}36 \\ \hline .70\end{array}$
(1)	. 05	. 00	. 00	. 05	. 09	. 05	. 05	. 16	. 05	. 05	. 05	, 16	. 00	. 05	. 42	. 52	. 00	1.70
(2)	. 05	. 00	. 00	. 05	. 09	. 05	. 05	. 16	, 05	. 05	. 05	. 16	. 00	. 05	.42	.52	.00	1.70
ALL SPEEDS	120	62	71	65	81	103	97	68	172	610	198	165	136	127	126	124	0	2123
(1)	5.65	2.92	3.36	3.06	3.82	4.85	4.57	3.20	8. 10	19.31	9.33	7.77	6.61	5.98	5.84	5.84	. 00	100,00
(2)	5.65	2.92	3.36	3.06	3.82	6.85	4.57	3.20	B. 10	19.31	9.33	7.77	6.61	5.98	5.84	5.84	. 00	100.00

(1) wPERCENT OF ALL OOOO OASERVATICNY FOK TH1S PADE
(2) WPERCENT OF ALL QOOO OESERVATIONS IOR THIS PERICO

C C CALM (WIND SPEED LESS THAN OR EQUAL TO . 95 MPK)

PILOEIK OCT91-DECDI KET DATA dOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
220.0 F1 VIND DATA

STAEILITY CLIES A
 VIND DIRECTIOW FROM

(2) UPERCENT OF ALL G000 OESERVATIONS fOR THIS PLRIO0

PILQRIM OCTPI-DEC91 MET DATA JOIET FREOUENCY DISTRIBUTION (220-FOOT TOMER)
220.0 FT VIKD DATA
STABILITY CLASS 8
CLASS FRtotenty (PtRCENT) = 3.23

VIND DIRECTIOW IRCW

SPEED (MPH)	K	NWE	HE	Ent	I	E5	5	\$55	5	8SV	SN	V5V	V	WWV	WN	NKW	VREL	101AL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00
(2)	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00
C-3	0	0	0	0	0	0	0	0	0	t	0	0	0	0	0	0	0	0
(1)	.00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6-7	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	2	0	6
(1)	1.56	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.56	3.13	3.13	. 00	0.38
(2)	. 05	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	, 10	. 10	. 00	. 30
$8 \cdot 12$	0	1	0	0	1	0	0	0	3	1		0	0	2	1.1	1. 1	0	-13
(1)	. 00	1.56	. 00	. 00	1.56	. 00	.90	. 00	4.69	1.56	4.69	. 00	. 00	3.13	1.56	1.56	. 00	20.31
(2)	. 00	. 05	. 00	. 00	. 05	. 00	. 00	. 00	. 15	. 05	. 15	. 00	. 00	.10	. 05	. 05	. 00	. 66
13-18	3	0	0	0	0	, 1	0	- ${ }^{2}$	3. ${ }^{2}$	${ }^{3}$, 1.5	3, ${ }^{2}$	6.3	1. 1.5	0	0	32.21
(1)	4.69	. 00	. 00	. 00	. 00	1.56	. 00	3.13	3.13	4.69	3.13	1.56	3.13	6.25	1.56	. 00	. 00	32.01
(2)	. 15	.00	. 00	. 00	. 00	. 05	.00	, 10	. 10	. 15	. 10	. 05	. 10	. 20	. 05	. 00	. 00	1.06
19-26	1	6	0	0	0	0	0	0	1	7	0	0	1	0	1	0	0	17
(1)	1.56	9.38	. 00	. 00	. 00	. 00	. 00	. 00	1.56	10.94	.00	. 00	1.56	. 00	1.56	. 00	. 00	26.56
(2)	. 05	. 30	. 00	. 00	.00	. 00	. 00	. 00	. 05	. 35	. 00	. 00	. 05	. 00	. 05	. 00	.00	. 86
Et 26	4	0	0	0	0	0	0	0	0	0	0	0	0	2	1.1	9	0	?
(1)	6.25	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	3.13	1.56	. 00	. 00	10.94
(2)	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	, 00	.00	. 10	. 05	. 00	. 00	. 35
ALL SPEEDS	9	${ }^{7}$	0		1. 1	1	0	2	P. 6	17	7. ${ }^{5}$	1. ${ }^{1}$	${ }^{3}$	16. 9	- ${ }^{6}$	${ }_{4}^{3}$	0	
(1)	14.06	10.96	. 00	+00	1.56	1.56	. 00	3.13	9. 36	17.19	7.81	1.56	4.69	16.06	9. 38	4.69	. 00	100.00
(2)	. 45	. 35	. 00	. 00	. 05	. 05	. 00	. 10	.30	. 55	. 25	. 05	+15	. 65	+30	. 15	. 00	3.23

(1) $=P E R C E N T$ OF ALL GOON OESERVATIOMS FOR THIS PAGE (2) MPERCENT OF ALL GOOD OBSERVKTIONS FOR THIS PERIOD

PILOR1M OCTM1-DECQ1 MET DATA JOINT FKEGUENCY DISTKIBUTION (220-FOOT TONER)

VIND DIRECTION FROM

SPEED (MPH)	N	NWE	HE	ENE	E	E5E	\$8	\$5E	8	S\$4	SV	USW	v	WNW	NW	NNW	VRBL	T01AL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00
(2)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00
c. 3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	1.39	.00	. 00	. 00	+00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39
(2)	. 05	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	, no	.00	. 00	. 00	.00	. 00	.00	. 05
6-7	1	0	1	1	0	0	0	0	0	0	1	0	1	3	3	0	0	11
(1)	1.39	. 00	1.39	1.39	. 00	. 00	. 00	. 00	. 00	. 00	1.39	. 00	1.39	4.17	4.17	. 00	. 00	15.28
(2)	. 05	. 00	. 05	. 05	. 60	. 00	. 00	.00	. 00	. 00	. 05	.00	. 05	, 15	. 15	. 00	.00	. 55
8-12	0	0	0	0	2	1	0	0	5	1	2	0	2	3	2	0	0	18
(1)	. 00	. 00	. 00	. 00	2.78	1.39	. 00	. 00	6.94	1.39	2.78	. 00	2.78	4.17	2.78	. 00	. 00	25,00
(2)	.00	. 00	. 00	. 00	. 10	. 05	. 00	. 00	. 25	. 05	. 10	.00	. 10	. 15	. 10	. 00	. 00	. 91
13-18	1	0	0	0	0	1	2	0	1	2	2	6	2	0	2	0	0	19
(1)	1.39	. 00	. 00	. 00	. 00	1.39	2.78	. 00	1.39	2.78	2.78	8. 33	2.78	. 00	2.78	. 00	. 00	26.39
(2)	.05	.00	. 00	. 00	. 00	. 05	. 10	. 00	. 05	. 10	+ 10	. 30	.10	.00	.10	.00	. 00	.96
19-24	0	3	0	0	0	0	0	0	0	1	0	3	0	1	1	1	0	10
(1)	. 00	6.17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39	. 00	4.17	. 00	1.39	1.39	1.39	. 00	13.89
(2)	. 00	, 15	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 15	. 00	. 05	. 05	. 05	.00	. 50
5124	- 7	2.8	0	0	0	0	t	0	0	0	0	, 1	1.39	1.39	0	, 1	0	18.13
(1)	9.72	2.78	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39	1.39	1.39	. 00	1.39	. 00	18.06
(2)	. 35	. 10	. 00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 05	. 00	. 66
ALL SPEEDS				1					6		5	10	6	8	8	2	0	72
(1)	13.89	6.94	1.39	1.39	2.78	2.78	2.78	. 00	8.33	5.56	6.96	13.89	8.33	11.11	11.11	2.78	. 00	100.00
(2)	. 50	. 25	. 05	. 05	. 10	. 10	. 10	. 00	. 30	. 20	. 25	. 50	. 30	. 40	. 40	. 10	. 00	3.63

(1) =PERCENT OF ALL GOOO OESERVATIONS FOR THIS PAGE (2) wPERCENT OF ALL G000 OESERVATIONS FOR THIS PERICO

CE CALM (KIND SPEED LESS THAN OR EQUAL TO . 95 MPK)

TABLE 4A-2 (continued)

PILGRIM OCT91-DECQ1 MET DATA JOINT FREOUENCY DISTRIBUTION (220-F001 TONER)
220.0 TT WIND DATA

CLASE FRE由NHCY (PERCENT) $=23.66$

VIND DIRECTIC世 FRON

(1)wPERCENT OF ALt 6000 OESERVAFIONS FOR THIS PAOE
(2) EPERCENT OF ALL GOCO OESERVATIONS FOR TH1S PERICO

TABLE 4A-2 (continued)

PILGRIK OCT91-DEC91 NET DATA JOINT FREOUENCY DISTRIBUTION (220-FOOT TONER)
220.0 IT VIWD DATA

5TAEIL.ITY CLAES E
C1.A5s fefoumticy (PERCENT) = 38.70

WIND DIRECTION FRCM

SPEED (NPW)	5	ENE	NE	ENE	E	Est	58	SSE	5	85w	5 W	USV	v	WWV	WV	NWW	VRBL	101AL
CALH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	${ }_{.} 00$. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	00
(2)	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	.00	, 00
C-3	1	2	0	1	0	2	1	0	0	1	0	1	1	1	0	0	0	11
(1)	, 13	.26	. 00	. 13	. 00	. 25	. 13	. 00	. 00	. 13	. 00	. 13	. 13	. 13	. 00	. 00	. 00	1.63
(2)	. 05	. 10	. 00	. 05	. 00	. 10	. 05	, 00	. 00	. 05	. 00	. 05	. 05	. 05	. 00	. 00	. 00	. 55
6-7	2	3	2	0	2	2	7	7	2	4	5	4	6	1	1	2	0	48
(1)	. 26	. 39	. 26	. 00	. 26	. 26	. 91	. 91	. 26	, 52	. 65	. 52	. 52	. 13	+ 13	. 26	. 00	6.26
(2)	, 10	, 15	. 10	. 00	.10	. 10	. 35	. 35	. 10	. 20	. 25	. 20	. 20	. 05	. 05	. 10	, 00	2.62
8-12	5	1	3	3	2	4	6	11	13	21	13	16	19	18	15	10	0	160
(1)	.65	. 13	.39	. 39	. 26	, 52	. 78	1.63	1.69	2.76	1.69	2.09	2.68	2.35	1.96	1.30	. 00	20.86
(2)	. 25	. 05	. 15	.15	. 10	. 20	. 30	. 55	. 66	5,06	. 66	, 81	. 96	. 91	. 76	. 50	. 00	8.07
13.75	8	3	2	0	13	$\begin{array}{r}10 \\ \hline\end{array}$	22	433	. 28	47	50 6	46 6.00	+58	29 3	+ 23	12 +126	0	372 18.50
(1)	1.6	. 39	.26	. 00	. 13	1.30	2.87	6.30	3.65	6.13	6.52	6.00	7.56	3.78	3.00	1.56	, 00	48.50
(2)	. 40	. 15	+ 10	. 00	. 05	. 50	1.11	1.66	1.41	2.37	2.52	2.32	2.93	1.46	1.16	. 61	. 00	18.77
18-24	2	6	1	0	0	4	5	0	6		20		. 16	. 16	13	6	0	153
(1)	. 26	. 78	. 13	.00	. 00	. 52	. 65	. 00	. 78	6.95	2.61	2.87	1.83	2.09	1.69	. 78	. 00	19.95
(2)	. 10	.30	.05	.00	. 00	. 20	. 25	. 00	. 30	1.92	1.01	1.11	. 71	. 89	. 66	. 30	. 00	7.72
6724	11	0	1	0	0	0	0	0	0	2	0	0	1	3	4	1	0	23
(1)	1.43	. 00	.13	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 00	. 00	. 13	. 39	. 52	. 13	. 00	3,00
(2)	. 55	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 00	. 00	. 05	. 15	. 20	. 05	. 00	1.16
ALL SPEEDS	29	15	9	4	5	22	41	51	69	113	88	89	97	68	56	31	0	767
(1)	3.78	1.96	1.17	. 52	-65	2.87	5.35	6.65	6.39	14.73	11.47	11,60	12.65	8.87	7.30	6.06	. 00	100,00
(2)	1.46	. 76	. 65	. 20	. 25	1.11	2.07	2.57	2.67	5.70	6.44	6.49	4.89	3.63	2.83	1.56	, 00	38.70

(1) PPERCENT OF ALL 6000 OESERVATIOWS FOR THIS PACE (2) =PERCENT OF ALL G000 DRSERVATIOWS FOR TKIS PERICO

PILGRIM OC191-DECPI MET DATA JOINT FREOUENCY DISTRIBUTION (220-FOOT TOMER)

VIND DIRECTION FROM

SPEED (N-N)	V	WNE	WE	ENE	E	ESE	5E	\$5E	5	58\%	SV	USY	V	UWV	NW	NWV	VRBL	TOTAL
CALM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	,00	. 24	. 00	. 00	. 00	. 00	. 00	. 00	+08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26
(2)	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	, 0\%	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
c-3	0	0	1	0	0	1	0	1	1	3	1	1	2	0	0	0	0	11
(1)	. 00	. 00	. 26	. 00	. 00	. 26	. 00	. 24	. 26	. 71	. 24	. 26	. 48	. 00	. 00	. 00	. 00	2.62
(2)	. 00	. 00	. 05	, 09	. 00	. 05	. 00	. 05	. 05	. 15	. 05	. 05	. 10	. 00	. 00	. 00	. 00	. 55
4-7	0	1	1	2	3	3	1	3	2	4	8	3	2	5	5	2	0	65
(1)	. 00	.26	. 26	. 48	. 71	. 71	. 26	.71	.68	. 95	1.90	. 71	. 68	1.19	1.19	. 48	. 00	10.71
(2)	. 00	. 05	. 05	. 10	. 15	. 15	. 05	. 15	. 10	. 20	. 40	. 15	. 10	. 25	. 25	. 10	. 00	2.27
8-12	1	3	8	4	1	0	5	12	11	5	13	7	11	12	8	8	0	112
(1)	. 26	. 71	1.90	. 95	. 26	. 00	1.19	2.86	2.62	1.90	3.10	1.67	2.62	2.86	1.90	1.90	. 00	26.67
(2)	. 05	+15	. 60	. 20	. 05	+00	. 25	. 61	. 55	. 40	. 66	. 35	. 55	. 61	. 40	. 60	.00	5.65
$13-18$	3	2	2	0	0	1	15	28	11	25	12	10	9	9	5	2	0	136
(1)	. 71	. 68	. 48	. 00	. 00	. 24	3.57	6.67	2.62	5.95	2.86	2.38	2.16	2.14	1.19	. 68	. 00	31.90
(2)	. 15	. 10	.10	. 00	. 00	. 05	. 76	1.61	. 55	1.26	. 61	. 50	. 65	. 65	. 25	+10	. 00	
19-26	3	13	0	0	0	0	8	1	0	9	18	5	1	2	1	7	0	68
(1)	. 71	3.10	. 00	. 00	. 00	. 00	1.90	. 26	, 00	2.16	6. 29	1.19	. 24	. 68	. 24	1.67	. 00	16.19
(2)	. 15	. 66	. 00	. 00	, 00	. 00	. 40	. 05	. 00	. 65	.81	. 25	. 05	. 10	. 05	. 35	. 00	3.43
or 24	13	29	0	0	0	0	2	0	0	0	0	1	0	1	0	3	0	49
(1)	3.10	6.90	. 00	. 00	. 00	. 00	. 68	. 00	, 00	. 00	. 00	. 26	. 00	. 24	. 00	. 71	. 00	11.67
(2)	. 68	1.46	. 00	. 00	. 00	. 00	.10	. 00	. 90	. 00	. 00	. 05	. 00	. 05	. 00	. 15	. 00	2.47
ALL SPEEDS										69	52	27	25	29	19	22	0	420
(1)	4.76	11.43	3.10	1.43	. 85	1.19	7.38	10.71	5.95	11.67	12,38	6.63	5.95	6.90	4.52	5.26	. 00	100.00
(2)	1.01	2.62	. 66	. 30	. 20	. 25	1.56	2.27	1.26	2.67	2.62	1.36	1.26	1.46	.96	1.11	. 00	21.18

(1)aPERCENT OF ALL \quad OOC0 OBSERVATIOWS FOR THIS PAGE
(2) PPERCENT OF ALL GO00 OESERVATIONS FOK THIS PERICD

CE CALM (VIND SPEED LESS THAN OR EOUAL 10.95 MPH)

PILGRIM OCTP1-DEC91 MET DATA JOINT FREQUENCY DISTR1BUTION (220-FOOT 1ONER)
 WIND DIRECTION FROM

SPEED (NPK)	N	NKE	WE	EME	E	Est	SE	855	8	SSV	5 N	WSV	v	WNV	WW	NNW	VRBL	TOTAL
CALM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	,	0	1
(1)	. 00	. 00	. 00	1.33	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.83
(2)	. 00	. 00	. 00	. 05	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	. 00	,00	. 05
C-3	0	0	0	0	0	0	0	0	0	0	0	0	0	-	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	. 00	. 00	1.33	. 00	. 00	1.33
(2)	. 00	. 00	,00	. 00	. 00	, 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	$\times 00$. 05	. 00	. 00	. 05
	0	0	0	0	0	0	0	1	0	0	0	0	1	2	2	0	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	. 00	. 00	. 00	. 00	1.33	2.67	2.67	. 00	. 00	8.00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	, 00	. 00	. 00	. 00	. 05	. 10	. 10	. 00	. 00	. 30
8.12	0	0	2	0	0	0	0	1	4	3	3	3	1	1	0	0	0	16
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	5.33	4.00	4.00	4.00	1.33	1.33	. 00	. 00	. 00	21.33
(2)	. 00	. 00	-00	. 00	. 00	. 00	. 00	. 05	. 20	. 15	, 15	. 15	. 05	. 05	. 00	. 00	. 00	. 81
13-18	0	0	0	0	0	1	0	2	0	1	5	2	3	2	0	0	0	16
(1)	. 00	. 00	. 00	. 00	. 00	1.33	. 00	2.67	. 00	1.33	6.67	2.67	4.00	2.67	. 00	. 00	. 00	21.33
(2)	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 00	. 05	. 25	+ 10	. 15	. 10	. 00	. 00	. 00	. 81
19-26	,	0	0	0	0	0	0	0	0	1	9	1	0	-	0	0	0	12
(1)	1.33	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	12.00	1.33	. 00	. 00	, 00	+00	. 00	16.00
(2)	.05	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 05	. 45	. 05	. 00	. 00	. 00	. 00	. 00	. 61
6t 24	17	6	0	0	0	0	0	0	0	0		0	0	0	1. 1	0	0	${ }^{23}$
(1)	22.67	5.33	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1,33	. 00	. 00	. 09	1.33	. 00	. 00	80.67
(2)	. 86	. 20	. 00	, 00	. 00	,00	.00	, 00	. 00	. 00	. 05	. 00	. 00	. 00	. 05	. 00	. 00	1.16
ALL SPEEDS	18				0	1 1	0	5.3	6		18	6		5		0	0	7
(1)	26.00	5.33	. 00	1.33	. 00	1,33	. 00	5.33	5.33	6.67	26.00	8.00	6.67	6.67	5.33	. 00	. 00	100.00
(2)	. 91	. 20	. 00	. 05	. 00	. 05	. 00	. 20	. 20	. 25	. 91	. 30	. 25	. 25	. 20	. 00	.00	3.78

(1)mPERCENT OF ALL GOOO OBSERVATIONS FOR THIS PAGE (2) =PERCENT OF ALL 6000 OESERVATIONS FOR THIS PERIOO

PILGRIM OCT91-DECOI MET DATA dOINT FREQUENCY DISIRIBUTION (220-FOOI TOWER)
250.6 TH WTN tスナt
\$TAKIL.1TY CLASS ALL
CLASS FREQUENCY (PERCLNT) $=100.00$

WIND DIRECTION FROW

SPEED (NPW)	v	Whe	NE	fNE	E	ESt	55	\$5E	5	SSW	5V	VSW	V	WWN	WV	WWW	VRลL.	TOTAL
CALM	0	0	1	1	0	0	6	0	0	0	0	0	0	0	λ	0	0	2
(1)	. 00	. 00	. 05	. 65	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	10
(2)	. 00	.00	. 65	. 05	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10
$t=3$	2	2	1	3	0	3	1	2	1	4	2	2	3	1	1	0	0	28
(1)	. 10	.10	. 05	. 15	. 00	, 15	. 05	.10	. 05	. 20	.10	. 10	. 15	. 05	. 05	. 00	. 00	1,41
(2)	. 10	. 10	. 05	+15	. 00	. 15	.05	.10	. 05	. 20	. 10	. 10	. 15	.05	. 05	. .00	. 00	1.61
6.7	8	8	6	7	7	5	9	12	4	9	16	9	14	16	21	8	0	159
(1)	. 40	. 40	.30	. 35	. 35	. 25	. 65	.61	. 20	. 45	. 81	. 45	. 71	. 81	1.06	. 40	. 00	8.02
(2)	. 40	. 40	. 30	. 35	. 35	. 25	.45	.61	. 20	. 65	. 81	. 45	.71	. 81	1.06	. 80	. 00	8.02
8. 12	13	6	12	9	9	12	16	26	53	46	44	37	68	58	40	23	5	448
(1)	. 66	. 30	.61	. 65	. 45	. 61	. 71	1,31	2.67	2.22	2.22	1.87	2.42	2.93	2.122	1.16	. 00	22.60
(2)	. 56	. 30	. 61	. 45	. 45	. 61	.71	1.31	2.67	2.22	2.22	1.87	2.42	2.93	2.02	1.16	. 00	22.60
	23	14	4	0	1	25	64	69	52	86	81	76	104	60	51			
(1)	1.16	. 71	. 20	.00	. 05	1.26	2.22	3.68	2.62	4.34	4.09	3.83	5.25	3.03	2.57	1.31	. 00	716 36.13
(2)	1.16	. 71	. 20	. 00	. 05	1.26	2.22	3,68	2.62	4.34	4.09	3.83	5.25	3.03	2.57	1.31	. 00	36.13
19-26	14	55	1	0	0	7	13	5	12	77	68	35	36	65	33	19	0	18
(1)	. 71	2.77	. 05	. 00	. 00	. 35	.66	. 13	. 61	3. 85	2.42	1.77	1.82	3.28	1.66	.96	00	21.00
(2)	. 71	2.77	. 05	. 00	.00	. 35	. 66	.15	. 61	3.88	2,62	1.77	1.82	3.28	1.66	. 86	.00	21.09
	100	38	3	0	0	0	2	0	0	3	1		11					
(1)	5.05	1.42	. 15	. 00	. 00	. 00	. 10	. 00	. 00	. 15	. 05	. 30	. 55	1.16	. 86	. 75	. 00	211 10.65
(2)	5.05	1.92	, 15	. 00	. 00	. 00	. 10	. 00	. 00	.15	. 05	+30	. 55	1.16	. 86	. 35	. 00	19.65
ALL SPEEDS	160	123	28	20	17	52	83	112	122	223	192	165	216	223	163	83	0	1982
(1)	8.07	6.21	1.41	1.01	.86	2.62	6.19	5.65	6.16	11.25	9.69	8. 32	10.90	11.25	8.22	4.19	00	100.00
(2)	8.07	6.21	1.41	1.01	. 86	2.62	4.19	5.65	6.16	11.25	9.69	8.32	10.90	11.25	8.22	4.19	. 00	100.00

(1) =PERCENT OF ALL GOCO OESERVATIONS FOR THIS PAGE (2)=PERCENT OF ALL GOC0 OBSERVATIONS FOR THIS PERICO
5. OFF-SITE DOSE GALCULATION MANUAL REVISIONS

The PNPS Off-site Dose Calculation Manual (ODCM) was revised two times during the time frame of July-Dtcember, 1991.

Revision 4 went into effect ta late September, 1991. The following revisions were rade:

- Updated to reflect changes in station organization
- Revised all pages that contained equations and definitions to include machine generated scientific characters
- Address required sampling of gardens Identified during the annual garden census
- Expanded the definttion of "Lower Limit of Detection" in Appendix B.

Revision 5 went into effect in late October, 1991. This revision addresses monitor setpoints for the Steam Jet Air Ejector Monitor.

A complete copy of the revisions is included as Appendices A and B.

6. REFERENCES

1. U. S. Nuclear Regulatory Commission, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", Regulatory Guide 1.21, Revision 1, June 1974.
2. A, R, Williams memorandum to L. A. Loomis, "Effluent and Waste Disposal Semiannual Report Reg. Guide 1.21 (Table 3)", dated January 23. 1992.
3. T. A. Messier memorandum to K. J. Sejkora, "PNPS Met Data JFD Tables July 1991 - December 1991", dated February 11, 1992.

OFFSITE DOSE CALCULATION MANUAL

> Rev, 0 was originally reviewed by ORC on june 10,1983

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Semiannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

REV.
NO. IDENTIFICATION OF CHANGE

DATE DOCUMENT SECTION
APPROVED AND PAGE

0
\dagger

2
Original Submittal
$6 / 10 / 83$
Update of TLD and Afr Sampler 6101/87 Locations

Changes in response to NRC
7/15/88 questions on PNPS OOCM (TAC \#63012). Changes in response to technical review performed by BECo Radiological Section.
3.
4.

> Changes in response to NRC comments on PNPS OOCM
> Rev. 2 (TAC \# 69867).
> Correct typographical error
> in Table A-3. Incorporate new TLD locations. Change responsible division.

Update signature page to
$7 / 12 / 89$
reflect new responsible
organization. Update record
of document changes. Renumber
pages ili through vii to include
list of effective page revisions.
Revise pages containting
equations and definitions to
include machine-generated
scientific characters.
Address gardens identified
during 1990 garden census in
Table 7-5 in accordance with
Technical Specification 7.1.B.2.
Expand definition of Lower Limit
of detection in Appendix B.

LIST OF EFFECTIVE PAGE REVISIONS

Page	Rev.										
4	4	18	4	42	3	A-4	4	A-28	3		
11	4	19	4	43	3	A-5	3	A-29	3		
111	4	20	4	44	3	A-6	3	A-30	3		
iv	4	21	4	45	3	A-7	3	A-31	3		
v	4	22	4	46	3	A-8	3	A-32	3		
v	4	23	4	47	3	A-9	3	A-33	3		
vil	4	24	3	48	3	A-10	3	A-34	3		
1	3	25	4	49	4	A-11	3	A-35	3		
2	3	26	4	50	3	$A-12$	3	A-36	3		
3	3	27	4	51	3	A-13	3	B-1	4		
4	3	28	4	52	3	A-14	3	B-2	4		
5	3	29	3	53	3	A-15	3	8-3	4		
6	3	30	4	54	3	A-16	3				
7	3	31	4	55	3	A-17	3				
8	3	32	4	56	3	A-18	3				
9	3	33	3	57	3	A-19	3				
10	3	34	3	58	3	A-20	3				
11	3	35	3	59	3	A-21	3				
12	3	36	3	60	3	A-22	3				
13	4	37	3	61	3	A-23	3				
14	4	38	3	62	3	A-24	3				
15	4	39	3	A-1	3	A-25	3				
16	3	40	3	A-2	3	A-26	3				
17	4	41	3	A-3	3	A-27	3				

IABLL OF CONTENTS

Page

sectlon
1
i a e intioductlon
(Imith me Condlitions for Operation and Operational Objectives 2 R- Lease Polat and Monitor Description
I Radloactive fifluent Release Point Description
3.1.1 Main Stack Gas Release
3.1.2 Reactor Butlding Exhaust Nent Release 6
4. + Hauld Radiation Waste Effluent Release
(.2-Radoactive Effluent Monitoring System Description ?
3.2.1 Main Stack Gas Monitoring Systen 3.2 .2 Reactor Butlding Exhaust Effluent Monltorling System 8 12 Neasurement Nethod During ke kase 12

TABLE OF CONTENTS

Section Page
1.0 Introduction 1
2.0 Limiting Conditions for Operation and Operational Objectives 2
3.0 Release Point and Monitor Description 5
3.1 Radioactive Effluent Release Point Description 5
3,1,1 Maín Stack Gas Release 5
3.1.2 Reactor Building Exhaust Vent Release 5
3.1.3 Liquid Radiation Waste Effluent Release 6
3.2 Radioactive Effluent Monltoring System Description 7
3.2.1 Main Stack Gas Monitoring System 7
3.2.2 Reactor Building Exhaust Vent Monitoring System 8
3.2.3 Liquid Radfation Waste Effluent Monitoring System 8
3.3 Measurement Method During Release 12
3.3.1 Gaseous Effluent 12
3.3.2 Liquid Effluent 12
3.3.3 Limitations 12
4.0 Calculational Methods 13
4.1 Concentrations of Liquid Effluents 13
4.2 Liquid Effluents Dose Assessment Methodology 14
4.2.1 Liquid Pathways Annual Dose Rates 14
4.2.1.1 Aquatic Foods Ingestion (Fish, 14
Shellfish)
4.2.1.2 Shoreltne Deposits (Discharge Canal and 15
Recreational Area)
4.2.1.3 Swimming (White Horse Beach) 15
4.2.1.4 Yachting/Boating (Cape Cod Bay) 15
4.2.2 Definitions 15

IABLE OF CONTENTS (continued)

Section
4.3 Gaseous Effluents Dose Assessment Methodology $\frac{\text { Page }}{17}$
4.3.1 Gaseous Pathways Annual Dose Rates from 18 Noble Gases
4.3.1.1 Gamma Air Dose 18
4.3.1.2 Beta Air Dose 18
4.3.1.3 Total Body Dose 18
4,3,1,4 Skin Dose 19
4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 19
131 and 133, Particulates with a Half-life Greater Than 8 Days, and Tritfum
4.3.2.1 Ground Plane Despcsition 19
4.3.2.2 Breathing/Inhalation 19
4.3.2.3 Leafy Vegetation Ingestion 20
4.3.2.4 Root Crop/Non-Leafy "egetation 21
Ingestion
4.3.2.5 Milk Ingestion 21
4.3.2.6 Meat Ingestion 21
4.3.3 Definitions 22
4.4 Total Dose to a Member of the Public 27
5.0 Receptor Locations, Hydrology, and Meteorology 28
6.0 Monitor Set Points 32
6.1 Liquid Effiuent Monitor 32
6.2 Gaseous Effluent Monitors 33
7.0 Radiological Environmental Sampling 35
and Measurement Locations
8.0 Description of Radwaste Systems 57
8.1 Liquid Radwaste System 57
8.2 Treated Gaseous Radwaste System 59
9.0 References 61
Appendix A Data Required for Effluent Calculations A-1
Appendix B Definition of the Lower Limit of Detection B-1

LIST OF FIGURES

Figure No. Page
7-1 Pilgrim NucTear Power Station Environmental Thermoluminescent Dosimeter and Air Sampling Locations Within Exclusion Area
7-2 Pilgrim Nuclear Power Station Environmental 53
Thermoluminescent Dosimeter and Air Sampling Locations Outside Exclusion Area to About 3 Miles
7-3 Pilgrim Nuclear Power Station Environmental 54
Thermoluminescent Dosimeter and Air Sampling Locatinns Outside Property Boundary
7-4 Pilgrim Nuclear Power Station Terrestrial 55 and Aquatic Sampling Locations
7-5 Pilgrim Nuclear Power Station Environmental 56 Sampling and Measurement Control Locations
8-1 Liquid Radwaste Treatment System Schematic 58
8-2 Gaseous Effluent Treatment System Schematic 60
Table No. Page
2-1 PNPS Technical Specifications/Offsite Dose 3
Calculation Manual Cross-Reference for Limiting Conditions for Operation and Operational Objectives
3-1 Radiation Effluent Monitor Data 10
5-1 Critical Receptor Locations and Atmospheric 30 Dispersion Factors
7-1 Pilgrim Nuclear Power Station Operational Radiological 37 Environmental Monitoring Program
7-2 Pilgrim Nuclear Power Station Air Particulate, 42 Radioiodine, and Soll Sampling Locations
7-3 Pilgrim Nuclear Power Station Environmental 43 Thermoluminescent Dosimter (TL.D) Locations
7-4 Pilgrim Nuclear Power Station Pressurized Ion 48 Chamber (PIC) Survey Locations
7-5 Pilgrim Nuclear Power Station Terrestrial 49
and Aquatic Sampling Locations
7-6 Maximum Values for the Lower Limits of Detection (LLD)51

4.0 Calculations Methods

Thts section presents the calculational specifics required to demonstrate compliance with each of the Technical Specifications for 11 miting conditions for operation and operational objectives identified in Section 2 of this document.

The equations in this section are based on the equations and calculational methods described in Reference 1, unless otherwise specified. These equattons have, in some cases, been presented in a slightly different form in an effort to simplify their use. The subscripts used are "a" for age group, "j" for organ, "i" for radionuclide, "p" for pathway and "1" for location. Capital letters have been used on the dose/dose rate, use factor, concentration, and dose conversion factor abbreviations to designate pathways. "A" is for aquatic foods, "S" for shoreline deposits, "W" for swimming, "Y" for yachting/boating, "N" for noble gas, "G" for ground plane deposition, "B" for breathing/inhalation, "L" for leafy vegetation, "R" for root crops/non-leafy vegetation, "M" for milk, and "C" for meat.

The descriptions of constants, variables, and parameters in this section are also based on those described in Reference 1, unless otherwise specified. The descriptions have, in some cases, been modified to describe the constant, variable, and parameter specific application in the corresponding equation. In addition, some of the constants and variables values have been revised to include more site specific values, to include more technically correct information, or to provide uniformity (e.g.. λ_{i} values always presented in $h r^{-1}$). Values for parameters which only have a single value will appear along with the definition. For those parameters which can take on different values for different conditions, the appropriate value will appear in the referenced tables. All numerical contants have been derived from the indicated base conversion factors and are represented in scientific notation to the third significant digit.

4.1 Concentrations of Liquid Effluents

The following equation shall be used to determine the discharge flow rate such that concentritions of radioactive effluents released to unrestricted areas do not exceed the concentration limits specified in 10CFR20 Appendix B, Table II, Column 2:
$D F R=C W+\sum\left(C_{W i} / M P C_{i}\right)$
where:
DFR = Maximum discharge release rate oi liquid effluent, (gal/min).

$$
\begin{aligned}
\mathrm{CW}= & \text { Flow rate of dilution water, (gal/min). } \\
\mathrm{C}_{\mathrm{wi}}= & \text { Concentration of nuclide i in the } 1 \text { quid waste } \\
& \text { discharge volume prior to any dilution as determined } \\
& \text { by current isotopic analysis for gamma emmitting } \\
& \text { nuclides and most recent results from pure beta } \\
& \text { and alpha emitters, (} \mu \mathrm{Ci} / \mathrm{ml}) . \\
\mathrm{MPC}_{i}= & \text { Maximum Permissible Concentration of each nuclide i } \\
& \text { fromiloCFR2O Appendix } \mathrm{B}, \text { Table II, Column } 2,(\mu \mathrm{Ci} / \mathrm{ml}) .
\end{aligned}
$$

4.2 Liquid Effluents. Dose Assessment Methodology

The following equations salll be used to estimate the annual dose rates due to release of radioactive liquid effluents. All input parameters (i.e. activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate 11 mits for periods different than one year. For comparison to monthly 14 mits and quarterly $l i$ mits, results would
scaled by $1 / 12$ and $1 / 4$, respectively. To determine the dose or dose commitment for a desired period, wultiply the annual dose rate by the fraction of the year for the dose period desired. For purposes of projecting resulting dose estimates for the subsequent month, the release rates and concentrations are assumed to be equal to the previous month's release.

Pathways assuming internal deposition of radionuclides (i.e., ingestion) involve the use of a 50 -year committed dose conversion factor. This entire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving external radiation to the total body (i.e., shoreline activity, swimning, boating), the dose to all other organs is assumed equal to that for the total body (Reference 1, Appendix E).

Summation of the dose rates from the equations below should be performed for all significant pathways.

4.2.1 Liquid Pathways Annual Dose Rates

4.2.1.1 Aquatic Food Ingestion (Fish, Shellfish)

$$
O A_{a j p}=U A_{a p} \sum_{i} C A_{i p} D F I_{a i j}
$$

where:

$$
\begin{aligned}
& C A_{i p}=C W_{i 1} B_{i p} e^{-\lambda_{i} t_{h}} \\
& C W_{i 1}=1.00 E 12 Q_{i} \quad\left(M_{1} / V\right) e^{-\lambda_{i} t_{1}}
\end{aligned}
$$

Above equations derived from Reference 1 equations 2 and $A-3$.
4.2.1.2 Shoreline Deposits (Discharge Canal and Recreational Area)
$D S_{a j 1}=U S_{a 1} W_{1} \sum_{i} C S_{11} D F G_{i j}$
where:
$C S_{11}=2.89 C W_{11}\left(1-e^{-\lambda_{1} t_{b}}\right)+\lambda_{i}$
$C W_{11}=$ same as indicated in equation 4.2.1.1
Above equation derived from Ref. 1 equations A-4 through A-7.
4.2.1.3 Swimming (White Horse Beach)
$D W_{a j 1}=U W_{a l} \sum_{i} C W_{i 1} D F W_{i j}$
where:
$C W_{i 1}$ = same as indicated in equation 4.2.1.1
Above equations derived from Reference 14 equation 41 on page 151
4.2.1.4 Yachting/Boating (Cape Cod Bay)

$$
D Y_{a j 1}=0.50 \mathrm{UY}_{\text {al }} \sum_{i} \mathrm{CH}_{i 1} \mathrm{DFH}_{i j}
$$

where:
$C W_{i 1}=$ same as findicated in equation 4.2.1.1
Above equations derived from Reference 14 equation 41 on page 151

4.2.2 Definitions:

$\mathrm{B}_{\text {ip }}$ is the equilibrium bioaccumulation factor for radionuclide i, in aquatic foods pathway p, expressed as the concentration in biota ' $\mathrm{pCi} / \mathrm{kg}$), divided by the concentration in waCi/1iter) from Tat e $A-1$, (1iters/kg);
$C A_{i p}$ is the concentration of radionulcide i in pathway p of aquatic foods, ($\mathrm{pCi} / \mathrm{kg}$);
$C S_{i 1}$ is the effective surface concentration of radionuclide i in sediments at location $1,\left(\mathrm{pCi} / \mathrm{m}^{2}\right)$;

US al is the use factor (amount of time) an individual in age group a, engages in shoreline activities at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);
UW_{a} is the use factor (amount of time) an individual in age group a, engages in swimming at location 1, from Table E- . for maximum individual, Table E-4 for average individual, (hr/yr);

UY al is the use factor (amount of $t i m e$) an individual in age group a, engages in yachting/boating at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);
V is the total annual discharge rate of liquid effluent + condensor cooling/dilution water, (liters/yr);
W_{1} is the shoreline width factor for location 1, from Table A-3, (dimensionless):
λ_{i} is the radtoactive decay constant of radionuclide i, $\left(\mathrm{hr}^{-1}\right)$;
0.50 is a scaling factor for yachting/boating assuming that doses received while on the surface of the water are 1/2 of doses recetved while immersed in water from Reference 14, (dimensionless) ;
2.89 is the factor to convert for transfer of nuclides from water to sediment, equal to 100 liters $/ \mathrm{m}^{2}$-day from Reference 16 multiplled by 1 day/24 hr and by $\ln 2$ (to convert reciprocal λ_{i} to halfiffe), as calcuated in Reference 1 equation $\mathrm{A}-5$, (1iter/m $\mathrm{m}^{2}-\mathrm{hr}$);
1.00E12 is tie factor to convert from Ci to $\mathrm{pCi},(\mathrm{pCi} / \mathrm{Ci})$;

4.3 Gaseous Effluents Dose Assessment Methodology

The following equations shall be used to estimate the annual dose rates due to release of radioactive gaseous effluents. All input parameters (ie, activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate limits for periods different than one year. For comparison to monthly limits and quarterly limits, results would be scaled by $1 / 12$ and $1 / 4$, respectively. To determine the dose or dose commitment for a desired period multiply the annual dose rate by the fraction of the year for the dose period desired.

Pathways assuming internal deposition of radionuclides (i.e., inhalation, ingestion) involve the use of a 50 -year committed dose conversion factor. This entire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving external radiation to the total body (i.e., noble gas total body dose, ground plane deposition), the dose to all other organs is assumed equal to that for the total body (Reference 1, Appendix E).

Summation of the doses rates from the equations below should be performed for all significant pathways and all release points from which significant radioactive effluent releases have occurred (i.e., Main Stack and Reactor Bullding Exhaust Vent).

4.3.1 Gaseous Pathways Annual Dose Rates from Noble Gases

4.3.1.1 Gamma Air Dose
$D N_{Y}=\sum_{i} C_{i Y} D F N_{i Y}$
where:
$C_{i Y}=3.17 E 4 \quad[X / Q] Y \quad Q_{i}$
Above equations derived from Ref. 1 equations 6,7, $\mathrm{B}-1, \mathrm{~B}-2, \mathrm{~B}-4$, and $\mathrm{B}-5$, as well as References 3 and 4.
4.3.1.2 Beta Air Dose
$D N_{\beta}=\sum_{i} C_{i \beta} D F N_{i \beta}$
where:
$C_{i \beta}=3.17 E 4 \quad[X / Q]_{C} Q_{i}$

Above equations derived from Ref. 1 equations 7, B-4, and $\mathrm{B}-5$.
4.3.1.3 Total Body Dose
$D N_{T B}=S \sum_{i} C_{i Y} \quad D F N_{i T B}$
where:
c_{i}. Same as indicated in equation 4.3.1.1.
Above equations derived from Ref. 1 equations 8,10, $B-1, B-2, B-4, B-5, B-6$, and $B-8$, as well as References 3 and 4.

4.3.1.4 Skin Dose

$$
D N_{S}=\sum_{i} C_{i \beta} D F N_{\text {iS }}+1.11 S \mathrm{SNY}_{Y}
$$

where:
$C_{i B}$, $D N_{Y}=$ same as indicated above in equations 4.子,1.2 and 4.3.1.1, respectively.

Above equations derived from Ref. 1 equations 6,7 , $9,11, \mathrm{~B}-1, \mathrm{~B}-2, \mathrm{~B}-4, \mathrm{~B}-7$, and $\mathrm{B}-9$, as well as References 3 and 4 .
4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 131 and 133, Particulates with a Half-life Greater than 8 Days, and Tritium.

PNPS Technical Specifications do not consider doses from C-14 and I-135 for compliance. However, equations for these radionuclides are included in this section for completeness.
4.3.2.1 Ground Plane Deposition
$D G_{j}=S \sum_{i} C G_{i} D F G_{i j}$
where:
$C G_{i}=1.00 E 12[0 / Q] Q_{i}\left(1-e^{-\lambda_{i} t_{b}}\right)+\lambda_{i}$
Above equations derived from Ref. I equations 12 , $\mathrm{C}-1$, and $\mathrm{C}-2$.

4.3.2.2 Breathing/Inhalation

$$
D B_{a j}=U B_{a} \sum_{i} C B_{i} D F B_{a i j}
$$

where:
$C B_{i}=3.17 E 4 \quad[X / Q]_{C} \quad Q_{i} \quad$ for $H-3, C-14$
$C B_{i}=3.17 E 4 \quad[X / Q]_{d} \quad Q_{i} \quad$ for particulates with $T y,>8 d$ and I-131, I-133, and I-135.

Above equations derived from Ref. 1 equations 13, $\mathrm{C}-3$, and $\mathrm{C}-4$.
4.3.2.3 Leafy Vegetation Ingestion

$$
D L_{a j}=U L_{a} f_{1} \sum_{i} C L_{i} D F I_{a i j}
$$

where:
$\mathrm{Cl}_{3}=$ leafy vegetation concentration as cIlculated below.

Above equation derived from Ref. 1 equations 14 and $\mathrm{C}-13$.
where:

$$
\begin{aligned}
& \mathrm{CH}_{i}, \mathrm{CL}_{i}, \mathrm{CP}_{i}, \mathrm{CR}_{j}=1.19 E 7 \mathrm{O}_{i}[\mathrm{X} / \mathrm{Q}]_{\mathrm{C}}+\mathrm{H} \text { for } \mathrm{H}-3 \\
& \mathrm{CH}_{i}, \mathrm{CL}_{i}, \mathrm{CP}_{i}, \mathrm{CR}_{i}=2.18 E 7 p Q_{i}[\mathrm{X} / Q]_{\mathrm{c}} \quad \text { for } \mathrm{C}-14 \\
& \mathrm{CH}_{i}, \mathrm{CL}_{i}, \mathrm{CP}_{i}, \mathrm{CR}_{i}=5.71 \mathrm{E} \text { [D/Q] } \mathrm{Q}_{i} \text { * } \\
& {\left[\frac{r_{I}\left(1-e^{-\lambda_{E i}} t_{e}\right)}{Y_{V} \lambda_{E i}}+\right.} \\
& \left.\frac{B_{i v}\left(1-e^{-\lambda_{i} t_{b}}\right)}{p \lambda_{i}}\right] e^{-\lambda_{i} t_{h}} \quad \begin{array}{l}
\text { for } I-131, \\
I-133, \text { and } \\
I-135
\end{array} \\
& C H_{i}, C L_{i}, C P_{i}, C R_{i}=1.14 E 8[D / Q] Q_{i} * \\
& {\left[\frac{r_{p}\left(1-e^{-\lambda_{E j}}{ }^{t} e\right)}{Y_{V} \lambda_{E i}}+\right.} \\
& \left.\frac{B_{i v}\left(1-e^{\left.-\lambda_{i} t_{b}\right)}\right.}{P \lambda_{i}}\right] e^{-\lambda_{i} t_{h}} \quad \begin{array}{l}
\text { for particulates } \\
\text { with } T_{h}>8 \text { days }
\end{array} \\
& \text { Above equations derived from Ref. } 1 \text { equations C-5 } \\
& \text { through C-9. }
\end{aligned}
$$

```
4.3.2.4 Root Crop Non-L.eafy Vegetation Ingestton
DRaj}=U\mp@subsup{R}{a}{}\mp@subsup{f}{r}{}\mp@subsup{\sum}{i}{}C\mp@subsup{R}{j}{}DF\mp@subsup{I}{aij}{
where:
CR
in 4.3.2.3.
Above equations derived from Ref. I equations 14
and C-13.
```

4.3.2.5 Milk Ingestion
$D M_{a j}=U M_{a} \sum_{i} C M_{1} \quad D F I_{a i j}$
where:
$C M_{i}=F_{i m} C F_{i} Q_{f} e^{-\lambda_{i} t_{f}}$
$C F_{i}=f_{p} f_{s} C P_{i}+\left(C H_{i}\left(1-f_{p}\right)\right)+C H_{i} f_{p}\left(1-f_{S}\right)$
$\begin{aligned} & C P_{i}, C H_{i}= \text { concentration in pasture grass and } \\ & \text { harvested } / \text { stored feed as calculated in } \\ & \text { equation } 4.3 .2 .3 .\end{aligned}$
Above equations derived from Ref. I equations 14, $\mathrm{C}-10, \mathrm{C}-11$, and $\mathrm{C}-13$
4.3.2.6 Meat Ingestion
$D C_{a f}=U C_{a} \sum_{i} C_{+} D F_{a 1 j}$
where:
$C C_{i}=F_{i f} C F_{i} Q_{f} e^{-\lambda_{j} t_{s}}$
$\mathrm{CF}_{7}=$ concentration in forage as calculated in equation 4.3.2.5

Above equations derived from Ref. 1 equations 14, $\mathrm{C}-12$, and C-13

4.3.3 Definitions

$\mathrm{B}_{\text {iv }}$ - is the concentration factor for uptake of radionuclide i. from soil in the edible portions of crops, in pCi/kg (wet weight) per $\mathrm{pCl} / \mathrm{kg}$ dry soil, from Table E-1, ($\mathrm{kg} / \mathrm{kg}$) ;
C_{13} - is the effective semi-infinite cloud concentration of noble gas 1 , for the purpose of calculating beta air dose, ($\mathrm{pCl} / \mathrm{m}^{3}$);
$C_{i y}$ - is the effective finite cloud concentration of noble gas 1 for the purpose of calculating gamma air dose, ($\mathrm{pCi} / \mathrm{m}^{3}$);
$C B_{i}$ - is the ground-lexel airborne concentration of radionuclide $1,\left(\mathrm{pCl} / \mathrm{m}^{3}\right)$;
$\mathrm{CC}_{1}-$ is the concentration of radionuclide i in meat, ($\mathrm{pCl} / \mathrm{kg}$) ;
CF_{1} - is the concentration of radionuclide 1 on forage, ($\mathrm{p}(\mathrm{i} / \mathrm{kg}$) ;
$C G_{\mathrm{i}}$ - is the ground plane concentration of radionuclide i,
($\mathrm{pCi}-\mathrm{hr} / \mathrm{m}^{2}-\mathrm{yr}$);
CH_{i} - is the concentration of radionuclide i on harvested/stored feed, ($\mathrm{pCi} / \mathrm{kg}$);
CM_{1} - is the concentration of radionuclide i in milk, (pCi/liter);
Cl_{i} - is the concentration of radionuclide i in leafy vegetables, ($\mathrm{pCi} / \mathrm{kg}$);
$C P_{i}$ - is the concentration of radionuclide i on pasture grass, ($\mathrm{pCi} / \mathrm{kg}$);
$C R_{i}$ - is the concentration of radionuclide i in root crops/non-leafy vegetables, ($\mathrm{pCi} / \mathrm{kg}$) ;
$\mathrm{DB}_{\mathrm{aj}}$ - is the total annual dose rate from breathing/ infalation to organ j, of an individual in age group a, (mrem/yr);
$\mathrm{DC}_{\mathrm{aj}}$ - is the total annual dose rate from ingestion of meat to organ j; of an individual in age group a, (mrem/yr);
$\mathrm{DFB}_{\text {aij }}$ - is the inhalation 50 -year committed dose conversion factot for organ j, of individuals in age group a, from radionuclide i, from Tables E-7 through E-10, ($\mathrm{mrem} / \mathrm{pCi}$);
$\mathrm{DFG}_{i j}$ - is the open field ground plane dose conversion factor for organ j, from radionuclide 1 , from Table E-6, (mrem $-m^{2} / \mathrm{p}(i-h r)$;

DFIaij - is the ingestion 50 -year committed dose conversion factor for organ j, for inoividuals in age group a, from radionuclide 1, organ 3 , from Table E-11 through E-14, (mrem/pCi) ;
$D F N_{\text {is }}$ - is che beta skin dose conversion factor for a semi-infinite cloud of noble gas 1 , which includes the attenuation by the outer "dead" layer of skin, from Table $\mathrm{B}-1$, (mrem-m ${ }^{3} / p(1-y r)$;

DFN irb - is the total body dose conversion factor for a $^{\text {a }}$ semi-infinite cloud of noble gas 1 , which includes the attenuation of $5 \mathrm{~g} / \mathrm{cm}^{2}$ of tissue, from Table $\mathrm{B}-1$, (mrem-m $/ \mathrm{pCl}-\mathrm{yr}$);
$D F N_{1 \beta}$ - is the beta air dose conversion factor from a semi-infinite cloud of noble gas 1 , from Table B-1, (mrad-m ${ }^{3} / p(1-y r)$;

DFN $\mathrm{iy}_{\text {, }}$ - is the gamma air dose conversion factor from a semínfinite cloud of noble gas 1 , from Table $\mathrm{B}-1$, (mrad-m ${ }^{3} / \mathrm{pCl}^{2}-\mathrm{yr}$);
$D G_{j}$ - is the total annual dose rate to organ j from direct exposure to the contaminated ground plane from all radtonuclides, (mrem/yr):
$\mathrm{DL}_{\mathrm{aj}}$ - is the total annual dose rate from ingestion of leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);
$D M_{a j}$ - is the total annual dose rate from ingestion of milk to the organ j, of an individual in age group a, (mrem/yr);
DN_{S} - is the total annual skin dose rate due to immersion in a finite cloud of noble gases, (mrem/yr);

DN TB - is the annual total body dose rate due to immersion in a finite cloud of noble gases, (mrem/yr);
DN_{β} - is the annual beta air dose rate to a semi-infinite cloud of noble gases, (mrad/yr);

DN y - is the annual gamma air dose rate due to a finite cioud of noble gases, (mrad/yr);
$D R_{a j}$ - is the total annual dose rate from ingestion of root crop or non-leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);
[D/Q] - is the deposition rate considering depletion at the receptor location in question, from Table $5-1,\left(m^{-2}\right)$;
t_{e} - is the time period that crops are exposed to radionuclide deposition during the growing season, from Table E-15, (hr);
t_{f} - is the average transport time of the activity from the feed into the milk and to the receptor from Table E-15, (hr);
t_{h} - is the holdup time that represents the time interval
between harvest and consumption of the food, from Table E-15, (hr);
t_{s} - is the average time for radionuclides to pass from feed through meat to the consuming individual, (hr; assumed to be $480 \mathrm{hr}=20$ days ;
$U \mathrm{~B}_{\mathrm{a}}$ - is the annual breathing rate, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, ($\mathrm{m}^{3} / \mathrm{yr}$);
$U C_{a}$ - is the annaal intake of meat, for individuals in age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);

UI. . - is the annual intake of leafy vegetables, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);
$U M_{\mathrm{a}}$ - is the annual intake of milk, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (1iter/yr);
$U R_{a}$ - is the annual intake of root crops/non-leafy vegetables. for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr) ;
Y_{y} - is the agricultural productivity/yield, from Table E-15, ($\mathrm{kg} / \mathrm{m}^{2}$, wet weight);
$[\mathrm{X} / \mathrm{Q}]_{\mathrm{c}}$ - is the appropriate value of undepleted atmospheric dispersion factor used to estimate ground level airborne concentration of gaseous, (i.e., non-particulate) radionuclides, from Table $5-1,\left(\mathrm{sec} / \mathrm{m}^{3}\right)$;
$[X / Q]_{d}$ - is the appropriate value of the average gaseous. dispersion factor corrected for depletion of particulates and radiotodines, from Table $5-1$, (sec $/ \mathrm{m}^{3}$);
$[\mathrm{X} / \mathrm{Q}]_{Y}$ - is the appropriate value of gamma atmospheric dispersion factor used to estimate ground level gamma dose rate from an elevated or ground level plume as calculated in References 3 and 4, from Table $5-1$, $\left(\mathrm{sec} / \mathrm{m}^{3}\right)$;
λ_{i} - is the radioactive decay constant of radionuclide i. (hr-1);
$\lambda_{E 1}$ - is the effectiye removal rate constant for radionuclide i^{E} from crops, in $h r^{-1}$, where $\lambda_{E 1}=\lambda_{1}+\lambda_{w}, \lambda_{i}$ is the radioactive decay constant, and λ_{w} is the removal rate constant for physical loss by weathering $\quad \lambda_{w}=0.0021 \mathrm{hr}^{-1}$, ($h r^{-1}$);
1.11 - is the average ratio of the tissue to air eneroy absorption coefficients, (mrem/mrad);
3.17E4 is equal to $1.00 \mathrm{E} 12 \mathrm{pCt} / \mathrm{Cl}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$, ($\mathrm{pCl}-\mathrm{yr} / \mathrm{Cl}-\mathrm{Sec}$)
$1.19 E 7$ - is equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Ci}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$ and multiplied by $1.00 \mathrm{E} 3 \mathrm{~g} / \mathrm{kg}$ and by $0.5 \mathrm{~g} \mathrm{H-3}$ in plant water per g $\mathrm{H}-3$ in atmospheric water from Reference 23
(dimensionless) and by 0.75 g water per g plant (dimensionless), as calculated in Reference 1 equation C-9, ($\mathrm{pCl}-\mathrm{yr}-\mathrm{g} / \mathrm{Ci}-\mathrm{sec}-\mathrm{kg}$) ;
2.18 E 7 - is equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Ci}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$ and multipled by $1.00 E 3 \mathrm{~g} / \mathrm{kg}$ and by 0.11 g Carbon $/ \mathrm{g} \mathrm{plant}$ mass from References 24 and 25 divided by 0.16 g Carbon $/ \mathrm{m}^{3}$ of air, as calculated in Reference 1 equation $\mathrm{C}-8$, ($\mathrm{pCi}-\mathrm{yr}-\mathrm{m}^{3} / \mathrm{Ci}-\mathrm{sec}-\mathrm{kg}$):
5.71E7 - is the conversion factor to correct for activity, time units, and elemental forms of radioiodines, equal to the particulate radionuclide conversion factor $1.14 E 3$ multiplied by an elemental iodine fraction of 0.5 from Reference 26 , ($\mathrm{pCl}-\mathrm{yr} / \mathrm{Ci}-\mathrm{hr}$);
$1.14 E 8$ - is the conversion factor to correct activity units and time units for particulate radionuclides, equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Ci}$ multiplied by $1 \mathrm{yr} / 8760 \mathrm{hr}$, ($\mathrm{pCl}-\mathrm{yr} / \mathrm{Ci}-\mathrm{hr}$);
$1.00 E 12$ - is the conversion factor to correct for activity units, ($\mathrm{pCi} / \mathrm{Ci}$);

The purpose of this section is to describe the method used to calculate the cumulative dose contributions from liquid and zaseous effluents in accordance with PNPS Technical Specifications for total dose. This method can also be used to demonstrate compliance with the Environmental Protection Agency (EPA) 40CFR190, "Environmental Standards for the Uranium Fuel Cycle".

Compliance with the PNPS Technical Specifications dose objectives for the maximum individual demonstrates compliance with the EPA limits to any member of the public, since the design dose objectives from 10CFR50 Appendix I are much lower than the 40 CFR 190 dose 11 mits to the general public. With the operational objectives in PNPS Technical Specifications sections 7.2.A, 7.3. A and 7.4. A being exceeded by a factor of two, a special analysts must be performed. The purpose of this special analasis is to demonstrate if the total dose to any member of the public (real tidividual) from all uranium fuel cycle sources (including all real pathways and direct radiation) is limited to less than or equal to 25 mrem per year to the total body or any organ except for the thyroid which is 11 mited to 75 mrem per year.

If required, the total dose to a member of the public will be calculated for all significant effluent release points for all real pathways including direct radiation. Only effluent releases from PNPS (Pilgrim Station) need to be considered since no othe: nuclear fuel cycle facilities exist within a 50 mile radius. The calculations will be based on the equations contained in this section, with the exception that the usage factors and other site specific parameters will be modified using more realistic assumptions, where appropriate.

The direct radiation component from the facility can be determined by using environmental TLD results. These results will be corrected for natural background and for actual occupancy time of the recreational areas accessible to the general public at the location of maximum direct radtation. It is recognized that by including the results from the environmental TLDs into the sum of total dose component, the direct radiation dose may be overestimated. The TLD measurements may include the exposure from noble gases, ground plane deposition, and shoreline deposition, which have already been included in the summation of the significant dose pathways to the general public. However, this conservative method can be used, if required, as well as any other method for estimating the direct radiation dose from contained radioactive sources within the facility. The methodology used to incorporate the direct radiation component into total dose estimates will be outlined whenever total doses are reported.

Therefore, the total dose will be determined based on the most realistic site specific data and parameters to assess the real dose to any member of the general public.

5.0 Receptor Locations. Hydrology, and Meteorology

The purpose of this section is to identify those receptor locations which represent critical pathway locations and the methods used to estimate dilution and dispersion factors for these locations.

For the dose calculations from liquid effluents, the maximum individual is assumed to: 1) ingest fish and shellfish from the discharge canal, 2) recetve direct radtation from shoreline deposits at both the discharge canal and PNPS shoreline recreational area, and 3) receive external radiation while swimming at White Horse Beach as well as while boating on the Cape Cod Bay. The doses are calculated for the various age groups (i.e., infant, child, teenager and adult), as well as for the various organs, (l.e., bone, liver, thyroid, kidney, lung, gastrointestinal tract/lower large intestine, skin, and total body). The maximum total body and organ doses are selected from the totals of the various age group and organ doses calculated as described above.

For liquid effluent pathways, Table A-3 lists the conservative values for the mixing ratio and shore width factor for the various aquatic receptor locations.

For the dose calculations for gaseous effluents, the maximum individual is assumed to reside at the receptor location that provides the highest dose from the dose contributions from all gaseous release points where significant releases have occurred. The locations selected in Table 5-1 are the site boundary, a garden at the site boundary, and the nearest milk animal at the Plimoth Plantation. The dose calculations are performed for each release point and totalled for the following dose pathways; 1) noble gas immersion, 2) ground plane deposition, 3) inhalation, and 4) ingestions of leafy vegetable, root crops/non-leafy vegetables, milk, and meat. The doses are also calculated for the various age groups and for the various organs as described for liquid effluents. The maximum total body, skin, and organ doses are selected from the totals of the various age group and organ doses calculated as described above.

In order to estimate atmospheric dispersion and deposition factors for each of these locations, computer code supplied by the Yankee Atomic Electrtc Company was used. The code, AEOLUS (Reference 3), was used to calculate quarterly average values of dispersion and deposition factors.

Meteorological data for a three year period, January 1, 1977 to December 31, 1979, were used for these analyses. The most conservative quarterly average values of ground level average atmospheric dispersion factor before depletion $[\mathrm{X} / \mathrm{Q}]_{\mathrm{C}}$, ground level average atmospheric dispersion factor after depletion $[X / Q]_{\text {d }}$, average gamma dilution factor $[X / Q]_{Y}$, and average deposition rate $[D / Q]$ for the three year period were chosen for each of the critical receptor locations.
Atmospheric Dispersion Factor

1) Reactor Building Vent
2) Main Stack

Iechnical Spesification Sectton	$\begin{aligned} & {[x / Q]_{c}} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[x / Q]_{d}} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[X / Q] y} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[D / Q]} \\ & \left(1 / \mathrm{m}^{2}\right) \end{aligned}$
3.8.D Gaseous Effluent Dose Rate				
Site Boundary ${ }^{(1)}$	1) $7.40 \mathrm{E}-06$ 2) $4.69 \mathrm{E}-07$	$\begin{aligned} & 7.04 \mathrm{E}-06 \\ & 4.69 \mathrm{E}-07 \end{aligned}$	$4.69 \mathrm{E}-06$ $1.68 \mathrm{E}-06$	$5.22 E-08$ $2.92 \mathrm{E}-09$
Nearest Garden ${ }^{(2)}$	1) $7.40 \mathrm{E}-06$ 2) $4.69 \mathrm{E}-07$	$\begin{aligned} & 7.04 \mathrm{E}-06 \\ & 4.69 \mathrm{E}-07 \end{aligned}$	4.69E-06 $1.68 \mathrm{E}-06$	$5.22 \mathrm{E}-08$ $2.92 \mathrm{E}-09$
Nearest Milk Animal ${ }^{(3)}$	1) $4.29 \mathrm{E}-07$ 2) $3.73 \mathrm{E}-08$	$\begin{aligned} & 4.21 \mathrm{E}-07 \\ & 3.70 \mathrm{E}-08 \end{aligned}$	$\begin{aligned} & 1.70 \mathrm{E}-07 \\ & 3.22 \mathrm{E}-08 \end{aligned}$	7. $93 \mathrm{E}-10$ $2.46 \mathrm{E}-10$
3.8.F Gaseous Effluent Treatment				
Site Boundary ${ }^{(1)}$	1) $7,40 E-06$ 2) $4.69 \mathrm{E}-07$	$\begin{aligned} & N / A \\ & N / A \end{aligned}$	$\begin{aligned} & 4.69 \mathrm{E}-06 \\ & 1.68 \mathrm{E}-06 \end{aligned}$	$\begin{aligned} & N / A \\ & N / A \end{aligned}$

Technical Specification Sectton$[\mathrm{C} / 0]_{\mathrm{C}}$$[x / Q]_{d}$[$X / Q]$ y($\mathrm{sec} / \mathrm{m}^{3}$)$\left(\mathrm{sec} / \mathrm{m}^{3}\right) \quad\left(\mathrm{sec} / \mathrm{m}^{3}\right)$($1 / \mathrm{m}^{2}$)
3.8.D Gaseous Effluent Dose RateSite Boundary ${ }^{(1)}$

1) $7,40 E-06$
N/A 1.68E-06 N/A
7.4 Dose - Iodine-131,Iodine-133, RadioactiveMaterials in ParticulateForm, and Tritium

Site Boundary(1)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$	$2.92 \mathrm{E}-09$	
Nearest Garden (2)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$	$2.92 \mathrm{E}-09$	
		Nearest Milk Anima1 (3)	1) $4.29 \mathrm{E}-07$	$4.21 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$
	2) $3.73 \mathrm{E}-08$	$3.70 \mathrm{E}-08$	$\mathrm{~N} / \mathrm{A}$	$2.93 \mathrm{E}-10$	

TABLE 5-1 (Continued)

CRITICAL RECEPTOR LOCATIONS AND ATMOSPHERIC DISPERSION FACTORS

Atmospheric. Dispersion Factor

1) Reactor Building Vent
2) Matn Stack
Iechnical Specification Section

$[X / Q]_{c}$	$[X / Q]_{d}$	$[X / Q]_{y}$	$[D / Q]$
$\left(\mathrm{sec} / \mathrm{m}^{3}\right)$	$\left(\mathrm{sec} / \mathrm{m}^{3}\right)$	$\left(\mathrm{sec} / \mathrm{m}^{3}\right)$	$\left(1 / \mathrm{m}^{2}\right)$

7.5 Total Dose

Site Boundary (1)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$4.69 \mathrm{E}-06$	$5.22 \mathrm{E}-08$	
	2)	$4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$1.68 \mathrm{E}-06$	$2.92 \mathrm{E}-09$
	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$4.69 \mathrm{E}-06$	$5.22 \mathrm{E}-08$	
Nearest Garden(2)	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$1.68 \mathrm{E}-06$	$2.92 \mathrm{E}-09$	
	1)	$4.29 \mathrm{E}-07$	$4.21 \mathrm{E}-07$	$1.70 \mathrm{E}-07$	$7.93 \mathrm{E}-10$
Nearest Milk Animal (3)	2) $3.73 \mathrm{E}-08$	3.70 E .08	$3.22 \mathrm{E}-08$	$2.46 \mathrm{E}-10$	

NOTES:
(1) "Site Boundary" means the location at or beyond the boundary of the restricted area with the highest calculated dispersion and/or deposition factor.
(2) "Nearest Garden" is considered to be the same as the site boundary due to the abundance of small gardens near Pilgrim Station.
(3) "Nearest Milk Animal" is presently considered to be at the Plimoth Plantation, 2.2 miles west of Pilgim Station.

6.1 Liquid Effluent Monitor

The se:point for the liquid effluent \& monitor (see Section 3.2.3) is established as follows:

1) Prior to a liquid batch release, the waste discharge tank is recirculated for at least 60 minutes and a sample is taken.
2) The liquid effluent sample is analyzed (see Section 3.3) to determine the concentrations of each detectable isotope in $\mu C 4 / \mathrm{ml}$. (See Appendix B for the definitions of lower 14 mft of detection.)
3) The efficiency (in counts $/ \mathrm{sec}$ per $\mu \mathrm{Ci} / \mathrm{ml}$) of the 1iquid discharge monitor is calculated based on prior release experience.
4) The setpoint for the ifquid effluent monitor is calculated as follows:
a) Monitor setpoint based on activity concentration

$$
c=\frac{C F}{f}
$$

Where:
$c=$ the setpoint of the radioactivity monftor measuring the radiocativity conce:....: inn in the offluent line prior to dilution and subecquent release; the setpoint, which is propertional to the volumetric flow of the effluent line and nverse'y proportional to the volumetric flow of the dilution stream plus the effluent stream, represents a value, which if exceeded, would result in concentrations exceeding the limits of 10 CFR 20 in the unrestricted area, ($\mu \mathrm{Cl} / \mathrm{ml}$);
$C=$ the effluent concentration limit implementing 10 CFR 20 for the site ($\mu \mathrm{Ci} / \mathrm{ml}$);

Where:

$$
C=\sum C_{W i}+\sum\left(C_{1} i_{i} / M P C_{i}\right)
$$

$C_{w i}=$ concentration of nuclide i in the liquid waste discharge volume prior to any dilution as determined by current isotopic analysis for gamma emitting nuclides and most recent results from pure beta emitters as specified in Table 4.11-2 of PNPS Effluent Controls, ($\mu \mathrm{Ci} / \mathrm{ml}$);

TABLE 7-5
 PILGRIM NUCLEAR POWER STATION TERRESTRIAL AND AOUIATIC SAMPLING
 LOCATION

Sampling Lecation (Designation)

Distance and Direction from Reactor

jerkestrial

Cranberfles

Manomet Pt. Pog * (MR)
Bartlett Rd. Bog* * (BT)
Pine St. Bog Control* (PS)
2.4 Miles SE
2.7 Miles SSE
16 Mlles HNH

Forage

Plymouth County Farm* (CF)
Davis Farm (DF)
Whitman Farm Control* (WF)
3.5 Miles W
3.1 Miles S

20 Mles WNW

Milk
Plymouth County Farm* (CF) Whitman Farm Control* (WF)
3.5 Miles W

20 Miles WNW

Surface Water

Dtscharge Canal* (DIS)
Bartlett Pond* (BP)
Powder Point Control* (PP)
Vegetation

Plymouth County Farm*	(CF)	3.5 Miles W
Bridgewater Farm Cont. ${ }^{*}$ (BF)	20	Miles W

Additionai samples of vegetables/vegetation will be collected each year at or near selected gardens identified during the most recent land use sensus. The lozations of these selected gardens are itsted in the station prosedure describing crop sampling.

[^3]
WQSE FACTORS FOR EXPOSURE TO A SEMI-INEINITE CLOUD OF NOBLE GASES*

$$
B \text {-air (DFN } 1,3)
$$

$$
B-s k i n \text { (DFN } f \text { S })
$$

$$
y-a i r\left(D E N_{1} Y\right)
$$

$$
\text { Y-body }\left(D F N_{i T B}\right)
$$

Nuclide Mrad- $\pi^{3} / \mathrm{pCl}-\mathrm{yr}$ $\mathrm{Kr}-8 \mathrm{ar}$ 2.88E-04
$\mathrm{Kr}-85 \mathrm{o}$

1. $97 \mathrm{E}-03$
$\mathrm{Kr}-85$
1.95E-03
$\mathrm{K}+-8$ 7
1.03E-C?
$\mathrm{Kr}-88$
2.93E-03

Kr -89
1 06E-02
$\mathrm{Kr}=90$
7.83E-03

Xe-131m
1.11E-03

Xe-133m
$1.48 \mathrm{E}=03$
$X_{e-1} 133$
1.05E-03

Xe-135m
Xe-135
Xe-137
Xe-138
$\mathrm{xe}-138$
$\mathrm{Ar}-41$
7.39E-04
2. $46 \mathrm{E}-03$
1.27E-02
4. 75E=03
3.28E-03

* Data presented in this table are from Reference 1.

APPENDIX B

Definition of Lower $14 \pi t t$ of Detection

For purposes of analyzing effluents and environmental samples for radioactivity, the lower limit of detection (LLD) is defined as the smallest concentration of radtoactive materfal in a sample that will yield a net count, above system background, that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

It should be recognized that the listed LLD is defined as an priori (before the fact) 11 mit representing the capablilty of the measurement system or analytical process, and not as an a posterfort (after the fact) 1 imit for a particular measurement. Analyses should be performed in such a manner that the stated LLDs will be achieved under routine conditions. Usually, samples are cuunted for a period of time sufficient to ensure that the 11 sted LLDs, based on normal analytical and counting parameters. are achteved.

Printouts of analytical results typically list the a posterfori minimum detectable concentration (MDC) which was actually achieved on a particular measurement. In those cases where a given sample MDC is less tha or equal to the listed a priori LLD, the required LLD has been achieved. Occasionally background fluctuations, unavoldable small sample sizes, the presence of interfering radionuclides, or other uncontrollable circumstances may result in the MDC for a particular measurement not meeting the listed LLD. In such cases, the contributing factors shall be identified and described in the Semiannual Radioactive Effluent and Waste Disposal Report (for effluents) or the Annual Radiological Environmental Monitoring Report (for environmental samples).

The value of the counting standard deviation (5_{b}) used in the calculation of the LLD for a particular measurement system should be based on the actual observed standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, rather than on an unverified, theoretically-predicted variance. One acceptable method for deriving s_{b} is as follows:

$$
s_{b}=[B / T]^{1 / 2}
$$

Where:
s_{b} - is the standard deviation of the background counting rute or of the counting rate of an appropriate blank sample (counts/minute);

B - is the background counting rate or counting rate of an appropriate blank sample (counts/minute):

T - is the counting time interval for sample analysis (minutes).

Lower Limit of Detection For Effluent Samples

For a particular measurement system or analytical process which may include radiochemical separation used to analyze effluent samples, the lower 11 mit of detection is calculated as follows:

$$
L L D_{1}=4.66 s_{b}+\left(E \vee 2.22 E 6 Y e^{-\lambda_{1} t}\right)
$$

Where:
LLDI - is the a priori lower 11 mit of detection for radionuclide 1 . ($\mu \mathrm{Ct} / \mathrm{ml}$ or $\mu \mathrm{Cl} / \mathrm{g}$);
4.66 - is the combined numerical constant corresponding to 95% probability of detection, with 5% probability of falsely ifentifying background as a "real" signal;
${ }^{5} \mathrm{p}$ - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sampla, (counts/minute);

E - is the counting efficiency, (counts/disintegration);
V - is the sainple size, (milliliters or grams);
$2.22 E 6$ - is the conversion factor for disintegrations/minute per $\mu C i$;
Y - is the fractional radiochemical yield, when applicable;
x_{1} - is the radtoactive decay constant for radtonuclide 4, (hr-l);
t - is the elapsed time between the midpoint of sample collection and time of counting, (hr).

Typical values of E, V, Y, and t used for normal effluent sample analyses should be used in this calculation.

Lower Limit of Detection For Environmental Samples

For a particular measurement systein or analytical process which may include radiochemical separation used to analyze effluent samples, the lower 14 mit of detection is calculated as follows:

$$
L L D_{1}=4.66 s_{0}+\left(E \vee 2.22 \text { y } e^{-\lambda_{1} t}\right)
$$

Where:
LLDt - is the a priori lowcr 1imit of detection for radionuclide 1 . ($\mathrm{pCl} / 11$ ter, $\mathrm{pCl} / \mathrm{m}^{3}$, or $\mathrm{pCl} / \mathrm{kg}$):
4.66 - is the combined numerical constant corresponding to 95% prohability of detection, with 5% probability of falsely identifying background as a "real" signal;
${ }^{5} \mathrm{p}$ - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, (counts/minute);

E - is the counting efficiency, (counts/disintegration):
\mathbf{V} - is the sample size, (ifters, cubic meters, or kilograms);
2.22 - 15 the conversion factor for disintegrations/minute per pCi;
Y - is the fractional radiochemical yield, when applicable;
λ_{1} - is the radioactive decay constant for radionuclide $1,\left(\mathrm{hr}^{-1}\right)$;
t - is the elapsed time between environmental sample collection or end of the sample collection period, and time of counting, (hr).

Typical values of $\mathrm{E}, \mathrm{V}, \mathrm{Y}$, and t used for normal effluent sample analyses should be used in this calculation.
\square

APPENDIX B

PILGRIM NUCLEAR POWER STATION

OFFSITE DOSE CALCULATION MANUAL

REVIEWED BY:

> Rev, 0 was originally reviewed by ORC on june 10,1983

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Sempannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

REV, $\mathrm{NO} \text {. }$	IDENTIFICATION OF CHANGE APATE	DOCUMENT SECTION AND PAGE
0	Original Submittal $6 / 10 / 83$	All Sections
1	Update of TLD and Air Sampler 6/01/87 Locations	7.0/7-7 \& 7-8
2	Changes in response to NRC questions on PNPS ODCM (TAC \#63012). Changes in response to technical review performed by BECO Radislogical Section.	All Sections
3.	Changes in response to NRC comments on PNPS ODCM Rev. 2 (TAC \#69867). Correct typographical error in Table A-3. Incorporate new TLD locations. Change responsible division.	Preliminary pages, $\begin{aligned} & \begin{array}{l} 3,3,4,2,6,1,7,0 \\ (7-3 \& 7-5), 8,1, \\ A-3 \end{array} \end{aligned}$
4	Update signature page to reflect new responsible organization. Update record of document changes. Renumber pages ili through vil to incluod list of effective page revisions. Revise pages containing equations and definitions to include machine-genierated scientific characters. Address gardens identified during 1990 garden census in Table 7-5 in accordance with Technical Specification 7.1.B.2. Expand definition of Lower Limit of detection in Appendix B.	Page 1 through vili; pages 13-15, 17-23 $25-28,30-32,49$, and A-4: Appendix B.
5.	Add Steam Jet Air Ejector Monitor 10/30/91 to section addressing monitor setpoints.	$\begin{aligned} & \text { Pages } 1,11,111, v, \\ & 34 \mathrm{a} \end{aligned}$

LIST OF EFFECTIVE PAGE REVISIONS

Page	Rev.	Page	Rev.	Page	Rev.	Page	Rey.	Page	Rev.	Page	Rev.
4	5	18	4	41	3	A-3	3	A-27	3		
11	5	19	4	42	3	A-4	3	A-28	3		
111	5	20	4	43	3	A-5	3	A-29	3		
Iv	4	21	4	44	3	A-6	3	A-30	3		
v	5	22	4	45	3	A-7	3	A-31	3		
vt	4	23	4	46	3	A-8	3	A-32	3		
vil	4	24	3	47	3	A-9	3	A-33	3		
T	3	25	4	48	3	A-10	3	A-34	3		
2	3	26	4	49	4	A-11	3	A-35	3		
3	3	27	4	50	3	A-12	3	A-36	3		
4	3	28	4	51	3	A-13	3	8-1	4		
5	3	29	3	52	3	A-14	3	B-2	4		
6	3	30	4	53	3	A-15	3	B-3	4		
7	3	31	4	54	3	A-16	3				
8	3	32	4	55	3	A-17	3				
9	3	33	3	56	3	A-18	3				
10	3	34	3	57	3	A-19	3				
11	3	34 a	5	58	3	A-20	3				
72	3	35	3	59	3	A-21	3				
13	4	36	3	60	3	A-22	3				
14	4	37	3	61	3	A-23	3				
15	4	38	3	62	3	A-24	3				
16	3	39	3	A-1	3	A-25	3				
17	4	40	3	A-2	3	A-26	3				

TABLE OF CONTENTS (continued)

Section
4.3 Gaseous Effluents Dose Assessment Methodology $\frac{\text { Page }}{17}$
4.3.1 Gaseous Pathways Annual Dose Rates from 18 Noble Gases
4.3.1.1 Gamma Air Dose 18
4.3.1.2 Beta Alr Dose 18
4.3.1.3 Total Body Dose 18
4.3.1.4 Sk.tn Dose 19
4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 19131 and 133, Particulates with a Half-1ifeGreater Than 8 Days, and Tritium
4.3.2.1 Ground Plane Desposition 19
4.3.2.2 Breathing/Inhalation 19
4.3.2.3 Leafy Vegetation Ingest ${ }^{4}$ on 20
4.3.2.4 Root Crop/Non-Leafy Vegetation 21
Ingestion
4.3.2.5 Milk Ingestion 21
4.3.2.6 Meat Ingestion 21
4.3.3 Definitions 22
4.4 Total Dose to a Member of the Public 27
5.0 Receptor Locations, Hydrology, and Meteorology 28
6.0 Monitor Setpoints 32
6.1 Liquid Effluent Monitor 32
6.2 Gaseous Effluent Monitors 33
6.3 Steam Jet Air Ejector Monitor 34a
7.0 Radiological Environmental Sampling 35
and Measurement Locations
8.0 Description of Radwaste Systems 57
8.1 Liquid Radwaste System 57
8.2 Treated Gaseous Radwaste System 59
9.0 References 61
Appendix A Data Required for Effluent Calculations A-1
Appendix B Definition of the Lower Limit of Detection B-1

6.3 Steam Jet Air Ejector Monitor

The steam fet aft efector (S3AE) monftor is used to measure the release rate of noble gases in main condenser offgas prior to its further treatment and release from the main stack. This monitor's primary function is to provide alarm and isolation of this process flow stream th the event of excossively high release rates of noble gases from the condenser and recombiner. The maximum allowable release rate of noble gases in the $\$ 3 \mathrm{AE}$ offgas is $500,000 \mu \mathrm{Ci} / \mathrm{sec}$, as established in Technical specification 3.8.G. For conservatism, the $\mathrm{Hi}-\mathrm{Hi}$ alarm is set at 75% of this 11 mit , or $375,000 \mu \mathrm{ci} / \mathrm{sec}$.

Since this gaseous stream undergoes further processing downstream of the SJAE monitor and is ultimately released via the main stack and monitored by the main stack gaseous effluent monitor, the SJAE monitor does not strictly quallfy as a primary effluent monitor. Therefore, it is not normally recognized as such. However, the methodology for establishment of alarm setpoints is included in this section for completeness. These setpoints are established as follows:

1) A grab sample of the SJAE offgas is collected. The SJAE monitor reading ($\mathrm{mR} / \mathrm{hr}$) is recorded in conjunction with this sample.
2) Isotopic analyses are performed on the offgas sample and the total noble gas concentration ($\mu \mathrm{Cl} / \mathrm{cc}$) is coupled with the flow rate (CFM) to calculate the $\$ J A E$ release rate ($\mu \mathrm{C} / / \mathrm{sec}$).
3) The release rate ($\mu \mathrm{Ct} / \mathrm{sec}$) is divided by the monitor reading ($\mathrm{mR} / \mathrm{hr}$) to determine the SJAE monitor conversion factor ($\mu \mathrm{Cl} / \mathrm{sec} / \mathrm{mR} / \mathrm{hr}$).
4) The $\mathrm{Hi}-\mathrm{Hi}$ alarm setpoint (mR/hr) is determined by dividing the maximum tolerable release rate of $375,000 \mu \mathrm{Ci} / \mathrm{sec}$ by the SJAE monitor conversion factor ($\mu \mathrm{Cl} / \mathrm{sec} / \mathrm{mR} / \mathrm{hr}$).
5) The Hi alarm setpoint is set at 50% of the corresponding $\mathrm{Hi}-\mathrm{HI}$ alarm setpoint.

Grab samples of the S3AE offgas are collected: i) at least once every 31 days; or, 2) if the gross radioactivity release rate increases by 50% or more over the previous day (after factoring out changes in reactor thermal power level). Upon collection of these grab samples, new values are established for the total noble gas concentration, SJAE monitor conversion factor, and alarm setpoints. Typically, existing setpoints will be used unless the newly calculated setpoints yield lower values. In this case, the setpoints will be lowered to the newer, more conservative values.

[^0]: (1) =PERCENT OF MLL TOOD OBSERVATIONS FOR THIS PAGE

[^1]: Ce CALK (VIND SPEED LESS THAN OR EQUAL TO .95 NPK)

[^2]:

[^3]: * Indicates sampling locations requiren by PNPS Technical Specifications

