BOSTON EDISON

Pilgrim Nuclear Power station
Rocky Hill Road
Pivmouth, Massachusetts 02300
E. Thomas Boulette, PhD

Vice President Nuclear Operations
and Station niftetor

February 27, 1992
BECO LIr, \#92-19
U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

License No. DPR-35
Docket No. $50-293$
Subject: SEMIANNUAL RADIOACTIVE EFFLUENT AND WASTE DISPOSAL REPORT FOR THE PERIOD JULY I THROUGH DECEMBER 31, 1991

In accordance with the requirements of 10 FR $50.36 \mathrm{a}(\mathrm{a})(2)$, Pilgrim Nuclear Power Station Technical Specification Section 6.9.C.1, and Regulatory Guide and Waste Disposal Report for the period the Semiannual Radioactive Effluent Please do not hesitate to 1991. this report.

E. T. Boulette

WJM/bal
CC: Mr. Thomas Martin
Regional Administrator, Region I
U.S. Nuclear Regulatory Commission

475 All endale Rd.
King of Prussia, PA 19406
Senior Resident Inspector - Pilgrim Station
Standard BECO Distribution

PILGRIM NUCLEAR POWER STATION

Radioactive Effluent and Waste Disposal Report including Meteorolr,gical Data

July 1 through December 31, 1991

BOSTON EDISON COMPANY
 PILGRIM NUCLEAR POWER STATION RADIOACTIVE EFFLUENT AND WASTE DISPOSAL REPORT INCLUDTNG METEOROLOGICAL DATA
 JULY 1 THROUGH DECEMBLR 31, 1991

Environmental Program Manager

Approved by:

TABLE OF CONTENTS

SectionPage

1. Introduction 1
2. Radioactive Effluent Data 1
3. Radioactive Waste Disposal Data 9
4. Meteorological Data 14
5. Off-Site Dose Calculation Manual Revisions 47
6. References 48
Append4x A
Appendix B
LIST OF TABLES
Page
Supplemental Information 3
1A Gaseous Effluents - Summations of All Releases 4
1B Gaseous Effluents - Elevated Release 5
IC Gaseous Effluents - Ground Level Release 6
2A Liquid Effluents - Summation of All Releases 7
$2 B$ Liquid Effluents 8
3 Solid Waste and Irradiated Fuel Shipments 10
4A-1 Distribution of Wind Directions and Speeds for the 15
33 ft . Level of the 220 ft . Tower
4A-2
Distribution of Wind Directions and Speeds for the 31 220 ft . Level of the 220 ft . Tower

BOSTON EDISON COMPANY Pilgrim Nuclear Power Station Radioactive Effluent and Waste Disposal Report including Meteorological Data July 1 to December 31, 1991

INTRODUCTION

Abstract

This report quantifies the radioactive gastous, ilquic, and radwaste releases, and summarizes the local meteorological data for the period from July 1 to December 31, 1991. This document has been prepared in accordance with the requirements set forth in the Pilgrim Nuclear Power Station (PNPS) Technical Specifications and Revision 1 of Regulatory Guide 1.21, "Measuring. Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light Water Cooled Nyclear Power Plants."

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Waste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semfannual report (reportilig period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological impact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification 14 mfts in Table 1 A (as these 11 mits are based on dose).

The quantity of radioactive material released from Pilgrim Station was determined from sample analyses of gaseous releases from the main stack, reactor building vent and turbine building, and ifquid releases into the discharge canal. The quantity and volume of radioactive waste which was shipped off-site from Pilgrim Station for burial was determined from data contained on the radwaste shipping documentation. The meteorological data were obtained from instrumentation measurements from the 33 foot and 220 foot levels of the 220 foot meteorological tower located at Pilgrim Station.

GASEOUS EFFLUENTS

The gaseous radioactive releases from July 1 to December 31, 1991 are quantified in Tables $1 A, 1 B$ and $1 C$. Radioactive noble gases released during the period totaled $1,40 \mathrm{E}+3$ curies. Releases of radioactive particulates and lodines from the main stack, reactor building vent, and turbine building, totalled $9.80 \mathrm{E}-2$ curies, and tritium releases totalled $4.28 \mathrm{E}+0$ curies. No gross alpha radioactivity was detected in gaseous effluents.

LIQUID EFFLUENTS

The liquid radioactive releases from July 1 to December 31, 1991 are quantified in Tables 2A and 2B. Liquid effluents into the discharge canal resulted in a total release to the environment (Cape Cod Bay) of $2.83 \mathrm{E}-2$ curies of fission and activation products and $9.40 E+0$ curtes of tritium. Dissolved and entrained gases in liquid effluents totalled $6.01 \mathrm{E}-3$ curies during the period. No gross alpha radioactivity was detected in liquid effluents.

SOLID WASTE

The solfd radtoactive waste that has been shipped off-site for burial during the reporting period is described and quantified in Table 3. Approximately 210 cubic meters of solid waste was shipped off-site for burial with a total activity of approximately $4.30 \mathrm{E}+2$ curies (major nuclides: $\mathrm{Cr}-51, \mathrm{Mn}-54$, Fe-55, Co-58, Co-60 and Cs-137). Pilgrim Station did not ship irradiated components off-site during the reporting period.

METEOROLOGICAL DATA

The meteorological data joint frequency distributions are listed in Tables $4 \mathrm{~A}-1$ and 4A-2. The percent data recovery for the period of July - December 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot metzorological tower at pilgrim Station. joint data recovery for the entire year of 1991 was 95.6% for the 33 foot level and 95.2% at the 220 foot level, exceeding the Regulatory Guide 1.23 annual data recovery goal of 90\%.

The predominant wind direction was from the south-southwest, which occurred With a frequency of approximately 15% during this period. The predominant *ind speec range at the 33 foot sensor was 4 to π mph, which occurred 55% of the time during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph , which occurred appioximately 35% of the time. The predominant stability class was stability class E , which occurred about 37% of the time during this period.

CONCLUSION

The PNPS Technical Specifications contain limiting conditions for operations and operational objectives regarding radiological environmental releases. None of the limiting conditions for operation or operational objectives associated with liquid or gaseous effluents were exceeded during this reforting period, as confirmed by conservative dose assessments performed on a monthly basis during this period. Official dose assessments will be pub shed in a supplement to this report due 90 days following January 1, 1992. Conformance to these PNPS Tech cal Specifications ensures that the releases of radioactive materials in gaseous and liquid effluents were kept as low as is reasonably achievable in accordance with the Nuclear Regulatory Commission's regulation 10 CFR 50, Appendix 1. Furthermore, compliance with PNPS Technical Specifications demonstrates compliance with the Environmental Protection Agency's (EPA) federal environmental regulation 40 CFR 190.10. Subpart B.

1. INTRODUCTION

This report is issued for the period July 1 to December 31, 1991 in accordarce with the Boston Edison Company's PNPS Technical Specifications and NRC Regulatory Guide 3.21, "Measuring, Evaluating and Reporting Radicactivity in Solid Wastes and Releises of Radioactive Materials in Liquid and Gaseous Effluents from Light Water Cooled Nuclear Power Plants," Revision 1 (Reference 1).

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Haste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semiannual report (reporting period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological impact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification limits in Table 1A (as these limits are based on dose).

2. RADIOACTIVE EFFLUENT DATA

Radioactive 14 quid and gaseous releases for the perlod July 1 to Secember 31, 1991 are given in the standard NRC Regulatory Guide 1.21 format in Tables 1A, 1B, 1C, 2A, 2B, and the supplemental information form.

There were no unplanned or non-routine releases of radioactive effluents during this reporting period.

2.1 Gaseous Effluents

Most gaseous radfoactivity is released from Pilgrim Station to the atmosphere from the main stack and the reactor building exhaust vent. Low levels of radionuclides were also detected in air exhausted from the turbine bullding. These releases were included in ground-level releases isted in Table 1C. These third and fourth quarier gaseous effluent releases for 1991 are sumnarized in Table 1A. Noble gases released during the period totaled $1.40 \mathrm{E}+3$ curies, for an average release rate of $8.86 \mathrm{E}+1 \mathrm{HCl} / \mathrm{sec}$. A total of $9.80 \mathrm{E}-2$ curies of radiuactive fodines and particulates with half-lives greater than 8 days was released at an average release rate of $6.20 \mathrm{E}-3 \mu \mathrm{Ci} / \mathrm{sec}$. No alpha radioactivity was detected during this reporting period. A total of $4.28 E+0$ curies of tritium was released at an average release rate of $2.71 \mathrm{E}-1 \mu \mathrm{Ci} / \mathrm{sec}$.

The main stack is an elevated release point with a height of approximately 400 feet above mean sea level. The main stack is located about 700 feet west-northwest of the reactor building. The third and fourth quarter elevated releases for 1991 are shown in Table 18.

The majority of ground level releases during the period July-December 1991 occurred from the reactor building vent, but low levels of radtonuclides were also detected in air exhausted from the turbine buflding. The reactor buflising exhaust vent is considered a ground level release point with a height of approximately 182 feet above mean sea level. The exhaust vent is located on the west corner of the reactor butlding. All ground level releases for the third and fourth quarters of 1991 are shown in Table IC.

2.2 Liauid Effluents

Liquid radloactivity is released from Pilgrim Station to the Cape Cod Bay via the circulating water discharge canal. These effluent releases enter the Cape Cod Bay at the outfall of the canal which is located about 1100 feet north of the reactor building.

The 1iquid releases for the third and fourth quarters of 1991 are summarized in Table 2A. A total of approximately 2.4 mfllion ifters of radioactive liquid waste (prior to dilution) containing $2.83 \mathrm{E}-2$ curies of fission an ${ }^{4}$ activation products (excluding tritium, gases, and alpha-emitting nuclides) was discharged with a total dilution volume of approximately 3.7 billion liters of water. The liquid effluents were released at an average concentration of fission and activation products of $7.69 \mathrm{E}-9 \mu \mathrm{Ci} / \mathrm{ml}$ during the third and fourth quarters. A total of $9,40 \mathrm{E}+0$ curies of tritium was released, for an average concentration of $2.56 \mathrm{E}-6 \mu \mathrm{Cl} / \mathrm{ml}$. Dissolved and entrained gases in liquid effluents totalled $6.01 \mathrm{E}-3$ curies, for an average concentration of $1.63 \mathrm{E}-9 \mu \mathrm{Ci} / \mathrm{ml}$. Alpha radioactivity was not detected in 1 iquid effluents during this reporting period. Quarterly release estimates and principal radionuclides in the liquid effluents are given in Table 2B.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

S.pplemental Information (1991)

July - December 1991
Facility Pilarim Nuclear Power Station
Licensee DPR-35

1. Regulatory I.imits
a. Fission and activation gases:
b, c. Iodines, particulates with half-lives >8 days, tritium:
d. Liquid effluents:
$500 \mathrm{mrem} / \mathrm{yr}$ total body and $3000 \mathrm{mrem} / \mathrm{yr}$ for skin at site boundary.
$1500 \mathrm{mrem} / \mathrm{yr}$ to any organ at site boundary.
$0.06 \mathrm{mrem} / \mathrm{month}$ for total body and $0.20 \mathrm{mrem} / \mathrm{month}$ for any organ (without redwaste treatment).
2. Maximum Permissible Concentration
a. Fission and activation gases:
b. Iodines:
c. Particulates, half-lives >8 days:
d. Liquid effluents:

10 CFR 20 Appendix B Table II
10 CFR. 20 Appendix B Table II
10 CFR 20 Appendix B Table II
$2 \mathrm{E}-4 \mu \mathrm{Cl} / \mathrm{ml}$ for entrained noble gases; 10 CFR 20 Appent x B Table II values for all other radionuclides.
3. Average Energy Not applicable
4. Methods used to determine radionuclide composition in effluents
a. Fission and activation gases:
b. Iodines:
c. Particulates:
d. Liquid effluents:

High-purity Ge gamma spectroscopy for all gamma emitters; radiochemistry analysis for $\mathrm{H}-3, \mathrm{Fe}-55$ (liquids only), $\mathrm{Sr}-89$, and $\mathrm{Sr}-90$.
5. Batch Releases
a. Liquid

1. Number of batch releases:
2. Total time period for batch releases (minutes):
3. Maximum time period for a batch release (minutes):
4. Average time period for batch releases (minutes):
5. Minimum time period for a batch release (minutes):
6. Average stream flow during periods of release of effluent into a flowing stream (11ter/min):

Quarter		
3rd		4th
58 14 $3.94 E+3$ $8.65 E+2$ $1.65 E+2$ $9.00 E+1$ $6.78 E+1$ $6.78 E+1$ $2.50 E+1$ $3.00 E+1$ $7.33 E+8$ $1.08 E+9$		

b. Gaseous: Not applicable

6. Abnormal Releases

a. Liquid: None
b. Gaseous: None

Unit	Quarter 3rd	Quarter 4th	Est. Total Error, \%

A. Fission and activation gases

1. Total release	CI	$1.17 \mathrm{E}+03$	$2.32 \mathrm{E}+02$	22%
2. Average release rate for period	$\mu \mathrm{Ci} / \mathrm{sec}$	$1.48 \mathrm{E}+02$	$2.94 \mathrm{E}+01$	
3. Percent of Tech. Spec limit	$\%$	$*$	$*$	

ъ. Iodines

1. Total lodtne-131	CI	$3.47 \mathrm{E}-03$	$8.97 \mathrm{E}-03$	20%
2. Average release rate for period	$\mu \mathrm{CI} / \mathrm{sec}$	$4.40 \mathrm{E}-04$	$1.14 \mathrm{E}-03$	
3. Percent of Tech. Spec. 1 imit	$\%$	$*$	$*$	

C. Particulates

1. Particul. with half-lives >8 days	CI	$2.89 \mathrm{E}-03$	$4.10 \mathrm{E}-03$	21%
2. Average release rate for period	$\mu \mathrm{Ci} / \mathrm{sec}$	$3.67 \mathrm{E}-04$	$5.20 \mathrm{E}-04$	
3. Percent of Tech. Spec. 1 imit	$\%$	$\%$	$\%$	$\%$
4. Gross alpha radioactivity	CI	NDA	NDA	

D. Tritium

. Total release	CI	$2.01 \mathrm{E}+00$	$2.27 \mathrm{E}+00$	20%
2. Average release rate for period	$\mathrm{HCi} / \mathrm{sec}$	$2.55 \mathrm{E}-01$	$\frac{2.88 \mathrm{E}-01}{*}$	
3. Percent of Tech. Spec. 1 imit	$\%$	$*$	$*$	

Notes for Table 1A:

* Percent of Technical Specification Limit Values in Section A. 3 through D. 3 are to be provided in the annual supplemental dose assessment report to be issued prior to April 1, 1992.

1. NDA is no detectable activity.
2. LLD for gross alpha listed as NDA is $1 E-11 \mu \mathrm{Ci} / \mathrm{ml}$.

TABLE 1B
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL. REPORT (1991) GASEOUS EFFLUENTS - ELEVATED RELEASE July - December 1991

1. Fission gases

$\mathrm{Kr}-85 \mathrm{~m}$	Cl	6.71E+01	1.59E+01	N / A	N/A
$\mathrm{Kr}-87$	Ci	$1.66 E+02$	$5.83 E+00$	N/A	N/A
$\mathrm{Kr}-88$	C1	$1.75 E+02$	$9.05 E+00$	N/A	N/A
Xe-133	Cl	$2.79 \mathrm{E}+01$	2. $60 \mathrm{E}+01$	N / A	N/A
$x e-135$	Cl	2.21E+02	$6.99 E+00$	N / A	N / A
$x e-135 m$	Cl	9.69E+01	$2.78 E+01$	N / A	N / A
Xe-138	Ci	4. $04 \mathrm{E}+02$	1.05E+02	N/A	N/A
tal fo Deriod	Cl	$1.16 E+03$	1. $27 \mathrm{E}+02$	N / A	N/A

2. Iodines

$I-131$	$C i$	$3.02 \mathrm{E}-03$	$7.31 \mathrm{E} \cdot 03$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{I}-133$	Ci	$1.79 \mathrm{E}-02$	$4.19 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Ci	$2.09 \mathrm{E}-02$	$4.92 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A

3. Particulates

$M n-54$	Ci	NDA	$3.15 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{C}-58$	Ci	NDA	$1.12 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{C}-60$	Ci	NDA	$6.21 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Sr}-89$	Ci	$5.13 \mathrm{E}-04$	$4.56 \mathrm{E}-04$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Sr}-90$	Ci	$2.76 \mathrm{E}-06$	$3.27 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Cs}-134$	Ci	NDA	NDA	N / A	N / A
$\mathrm{Cs}-137$	Ci	NDA	NDA	N / A	N / A
$\mathrm{Ba/La}-140$	Ci	$9.45 \mathrm{E}-04$	$1.05 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathrm{Ce}-141$		NDA	$1.00 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Ci	$1.46 \mathrm{E}-03$	$1.52 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A

4. Tritium

| $H-3$ | $C H$ | $2.00 E-01$ | $1.12 E-01$ | $\mathrm{~N} / \mathrm{A}$ | N / A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes for Table 18:

1. NDA is no detectable activity.
2. LLDs for nuclides 1 isted as NDA are as follows:

$$
\begin{array}{ll}
\text { Fission gases: } & 1 \mathrm{E}-4 \mu \mathrm{Ci} / \mathrm{ml} \\
\text { Iodines: } & 1 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml} \\
\text { Particulates: } & 1 \mathrm{E}-11 \mu \mathrm{Ci} / \mathrm{ml}
\end{array}
$$

TABLE IC
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) GASEOUS EFFLUENTS - GROUND LEVEL RELEASE July - December 1991

$\frac{\mathrm{Kr}-85 \mathrm{~m}}{\mathrm{Kr}-87}$	Ci	NDA		N/A	N / A
$\frac{\mathrm{Kr}}{\mathrm{Kr}-88}$	Cl	NDA	NDA		
$\chi^{\mathrm{Xe}} \mathrm{e}-133$	Cl	NDA	NDA	N/A	N/A
$x_{e}-135$	Cl	2.55E-01	1.82E +00	N/A	N/A
$\chi^{\rho} 9-135 \mathrm{~m}$	Ci	1.05E+01	2. $80 \mathrm{E}+01$	N/A	N/A
Xe-138	Ci	NDA	5.14E, 00	N/A	N/A
		NDA	NDA	N/A	N/A
Total for period	Cl	$1.08 \mathrm{E}+01$			N/A
			$3.50 \mathrm{t}+01$	N/A	N/A

2. Iodines

$I-131$	Ci	$4.54 \mathrm{E}-04$	$1.66 \mathrm{E}-03$	$\mathrm{~N} / \mathrm{A}$	N / A
$I-133$	Ci	$3.63 \mathrm{E}-03$	$1.52 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A
Total for period	Ci	$4.08 \mathrm{E}-03$	$1.68 \mathrm{E}-02$	$\mathrm{~N} / \mathrm{A}$	N / A

3. Particulates

$\frac{5 r-89}{\text { Sr }}$ -	Ci	2. $14 \mathrm{E}-05$	NDA	N/A	
$\frac{s r-90}{C s-134}$	Ci	$\frac{1.05 E-03}{2.80 E-06}$	$\frac{5.73 E-04}{2.97 E-06}$	N/A	N/A
$\mathrm{C}_{5}-137$	Cl	NDA	2.97E-06	N/A	N/A
Ba/La-140	Cl	NDA		N/A	N/A
	C)	3.56E-04	2.01E-03	N/A	N/A
Total for period	Ci	1.43		N/A	N/A
iritium		1.43	2.58E-03	N/A	N/

| $\mathrm{H}-3$ | CI | $1.81 \mathrm{E}+00$ | $2.16 \mathrm{E}+00$ | $\mathrm{~N} / \mathrm{A}$ | N / A |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Notes for Table 1C:

1. NDA is no detectable activity.
2. LLDs for nuclides listed as NDA are as follows:

Fission gases:
Iodines: ${ }^{\text {gases: }} \quad 1 \mathrm{E}-4 \mu \mathrm{Cl} / \mathrm{m}$
Particulates: $\quad 1 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$

TABLE 2A
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) LIQUID EFFLUENTS SUMMATION OF ALL RELEASES July - December 1991

Unit	Quarter 3rd	Quarter 4 th	Est. Tota? Error.\% \%

A. Fission and activation products

| 1. Total release (not including |
| :--- | :---: | :---: | :---: | :---: |
| tritium, noble gases, or alpha) | Ci

B. Tritium

1. Total release	Ci	$8.71 \mathrm{E}+00$	$6.86 \mathrm{E}-01$	9.4%
2. Aveiage diluted concentration during period	$\mathrm{Ci} / \mathrm{ml}$	$3.18 \mathrm{E}-06$	$7.32 \mathrm{E}-07$	
3. Percent of applicable limit	$\%$	$*$	$*$	

C. Dissolved and entrained jases

1. Total release	CI	$1.07 \mathrm{E}-03$	$4.94 \mathrm{E}-03$	16%
2. Average diluted concentration during period	$\mathrm{HCI} / \mathrm{ml}$	$3.89 \mathrm{E}-10$	$5.27 \mathrm{E}-09$	
3. Percent of applicable 1 imit	$\%$	$*$	$*$	

D. Gross alpha radioactivity

1. Total release	CL	NDA	NDA	34%

E. Volune of waste released (prior to dilution)

1iters	$2.16 E+06$	$2.23 E+05$	5.7%

F. Volume of dilution water used during period

1 1iters	$2.74 E+09$	$9.37 E+08$	10%

Notes for Table 2A:

* Percent of Technical Specification Limit Values in Section A. 3 through C. 3 are to be provided in the annylal supplemental dose assessment report to be issued prior to April 1, 1992.

1. NDA is no detectable activity.
2. LLD for gross alpha listed as NDA is $1 E-7 \mu \mathrm{Ci} / \mathrm{ml}$.

TABLE 2B
EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1990) LIOUIO EFFLUENTS July - December 1991

		CONTINUOUS MODE		BATCH MODE	
Nucildes Releasisd	Unit	Quarter	Quarter	$\frac{\text { Quarter }}{3 \text { rd }}$	$\frac{\text { Quarter }}{4 \text { th }}$
No Continuous Mode Releases During Period					

1. Fission and Activation Products

2. Dissolved and Entrained Noble Gases

$-\mathrm{X}_{e-133}$	Ci	N/A	N / A	$2.60 \mathrm{E}-04$	$8.46 \mathrm{E}-04$
$\mathrm{Xe}_{e}-135$	Ci	N / A	N / A	$8.07 \mathrm{E}-04$	$\frac{1.09 \mathrm{E}-03}{}$
Total for period	CI	N / A	N / A	$1.07 \mathrm{E}-03$	$4.94 \mathrm{E}-03$

Notes for Table 2B:

1. NDA is no detectable activity.
2. LLDs for nuclides listed as NDA are as follows:

Sr-89	$5 \mathrm{E}-8 \mu \mathrm{Ci} / \mathrm{ml}$
$\mathrm{I}-131$	$1 \mathrm{E}-6 \mu \mathrm{Ci} / \mathrm{ml}$
$\mathrm{Xe}-133,135$	$1 \mathrm{E}-5 \mu \mathrm{Ci} / \mathrm{ml}$
All Others	$5 \mathrm{E}-7 \mu \mathrm{Ci} / \mathrm{ml}$

3. RADIOACTIVE WASTE DISPOSAL DATA

Radloactive wastes (Reference 2) which were stiuped off-site for burial during the period July 1 to December 31, 1991 are given in Table 3, in the standard NRC Regulatory Guide 1.21 format.

The semiannual total quantity of radioactivity in curies and the total volume in cubic meters for the following categories or waste types are listed in Table 3:
a. Spent resins, filter sludges, evaporator bottoms;
b. Dry compressible waste, contaminated equipment, etc.;
c. Irradtated components, control rods, etc.; and,
d. Other.

During Juty 1 to December 31, 1991 approximately $4.23 \mathrm{E}+2$ curies of spent resins, filter sludges, etc. with a total volume of about $9.59 E+1$ cubic meters were shipped from Pilgrim Station to an approved burial sita. Approximately $7.23 E+0$ curies in dry compressible waste, contaminaied equipment, etc. with a total volume of about $1.14 \mathrm{E}+2$ cubic meters was shipped off-site for processing and/or burial during this period. Irradiated components and other miscellaneous low-level waste were not disposed of off-site during this reporting period. Irradiated fuel shipments were not made during this period.

Eighteen shipments to Barnwell, SC (Chem Nuclear Systems, Inc.), eight shipments to Oak Ridge, TN (six to Scientific Ecology Group; two to Quadrex Corp.), and two shipments to Wampum, PA (Alaron Corp.) were made during the period July 1 to December 31, 1991. Estimates of iajor radionuclides shipped off-site are listed in Table 3.

1. SOLID WASTE SHIPPED OFF SITE FOR BURIAL OR DISPOSAL

TABLE 3 (Continued)

2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (by type of waste)
a. Spent resin, filter sludges, evaporator bottoms, etc.
NUCLIDE NAME
$\mathrm{H}-3$
$\mathrm{C}-14$
$\mathrm{Cr}-51$
$\mathrm{Mn}-54$
$\mathrm{Fe}-55$
$\mathrm{Co}-58$
$\mathrm{Fe}-59$
$\mathrm{Co}-60$
$\mathrm{Ni}-63$
$\mathrm{Zn}-65$
$\mathrm{Sr}-89$
$\mathrm{Sr}-90$
$\mathrm{Nb}-95$
$\mathrm{TC}-99$
$\mathrm{Ag}-110 \mathrm{~m}$
$\mathrm{I}-129$
$\mathrm{I}-131$
$\mathrm{Cs}-134$
$\mathrm{CS}-137$
Ba-140
$\mathrm{La}-140$
$\mathrm{Ce}-141$
$\mathrm{Ce}-144$
$\mathrm{Pu}-238$
$\mathrm{Pu}-239 / 240$
Am-241
$\mathrm{Pu}-241$
$\mathrm{Cm}-243 / 244$
TOTAL

CURIES

3. $85 \mathrm{E}-02$
1.76E-01
$9.04 \mathrm{E}+01$
$4.57 E+01$
6.35E+01
1.22E+01
4. $82 \mathrm{E}+00$
5. $61 \mathrm{E}+02$
$3.77 \mathrm{E}+00$
6. $34 \mathrm{E}+00$
4.37E-01
1.81E-01
$5.53 \mathrm{E}-01$
7. $53 \mathrm{E}-04$
6.62E-01
1.54E-02
8. $60 \mathrm{E}+00$
9. $10 E+00$
$2.17 E+01$
$7.73 \mathrm{E}+00$
1.30E-01
10. $24 \mathrm{E}-01$
$1.95 \mathrm{E}+00$
$1.16 \mathrm{E}-03$
$1.71 \mathrm{E}-03$
2.42E-03
2.09E-01
$\frac{6.79 E-05}{4.23 E+02}$

PERCENT ABUNDANCE
9. 00 E-03
4. 20E-02
2.14E+01
$1.08 \mathrm{E}+01$
$1.50 E+01$
$2.88 \mathrm{E}+00$
6.68E-01
$3.81 E+01$
8. $92 \mathrm{E}-01$
7.90E-01

1. $03 \mathrm{E}-01$
2. 30E-02
1.31E-01
<1.00E-03
1.57E-01
4.00E-03
3.78E-01
9.70E-01
$5.13 E+00$
3. $83 E+00$
4. $10 \mathrm{E}-02$
1.95E-01
4.60E-01
<1.00E-03
<1.00E-03
<1.00E-03
5. 90E-02
$\frac{<1.00 E-03}{1.00 E+02}$

TABLE 3 (Continued)

b. Dry compressible waste, contaminated equipment, etc.

NUCLIDE NAME
H-3
$\mathrm{C}-14$
Cr-51
Mn-54
Fe-55
Co-57
Co-58
$\mathrm{Fe}-59$
$\mathrm{Ni}-59$
Co-60
$\mathrm{Ni}-63$
$2 n-65$
Sr-89
Sr-90
Tc-99
$\mathrm{Ag}-110 \mathrm{~m}$
Sb-124
I-129
Cs-134
Cs-137
Ce-144
Pu-238
Pu-239/240
Am-241
Pu-241
Cm-242
$\frac{\mathrm{Cm}-243 / 244}{\text { TOTAL }}$

CURIES
7.25E-04
1.45E-03
4.81E-01
2. $11 \mathrm{E}-01$
2.27E +00
7.25E-04
1.37E-01
4.57E-02
1.45t-03
2.40E,00
2.07E-0i
2. $54 \mathrm{E}-02$
3. $63 \mathrm{E}-03$
6. $53 \mathrm{E}-03$
1.45E-03
7.25E-04
2. 90 E-03
7.25E-04
1.02E-02
6.60E-01
2.83E-02
7.25E-04
7.25E-04
7. $25 \mathrm{E}-04$
3. 19E-02
7.25E-04
$\frac{7.25 E-04}{7.23 E+00}$

PERCENT ABUNDANCE

1.00E-02
2.00E-02
$6.65 \mathrm{E}+00$
2. $92 \mathrm{E}+00$
$4.11 E+01$
1.00E-02
$1.89 E+00$
6.31E-01
2.00E-02
3. $32 E+01$
2.86E+00
3.51E-01
5.01E-02
9.02E-02
2.00E-02
1.00E-02
4.01E-02
1.00E-02
1.40E-01
9.13E+00
3.91E-01
1.00E-02
1.00E-02
1.00E-02
4. $41 \mathrm{E}-01$
1.00E-02
$\frac{1.00 \mathrm{E}-02}{1.00 \mathrm{E}+02}$
c. Irradiated components, control rods, etc.

NUCLIDE NAME

Total

CURIES
0.000

PERCENT ABUNDANCE
N/A
d. Other (describe miscellaneous low-level waste).

NUCLIDE NAME
Total

CURIES
0.000

PERCENT ABUNDANCE
N/A

3. SOLID WASTE DISPOSITION

Number of
Shipments
18

6

2

2

Mode of Iransportation

Tractor-Trailer
Tractor-Trailer
Tractor-Traller
Tractor-Trailer

Destination

CNSI, Barnwell, SC
SEG, Oak Ridge, TN+
Quadrex, Oak Ridge, TN*
Alaron, Wampum, PA ++

+ Contaminated wastes are shipped to Scientific Ecology Group, Oak Ridge TN for volume reduction processes. After processing the rematning wastes are shipped to either Chem Nuclear Systems Inc., Barnwell, SC or U.S. Ecology Inc., Beatty, Nevada for burial under Boston Edison'e burial allocation.
* Contaminated wastes are shipped to Quadrex Corp., Oak Ridge, TN; for volume reduction/salvage. After processing the remaining wastes are shipped to Chem Nuclear Systems Inc., Barnwell, SC for burial under Boston Edison's burial allocation.
++ Contaminated wastes are shipped to Alaron Corp., Wampum, PA; for volume reduction/salvage. After processing the remaining wastes they are shipped to Barnwell, SC for burial under Boston Edison's burial allocation.

4. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of
Shipments
NONE
Mode of
Transportation
N/A
Destination
N/A

4. METEOROLOGICAL DATA

Meteorological data (Reference 3) for the period July 1 to December 31. 1991 is given in Tables 4A-1 and 4A-2 in the standard joint frequency distribution format as given in NRC Regulatory Guide 1.21.

The predominant wind direction was from the south-southwest, which occurred with a frequency of about 15% during this period. The predominant wind speed ringe at the 33 foot sensor was 4 to 7 mph , which occurred with a frequency of 55% during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph , which occurred approximately 35% of the time. The predominant stability class was stability class E, which occurred about 37% of the time during this period.

There were a few instances where the data recorded by the 220 foot tower were not continuous. Typically, data losses were due to loss of power. malfunction of the sensors, and/or malfunction of the digital data loggers. The net result is that the data recovery for the period of July through Decomber 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot meteorological tower at Pilgrim Station.

When averaged over the entire period of January-December 1991, the annual joint data recovery was 95.6% at the 33 foot level and 95.2% at the 220 foot level. This exceeds the 90% : greater annual data recovery goal specified in Regulatory Guide 1.23.

DISTRIBUTION OF WIND DIRECTIONS AND SPEEDS
FOR THE 33 FT . LEVEL OF THE 220 FT . TOWER

PILGRIM JULЯ9-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT WIND DATA

STABILITY CLASS A
CLASS FREOUENCY (PERCENT) $=14.00$
WIND DIRECTION FRON

SPEED (MPK)	N	WNE	WE	ENE	E	ESE	SE	SSE	\$	\$SW	SW	บวW	V	WNW	NW	NNW	VRBL	TOTAL
CALM	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	, of	.00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	.u4	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00
C-3	10	5	2	1	0	1	0	0	0	1	0	0	0	3	1	2	0	26
(1)	3.42	1.71	.68	. 34	. 00	. 34	. 00	. 00	.00	. 34	. 00	. 00	. 00	1.03	. 34	. 68	. 00	8.90
(2)	. 48	. 24	.10	. 05	. 00	. 05	. 00	.00	. 00	. 05	. 00	.00	. 00	. 14	. 05	. 10	. 00	1.25
4-7	27	33	26	26	9	2	1	0	6	15	21	18	20	13	2.7 ${ }^{8}$	12	0	235
(1)	9.25	11.30	8.90	8.90	3.08	. 68	. 34	. 00	1.37	5.14	7.19	6.16	6.85	4.45	2.74	4.11	. 00	80.48
(2)	1.29	1.58	1.25	1.25	.43	.10	. 05	.00	. 19	.72	1.01	. 86	. 96	. 62	. 38	. 58	. 00	11.27
8-12	1.37	0	0	0	0	0	. 0	0	2 68	19 6.51	1.37	1 34	0 .00	0 .00	r 0	. 0	0 00	30 10.27
(1)	1.37 .19	. 00	.00 .00	.00 .00	. 00	. 00	.00 .00	. 00	.68 .10	6.51	1.37 .19	.34 .05	. 00	. 00	.00 .00	. 00	. 00	10.27 1.44
(2)	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 91	. 19	. 05	. 00	. 00	. 00	. 00	. 00	1.44
13-18	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	.00	. 00	00	. 00	. 00	. 34	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 34
(2)	. 00	. 00	. 00	. 00	.80	. 00	.00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
62)	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
of 24	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0
(1)	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	.00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 80	. 00
ALL SPEEDS	41	38	28	27	9	3	1	0	6	36	25	19	20	16	9	14	0	292
(1)	14.04	13.01	9.59	9.25	3.08	1.03	. 34	. 00	2.05	12.33	8.56	6.51	6.85	5. 48	3.08	4.79	. 00	100.00
(2)	1.97	1.82	1.34	1.29	. 43	. 14	. 05	. 00	. 29	1.73	1.20	. 91	. 96	. 77	. 43	. 67	. 00	14.00

(1)=PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PAGE
(2) aPERCENT OF ALL GOOO ORSERVATIONS FOR THIS PERIOD

TABLE 4A-1 (continued)

```
        PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION ;?20-FOOT TONER)
```

33.0 FT WIND DATA STABILITY CLASS B

```
CLASS FREOUENL; OERCENT) \(=3.50\)
```


WIND DIRECTION FROW

SPEED (MPK)	N	HNE	NE	ENE	E	ESE	SE	SSE	\$	\$SW	5W	USW	v	WNW	NH	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
(1)	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	1.37	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.37
(2)	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 05
c-3	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	5	0	9
(1)	. 00	1.37	. 00	. 00	1.37	. 00	. 00	. 00	. 00	. 00	. 00	00	. 00	. 00	2.74	6.85	. 00	12.33
(2)	. 00	. 05	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 24	. 00	. 43
4-7	0	2	3	4	1	3	0	1	5	3	8	6	10	4	0	4	0	54
(1)	. 00	2.76	4.11	5.48	1.37	4.11	. 00	1.37	6.85	4.11	10.96	8.22	13.70	5.48	. 00	5.48	. 00	73.97
(2)	. 00	. 10	. 16	. 19	. 05	. 16	. 00	. 05	.24	. 14	. 38	. 29	. 48	. 19	. 00	. 19	. 00	2.59
8-12	0	0	0	0	0	0	0	0	1	6	2	0	0	0	0	0	0	9
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.37	8.22	2.76	. 00	. 00	. 00	. 00	. 00	. 00	12.33
(2)	.00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 05	. 29	. 10	. 00	.00	.00	. 00	. 00	. 00	. 43
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	00	. 00	. 00
CT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	0	3	3	4	2	3	0	1	7	9	10	6	10	4	2	9	0	73
(1)	. 00	4.11	4.11	5.48	2.74	4.11	. 00	1.37	9.57	12.33	13.70	8.22	13.70	5.48	2.74	12.33	. 00	100.00
(2)	. 00	. 16	. 16	. 19	.10	. 14	. 00	. 05	. 34	. 43	. 48	. 29	. 48	. 19	. 10	. 43	. 00	3.50

(1)=PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE (2) UPERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERI00

C= CALM (WIND SPEED LESS THAK OR EQUAL TO . 95 MPH)

PILGRIM JUL91-SEP91 WET DATA JOINT FREQUEMCY DISTRIBUTION (220-FOOT TONER)
33.0 FT VTND DATA STAEILITY CLASS C CLASS FREOUENCY (PERCENT) $=2.65$

WIND DIRECTIOW FROK

SPEED (MPH)	N	NHE	NE	ENE	E	ESE	SE	\$SE	\$	SSW	SW	USW	v	WNW	NW	NNW	VRGL	TOTAL
CALM	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
C-3	1	2	1	1	0	0	0	0	0	0	0	0	1	0	2	1	0	9
(1)	1.96	3.92	1.96	1.96	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.96	. 00	3.92	1.96	. 00	17.65
(2)	. 05	.10	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 05	. 00	. 43
4-7	0	2	6	2	4	1	1	0	2	5	7	4	1	2	1	0	0	36
(1)	. 00	3.92	7.84	3.92	7.84	1.96	1.96	. 00	3.92	9.80	13.73	7.84	1.96	3.92	1.96	. 00	. 00	70.59
(2)	. 00	. 10	. 19	. 10	. 19	. 05	. 05	. 00	. 10	. 24	. 34	. 19	. 05	. 10	. 05	. 00	. 00	1.73
8-12	0	0	0	0	0	0	0	0	1	5	0	0	0	0	0	0	0	. 6
(1)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	1.98	9.80	. 00	. 00	. 00	.00	. 00	. 00	. 00	11.76
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 29
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	.00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	1	4	5	3	4	1	1	0	3	10	7	4	2	2	3	1	0	
(1)	1.96	7.84	9.80	5.88	7.84	1.96	1.96	. 00	5.88	19.61	13.73	7.84	3.92	3.92	5.88	1.96	. 00	100.00
(2)	. 05	. 19	. 24	. 16	-19	. 05	. 05	. 00	. 14	. 48	. 34	. 19	. 10	. 10	. 14	. 05	. 00	2.45

(1)=PERCENT OF ALL GOOO OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL COOD OESERVATIONS FOR THIS PERICO
$C=$ CALH (WIND SPEED LESS THAN OR EQUAL TO . 95 MPH)

PILGRIM JUL9)-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT WIWD DATA

STABILITY CLASS D
CLKSS FREOUENCY (PERCENT) * 14.10 WIND DIRECTION FRON

SPEED (MPH)	N	NAE	NE	ENE	E	ESE	SE	SSE	5	SSW	SW	USW	v	WNW	NW	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
C-3	7	4	8	8	2	8	11	6	0	5	1	0	7	5	2	6	0	80
(1)	2.38	1.36	2.72	2.72	. 68	2.72	3.76	2.04	. 00	1.70	. 34	. 00	2.38	1.70	. 68	2.04	. 00	27.21
(2)	, 34	. 19	. 38	. 38	. 10	. 38	. 53	. 29	. 00	. 24	. 05	. 00	. 34	. 26	. 10	. 29	. 00	3.86
$4-7$	4	4	13	7	14	12	1	2	21	46	16	12	6	3	1	0	0	160
(1)	1.36	1.36	4.62	2.38	4.76	6.08	. 34	. 68	7.16	14.97	5.44	4.08	2.06	1.02	, 34	. 00	. 00	54.42
(2)	.19	. 19	. 62	. 34	. 67	. 58	. 05	.10	1.01	2.11	. 77	. 58	. 29	. 16	. 05	. 00	. 00	7.67
8-12	1	0	0	0	0	0	0	0	1	39	7	2	0	0	1	3	0	54
(1)	. 34	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 34	13.27	2.38	. 68	. 00	. 00	. 34	1.02	. 00	18.37
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	1.87	. 34	. 10	. 00	. 00	. 05	. 14	. 00	2.59
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 30	. 00	. 00
6T 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS (1)	12 4.08	2.72	21 7.14	15 5.10	16 5.44	20 6.80	12 4.08	2.8	22 7.48	88 29.93	8. 24	. 14	13	8	1.36	9	0	294
(2)	. 58	. 38	1.01	. 72	. 77	. 96	. 58	. 38		4.22	8.15	6. 67	4.42	2.72	1.36	3.06	. 00	100.00
							. 5					. 07	. 62	. 38	. 19	. 43	. 00	14.10

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2) =PERCENT OF ALL t 0000 OBSERVAIIONS FOR THIS PERIOD

PILGQIK JUL.9i-SEPQ1 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOMER)

33.0 FI HIND DATA

STABILITY CLASS E
CLASS FREQUENCY (PERCENT) $=36.31$

WIND DIRECTIOW FROW

SPEED (MPH)	k	WEE	NE	ENE	E	ESE	SE	SSE	\$	\$5.	SW	WSW	V	WW\%	NW	NAW	VRBL	TOTAL
CALM	1	0	0	2	0	1	0	0	2	0	0	1	1	0	1	0	0	9
(1)	. 13	. 00	. 00	. 26	. 00	. 13	. 00	. 00	. 26	. 00	. 00	.13	. 13	. 00	. 13	. 00	. 00	1.19
(2)	. 05	.00	. 00	. 10	. 00	. 05	. 00	. 00	. 10	.00	.00	.05	. 05	. 00	. 05	. 00	. 00	. 43
[-3	4	10	14	25	10	18	21	23	20	6	8	13	21	15	14	7	0	229
(1)	. 53	1.32	1.85	3.30	1.32	2.38	2.77	3.04	2.64	. 79	1.06	1.72	2.77	1.98	1.85	. 92	. 00	30.25
(2)	. 19	. 48	. 67	1.20	. 48	. 86	1.01	1.10	. 96	. 29	. 38	. 62	1.01	.72	. 67	. 34	. 00	10.98
6-7	4	13	12	13	12	19	6	13	48	123	46	45	14	8	14	17	0	407
(1)	. 53	1.72	1.59	1.72	1.59	2.51	. 79	1.72	6.34	16.25	6.08	5.96	1.85	1.06	1.85	2.25	. 00	53.76
(2)	. 19	. 62	. 58	. 62	. 58	. 91	. 29	. 62	2.30	5.90	2.21	2.16	. 67	. 38	.67	. 82	. 00	19.52
8-12	0	3	0	0	0	0	0	2	2	70	25	1	0	0	7	1	0	111
(1)	. 00	. 40	. 00	. 00	. 00	. 00	. 00	.26	. 26	9.25	3.30	. 13	. 00	. 00	.92	.13	.00	14.66
(2)	. 80	. 14	. 00	. 00	. 00	. 00	. 00	. 10	. 10	3.36	1.20	. 05	.00	.00	. 34	. 05	. 00	5.32
13-18	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 13	. 00	. 00	. 00	. 00	. 00	. 00	. 13
(2)	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 05	. 00	.00	.00	.00	. 00	. 00	. 05
19-26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 60	. 00	. 00	. 00	. 00
6T 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00
(2)	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	9	26	26	40	22	38	27	38	72	199	80	60	36	23	36	25	0	757
(1)	1.19	3.43	3.43	5.28	2.91	5.02	3.57	5.02	9.51	26.29	10.57	7.93	4.76	3.04	4.76	3.30	. 00	100.00
(2)	. 43	1.25	1.25	1.92	1.06	1.82	1.29	1.82	3.45	9.54	3.84	2.85	1.73	1.10	1.73	1.20	. 00	36.31
(1)=PERCENT	OF ALL	6000	OBSERV	ATIONS	FOR	HIS PA	GE											
(2) =PERCENT	OF ALL	6000	OrSERV	ATIONS	FOR	HIS PER	R100											

PILGR1M JUL.91-SEP91 MET DATA JOINT FREQUENCY D1STRIBUTION (220-FOOT T(-WER)

$$
33.0 \text { FT WIND DATA }
$$

STABILITY CLASS F
CLASS FREQUENCY (PERCENT) = 22.35

WIND DIRECTION FROM

SPEED (MPH)	N	WNE	WE	ENE	E	ESE	SE	SSE	8	SSW	SW	WSW	V	UNW	W*	NWW	VRBL	TOTAL
CALM	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0	0	6
(1)	. 00	. 00	. 00	. 00	.21	. 00	. 21	. 21	. 00	. 00	. 00	. 00	. 21	. 21	. 21	. 00	. 00	1.29
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 05	. 05	. 00	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 00	. 29
C-3	4	1	6	4	8	7	2	7	20	9	7	17	14	17	20	13	0	154
(1)	. 86	.21	. 86	. 86	1.72	1.50	.63	1.50	4.29	1.93	1.50	3.65	3.00	3.65	4.29	2.79	. 00	33.05
(2)	. 19	. 05	. 19	. 19	. 38	. 34	. 10	. 34	. 96	. 43	. 34	. 82	. 67	. 82	. 96	. 62	. 00	7.39
6-7	16	11	3	1	1	6	2	8	19	49	65	38	2	3	12	9	0	245
(1)	3.43	2.36	. 64	.21	.21	1.29	.43	1.72	4.08	10.52	13.95	8.15	.43	. 66	2.58	1.93	. 00	52.58
(2)	.77	. 53	. 14	. 05	. 05	. 29	. 10	. 38	. 91	2.35	3.12	1.82	. 10	. 14	. 58	. 43	.00	11.75
8-12	0	1	0	0	0	0	0	3	6	28	21	0	0	0	0	0	0	127
(1)	. 00	. 21	. 00	. 00	. 00	. 00	. 00	. 64	. 86	6.01	4.51	. 00	. 00	. 00	. 00	. 00	. 00	12.23
(2)	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 14	. 19	1.34	1.01	.00	. 00	. 00	.00	. 00	. 00	2.73
13-18	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60	. 63	. 00	. 00	. 43	. 00	. 00	. 00	. 00	. 00	. 86
(2)	.00	. 00	.00	. 00	.00	. 00	. 00	.00	+10	. 00	.00	. 10	. 00	. 00	.00	. 00	. 00	. 19
$19 \cdot 24$	J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	.00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ct 24	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00
ALL SPEEDS	20	13	7	5	10	13	5	19	45	86	93	57	17	21	33	22	0	466
(1)	4.29	2.79	1.50	1.07	2.15	2.79	1.07	4.08	9.66	18.45	19.96	12.23	3.65	6.51	7.08	4.72	. 00	100.00
(2)	.96	. 62	. 36	. 24	. 48	. 62	. 24	. 91	2.16	4.12	4.46	2.73	. 82	1.01	1.58	1.06	. 00	22.35

(1)=PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOO OBSERVATIONS TOR THIS PERIOD

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT WIND DAT,

STABILITY CLASS G
CL.ASS PR"QUEHCY (PERCENT) = 7.29

SPEED (MPH)	N	NKE	蔵	ENE	E	ESE	SE	SSE	5	SSW	SW	WSW	v	WNW	NW	NNW	VRBL	TOTAL
CALM	0	0	0	0	1	0	1	1	0	0	0	โ	0	1	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 66	. 00	66	. 66	. 00	. 00	. 00	. 66	. 00	. 66	. 00	. 00	. 00	3.29
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 05	. 05	. 00	. 00	. 00	. 05	. 00	. 05	. 00	. 00	. 00	. 24
C-3	0	0	0	0	0	1	0	0	1	9	7	8	7	3	0	0	0	36
(1)	. 00	. 00	. 00	. 00	. 00	. 66	. 00	. 00	. 66	5.92	6.61	5.26	4.61	1.97	. 00	. 00	. 00	23.68
(2)	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 05	.43	. 34	. 38	. 34	. 14	. 00	. 30	. 00	1.73
4-7	5	3	0	0	0	0	0	0	0	6	64	6	0	1	0	0	0	87
(1)	3.29	1.97	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.95	42.11	5.76	. 00	. 66	. 00	. 00	. 00	57.24
(2)	. 24	. 16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 29	3.07	. 38	. 00	. 05	.00	. 00	. 00	4.17
B-12	0	0	0	0	1	0	0	0	0	7	12	0	0	0	0	0	0	20
(1)	. 00	. 00	. 00	.00	. 66	. 00	. 00	. 00	. 06	4.61	7.89	. 00	. 00	. 00	. 00	. 00	. 00	13.16
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 34	. 58	. 00	.00	. 00	. 00	. 00	.00	. 96
13-18	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 66	. 00	. 00	. 00	+00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 66
(2)	. 00	, 00	. 00	. 00	. 05	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
$19-24$	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	- ${ }^{3}$
(1)	. 00	. 00	. 09	. 00	.66	. 66	. 00	. 66	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.97
(2)	.00	. 02	00	. 00	. 05	. 05	. 00	. 05	. 80	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.14
GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS			0	0		2	1	2	1	22	83	17	7	5	0	0	0	152
(1)	3.29	1.97	. 00	. 00	2.63	1.32	. 68	1.32	. 66	14.47	54.61	11.18	4.61	3.29	. 00	. 00	. 00	100.00
(2)	. 24	.14	. 00	.00	. 19	. 10	. 05	. 10	. 05	1.06	3.98	. 82	. 34	. 24	. 00	.00	. 00	7.29

(1) PPERCENT OF ALL GOOD OBSERVATIONS TOR THIS PAGE (2) =PERCENT OF ALL COOO OBSERVATIOWS FOR THIS PERICD

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) $=100.00$

WIND DIRECTION FROW

SPEED (MPH)	N	WNE	WE	ENE	E	Esc	SE	\$SE	5	SSW	SW	WSV	H	UNW	NW	NWW	VRBL	TOTAL
CALM	1	0	0	2	2	1	2	2	3	0	0	2	2	2	2	0	0	21
(1)	. 05	. 00	. 00	.10	. 10	. 05	. 10	. 10	.16	. 00	. 00	.10	. 10	. 10	. 10	. 00	. 00	1.01
(2)	. 05	. 00	. 00	. 10	. 10	. 05	. 10	. 10	.16	.00	. 00	.10	.10	.10	. 10	. 00	. 00	1.01
C-3	26	23	29	39	21	35	34	36	41	30	23	38	50	43	41	34	0	543
(1)	1.25	1. 10	1.39	1.87	1.04	1.68	1.63	1,73	1.97	1.46	1.10	1.32	2.40	2.06	1.97	1.63	. 00	26.04
(2)	1.25	1.10	1.39	1.87	1.01	1.68	1.63	1.73	1.97	1.44	1.10	1.82	2.6	2.06	1.97	1.63	. 00	26.04
6-7	56	68	61	53	41	43	11	24	99	245	227	131	53	34	36	42	0	1224
(1)	2.69	3.26	2.93	2.54	1.97	2.06	. 53	1.15	4. 5	11.75	10.89	6.28	2.56	1.63	1.73	2.01	. 00	58.71
(2)	2.69	3.26	2.93	2.54	1.97	2.06	.53	1.15	4.75	11.75	10.89	6.28	2.54	1.63	1.73	2.01	. 00	58.71
8-12	5	4	0	0	1	0	0	5	11	174	71	4	0	0	8	4	0	287
(1)	. 24	. 19	. 00	. 00	. 05	. 00	. 00	. 24	. 53	8.35	3.41	.19	. 00	. 00	. 38	. 19	. 00	13.76
(2)	. 26	. 19	. 00	.00	. 05	. 00	. 00	. 24	. 53	8.35	3.41	.19	. 00	.00	. 38	.19	. 00	13.76
13-18	0	0	0	0		0	0	0	2	1	1	2	0	0	0	0	0	7
(1)	. 00	. 00	. 60	.00	. 05	. 00	. 00	. 00	. 10	. 05	. 05	.10	. 00	. 00	. 00	. 00	. 00	. 34
(2)	. 00	. 00	.00	. 00	. 05	. 00	.00	.00	.10	. 05	. 05	. 10	. 00	. 00	. 00	. 00	. 00	. 34
99-24	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 05	. 05	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 14
(2)	. 00	. 00	. 00	. 00	. 05	. 05	. 00	. 05	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 14
GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09
(2)	.00	. 00	.00	.00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	88	95	90	94	67	80	47	68	156	450	322	177	105	78	87	80	0	2085
(1)	4.22	4.56	4.32	4.51	3.21	3.84	2.25	3.26	7.48	21.58	15.44	8. 49	5.04	3.79	4.17	3.84	. 00	100.00
(2)	4.22	4.56	4.32	4.51	3.21	3.86	2.25	3.26	7.48	21.58	15.64	8.69	5.04	3.79	4.17	3.84	. 00	700.00

(1) aPER -ENT OF ALL GOOO OESERVATIONS FOK THIS PAGE
(2)=PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PERIUD

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOUER)
33.0 HT UTMD DATA STABILITY CLASS A CLASS FREQJENCT (PERCENT) = 5.60 WIND DIRECTION FRON

SPEED (NPK)	5	NWE	ME	EME	E	ESE	SE	SSE	8	85\%	SW	WSW	W	WNK	W*	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
C-3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	5
(1)	. 87	. 87	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.61	. 00	. 00	4.35
(2)	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 15	. 00	. 00	. 24
$4-7$	8	8	2	3	0	8	1	0	0	4	1	0	12	11	12	11	0	81
(1)	6.96	6.96	1.74	2.61	. 00	6.96	. 87	. 00	. 00	3.48	. 87	. 09	10.43	9.57	10.43	9.57	. 00	70.43
(2)	. 39	. 39	. 10	. 15	. 00	. 39	. 05	. 00	. 00	. 19	. 05	. 00	. 58	. 54	. 58	. 54	. 00	3.94
8-12	1	2	1	0	0	1	0	0	0	3	0	0	0	6	6	1	0	21
(1)	. 87	1.74	. 87	. 00	. 00	. 87	. 00	. 00	. 00	2.61	. 00	. 00	. 00	5.22	5.22	. 87	. 00	18.26
(2)	. 05	. 10	. 05	. 00	. 00	. 05	. 00	. 00	. 00	. 15	. 00	. 00	. 00	. 29	. 29	. 05	. 00	1.02
13-18	-	7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	8
(1)	. 00	6.09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 87	. 00	. 00	. 00	. 00	. 00	. 00	. 00	6.96
(2)	. 00	. 34	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 39
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	2	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
cT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	00	.00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	10	18	3	3	0	9	1	0	0	8	1	0	12	17	21	12	0	115
(1)	8.70	15.65	2.61	2.61	. 00	7.83	. 87	. 00	. 00	6.5	. 87	. 00	10.43	14.78	18.26	10.43	. 00	100.00
(2)	. 49	. 88	. 15	. 15	. 00	. 44	. 05	. 00	. 00	. 39	. 05	. 00	. 58	. 83	1.02	. 58	. 00	5.60

(1) $=$ PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PERIOD

C= CALM (WIND SPEED LESS THAN OR EQUAL TO . 95 MPH)

TABLE 4A-1 (continued)

PILGRIM OCI91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT VIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 3.12

WIND DIRECTION FRON

SPEED (MPN)	N	NNE	ME	ENE	E	ESE	SE	SSE	\$	\$SW	54	WSN	V	WNW	MW	NNW	VRBL	TOTAL
CALM	v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	.00	.00	. 00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 00	. 00
(2)	. 00	.00	. 00	. 00	. 00	. 00	. 05	. 00	.00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00
C-3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	5
(1)	3.13	1.56	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	.00	.00	. 00	.00	1.56	1.56	.00	7.81
(2)	.10	. 05	.00	.00	. 00	.00	. 00	.00	.00	.00	. 00	. 00	.00	. 00	. 05	. 05	. 00	. 24
$4-7$	0	1	1	0	1	1	0	0	3	3	5	0	0	6	2	2	0	25
(1)	.00	1.56	1.56	.00	1.56	1.56	.00	.00	4.69	4.69	7.81	. 00	. 00	9.38	3.13	3.13	. 00	39.06
(2)	. 00	. 05	. 05	. 00	. 05	.05	.00	.00	. 15	. 15	.24	.00	.00	. 29	+ 10	. 10	. 00	1.22
	0	9 6	- 2	0	0	0	0	0	0	10	2	1	1	4	1	2	0	29
(1)	.00	9.35	3,13	.00	.00	.00	.00	.00	. 00	15.63	3.13	1.56	1.56	6.25	1.56	3.13	. 00	45.31
(2)	.00	. 29	. 10	. 00	.00	. 00	. 06	. 00	. 00	. 69	. 10	. 05	. 05	. 19	. 05	.10	. 00	1.41
13-18	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
(1)	1.56	6.25	.00	.00	.00	.00	.00	.00	.00	.00	. 00	.00	. 00	.00	.00	.00	. 00	7.81
(2)	. 05	. 19	. 00	.00	.00	.00	.00	.00	. 00	. 00	.00	.00	. 00	.00	. 00	. 00	. 00	.81 .24
$19 \cdot 24$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	. 00	.00	. 00	.00	.00	.00	.00	.00	.00	.00	, 00	.00	.00	.00	.00	.00
(2)	. 00	. 00	. 00	.00	.00	.00	.00	.00	. 00	. 00	.00	.00	. 00	. 00	. 00	. .00	. 00	. .00
GT 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	.00	.00	.00	.00	.00	.00	. 00	. 00	.00	.00	.00	.00	. 20	.00	. 00	.00
(2)	. 00	. 00	. 00	.00	.00	.00	. 00	. .00	. .00	. .00	. 00	. .00	. .00	. .00	. 20	. .00	. .00	. .00
ALL SPEEDS	3	12	3	0	1	1	0	0	3	13	7	1	1	10	4	5	0	64
(1)	4.69	18.75	4.69	.00	1.56	1.56	.00	.00	6.69	20.31	10.94	1.56	1.56	15.63	6.25	7.81	00	100.00
(2)	. 15	. 58	. 15	.00	. 05	.05	.00	.00	. 15	. 63	. 36	. 05	. 05	. 69	b. .19	. 26	. 00	3.12

(1)=PERCENT OF ALL GOOO OBSERVATIONS FOR TAIS PACE
(2) aPERCE IT OF ALL GOOD OESERVATIONS FOR THIS PERIOD

PILGRIM OCTM1-DECY1 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
33.0 FT UIND DATA STABTLTTY CLASS E CLASS PREQUENCY (PERCENT) = 3.65 WIND DIRECTION FRON

SPEED (MPH)	N	WNE	WE	ENE	E	ESE	SE	SSE	§	SSW	SW	WSW	V	WNW	NW	NNW	VRBL	TOTAL.
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	. 00	. 00	.00	.00	. 00	.00	.00	.00	. 00	.00	.00	.00	00	.00	. 00
(2)	.00	.00	.00	.00	. 00	.00	. 00	.00	. 00	. 00	. 00	.00	.00	.00	. 00	.00	.00	.00
C-3	1	1	1	0	0	0	0	0	0	0	1	0	0	3	1	0	0	8
(1)	1.33	1.33	1.33	. 00	.00	.00	. 00	.00	.00	. 00	1.33	. 00	. 00	4.00	1.33	.00	.00	10.67
(2)	. 05	. 05	. 05	. 00	.00	.00	.00	.00	.00	.00	. 05	. 00	. 00	. 15	. 05	.80	.00	. 39
6-7	0	- 1	0	3	0	1	3	0	4	2	3	1	2	5	6	0	0	31
(1)	. 00	1.33	.00	6.00	.00	1.33	4.00	.00	5.33	2.67	4.00	1.33	2.67	6.67	8.00	. 00	. 00	41.33
(2)	.00	. 05	. 00	.15	.00	. 05	. 15	.00	. 19	. 10	. 15	. 05	. 10	. 24	. 29	.00	.00	1.51
8-12	- 1	, 3	- 2	0	0	0	0	0	0	1. 1	2	6	6	3	0	1	0	25
(1)	1.33	6.00	2.67	.00	.00	.00	. 00	.00	. 00	1.33	2.67	8.00	8.00	4.00	.00	1.33	.00	33.33
(2)	. 05	. 15	. 10	. 00	. 00	. 00	, DO	.00	. 00	. 05	. 10	. 29	. 29	. 15	. 00	. 05	. 00	1.22
13-18	. 1.3	\% 6	- ${ }^{2}$	\checkmark	0	0	0	0	0	0	0	0	0	1	0	0	0	10
(1)	1.33	8.00	2.67	. 00	.00	. 00	. 00	.00	.00	. 00	. 00	.00	.00	1.33	. 00	. 00	.00	13.33
(2)	. 05	.29	.10	. 00	+00	.00	.00	.00	.00	. 00	.00	.00	.00	. 05	.00	. 00	. 00	. 49
19-24	0	- 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	.00	1.33	. 00	. 00	.00	.00	. 00	.00	.00	.00	.00	.00	. 00	.00	. 00	.00	.00	1.33
(2)	. 00	. 05	.00	. 00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 00	. 00	. 00	. 00	. 05
GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	.00	.00	.00	.00	. 00	.00	.00	. 00
(2)	.00	.00	.00	. 00	.00	.00	. 00	.00	. 00	.00	. 00	.00	. 00	.00	. 00	. 00	.00	.00
ALL SPEEDS	3	12.12									6	7	8	12	7	1	0	75
(1)	4.00	16.00	6.67	4.00	.00	1.33	4.00	.00	5.33	4.00	8.00	9.33	10.67	16.00	9.33	1.33	. 00	100.00
(2)	. 15	. 58	. 26	. 15	.00	. 05	. 15	. 00	. 19	. 15	. 29	. 34	. 39	. 58	. 36	. 05	. 00	100.00 3.65
(1) =PERCENT	OF ALL	6000	D8SERV	ATIONS	FOR	YHIS PA												
(2) =PERCENT	OF ALL	6000	OBSERV	ATIONS	FOR T	THIS PE	R100											

C = CALM (WIND SPEED LESS THAN OR EQUAL 10.95 MPH)

TABLE 4A-1 (continued)

PILERIM DCT91-DECY1 NET CATA JOINT FREOUEMCY DISTRIBUTIOW (220-FOOT TOEER)

33.0 IT UIU DATA STAETLITY CLASS D CLASS FRELUCNCT (PERCEKT) = 24.73

WIND DIREETIOW FRON

EPEED (NPK)	v	枟迷	W\%	EME	E	Esf	6E	8s5	4	536	E4	แร\%	W	WW	WW	HWN	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	-D0	. 09	. $\times 0$. 00	.00	. 00	. 00	.00	. 00	.90	. 00	. 00	. 00	. 00	. 00	. 00	. 00
C-3	2	3	6	0	1	0	1	3	0	0	1	2	5	3	6	3	0	36
(1)	. 30	. 59	. 79	. 00	. 20	. 00	. 20	. 59	. 00	. 0	. 20	. 39	.98	. 59	1.18	. 59	.00	6.69
(2)	. 10	. 15	.19	. 00	. 05	. 00	. 05	. 15	. 00	. 00	. 05	.10	. 26	. 15	. 29	. 15	. 00	1. 66
6.7	5	3	1	6	5	2	10	1	16	12	16	13	28	28	28	6	0	180
(1)	. 98	. 59	. 20	1.18	. 98	.39	1.97	. 20	3.15	2.36	3.15	2.56	5.51	5.51	5.51	1.18	. 00	35.43
(2)	. 26	. 15	. 05	.20	. 24	. 10	. 69	. 05	. 78	. 58	. 78	. 6.5	1.36	1.36	1.36	. 29	. 00	8.76
8-12	2	35	9	0	0	0	2	2	6	21	9	6	37	40	67	6	0	218
(1)	. 39	6.89	1.77	. 00	. 00	. 00	. 39	. 39	1.18	6.13	1.77	. 70	7.28	7.87	9.25	. 79	. 00	62.91
(2)	.10	1.70	. 64	. 00	. 00	. 00	. 10	.10	. 29	1.02	. 46	. 19	1.80	1.95	2.29	. 19	. 00	10.61
13-18	6	37	7	2	0	0	0	0	0	2	2	0	10	3	2	1	0	70
(1)	. 79	7.28	1.38	. 39	. 00	. 00	. 00	. 00	. 00	.39	.39	. 00	1.97	. 59	.39	. 20	.00	13.78
(2)	. 19	1.80	. 36	.10	. 00	. 00	. 00	. 00	. 00	. 10	. 10	. 00	. 69	. 15	. 10	. 05	. .00	3.41
10-26	0	5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	6
(1)	. 00	. 98	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	1.18
(2)	. 00	.24	. 00	. 05	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.18 .29
6724	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	.00	.00	. 00	. 00	. 00	.00	.00	. 00	.00	. 00	.00	. 00	. 00	. 80	. 80	. 00
ALL SPEEDS							13	6	22	35	28	19	80	76	83	14	0	508
(1)	2.56	16.34,	6.13	1.77	1.18	. 39	2.56	1.18	4.33	6.89	5.51	3.76	15.75	16.57	16.36	2.76	. 00	100.00
(2)	${ }^{63}$	6.06	1.02	. 46	.29	.10	-63	. 29	1.07	1.70	1.36	. 93	3.89	3.50	4.04	. 68	. 00	24.73

(1)wPERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE
(2) aPERCENT OF ALL GO00 OESERVATIOWS FOR THIS PERICO

Co CALH GH1ND SPEED LESS THAK OR EQUAL TO . 95 MPH)

P1LGKIM DCIB1-DECO1 HET DATA dOINT FREOUEMCY DIETRIBUTIOW (220-F00T TONER)
33.0 FT WIM DATA 5 TABILITY CLASS E CLASS FREGUEKCT (PERCENT) * 38.27

WIND DIRECTION FRON

\#PEED (MPH)	*	MKE	WE	EME	$\underline{1}$	EsE	85	8sE	8	85\%	SV	U54	V	UWN	WW	WWE	VRBL	Total
CaL	0	0	0	0	0	0	0	0		0	0	0	-	0	I	2	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 00	. 00	. 00	. 00	. 00	. 13	. 00	. 00	. 25
(2)	. 00	. 00	.00	. 00	. 00	. 00	. 00	.00	. 05	. 00	.00	. 00	. 00	.00	. 05	.00	. 00	. 10
C-3	3	7	3	1	0	6	4	E	6	11	12	12	3	41	11	6	0	102
(1)	. 38	. 89	. 38	. 13	. 00	. 76	. 51	1.02	. 76	1.40	1.53	1.53	. 38	1.40	1.40	. 51	. 00	12.98
(2)	. 15	. 34	. 15	.05	. 00	. 29	.19	. 39	.29	. 56	. 58	.58	. 15	. 56	. 54	.19	. 00	4.97
6.7	7	9	8	3	3	10	21	40	46	35	52	92	78	59	31	17	0	489
(1)	- 89	1.15	1.02	. 38	. 38	1.27	2.67	5.09	5.60	6.65	6.62	11.70	9.92	6.96	3.96	2.16	. 00	62.21
(2)	. 34	. 46	. 39	. 15	15	. 49	1.02	1.95	2.16	1.70	2.53	4.68	3.80	1.90	1.51	. 83	. 00	23.81
8-12	2	9	5	0	0	0	3	0	6	45	36	23	20	11	11	2	0	
(1)	. 25	1.15	. 66	. 00	. 00	. 00	. 38	. 00	. 76	5.73	4.33	2.93	2.54	1.40	1.40	. 25	. 00	21.76
(2)	.10	. 46	. 24	. 00	. 00	. 00	. 15	. 00	.29	2.19	1.66	1.12	. 97	. 56	. 56	.10	. 00	8.33
13-18	1	7	0	2	6	2	0	0	0	1	0	0	0	0	0	0	0	19
(1)	. 13	. 89	. 00	. 25	. 76	. 25	. 00	. 00	. 00	. 13	. 00	. 00	.00	. 00	. 00	. 60	. 00	2.62
(2)	. 05	. 36	. 00	. 10	. 29	. 10	. 00	.00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 93
19-24	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
(1)	. 00	. 38	. 60	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 38
(2)	.00	. 15	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 15
cr 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00
ALL SPEEDS	13	35	16	6	9	18	28	48	57	92	98	127	101	61	56	23	0	786
(1)	1.65	4.65	2.04	. 76	1.15	2.29	3.56	6.11	7.25	11.70	12.47	16.16	12.85	7.76	6.87	2.93	. 00	100.00
(2)	. 63	1.70	. 78	. 29	. 46	. 88	1.36	2.36	2.78	4.48	6.77	6.18	4.92	2.97	2.68	1.12	. 00	38.27

(1)=PERCENT OF ALL 6000 DESERVATIONS FOR TMIS PAGE
(3) =PERCENT OF ALL 6000 DESERVATIOWS FOR TH1S PER100

Ce CALM (HIMD speED LESS THAN De EQUAL TO . 95 MPH)

PILCRIM OCTP1-DEC91 MET DATA 2O1NT FREQUEWCY DISTR1RUTIOW (220-FCOT TONER)
33.0 FT YIUD DATA STABYLITY CLASS F CLASS FREGUENCY (PERCENT) * 20.98

WIND DIRECTIOW FROM

SPEED (MPW)	k	MME	ME	EME	E	ESE	政	s5	\leqslant	8SW	\$	WSY	v	HNW	WW	WNW	VRBL	TOTAL
CALM	1	0	0	0	0	0	1	0	2	0	0	0	1	1	0	1	0	7
(1)	. 23	. 00	. 00	. 00	. 00	. 00	. 23	.00	.46	. 00	. 00	. 00	. 23	. 23	. 00	.23	.00	1.62
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 00	. 00	,00	. 05	. 05	.00	. 05	. 00	. 36
C-3	1	1	1	4	1	1	5	13	9	11	13	21	6	10	3	0	0	100
(1)	.23	.23	.23	. 93	. 23	. 23	1.16	3.02	2.09	2.55	3.02	4.87	1.39	2.32	. 70	. 00	. 00	23.20
(2)	. 05	.05	. 05	. 19	. 05	. 05	. 26	. 63	. 64	. 54	. 63	1.02	. 29	. 49	.15	. 00	. 00	2.87
6-7	10	3	10	5	1	2	5	17	33	23	37	32	¢	4	5	9	0	205
(1)	2.32	. 70	2.32	1.16	. 23	. 46	1.16	3.96	7.66	5.34	8	7.62	2.09	. 93	1.16	2.09	. 00	67.56
,2)	. 49	. 15	. 69	. 26	. 05	.10	. 24	. 83	1.61	1.12	10	1.56	. 44	. 19	. 24	. 2.64	. 00	9.98
8-12	3	9	0	?	0	1	6	2	1	10	22	12	1	2	1	2	0	70
(1)	. 70	2.09	. 00	. 00	. 00	. 23	. 93	. 66	.23	2.32	5.10	2.78	. 23	.46	. 23	. 46	. 00	16.24
(2)	. 15	.44	. 00	. 00	. 00	. 05	, 19	. 10	. 05	. 69	1.07	. 58	. 05	.10	. 05	. 10	. 00	3.61
13-18	0	26	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38
(1)	. 00	6.03	2.78	. 00	. 00	. 00	. 00	. 00	- 00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	8.82
(2)	. 00	1.27	. 58	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.60	.00	. 00	. $D 0$	1.85
19-26	0	8	3	0	0	0				0	0	0	0	0	0	0		11
(1)	. 00	1.86	. 70	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	2.55
(2)	. 00	. 39	. 15	.00	. 00	. 00	.00	.00	. n	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	2.55 .56
(1) 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. .00	. 00
ALL SPEEDS		47		9	2	6	15	32	65	\$6	72	65	17	17	9	12	0	
(1)	3.48	10.90	6.03	2.09	. 46	. 93	3.48	7.42	10.46	10.21	16.71	15.08	3.94	3.96	2.09	2.78	. 00	100.00
(2)	. 73	2.29	1.27	. 44	. 10	. 19	. 73	1.56	2.19	2.16	3.51	3.16	. 25	. 83	. 46	. 58	. 00	20.98

[^0]PILGRIW OCYPI-DECSI MET DATA JOINT FREQUENCY DI\$TRIBUTIOW (220-FOOT TOLER)
33.0 TT YIND DATA STABILITY CLASS $6 \quad$ CLASS FREQKENTY (PERCENT) $=3.65$

VIND DIRECTIOW FROM

SPEED (WPW)	*	WME	ME	EME	E	ESE	s	Sse	8	85\%	su	Usw	v	WW\|c	W	NWW	VREL	TOTAL
Calm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
c-3	0	0	O	0	0	0	0	1	1	2	1	1		0	0	0	0	9
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	1.33	2.67	1.53	1.33	6.00	. 00	. 20	. 00	. 00	12.00
(2)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 10	. 05	. 05	. 15	00	. 00	. 00	. 00	. 46
4-7	0	0	0	0	O	0	1	0	1	4	13	8	1	0	0	0	0	28
(1)	. 00	. 00	. 00	. 00	. 00	. 00	1.33	. 00	1.33	5.33	17.33	10.67	1.33	. 00	. 00	.00	. 00	37.33
(2)	. 00	. 00	. 00	. 00	. 0	. 00	. 05	. 00	. 05	. 19	. 63	. 39	. 05	. 00	. 00	. 00	. 00	1.36
8-12	1	6	0	0	0	0	0	0	0	0	11	4	0	0	0	1	0	23
(1)	1.33	8.00	. 00	.30	. 00	.00	. 00	. 00	. 00	. 60	14.67	5.33	. 00	. 00	. 00	1.33	. 00	30.67
(2)	. 05	. 29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 56	. 19	. 00	. 00	. 00	. 05	. 00	1.12
13 -18	c	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
(1)	. 00	20.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	00	. 00	20.00
(2)	. 00	. 73	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 0	. 00	.73
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	.D0	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. ∞	. 00	. 00	. 00	. 00
¢T 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	: 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL Sperds	1	21	0	0	0	0	1	1	2	6	25	13	4	0	0	1	0	75
(1)	1.33	28.00	. 00	. 00	. 00	. 00	1.33	1.33	2.67	8.c0	33.33	17.33	5.33	. 00	. 00	1.33	. 00	100.00
(2)	. 05	1.02	.00	.00	. 00	. 00	. 05	. 65	. 10	. 29	1.22	. 63	. 19	. 00	. 00	. 05	. 00	3.65

(1) (2PERCENT OF ALL GOK0 OESERVATIOWS FOR THIS PAGE
(2) WPERCENT OF ALI G000 DESERVATIOWS FOR THIS PERICO

C= CALM (WIND sPEED LESS THAK OR EOUAL TO . 95 hPH)

VINC DIRECTIOW FROW

SHED (WV)	*	WNE	紋	Ekil	1	Est	5	$5{ }^{1}$	8	Ex	ω	W5\%	v	WNV	W	WW\%	VREL	total
CALH	1	0	0	0	-	0	1	0	3	-	0	0		1	1		0	9
(1)	. 05	. 00	. 00	.00	. 60	. 00	. 05	. 00	. 15	. 00	. 00	. 00	. 05	us	. 05	. 05	. 00	. 66
(2)	. 05	. 00	. 00	. 00	, 60	. 00	. 05	. 00	. 15	. 00	. 00	. 00	. 05	. 05	.65	. 05	. 00	. 64
c-3	10	16	-	5	2	7	10	2s	16	26	28	36	17	27	25	8	0	263
(1)	. 69	. 68	. 44	. 26	. 10	. 36	. 69	1.22	. 78	1.17	1.36	1.7	, 83	1.31	1.22	. 39	. 00	12.80
(2)	. 69	. 68	.44	. 24	. 10	3/	. 69	1.22	. 78	1.17	1.36	1.75	. 23	1.31	1.22	. 39	. 00	12.80
6.7	30	cs	22	20	10	26	41	88	201	83	127	166	130	75	5	65	0	1039
(1)	1.66	1.22	1.07	. 97	. 69	1.17	2.00	2.82	6.92	6.06	6.15	7.11	6.33	4.53	6.09	2.95	. 00	50.58
(2)	1.46	1.22	1.07	. 97	. 65	1.17	2.00	2.82	6.92	4.06	6.18	7.11	\$.53	4.53	6.95	2.19	. 00	50.58
B-12	10	7	19	0	0	2	9	6	13	90	80	50	65	66	66	13	0	557
(1)	+69	3.61	. 93	.00	. 00	. 10	. 64	.19	. 63	4.38	3.89	2.43	3.16	3.21	3.21	63	. 00	27,12
(2)	.69	3.61	, 83	. 00	.00	. 10	. 64	,19	. 63	6.38	3.80	2.63	3.16	3.21	3.21	. 63	. 00	27.18
13-18	7	102	21	4		2	0	0	0	6	2	0	10	4	2	1	0	165
(1)	. 36	6.97	1.02	. 19	. 29	. 10	. 00	. 00	. 00	. 19	. 10	. 00	.69	. 19	. 10	. 05	. 00	8.03
(2)	. 34	4.97	1.02	. 19	. 2	. 10	. 00	. 00	. 00	. 19	. 10	. 00	. 49	. 19	. 10	. 05	. 00	8.05
19.26	c	17	3	1	0	0	0	0	0	6	0	0	0	0	0	0	0	21
(1)	. 00	.83	.15	. 05	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	. 00	. 05	. 00	. 00	. 00	1.02
(2)	. 00	.83	. 15	. 05	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.02
[t 26	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0
(1)	. 00	. 00	.00	.00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	00
(2)	. 00	. 00	. 00	.00	. 00	.00	, 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	58	228	76	50	18	35	61	87	133	201	237	232	223	191	178	68	0	2056
(1)	2.82	11.10	3.60	1.66	. 88	1.70	2.97	6.26	6.68	9.79	11.56	11.30	10.25	9.30	8.67	3.31	. 00	100,00
(2)	2.82	11.10	3.60	1.66	. 88	1.70	2.97	6.26	6.68	9.79	11.56	11.30	10.86	9.30	8.67	3.31	. 00	490.00
(1) =PERCENT	or Alt	6000	OUSERV	ATIO	FOR 1	THIS Ph	AGE											
(2) 5 PERCEKT	Of All	6000	OiSERV	atiows	Fow	15 PL	ER130											

220.0 FT WTien Dath	STALILIT CLASS	CUSS FREGUTNTT (PERCENT) s

SPEED (WPN)	4	WESE	边	ENE	E	Est	58	Est	8	SEW	EN	U54	V	WNV	WV	NWN	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00
(2)	. 00	.00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	.00	.00	.00	. 00	. 00
5-3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	1.35	.00	. 00	. 00	.00	. CH	.00	1.35
(2)	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	.00	. 00	. 05	. 00	. 00	.00	.00	. 00	. 00	. 05
4,7	3	1	2	3	2	0	0	6	0	0	0	0	0	2	3	1	0	17
(1)	6.05	1.35	2.70	6. 05	2.70	.00	. 00	.00	. 00	.00	. 10	. 00	- 09	2.70	4.05	1.35	. 00	22.97
(2)	.16	. 05	. 03	.14	. 00	. 020	.00	. 00	. 00	. 00	. 010	.00	.00	. 09	.96	. 05	+ 60	. 80
8-12	0	5	1. 1	0	0	5, 4	1. 1	1	4, 3	1	5	6	5	1	2	2	6	32
(1)	. 80	. 00	1.35	. 00	. 00	5.41	1.35	1.35	6.05	1.35	6.76	8. 11	6.76	1.35	2.75	2.70	.00	63.26
(2)	.00	. 00	. 05	.00	.00	. 19	. 05	-05	. 14	. 05	. 26	. 28	. 26	. 05	. 08	. 00	.00	1.51
13-18	0	0	0	0	0	0	0	6	6	7	2	0	5	1	0	0	0	21
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	8.11	0.66	2.70	. 0)	6.76	1.35	. 00	.00	. 00	28.38
(2)	. 00	. 00	. 00	. 00	.00	.00	.00	.00	. 28	. 53	. 00	.40	. 26	. 05	. 00	. 00	.00	.99
15-26	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	2
(1)	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	1.35	. 09	. 00	1.35	. 00	. 00	.00	. 00	2.70
(2)	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 05	.00	. 00	. 05	. 00	.00	. 00	.00	. 09
6f 24	+00	. 0	. 0	0	. 0	00	0	${ }^{0}$	0 00	0	0	0	0	0	0	- ${ }^{1}$	0	, $\frac{1}{5}$
(1)	.00	. 00	. .00	.00 .00	. .00	. 00	.00 .00	.00 .00	.00 .00	+00 +00	-00	. 00	. 00	. 00	. 00	1.35	. 00	1.35
(2)	. 00	${ }^{\circ} \mathrm{DO}$. 00	.00	. 00	.00	. 00	. 00	. 00	. 00	.00	-00	.00	.00	.00	. 05	. 00	. 05
ALL SPEEDS	3	1	3	3	2	4	1	1	9	9	8	6	11	6	5	6	0	74
(1)	4.05	1.35	4.05	4.05	2.70	5.61	1.35	1.35	12.16	12.16	10.81	8.11	14.86	5.41	6.76	5.61	. 00	100.00
(2)	. 14	. 05	. 16	. 16	. 09	. 19	.05	. 05	. 42	.42	. 38	.28	. 52	.19	. 26	. 19	. 00	3.49

(1)ePERCENT OF ALL GOOO RESERVATICWS FCR THIS PAGE (2) aPERCENT OF ALL DOC0 OESERVATICWS FOR TKIS PERID0

PILAR1M JULP1-SEP91 MCT DATA JOINT FREGUENCY DISTRIRUTIOW (220-F001 TORR)

UIKD DIRECTION FRON

SPEED (MPW)	V	vent	${ }_{\text {mi }}$	EME	1	E ${ }^{\text {S }}$	疑	88	8	85\%	w	UN	v	UWY	N0	HW\%	VREL	T0TAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 60	. 00	,00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 0	. 00	. 00	. 00
c-3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
(1)	, 00	. 00	. 00	. 00	. 00	a	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.89	. 00	. 00	. 00	1.89
(2)	. 00	.00	.00	. 00	. 00	\pm	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 05
6.7	1	2	1	1	2	0	0	0	0	0	0	0	4	0	1	\dagger	0	13
(1)	¢.89	3.77	1.85	1.85	3.77	. 00	. 00	. 10	.00	. 00	. 00	. 00	7.55	C0	1.89	1.89	. 00	24.53
(2)	. 05	. 09	, 05	. 05	. 69	. 00	, $\times 0$, 08	. 00	. 00	. 00	. 00	. 19	. 06	. 05	. 05	. 00	. 61
$8-12$	0	1	2	0	0	5	0	0	3	2	2	3	1	1	1	2	0	23
(1)	. 00	1.69	3.7	. 00	.00	9.63	. 00	.00	5.66	3.77	3.77	\$.66	1.89	1.89	1.89	3.77	.00	63.60
(2)	. 00	.05	.09	.00	. 00	. 24	. 00	. 00	. 16	. 00	\cdots	. 14	. 05	. 05	. 05	. 09	. 00	1.08
13-18	0	0	1	0	0	0	0	0	5	\%	5	0	0	1	0	0	0	14
(1)	. 00	. 00	1.89	. 00	.00	. 00	. 00	. 00	9.63	3.77	9.63	. 00	. 00	1.85	. 00	. 00	. 00	26,62
(2)	. 00	. 00	.05	, D0	,00	-59	. 00	. 00	. 26	.0\%	. 26	. 00	. 00	. 05	. 00	. 00	. 00	. 66
19.26	0	0	0	-		0	0	0	1	1	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 0 n	. 00	. 00	. 00	. 00	. 00	1.89	1.89	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.77
(2)	. 00	. 00	\%	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09
ct 26	0		0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	.no	. 00	10	. 00	. 00	. 00	00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00
ALL SPEEDS		3	5			5	0	0	?	3	7	3	5	-	2	3	0	53
(1)	1.89	5.66	7.55	1.69	3.77	9.63	. 00	. 00	16. ${ }^{16}$	9.63	13.21	5.66	9.43	5.66	3.77	5.66	. 00	100.00
(2)	. 05	. 14	. 10	. 05	. 09	. 26	.00	. 00	. 12	. 26	.33	. 16	. 26	. 16	.00	. 16	. 00	2.50

(1)*PERCEKT OF ALL tooco Deservations Fon this page (2) *PERCENT OF ALL GOCD OESERVATIONS FOR THIS PERICD

PILERIN JULPI-SEP9I MET DSTA JOINT FREDUEMCY DIETRIBUTIOW (220-FOOT TOKER)
220.0 FT VI E + 17 A

ETADILITY CLASE D
CLA55 FREQUNCY (PERCEMT) $=16.13$ VIWD DIRECTION FROW

SPEED (WPN)	3	WNE	退	EME	t	Est	㖸	SSE	5	E5\%	\%	VW	V	WWe	HV	WNW	VREL	TOTAL
SALH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.60	.00	. 00	.00	. 00	. 00	. 00	.00	. 00
C-3	0	1	3	3	0	0	0	0	0	0	0	1	0	1	1	1	0	11
(1)	. 00	. 33	1.00	1.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 35	.00	. 35	. 33	. 33	. 00	3.67
(2)	. 00	. 05	. 14.	.16	. 00	. 00	.00	.00	.00	.00	.00	. 65	. 00	. 05	. 25	${ }_{4} 05$. 00	. 52
$6 \cdot 7$	5	4	6	6	9	5	3	1	3	3	1	0	1	7	3	2	0	59
(1)	1.67	1.33	2.00	2.00	3.00	1.67	1.00	. 33	1.00	1.00	. 53	.00	, 83	2.33	1.00	.67	.00	19,67
(2)	. 26	. 19	. 28	. 28	. 62	. 26	. 16	. 05	. 16	. 16	. 05	. 00	.05	. 33	. 14	. 09	. 00	2.78
8-12	8	1	5	2	6	15	17	4	16	12	5	9	2	5	0	1	0	108
(1)	2.67	. 33	1.67	.67	2.00	5.00	5.67	1.55	5.33	4.00	1.67	3.00	.87	1.67	. 00	. 33	. 00	36.00
(2)	. 38	. 05	. 26	.09	. 28	. 71	. 80	. 19	. 73	. 57	. 26	. 42	. 09	.26	. 00	. 05	. 00	5.09
13-18	0	2	0	0	0	2	0	2	26	60	13	6	7	2	1	2	0	90
(1)	. 00	. 67	. 00	. 00	. 00	. 67	. 00	. 67	8.00	13.33	4.33	1.33	2.53	.67	. 33	.67	.00	33.00
(2)	.00	.09	.00	.00	. 00	.09	. 00	.09	1.13	1.88	.61	. 19	. 53	. 09	. 05	. 09	.00	4.66
19-26	0	0	0	0	0	0	0	0	0	12	0	2	0	1	0	3	0	18
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	4.00	. 00	.67	. 00	. 33	.00	1.00	. 00	6.00
(2)	. 00	.00	.00	.00	. 00	. 00	. 00	. 00	.00	. 57	.00	. 09	. 00	. 05	.00	. 16	. 00	. 85
ct 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 33	1.33	. 00	1.67
(2)	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	.00	. 05	. 19	.00	. 26
AL6 SPEEDS	13	8	14	11	15	22	20	7	43	67	19	16	10	16	6	13	0	300
(1)	4.33	2.67	4.67	3.67	5.00	7.33	6.67	2.33	14.33	22.33	6.33	5.35	3.33	5.33	2.00	4.33	. 00	100.00
(2)	. 61	. 35	.66	. 52	. 71	1.06	.26	. 33	2.03	3.16	.89	. 75	. 67	. 75	. 28	. 61	. 00	16.13

(1)=PERCENT OF ALL GOOD CESERVATIONS FOK THIS PAOE
(2) =PF2CENT OF ALL 6000 OBSERVATIONS FOR THIS PERI00

TABLE 4A-2 (continued)

PILGRIM dUL91-SEP91 MET DATA JOINT FREQUENEY DISTRIBUTION (220-FOOT TONER)
220.0 FT WIND DATA

STAEILITH CLASS E
CLASS FREQUENCY (PERCLNT) $=35.99$ VIND DIRECTION FROM

SPLED (NPW)	N	NNE	ve.	ENE	E	Est	$5 E$	Sst	5	8SV	SV	USW	v	WNW	W*	WNE	VREL	TOTAL
CALH	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 13	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.13	. 00	. 26
$(2$. 00	.00	. 00	. 00	. 00	. 05	, 00	. 00	. 00	. 00	,00	.00	. 00	. 00	. 00	. 05	. 00	. 09
c-3	2	2	3	5	1	1	0	1	0	2	2	1	1	3	1	1	0	26
(1)	. 26	. 26	. 39	. 65	, 13	. 13	. 00	. 13	. 00	. 26	. 26	. 13	. 13	. 39	. 13	. 13	.00	3.40
(2)	. 09	. 09	. 14	.24	. 05	. 05	. 00	. 05	. 00	. 09	. 09	. 05	. 05	. 14	. 05	. 05	. 00	1.22
4-7	2	4	6	10	16	16	13	3	6	4	6	6	4	5	5	5	0	105
(1)	. 26	. 52	. 79	1.31	2.0	1.83	1.70	. 39	. 75	. 52	. 52	. 52	. 52	. 65	. 65	. 65	. 00	13.76
(2)	. 09	. 19	. 28	.47	. 75	. 66	.61	. 16	. 28	.19	. 19	. 19	. 19	. 24	. 26	. 24	. 00	6.95
8-12	6	. 12	10	11	15	21	17	10	19	15	11	12	10	22	6	10	0	205
(1)	. 52	1.57	1.31	1.64	1.96	2.75	2.23	1.31	2.49	1.96	1.64	1.57	1.31	2.05	. 79	1.31	. 00	26.83
(2)	. 19	. 57	. 47	. 52	. 71	.99	. 80	. 47	, 89	. 71	. 52	. 57	. 47	1.06	. 28	. 67	. 00	9.66
13-18	4	3	3	0	2	9	16	16	29	84	30	30	22	9	10	6	0	269
(1)	. 52	. 39	. 39	. 00	.26	1.18	2.09	1.83	3,80	10.99	3.93	3.93	2.88	1.18	1.31	, 52	. 00	35.21
(2)	. 19	. 16	. 14	. 00	. 09	. 42	. 75	. 66	1.37	3.96	1.41	1.41	1.06	. 42	. 67	. 19	. 00	12.67
19-24	3	0	0		0	0		3	5	95	12	1	2	1	16	2	0	141
(1)	. 39	. 00	. 00	. 00	-00	${ }^{1} 00$, 13	. 39	. 65	12.63	1.57	. 13	.26	.13	2.09	. 26	. 00	18.46
(2)	. 16	. 00	. 00	. 00	. 00	. 00	. 05	. 16	. 24	4.67	. 57	. 25	. 08	. 05	2.75	. 09	. 00	18.46 6.64
CT 26	1	0	0	0	0	0	0	1	0	6	1	1	0	1	8	3	0	
(1)	. 13	. 00	. 00	. 00	. 00	-00	. 00	, 13	. 00	. 00	.13	. 13	. 00	.13	1.05	. 39	. 00	2.09
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 05	. 05	. 00	. 05	+ 38	. 14	. 00	. 75
ALL SPEEDS	16	21	22	26	34	- 5	47	32	59	200	60	49	39	61	46	26	0	764
(1)	2.09	2.75	2.88	3.40	4.45	$6 .{ }^{\text {r }}$ c	6.15	4.19	7.72	26.18	7. 85	6.61	5.10	5.37	6.02	3.40	. 00	100.00
(2)	. 75	. 0	1.06	1.22	1.60	2.17	2.21	4.51	2.78	9.42	2.83	2.31	1.86	1.93	2.17	1.22	. 00	35.99

(1) uPERCEKT OF ALL 6000 OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PERIOD

Ce CALM (NIND SPEED LESS THAN OR EQUAL 10.95 MPH)

PILGRIK JUL91-SEP91 NET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWFR)
220.0 FT UTKD DATA STABILTTY CLASS f CLASS FREOUTNCT (PERCENT) = 22.70

WIND DIRECTION FROM

SPEED(MPW)	1	WNE	NE	ENE	E	ESE	St	\$sE	8	S5Y	5 N	WSV	V	WNV	WV	WWV	VRBL	10tal
C.LM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
(1)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	.00	.00	. 00	. 00	.21	.00	. 21
(2)	. 00	, 00	, 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 05
C-3	2	0	3	0	1	1	1	1	0	0	0	1	0	0	2	2	0	14
(1)	. 41	. 00	. 62	. 00	. 21	.21	. 21	.21	. 00	.00	. 00	.21	. 00	. 00	. 61	.41	. 00	2.90
(2)	. 09	. 00	. 16	. 00	. 05	. 05	. 05	. 05	, 60	. 00	00	. 05	. 00	. 00	. 09	. 09	. 00	. .66
6-7	4	2	3	6	2	5	5	3	5	4	6	4	3	6	0	8	0	7
(1)	, 33	. 61	. 62	1.24	. 61	1.04	1.06	.62	1.04	. 83	1.24	. 83	. 62	. 83	1.87	1.66	. 00	15.15
(2)	. 19	. 09	. 16	. 28	.09	. 26	. 24	. 16	. 24	. 19	. 28	. 19	. 16	. 19	. 62	. 38	. 00	3.44
8-12	5	2	1	0	1	8	5	3	9	6	6	5	10	9	17	10	0	45
(1)	1.06	. 41	. 21	. 00	.21	1,66	1.04	. 62	1.87	1.26	. 83	1.06	2.07	1.87	3.53	2.07	. 00	19.71
(2)	. 26	. 09	. 05	. 00	. 05	. 38	.26	. 14	. 62	. 28	. 19	. 26	. 67	. 42	. 80	. 4.67	. 00	6.47
13-18	20	5	0	1	3	2	8	10	9	26	31	28	25	21	15	11	0	$21 *$
(1)	6.15	1.04	. 00	.21	. 62	. 61	1,66	2.27	1. 87	6.98	6.43	5.81	5.19	4.36	3.11	2.25	. 00	46.19
(2)	. 96	. 26	+80	. 05	. 16	.09	. 38	2.67	. 62	1.13	1.46	1.81 1.32	1.18	+.36 .98	3.71	2.25 .52	. 00	44.19 10.03
19-26	1	0	0	0	1	1	5	5	2	66	11	3	1	0	2	3	0	81
(1)	. 21	. 00	. 00	. 00	.21	.21	1.06	1.04	.41	9.56	2.28	. 62	. 21	. 00	.41	. 62	. 00	16.80
(2)	.05	. 00	. 00	. 00	. 05	. 05	. 26	. 24	. 09	2.17	2.28 .52	. 16	. 05	. 00	. 09	. 14	. .00	16.80 3.82
6124	0	0	0	0	0	0	1	1	1	0	0	2	0	0	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 00	.00	. 21	.21	. 21	. 00	. 00	, 41	. 00	. 00	. 00	. 00	.00	1.04
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 00	. 09	. 00	. 00	. 00	.00	. 00	1.04
ALL SPEEDS	32	9	7	7	8	17	25	23	26	80	52	63	39	36	45	35	0	482
(1)	6.64	1.87	1.45	1.45	1.66	3.53	5.19	4.77	5.39	16.60	10.79	8.92	8.09	7.05	9.34	7.26	. 00	100,00
(2)	1.51	. 62	. 33	. 33	. 38	. 80	1.18	1.08	1.22	3.77	2.45	2.03	1.84	1.60	2.12	1.65	. 00	22.70

(1)=PERCENT OF ALL QOCO OBSERVATIONS FOR THIS PACE
(2)=PERCENT OF ALL GOO0 OBSERVATIONS FOR THIS PERIOO

C* CALH (NIND SPEED LESS THAN OR EQUAL TO . O5 MPK)

TABLE 4A-2 (continued)

PILGRIM JULPI-SEP9I MET DATA dOINT FREDUENCY DISIRIBUTION (220-FOOT TONER)
220.0 FI WIND DATA
\$TADILITY CLASS 0
CLASS IREGUENCY (PERCENT) = 7.21
UIND DIRECTION FRON

SPEED (NPW)	N	NKE	NE	EEE	E	ESE	8 E	\$5E	8	SSW	SV	USW	W	UNV	NW	WHW	Vk!	TOTAL
CALM	1	0	0	0	0	0	0	0	0	0	1	0	0	0	6	0	0	2
(1)	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	1.31
(2)	. 05	. 00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 05	.00	. 00	.00	. 00	. 00	. 00	. 09
C-3	0	1	1	0	1	0	0	1	1	1	0	0	0	1	1	1	0	9
(1)	. 00	. 65	. 65	. 00	. 65	. 09	. 00	. 65	. 65	. 65	. 00	. 00	\%	. 65	. 65	. 65	. 00	5.88
(2)	. 00	. 05	. 05	. 00	. 05	. 00	. 00	. 05	. 05	. 05	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 42
6-7	1	8	0	0	2	3	2	1	2	0	6	2	2	0	4	1	0	26
(1)	. 65	1.31	. 00	+00	1.31	1.96	1.31	. 65	1.31	. 00	2.61	1.31	1.31	. $0{ }^{1}$	2.61	. 65	00	16.99
(2)	. 05	. 09	. 00	. 00	. 09	. 16	.09	. 05	. 09	. 00	. 19	. 09	. 09	. 00	. 19	. 05	. 00	1.22
8. 12	4	0	0	0	0	0	0	2	6	14	6	9	11	3	5	1	0	53
(1)	. 00	.00	. 00	. 00	. 00	. 00	. 00	1.31	2.61	9.15	2.61	5.88	7.19	1.96	3.27	.65	(0)	34.64
(2)	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 19	. 66	. 19	. 42	. 52	. 16	. 26	. 05	.00	2.50
13.18	3	0	0	0	0	0	0	0	0	4	15	13	5	3	1	0	0	44
(1)	1.96	. 00	. 00	. 00	. 40	. 00	. 00	. 00	. 00	2.61	9.80	8.50	3.27	1.96	. 65	. 00	.00	28.76
(2)	. 14	. 00	. 00	. 00	.05	. 00	. 00	. 00	. 00	. 19	. 71	. 61	. 26	, 16	. 05	. 00	, 00	2.07
$19 \cdot 26$	4	0	0	0	0	0	0		0	3	6	0	0	0	0	1	0	14
(1)	2.61	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	1.96	3.92	. 00	. 00	. 00	. 00	. 65	. 00	9.15
(2)	. 19	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 14	. 28	. 00	. 00	. 00	. 00	. 05	. 00	. 66
6t 26	0	0	0	1	2	1	0	1	0	0	0	0	0	0	0	0	0	5
(1)	. 00	. 00	. 00	. 65	1.31	.65	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.27
(2)	. 00	. 00	.00	. 05	. 09	. 05	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 24
ALL SPEEDS	9	3	1	1	5	4	2	5	7	22	30	24	18	7	11	4	0	153
(1)	5.88	1.96	. 65	. 65	3.27	2.61	1.31	3.27	4.58	14.38	19.61	15.69	11.76	4.58	7.19	2.61	. 00	100.00
(2)	. 42	. 14	. 05	. 05	. 24	. 19	. 09	. 24	. 33	1.06	1.41	1.13	. 85	. 33	. 52	. 19	. 00	7.21

(1)=PERCENT OF ALL GOCO OBSERVATIOWS FO THIS PAGE
(2) =PERCENT OF ALL 6000 OBSERVATI NS FOR THIS PERIOD

C C CALK (VIND SPEED LESS THAN OR EQUAL TO ,95 MPH)

TABLE 4A-2 (continued)

PILGRIK JLLS1-SEP91 MET DATA JOIKT FREDUENCY DISTRIBUTION (220-F00t TOMRS)
220.0 FT UIND DATA

CLass fefouther (PtRCENT) = 100.00 VIND DIRECTION FROM

SPEED (NPH)	v	NKE	4E	EKE	E	ESE	${ }^{56}$	\$8E	δ	85\%	S6	USW	V	Whav	NV	WHV	VRBL	TOTAL
CALM	1	0	0	0	0	1	0	0	0	0	,	0	0	0		2	0	,
(1)	. 05	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	.00	. 05	. 00	. 00	. 00	. 00	. 09	. 00	.26
(2)	. 05	. 00	. 00	, 00	. 00	. 05	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 08	. 00	. 26
c-3	5	6	10	8	3	2	1	3	1	3	3	3	1	6	5	5	0	63
(1)	. 26	. 19	. 67	. 38	. 14	. 09	. 05	. 16	. 05	. 14	. 16	. 16	. 05	. 28	. 26	. 26	. 00	2.97
(2)	. 26	. 19	. 67	. 38	. 16	. 09	. 05	. 14	. 05	.14	. 14	. 16	. 05	. 28	. 26	. 26	.00	2.97
6-7	34	28	26	35	38	25	23	8	17	13	15	10	15	20	30	23	0	361
(1)	1.60	1.32	1.13	1.65	1.74	1.32	1.08	. 38	. 80	. 61	. 71	. 47	. 71	+96	1.41	1.08	. 00	17,00
(2)	1.60	1.32	1,13	1.65	1.79	1.32	1.08	. 38	. 80	. 61	.71	+67	. 71	. 96	1.61	1.08	. 00	17.00
8-12	36	19	32	20	32	57	42	20	58	57	42	61	42	52	32	41	0	643
(1)	1.70	. 89	1.51	. 96	1.51	2.68	1.98	. 96	2.73	2.68	1.98	2.87	1.98	2.65	1.51	1.93	, 00	30.29
(2)	1.70	. 89	1.51	. 94	1.51	2.65	1.98	.96	2.73	2.68	1.98	2.87	1.98	2.65	1.51	1.93	. 00	30.29
13-18	33	11	5	1	5	13	24	26	8.8	169	107	81	74	45	30	29	0	737
(1)	1.55	.52	. 26	. 05	. 26	.61	1.13	1.22	3.96	7.96	5.06	3.82	3.69	2.12	1.41	1.37	00	36.72
(2)	1.55	. 52	.26	. 05	. 26	.61	1.13	1.22	3.96	7.96	5.06	3.82	3.49	2.12	1.41	1.37	. 00	34.72
19-26	10	0	0	0	1	1	6	8	11	167	29	7	4	3	18	13	0	278
(1)	. 67	. 00	. 00	. 00	. 05	. 05	. 28	. 38	. 52	7.87	1.37	. 33	.19	.16	. 85	. 61	. 00	13.09
(2)	.47	. 00	. DO	. 00	. 05	. 05	. 28	. 38	. 52	7.87	1.37	. 33	. 19	.16	. 85	. 61	. 00	13.09
								3	1	1	1	3	0	1	9	11	0	36
(1)	. 05	. 00	. 00	. 05	. 09	. 05	. 05	. 16	. 05	. 05	. 05	. 16	. 00	. 05	.42	. 52	. 00	1.70
(2)	. 05	.00	. 00	. 05	. 09	. 05	. 05	. 16	. 05	. 05	. 05	. 14	. 00	. 05	. 42	. 52	. 00	1.70
ALL SPEEDS	120	62	71	65	81	103		68	172	610	198	165	136	127	126	124	0	2123
(1)	5.65	2.92	3.36	3.06	3.82	4.85	6.57	3.20	8.10	19,31	9.33	7.77	6.61	5.98	5.86	5.84	. 00	100.00
(2)	5.65	2.92	3.36	3.06	3.82	4.85	4.57	3.20	8.10	19.31	9.33	7.77	6.61	5.98	5.84	5.04	. 00	100.00

(1)=PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PAGE
(2) EPERCENT OF ALL GOCD OESERVATIONS FOR THIS PERICO

PILGRIM OCI91-DECYI MET DATA JOINT FREOUENCY DISTRIBUTION (220-FOOT TOMCR)
220.0 i1 WIND bati

Stabllit classa
CLASS TREOUNET (PERCENT) * 5.B0 WIND DIRECTION FROM

SPEED (MPH)	*	MEE	NE	ENE	E	ESE	SE	856	5	S5V	5W	U5W	v	WWV	HW	NEV	VRBL	Total
CALH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
t-3	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 60	. 00	. 00	. 00
4-7	3	1	1	2	0	0	0	0	0	0	0	0	0	1	6	1	0	13
(1)	2.61	. 87	. 87	1.74	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 87	3.68	. 87	. 00	11.30
(2)	. 15	. 05	. 05	. 10	. 00	. 00	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 05	+20	. 05	. 06	. 66
8-12	6	0	0	0	1	1	0	0	3	1	1	2	4	5	2	3	0	29
(1)	5.22	. 00	. 00	. 00	. 87	. 87	. 00	. 00	2.61	. 87	. 87	1.76	3.68	4.35	1.76	2.61	00	25.22
(2)	. 30	. 00	. 00	. 00	. 05	. 05	. 00	. 00	. 15	. 05	. 05	. 10	. 20	. 25	. 10	. 15	. 00	1.46
13. 18	0	0	0	0	0	7	1	0	0	0	0	2	13	7	7	8	0	45
(1)	. 00	. 00	. 00	. 00	. 00	6.09	. 87	. 00	. 00	. 00	. 00	1.76	11.30	6.09	6.09	6.96	. 00	39,13
(2)	. 00	. 00	. 00	, 00	. 00	. 35	. 05	. 00	. 00	. 00	. 00	. 10	. 66	. 35	. 35	. 40	. 00	2.27
19-26	0	2	0	0	0	1	0	0	1	2	0	0	2	3	2	3	0	16
(1)	. 00	1.74	. 00	. 00	. 00	. 87	. 00	. 00	. 87	1.74	. 00	. 00	1.74	2.61	1.76	2.61	. 00	13.91
(2)	. 00	. 10	. 00	. 00	. 00	. 05	. 00	. 00	. 05	. 10	. 00	. 00	. 10	. 15	.10	. 15	.00	. 81
fit 24	8	0	0	0	0	0	0	0	0	1	0	0	0	2	1	0	0	12
(1)	6.95	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 87	. 00	. 00	. 00	1.74	. 87	. 00	. 00	10.43
(2)	. 40	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 10	. 05	. 00	. 00	. 61
ALL SPEEDS	17	3	1	2	1	9	1	0	6	6	1	6	19	18	16	15	0	115
(1)	14.78	2.61	. 87	1.76	. 87	7.83	. 87	. 00	3.68	3.48	. 87	3.48	16.52	15.65	13.91	13.04	. 00	100.00
(2)	.86	. 15	. 05	, 10	. 05	. 65	. 05	. 00	. 20	. 20	. 05	. 20	. 96	. 91	. 51	. 76	. 00	5.80

(1)=PERCEMT OF ALL OOOD OESERVATIONS FOK THIS PAOE (2) =PERCENT OF ALL GO00 OBSERVATIOWS FOR THIS PERIOO

TABLE 4A-2 (contirued)

PILGRIM OCTP1-DEC91 NET DATA JOIKT FREQUENCY DISTRIRUTION (220-FOOT TONER)

UIND DIRECTIOW FROW

SPEED (NPH)	N	WNE	NE	EME	1	ESE	85	sse	5	\$86	SV	USW	v	UWV	NW	NWW	VREL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
C-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	, 00	.00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
$6 \cdot 7$	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	2	0	6
(1)	1.55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	1.56	3.13	3.13	. 00	9,38
(2)	. 05	. 00	. 00	. 00	. 00	, 00	. 00	. 00	. 06	. 57	. 00	. 00	. 00	. 05	. 10	. 10	. 05	. 30
8-12	0	1	0	0	1	0	0	0	3	1	3	0	0	2	1	1	0	13
(1)	. 00	1.56	. 00	. 00	1.56	. 00	. 00	. 00	4.69	1.56	4. 69	. 00	. 00	3.13	1.56	1.56	. 00	20.31
(2)	. 00	. 05	. 00	. 00	. 05	. 00	. 00	. 00	. 15	. 05	. 15	. 00	, 00	. 10	. 05	. 05	. 00	. 66
13-18	3	0	0	0				, 2	3		3, ${ }^{2}$	1	2	4	1	0	0	21
(1)	4.69	. 00	. 00	. 00	. 00	1.56	. 00	3,13	3.13	4.69	3.13	1.56	3.13	6.25	1.56	. 00	.00	$3 \begin{aligned} & 3.81\end{aligned}$
(2)	. 15	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 10	. 15	. 10	. 05	. 10	. 20	. 05	. 00	00	1.06
19-26	1	6	0	0	0	0	0	0	1	7	0	0	1	0	1	0	0	17
(1)	1.56	9.38	. 00	. 00	. 00	. 00	. 00	. 00	1.56	10.96	. 00	. 00	1.56	. 00	1.56	. 00	. 00	26.56
(2)	05	. 30	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 35	. 00	. 00	. 05	. 00	. 05	. 00	. 00	. 86
		0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	7
(1)	6.25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	3.13	1.56	. 00	. 00	10.94
(2)	. 20	. 00	. 00	.00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 05	. 00	. 00	. 35
ALL SPEEDS	9	7	0	0	1	1	0	2			5	1	3	9	6	3	0	64
(1)	14.06	10.94	. 00	.00	1.56	1.56	. 00	3.13	9.38	17.19	7.81	1.56	4.69	14.06	9.38	4.69	. 00	100.00
(2)	. 45	. 35	. 00	. 00	. 05	. 05	. 00	. 10	. 30	. 55	. 25	. 05	. 15	. 45	. 30	. 15	. 00	3.23

(1)=PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PERICO

[^1]PILGRIM OCT91-DECP1 KET DATA JOINT FREQUEMCY D1STRIBUTION (220-FOOT TONER)
220.0 :11 WIND DATA
\$TAETLITY CLASS C
CLASS PREOUENCY (PERCENT)
3.63 WIND DIRECTION FRON

SPEED (MPM)	4	WNE	NE	FNE	E	ESE	SE	SSE	5	55w	SW	WSW	V	UNW	WW	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	.00	.00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
c-3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	1.39	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39
(2)	. 05	. 09	. 60	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
6-7	1	0	1	1	0	0	0	0	0	0	1	0	1	3	3	0	0	11
(1)	1.39	. 00	1.39	1.39	. 00	. 00	. 00	. 00	. 00	. 00	1.39	. 00	1.39	4.17	4.17	. 00	. 00	15.28
(2)	. 05	. 00	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 80	. 05	. 00	. 05	. 15	. 15	. 00	. 00	. 55
$8-12$	0	0	0	0	2	1	0	0	5	1	2	0	2	3	2	0	0	18
(1)	. 00	. 00	. 00	. 00	2.78	1.39	. 00	. 00	6.84	1.39	2.78	. 00	2.78	4.17	2.78	. 00	. 00	25.00
(2)	. 00	. 00	. 00	. 00	. 10	. 05	. 00	. 00	. 25	. 05	. 10	. 00	. 10	, 15	. 10	. 00	.00	. 91
13-18	1	0	0	0	0	1	2	0	1	2	2	6	2	0	2	0	0	19
(1)	1.39	. 00	. 00	. 00	. 00	1.39	2.78	. 00	1.39	2.78	2.78	8.33	2.78	. 00	2.78	. 00	. 00	26.39
(2)	. 05	. 00	. 00	. 00	. 00	. 05	. 10	. 00	. 05	. 10	. .10	. 30	. 10	. 00	. 10	. 00	. 00	26.39
19-24	0	3	0	0	0	0	0	0	0	1	0	3	0	1	1	1	0	10
(1)	. 00	4.17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39	. 00	4.17	. 00	1.39	1.39	1.39	. 00	13.89
(2)	. 00	. 15	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 15	. 00	. 05	. 05	. 05	. 00	.50
						0	0	0	0	0	0	1	1	1	0	1	0	13
(1)	9.72	2.78	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.39	1.39	1.39	. 00	1.39	. 00	18.06
(2)	. 35	. 10	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 05	. 00	18.06 .66
ALL SPEEDS	10	5	1	1	2	2	2		6	4	5	10	6		8	2	0	72
(1)	13.89	6.96	1.39	1.39	2.78	2.78	2.78	. 00	8. 33	5.56	6.96	13.89	8.33	11.11	11.11	2.78	. 00	100.00
(2)	. 50	. 25	. 05	. 05	. 10	. 10	. 10	. 00	. 30	5. .	. 25	. 50	8. 30	. 60	.60	2.70	. 00	3.63

(1)=PERCENT OF ALL GOCO OBSERVATIONS FOR THIS PAGE
(2)=PERCEKT OF ALL 0000 OESERVATIOWS FOR THIS PERICO

CE CALM (NIND SPEED LESS THAN OR EOUK: TO . 95 MPH)

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)
220.0 TT WIND DATA $5 T A E H 1 T Y$ CLASS D CLASS FREOUENCY (PERCENT) $=23.66$ UIND DIRECTION FROM

SPEED (NPW)	N	NWE	ME	ENE	E	ESE	SE	\$SE	8	USV	sv	WSV	v	WWV	N*	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00
(2)	. 00	. 00	. 00	,00	. 00	.00	. 00	. 00	. 00	. 60	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
C-3	0	0	0	2	0	0	0	1	0	0	1	0	0	0	0	0	0	4
(1)	. 00	. 00	. 00	. 63	. 00	. 00	. 00	. 21	. 00	. 00	. 21	. 00	.00	. 00	.00	. 00	. 00	. 85
(2)	. 00	. 00	. 00	. 10	. 00	. 00	. 00	. 05	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 20
4-7	1	3	1	2	$?$	0	1	1	0	1	2	2	6	3	4	1	0	30
(1)	. 21	. 64	.21	.43	.43	. 00	. 21	. 21	. 00	. 21	. 43	. 43	1.28	. 64	. 85	.21	. 00	6.40
(2)	. 05	. 15	. 05	. 10	. 10	. 00	. 05	. 05	. 00	. 05	. 10	. 10	. 30	. 15	. 20	. 05	. 00	1.51
8-12	1	1	1	2	2	6	3	2	14	9	9	9	11	17	12	1	0	100
(1)	.21	. 21	. 21	. 43	. 63	1.28	. 64	. 63	2.99	1.92	1.92	1.92	2.35	3.62	2.56	. 21	. 00	21.32
(2)	. 05	. 05	. 05	. 10	. 10	. 30	. 15	. 10	. 71	. 45	. 45	. 45	. 55	. 66	. 61	. 05	. 00	5.05
13.18	8	9	0	0	0	4	6	4	10	8	0	9	17	9	13	4	0	109
(1)	1.71	1.92	. 00	. 00	. 00	.85	. 85	. 85	2.13	1.71	2.13	1.92	3.62	1.92	2.77	. 85	. 00	23.24
(2)	. 60	. 65	. 00	. 00	. 00	. 20	. 20	. 20	. 50	. 40	. 50	. 65	. 86	. 45	. 66	. 20	. 00	5.50
19-24	7	25	0	0	0			2	4	19	1	4	18	43	15	2	0	142
(1)	1.69	5,33	. 00	. 00	. 00	.43	. 00	. 43	. 85	4.05	. 21	. 85	3.84	9.17	3.20	.43	. 00	30.28
(2)	. 35	1.26	. 00	. 00	. 00	. 10	. 00	. 10	.20	. 96	. 05	. 20	. 91	2.17	. 3.76	. 10	. 00	30.28 .16
Ot 24	40	3	2	0	0	0	0	0	0	0	0	4	\%	14	10	2	0	0.4
(1)	8.53	. 66	.43	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 85	1.92	2.99	2.13	.43	. 00	17.91
(2)	2.02	. 15	.10	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 65	. 71	. 50	. 10	. 00	4.24
ALL SPEEDS	57	41	4	6	6	12	8	10	28	37	23	28	61	86	54	10	0	469
(1)	12.15	8.74	. 85	1.28	, 85	2.56	1.71	2.13	5.97	7.89	4.90	5.97	13.01	18.36	11.51	2.13	. 00	100.00
(2)	2.88	2.07	. 20	. 30	. 20	. 61	. 40	. 50	1.61	1.87	+16	1.41	3.08	4.36	2.72	. 50	. 00	23,66

(1) =PERCENT OF ALL GO00 OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERICO

C= CALM (WIND SPEED LESS THAN OR EQUAL TO . 95 MPH)

PILGR1M OCT91-DEC91 MET DATA JOINT FREQUEWCY DISTRIBUTION (220-FOOT TONER)

```
220.0 FT VIND DATA STABILITY CLASS E
CLASS FREQUEHCY (PERCENT) \(=38.70\)
```

WIND DIRECIION FROM

SPEED (MPW)	1	NWE	紬	ENE	E	ESE	SE	SSE	8	55W	SVI	WSW	W	WWV	NV	NWV	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	.00	.00	.00	. 00	.00	.00	.00	.00	.00	. 00	.00	.00	.00
(2)	. 00	. 00	.00	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	.00	.00	. 00	.00	. 00	. 00
c-3	1	2	0	1	0	2	1	0	0	1	0	1	1	1	0	0	0	11
(1)	. 13	.26	.00	.13	. 00	.20	.13	.00	.00	. 13	.00	.13	. 13	.13	.00	.00	.00	1.43
(2)	. 05	.10	. 00	. 05	. 00	+10	. 05	.00	.00	. 05	.00	. 05	. 05	. 05	. 00	.00	. 00	. 55
$6-7$	2	3	2	0	2	2	7	7	2	6	5	4	4	1	1	2	0	48
(1)	.26	. 39	.26	. 00	.26	.26	.91	.91	.26	.52	.65	. 52	. 52	. 13	.13	.26	.00	6.26
(2)	.10	.15	.10	.00	.10	+10	+35	. 35	.10	.20	.25	.20	.20	. 05	. 05	. 10	. 00	2.42
$8-12$	5	1	3	3	2	4	6	11	13	21	13	16	19	18	15	10	0	160
(1)	. 05	.13	. 39	. 39	.26	. 52	. 78	1.63	1.69	2.76	1.69	2.09	2.48	2.35	1.96	1.30	.00	20.86
(2)	. 25	. 05	. 15	. 15	+10	.20	. 30	. 55	. 66	1.06	. 66	. 81	. 96	. 91	. 76	. 50	.00	8.07
13-18	8	3	2	0	1	10	22	33	28	47	50	66	58	29	23	12	0	372
(1)	1.04	. 39	.26	.00	. 13	1.30	2.87	4.30	3.65	6.13	6.52	6.00	7.56	3.78	3.00	1.56	.00	48.50
'2)	.40	+15	. 10	.00	. 05	. 50	1.11	1.66	1.41	2.37	2.52	2.32	2.93	1.46	1.16	. 61	. 00	18.77
19-24	$?$	6	1	0	0	4	5	0	6	38	20	22	14	16	13	6	0	153
(1)	.26	. 78	.13	. 00	. 00	.52	. 65	.00	.78	6.95	2.61	2.87	1.83	2.09	1.69	. 78	.00	19.95
(2)	.10	.30	.05	. 00	.00	. 20	. 25	.00	.30	1.92	1.01	1.11	. 71	. 81	. 66	. 30	.00	7.72
	11	0	1	0	0	0	0	0	0	2	0	0	1	3	4	1	0	23
(1)	1.63	. 00	. 13	. 00	.00	.00	.00	. 00	.00	.26	.00	. 00	. 13	. 39	. 52	. 13	. 00	3.00
(2)	. 55	.00	. 05	. 00	.00	.00	.00	.00	. 00	. 10	.00	.00	. .25	. 15	. 20	. .05	. 00	1.16
ALL SPEEDS	- 29	15	9	4	5	22	41	51	69	113	88	89	97	68	56	31	0	767
(1)	3.78	1.96	1.17	. 52	. 65	2.87	5.35	6.65	6.39	16.73	11.67	11.60	12.65	8.87	7.30	4.04	. 00	100.00
(2)	1.46	. 76	. 65	. 20	. 25	1.11	2.07	2.57	2.47	5.70	4.46	6.69	4.69	3.63	2.83	1.56	. 00	38.70

(1) =PERCENT OF ALL GOOX ORSERVATIONS FOR THIS PAOE
(2) mPERCENT OF ALL 0000 OBSERVATIONS FOR THIS PERI00

TABLE 4A-2 (continued)

PILGRIM OC191-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TONER)

(1) WPERCENT OF ALL 6000 OBSERVATIONS FOR TH1S i : e
(2) =PERCENT OF ALL 6000 OBSERVATIONS FOR THIS PERIOO

TABLE AA-2 (continued)

PILGRIN OCT91-DEC91 MET DATA JOINT FREQUENCY DISIRIBUTION (220-F00t TONER)
220.0 fl W1 H D DtA

CLASS FREtuEHCY (PERCENT) = 3.78 VIMD DIRECTION FROW

SPEED (NPH)	N	WNE	WE	ENE	E	ESE	St	SSE	8	SSV	SV	USV	v	UNV	WV	NWW	VRBL	TOTAL
CALN	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	1.33	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	1.33
(2)	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	.00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
C-7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	.00	.00	. 00	1.33	. 00	. 00	1.33
2)	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 05
4-7	0	0	0	0	0	0	0	1	0	0	0	0	1	2	2	0	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	. 00	. 00	. 00	. 00	1.33	2.67	2.67	. 00	. 00	8. 00
(2)	.00	. 00	. 00	. 00	. 09	. 00	. 00	. 05	. 00	. 00	, 00	. 00	. 05	. 10	. 10	. 00	. 00	. 30
B-12	0	0	0	0	0	0	0	1	4	3	3	3	1	1	0	0	0	16
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	5.33	4.00	4.00	4.00	1.33	1.33	. 00	. 00	. 00	21.33
(2)	.00	. 00	00	. 00	. 00	. 00	. 00	. 05	. 20	. 15	. 15	. 15	. 05	. 05	. 00	. 00	. 00	. 81
13-18	0	0	0	0	0	1	0		0	, 1	5	2	3	2	0	0	0	16
(1)	. 00	. 00	. 00	. 00	. 00	1.33	. 00	2.67	. 00	1.33	6.67	2.67	4.00	2.67	. 00	. 00	. 00	21.33
(2)	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 00	. 05	. 25	2.67 .10	. 15	. 10	. 00	. 00	. 00	1.81
19-26	1	0	0	0	0	0	0	0	0	1	9	1	0	0	0	0	0	12
(1)	1.33	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	12.00	1.33	. 00	. 00	.00	. 00	. 00	16.00
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 65	. 05	. 00	. 00	. 00	. .00	. 00	. 61
6724	17	6	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	23
(1)	22.67	5.33	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	1.33	. 00	. 00	. 00	1.33	. 00	. 00	30.67
(2)	. 8.6	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 05	. 00	. 00	1.16
ALL SPEEDS			0	1	0	1	0	4	4	5	18	6	5	5	4	0	0	75
(1)	24.00	5.33	. 00	1.33	. 00	1.33	. 00	5.33	5.33	6.67	24.00	8.00	6.67	6.67	5.33	. 00	. 00	100.00
(2)	. 91	. 20	. 00	. 05	. 00	. 05	. 00	. 20	. 20	. 25	. 81	. 30	. 25	. 25	. 20	. 00	. 00	3.78

(1)=PERCENT OF ALL LOOO OBSERVATIONS FOR TKIS PAGE
(2) =PERCENT OF ALL GOOD OESERVATIONS FOR TKIS PERIOD

C= CALM (KIND SPEED LESS THAN OR EQUAL TO , 95 MPK)

PILGRIM OCT91-DEC91 MET DATA JDINT FREQUENCY DISTRIBUTION (220-FOOI TONER)
220.0 TT WIND DATA STABILITY CLASS ALL CLASS IREDUENCY (PERCENT) $=100,00$

SPEED (MPN)	V	NHE	WE	ENE	E	Est	SE	S5E	5	S5W	SV	WSW	V	WW	NW	NWV	VRBL	107AL
Cal	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 05	. 05	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10
(2)	.00	. 00	. 05	. 05	. 00	.00	. 00	.00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 60	. 10
C-3	2	2	1	3	0	3	1	2	1	6	2	2	,	1	1	0	0	28
(1)	. 10	, 10	. 05	. 15	. 00	. 15	. 05	. 10	. 05	. 20	.10	.10	. 15	. 05	. 05	. 00	.00	1.41
(2)	, 10	.10	. 05	. 15	. 00	. 15	. 05	. 10	. 05	. 20	. 10	.10	. 15	. 05	. 05	. 00	. 00	1,61
6.7	8	8	6	7	7	5	9	12	4	9	16	9	14	16	21	8	0	159
(1)	. 40	. 60	.30	. 35	. 35	. 25	. 65	. 61	. 20	. 45	.81	.65	.71	. 81	1.06	. 40	. 00	8.02
(2)	. 40	. 40	. 30	. 35	. 35	. 25	. 65	.61	. 20	. 45	. 81	. 65	.71	.81	1.06	. 40	. 00	8,02
8-12	13	6	12	9	9	12	16	. 26	53	44	44	37	48	58	40	23	0	448
(1)	+66	. 30	. 61	. 45	. 45	. 61	. 71	1.31	2,67	2.22	2.22	1.87	2.42	2.93	2.02	1.16	. 00	22.60
(2)	. 66	. 30	. 61	. 45	. 45	. 61	. 71	1.31	2.67	2.22	2.22	1.87	2.42	2.93	2.02	1.16	. 00	22.60
13-18	+ 23	16	4	0	1	. 25	44	${ }^{69}$	52	86	81	76	104	60	51	26	0	716
(1)	1.16	. 71	. 20	. 00	. 05	1.26	2.22	3.48	2.62	4.36	4.09	3.83	5.25	3.03	2.57	1.31	. 00	36.13
(2)	1,16	. 71	. 20	.00	. 05	1.26	2.22	3,68	2.62	4.34	4.09	3.83	5.25	3.03	2.57	1.31	. 00	36.13
19.26	14	. 55	1	0	0	7	13	3	12	77	48	35	36	65	33	19	0	418
(1)	.71	2.77	. 05	. 00	. 00	. 35	. 66	. 15	. 61	3.88	2.42	1.77	1.82	3.28	1.66	. 96	. 00	21.09
(2)	.71	2.77	. 05	. 00	. 00	. 35	+66	, 15	. 61	3.88	2.62	1.77	1.82	3.28	1.66	. 96	. 00	21.09
of 26	5100	. 38	3	0	0	0	2	0	0	3	1	6	11		17			
(1)	5.05	1.92	. 15	. 00	. 00	. 00	. 10	. 00	.00	. 15	. 05	. 30	+ 55	1.16	. 86	. 35	. 00	211 10.65
(2)	5.05	1.92	. 15	.00	. 00	. 00	. 10	. 00	. 00	.15	. 05	.30	. 55	1.16	. 86	. 35	. 00	10.65
ALL SPEEDS	160 $+0 \%$	123	. 28	, 20	17	. 52	83	${ }_{5} 112$	122	223	192	165	216	223	163	83	0	
(1)	8.07	6.21	1.61	1.01	. 86	2.62	4.19	5.65	6.16	11.25	9.69	8.32	10.90	11.25	8.22	4.19	. 00	300.00
(2)	8.07	6.21	1.41	1.01	. 86	2.62	4. 19	5.65	6.16	11.25	9.69	8.32	10.90	11.25	8.22	4.19	. 00	100.00
(1) =PERCENT	Of ALL	6000	OBSERV	ATIONS	FOR 1	TH15 PA												
(2)=PERCENT	Of All	6000	OESERV	ATIONS	FOR T	TH15 PE												
										$\mathrm{C}=\mathrm{Ca}$	N (8)	S SPE	ED LES	SS THAN	OR EQ	AL 10	. 95	4PH)

5. QFF-SITE DOSE CALCULATION MANUAL REVISIONS

The PNPS Off-site Dose Calculation Manual (ODCM) was revised two times during the time frame of July-December, 1991.

Revision 4 rent into effect in late September, 1991. The following revisions were made:

- Updated to reflect changes in station organization
- Revised all pages that contained equations and definitions to include machine generated scientific characters
- Address required sampling of gardens identified during the annual garden census
- Expanded the definttfon of "Lower Limit of Detection" in Appendix B.

Revision 5 went into effect in late October, 1991. This revision addresses monitor setpoints for the Steam Jet Air Ejector Monitor.

A complete copy of the revisions is included as Appendices A and B.

6. REFERENCES

1. U. S. Nuclear Regulatory Commission, "Measuring, Evaluating, and Reporting Radioactivity in Solid wastes and Releases of Radioactive Materials in LIquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", Regulatory Guide 1.21, Revision 1, June 1974.
2. A. R. Williams memorandum to L. A. Loomis, "Effluent and Waste Disposal Semiannual Report Reg. Galde 1.21 (Table 3)", dated January 23, 1992.
3. T. A. Messier memorandum to K, J. Sejkora, "PNPS Met Data JFD Tables July 1991 - December 1991", dated February 11, 1992.
I
|
|
I
I

-

I

APPENDIX A

REVIEWED BY: $\frac{\text { Rohn } 4 \text {. Dong Jor } 5 \cdot 9.5 \text { eery } 19.25-91}{\text { ORC CHAIRMAN }}$
Rev. O was originally reviewed by ORC
on June 10, 1983

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Semiannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

REV. NQ.	IOENTIFICATION OF CHANGE DATE	DOCUMENT SECTION AND PAGE
0	Original Submittal 6/10/83	All Sections
1	Update of TLD and Afr Sampler 6/01/87 L.ocations	7.017-7 \& 7-8
2	Changes in response to NRC $7 / 15 / 88$ questions on PNPS ODCM (TAC \#63012). Changes in response to technical review performed by BECo Radiological Section.	All Sections
3.	Changes in response to NRC 7/12/89 comments on PNPS ODCM Rev. 2 (TAC \#69867). Correct typographical error in Table A-3. Incorporate new TLD locations. Change responsible division.	Preliminary pages, $3.3,4.2,6.1,7.0$ $(7-3 \& 7 \cdot 5), 8.1$, A-3
4.	```Update signature page to 9/27/91 reflect new responsible orazn:r:&ion. \indate record f! Dow int c'zages. Renumber 2,q6s through vil to include ci ffective page revisions. torit., ages containing equar:ons and definitions to include machine-generated scientific characters. Address gardens identified during 1990 garden census in Table 7..5 is : ordance with Technicki f.atitcation 7.1.B.2. Expand defss of detecti. Appendix B.```	Page i through vit; pages 13-15, 17-23 $25-28,30-32,49$, and A-4: Appendix B.

LIST OF EFFECTIVE PAGE REVISIONS

Page	Rev.										
4	4	18	4	42	3	A-4	4	A-28	3		
11	4	19	4	43	3	A-5	3	A-29	3		
744	4	20	4	44	3	A-6	3	A-30	3		
iv	4	21	4	45	3	A-7	3	A-31	3		
V	4	22	4	46	3	A-B	3	A-32	3		
vi	4	23	4	47	3	A-9	3	A-33	3		
V4t	4	24	3	48	3	A-10	3	A-34	3		
1	3	25	4	49	4	A-11	3	A-35	3		
2	3	26	4	50	3	A-12	3	A-36	3		
3	3	27	4	51	3	A-13	3	B-1	4		
4	3	28	4	52	3	A-14	3	B-2	4		
5	3	29	3	53	3	A-15	3	B-3	4		
6	3	30	4	54	3	A-16	3				
7	3	31	4	55	3	A-17	3				
8	3	32	4	56	3	A-18	3				
9	3	33	3	57	3	A-19	3				
10	3	34	3	58	3	A-20	3				
11	3	35	3	59	3	A-21	3				
12	3	36	3	60	3	A-22	3				
13	4	37	3	61	3	A-23	3				
14	4	38	3	62	3	A-24	3				
15	4	39	3	A-1	3	A-25	3				
16	3	40	3	A-2	3	A-26	3				
17	4	41	3	A-3	3	A-27	3				

TABLE OF CONTENTS

Section Page
1.0 introduction 1
2.0 Limiting Conditions for Operation and Operational Objectives 2
3.0 Release Pofnt and Monftor Description 5
3.1 Radioactive Effluent Kelease Point Description 5
3.1.1 Main Stack Gas Releasc 5
3.1.2 Reactor Building Exhaust Vent Release 5
3.1.3 Liquid Radiation Waste Effluent Release 6
3.2 Radioactive Effluent Monitoring System Description 7
3.2.1 Maln Stack Gas Monitoring System 7
3.2.2 Reactor Building Exhaust Vent Monitoring System 8
3.2.3 Ltquid Radtation Waste Effluent Monitoring System 8
3.3 Measurement Method During Release 12
3.3.1 Gaseous Effluent 12
3.3.2 Liquid Effluent 12
3.3.3 Limitations 12
4.0 Calculational Methods 13
4.1 Concentrations of Liquid Effluents 13
4.2 Liquid Effluents Dose Assessment Methodology 14
4.2.1 Liquid Pathways Arnual Dose Rates 14
4.2.1.1 Aquatic Foods Ingestion (F)sh, 14
Shellfish)
4.2.1.2 Shoreline Deposits (Discharge Canal and 15
Recreational Area)
4.2.1.3 Swimming (White Horse Beach) 15
4.2.1.4 Yachting/Boating (Cape Cod Bay) 15
4.2.2 Definitions 15

TABLE OF CONTENTS (continued)

Section
4.3 Gaseous Effluents Dose Assessment Methodology $\frac{\text { Page }}{17}$
4.3.1 Gaseous Pathways Annual Dose Rates from 18Noble Gases
4.3.1.1 Gamma Air Dose 18
4.3.1.2 Beta Air Dose 18
4.3.1.3 Total Body Dose 18
4.3.1.4 5k+n Dose 19
4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 19
131 and 133, Particulates with a Half-lifeGreater Than 8 Days, and Trittum
4.3.2.1 Ground Plane Desposition 19
4.3.2.2 Breathing/Inhalation 19
4.3.2.3 Leafy Vegetation Ingestion 20
4.3.2.4 Root Crop/Non-Leafy Vegetation 21
Ingestion
4.3.2.5 Milk Ingestion 21
4.3.2.6 Meat Ingestion 21
4.3.3 Definitions 22
4.4 Total Dose to a Member of the Public 27
5.0 Receptor Locations, Hydrology, and Meteorology 28
6.0 Monitor Set Doints 32
6.1 L4quid Effluent Monitor 32
6.2 Gaseous Effluent Monitors 33
7.0 Radiological Environmental Sampling 35 and Measurement Locations
8.0 Description of Radwaste Systems 57
8.1 Liquid Radwaste System 57
8.2 Treated Gaseous Radwaste System 59
9.0 References 61
Appendix A Data Required for Effluent Calculations A-1
Appendix B Definition of the Lower Limit of Detection B-1

LIST OF FIGURES

Figure NO_{O}. Page
7-1 Pilgrim Nuctear Power Station Environmental 52
Thermoluminescent Dosimeter and Air Sampling Locations Within Exclusion Area
7-2 Pilgrim Nuclear Power Station Environmental 53Thermoluminescent Dosimeter and Air SamplingLncations Outside Exclusion Area to About3 Mtles
7-3 Pilgrim Nuclear Power Station Environmental 54
Thermoluminescent Dosimeter and Air Sampling Locations Outside Property Boundary
7-4 Pilgrim Nuclear Power Station Terrestrial 55
and Aquatic Sampling Locations
7-5 Ptigrim Nuclear Power Station Environmental 56Sampling and Measurement Control Locations
8-1 Liquid Radwaste Treatment System Schematic 58
8-2 Gaseous Effluent Treatment System Schematic 60

LIST OF TABLES

Table No. Page
2-1 PNPS Technical Specifications/Offsite Dose 3 Calculation Manual Cross-Reference for Limiting Conditions for Operation and Operational Objectives
3-1 Radiation Effluent Monitor Data 10
5-1 Critical Receptor Locations and Atmospheric 30 Dispersion Factors
$7-1$ Pilgrim Nuclear Power Station Operatinna! Kadiological 37 Environmental Monitoring Program7-2 Pilgrim Nuclear Power Station Air Particulate,42Radiolodine, and Soll Sampling Locations
7-3 Pilgrim Nuclear Power Station Environmental 43 Thermoluminescent Dosimter (TLD) Locations
7-4 Pilgrim Nuclear Power Station Pressurized Ion 48 Chamber (PIC) Survey Locations
7-5 Pilgrim Nuclear Power Station Terrestrial 49 and Aquatic Sampling Locations
7-6 Maximum Values for the Lower Limits of Detection (LLD) 51

4.0 Calculations Methods

This section presents the calculational specifics required to demonstrate compliance with each of the Technical Spectfications for 11 miting conditions for operation and operational objectives identified in Section 2 of this document.

The equations in this section are based on the equations and calculational methods described in Reference 1, unless otherwise specified. These equattons have, in some cases, been presented in a slightly different form in an effort to simplify their use. The subscripts used are "a" for age group, "j" for organ, "i" for radionuclide, "p" for pathway and "1" for location. Capital letters have been used on the dose/dose rate, use factor, concentration, a,id dose conversion factor abbreviations to destgnate pathways. "A" is for aquatic foods, "乌" for shoreline deposits, "W" for swimming, "Y" for yachting/boating, "N" for noble gas, "G" for ground plane deposition, "B" for breathing/inhalation, "L" for leafy vegetation, "R" for root crops/non-leafy vegetation, "M" for milk, and "C" for meat.

The descriptions of constants, variables, and parameters in this section are also based on those described in Reference 1, unless otherwise specified. The descriptions have, in some cases, been modifted to describe the constant, variable, and parameter specific application in the corresponding equation. In addition, some of the constants and variables values have been revised to include more site specific values, to include more technically correct inforgation, or to provide uniformity (e.g., λ_{i} values always presented in ${h r^{-1}}^{-1}$). Values for parameters which only have a single value will appear along with the definition. For those parameters which can take on different values for different conditions, the appropriate value will appear in the referenced tables. All numerical contants have been derived from the indicated base conversion factors and are represented in scientific notation to the third significant digit.

4.1 Concentrations of Liquid Effluents

The following equation shall be used to determine the discharge flow rate such that concentrations of radioactive effluents released to unrestricted areas do not exceed the concentration 11 mits specified in 10CFR20 Appendix B, Table II, Column 2:
$D F R=C W \div \sum\left(C_{W i} / M P C_{i}\right)$
where:
DFR = Maximum discharge release rate of liquid effluent, (gal/min).

$$
\begin{aligned}
\mathrm{CW}_{\mathrm{W}}= & \text { Flow rate of dilution water, (gal/min). } \\
\mathrm{C}_{\mathrm{wi}}= & \text { Concentration of nuclide } 1 \text { in the liquid waste } \\
& \text { discharge volume prior to any dilution as determined } \\
& \text { by cu-rent isotopic analysis for gamma emmitting } \\
& \text { nuclides and most recent rssults from pure beta } \\
& \text { and alpha emitters, (} \mu \mathrm{Ci} / \mathrm{mi}) . \\
\mathrm{MPC}_{i}= & \text { Maximum Permissible Concentration of each nuclide i } \\
& \text { from } 10 \mathrm{CFR} 20 \text { Appendix } \mathrm{B}, \text { Table II, Column } 2,(\mu \mathrm{Ci} / \mathrm{ml}) .
\end{aligned}
$$

4.2 Liquild Effluents Dose Assessment Methodology

The following equations shall be used to estimate the annual dose rates due to release of radioactive 1 iquid effluents. All input parameters (i.e. activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate $1 i$ mits for periods different than one year. For comparison to monthly 14 mits and quarterly 14 mits , results would be scaled by $1 / 12$ and $1 / 4$, respectively. To determine the dose or dose commitment for a desired period, multiply the annual dose rate by the fraction of the year for the dose period desired. For purposes of projecting resulting dose estimates for the subsequent month, the releasa rates and concentrations are assumed to be equal to the previous "onth's releas:

Pathways assuming internal deposition of radionuclides (i.e., ingestion) invalve the use of a 50 -year committed dose conversion fartor. This zitire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving extarnal radtation to the total body (i.e.. shorelthe activity, swimming, bna* ${ }^{\prime}=$), the dose to all other organs is assumed equal to th: fo total body (Reference 1, Appendix E).

Summation of the dose rates from the equaitons below should be performed for all significant pathways.

4.2.1 Liquid Pathways Annual Dose Rates

4.2.1.1 Aquatic Food Ingestion (Fish, Shellfish)

$$
D A_{a j p}=U A_{a p} \sum_{i} C A_{i p} D F I_{a i j}
$$

where:

$$
\begin{aligned}
& C A_{i p}=C W_{i 1} B_{i p} e^{-\lambda_{i} t_{h}} \\
& C W_{i 1}=1.00 E 12 Q_{i} \quad\left(M_{1} / V\right) e^{-\lambda_{i} t_{1}}
\end{aligned}
$$

Above equations derived fram Reference 1 equations 2 and $A-3$.

4.2.1.2 Shoreline Deposits (Discharge Canal and Recreational Area)

$D S_{a j 1}=U S_{a l} W_{1} 亡 C S_{i 1} D F G_{i j}$
where:
$C S_{11}=2.89 C W_{11}\left(1-e^{-\lambda_{1} t_{b}}\right)+\lambda_{1}$
$C W_{11}=$ same as indicated in equation 4.2.1.1
Above equation derived from Ref. I equations A-4 through A-7.
4.2.1.3 Swimming (White Horse Beach)
$D W_{a j 1}=U W_{a l} \sum_{i} \mathrm{CW}_{i 1}$ DFW $_{i j}$
where:
$\mathrm{CW}_{\text {i1 }}=$ same as indicated in equation 4.2.1.1
Above equations derived from Reference 14 equation 41 on page 151
4.2.1.4 Yachting/Boating (Cape Cod Bay)

DY ${ }_{\text {ajl }}=0.50$ UY al $\sum_{i} C H_{i 1} D F H_{i j}$ where:
$\mathrm{CW}_{\mathrm{i} 1}=$ same as indicated ir. equation 4.2.1.1
Above equations derived from Reference 14 equation 41 on pige 151.

4.2.2 Definitions:

$\mathrm{Bin}_{\text {in }}$ is the equilibrium bioaccumulation factor for radionuclide i, in aquatic foods pathway p, expressed as the concentration in biota ($\mathrm{pCi} / \mathrm{kg}$), divided by the concentration in waCi/liter) from Table A-1, (1iters/kg);
$C A_{\text {ip }}$ is the concentration of radionulcide i in pathway p of aquatic foods, ($\mathrm{pCl} / \mathrm{kg}$);
$\mathrm{CS}_{\mathrm{il}}$ is the effective surface concentration of radionuclide i in sediments at location $1,\left(\mathrm{pCi} / \mathrm{m}^{2}\right)$;
US_{a} is the use factor (amount of time) an individual in age group a, engages in shoreline activities at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);
UW_{a} is the use factor (amount of time) an individual in age group a, engages in swimming at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);

UYal is the ise factor (amount of time) an individual in age group a, engages in yachting/boating at location 1, from Table E-5 ior maximum individual, Table E-4 for average individual, (hr/yr);
V is the total annual discharge rate of liquid effluent + condensor cooling/dilution water, (liters/yr);
W_{1} is the shoreline width factor for location 1, from Table A-3, (dimensionless):
λ_{1} is the radioactive decay constant of radionuclide i,
$\left(h r^{-1}\right)$;
0.50 is a scaling factor for yachting/boating assuming that doses received while on the surface of the water are $1 / 2$ of doses received while immersed in water from Reference 14 , (dimensionless) :
2.89 is the factor to convert for transfer of nuclides from water to sediment, equal to $100 \mathrm{liters} / \mathrm{m}^{2}$-day from Reference 16 multiplied by 1 day/24 hr and by $\ln 2$ (to convert reciprocal λ_{i} to halfiffe), as calcuated in Reference 1 equation $A-5$, (1iter/m²-hr);
1.00 E 12 is the factor to convert from Cl to $\mathrm{pCi},(\mathrm{pCi} / \mathrm{Ci})$;

4.3 Gaseous Effluents Dose Assessment Methodology

The following equations shall be used to estimate the annual dose rates due to release of radioactive gaseous effluents. All input parameters (ie, activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate 1 imits for periods different than one year. For comparison to monthly limits and quarterly limits, resillts would be scaled by $1 / 12$ and $1 / 4$, respectively. To determine the dose or dose commitment for a desired period multiply the annual dose rate by the fraction of the year for the dose period desired.

Pathways assuming internal deposition of radionuclides (i.e., inhalation, ingestion) invoive the use of a 50 -year committed dose conversion fac or. This entire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving external radiation to the total body (i.e., noble gas total body dose, ground plane deposition), the dose to all other organs is assumed equal to that for the total body (Reference 1, Appendix E).

Summation of the doses ratas from the equations below should be performed for all significant pathways and all release points from which significant radioactive effluent releases have occurred (i.e., Main Stack and Reactor Building Exhaust Ven_).
4.3.1 Gaseous Pathways Annual Dose Rates from Noble Gases
4.3.1.1 Gamma Air Cose
$D N_{Y}=\sum_{i} C_{j Y} D F N_{j} Y$
where:
$C_{i Y}=3.17 E 4 \quad[X / Q]_{Y} \quad Q_{i}$
Above equations derived from Ref. 1 equations 6,7 , $\mathrm{B}-1, \mathrm{~B}-2, \mathrm{~B}-4$, and $\mathrm{B}-5$, as well as References 3 and 4.
4.3.1.2 Beta Air Dose

$$
O N_{\beta}=\sum_{i} C_{i \beta} D F N_{i \beta}
$$

where:
$C_{i \beta}=3.17 E 4 \quad[X / Q]_{C} Q_{i}$

Above equations derived from Ref. 1 equations 7, B-4, and B-5.
4.3.1.3 Total Body Dose

$$
D N_{T B}=S \sum_{i} C_{i Y} \quad D F N_{i T B}
$$

where:
$C_{i Y}=$ Same as indicated in equation 4.3.1.1.
Above equations derived from Ref. 1 equations 8,10 , $\mathrm{B}-1, \mathrm{~B}-2, \mathrm{~B}-4, \mathrm{~B}-5, \mathrm{~B}-6$, and $\mathrm{B}-8$, as well as References 3 and 4 .

4.3.1.4 Skin Dose

$D N_{S}=\sum_{i} C_{i B} D F N_{i S}+1.11 S D N_{Y}$
where:
$C_{i B}$, $O_{Y}=$ same as indicated above in equations 4.3.1.2 and 4.3.1.1, respectively.

Above equations derived from Ref. 1 equations 6, 7 , $9,11, \mathrm{~B}-1, \mathrm{~B}-2, \mathrm{~B}-4, \mathrm{~B}-7$, and $\mathrm{B}-9$, as well as References 3 and 4 .
4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 131 and 133, Particulates with a Half-life Greater than 8 Days, and Tritium.

PNPS Technical Specifications do not consider doses inom C-14 and I-135 for compliance. However, equations for these radionuclides are included in this section for completeness.
4.3.2.1 Ground Plane Deposition

$$
D G_{j}=S \sum_{i} C G_{i} D F G_{i j}
$$

where:
$C G_{j}=1.00 E 12$ [D/Q] $Q_{i}\left(1-e^{-\lambda_{j} t_{b}}\right) \div \lambda_{i}$
Above equations derived from Ref. 1 equations 12 , $C-1$, and $C-2$.
4.3.2.2 Breathing/Inhalation
$D B_{a j}=U B_{a} \sum_{i} C B_{j} D F B_{a i j}$
where:
$C B_{i}=3.17 E 4 \quad[X / Q]{ }_{C} \quad Q_{i} \quad$ for $H-3, C-14$
$C B_{i}=3.17 E 4 \quad[x / Q]_{d} \quad Q_{i} \quad$ for particulates with Ty $>8 \mathrm{~d}$ and I-131, I-133, and I-135.

Above equations derived from Ref. 1 equations 13, $\mathrm{C}-3$, and $\mathrm{C}-4$.

4.3.2.3 Leafy Vegetation Ingestion

$$
D L_{a j}=U L_{a} f_{j} \quad \sum_{i} C L_{i} D F I_{a i j}
$$

where:
$\mathrm{CL}_{1}=$ leafy vegetation concentration as
C (l)culated below.

Above equation derived from Ref. 1 equations 14 and $\mathrm{C}-13$.
where:
$\mathrm{CH}_{i}, \mathrm{CL}_{j}, \mathrm{CP}_{j}, C R_{i}=1.19 E 7 \mathrm{Q}_{\mathrm{i}}[\mathrm{X} / \mathrm{Q}]_{C} \div H$ for $H-3$
$\mathrm{CH}_{i}, \mathrm{CL}_{i}, C P_{i}, C R_{i}=2.18 E 7 \mathrm{P} \mathrm{O}_{i}[\times / Q]_{\mathrm{C}}$ for $\mathrm{C}-14$
$\mathrm{CH}_{j}, \mathrm{Cl}_{1}, \mathrm{CP}_{j}, \mathrm{CR}_{i}=5.71 \mathrm{E}$ [[D/Q] $\mathrm{Q}_{i} *$

$$
\left[\frac{r_{I}\left(1-e^{-\lambda_{E i} t_{e}}\right)}{y_{V} \lambda_{E 1}}+\right.
$$

$$
\left.\frac{B_{i v}\left(1-e^{-\lambda_{i} t_{b}}\right)}{p \lambda_{i}}\right] e^{-\lambda_{i} t_{h}} \quad \begin{aligned}
& \text { for } I-131, \\
& I-133, \text { and } \\
& I-135
\end{aligned}
$$

$\mathrm{CH}_{1}, C L_{i}, C P_{i}, C R_{i}=1.14 E 8[D / Q] Q_{i} *$

$$
\int \frac{r_{p}\left(1-e^{-\lambda_{E i} t_{e}}\right)}{Y_{V} \lambda_{E i}}+
$$

$$
\left.\frac{B_{i v}\left(1-e^{-\lambda_{i} t_{b}}\right]}{P \lambda_{i}}\right] e^{-\lambda_{i} t_{h}} \quad \begin{aligned}
& \text { for particulates } \\
& \text { with } T_{1 / 2}>8 \text { days }
\end{aligned}
$$

Above equations derived from Ref. 1 equations C-5 through C-9.
4.3.2.4 Root Crop Non-Leafy Vegetation Ingestion
$D R_{a j}=U R_{a} f_{r} \sum_{j} C R_{j} D F I_{a i j}$
where:
$C R_{i}=$ rrot crop concentration as calculated in 4.3.2.3.

Above equations derived from Ref. 1 equations 14 and $\mathrm{C}-13$.
4.3.2.5 Milk Ingestion
$D M_{a j}=U M_{a} \sum_{i} C M_{j} D F I_{a i j}$
where:
$C M_{i}=F_{i m} C F_{i} Q_{f} e^{-\lambda_{j} t_{f}}$
$C F_{i}=f_{p} f_{s} C P_{i}+\left(\mathrm{CH}_{i}\left(1-f_{p}\right)\right)+\mathrm{CH}_{i} f_{p}\left(1-f_{s}\right)$
$\mathrm{CP}_{2}, \mathrm{CH}_{2}=$ concentration in pasture grass and harvested/stored feed as calculated in equation 4.3.2.3.

Above equations derived from Ref. 1 equations 14 , $\mathrm{C}-10, \mathrm{C}-11$, and $\mathrm{C}-13$
4.3.2.6 Meat Ingestion
$D C_{a j}=U C_{a} \sum_{i} C C_{i}-D F I_{a i j}$
where:
$C C_{i}=F_{i f} C F_{i} Q_{f} e^{-\lambda_{i} t_{s}}$
$C F_{j}=$ concentration in forage as calculated in equation 4.3.2.5

Above equations derived from Ref. I equations 14, $\mathrm{C}-12$, and $\mathrm{C}-13$

4.3.3 Definitions

$\mathrm{B}_{\text {iv }}$ - is the concentration factor for uptake of radionuclide 1, from soll in the edible portions of crops, in $\mathrm{pCl} / \mathrm{kg}$ (wet weight) $\mathrm{per} \mathrm{pCl} / \mathrm{kg}$ dry soil, from Table E-1, ($\mathrm{kg} / \mathrm{kg}$) ;
$C_{i B^{-}}$is the effective semi-infinite cloud concentration of noble gas 1 , for the purpose of calculating beta air dose, ($\mathrm{pCi} / \mathrm{m}^{3}$) ;
$C_{i Y}$ - is the effective finite cloud concentration of noble gas i for the purpose of calculating gamma air dose, $\left(\mathrm{pCi} / \mathrm{m}^{3}\right)$;
$\mathrm{CB}_{\mathrm{i}^{-}}$- is the ground-lexel airborne concentration of radionuclide $1 .\left(\mathrm{pCl} / \mathrm{m}^{3}\right)$;
CC_{1} - is the concentration of radionuclide i in meat, ($\mathrm{pCl} / \mathrm{kg}$) ;
CF_{i} - is the concentration of radionuclide i on forage, ($\mathrm{pCl} / \mathrm{kg}$):
$C G_{1}$ - is the ground plane concentration of radionuclide i, ($\mathrm{pCl}-\mathrm{hr} / \mathrm{m}^{2}-\mathrm{yr}$);
CH_{i} - is the concentration of radionuclide i on harvested/stored feed, ($p \mathrm{Ct} / \mathrm{kg}$);
$C M_{1}$ - is the concentration of radionuclide $\{$ in milk, (pCi/liter):
CL_{i} - is the concentration of radionuclide 1 in leafy vegetables, ($\mathrm{pCl} / \mathrm{kg}$) ;
$C P_{i}$ - is the concentration of radionuclide i on pasture grass, ($\mathrm{pCi} / \mathrm{kg}$) ;
$C R_{i}$ - is the concentration of radionuclide i in root crops/non-leafy vegetables, ($\mathrm{pCl} / \mathrm{kg}$) ;
$\mathrm{DB}_{a j}$ - is the total annual dose rate from breathing/ inhalation to organ j, of an individual in age group a, (mrem/yr) ;
$D C_{a j}$ - is the total annual dose rate from ingestion of meat to organ j; of an individual in age group a, (mrem/yr);
$\mathrm{DFB}_{\text {aij }}$ - is the inhalation 50 -year committed dose conversion factot for organ j, of individuals in age group $a_{\text {, from }}$ radionuclide i, from Tables E-7 through E-10, (mrem/pCi);
$\mathrm{DFG}_{i j}$ - is the open field ground plane dose conversion factor for organ j, from radionuclide i, from Table E-6, (mrem $-m^{2} / p(i-h r)$;

DFIaij - is the ingestion 50 -year committed dose conversion factor for organ j, for individuals in age group a, from radionuclide i, organ j, from Table $E-11$ through $\mathrm{E}-14$, (mrem/pCi);

DFN is - is the beta skin dose conversion factor for a semi...infinite cloud of noble gas 1 , which includes the attenuation by the outer "dead" layer of skin, from Table $B-1,\left(m r e m-m^{3} / p(i-y r)\right.$;

DFN $\mathrm{iTB}_{\text {- }}$ - is the total body dose conversion factor for a semi-infinite cloud of noble gas 1 . which includes the attenuation of $5 \mathrm{~g} / \mathrm{cm}^{2}$ of tissue, from Table B-1, (mrem-m $/ \mathrm{pCl}-\mathrm{yr}$) ;
$D_{1} \beta^{-}$is the beta air dose conversion factor from a semi-infinite cloud of noble gas 1 , from Table B-1, (mrad-m $/ \mathrm{pCl}-\mathrm{yr}$);

DFN $\mathrm{i}_{\mathbf{y}}$ - is the gamma air dose conversion factor from a semi-infinite cloud of noble gas 1 , from Table B-1, (mrad-m $\left.{ }^{3} / \mathrm{pCi}-y r\right)$;
$D G_{4}$ - is the total annual dose rate to organ j from direct exposure to the contaminated ground plane from all radionuclides, (mrem/yr);
$\mathrm{DL}_{\mathrm{aj}}$ - is the total annual dose rate from ingestion of leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);
$D M_{a j}$ - is the total annual dose rate from ingestion of milk to the organ j, of an individual in age grosp a, (mrem/yr) ;
$\mathrm{DN}_{\text {S }}$ - is the total annual skin dose rate due to immersion in a finite cloud of noble gases, (mrem/yr) ;

DN TB - is the annual total body dose rate due to immersion in a finite cloud of noble gases, (mrem/yr) ;
$D N_{\beta}$ - is the annual beta air dose rate to a semi-infinite cloud of noble gases, (mrad/yr);

DN, - is the annual gamma air dose rate due to a finite cloud of noble gases, (mrad/yr);
$D_{a j}$ - is the total annual dose rate from ingestion of root crop or non-leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);
[D/Q] - is the deposition rate considering depletion at the receptor location in question, from Table $5-1,\left(\mathrm{~m}^{-2}\right)$;
t_{e} - is the time period that crops are exposed to radionuclide deposition during the growing season, from Table E-15, (hr);
t_{f} - is the average transport time of the activity from the feed into the milk and to the receptor from Table E-15, (hr):
t_{h} - is the holdup time that represents the time interval
between h-rvest and consumption of the food, from Table E-15, (hr);
t_{s} - is the average time for radionuclides to pass from feed through meat to the consuming individual, (hr; assumed to be $480 \mathrm{hr}=20$ days);
$U \mathrm{~B}_{\mathrm{a}}$ - is the annual breathing rate, for individuals in the age group a, from Table E-5 for maximum individual. Table E-4 for average indtvidual, ($\left.\mathrm{m}^{3} / \mathrm{yr}\right)$;
$U C_{a}$ - is the annual intake of meat, for individuals in age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);

UL $\mathrm{a}_{\text {- }}$ - is the annual intake of leafy vegetables, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, ($\mathrm{kg} / \mathrm{yr}$) ;
$U M_{a}$ - is the annual intake of milk, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (1iter/yr);
$U R_{a}$ - is the annual intake of root crops/non-leafy vegetables, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr) ;
Y_{y} - is the agricultural productivity/yield, from Table E-15, ($\mathrm{kg} / \mathrm{m}^{2}$, wet weight);
$[\mathrm{X} / \mathrm{Q}]_{\mathrm{c}}$ - is the appropriate value of undepleted atmospheric dispersion factor used to estimate ground level airborne concentration of gaseous, (i.e., non-particulate) radtonuclides, from Table 5-1, $\left(\mathrm{sec} / \mathrm{m}^{3}\right)$;
$[X / Q]_{d}$ - is the appropriate value of the average gaseous dispersion factor corrected for depletion of particulates and radioiodines, from Table $5-1,\left(\mathrm{sec} / \mathrm{m}^{3}\right)$;
$[\mathrm{X} / \mathrm{Q}] \mathrm{y}$ - is the appropriate value of gamma atmospheric dispersion factor used to estimate ground lavel gamma dose rate from an elevated or ground level plumes as calculated in References 3 and 4, from Table 5-1, $\left(\mathrm{sec} / \mathrm{m}^{3}\right)$;
$\lambda_{i}-$; s the radioactive cecal constant of radionuclide 1 ,
$\lambda_{E j}$ - is the effective removal rate constant for iddionuclide i from crops, in $h r^{-}$, where $\lambda_{E i}=\lambda_{i}{ }^{+} \lambda_{w}, \lambda_{i} i$, the radioactive decay constant, and λ_{w} is the removal rate constant for physical loss by weathering $\quad \lambda_{W}=0.0021 \mathrm{hr}^{-1}$, $\left(h r^{-1}\right)$;
1.11 - is the average ratio of the tissue to air energy absorption coefficients, (mrem/mrad);
3.17E4 is equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Ci}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$, ($\mathrm{pCi}-\mathrm{yr} / \mathrm{Ci}-\mathrm{Sec}$)
1.19 E 7 - is equal to $1.00 \mathrm{E} 12 \mathrm{pCl} / \mathrm{Ci}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$ and multiplied by $1.00 E 3 \mathrm{~g} / \mathrm{kg}$ and by $0.5 \mathrm{~g} \mathrm{H-3}$ in plant water per $\mathrm{g} \mathrm{H}-3$ in atmospheric water from Reference 23 (dimensionless) and by 0.75 g water per g plant (dimensionless), as calculated in Reference 1 equation C-9, ($\mathrm{pCi}-\mathrm{yr}-\mathrm{g} / \mathrm{Ci}-\mathrm{sec}-\mathrm{kg}$) ;
2.18 E 7 - is equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Ci}$ divided by $3.15 \mathrm{E} 7 \mathrm{sec} / \mathrm{yr}$ and multipled by $1.00 E 3 \mathrm{~g} / \mathrm{kg}$ and by 0.11 g Carbon $/ \mathrm{g}$ plant mass from References 24 and 25 divided by 0.16 g Carbon $/ \mathrm{m}^{3}$ of air, as calculated in Reference 1 equation $\mathrm{C}-8$, (pCt-yr-m3/Ct-sec-kg):
5.71E7 - is the conversion factor to correct for activity, time units, and elemental forms of radioiodines, equal to the particulate radionuclide conversion factor 1.14E8 multiplied by an elemental iodine fraction of 0.5 from Reference 26 , (pCi-yr/Ci-hr);
1.1458 - is the conversion factor to correct activity units and time units for particulate radionuclides, equal to $1.00 \mathrm{E} 12 \mathrm{pCi} / \mathrm{Cl}$ multiplied by $1 \mathrm{yr} / 8760 \mathrm{hr},(\mathrm{pCl}-\mathrm{yr} / \mathrm{Ci}-\mathrm{hr}$);
1.00512 - is the conversion factor to correct for activity units, ($\mathrm{pCi} / \mathrm{Ci}$);

Total Dose to a Member of the Public
The purpose of this section is to describe the method used to calculate the cumulative dose contributions from liquid and gaseous effluents in accordance with PNPS Technical Specifications for total dose. This method can also be used to demonstrate compliance with the Environmental Protection Agency (EPA) 40CFR190, "Environmental Standards for the Uranium Fuel Cycle".

Compllance with the PNPS Technical Specifications dose objectives for the maximum individual demonstrates compliance with the EPA limits to any member of the public, since the design dose objectives from 10CFR50 Appendix I are much lower than the $40 C F R 190$ dose 1 imits to the general public. With the operational objectives in PNPS Technical Specifications sections 7.2.A, 7.3.A and 7.4.A being exceeded by a factor of two, a special analysis must be performed. The purpose of this spectai analasis is to demonstrate if the total dose to any member of the public (real individual) from all uranium fuel cycle sources (including all real pathways and direct radiation) is 11 mited to less than or equal to 25 mrem per year to the total body or any organ except for the thyroid which is 1 imited to 75 mrem per year.

If required, the total dose to a member of the public will be calculated for all significant effluent release points for all real pathways including direct radiation. Only effluent releases from PNPS (Pilgrim Station) need to be considered since no other nuclear fuel cycle facilities exist within a 50 mile radius. The calculations will be based on the equations contained in this section, with the exception that the usage factors and other site specific parameters will be modified using more re:'istic assumptions, where appropriate.

The direct radiation component from the facility can be determined by using environmental TLD results. These results will be corrected for na."ral background and for actual occupancy time of the recreational aieas accessible to the general public at the location of maximum direct radiation. It is recognized that by including the results from the environmental TLDs into the sum of total dose component, the direct radiation dose may be overestimated. The TLD measurements may include the exposure from noble gases, ground plane deposition, and shoreline deposition, which have already been included in the summation of the significant dose pathways to the general public. However, this conservative method can be used, if required, as well as any other method for estimating the direct radiation dose from contained radioactive sources within the facility. The methodology used to incorporate the d"rect radiation component into total dose estimates will be outlined whenever total doses are reported.

Therefore, the total dose will be determined based on the most realistic site specific data and parameters to assess the real dose to any member of the general public.

5.0 Receptor Locations. Hydrology, and Meteorology

The purpose of this section is to identify those receptor locations which represent critical pathway locations and the methods used to estimate dilution and dispersion factors for these locations.

For the dose calculations from liquid effluents, the maximum individual is assumed to: 1) ingest fish and shellfish from the discharge canal, 2) receive direct radiation from shoreline deposits at both the discha ge canal and PNPS shoreline recreational area, and 3) receive external radiation while swimming at white Horse Beach as well as while boating on the Cape Cod Bay. The doses are calculated for the various age groups (i.e., infant, child, teenager and adult), as well as for the various organs, (i.e., bone, liver, thyroid, kidney, lung, gastrointestinal tract/lower large intestine, skin, and total body). The maximum total body and organ doses are selected from the totals of the various age group and organ doses calculated as described above.

For liquid effluent pathways, Table A-3 1 ists the conservative values for the mixing ratio and shore width factor for the various aquatic receptor locations.

For the dose calculations for gaseous effluents, the maximum individual is assumed to reside at the receptor location that provides the highest dose from the dose contributions from all gaseous release points where significant releases have occurred. The locations selected in Table 5-1 are the site boundary, a garden at the site boundary, and the nearest milk animal at the Plimoth Plantation. The dose calculations are perfurmed for each release point and totalled for the following dose pathways; 1) nuble gas immersion, 2) ground plane deposition, 3) inhalation, and 4) ingestions of leafy vegetable, root crops/non-leafy vegetables, milk, and meat. The doses are also calculated for the vartous age groups and for the various organs as described for 1iquid effluents. The maximum total body, skin, and organ doses are selected from the totals of the various age group and organ doses calculated as descrit \rfloor above.

In order to estimate atmospheric dispersion and deposition factors for each of these locations, a computer code supplied by the Yankee Atomic Electric Company was used. The code, AEOLUS (Reference 3) was used to calculate quarterly average values of dispersion and deposition factors.

Meteorological data for a three year period, January 1, 1977 to December 31, 1979, were used for these analyses. The most conservative quarterly average values of ground level average atmosphertc dispersion factor before depletion $[\mathrm{X} / \mathrm{Q}]_{C}$, ground level average atmospheric dispersion factor after depletion $[X / Q]_{\text {d }}$, average gamma dilution factor $[X / Q] Y$, and average deposition rate $[D / Q]$ for the three year period were chosen for each of the critical receptor locations.

TABLE 5-1
CRITICAL RECEPTOR LOCATIONS AND ATMOSPHERIC DISPERSION FACTORS

> Atmospheric Dispersion Factor 1) Reactor Building Vent 2) Main Stack
Technical Specification Sectton
$[x / Q]_{C}$
$[x / Q]_{d}$
[$\mathrm{X} / \mathrm{Q}]_{\mathrm{y}}$
[D/Q]
$\left(\right.$ sec $\left./ \mathrm{m}^{3}\right) \quad\left(\mathrm{sec} / \mathrm{m}^{3}\right)$
$\left(\sec / \mathrm{m}^{3}\right)$ ($1 / \mathrm{m}^{2}$)
3.8.D Gaseous Effluent Dose Rate

Site Boundary (1)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$4.69 \mathrm{E}-06$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$1.68 \mathrm{E}-06$	$2.92 \mathrm{E}-09$	
Nearest Garden (2)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$4.69 \mathrm{E}-06$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$1.68 \mathrm{E}-06$	$2.92 \mathrm{E}-09$	
Nearest Milk Animal					
		1) $4.29 \mathrm{E}-07$	$4.21 \mathrm{E}-07$	$1.70 \mathrm{E}-07$	$7.93 \mathrm{E}-10$
	2) $3.73 \mathrm{E}-08$	$3.70 \mathrm{E}-08$	$3.22 \mathrm{E}-08$	$2.46 \mathrm{E}-10$	

3.8.F Gaseous Effluent Treatment

Site Boundary ${ }^{(1)}$

1) $7.40 \mathrm{E}-06$
N/A
4.69E-06
N/A
2) $4,69 \mathrm{E}-07$
N/A
1.68E-06
N/A
7.4 Dose - Iodine-131,

Iodine-133, Radioactive Matertals in Particulate Form, a ad Tritium

Site Boundary(1)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$	$2.92 \mathrm{E}-09$	
Nearest Garden (2)	1) $7.40 \mathrm{E}-06$	$7.04 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	$5.22 \mathrm{E}-08$	
	2) $4.69 \mathrm{E}-07$	$4.69 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$	$2.92 \mathrm{E}-09$	
Nearest Milk Animal					
	1) $4.29 \mathrm{E}-07$	$4.21 \mathrm{E}-07$	$\mathrm{~N} / \mathrm{A}$	$7.93 \mathrm{E}-10$	
	2) $3.73 \mathrm{E}-08$	$3.70 \mathrm{E}-08$	$\mathrm{~N} / \mathrm{A}$	$2.46 \mathrm{E}-10$	

Atmospheric Dispersion Factor

1) Reactor Building Vent
2) Main Stack

Technical Specification Sectton	$\begin{aligned} & {[x / 0]_{c}} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[x / Q]_{d}} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[X / Q] y} \\ & \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & {[\mathrm{U} / \mathrm{Q}]} \\ & \left(1 / \mathrm{m}^{2}\right) \end{aligned}$
7.5 Total Dose				
Site Boundary ${ }^{(1)}$	1) $7.40 \mathrm{E}-06$ 2) $4.69 \mathrm{E}-07$	$\begin{aligned} & 7.04 \mathrm{E}-06 \\ & 4.69 \mathrm{E}-07 \end{aligned}$	$\begin{aligned} & 4.69 E-06 \\ & 1.68 \mathrm{E}-06 \end{aligned}$	$\begin{aligned} & 5.22 \mathrm{E}-08 \\ & 2.92 \mathrm{E}-09 \end{aligned}$
Nearest Garden(2)	1) $7,40 \mathrm{E}-06$ 2) $4.69 \mathrm{E}-07$	$\begin{aligned} & 7.04 \mathrm{E}-06 \\ & 4.69 \mathrm{E}-07 \end{aligned}$	$\begin{aligned} & 4.69 \mathrm{E}-06 \\ & 1.68 \mathrm{E}-06 \end{aligned}$	$\begin{aligned} & 5.22 \mathrm{E}-08 \\ & 2.92 \mathrm{E}-09 \end{aligned}$
Nearest Milk Animal ${ }^{(3)}$	1) $4.29 \mathrm{E}-07$ 2) $3.73 \mathrm{E}-08$	$\begin{aligned} & 4.21 \mathrm{E}-07 \\ & 3.70 \mathrm{E}-08 \end{aligned}$	$\begin{aligned} & 1.70 \mathrm{E}-07 \\ & 3.22 \mathrm{E}-08 \end{aligned}$	$\begin{aligned} & \text { 7. } 93 \mathrm{E}-10 \\ & 2.46 \mathrm{E}-10 \end{aligned}$

NOTES:
(1) "Site Boundary" means the location at or beyond the boundary of the restricted area with the highest calculated dispersion and/or deposition factor.
(2) "Nearest Garden" is considered to be the same as the site boundary due to the abundance of small gardens near Pilgrim Station.
(3) "Nearest Milk Animal" is presently considered to be at the Plimoth Plantation, 2.2 miles west of Pilgim Station.

6.1 Liquid Effluent Monitor

The setpoint for the liquid effluent \& monitor (see Section 3.2.3) is established as follows:

1) Prior to a liquid batch release, the waste discharge tank is recirculated for at least 60 minutes and a sample is taken.
2) The liquid effluent sample is analyzed (see Section 3.3) to determine the concentrations of each detectable isotope in $\mu \mathrm{Ci} / \mathrm{ml}$. (See Appendix B for the definitions of lower linit of detection.)
3) The efficiency (in counts $/ \mathrm{sec}$ per $\mu \mathrm{Ci} / \mathrm{ml}$) of the 1iquid discharge monitor is calculated based on prior release experience.
4) The setpoint for the liquid effluent monitor is calculated as follows:
a) Monitor setpoint based on activity concentration

$$
c=\frac{C F}{f}
$$

Where:
$\bar{c}=$ the setpoint of the radioactivity monitor measuring the radiocativity concentration in the effluent line prior to dilution and subsequent release; the setpoint, which is proportional to the volumetric flow of the effluent line and inversely proportional to the volumetric flow of the dilution stream plus the effluent stream, represents a value, which if exceeded, would result in concentrations exceeding the limits of 10 CFR 20 in the unrestricted area, ($\mu \mathrm{Ci} / \mathrm{ml}$);
$C=$ the effluent concentration limit implementing 10 CFR 20 for the site ($\mu \mathrm{Ci} / \mathrm{ml}$);

Where:

$$
C=\sum C_{w i}+\sum\left(C_{w i} / M P C_{i}\right)
$$

$C_{w i}=$ concentration of nuclide i in the liquid waste discharge volume prior to any dilution as determined by current isotopic analysis for gamma emitting nuclides and most recent results from pure beta emitters as specified in Table 4.11-2 of PNPS Effluent Controls, ($\mu \mathrm{Ci} / \mathrm{ml}$);

Distance and Direction from Reactor

TERRESTRIAL

Cranberries

```
Manomet Pt. Bog* (MR)
Bartlett Rd. Bog* (BT)
Pine St. Bog Control* (PS)
\begin{tabular}{ll} 
2.4 Miles SE \\
2.7 & Miles SSE \\
16 & Miles WNW
\end{tabular}
```

Eorage

Plymouth County Farm* (CF)	3.5	Miles W
Davis Farm (DF)	3.1 Miles S	
Whitman Farm Control* (WF)	20	Miles WNW

Milk

Plymouth County Farm* (CF)	3.5 Miles W
Whitman Farm Control* (WF)	20° Miles WNW

Surface Water

```
D4scharge Camal* (DIS)
Bartlett Pond* (BP)
Powder Point Control* (PP)
0.13 Miles N
Bartlett Pond* (BP)
1.7 Miles SE
7.9 Mlles NNW
```


Vegetation

Plymouth County Farm* (CF)	3.5	Miles W
Bridgewater Farm Cont. ${ }^{*}$ (BF)	20	Miles W

Additional samples of vegetables/vegetation will be collected each year at or near selected gardens identified during the most recent land use census. The locations of these selected gardens are listed in the station procedure describing crop sampling.

* Indicates sampling locations required by PNPS Technical Specifications

DOSE FACTORS FOR EXPOSURE TO $\frac{\text { TABLE B-1 }}{\text { A SEMI-INFINITE CLOUD OF NOBLE GASES* }}$

	B-air ($\mathrm{DFN}_{4 \beta}$)	B-skin ($\mathrm{DFN}_{4 S}$)	y-air (DFN;y)	γ-body (FFh, $^{\text {a }}$)
Nuclide	mrad $-m^{3} / \mathrm{pCl}-\mathrm{yr}$	mrem-m ${ }^{3} / \mathrm{pct}-\mathrm{yr}$	mrad-m ${ }^{3} /$ PCi-yr	mrem-m ${ }^{3} / \mathrm{pCi}-\mathrm{yr}$
$\mathrm{Kr}-83 \mathrm{~m}$	2.88E-04	- ---	1.93E-05	$7.56 \mathrm{E}-08$
$\mathrm{Kr}-85 \mathrm{~m}$	1.97E-03	1.46E-02	1.23E-03	$1.17 \mathrm{E}-03$
Kr -85	1.95E-03	$1.34 \mathrm{E}-03$	$1.72 \mathrm{E}-05$	$1.61 \mathrm{E}-05$
K-87	1.03E-02	$9.73 \mathrm{E}-03$	6.17E-03	5.92E-03
Kr -88	2.93E-03	2.37E-03	1.52E-02	$1.47 \mathrm{E}-02$
Kr -89	1.06E-02	1.01E-02	1.73E-02	1.66E-02
$\mathrm{Kr}=90$	7.83E-03	$7.29 \mathrm{E}-03$	$1.63 E-02$	1.56E-02
Xe-131m	1.11E-03	4.76E-04	1.56E-04	$9.15 \mathrm{E}-05$
Xe-133m	$1.48 \mathrm{E}-03$	9.94E-04	3.27E-04	2.51E-04
Xe-133	$1.05 \mathrm{E}-03$	3.06E-04	3.53E-04	2.94E-04
Xe-135m	7.39E-04	7.11E-04	3.36E-03	$3.12 \mathrm{E}-03$
$\mathrm{Xe}-135$	2.46E-03	1.86E-03	1.92E-03	1.81E-03
Xe-137	$1.27 \mathrm{E}-02$	1.22E-02	$1.51 \mathrm{E}-03$	$1.42 \mathrm{E}-03$
Xe-138	4.75E-03	4.13E-03	$9.21 \mathrm{E}-03$	8.83E-03
Ar-41	3.28E-03	2.69E-03	9. $30 \mathrm{E}-03$	$8.84 \mathrm{E}-03$

* Data presented in this table are from Reference 1.

APPENDIX B

Definition of Lower Limit of Detection

For purposes of analyzing effluents and environmental samples for radioactivity, the lower limit of detection (LLD) is defined as the smallest concentration of radtoactive material in a sample that will yield a net count, above syster cauny.uund, that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

It should be recognized that the listed LLD is defined as an a priori (before the fact) limit representing the capability of the measurement system or analytical process, and not as an a posteriori (after the fact) limit for a particular measurement. Analyses should be performed in such a manner that the stated LLDs will be achieved under routine conditions. Usually, samples are counted for a period of time sufficient to ensure that the 11 sted LLDs, based on normal analytical and counting parameters, are achieved.

Printouts of analytical results typically list the a posteriori minimum detectable concentra'ion (MDC) which was actually achieved on a particular measurement. In those cases where a given sample Mnc is les; than or equal to the listed a priori LLD, the required LLD as been achieved. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering radionuclides, or other uncontrollable circumstances may result in the MDC for a particular measurement not meeting the listed LLD. In such cases, the contributing factors shall be identified and described in the Semiannual Radioactive Effluent and Waste Disposal Report (for effluents) or the Annual Radiological Environmental Monitoring Report (for environmental samples).

The value of the counting standard deviation (s_{b}) used in the calculation of the LLD for a particular measuremen system should be based on the actual observed standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, rather than on an unverified, theoretically-predicted variance. One acceptable method for deriving s_{b} is as follows:

$$
S_{b}=[B / T]^{1 / 2}
$$

Where:
s_{p} - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample (countsiminute);

B - is the background counting rate or counting rate of an appropriate blank sample (counts/minute);

T - is the counting time interval for sample analysis (minutes).

Lower Limit of Detection For Effluent Samples

For a particular measurement system or analytical process which may
include radiochemical separation used to analyze effluent samples, the lower 1 imit of detection is calculated as follows:

$$
L L D_{i}=4.66 \mathrm{~s}_{b}+\left(E \vee 2.22 E 6 Y e^{-\lambda} \mathrm{H}_{1}\right)
$$

Where:
LLDI - is the a priori lower limit of detection for radionuclide i,
$(\mu \mathrm{Ci} / \mathrm{ml}$ or $\mu \mathrm{Ci} / \mathrm{g})$;
4.66 - is the combined numerical constant corresponding to 95%
probability of detection, with 5% probability of falsely identifying
background as a "real" signal;
${ }^{\text {s }}$ p - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, (counts/minute);
E - is the counting efficiency, (counts/disintegration);
V - is the sample size, (milliliters or grams);
2.22E6 - is the conversion factor for disintegrations/minute per $\mu \mathrm{Ci}$;
Y - is the fractional radiochemical yield, when applicable;
λ_{i} - is the radioactive decay constant for radionuclide $i,\left(h r^{-1}\right)$; t - is the elapsed time between the midpoint of sample collection and
time of counting, (hr).

Typical values of E, V, Y, and t used for normal effluent sample analyses
should be used in this calculation.

Lower Limit of Detection For Environmental Samples

For a particular measurement system or analytical process which may include radiochemical separation used to analyze effluent samples, the lower limit of detection is calculated as follows:

$$
L L D_{i}=-4.66 s_{b}+\left(E \vee 2.22 \text { Y } e^{-\lambda_{j} t}\right)
$$

Where:
LDA - is the a priori lower 14 mit of detection for radionuclide i, ($\mathrm{pCl} / 1$ iter, $\mathrm{pCl} / \mathrm{m}^{3}$, or $\mathrm{pCi} / \mathrm{kg}$);
4.66 - is the combined numerical constant corresponding to 95% probability of detection, with 5% probability of falsely identifying
sp - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, (counts/minute);
E - is the counting efficiency, (counts/disintegration);
V - is the sample size, (liters, cubic meters, or kilograms);
2.22 - is the conversion factor for disintegrations/minute per pCi;
Y - is the fractional radiochemical yield, when applicable;
λ_{i} - is the radioactive decay constant for radionuclide $i,\left(h r^{-1}\right)$;
t - is the elapsed time between environmental sample collection or end of the sample collection period, and time of counting, (hr).

Typical values of E, V, Y, and t used for normal effluent sample analyses
should be used in this calculation.
APPENDIX B

PILGRIM NUCLEAR POWER STATION

OFFSITE DOSE CALCULATION MANUAL.

APPROVED BY:
 MANAGER
APPROVED BY:

Rev. O was originally reviewed by ORC on June 10, 1983

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Semiannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

LIST OF EFFECTIVE PAGE REVISIONS

Page	Rev.										
7	5	18	4	41	3	A-3	3	A-27	3		
11	5	19	4	42	3	A-4	3	A-28	3		
144	5	20	4	43	3	A-5	3	A-29	3		
iv	4	21	4	44	3	A-6	3	A-30	3		
V	5	22	4	45	3	A-7	3	A-31	3		
vi	4	23	4	46	3	A-8	3	A-32	3		
vit	4	24	3	47	3	A-9	3	A-33	3		
1	3	25	4	48	3	A-10	3	A-34	3		
2	3	26	4	49	4	A-11	3	A-35	3		
3	3	27	4	50	3	A-12	3	A-36	3		
4	3	28	4	51	3	A-13	3	B-1	4		
5	3	29	3	52	3	A-14	3	B-2	4		
6	3	30	4	53	3	A-15	3	B-3	4		
7	3	31	4	54	3	A-16	3				
8	3	32	4	55	3	A-17	3				
9	3	33	3	56	3	A-18	3				
10	3	34	3	57	3	A-19	3				
11	3	34 a	5	58	3	A-20	3				
12	3	35	3	59	3	A-21	3				
13	4	36	3	60	3	A-22	3				
14	4	37	3	61	3	A-23	3				
15	4	38	3	62	3	A-24	3				
16	3	39	3	A-1	3	A-25	3				
17	4	40	3	A-2	3	A-26	3				

TABLE OF CONTENTS (ccitinued)

Section
4.3 Gaseous Effluents Dose Assessment Methodology $\frac{\text { Page }}{17}$
4.3.1 Gaseous Pathways Annual Dose Rates from 18Noble Gases
4.3.1.1 Gamma Air Dose 18
4.3.1.2 Beta Air Dose 18
4.3.1.3 Total Body Dose 18
4.3.1.4 Skin Dose 19
4.3.2 Gaseous Patnways Annual Dose Rates from Iodine 19131 and 133, Particulates with a Half-lifeGreater Than 8 Days, and Tritium
4.3.2.1 Ground Plane Desposition 19
4.3.2.2 Breathing/Inhalation 19
4.3.2.3 Leafy Vegetation Ingestion 20
4.3.2.4 Root Crop/Non-Leafy Vegetation 21
Ingestion
4.3.2.5 Milk Ingestion 21
4.3.2.6 Meat Ingestion 21
4.3.3 Definitions 22
4.4 Total Dose to a Member of the Public 27
5.0 Receptor Locations, Hydrology, and Meteorology 28
6.0 Monitor Setpoints 32
6.1 Liquid Effluent Monitor 32
6.2 Gaseous Effluent Monitors 33
6.3 Steam Jet Air Ejector Monitor 34a
7.0 Ri. Jlogical Environmental Sampling 35
and Measurement Locations
8.0 Description of Radwaste Systems 57
8.1 Liquid Radwaste System 57
8.2 Treated Gaseous Radwaste System 59
9.0 References 61
Appendix A Data Required for Effluent Calculations A-1
Appendix B Definition of the Lower Limit of Detection B-1

6.3 Steam Jet Air Ejector Monitor

The steam fet air ejector (SJAE) monitor is used to measure the release rate of noble gases in main condenser offgas prior to its further treatment and release from the main stack. This monitor's primary function is to provide alarm and isolation of this process flow stream in the event of excessively high release rates of noble gases from the condenser and recombiner. The maximum allowable release rate of noble gases in the $\$ J A E$ offgas is $500,000 \mu \mathrm{Ci} / \mathrm{sec}$, as estatlished in Technical Specification 3.8.G. For conservatism, the $\mathrm{Hi}-\mathrm{Hi}$ alarm is set at 75% of this 11 mit , or $375,000 \mu \mathrm{Ci} / \mathrm{sec}$.

Since this gaseous stream undergoes further processing downstream of the SJAE monitor and is ultimately released via the main stack and monitored by the main stack gaseous effluent monitor, the SJAE monitor does not strictly qualify as a primary effluent monitor. Therefore, it is not normally recognized as such. However, the methodology for establishment of alarm setpoints is included in this section for completeness. These setpoints are established as follows:

1) A grab sample of the SJAE offgas is collected. The SJAE monitor reading ($\mathrm{mR} / \mathrm{hr}$) is recorded in conjunction with this sample.
2) Isotopic analyses are performed on the offgas sample and the total noble gas concentration ($\mu \mathrm{Ci} / \mathrm{CC}$) is coupled with the flow rate (CFM) to calculate the SJAE release rate ($\mu \mathrm{Cl} / \mathrm{sec}$).
3) The release rate $(\mu \mathrm{Ci} / \mathrm{sec})$ is divided by the monitor reading ($\mathrm{mR} / \mathrm{hr}$) to determine the SJAE monitor conversion factor ($\mu \mathrm{Cl} / \mathrm{sec} / \mathrm{mR} / \mathrm{hr}$).
4) The $\mathrm{Hi}-\mathrm{Hi}$ alarm setpoint ($\mathrm{mR} / \mathrm{hr}$) is determined by dividing the maximum tolerable release rate of $375,000 \mu \mathrm{Ci} / \mathrm{sec}$ by the SJAE monitor conversion factor ($\mu \mathrm{Ci} / \mathrm{sec} / \mathrm{mR} / \mathrm{hr}$).
5) The Hi alarm setpoint is set at 50% of the corresponding $\mathrm{Hi}-\mathrm{Hi}$ alarm setpoint.

Grab samples of the SJAE offgas are collected: 1) at least once every 31 days; or, 2) if the gross radioactivity release rate increases by 50% or more over the previous day (after factoring out changes in reactor thermal power level). Upon collection of these grab samples, new values are established for the total noble gas concentration, SJAE monitor conversion factor, and alarm setpoints. Typically, existing setpoints will be used unless the newly calculated setpoints yield lower values. In this case, the setpoints will be lowered to the newer, more conservative values.

[^0]: (1)=PERCENT OF ALL COOD OBSERVATIONS FOR THIS PAGE
 (2)=PERCENT OF AiL GO00 OBSERVATIOWS FOR THIS PERIC0

[^1]: FF CALN (KIND SPEED LESS THAN OR EOUAL TO ,95 MPH)

