

6. 6

10 CFR 50.36a(a)(2) PNPS TS Section 6.9.C.1 Reg. Guide 1.21

BOSTON EDISON

Pigrim Nuclear Power Station Rocky Hill Road Plymouth, Massachusetts 02360

E. Thomas Boulette, PhD Vice President Nuclear Operations and Station Director

> February 27, 1992 BECo Ltr. #92- 19

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

> License No. DPR-35 Docket No. 50-293

Subject: SEMIANNUAL RADIOACTIVE EFFLUENT AND WASTE DISPOSAL REPORT FOR THE PERIOD JULY 1 THROUGH DECEMBER 31, 1991

In accordance with the requirements of 10CFR50.36a(a)(2), Pilgrim Nuclear Power Station Technical Specification Section 6.9.C.1, and Regulatory Guide 1.21, the Boston Edison Company submits the Semiannual Radioactive Effluent and Waste Disposal Report for the period of July 1 through December 31, 1991.

Please do not hesitate to contact me if there are any questions regarding this report.

ETBoulette

E. T. Boulette

WJM/bal

9203030424

ADDCK

FDR

cc: Mr. Thomas Martin Regional Administrator, Region I U.S. Nuclear Regulatory Commission 475 Allendale Rd. King of Prussia, PA 19406

Senior Resident Inspector - Pilgrim Station

Standard BECo Distribution

PILGRIM NUCLEAR POWER STATION

Radioactive Effluent and Waste Disposal Report including Meteorological Data

July 1 through December 31, 1991

BOSTON EDISON COMPANY PILGRIM NUCLEAR POWER STATION RADIOACTIVE EFFLUENT AND WASTE DISPOSAL REPORT INCLUDING METEOROLOGICAL DATA JULY 1 THROUGH DECEMBER 31, 1991

Prepared by: K. J. Sejkora

Environmental Program Manager

Approved by:

C. S. Goddard Radwaste/Chemistry Section Manager

1	ABL	F	OF	CC)N T	FNT	0
	11016	×	¥1		an	1.111	100

Section	TABLE OF CONTENTS	Page
1	Introduction	1
2.	Radioactive Effluent Data	1
3.	Radioactive Waste Disposal Data	9
4.	Meteorological Data	14
5.	Off-Site Dose Calculation Manual Revisions	47
6.	References	48
Annandiu		

Appendix A

.

Appendix B

	LIST OF TABLES	
Table	그는 것 같은 것 같	Page
	Supplemental Information	3
1A	Gaseous Effluents - Summations of All Releases	4
1 B	Gaseous Effluents - Elevated Release	5
10	Gaseous Effluents - Ground Level Release	6
2A	Liquid Effluents - Summation of All Releases	7
2B	Liquid Effluents	8
3	Solid Waste and Irradiated Fuel Shipments	10
4A-1	Distribution of Wind Directions and Speeds for the 33 ft. Level of the 220 ft. Tower	15
4A-2	Distribution of Wind Directions and Speeds for the 220 ft. Level of the 220 ft. Tower	31

0

EXECUTIVE SUMMARY

BOSTON EDISON COMPANY Pilgrim Nuclear Power Station Radioactive Effluent and Waste Disposal Report including Meteorological Data July 1 to December 31, 1991

INTRODUCTION

This report quantifies the radioactive gaseous, liquid, and radwaste releases, and summarizes the local meteorological data for the period from July 1 to December 31, 1991. This document has been prepared in accordance with the requirements set forth in the Pilgrim Nuclear Power Station (PNPS) Technical Specifications and Revision 1 of Regulatory Guide 1.21, "Measuring. Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light Water Cooled Nuclear Power Plants."

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Waste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semiannual report (reporting period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological impact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification limits in Table 1A (as these limits are based on dose).

The quantity of radioactive material released from Pilgrim Station was determined from sample analyses of gaseous releases from the main stack, reactor building vent and turbine building, and liquid releases into the discharge canal. The quantity and volume of radioactive waste which was shipped off-site from Pilgrim Station for burial was determined from data contained on the radwaste shipping documentation. The meteorological data were obtained from instrumentation measurements from the 33 foot and 220 foot levels of the 220 foot meteorological tower located at Pilgrim Station.

GASEOUS EFFLUENTS

The gaseous radioactive releases from July 1 to December 31, 1991 are quantified in Tables 1A, 1B and 1C. Radioactive noble gases released during the period totaled 1.40E+3 curies. Releases of radioactive particulates and iodines from the main stack, reactor building vent, and turbine building, totalled 9.80E-2 curies, and tritium releases totalled 4.28E+0 curies. No gross alpha radioactivity was detected in gaseous effluents.

LIQUID EFFLUENTS

The liquid radioactive releases from July 1 to December 31, 1991 are quantified in Tables 2A and 2B. Liquid effluents into the discharge canal resulted in a total release to the environment (Cape Cod Bay) of 2.83E-2 curies of fission and activation products and 9.40E+O curies of tritium. Dissolved and entrained gases in liquid effluents totalled 6.01E-3 curies during the period. No gross alpha radioactivity was detected in liquid effluents.

SOLID WASTE

The solid radioactive waste that has been shipped off-site for burial during the reporting period is described and quantified in Table 3. Approximately 210 cubic meters of solid waste was shipped off-site for burial with a total activity of approximately 4.30E+2 curies (major nuclides: Cr-51, Mn-54, Fe-55, Co-58, Co-60 and Cs-137). Pilgrim Station did not ship irradiated components off-site during the reporting period.

METEOROLOGICAL DATA

The meteorological data joint frequency distributions are listed in Tables 4A-1 and 4A-2. The percent data recovery for the period of July - December 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot meteorological tower at Pilgrim Station. Joint data recovery for the entire year of 1991 was 95.6% for the 33 foot level and 95.2% at the 220 foot level, exceeding the Regulatory Guide 1.23 annual data recovery goal of 90%.

The predominant wind direction was from the south-southwest, which occurred with a frequency of approximately 15% during this period. The predominant wind speed range at the 33 foot sensor was 4 to 7 mph, which occurred 55% of the time during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph, which occurred approximately 35% of the time. The predominant stability class was stability class E, which occurred about 37% of the time during this period.

CONCLUSION

The PNPS Technical Specifications contain limiting conditions for operations and operational objectives regarding radiological environmental releases. None of the limiting conditions for operation or operational objectives associated with liquid or gaseous effluents were exceeded during this reporting period, as confirmed by conservative dose assessments performed on a monthly basis during this period. Official dose assessments will be published in a supplement to this report due 90 days following January 1, 1992. Conformance to these PNPS Tech. Call Specifications ensures that the releases of radioactive materials in gaseous and liquid effluents were kept as low as is reasonably achievable in accordance with the Nuclear Regulatory Commission's regulation 10 CFR 50, Appendix I. Furthermore, compliance with PNPS Technical Specifications demonstrates compliance with the Environmental Protection Agency's (EPA) federal environmental regulation 40 CFR 190.10, Subpart B.

1. INTRODUCTION

This report is issued for the period July 1 to December 31, 1991 in accordance with the Boston Edison Company's PNPS Technical Specifications and NRC Regulatory Guide 1.21, "Measuring, Evaluating and Reporting Radicactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light Water Cooled Nuclear Power Plants," Revision 1 (Reference 1).

Amendment No. 116 to PNPS Technical Specifications, issued May 13, 1988, modified the reporting requirements for the semiannual Radioactive Effluent Release and Waste Disposal Report including Meteorological Data. The change allows for the submission of a supplement to the March semiannual report (reporting period for July through December) which would contain the dose assessments for the previous year. Accordingly, the attached report does not contain the radiological impact on humans, the atmospheric dispersion factors, nor the associated percent Technical Specification limits in Table 1A (as these limits are based on dose).

2. RADIOACTIVE EFFLUENT DATA

Radioactive liquid and gaseous releases for the period July 1 to December 31, 1991 are given in the standard NRC Regulatory Guide 1.21 format in Tables 1A, 1B, 1C, 2A, 2B, and the supplemental information form.

There were no unplanned or non-routine releases of radioactive effluents during this reporting period.

2.1 Gaseous Effluents

Most gaseous radioactivity is released from Pilgrim Station to the atmosphere from the main stack and the reactor building exhaust vent. Low levels of radionuclides were also detected in air exhausted from the turbine building. These releases were included in ground-level releases listed in Table 1C. These third and fourth quarter gaseous effluent releases for 1991 are summarized in Table 1A. Noble gases released during the period totaled 1.40E+3 curies, for an average release rate of $8.86E+1 \ \mu Ci/sec$. A total of 9.80E-2 curies of radioactive iodines and particulates with half-lives greater than 8 days was released at an average release rate of $6.20E-3 \ \mu Ci/sec$. No alpha radioactivity was detected during this reporting period. A total of 4.28E+0 curies of tritium was released at an average release rate of $2.71E-1 \ \mu Ci/sec$.

The main stack is an elevated release point with a height of approximately 400 feet above mean sea level. The main stack is located about 700 feet west-northwest of the reactor building. The third and fourth quarter elevated releases for 1991 are shown in Table 1B. The majority of ground level releases during the period July-December 1991 occurred from the reactor building vent, but low levels of radionuclides were also detected in air exhausted from the turbine building. The reactor building exhaust vent is considered a ground level release point with a height of approximately 182 feet above mean sea level. The exhaust vent is located on the west corner of the reactor building. All ground level releases for the third and fourth guarters of 1991 are shown in Table 1C.

2.2 Liquid Effluents

Liquid radioactivity is released from Pilgrim Station to the Cape Cod Bay via the circulating water discharge canal. These effluent releases enter the Cape Cod Bay at the outfall of the canal which is located about 1100 feet north of the reactor building.

The liquid releases for the third and fourth quarters of 1991 are summarized in Table 2A. A total of approximately 2.4 million liters of radioactive liquid waste (prior to dilution) containing 2.83E-2 curies of fission and activation products (excluding tritium, gases, and alpha-emitting nuclides) was discharged with a total dilution volume of approximately 3.7 billion liters of water. The liquid effluents were released at an average concentration of fission and activation products of 7.69E-9 μ Ci/ml during the third and fourth quarters. A total of 9.40E+0 curies of tritium was released, for an average concentration of 2.56E-6 μ Ci/ml. Dissolved and entrained gases in liquid effluents totalled 6.01E-3 curies, for an average concentration of 1.63E-9 μ Ci/ml. Alpha radioactivity was not detected in liquid effluents during this reporting period. Quarterly release estimates and principal radionuclides in the liquid effluents are given in Table 2B.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

Supplemental Information (1991) July - December 1991

Facility Pilgrim Nuclear Power Station Licensee DPR-35

1. Regulatory Limits

- a. Fission and activation gases:
- b,c. Iodines, particulates with half-lives >8 days, tritium:
- d. Liquid effluents:

500 mrem/yr total body and 3000 mrem/yr for skin at site boundary.

1500 mrem/yr to any organ at site boundary.

0.06 mrem/month for total body and 0.20 mrem/month for any organ (without redwaste treatment).

2. Maximum Permissible Concentration

- a. Fission and activation gases:
- b. Iodines:
- Particulates, half-lives >8 days: С.
- d. Liquid effluents:

10 CFR 20 Appendix B Table II 10 CFR 20 Appendix B Table II 10 CFR 20 Appendix B Table II 2E-4 µCi/ml for entrained noble gases; 10 CFR 20 Append x B Table II values for all other radionuclides.

 Average Energy Not applicable

4. Methods used to determine radionuclide composition in effluents

- а. Fission and activation gases: b. Iodines: Particulates: С.
- d. Liquid effluents:

High-purity Ge gamma spectroscopy for all gamma emitters; radiochemistry analysis for H-3, Fe-55 (liquids only), Sr-89, and Sr-90.

- 5. Batch Releases
 - a. Liquid

Quarter 3rd 4th

1. Number of batch releases:

- Total time period for batch releases (minutes): 2.
- Maximum time period for a batch release (minutes) 3.
- 4. Average time period for batch releases (minutes):
- Minimum time period for a batch release (minutes) 5.
- 6. Average stream flow during periods of release of effluent into a flowing stream (liter/min):

	14
3.94E+3	8.65E+2
1.65E+2	9.00E+1
6.78E+1	6.18E+1
2.50E+1	3.00E+1

- b. Gaseous: Not applicable
- 6. Abnormal Releases

a. Liquid: None

b. Gaseous: None

TABLE 1A EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) GASEOUS EFFLUENTS SUMMATION OF ALL RELEASES July - December 1991

	Quarter	Quarter	Est. Total
Unit	3rd	4th	Error, %

A. Fission and activation gases

1. Total release	Ci I	1.17E+03	2.32E+02	22%
2. Average release rate for period	µC1/sec	1.48E+02	2.94E+01	and the Construction of Constr
3. Percent of Tech. Spec. limit	%	*	*	

B. Iodines

1. Total iodine-131	Ci	3.47E-03	8.97E-03	20%
2. Average release rate for period	µCi/sec	4.40E-04	1.14E-03	and a second
3. Percent of Tech. Spec. limit	3%	*	*	

C. Particulates

1. Particul. with half-lives>8 days	Ci I	2.89E-03	4.10E-03	21%
2. Average release rate for period	µCi/sec	3.67E-04	5.20E-04	a a ferranda ya Marin a sabab na 1 yi ki amana kabay ya
3. Percent of Tech. Spec. limit	70	*	*	
4. Gross alpha radioactivity	Ci	NDA	NDA	

D. Tritium

*

<u>l. Total release</u>		2.01E+00		20%
2. Average release rate for period	µCi/sec	2.55E-01	2.88E-01	and the second se
3. Percent of Tech. Spec. limit	%	Ŕ	*	

Notes for Table 1A:

Percent of Technical Specification Limit Values in Section A.3 through D.3 are to be provided in the annual supplemental dose assessment report to be issued prior to April 1, 1992.

1. NDA is no detectable activity.

2. LLD for gross alpha listed as NDA is 1E-11 µCi/ml.

TABLE 1B <u>EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991)</u> <u>GASEOUS EFFLUENTS - ELEVATED RELEASE</u> July - December 1991

.

	CONTINUOUS MODE		BATCH MODE		
Nuclides Released	Unit	Quarter	Quarter	Quarte:	Quarter
		3rd	4th	No Batch Mod During Perio	

1. Fission gases

ć

Kr-85m	C1	6.71E+01	1.59E+01	N/A	N/A
Kr-87	Ci	1.66E+02	5.83E+00	N/A	N/A
Kr-88	Ci	1.75E+02	9.05E+00	N/A	N/A
Xe-133	Ci	2.79E+01	2.60E+01	N/A	N/A
Xe-135	Ci	2.21E+02	6.99E+00	N/A	N/A
Xe-135m	Ci	9.69E+01	2.78E+01	N/A	N/A
Xe-138	Ci	4.04E+02	1.05E+02	N/A	N/A
Total for period	Ci	1.16E+03	1.27E+02	N/A	N/A

2. Iodines

î-131	Ci	3.02E-03	7.31E-03	N/A	N/A
I-133	Ci	1.79E-02	4.19E-02	N/A	N/A
Total for period	Ci	2.09E-02	4.92E-02	N/A	N/A

3. Particulates

Mn-54	Ci	NDA	3.15E-06	N/A	N/A
Co-58	Ci	NDA	1.12E-06	N/A	N/A
Co-60	Ci	NDA	6.21E-06	N/A	N/A
Sr-89	Ci	5.13E-04	4.56E-04	N/A	N/A
Sr-90	Ci	2.76E-06	3.27E-06	N/A	N/A
Cs-134	Ci	NDA	NDA	N/A	N/A
Cs-137	Ci	NDA	NDA	N/A	N/A
Ba/La-140	Ci	9.45E-04	1.05E-03	N/A	N/A
Ce-141		NDA	1.00E-06	N/A	N/A
Total for period	Ci	1.46E-03	1.52E-03	N/A	N/A

4. Tritium

1.00	The second se	the second se	NAMES OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	Comparison include, of the association of the second s	the second se	AND ADDRESS OF ADDRESS
- 3	H_3	04	2 00F-01 L	1 105 01	bi / A	A17.6
- 1	n-2	6		1.126-011	N/A I	N/A 1
		orderer and a second second second of	Contraction of the second s	and starting starts and the starts of the	and a reason of the party of th	and we can see the second seco

Notes for Table 1B:

1. NDA is no detectable activity.

2. LLDs for nuclides listed as NDA are as follows:

Fission gases:	1E-4 µCi/m1
Iodines:	1E-12 µCi/m1
Particulates:	1E-11 µCi/m1

TABLE 1C <u>EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991)</u> <u>GASEOUS EFFLUENTS - GROUND LEVEL RELEASE</u> July - December 1991

Nuclides Della		CONT	INUOUS MODE	BAT	CH MODE
Nuclides Released	Unit	Quarter	Quarter		
Fission gases		3rd	4th	Quarter No Batch M During Per	Hode Polos
Kr-85m	1 04	1			
Kr-87	- Ci	NDA	NDA	N/A	T
Kr-88	Ci	NDA	NDA	N/A	N/A
Xe-133	Ci	NDA	NDA	N/A	N/A
Xe-135		2.55E-01	1.82E+00	N/A	N/A
Xe-135m	Ci	1.05E+01	2.80E+01	N/A N/A	N/A
Xe-138	<u>Ci</u>	NDA	5.14E+00		N/A
and the second	<u>C1</u>	NDA	NDA	N/A	N/A
Total for period			and a second second	N/A	N/A
PETTOD	Ci	1.08E+01	3.50E+01	N/A	N/A
I-133	C1 C1	4.54E-04	1.66E-03	N/A I	NAMES OF TAXABLE PARTY OF TAXABLE PARTY.
Total for period		3.63E-03	1.52E-02	N/A	N/A N/A
Total for period	Cí	4.08E-03	1.52E-02 1.68E-02		
Particulates Co-60		4.08E-03	1.52E-02	N/A	N/A
Particulates Co-60 Sr-89		4.08E-03 2.14E-05 [1.52E-02	N/A N/A	N/A N/A
Particulates Co-60 Sr-89 Sr-90	Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03	1.52E-02 1.68E-02	N/A N/A	N/A N/A
Particulates Co-60 Sr-89 Sr-90 Cs-134	Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06	1.52E-02 1.68E-02 NDA 5.73E-04	N/A N/A N/A	N/A N/A N/A N/A
Particulates <u>Co-60</u> <u>Sr-89</u> <u>Sr-90</u> <u>Cs-134</u> <u>Cs-137</u>	Ci Ci Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06 NDA	NDA 5.73E-04 2.97E-06	N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Particulates <u>Co-60</u> <u>Sr-89</u> <u>Sr-90</u> <u>Cs-134</u> <u>Cs-137</u>	Ci Ci Ci Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06 NDA NDA	NDA 5.73E-04 2.97E-06 NDA	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
Particulates <u>Co-60</u> <u>Sr-89</u> <u>Sr-90</u> <u>Cs-134</u> <u>Cs-137</u> <u>Ba/La-140</u>	Ci Ci Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06 NDA	NDA 5.73E-04 2.97E-06 NDA NDA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
Particulates <u>Co-60</u> <u>Sr-89</u> <u>Sr-90</u> <u>Cs-134</u> <u>Cs-137</u> <u>Ba/La-140</u>	Ci Ci Ci Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06 NDA NDA 3.56E-04	NDA 5.73E-04 2.97E-06 NDA	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Particulates <u>Co-60</u> <u>Sr-89</u> <u>Sr-90</u> <u>Cs-134</u> <u>Cs-137</u>	Ci Ci Ci Ci Ci Ci	4.08E-03 2.14E-05 1.05E-03 2.80E-06 NDA NDA	NDA 5.73E-04 2.97E-06 NDA NDA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A

H-3 C1 1.81E+00 2.16E+00 N/A N/A I
C1 1.81E+00 2 16E-00 1
N/A N/A

Notes for Table 1C:

r.,

1

- 1. NDA is no detectable activity.
- 2. LLDs for nuclides listed as NDA are as follows:

Fission gases: Iodines:	1E-4	µCi/m1
Particulates:		µCi/m1 µCi/m1

TABLE 2A <u>EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991)</u> <u>LIQUID EFFLUENTS SUMMATION OF ALL RELEASES</u>

July - December 1991

1	Quarter	Quarter	Est. Total
Unit	3rd	4th	Error, %

A. Fission and activation products

 Total release (not including tritium, noble gases, or alpha) 	Ci	2.72E-02	1.09E-03	12%
 Average diluted concentration during period 	uCi/ml	9.93E-09	1.16E-09	
3. Percent of applicable limit	%	*	*	

B. Tritium

1. Total release	Ci	8.71E+00	6.86E-01	9.4%
 Average diluted concentration during period 	uCi/ml	3.18E-06	7.32E-07	
3. Percent of applicable limit	%	*	*	

C. Dissolved and entrained jases

1. Total release	Ci	1.07E-03	4.94E-03	16%
 Average diluted concentration during period 	uCi/ml	3.89E-10	5.27E-09	
3. Percent of applicable limit	%	sk	k	

D. Gross alpha radioactivity

1. Total release	Ci	NDA	NDA	34%

E. Volume of waste released	1			
(prior to dilution)	liters	2.16E+06	2.23E+05	5.7%

F. Volume of dilution water used		
during period	iters 2.74E+09 9.37E+08 10%	

Notes for Table 2A:

- * Percent of Technical Specification Limit Values in Section A.3 through C.3 are to be provided in the annual supplemental dose assessment report to be issued prior to April 1, 1992.
- 1. NDA is no detectable activity.
- LLD for gross alpha listed as NDA is 1E-7 µCi/ml.

TABLE 2B <u>EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1990)</u> <u>LIQUID EFFLUENTS</u> July - December 1991

CONTINUOUS MODE BATCH MODE

Nuclides Released	Unit	Quarter	Quarter	Quarter	Quarter
		No Continuou		3rd	4th
		Releases Dur	ing Period		

1. Fission and Activation Products

N.

日本

麗

1

Cr-51	C1	N/A	N/A	6.24E-04	2.42E-04
Mn-54	Ci	N/A	N/A	1.17E-03	2.22E-05
Fe-55	Ci	N/A	N/A	5.74E-04	5.32E-05
Fe-59	Ci	N/A	N/A	4.77E-05	NDA
Co-58	Ci	N/A	N/A	4.51E-04	NDA
Co-60	Ci	N/A	N/A	7.53E-03	1.89E-04
Zn-65	Ci	N/A	N/A	NDA	NDA
Sr-89	Ci	N/A	N/A	NDA	NDA
Sr-90	Ci	N/A	N/A	5.32E-05	4.18E-00
Y-92	Ci	N/A	N/A	NDA	2.49E-04
Zr/Nb-95	Ci	N/A	N/A	1.04E-04	NDA
Mo-99/Tc-99m	Ci	N/A	N/A	1.94E-04	7.66E-0
Ru-103	Ci	N/A	N/A	3.81E-05	NDA
I-131	Ci	N/A	N/A	4.08E-07	NDA
Cs-134	Ci	N/A	N/A	7.53E-04	NDA
Cs-137	Ci	N/A	N/A	1.50E-02	9.94E-0
Ba/La-140	Ci	N/A	N/A	1.07E-04	1.12E-0
Ce-141	Ci	N/A	N/A	5.79E-05	NDA
Ce/Pr-144	Ci	N/A	N/A	2.17E-04	NDA
Np-239	Ci	N/A	N/A	2.47E-04	4.24E-0
Total for period	Ci	N/A	N/A	2.72E-02	1.09E-0

2. Dissolved and Entrained Noble Gases

Xe-133	Ci	N/A	N/A	2.60E-04	8.46E-04
Xe-135	Ci	N/A	N/A		*.09E-03
Tatal far seeled					
Total for period	1 (1	N/A	N/A	1.07E-03	4.94E-03

Notes for Table 2B:

1. NDA is no detectable activity.

2. LLDs for nuclides listed as NDA are as follows:

Sr-89	5E-8	µCi/ml
I-131		µCi/ml
Xe-133, 135	1E-5	µC1/m1
All Others	and state and	µCi/ml

3. RADIOACTIVE WASTE DISPOSAL DATA

Radioactive wastes (Reference 2) which were shipped off-site for burial during the period July 1 to December 31, 1991 are given in Table 3, in the standard NRC Regulatory Guide 1.21 format.

The semiannual total quantity of radioactivity in curies and the total volume in cubic meters for the following categories or waste types are listed in Table 3:

a. Spent resins, filter sludges, evaporator bottoms;

- Dry compressible waste, contaminated equipment, etc.;
- c. Irradiated components, control rods, etc.; and,
- d. Other.

During July 1 to December 31, 1991 approximately 4.23E+2 curies of spent resins, filter sludges, etc. with a total volume of about 9.59E+1 cubic meters were shipped from Pilgrim Station to an approved burial sits. Approximately 7.23E+0 curies in dry compressible waste, contaminated equipment, etc. with a total volume of about 1.14E+2 cubic meters was shipped off-site for processing and/or burial during this period. Irradiated components and other miscellaneous low-level waste were not disposed of off-site during this reporting period. Irradiated fuel shipments were not made during this period.

Eighteen shipments to Barnwell, SC (Chem Nuclear Systems, Inc.), eight shipments to Oak Ridge, TN (six to Scientific Ecology Group; two to Quadrex Corp.), and two shipments to Wampum, PA (Alaron Corp.) were made during the period July 1 to December 31, 1991. Estimates of Lajor radionuclides shipped off-site are listed in Table 3.

TABLE 3

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1991) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS JULY - DECEMBER 1991

1. SOLID WASTE SHIPPED OFF SITE FOR BURIAL OR DISPOSAL

臣

開設

enii - Anno	TYPE	OF WASTE	UNITS	6 MONTH PERIOD	EST. TOTAL ERROR %
	à.	Spent resins, filter, sludges evaporator bottoms, etc.	m ³ C1	9.59E+01 4.23E+02	<u>+</u> 25%
	b.	Dry compressible waste, contaminated equipment, etc.	m ³ Ci	1.14E+02 7.23E+00	± 25%
	С.	Irradiated components, control rods, etc.	m ³ Ci	0.00E+00 0.00E+00	N/A
	d.	Other (describ) miscellaneo Iow level waste	m ³ Ci	0.00E+00 0.00E+00	N/A

TABLE 3 (Continued)

2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (by type of waste)

ā.

Spent resin, filter sludges, evaporator bottoms, etc.

NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Fe-59 Co-60 Ni-63 Zn-65 Sr-89 Sr-90 Nb-95 Tc-99 Ag-110m I-129 I-131 Cs-134 Cs-137 Ba-140 La-140 Ce-141 Ce-144 Pu-238 Pu-239/240 Am-241 Pu-238 Pu-239/240 Am-241 Pu-241 Cm-243/244 TOTAL	3.85E-02 1.76E-01 9.04E+01 4.57E+01 6.35E+01 1.22E+01 2.82E+00 1.61E+02 3.77E+00 3.34E+00 4.37E-01 1.81E-01 5.53E-01 4.53E-04 6.62E-01 1.54E-02 1.60E+00 4.10E+00 2.17E+01 7.73E+00 1.30E-01 8.24E-01 1.95E+00 1.16E-03 1.71E-03 2.42E-03 2.09E-01 6.79E-05 4.23E+02	9.00E-03 4.20E-02 2.14E+01 1.08E+01 1.50E+01 2.88E+00 6.68E-01 3.81E+01 8.92E-01 7.90E-01 1.03E-01 4.30E-02 1.31E-01 <1.00E-03 1.57E-01 4.00E-03 3.78E-01 9.70E-01 5.13E+00 1.83E+00 3.10E-02 1.95E-01 4.60E-01 <1.00E-03 <1.00E-03 <1.00E-03 <1.00E-03 1.00E-03 <1.00E-03 1.00E-03 1.00E-03 <1.00E-03 1.00E-03 1.00E-03 1.00E+02

.

TABLE 3 (Continued)

	Dry compressible wa	ste, contaminated equ	ilpment, etc.
	NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
	N1-59 Co-60 N1-63	2.97E+00 7.25E-04 1.37E-01 4.57E-02 1.45E-03 2.40E-00 2.07E-01 2.54E-02	1.00E-02 2.00E-02 6.65E+00 2.92E+00 4.11E+01 1.00E-02 1.89E+00 6.31E-01 2.00E-02 3.32E+01 2.86E+00 3.51E-01 5.01E-02 9.02E-02 2.00E-02 1.00E-02 1.00E-02 1.40E-01 9.13E+00 3.91E-01 1.00E-02 1.00E-
с.		nts, control rods, etc	с.
	NUCLIDE NAME	CURIES	PERCENT ABUNDANCE
	Total	0.000	N/A
d.	Other (describe mi	scellaneous low-level	waste).
	NUCLIDE NAME	CURIES	PERCENT ABUNDANCE

b. Dry compressible waste, contaminated equipment, etc.

認識な

No.

Total

12 of 48

0.000

N/A

TABLE 3 (Continued)

3. SOLID WASTE DISPOSITION

Number of Shipments	Mode Of <u>Transportation</u>	Destination
18	Tractor-Trailer	CNSI, Barnwell, SC
6	Tractor-Trailer	SEG, Oak Ridge, TN+
2	Tractor-Trailer	Quadrex, Oak Ridge, TN*
2	Tractor-Trailer	Alaron, Wampum, PA ++

Contaminated wastes are shipped to Scientific Ecology Group, Oak Ridge TN for volume reduction processes. After processing the remaining wastes are shipped to either Chem Nuclear Systems Inc., Barnwell, SC or U.S. Ecology Inc., Beatty, Nevada for burial under Boston Edison's burial allocation.

- Contaminated wastes are shipped to Quadrex Corp., Oak Ridge, TN; for volume reduction/salvage. After processing the remaining wastes are shipped to Chem Nuclear Systems Inc., Barnwell, SC for burial under Boston Edison's burial allocation.
- ++ Contaminated wastes are shipped to Alaron Corp., Wampum, PA; for volume reduction/salvage. After processing the remaining wastes they are shipped to Barnwell, SC for burial under Boston Edison's burial allocation.

4. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of Shipments	Mode Of Transportation	Destination
NONE	N/A	N/A

4. METEOROLOGICAL DATA

Meteorological data (Reference 3) for the period July 1 to December 31. 1991 is given in Tables 4A-1 and 4A-2 in the standard joint frequency distribution format as given in NRC Regulatory Guide 1.21.

The predominant wind direction was from the south-southwest, which occurred with a frequency of about 15% during this period. The predominant wind speed range at the 33 foot sensor was 4 to 7 mph, which occurred with a frequency of 55% during this period. The predominant wind speed range at the 220 foot sensor was 13 to 18 mph, which occurred approximately 35% of the time. The predominant stability class was stability class E, which occurred about 37% of the time during this period.

There were a few instances where the data recorded by the 220 foot tower were not continuous. Typically, data losses were due to loss of power, malfunction of the sensors, and/or malfunction of the digital data loggers. The net result is that the data recovery for the period of July through December 1991 was 93.7% on the 33 foot elevation and 93.0% on the 220 foot elevation of the 220 foot meteorological tower at Pilgrim Station.

When averaged over the entire period of January-December 1991, the annual joint data recovery was 95.6% at the 33 foot level and 95.2% at the 220 foot level. This exceeds the 90% o: greater annual data recovery goal specified in Regulatory Guide 1.23.

TABLE 4A-1

DISTRIBUTION OF WIND DIRECTIONS AND SPEEDS FOR THE 33 FT. LEVEL OF THE 220 FT. TOWER

同時

	PILGRIM	JUL91-	SEP91	MET DA	TA JOI	NT FRE	QUENCY	DISTR	BUTIO	N (220	-FOOT	TOWER)							
	33.0 FT	WIND D	ATA		STABI	LITY C	LASS A			CLASS	FREQU	ENCY (PERCEN	T) =	14.00				
								W	ND DI	RECTIO	N FROM								
						99.									1.0.0.1		MARTI	VDDI	TOTAL
SPE	ED(MPH)	N	WNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	MSM		WNW	NW	NNW	VRBL	TOTAL
	(1) (2)	0 00.	0.00.	0 .00. 00.	00.00	00. 00.	0 00. 00	0 .00 .00	0 .00.	0 .00 .00	0 .00.	0 00. 00	0 .00.	00. 00.	0 .00.	00. 00.	0 .00 .00	0 00. 00.	0 .00.
	C-3 (1) (2)	10 3.42 .48	5 1.71 .24	2 .68 .10	.34	0 .00.	1 .34 .05	0 .00.	0 .00 .00	0 .00.	1 .34 .05	0 00. 00.	0 00.	0 .00 .00	3 1.03 .14	1 .34 .05	2 .68 .10	0 00.	26 8.90 1.25
	4-7 (1) (2)	27 9.25 1.29		26 8.90 1.25	26 8.90 1.25	9 3.08 .43	2 .68 .10	1 .34 .05	0 .00 .00	4 1.37 .19	15 5.14 .72	21 7.19 1.01	18 6.16 .86	20 6.85 .96	13 4.45 .62	8 2.74 .38	12 4.11 .58	0 .00. 00.	235 80.48 11.27
	8-12 (1) (2)	1.37 .19		0 00.	0 00. 00.	0 00. 00.	0 00.00	0 00. 00.	0 .00 .00	2 .68 .10	19 6.51 .91	4 1.37 .19	1 .34 .05	0 .00 .00	0 00. 00.	0 .00 .00	0 .00. 00.	0 .00. 00.	30 10.27 1.44
	13-18 (1) (2)	0 00. 00	.00	0 .00 .00	0 00. 00.	0 00. 00	0 00.	0 00 00	0 00.	0 .00 .00	1 .34 .05	0 .00 .00	0 00.	0 .00 .00	0 .00. 00.	0 .00 .00	0 .00 .00	0 00.	1 .34 .05
	19-24 (1) (2)	0 .00 .00	.00	.00	0 00. 00.	0 00. 00.	0 00.00	0 00.	0 .00. 00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 00. 00.	0 .00 .00	0 00.	0 00. 00
	GT 24 (1) (2)	0 00.	.00	.00	0 00.	0 00.	0 00.	0 .00 .00	0 00. 00.	0 .00 .00	0 .00 .00	00. 00.	0 00.	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 00.	0 .00. .00
AL	L SPEEDS (1) (2)		38 13.01 1.82	9.59	27 9.25 1.29	9 3.08 .43	3 1.03 .14	1 .34 .05	0 .00. 00.		36 12.33 1.73	25 8.56 1.20	19 6.51 .91	6.85 .96	16 5.48 .77	9 3.08 .43	4.79 .67	0 00.	292 100.00 14.00
)=PERCENT)=PERCENT										C= C/	ALM (W	IND SPE	EED LES	S THAN	OR EQ	QUAL TO	0.95	MPH)

No.

PILGRIM	JUL91-	SEP91	MET DA	TA JOI	NT FRE	QUENCY	DISTR	IBUTIO	IN :350)- FOOT	TOWER)							
33.0 FT	WIND D	ATA		STABI	LITY C	LASS B			CLASS	FREQU	JENUT	PERCEN	≈ (T)	3.50				
							5	IND DI	RECTIC	W FROM	R.							
SPEED (MPH)	к	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	รษ	WSW	v	พทพ	NW	NNW	VRBL	TOTAL
CALM (1) (2)	0 .00	0.00.	0 00. 00.	0 .00 .00	0 00,	0 00. 00.	0 .00.	0 .00. 00.	1 1.37 .05	0 .00 .00	0 .00 .00	0 .00 .00	0 00- 00-	0 .00. 00.	0 .00.	0 00.	0 .00.	1.37 .05
C-3 (1) (2)	0 .00 .00	1 1.37 .05	0 .00 .00	0 .00.	1 1.37 .05	00.00	0 .00.	0 .00.	0 .00.	0 .00 .00	0 .00 .00	00,00	0 .00 .00	0 00.	2 2.74 .10	5 6.85 .24	0 .00 .00	9 12.33 .43
4-7 (1) (2)	0 .00 .00	2.74 .10	4.11 .14	5.48 .19	1 1.37 .05	3 4.11 .14	0 .00 .00	1.37 .05	5 6.85 .24	4.11 .14	8 10.96 .38	6 8.22 .29	10 13.70 .48	4 5.48 .19	0 .00 .00	4 5.48 .19	0 .00.	54 73.97 2.59
8-12 (1) (2)	0 -00 -00	0 00.	0 .00 .00	0 .00 .00	0 .00. 00.	0 .00 .00	0 .00 .00	0 .00 .00	1 1.37 .05	8.22 .29	2.74 .10	0 .00. 00.	0 00.	0 .00.	0 .00	0 00.	0 .00.	9 12.33 .43
13-18 (1) (2)	0 00.	0 .00	0 00. 00	0 .00.	0 .00 .00	0 00.	0 .00.	0 00. 00	0 .00 .00	0 .00 .00	0 .00 .00	0 00. 00	0 .00. 00,	0 .00 .00	0 00.	0 .00 .00	0 00.	0 00. 00.
19-24 (1) (2)	0 .00 .00	0 .00.	0 00. 00.	0 .00 .00	0 .00 .00	0 00.	0 00.	0 .00.	0 .00. 00.	0 .00 .00	0 .00 .00	0 00. 00	0 .00 .00	0 00.	0 .00 .00	0 .00 00	0 .00. 00.	0 00. 00.
GT 24 (1) (2)	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 00. 00.	0 .00 .00	0 00.	0 00. 00	0 .00.	0 .00 .00	0 .00 .00	0 .00.	0 .00.	0 .00 .00	0 00.	0 .00.	0 00. 00.
ALL SPEEDS (1) (2)	0 .00 .00	3 4.11 .14	3 4.11 .14	4 5.48 .19	2 2.74 .10	3 4.11 .14	0 00.	1 1.37 .05	9.59 .34	9 12.33 .43		8.22 .29	10 13.70 .48	4 5.48 .19	2 2.74 .10	9 12.33 .43	0 .00. 00.	73 100.00 3.50
(1)=PERCENT (2)=PERCENT																		

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

¢

33.0 FT	WIND DI	ATA		STABIL	ITY C	LASS C			CLASS	FREQU	ENCY (PERCEN	() #	2.45				
							WI	ND DI	RECTIO	N FROM								
SPEED(MPH)		NNE	NE	ENE	Ε	ESE	SE	SSE	\$	รรษ	sw	WSW	w	WNW	NW	NNW	VRBL	TOTAL
CALM (1) (2)	0 00. 00.	0.00.	0 00.00	0 00.	0 00.	3 00.	0 .00 .00	0 .00 .00	0 00.	0 .00 .00	0 00.	0 .00.	0 00.	0 00.	0 00.	0 00.	0 00.	0 .00 .00
C-3 (1) (2)	1 1.96 .05	2 3.92 .10	1 1.96 .05	1 1.96 .05	0 00.	0 .00 .00	0 .00 .00	0 00.	0 .00 .00	0 .00.	0 00.	0 .00 .00	1 1.96 .05	0 .00.	2 3.92 .10	1 1.96 .05	0 .00. 00.	9 17.65 .43
4-7 (1) (2)	0 .00 .00	2 3.92 .10	4 7.84 .19	2 3.92 .10	4 7.84 .19	1 1.96 .05	1 1.96 .05	0 .00	2 3.92 .10	5 9.80 _24	7 13.73 .34	7.84 .19	1 1.96 .05	2 3.92 .10	1 1.96 .05	0 .00	0 00.00	36 70.59 1.73
8-12 (1) (2)	0 .00 .00	0 .00.	0 00.	0 .00.	0 .00	0 00.	0 00.	0 00.	1 1.96 .05	5 9.80 .24	0 .00	0 .00.	0 00.	0 00. 00	0 .00 .00	0 00.	0 00.	6 11.76 .29
13-18 (1) (2)	0 .00.	0 00.	0 .00.	0 .00.	0 .00.	0.00.	0 .00	0 .00 .00	0 .00.	0.00.	00.00	0 00.	0 00.	0 00.	0 .00.	0 .00 .00	0 00.	0 .00.
19-24 (1) (2)	0 00.	0 .00	0 .00	0 .00	0 .00.	0 .00.	0 00.	0 00.	0 .00 .00	0 .00. 00.		0 .00 .00	0 .00.	0 .00 .00	.00 .00	0 .00.	0 00. 00.	0 . 00 . 00
GT 24 (1) (2)	0 .00. 00.	0 .00 .00	0 .00.	0 00.	0 .00.	0 .00 .00	0 .00.	0 .00.	0 .00 .00	0 .00.	.00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 00.
ALL SPEEDS (1) (2)	1 1.96 .05	4 7.84 .19	5 9.80 .24	3 5.88 .14	4 7.84 .19	1.96 .05	1 1.96 .05	0 00.	3 5.88 .14	10 19.61 .48	13.73	4 7.84 .19	2 3.92 .10	2 3.92 .10	3 5.88 .14	1 1.96 .05	0 .00 .00	51 100.00 2.45
(1)=PERCENT (2)=PERCENT										C= 0	ALM (W	IND SP	EED LE	SS THA	N OR E	QUAL T	0.95	MPH)

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

						Dealer .	2010/00/00/00				Contraction of the							
33.0 FT	WIND DA	ATA		STABIL	ITY C	LASS D			CLASS	FREQU	ENCY (PERCEN	() # ·	14.10				
							v	IND DI	RECTIO	N FROM								
SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	ssw	sw	WSW	w	WNW	NW	NNW	VRBL	TOTAL
CALM (1) (2)	0 .00 .00	0 00.	0 .00 .00	0 00. 00.	0 .00.	0 .00 .00	0 - 00 - 00	0 00. 00	0 .00 .00	0 .00 .00	0 00.	0 00.	0 .00. 00.	0 .00.	0 .00.	0 00.	0 00.	0 .00 .00
C-3 (1) (2)	7 2.38 .34	4 1.36 .19	8 2.72 .38	8 2.72 .38	2 .68 .10	8 2.72 .38	11 3.74 .53	6 2.04 .29	0 .00	5 1.70 .24	1 .34 .05	0 00.	7 2.38 .34	5 1.70 .24	2 .68 .10	2.04 -29	0 00.	80 27.21 3.84
4-7 (1) (2)	4 1.36 .19	4 1.36 .19	13 4.42 .62	7 2.38 .34	14 4.76 .67	12 4.08 .58	1 .34 .05	2 .68 .10	21 7.14 1.01	44 14.97 2.11	16 5.44 .77	12 4.08 .58	6 2.04 .29	3 1.02 .14	1 .34 .05	0 .00 .00	0 .00.	160 54.42 7.67
8-12 (1) (2)	1 .34 .05	0 .00.	0 00. 00.	0 00.00	0 .00.	0 .00. 00.	0 .00	0 .00	1 .34 .05	39 13.27 1.87	7 2.38 .34	2 .68 .10	0 .00. 00.	0 00.	1 .34 .05	3 1.02 .14	0 .00.	54 18.37 2.59
13-18 (1) (2)	0 00.	0 00. 00.	0 00. 00.	0 00.	0 00.	0 .00. .00	0 00.	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 00.	0 00.00	0 .00.	0 .00 .00	0 .00.
19-24 (1) (2)	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 .00.	0 00.	0 .00.	0 .00.	0.00	0 .00 .00	0 .00.	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	0 00.00	00 .00
GT 24 (1) (2)	0 .00 .00	0 00.	0 .00 .00	0 00.	0 .00.		0 00.	0 .00 .00	0 .00	.00	0 .00.	0 .00.	0 .00.	0 .00 .00	0 .00.	0 .00.	0 00.	0 .00.
ALL SPEEDS (1) (2)	12 4.08 .58	8 2.72 .38		15 5.10 .72	16 5.44 .77	6.80	12 4.08 .58	8 2.72 .38	22 7.48 1.06	29.93	24 8.16 1.15	14 4.75 .67	13 4.42 .62	8 2.72 .38	4 1.36 .19	9 3.06 .43	0 00.	294 100.00 14.10
(1)=PERCENT (2)=PERCENT						1-12-1 (D. 17)	1.10.00			6 - 0								

C# CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

				STABI							- 1							
								IND DI	RECTIC	W FROM								
PEED(MPH)		NNE	NE	ENE	E	ESE	SE	SSE	s	SS¥	SW	WSW	¥	UNW	NW	NNW	VRBL	TOTAL
CALM (1) (2)	1 .13 .05	0 .00.	0 .00 .00	2 .26 .10	0 .00.	1 -13 -05	0 .00 .00	00. 00.	2 -26 -10	0 .00 .00	0 00.	1 .13 .05	1 .13 .05	0 .00. 00.	1 13 05	0 00.	0 .00 .00	9 1.19 .43
C-3 (1) (2)	.53 .19	10 1.32 .48	14 1.85 .67	25 3.30 1.20	10 1.32 .48	18 2.38 .86	21 2.77 1.01	23 3.04 1.10	20 2.64 .96	.79 .29	8 1.06 .38	1.72 .62	21 2.77 1.01	15 1.98 .72	14 1.85 .67	.92 .34	0 00.00	229 30.25 10.98
4-7 (1) (2)	.53 .19	13 1.72 .62	12 1.59 .58	13 1.72 .62	12 1.59 .58	19 2.51 .91	.79 .29	1.72 .62	48 6.34 2.30	123 16.25 5.90	46 6.08 2.21	45 5.94 2.16	14 1.85 .67	8 1.06 .38	14 1.85 .67	17 2.25 .82	00.00	407 53.76 19.52
8-12 (1) (2)	0 -00 -00	3 .40 .14	0 00.	0 .00 .00	0 .00.	0 00.	0 .00.	2 .26 .10	2 .26 .10	70 9.25 3.36	25 3.30 1.20	.13 .05	0 .00 .00	0 .00 .00	7 .92 .34	, 13 , 05	0 00. 00.	111 14.66 5.32
13-18 (1) (2)	0 .00 .00	0 .00.	0 .00	0 00.	0 .00.	0 .00.	0 00.	0 .00.	0 .00. .00	0 .00 .00	1 .13 .05	0 .00. 00.	0 .00. 00.	0 00.	0 00. 00.	0 00. 00.	0 .00 .00	.11
19-24 (1) (2)	0 00. 00.	0 .00.	0 .00 .00	0 .00.	0 .00. 00.	0 .00 .00	0 .00	0 .00 .00	0 .00. 00.	0 .00.	0 00.	0 .00 .00	0 .00. 00.	0 00. 00.	0 .00 .00	0 00. 00.	0 00.	.00
GT 24 (1) (2)	0 00.	0 .00. 00.	0 .00	0 00.	0 .00	0 00. 00.	0 .00. 00.	0 .00.	0 .00.	0 .00 .00	0 .00 .00	0 .00.	0 .00. 00.	0 .00. 00.	0 .00.	0 .00.	0 .00 .00	0 .00 .00
L SPEEDS (1) (2)	9 1.19 .43	26 3.43 1.25	26 3.43 1.25	40 5.28 1.92	22 2.91 1.06	38 5.02 1.82	27 3.57 1.29	38 5.02 1.82	72 9.51 3.45	199 26.29 9.54	80 10.57 3.84	60 7.93 2.88	36 4.76 1.73	23 3.04 1.10	36 4.76 1.73	25 3.30 1.20	0 .00.	757 100.00 36.31

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM	JUL91-	SEP91	MET DA	TA JOI	NT FRE	QUENCY	DISTR	IBUTIC	N (22)	-FOOT	T(WER))						
33.0 FT	WIND D	ATA		STABI	LITY C	LASS P			CLASS	FREQ	JENCY (PERCEN	# (T)	22.35				
								IND DI	RECTIO	ON FROM	H.							
SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	ssw	SW	WSW	w	WNW	NW	NNW	VRBL	TOTAL
CALM (1) (2)	0 .00 .00	0 .00.	0 .00 .00	0 .00.	.21 .05	0 00. 00.	.21 .05	1 .21 .05	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	.21 .05	1 .21 .05	1 .21 .05	0 .00 .00	0 .00.	1.29 .29
C-3 (1) (2)	-86 -19	1 .21 .05	.86 .19	.86 .19	8 1.72 .38	7 1.50 .34	2 .43 .10	7 1.50 .34	4.29	9 1.93 .43	7 1.50 .34	17 3.65 .82	14 3.00 .67	17 3.65 .82	20 4.29 .96	13 2.79 .62	0 .00. 00.	154 33.05 7.39
4-7 (1) (2)	16 3.43 .77	11 2.36 .53	3 .64 .14	1 .21 .05	1 .21 .05	6 1.29 .29	.43 .10	8 1.72 .38	19 4.08 .91	49 10.52 2.35	65 13.95 3.12	38 8.15 1.82	2 .43 .10	3 .64 .14	12 2.58 .58	9 1.93 .43	0 .00 .00	245 52.58 11.75
8-12 (1) (2)	0 .00 .00	1 .21 .05	0 00.	0 .00 .00	0 00.	0 .00. .00	0 00.	3 .64 .14	.86 .19	28 6.01 1.34	21 4.51 1.01	0 .00 .00	0 .00 .00	0 00.	0 .00. .00.	0 .00. 00.	0 .00.	57 12.23 2.73
13-18 (1) (2)	0 .00 .00	0 .00.	00.00-	0 .00.	0 .00. 00.	0 .00 .00	0 .00 .00	0 00. 00.	2 .43 .10	0 .00 .00	0 .00 .00	.43 .10	0 .00 .00	0 .00. .00	0 .00 .00	0 .00. 00.	0 .00.	4 .86 .19
19-24 (1) (2)	ر 00.	0 .00.	0 .00	0 00. 00.	0 .00.	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00. 00.	0 00.	0 .00 .00	0 .00. 00.	0 00.	0 .00. 00.
GT 24 (1) (2)	0 .00 .00	0 .00 .00	0 00.	0 .00. .00	0 00.	0 .00. 00.	0 .00 .00	0 00. 00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 00.00	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00
ALL SPEEDS (1) (2)	20 4.29 .96	13 2.79 .62	7 1.50 .34	5 1.07 .24	10 2.15 .48	13 2.79 .62	5 1.07 _24	19 4.08 .91	45 9.66 2.16	86 18.45 4.12	93 19.96 4.46		17 3.65 .82	21 4.51 1.01	33 7.08 1.58	22 4.72 1.06	0 .00 .00	466 100.00 22.35
(1)=PERCENT	OF ALL	6000	OBSERV	ATIONS	FOR T	HIS PA	GE											

(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

200 C

÷

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

	33.0 FT	WIND D	ATA		STAB1	LITY C	LASS G			CLASS	FREQU	JENCY I	PERCEN	* (1)	7.29				
								۲	IND DI	RECTIC	ON FROM	4							
SPE	ED (MPH)	к	NNE	HE	ENE	Ε	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
	CALM (1) (2)	0 00.	0 00.	0 .00.	0 .00.	1 .66 .05	0 00.	1 -66 -05	1 .66 .05	0 .00 .00	0 .00 .00	0 .00 .00	1 .66 .05	0 .00.	1 .66 .05	0 00. 00.	0 00.00	0 00. 00.	5 3.29 .24
	C-3 (1) (2)	0 00. 00.	0 00.	0 00. 00	0 .00. 00.	0 .00	1 .66 .05	0 00. 00.	0 00.	1 .66 .05	9 5.92 .43	7 4.61 .34	8 5.26 .38	4.61 .34	3 1.97 .14	0 .00. 00.	0 .00 .00	0 .00.	36 23.68 1.73
	4-7 (1) (2)	5 3.29 .24	3 1.97 .14	0 00.	0 .00 .00	0 .00	0 00.	0 .00.	0 60.	0 .00 .00		64 42.11 3.07	5.26 .38	0 00.	1 .66 .05	0 00. 00.	0 00.00	0 .00 .00	87 57.24 4.17
	8-12 (1) (2)	0 .00 .00	0 .00 .00	0 00.	0 .00.	1 .66 .05	0 00. 00	0 .00 .00	0 .00 .00	0 .00	7 4.61 .34	12 7.89 .58	0 .00 .00	0 .00 .00	0 00.00	0 .00. 00.	0 .00 .00	0 .00.	20 13.16 .96
	13-18 (1) (2)	0 00.	0 00,	0 00.	0 00.	1 .66 .05	0 - 00 - 00	0 .00. 00.	0 00. 00.	0 .00.	0 .00 .00	0 .00.	0 .00. 00.	0 .00 .00	0 .00.	0 .00.	0 .00 .00	0 .00 .00	1 .66 .05
	19-24 (1) (2)	0 .00 .00	0 00.	0 00.00	0 .00.	1 .66 .05	1 .66 .05	0 .00	1 .66 .05	0 .00.	0 .00.	0 .00 .00	0 00. 00.	0 00. 00.	0 00.	0 .00.	0 .00.	0 00.	3 1.97 .14
	GT 24 (1) (2)	0 .00 .00	0 .00.	0 00.	0 .00	0 00.	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	0 00. 00.	0 .00. .00	0 .00 .00	0 .00.	0 .00. 00.	0 .00.	0 .00 .00
ALL	SPEEDS (1) (2)	3.29 .24	3 1.97 .14	0.00.	0.00.	2.63	2 1.32 .10	1 .68 .05	2 1.32 .10			83 54.61 3.98	17 11.18 .82	7 4.61 .34	5 3.29 .24	0 00.	0 .00.	0 00.	152 100.00 7.29

(2)=PERCENT OF ALL COOD OBSERVATIONS FOR THIS PERIOD

C# CALN (WIND SPEED LESS THAN OR EQUAL TO .55 MPH)

TABILITY CLASS	A							
COMPANY NUMBER	ALL	CLASS FREQ	UENCY (PERC	ENT) = 10	00.00			
	WIND DI	RECTION FRO	н					
ENE E ES	SE SSE	waa a	sv ws	u u	พพพ พ	พ พพพ	VRBL	TOTAL
.10 .10 .0	.10 .10	.14 .00	.00 .1	0.10	.10 .1	00.00	0 00. 00.	21 1.01 1.01
1.87 1.01 1.6	1.63 1.73	1.97 1.44	1.10 1.8	2 2.40	2.06 1.9	7 1.63	0 00.	543 26.04 26.04
2.54 1.97 2.0	.53 1.15	4.75 11.75	10.89 6.2	8 2.54	1.63 1.7	3 2.01	0 00. 00.	1224 58.71 58.71
.00 .05 .0	.00 .24	.53 8.35	3.41 .1	9 .00	.00 .3	8.19	0 00. 00.	287 13.76 13.76
.00 .05 .0	00.00.00	2 1 .10 .05 .10 .05	.05 .1	00.0	.00 .0	00.00	0 00.	7 .34 .34
.00 .05 .0	.00 .05	.00 .00	.00 .0	00.00	.00 .0	00.00	0 .00 .00	3 . 14 . 14
.00 .00 .0	00. 00. 0	.00 .00	.00 .0	00.00	.00 .0	00.00	0 00. 00.	0 CO. 00.
.51 3.21 3.8	2.25 3.26	7.48 21.58	15.44 8.4	9 5.04	3.79 4.1	7 3.84	0 .00.	2085 100.00 100.00
	2 2 1 .10 .10 .05 .10 .10 .05 .39 21 .35 .87 1.01 1.66 .87 1.01 1.66 .87 1.01 1.66 .53 41 43 .54 1.97 2.06 .54 1.97 2.06 .54 1.97 2.06 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	ENE E ESE SE SSE 2 2 1 2 2 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .10 .10 .10 .10 .05 .03 1.73 .53 .41 .43 .11 .24 .54 1.97 2.06 .53 1.15 .00 .05 .00 .00 .24 .00 .05 .00 .00 .00 .00 .05 .00 .00 .00 .00 .05 .05 <td>ENE E ESE SE SSE SSE 2 2 1 2 2 3 0 .10 .10 .05 .10 .10 .14 .00 .10 .10 .05 .10 .10 .14 .00 .39 21 .35 .34 .36 .41 .00 .87 1.01 1.68 1.63 1.73 1.97 1.44 .87 1.01 1.68 1.63 1.73 1.97 1.44 .53 .41 .43 11 .24 .99 .245 .54 1.97 2.06 .53 1.15 4.75 11.75 .00 .05 .00 .00 .24 .53 8.35 .00 .05 .00 .00 .24 .53 8.35 .00 .05 .00 .00 .00 .10 .05 .00 .05 .00<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>ENE E ESE SE SSE SSW SW MSW W 2 2 1 2 2 3 0 0 2 2 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 39 21 35 34 36 41 30 23 38 50 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.4 .53 41 43 11 24 99 245 227 131 53 .54 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54</td><td>ENE E ESE SE S SSW SW MSW W MNW M 2 2 1 2 2 3 0 0 2 2 2 1 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .11 .10 .10 .15 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54<!--</td--><td>ENE E EEE SE SSE S SSW SW MSW H MNW NW NWW 2 2 1 2 2 3 0 0 2 2 2 2 0 .10 .10 .05 .10 .10 .14 .00 .00 .11 .14 .11 .10 .18 .2.4 .2.54 .1.63 1.73 <</td><td>ENE E ESE SE S SSW SW MSW W MNW NW NNW VRBL 2 2 1 2 2 3 0 0 2 2 2 0 0 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .10 .00 .00 .00 .10 .10 .10 .0</td></td></td>	ENE E ESE SE SSE SSE 2 2 1 2 2 3 0 .10 .10 .05 .10 .10 .14 .00 .10 .10 .05 .10 .10 .14 .00 .39 21 .35 .34 .36 .41 .00 .87 1.01 1.68 1.63 1.73 1.97 1.44 .87 1.01 1.68 1.63 1.73 1.97 1.44 .53 .41 .43 11 .24 .99 .245 .54 1.97 2.06 .53 1.15 4.75 11.75 .00 .05 .00 .00 .24 .53 8.35 .00 .05 .00 .00 .24 .53 8.35 .00 .05 .00 .00 .00 .10 .05 .00 .05 .00 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>ENE E ESE SE SSE SSW SW MSW W 2 2 1 2 2 3 0 0 2 2 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 39 21 35 34 36 41 30 23 38 50 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.4 .53 41 43 11 24 99 245 227 131 53 .54 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54</td> <td>ENE E ESE SE S SSW SW MSW W MNW M 2 2 1 2 2 3 0 0 2 2 2 1 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .11 .10 .10 .15 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54<!--</td--><td>ENE E EEE SE SSE S SSW SW MSW H MNW NW NWW 2 2 1 2 2 3 0 0 2 2 2 2 0 .10 .10 .05 .10 .10 .14 .00 .00 .11 .14 .11 .10 .18 .2.4 .2.54 .1.63 1.73 <</td><td>ENE E ESE SE S SSW SW MSW W MNW NW NNW VRBL 2 2 1 2 2 3 0 0 2 2 2 0 0 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .10 .00 .00 .00 .10 .10 .10 .0</td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ENE E ESE SE SSE SSW SW MSW W 2 2 1 2 2 3 0 0 2 2 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 39 21 35 34 36 41 30 23 38 50 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.40 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.4 .53 41 43 11 24 99 245 227 131 53 .54 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54	ENE E ESE SE S SSW SW MSW W MNW M 2 2 1 2 2 3 0 0 2 2 2 1 10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .11 .10 .10 .15 .10 .10 .14 .00 .00 .10 .10 .10 .11 .10 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.01 1.68 1.63 1.73 1.97 1.44 1.10 1.82 2.44 2.06 1.9 .87 1.97 2.06 .53 1.15 4.75 11.75 10.89 6.28 2.54 </td <td>ENE E EEE SE SSE S SSW SW MSW H MNW NW NWW 2 2 1 2 2 3 0 0 2 2 2 2 0 .10 .10 .05 .10 .10 .14 .00 .00 .11 .14 .11 .10 .18 .2.4 .2.54 .1.63 1.73 <</td> <td>ENE E ESE SE S SSW SW MSW W MNW NW NNW VRBL 2 2 1 2 2 3 0 0 2 2 2 0 0 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .10 .00 .00 .00 .10 .10 .10 .0</td>	ENE E EEE SE SSE S SSW SW MSW H MNW NW NWW 2 2 1 2 2 3 0 0 2 2 2 2 0 .10 .10 .05 .10 .10 .14 .00 .00 .11 .14 .11 .10 .18 .2.4 .2.54 .1.63 1.73 <	ENE E ESE SE S SSW SW MSW W MNW NW NNW VRBL 2 2 1 2 2 3 0 0 2 2 2 0 0 .10 .10 .05 .10 .10 .14 .00 .00 .10 .10 .10 .10 .00 .00 .00 .10 .10 .10 .0

(1)=PERJENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

+

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM OCT91	-DEC91	MET	DATA	THIOL	FREQUENCY	DISTRIBUTION	(220-F001	TOWER)	

STABILITY CLASS A

1

Sector Sector

33.0 FT WIND DATA

CLASS FREQUENCY (PERCENT) # 5.60

WIND DIRECTION FROM

SPEED (NPH)	ы	NNE	NE	ENE	Ε	ESE	SE	SSE	s	ssy	s₩	WSW	w	WNW	NV	NNW	VRBL	TOTAL	
CALM (1) (2)	0 00.	0 .00 .00	0 .00 .00	0 00, 00,	0 .00.	0 00.	0 .00. 00.	0 00.	0 00.	0 00.	0 .00. 00.	0 .00	0 .00 .00	0 00. 00.	0 .00 .00	0 .00 .00	0 00.	0 00.	
C-3 (1) (2)	1 .87 .05	1 .87 .05	0 00. 00.	0 00.	0 00.	0 00.	0 00.	0 00.	0 00.	0 .00 .00	0 00.	0 .00.	0 .00 .00	0 .00.	3 2.61 .15	0 00.	0 .00 .00	4.35 .24	
4-7 (1) (2)	8 6.96 .39	8 6.96 .39	2 1.74 .10	3 2.61 .15	0 00. 00.	8 6.96 .39	.87 .05	00.00.	00. 00.	4 3.48 .19	.87 .05	0 00.	12 10.43 .58	9.57 .54	12 10.43 .58	11 9.57 .54	0 00.	81 70.43 3.94	
8-12 (1) (2)	1 -87 -05	2 1.74 .10	.87 .05	0 00- 00-	0 .00 .00	.87 .05	0 00.	0 .00.	0 .00 .00	3 2.61 .15	0 .00	0 00.	0 .00 .00	5.22 .29	5.22 .29	.87 .05	0 .00.	21 18.26 1.02	
13-18 (1) (2)	0 .00 .00	7 6.09 .34	0 .00 .00	0 -00 -00	0 .00 .00	0 00.00	0 .00	0 .00.	0 .00.	.87 .05	0.00	0 .00.	0 00.00	0 .00 .00	0 .00 .00	0 00.	0 00.	8 6.96 .39	
19-24 (1) (2)	0 C 00.	0 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00. .00	0 .00	0 .00.	0 .00.	0 00.00	0 .00.	0 00. 00.		0 .00 .00	0 .00 .00	0 .00 .00	0 00.	0 .00. 00.	
GT 24 (1) (2)	0 .00.	0 .00 .00	0 .00 .00	0 00. 00.	0 .00.	0 .00.	0 .00. 00.	0 00.	0 .00.	0 .00. 00.	0 00, 00,	0 .00.	0 .00.	0.00.	0 00.	0 .00.	0 .00.	0 .00. 00.	
ALL SPEEDS (1) (2)	10 8.70 .49	18 15.65 .88	3 2.61 .15	3 2.61 .15	0 .00 .00	9 7.83 .44	1 .87 .05	0 .00 .00	0.00.	8 6.5 .39	1 .87 .05	0.00.	10.43	17 14.78 .83		12 10.43 .58	0 .00.	115 100.00 5.60	
(1)=PERCENT	OF AL	L GOOD	OBSER	ATIONS	FOR	THIS PA	GE												

(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ł

1

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER) 33.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 3.12 WIND DIRECTION FROM SPEED(MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW VRBL TOTAL CALM (1) v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	
	C-3 (1) (2)	2 3.13 .10	1.56 .05	0 00.00	0 00. 00	0 00. 00.	0 00. 00	0 .00 .00	0 .00 .00	0 .00 .00	0 00.	0 00. 00.	0 .00	0 .00 .00	0 00.	1 1.56 .05	1 1.56 .05	0 .00.	5 7.81 .24	
	4-7 (1) (2)	0 00. 00.	1 1.56 .05	1 1.56 .05	0 00. 00	1 1.56 .05	1 1.56 .05	0 .00.	0 .00. 00.	3 4.69 .15	4.69 .15	5 7.81 .24	0 00.	0 .00. 00.	6 9.38 .29	2 3.13 .10	2 3.13 .10	0 .00 .00	25 39.06 1.22	
	8-12 (1) (2)	0 .00 .00	9.38 .29	3.13 .10	0 .00. 00.	0 .00.	0 00.	0 00.	0 00.	0 .00.	15.63 .49	2 3.13 .10	1.56 .05	1 1.56 .05	6.25 .19	1 1.56 .05	2 3.13 .10	0 .00.	29 45.31 1.41	
	13-18 (1) (2)	1 1.56 .05	6.25 .19	0 00.00	0 00.	0 00.	0 00.00	0 00.	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	0 00.	0 .00.	0 00.	0 .00 .00	0 00.	5 7.81 .24	
	19-24 (1) (2)	0 .00 .00	0 .00 .00	0 .00. .00	0 .00.	0 .00 .00	00.00	0 .00.	0 .00.	0 00.	0 .00 .00	0 .00 .00	0 .00.	0 .00.	0 00.	0 .00.	0 .00.	0 .00.	0 .00. 00.	
	GT 24 (1) (2)	0 .00 .00	0 .00 .00	0 00.	0 00.	0 .00.	00. 00.	0 .00.	0 00.	0 .00 .00	0 00. 00.	0 .00 .00	0 .00.	0.00.	0 .00.	0 .00.	0 .00.	0 .00.	0 00.	
AL	L SPEEDS (1) (2)	3 4.69 .15		4.69 .15	0 .00.	1 1.56 .05	1 1.56 .05	0 .00.	0 .00 .00	3 4.69 .15	13 20.31 .63		1.56	1 1.56 .05	10 15.63 .49	6.25 .19	5 7.81 .24	0.00	64 100.00 3.12	
(1)=PERCENT	OF AL	6000	OBSERV	ATIONS	FOR 1	TAIS PA	GE												

(2)=PERCE IT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

1

AN

ク

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

0 0

0

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

33.0 FT	WIND D	ATA		STABIL	ITY C	LASS C			CLASS	FREQU	ENCY (PERCEN	* (T	3.65				
							w:	ND DI	RECTIO	N FROM								
SPEED (MPH)	N	NNE	NE	ENE	E	ESE	\$5	SSE	s	SSW	sw	พรพ	¥	WNW	NW	NNW	VRBL	TOTAL
CALM (1) (2)	0 .00 .00	0 00.	0 .00 .00	0 00.	0 .00. 00.	0 .00.	0 00.	0 00.	0 00.00	0 00.	0 00.	0 .00 .00	0 00. 00.	00.00	0 .00.	0.00.	0 00.	0 00.
C-3 (1) (2)	1 1.33 .05	1.33 .05	1.33 .05	0 00.	0 00.	0 .00 .00	0 00.	0 .00	0 .00 .00	00.00.	1.33 .05	0 .00.	0 00.	3 4.00 .15	1 1.33 .05	0 .00.	0 .00 .00	8 10.67 .39
4-7 (1) (2)	0 .00 .00	1.33 .05	0 00. 00.	3 4.00 .15	0 .00 .00	1.33 .05	3 4.00 .15	0.00.	5.33 .19	2.67 .10	3 4.00 .15	1 1.33 .05	2.67 .10	6.67 .24	6 8.00 .29	0 .00 .00	0 .00 .00	31 41.33 1.51
8-12 (1) (2)	1.33 .05	4.00 .15	2 2.67 .10	0 00.	0 .00.	0 .00 .00	00.00	0 00.	0 .00 .00	1.33 .05	2.67 .10	6 8.00 .29	8.00 .29	3 4.00 .15	0 .00.	1 1.33 .05	0 .00.	25 33.33 1.22
13-18 (1) (2)	1.33 .05	8.00 .29	2.67 .10	с 00.	0 00.00	0 00.	0 00.	0 00.	0 00.	0 00.	0 00.	00. 00.	0 00.	1 1.33 .05	0 00.	0 .00.	0 00.	10 13.33 .49
19-24 (1) (2)	0 .00 .00	1.33	0 .00 .00	0 .00.	0 .00 .00	0 .00. 00.	0 .00 .00	0 .00.	0 00. 00	0 .00.	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 00.	0 00.	0 .00. 00.	1.33 .05
GT 24 (1) (2)	0 .00 .00	0 .00 .00	00.00	0 .00 .00	0 .00 .00	0 .00.	0 00.	0 .00.	0 .00 .00	0 .00 .00	0 .00.	0 00.	0 00.	0 .00 .00	0 00.	0 .00.	0 .00.	0 .00 .00
ALL SPEEDS (1) (2)	3 4.00 .15	16.00	5 6.67 .24	4.00 .15	0 00.	1.33 .05	3 4.00 .15	0.00.	5.33 .19	3 4.00 .15	8.00 .29	9.33 .34	8 10.67 .39	12 16.00 .58	7 9.33 .34	1 1.33 .05	0 00.	75 100.00 3.65
(1)=PERCENT (2)=PERCENT																		

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIN DCT91-DEC91	MET CAT	A JOINT	FREQUENCY	DISTRIBUTION	(220-FOOT	TOWER)
---------------------	---------	---------	-----------	--------------	-----------	--------

à

							*	IND DI	RECTIO	N FROM								
RPEED (NPH)		NHE	ME	ENE	ε	ESE	SE	8.SE	8	556	-	WSW	W	WW	NU	NNW	VRBL	TOTAL
CALH (1) (2)	00. 00.	0 00.00	0 .00	00. 00.	0 .00	00.00.	00. 00.	0 .00	0 00.	9 00.	0 .00 .00	00.00	0 .00.	0 .00.	0.00.	0 .00.	0 .00	00.00.
C-3 (1) (2)	.39 .10	3 .59 .15	.79 .19	0.00.	1 .20 .05	0 .00.	.20 .05	.59 .15	0 .00 .00	00.00	.20 .05	2 .39 .10	.98 .24	.59 .15	6 1.18 .29	3 .59 .15	00.00.	34 6.69 1.60
4-7 (1) (2)	.98 .24	.59 .15	1 -20 -05	1.18 .29	5 .98 .24	2 .39 .10	10 1.97 .49	1 .20 .05	16 3.15 .78	12 2.36 .58	16 3.15 .78	13 2.56 -63	28 5.51 1.36	28 5.51 1.36	28 5.51 1.36	6 1.18 .29	0 .00.	180 35.43 8.76
8-12 (1) (2)	.39 .10	35 6.89 1.70	1.77	0 00.	0 00.	0 00.	2 .39 .10	.39 .10	6 1.18 .29	21 4.13 1.02	9 1.77 .44	.79	37 7.28 1.80	40 7.87 1.95	47 9.25 2.29	.79 .19	0 00.	218 42.9 10.6
13-18 (1) (2)	-79 -19	37 7.28 1.80	7 1.38 .34	.39 .10	0 00.	0.00	0 00.	0 .00.	0 .00.	.39 .10	.39 .10	0 00.	10 1.97 .49	3 .59 .15	.39 .10	1 .20 .05	0.00.	71 13.71 3.4
19-24 (1) (2)	0 .00 .00	.98 .24	00, 00,	.20 .05	0 00.	0 00.	0 .00 .00	0 00.	00. 00.	0 .00.	0 .00.	0 .00 .00	0 .00	0 .00.	0 .00.	0 .00.	0 .00.	1.1
GT 24 (1) (2)	0 00. 00.	0 .00	0 00.	0 .00 .00	0 .00.	0 .00.	0 00.	0.00.	0 .00	0 .00	0 .00.	.00 .00	0.00.	.00	0 .00.	0 .00.	0 .00.	.0
ALL SPEEDS (1) (2)	2.56 .63	83 16.34 4.04	21 4.13 1.02	9 1.77 .44	6 1.18 .29	2 .39 .10	13 2.56 .63	6 1.18 .29	22 4.33 1.07	35 6.89 1.70	28 5.51 1.36	19 3.74 .93	80 15.75 3.89	74 14.57 3.60	83 16.34 4.04	14 2.76 .68	0.00.	50 100.0 24.7
(1)=PERCENT (2)=PERCENT																		

	 												-	
33.0 FT W		STABILI	ITT CI	LASS E			CLASS	FREQUENCY	(PER	CENT)	*	38.27		
						v	IND DIR	ECTION	FROM					
PEED (MPH)	NNE	NE	ENE	E	ESE	SE	BSE	8	856 1	RU 14	su	w	SMV	
PATH								1.1						

PILGRIM OCT PI-DECVI MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

CALM (1) (2)	0 .00 .00	0 00, 00,	0 00.	0 00.	00.00.	00. 00.	00. 00.	0.00. 00.	.13 .05	0 00. 00.	0.00.	0 .00 .00	0.00.	0 00.	1 .13 .05	00. 00.	0 00.	2 .25 .10
C-3 (1) (2)	3 .38 .15	.89 .34	3 .38 .15	-13 -05	0 00. 00.	.76 .29	.51 .19	8 1.02 .39	.76 .29	11 1.40 .54	12 1.53 .58	12 1.53 .58	3 .38 .15	1.40 .54	11 1.40 .54	4 -51 -19	0 00.	102 12.98 4.97
4-7 (1) (2)	.89 .34	1.15 .44	8 1.02 .39	3 -38 -15	3 .38 15	10 1.27 .49	21 2.67 1.02	40 5.09 1.95	44 5.60 2.14	35 4.45 1.70	52 6.62 2.53	92 11.70 4.48	78 9.92 3.80	39 4.96 1.90	31 3.94 1.51	17 2.16 .83	0.00.	489 62.21 23.81
8-12 (1) (2)	.25 .10	9 1.15 .44	.64 .24	0 00.	0 00.	0 00. 00	3 .38 .15	0 00. 00	6 .76 .29	45 5.73 2.19	34 4.33 1.66	23 2.93 1.12	20 2.54 .97	11 1.40 .56	11 1.40 .54	2 .25 .10	0.00.	171 21.76 8.33
13-18 (1) (2)	13 .13 .05	7 .89 .34	0 00.00	.25 .10	6 .76 .29	.25 .10	0.00.	0 .00 .00	0 .00	13 -13 -05	0 00.00	00. 00.	0 .00.	0 .00.	0 00.	0 00.	0 00.	19 2.42 .93
19-24 (1) (2)	00. 00.	3 .38 .15	0 03. 00.	0 00.	0 .00 .00	0 00.	.00 .00	0 .00.	0 .00.	0 .00 .00	00.00.	0 .00 .00	.00 .00	00. 00.	00. 00.	0 .00.	0 00.	3 .38 .15
GT 24 (1) (2)	00.00	0 .00.	0 00.	00. 00.	0 .00	00. 00.	0 .00	0 00.	0.00.	00. 00.	00.00	.00	0 .00 .00	0 .00	0 .00 .00	0 .00. 00.	0 .00.	0.00.
ALL SPEEDS (1) (2)	13 1.65 .63	35 4.45 1.70	16 2.04 .78	.76 .29	9 1.15 .46	18 2.29 .88	28 3.56 1.36	48 6.11 2.34	57 7.25 2.78	92 11.70 4.48			101 12.85 4.92	61 7.76 2.97	54 6.87 2.63	23 2.93 1.12	0 00.	786 100.00 38.27
(1)=PERCENT (2)=PERCENT				and a second		THIS PA THIS PA												

C+ CALN (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

NNU VRBL TOTAL

PILGRIM OCT91-DEC91 ME	THIOL ATA JOINT	FREQUENCY DISTRIBUTION	(220-FOOT TOWER)
------------------------	-----------------	------------------------	------------------

	33.0 FT	WIND D	ATA		STABIL	ITY C	ASS F			CLASS	FREQU	ENCY (PERCEN	T) #	20.98				
									IND DI	RECTIO	N FROM								
SPE	ED (MPH)		NHE	NE	ENE	ε	ESE	5 2	SSE		85¥	-	WSW	w	SING	NW	NNW	VRBL	TOTAL
	CALM (1) (2)	.23 .05	0.00.	0 .00 .00	0 .00.	0 .00.	0 .00. 00.	.23	0 .00 .00	2 -46 -10	0 .00 .00	0 .00.	0 .00.	.23 .05	.23 .05	0 .00	.23 .05	00. 00.	7 1.62 .34
	C-3 (1) (2)	.23 .05	.23 .05	1 .23 .05	.93 .19	.23 .05	.23 .05	5 1.16 .24	13 3.02 .63	2.09	11 2.55 -54	13 3.02 .63	21 4.87 1.02	6 1.39 .29	10 2.32 .49	.70 .15	0 00.	0.00.	100 23.20 4.87
	4-7 (1) .2)	10 2.32 .49	3 .70 .15	10 2.32 .49	5 1.16 .24	.23 .05	2 .46 .10	5 1.16 .24	17 3.94 .83	33 7.66 1.61	23 5.34 1.12	37 8 1_0	32 7.42 1.56	9 2.09 .44	.93 .19	5 1.16 .24	2.09	0 00.	205 47.56 9.98
	8-12 (1) (2)	3 .70 .15	2.09	00.00-	00. 00.	00 .00	.23 .05	.93 .19	.46 .10	.23 .05	10 2.32 .49	22 5.10 1.07	12 2.78 .58	.23 .05	2 .46 .10	.23 .05	2 .46 .10	0 .00.	70 16.24 3.41
	13-18 (1) (2)	00. 00.	26 6.03 1.27	12 2.78 .58	0 00.	00. 00.	0 .00.	0 .00.	00. 00.	0 .00 .00	0 00.	a 00,	0 00.	0 00.	0 00.	0 00.	0 .00.	0 .00.	38 8.82 1.85
	19-24 (1) (2)	0 .00 .00	8 1.86 .39	3 .70 .15	0.00.	0 .00 .00	0 .00 .00	0 .00 .00	.00	0 .00	00.00	0 00.	0 00.	0 00.	0.00.	0 00.	0 .00.	0 .00.	11 2.55 .54
	GT 24 (1) (2)	0 .00 .00	.00 .00	0 00. 00.	0 00.00	00. 00.	0 .00	0 .00	.00	0 .00	00.00.	0 00.	0 00.	00. 00.	0 00.	0 00.	0 .00	0 .00.	.00
ALL	SPEEDS (1) (2)		47 10.90 2.29	26 6.03 1.27	2.09	2 .46 .10	.93 .19	15 3.48 .73	32 7.42 1.56	45 10.44 2.19	10.21 2.14	72 16.71 3.51	65 15.08 3.16	17 3.94 .83	17 3.94 .83	2.09	12 2.78	0.00.	431 100.00 20.98

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

No.

C* CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

33.0 FT	WIND 1	ATAG		STABL	LITY C	LASS C			CLASS	FREQ	JENCY	(PERCEN	(T) w	3.65				
							•	IND DI	RECTIC	H FROM	N							
EED (MPH)	8	NNE	NE	ENE	E	ESE	SE	\$\$ E	\$	SSW	su	WSH	v	WW W	NW	RNM	VRBL	TOTAL
CALM (1) (2)	0 00-00-	0 00. 00.	0 .00.	0 .00.	00. 00.	0 .00	0 00.	0 00.	0 .00.	0 .00.	0 00. 00	0 .00 .00	0 00.	0 00.	0 .00 .00	0 .00. 00.	0 .00. 00.	0 .00.
C-3 (1) (2)	0 .00 .00	0.00.	00. 00.	0 00.	00. 00.	0 .00 .00	0 .00.	1.33	1.33 .05	2.67 .10	1.33 .05	1.33 .05	3 4.00 .15	00. 00.	0 .00	0 .00 .00	0 .00.	12.00
4-7 (1) (2)	0 -00 -00	0 .00 .00	00. 00.	0 00.	00.00.	0 .00	1.33 .05	0 .00	1.33 .05	5.33 .19	13 17.33 .63	8 10.67 .39	1.33 .05	00. 00.	0 .00	0 .00 .00	0 .00 .00	21 37.33 1.36
8-12 (1) (2)	1.33 .05	8.00 .29	0 00.	00 .00	0 60.	0 .00 .00	0 00.	0 .00 .00	0 00.	0 00.	11 14.67 .54	5.33	0 00.	0 00. 00.	0 .00 .00	1.33 .05	0 00.	21 30.67 1.11
13-18 (1) (2)	3 00.	20.00 .73	0 00.	0 00.	00. 00.	0 .00 .00	0 00.	0 00.	0 .00. 00.	0 .00.	0 00.	0 00.	0 00.	00. 00.	0.00.	0 00. 00.	0 00.	20.0
19-24 (1) (2)	0 00. 00	0 .00 .00	0 00.00	0 00.	0 00.	0 00.	0 .00	0 00.00	0 .00 .00	0 00.	0 .00 .00	0 00.	0 00.	0 00.	0 00.	0 .00. 00.	0 00.	10. 10.
6T 24 (1) (2)	0 .00.	0 .00 .00	0 00.00	00. 00.	00.00.	0 .00 .00	0 .00	0 00.	0 00.	0 .00.	0 .00 .00	0 00.	00. 00.	0 00.00	0 00.	0 .00. 00.	0 .00.	.00
L SPEEDS (1) (2)	1.33 .05	21 28.00 1.02	0 .00 .00	0 00.	0 00.	00. 00.	1.33 .05	1.33 .05	2.67 .10	8.00 .29	25 33.33 1.22	13 17.33 .63	5.33	00.00.	0 00.	1.33 .05	0 .00.	100.0 3.6

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

A MARK

FILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

33.0 FT WIND DATA STABILITY CLASS ALL

ALL CLASS FREQUENCY (PERCENT) # 100.00

WIND DIRECTION FROM

SPEED (MPH)		NNE	ME	ENE	E	ESE	SE	ESE	. 8	85V	84	WEW		MAN	aru	-	VRBL	TOTAL	
CALR (1) (2)	.05 .05	0 .00	.00	.00 .00	0 00.	.00	.05 .05	.00	.15 .15	00.00	00.00	0 .00	.05	1 .05 .05	.05 .L1	.05 .05	00.00.	-44	
C-3 (1) (2)	10 -49 -49	14 -68 -68	.44	.24 .24	2 .10 .10	.34 .34	10 .49 .49	25 1.22 1.22	16 .78 .78	24 1.17 1.17	28 1.36 1.36	36 1.75 1.75	17 .83 .83	27 1.31 1.31	25 1.22 1.22	.39 .39	0.00. 00.	263 12.80 12.80	
4-7 (1) (2)	30 1.66 1.46	1.22	22 1.07 1.07	20 .97 .97	10 .49 .49	24 1.17 1.17	41 2.00 2.00	58 2.82 2.82	201 4.92 4.92	83 4.04 4.04	127 6.15 6.18	166 7.11 7.11	130 6.33 6.33	93 4.53 4.53	84 4.09 4.09	45 2.19 2.19	00. 00.	1039 50.58 50.58	
8-12 (1) (2)	10	70 3.41 3.41	.93 .93	00. 00.	00. 00.	.10	.44	.19 .19	13 .63 .63	90 4.38 4.38	80 3.89 3.89	50 2.43 2.43	65 3.16 3.16	66 3.21 3.21	66 3.21 3.21	13 .63 .63	0 00.	557 27.12 27.12	
13-18 (1) (2)	7 .34 .34	102 4.97 4.97	21 1.02 1.02	-19 -19	.29 .29	.10 .10	.00	.00	.00 .00	.19 .19	.10 .10	00.00	10 .49 .49	.19 .19	.10 .10	.05 .05	00. 00.	\$65 \$.03 8.03	
19-24 (1) (2)	00. 00.	.83 .83	.15 .15	.05 .05	0 .00	.00 .00	.00 .00	.00 .00	0 .00	.00 .00	0 .00 .00	00. 00.	0 .00 .00	.00	0 .00.	0 00.	0 .00.	21 1.02 1.02	
61 24 (1) (2)	00.00	0 .00.	.00 .00	00.00.	0.00	00. 00.	0 00.	.00 .00	00.00	00. 00.	0 .00 .00	0 .00 .00	.00 .00	00.00	0 .00	.00 .00	0 .00	00.00	
ALL SPEEDS (1) (2)	58 2.82 2.82	228 11.10 11.10	74 3.60 3.60	30 1.46 1.46	18 .88 .88	35 1.70 1.70	61 2.97 2.97	87 4.26 4.24	133 6.48 6.48	201 9.79 9.79	237 11.54 11.54	232 11.30 11.30		191 9.30 9.30	178 8.67 8.67	68 3.31 3.31	0 .00.	2054	
(1)=PERCENT	OF ALL	0000	OHSER	ATIONS	FOR 1	HIS P	GE												

(2)=PERCENT OF ALL GOOD DESERVATIONS FOR THIS PERIOD

F. CALR (JIND SPEED LESS THAN OR EDUAL TO .95 MPH)

S-AA 3JBAT

FOR THE 220 FT. LEVEL OF THE 220 FT, TOWER DISTRIBUTION OF WIND DIRECTIONS AND SPEEDS

BIABILITY CLASS A ATAG CMIN 19 0.055 FLADER AULY - SEPST MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOMER)

(2) = bercent OF ALL GOOD OBSERVATIONS FOR THIS PERIOD (1)=EEKCENI OF ALL GOOD OBSERVATIONS FOR THIS PAGE

CLASS FREQUENCY (PERCENT) # 13..9

RIND DISECTION FROM

13.99 00* 78"1 27" 70"1 99* 1.27 1.04 1.13 68" *34 14" 54" 76" 08" 2.17 (2) 00. 60* 17"1 17.7 19" 65.5 100'00 00* 3.07 13.13 11.7 80.8 60'6 09'9 00* 89"1 \$0'5 \$1.9 21'5 67.51 (1) WIT SHEEDS 262 0 65 ð 22 75 72 22 22 61 0 z 51 91 50 12 99 s 61." 00. 75* 00* 00* 00* 00" 50* 00* 00* 00* 00* 00* 00* 00* (2) 001 001 00" 10'1 00" 1"22 00* 00* 00* 00* 78" 00* 00* 00* 00* 00* 00* 00 ° 00* 00. 00* (1) 0 0 0 0 0 Ô. 0 0 0 0 0 0 92 19 7 đ Ö. 0 61. 76* (2) 00* \$0° 101 00* 00* 60* 00' 00. \$0. 00. 54. 71 00 * 00. 00* 00' \$1.9 75" 00* 58"1 00* 75." 00* 00* 3'03 10.1 00* 00* 00* 00* 00* 00* 00* 19" (1) 50 0 0 0 Ó 0 0 0 0 2 10-54 9 ð ð. ð 17* 3.63 00* 15" 75" 85. 25° 00* 00* \$0* \$0* 85. (2) 82. 25 92" 00* 00° 00* 00. 00* \$2'62 70.7 5.69 12.2 2,02 21.20 5.69 00* 00* 00* (1) 10.1 3.70 00* 98" 78" 20.5 81-21 0 0 0 14 0 21 01 11 0 ٤ 94°5 92°27 27.27 (2) 00* 14" 50 25' 95' 018 25' 22 61 00 40. 61" 22. 1.2 68" 00* \$0'5 78." 21'% 10.1 21.8 3.70 5.36 1"22 19" 58"1 5'29 10'1 07.9 (1) 00. 82.4 8-15 121 0 22 ð 2 01 46 51 64 14 51 72* \$0* 60* 00* \$0* 72* 27" 19" 58* (2) 3 '50 72" 60" 00* 00* 50* 00 92. 00' 19. 2.02 90'9 55'60 89.1 89.1 00* 00° 00." 2'02 00* 19" 75" 00* 72" 78." 89.1 82.4 (1) 89 Ô. 0 Ċ. ż 0 0 ŝ 81 1.4 ž 成 (2) 00* 00 * 00* \$0* \$0* 00* 00° 1.3" 00* 00* 06* 00" 00" 00* 00* 00* 00* 00* 00* 00* 00." 00* 00* 00* 00* 00* 00* 00* 00" 00* 00* 00* 78" (1) 00* 00* 7%." 0 0 8-3 0 0 0 Ø. 0 ð. ð. ł. 0 0 0 Ø. 0 0 Ø. 00* 00* 00* 00* 00* 00* 00* (2) 00* 00* 00' 00* 00* 00* 00" 00" 00. 00* 00* 00* 00. 00* 00* 00* 00* 00* 00* 00* 00* 00* 00" (1) 00* 00* 00* 00." 00* 00* EVEN 0 0 ð 0 Q. ð 0 0 0 0 0 0 0 0 0 ä 0 Ú. İNM H SPEED (MPR) 333 3 ENE 314 TEXA ANN ASA 753 8 333 33 **JATOT** MA MMM A 118

CH CALH (WIND SPEED LESS INAN OR EQUAL TO . 95 MPH)

31 01 48

R

PILGRIN	JUL 91-	SCP91	MET DA	TA JOI	NT FRE	OUENCY	DISTR	BUTI	(22)	- FOOT	TOWER)						
220.0 FT	WIND D	ATA		STADI	LITY C	LASS .			CLASS	FREQ	JENCY (PERCE	NT) #	3.49				
								IND D	IRECTIO	DN FRO	6							
SPEED (MPH)		MNE	ME	ENE		ESE	52	85E		854	84	พรม		WWW	-	NNU	VRBL	TOTAL
(1) (2)	00.00	.00	.00	00.00.	0 .00	0 .00 .00	0 00.	00.00.	0 .00 .00	00.00	.00 .00	00.00	0 .00 .00	.00 .00	0 00.	00.00.	0 .00	00.00
C-3 (1) (2)	.00	00.00	.00	00.00.	00. 00.	0 .00.	0 .00	00.00	.00	0 .00	1.35	0 .00 .00	.00	0 .00	0 .00.	0 .00.	0 .00.	1.35 .05
4-7 (1) (2)	4.05 .14	1.35	2.70	3 4.05 -14	2.70	00.00.	0 .00 .00	0 00.00	.00	.00 .00	0 .00	00.00	.00 .00	2.70	4.05 .94	1.35 .05	0 00.	17 22.97 .80
8-12 (1) (2)	00. 00	0 00.	1.35	00.00.	0 00.	5.41	1.35 .05	1.35 .05	4.05 .14	1.35	5 6.76 .24	8.11 .28	6.76 -24	1.35 .05	2.70 .09	2.70	0 00.	32 43.24 1.51
13-18 (1) (2)	.00	00.00	0 00.	0 .00	0 .00 .00	00.00	00.00.	00. 00.	8.11 .23	9.46 .33	2.70	0 .00.	6.76 -24	1.35	0 .00	00.00	0 .00 .00	21 28.38 .99
19-24 (1) (2)	.00 .00	00.00	.00 .00	0 .00 .00	.00 .00	0 00.00	0 .00	00. 00.	0 00.00	1.35	0 .00 .00	.00	1.35 .05	0 00.	0 .00	00.00.	0 00.	2.70 .09
67 24 (1) (2)	0 00.00	0 00. 00	00.00.	0 .00	0 .00 .00	00.00.	0 00.00	0 .00.	.00 .00	0 .00	0 .00.	00.00	.00 .00	0 .00	0 .00	1.35 .05	00. 00.	1.35 .05
ALL SPEEDS (1) (2)	3 4.05 .14	1.35 .05	4.05 .14	4.05 .14	2.70 .09	5.41 .19	1.35 .05	1 1.35 .05	12.16 .42	9 12.16 .42	8 10.81 .38	6 8.11 .28	11 14.86 .52	5.41 .19	6.76 .24	5.41 .19	0 .00	74 100.00 3.49
(1)*PERCENT (2)*PERCENT			DESERV	1.1.1 2 2011 20		HIS PA												

C. CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILORIM JULVI-SEP91 M	T DATA JOINT	FREQUENCY I	DISTRIBUTION	(220-FOOT	TOWER)
-----------------------	--------------	-------------	--------------	-----------	--------

220.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) # 2.50

WIND DIRECTION FROM

SPEED (MPH)		ENE	ME	ENE		ESE	88	858		-	84	WEW	v	WHW		BERG	VRBL	TOTAL	
CALM (1) (2)	.00 .00	.00	.00 .00	00. 00.	.00	.00	.00	.00	.00 .00	.00 .00	.00 .00	.00	.00 .00	.00	.00	.00 .00	0 .00	0 .00 .00	
C-3 (1) (2)	.00 .00	0.00. 00.	.00 .00	.00 .00	.00	18	.00 .00	0 .00 .00	.00	.00	.00	.00 .00	.00	1.89 .05	.00	0 .00.	.00	1.89 .05	
4-7 (1) (2)	1.89 .05	3.77 .09	1.89 .05	1.89 -05	3.77 .09	0 00.	0 .00 .00	0 .10 .00	00. 00.	.00 .00	.00	0. 00.	4 7.55 .19	0 03.	1.89 .05	1.89 .05	0 .00	13 24.53 .61	
8-12 (1) (2)	0 .00 .00	1.89	3.77	0 00.	.00	9.43 .24	.00 .00	0 .00 .00	5.66 .14	3.97	3.77	5.66 .14	1.89	1.89 .05	1.89	3.77 .09	0 .00	23 43.40 1.08	
13-18 (1) (2)	.00 .00	00.00	1.89	0 .00 .00	.00	0 00.	.00 .00	.00	\$.43 .24	3.77 .09	9.43 .24	0 00.	.00 .00	1.89 .05	.00	0 00.	0 00.	14 26.42 .66	
19-24 (1) (2)	.00 .00	.00	0 .00 .*.0	00. 00.	.00	0 00.	0 .00	0 00.	1.89	1.89	0 .00.	0 .00 .00	0 .00.	0 .00.	0 .00 .00	0 .00 .00	00.00	3.77 .09	
67 24 (1) (2)	.00 .00	0 .00 .00	.00 .00	00. 00.	0 .00 .00	0 00.	0 .00	00. 00.	00 00	0 .00	0.00. 00.	0 .00.	0 .00	0 .00	0.00.	00.00.	0 .00 .00	0 00.	
ALL SPEEDS (1) (2)	1.89	5.66 .14	7.55 .19	1.89	3.77 .09	9.43 .24	0 00.00	00.00	16.18	9.43 -24	7 13.21 .33	3 5.66 .16	\$ 9.43 .24	3 5.66 .14	3.77	3 5.66 .14	0.00.	53 100.00 2.50	
(1)=PERCENT (2)=PERCENT	OF ALL	6000 6000		ATIONS	2.300	THIS PA THIS PE				C+ C4		ND SEPE	ED LES	S THAN	-		05	MDUA	

C* CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

		ATA				CLASS I												
							. '	IND D	RECTI	ON FROM	٩							
PEED (MPH)	8	NNE	ME	ENE	. 8	ESE	SE	\$\$E	5	85V	84	MSV	W	ww	-	NNW	VRBL	TOTAL
CALM (1) (2)	.00 .00	00.00	.00 .00	0 00-00-	.00	.00 .00	0 .00 .00	.00	.00 .00	.00	.00 .00	.00	.00	0 .00	.00	.00 .00	0 .00 .00	0 .00.
C-3 (1) (2)	00.00	.33 .05	3 1.00 .14	3 1.00 .14	00.00	.00	00.00	00. 00.	.00 .00	.00	00. 00.	.33 .05	.00 .00	.33 .05	-33 -05	.33 .05	0 .00	3.67
6-7 (1) (2)	5 1.67 .24	4 1.33 .19	2.00	2.00 .28	9 3.00 .42	1.67 .24	3 1.00 .14	.33 .05	3 1.00 .14	3 1.00 .14	.33 .05	0 .00	.33 .05	7 2.33 .33	3 1.00 .14	.67 .09	0.00.	19.67 2.78
8-12 (1) (2)	2.67 .38	.33 .05	1.67 .24	.67 .09	2.00 .28	5.00 .71	17 5.67 .80	4 1.35 .19	5.33	4.00 .57	1.67 .24	9 3.00 .42	.67 .09	5 1.67 .24	0 .00	.33 .05	0 .00.	108 36.00 5.09
13-18 (1) (2)	00. 00.	2 .67 .09	00. 00.	0 .00 .00	00. 00.	.67 .09	0.00. 00.	.67 .09	24 8.00 1.13	40 13.33 1.88	4.33 .61	1.33	7 2.33 .33	.67 .09	.33 .05	2 -67 -09	0 .00.	99 33.00 4.66
19-24 (1) (2)	00. 00.	0 .00	00.00.	0 00.00	0 .00	00. 00.	0 00.00	0 00.	.00	12 6.00 .57	0 00.	.67 .09	0 .00	.33 .05	0 .00 .00	3 1.00 .14	0 .00 .00	18 6.00 .85
61 24 (1) (2)	00. 00.	0 .00 .00	00. 00.	00.00.	0 .00.	0 .00.	0 .00	0 .00.	0 .00 .00	0 .00.	0 .00	0 .00	0 .00	0 .00	.33 .05	4 1.33 .19	0 00.	5 1.67 .24
LL SPEEDS (1) (2)	13 4.33 .61	8 2.67 .38	14 4.67 -66	11 3.67 _52	15 5.00 .71	22 7.33 1.04	20 6.67 .94	2.33 .33	43 14.33 2.03	67 22.33 3.16	6.33 -89	5.33 .75	10 3.33 .47	5.33 .75	6 2.00 .28	13 4.33 .61	0.00.	300 100.00 14.13

E all

PILGRIM JUL91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

40

220.0 FT	WIND DA	ATA		STABI	LITY C	LASS E			CLASS	FREQU	ENCY (PERCEN	T) *	35.99				
								IND DI	RECTIO	N FROM								
SPEED (MPH)		NNE	NE	ENE	ε	ESE	SE	SSE	s	ssv	su	WSW	w	มหม	NW	NHW	VRBL	TOTAL
CALH (1) (2	0 .00.	0 .00	0 00.	0 00.	0 .00	.13 .05	0 .00	0 .00	0 .00 .00	0 00.	0 .00	0 .00 .00	00.00	0 .00 .00	0 .00 .00	.13 .05	0 .00.	2 .26 .09
C-3 (1) (2)	2 .26 .09	2 .26 .09	.39 .14	.65 .24	.13 .05	.13 .05	.00 .00	.13 .05	0 .00 .00	2 26 .09	2 .26 .09	.13 .05	.13 .05	.39 .14	- 13 - 05	, 13 , 05	0 .00.	26 3.40 1.22
4-7 (1) (2)	2 .26 .09	.52 .19	.79 .28	10 1.31 .47	2.0% .75	14 1.83 .66	13 1.70 .61	.39 .14	.79 .28	.52 .19	.52 .19	.52 .19	.52 .19	.65 .24	.65 .24	.65 .24	0 .00	105 13.74 4.95
B-12 (1) (2)	.52 .19	12 1.57 .57	10 1.31 .47	11 1.44 .52	15 1.96 .71	2.75	17 2.23 .80	10 1.31 .47	19 2.49 .89	15 1.96 .71	11 1.44 .52	12 1.57 .57	10 1.31 .47	22 2.88 1.04	.79 .28	10 1.31 .47	0 00.	205 26.83 9.66
13-18 (1) (2)	.52 .19	39 .39 .14	.39 .14	0 00.	2 65. 90.	9 1.18 .42	2.09	14 1.83 .66	29 3.80 1.37	84 10.99 3.96	30 3.93 1.41	30 3.93 1.41	22 2.88 1.04	9 1.18 .42	10 1.31 .47	.52	0 .00 .00	269 35.21 12.67
19-24 (1) (2)	.39 .14	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	0 .00.	13 .13 .05	3 .39 .14	5 .65 .24	95 12.43 4.47	12 1.57 .57	1 .13 .05	2 .26 .09	1 .13 .05	16 2.09 .75	2 .26 .09	0 .00	141 18.46 6.64
GT 24 (1) (2)	1 - 13 - 05	0 .00.	0 .00 .00	0 00.	0 .00 .00	0 .00	0 .00 .00	,13 ,05	0 00.		.13 .05	.13 .05	0 .00 .00	1 .13 .05	8 1.05 .38	3 .39 .14	0 .00.	2.09 .75
ALL SPEEDS (1) (2)	2.09 .75	2.75	22 2.88 1.04	26 3.40 1.22	34 4.45 1.60	6. ~ 2 2.17	47 6.15 2.21	32 4.19 1.51	59 7.72 2.78	26.18	60 7.05 2.83	49 6.41 2.31	39 5.10 1.84	41 5.37 1.93	46 6.02 2.17	26 3.40 1.22	0.00	764 100.00 35.99
(1)=PERCENT (2)=PERCENT																		

C# CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

	WIND DA			errors		choe r					ENCY (CRUEN		66.10					
							¥	IND D1	RECTIO	N FROM									
PEED (MPH)		NNE	NE	ENE	E	ESE	SE	SSE	s	ssy	SW	WSW	W	WHW	NV	NNW	VRBL	TOTAL	
CALM (1) (2)	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 00.	00.00	0 .00	00 .00	00.00	00.00.	00.00	00.00.	0 .00.	.21 .05	0 00.00	.21 .05	
C-3 (1) (2)	.41 .09	0 .00 .00	3 .62 .14	0 .00 .00	1 .21 .05	.21 .05	.21 .05	.21 .05	0 .00. 00.	0 .00 .00	00.00	1 .21 .05	0 .00.	00.00	2 .41 .09	2 .41 .09	0 .00.	14 2.90 .66	
4-7 (1) (2)	.83 .19	2 .41 .09	3 .62 .14	6 1.24 .28	2 .41 .09	5 1.04 .24	1.04 .24	.62 .14	5 1.04 .24	.83 .19	6 1.24 .28	.83 .19	.62 .14	.83 .19	0 1.87 .42	8 1.66 .38	0 .00	73 15.15 3.44	
8-12 (1) (2)	5 1.04 .24	2 .41 .09	.21 .05	0 00.	1 .21 .05	8 1.66 .38	1.04 .24	.62 .14	9 1.87 .42	6 1.24 .28	.83 .19	5 1.04 .24	10 2.07 .47	1.87 .42	17 3.53 .80	10 2.07 .47	00. 00.	95 19.71 4.47	
13-18 (1) (2)	20 4.15 .94	5 1.04 .24	0 .00	.21 .05	.62 .14	2 .41 .09	8 1.66 .38	2.57	9 1.87 .42	24 4.98 1.13	31 6.43 1.46	28 5.81 1.32	25 5.19 1.18	4.36 .99	3.11 .71	2.28 .52	0 .00.	213 44.19 10.03	
19-24 (1) (2)	1 .21 .05	0 .00 .00	0 .00 .00	0 .00 .00	1 .21 .05	,21 .05	5 1.04 .24	1.04 .24	2 .41 .09	46 9.54 2.17	2.28 .52	3 .62 .14	1 .21 .05	0 00.	2 .41 .09	.62 .14	0.00.	81 16.80 3.82	
GT 24 (1) (2)	0 00.	0 .00 .00	0 00.	0 00.	.00	0 .00	.21 .05	.21 .05	.21 .05	0 .00	0 00.	2 -41 -09	0 .00.	0 .00.	0 .00	0 .00 .00	0 .00	5 1.04 .24	
LL SPEEDS (1) (2)	32 6.64 1.51	9 1.87 .42	7 1.45 .33	7 1.45 .33	8 1.66 .38	17 3.53 .80	25 5.19 1.18	23 4.77 1.08	26 5.39 1.22	80 16.60 3.77	52 10.79 2.45	43 8.92 2.03	39 8.09 1.84	34 7.05 1.60	45 9.34 2.12	35 7.26 1.65	0.00	482 100.00 22.70	

ð

PILGRIM	JULP1-	SEP91	HET DA	IQE AT	NT FRE	QUENCY	DISTR	IBUTIC	W (22)	0-F001	TOWER)						
220.0 FT	WIND D	ATA		STABI	LITY C	LASS D	1		CLAS	S FREQ	JENCY	(PERCE	NT) =	7.21				
								IND DI	RECTI	ON FROM	4							
SPEED (NPH)		NNE	NE	ENE	E	ESE	\$E	SSE	\$	ssv	su	ษรษ	W	WNW	-	NNW	VREL	TOTAL
CALM (1) (2)	.65 .05	0 .00 .00	00.00.	0 .00 .00	0 .00	0 .00 .00	0 00.	0 .00 .00	0 .00 .00	0 .00 .00	.65 .05	0 .00 .00	0 .00 .00	0 .00 .00	.00 .00	0 .00.	0 .00 .00	1.31 .09
C-3 (1) (2)	0 .00 .00	.65 .05	.65 .05	0 .00 .00	.65 .05	0 .00 .00	0 .00 .00	.65 .05	-65 -05	.65 .05	00.00	0 00.	0 .00	.65 .05	.65 .05	.65 .05	0 .00.	9 5.88 .42
4-7 (1) (2)	.65 .05	2 1.31 .09	0 .00 .00	0 .00 .00	2 1.31 .09	3 1.96 .14	1.31	.65 .05	1.31	0 .00 .00	2.61	2 1.31 .09	2 1.31 .09	0 .0(` .00	2.61 .19	.65 .05	00,00	26 16.99 1.22
8-12 (1) (2)	.00 .00	0 .00	0 .00 .00	0 .00	0 .00.	0 .00	0 .00.	2 1.31 .09	2.61 .19	9.15 .66	2.61	9 5.88 .42	7.19	1.96 .14	3.27 .24	.65 .05	0 00.	53 34.64 2.50
13-18 (1) (2)	3 1.96 .14	0.00.	0 00.00	0 00.	0 .00	0 .00 .00	0 .00	0 .00.	00.00	2.61 .19	9.80 .71	13 8.50 .61	5 3.27 .24	3 1.96 .14	1 .65 .05	00.00	0 .00 .00	44 28.76 2.07
19-24 (1) (2)	2.61 .19	0 .00 .00	0 .00.	0 .00	0 .00.	.00 .00	0 .00	0 .00 .00	0 .00 .00	3 1.96 .14	3.92 .28	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	.65 .05	0 .00	14 9.15 .66
GT 24 (1) (2)	0 .00 .00	0 00. 00.	0 .00 .00	1 .65 .05	2 1.31 .09	.65 .05	0 .00 .00	1 .65 .05	00.00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	3.27 .24
ALL SPEEDS (1) (2)	9 5.88 .42	3 1.96 .14	.65 .05	1 .65 .05	5 3.27 .24	2.61	2 1.31 .09	3.27 .24	7 4.58 .33	22 14.38 1.04	30 19.61 1.41	24 15.69 1.13	18 11.76 .85	7 4.58 .33	11 7.19 .52	4 2.61 .19	0 .00.	153 100.00 7.21
(1)=PERCENT (2)=PERCENT			OBSERV							C* C/	ALM CW	IND SPI	EED LES	IS THAN	OR EG	ILAL TO	.95	мрн)

PILGRIM JUL 91-SEP91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

220.0 FT WIND DATA S						17Y C	LASS A	LL		CLASS	FREQU	ENCY (PERCEN	1) = 1	00.00					
								×	IND D1	RECTIO	N FROM									
SPEED	(MPH)		NNE	NE	ENE	ε	ESE	SE	SSE		ssy	sw	WSW	w	มพม	NW	-	VRBL	TOTAL	
	CALH (1) (2)	.05 .05	0 .00 .00	0 00:00	0 00.	0 .00.	.05 .05	0 00.00	0 .00 .00	00.00	0 00.00	.05 .05	0 .00	0 .00 .00	.00 .00	0 .00 .00	2 .09 .09	00. 00.	.24 .24	
	C-3 (1) (2)	.24 .24	.19 .19	10 .47 .47	8 .38 .38	3 :14 :14	2 90.	.05 .05	3 . 14 . 14	.05 .05	3 .14 .14	.14 .14	3 - 14 - 14	.05 .05	.28 .28	.24 .24	.24 .24	0 .00 .00	63 2.97 2.97	
	4-7 (1) (2)	34 1.60 1.60	28 1.32 1.32	24 1,13 1,13	35 1.65 1.65	38 1.79 1.79	28 1.32 1.32	23 1.08 1.08	.38 .38	17 .80 .80	13 -61 -61	15 -71 -71	10 .47 .47	.71 .71	20 .94 .94	30 1.41 1.41	23 1.08 1.08	0 .00 .00	361 17.00 17.00	
	8-12 (1) (2)	36 1.70 1.70	19 .59 .89	32 1.51 1.51	20 .94 .94	32 1.51 1.51	57 2.68 2.68	42 1.98 1.98	20 .94 .94	58 2.73 2.73	57 2.68 2.68	42 1.98 1.98	61 2.87 2.87	42 1.98 1.98	52 2.45 2.45	32 1.51 1.51	41 1.93 1.93	0 .00.	643 30.29 30.29	
	13-18 (1) (2)	33 1.55 1.55	11 .52 .52	5 .24 .24	.05 .05	5 -24 -24	13 .61 .61	24 1.13 1.13	26 1.22 1.22	84 3.96 3.96	169 7.96 7.96	107 5.04 5.04	81 3.82 3.82	74 3,49 3,49	45 2.12 2.12	30 1.41 1.41	29 1.37 1.37	0 .00 .00	737 34.72 34.72	
	19-24 (1) (2)	10 .47 .47	0 00.00	0 .00 .00	00.00.	.05 .05	.05 .05	.28 .28	8 .38 .38	11 .52 .52	167 7.87 7.87	29 1.37 1.37	7 .33 .33	.19 .19	3 .14 .14	18 .85 .85	13 .61 .61	0 .00.	278 13.09 13.09	
	GT 24 (1) (2)	. 05 . 05	0 00.	0 .00 .00	.05 .05	2 .09 .09	.05 .05	.05 .05	.14 .14	.05 .05	.05 .05	.05 .05	3 .14 .14	0 .00.	1 .05 .05	.42 .42	11 .52 .52	0.00	36 1.70 1.70	
ALL S	(1) (2)	120 5.65 5.65	62 2.92 2.92		65 3.06 3.06	81 3.82 3.82	103 4.85 4.85	97 4.57 4.57	68 3.20 3.20		410 19.31 19.31	198 9.33 9.33	165 7.77 7.77	136 6.41 6.41	127 5.98 5.98	124 5.84 5.84	124 5.84 5.84	0 .00 .00	2123 100.00 100.00	
		OF ALL																		

C* CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM	00191-1	DECPI	MET DA	A JOIN	IT FRE	QUENCY	DISTR	BUTIC	N (220	- FOOT	TOWER)							
220.0 FT	WIND D	ATA		STABIL	ITY C	LASS A			CLASS	FREQU	ENCY (PERCEI	(1) #	5.80				
							W	IND DI	RECTIO	N FROM								
SPEED (MPH)		NNE	NE	ENE	ŧ	ESE	SE	SSE	\$	ssv	SW	พรม	v	ษพม	HW	NNW	VRBL	TOTAL
CALM (1) (2)	0 00.	0 .00	0 00.	0 00. 00.	0 .00	0 00.00	00.00.	0 .00 .00	0 .00 .00	0 00.00	0 .00 .00	0 .00. 00.	.00 .00	0 - 00 - 00	.00 .00	0 00.00	00. 00.	0 .00 .00
C-3 (1) (2)	0 .00 .00	0 .00 .00	0 00.	0 00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	0 .00	00. 00.	0 .00 .00	0 .00 .00
4-7 (1) (2)	2.61 .15	1 .87 .05	.87 .05	2 1.74 .10	0 .00	0 .00 .00	0 00.00	0 .00	0 00.00	0 00.	0 .00 .00	0 00. 00	0 .00 .00	.87 .05	4 3.48 .20	.87 .05	0 00.	13 11.30 .66
8-12 (1) (2)	5.22 .30	0 .00	0 .00.	0 00.	.87 .05	.87 .05	0 ,00,	0 .00	3 2.61 .15	.87 .05	.87 .05	2 1.74 .10	3.48 .20	4.35 .25	2 1.74 .10	2.61 .15	00 .00	29 25,22 1,46
13-18 (1) (2)	0 00.	0 .00	0 00.	0 00.	0 .00	7 6.09 .35	.87 .05	0 .00 .00	0 .00.	0 .00 .00	0 .00 .00	2 1.74 .10	13 11.30 .66	6.09 .35	6.09 .35	8 6.96 .40	0 .00 .00	45 39.13 2.27
19-24 (1) (2)	0 00.	2 1.74 .10	0 .00 .00	0 .00 .00	0 .00	.87 .05	00.00	0 .00 .00	1 .87 .05	2 1.74 .10	0 .00 .00	0 .00 .00	1.74 .10	2.61 .15	2 1.74 .10	3 2.61 .15	0 .00 .00	16 13.91 .81
GT 24 (1) (2)	8 6.95 .40	0 00.00	0 .00 .00	0 00.	0 .00 .00	00.00.	00.00	0 .00 .00	0 .00 .00	.87 .05	0 .00 .00	0.00	0 .00 .00	2 1.74 .10	1 .87 .05	0 .00 .00	0 .00 .00	12 10.43 .61
ALL SPEEDS (1) (2)	17 14.78 .86	3 2.61 .15	.87 .05	2 1.76 .10	.87 .05	9 7.83 .45	.87 .05	0 .00 .00	3.48 .20	3.48 .20	1 .87 .05	4 3.48 .20	19 16.52 .96	18 15.65 .91	16 13.91 .81	13.04 .76	0 .00 .00	115 100.00 5.80
(1)=PERCENT (2)=PERCENT																		

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

							v	IND DI	RECTIO	N FROM								
SPEED (MPH)		NNE	NE	ENE	£	ESE	SE	SSE	5	ssu	sw	WSW	W	LINU	NW	NNW	VRBL	TOTAL
CALH (1) (2)	0 .00 .00	0 .00 .00	0 00.00	0 ,00,00,00	0 .00 .00	0 00.00	0 .00 .00	0 00.	0 .00	0 .00 .00	0 .00 .00	0 .00	0.00	00. 00.	0 00.	00 00	0 00.00	0 .00 .00
C-3 (1) (2)	0 00.	0 .00	0 ,00 ,00	0 .00.	0 .00 .00	00.00	0 .00	0 .00	0 .00 .00	0 .00 .00	0 .00	0 00.	0 .00 .00	00.00	0 .00 .00	0 .00	0 00.	0 00.00
4.7 (1) (2)	1.56	0 .00 .00	0 .00 .00	0 .00 .00	0 .00	0 00.	0 .00	0 .00	0 00.	0 00.	0 00.	0 .00	0 .00 .00	1 1.56 .05	3.13	3.13 .10	0 .00 .00	9.38 .30
8-12 (1) (2)	0 .00 .00	1 1.56 .05	0 00,00	0 00.	1 1.56 .05	00.00	0 .00	0 00.	4.69 .15	1.56 .05	4.69 .15	0 00.	0 00.	3.13 .10	1.56 .05	1.56 .05	0 .00 .00	13 20.31 .66
13-18 (1) (2)	4.69 .15	0 .00 .00	0 .00 .00	0 00.	0 .00 .00	1 1.56 .05	00 .00	3.13 .10	3.13	4.69 .15	2 3.13 .10	1 1.56 .05	3.13 .10	6.25 .20	1.56 .05	0.00.	00.00	21 71.81 1.06
19-24 (1) (2)	1.56 .05	6 9.38 .30	0 .00.	0 .00.	0 .00.	0 00.	0 .00	0 00.	1.56 .05	7 10.94 .35	0 .00.	0 .00 .00	1 1.56 .05	0 .00 .00	1 1.56 .05	0 .00.	0 .00.	17 26.56 .86
GT 24 (1) (2)	6.25 .20	0 .00 .00	0 00.	0. 00,00	0 .00.	00. 00.	0 .00	0 .00.	.00	.00 .00	0 .00.	0 .00 .00	0 .00 .00	3.13 .10	1 1.56 .05	0 .00 .00	0 .00 .00	7 10.94 .35
ALL SPEEDS (1) (2)	9 14.06 .45	7 10.94 .35	0 00. 00	0 .00 .00	1 1.56 .05	1.56 .05	.00	2 3.13 .10	9.38 .30	17.19 .55	5 7.81 .25	1 1.56 .05	3 4.69 .15	9 14.06 .45	9.38 .30	3 4.69 .15	0 .00	64 100.00 3.23
(1)=PERCENT (2)=PERCENT										C* D	LM (W	IND SPI	EED LE	SS THAN	ORE	QUAL TO	.95	мрнэ

40 of 48

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

	220.0 FT	WIND DA	ATA		STABL	ITY C	LASS C			CLASS	FREQU	ENCY (PERCEN	1) * .	3.63					
								w)	ND DI	RECTIO	N FROM									
	SPEED (MPH)		NNE	NE	5NE	E	ESE	SE	SSE	s	ssv	sy	พรพ	w	WWW	NV	NNW	VRBL	TOTAL	
	CALM (1) (2)	0 .00 .00	0 .00 .00	0 .00	0 00.	0 .00	0.00.	0 00.	0 00. 00	0 .00 .00	0 .00 .00	0 .00 .00	00.00	0 00.	0 00.	0 00.	0 .00	0 .00.	0 .00 .00	
	C-3 (1) (2)	1.39 .05	0 00.	0 00, 00,	0 00.	0 00.	0 00.	0 00.	0 .00 .00	00 .00	0 00. 00.	0 .00.	0 .00	0 .00 .00	0 .00 .00	00.00	0 .00	0 .00 .00	1 1.39 .05	
	4-7 (1) (2)	1.39 .05	0 .00.	1.39	1.39 .05	0 .00 .00	00.00	0 .00 .00	0 .00 .00	00.00	0 .00 .00	1.39 .05	0 .00 .00	1 1.39 .05	4.17 .15	4.17 .15	0 00.	0 .00 .00	11 15.28 .55	
	8-12 (1) (2)	0 00. 00.	0 .00.	0 00.	0 00.	2.78 .10	1.39 .05	0.00.	0 .00 .00	6.94 .25	1.39 .05	2.78 .10	0 .00 .00	2.78 .10	4.17 .15	2 2.78 .10	0 .00 .00	0 .00.	18 25.00 .91	
	13-18 (1) (2)	1.39 .05	0 00.	0 .00 .00	0 .00 .00	0.00	1.39 .05	2.78 .10	0 .00 .00	1 1.39 .05	2.78 .10	2.78 .10	8.33 .30	2.78 .10	0 .00 .00	2 2.78 .10	0 .00.	0 .00.	19 26.39 .96	
	19-24 (1) (2)	0 .00 .00	4.17 .15	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	00. 00.	0 .00 .00	0 .00.	1.39 .05	.00 .00	4.17 .15	0 00.	1.39 .05	1 1.39 .05	1.39 .05	0.00.	10 13.89 .50	
	CT 24 (1) (2)	9.72 -35	2.78 .10		0 00. 00.	0 00. 00	.00 .00	0 00. 00.	0 00.	0 .00 .00	0 .00 .00	0 .00	1.39 .05	1.39 .05	1 1.39 .05	0 .00	1.39 .05	0 .00	13 18.06 .66	
	ALL SPEEDS (1) (2)	10 13.89 .50	6.94 .25	1 1.39 .05	1.39 .05	2.78 .10		2.78 .10	00. 00.	8.33 .30	5.56 .20	6.94 -25	10 13.89 .50	8.33 .30	8 11.11 .40	8 11.11 .40	2 2.78 .10	0 .00 .00	72 100.00 3.63	
+	(1)=PERCENT (2)=PERCENT										C* C/	ILN CW	IND SPI	EED LE	SS THA	N OR EG	auril Ti	0.95	мрно	

FILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

220.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 23.66

8

								IND D1	RECTIO	N FROM								
SPEED (MPH)	н	NNE	NE	ENE	ŧ	ESE	SE	SSE		SSM	sv	WSW		มพม	NW	NNW	VRBL	LATOT
CALH (1) (2)	0 00.	0 .00 .00	0 .00 .00	0 00.00	0 .00 .00	00 .00	0 00.00	0 .00	0 .00 .00	00.00	0 00.00	0 .00	0 .00.	0 00.	0 .00 .00	0 00.	0 .00	0 00.00
C-3 (1) (2)	0 00.	0 .00 .00	0 .00.	.43 .10	0 .00 .00	0 00. 00	0 .00 .00	.21 .05	00.00	0 00.	.21 .05	0 .00.	0 .00.	0 .00 .00	0 .00 .00	0 .00 .00	00.00.	.85 .20
4-7 (1) (2)	.21 .05	.64 .15	.21 .05	.43 .10	2 .43 .10	0 00.	.21 .05	.21 .05	00. 00.	.21 .05	.43 .10	.43 .10	6 1.28 .30	.64 .15	.85 .20	1 .21 .05	0 .00.	30 6.40 1.51
8-12 (1) (2)	1 .21 .05	1 .21 .05	.21 .05	.43 .10	2 -43 -10	6 1.28 .30	.64 .15	.43 .10	2.99 .71	9 1.92 .45	9 1.92 .45	9 1.92 .45	2.35	3.62 .86	12 2.56 .61	.21 .05	0 .00.	100 21.32 5.05
13-18 (1) (2)	8 1.71 .40	9 1.92 .45	0 .00 .00	0 .00 .00	0 .00 .00	.85 .20	-85 -20	.85 .20	10 2.13 .50	8 1.71 .40	2.13	9 1.92 .45	17 3.62 .86	9 1.92 .45	2.77 .66	.85 .20	0 .00.	109 23.24 5.50
19-24 (1) (2)	7 1.49 .35	25 5.33 1.26	0 .00 .00	00.00	0 .00	.43	0 00.	.43 .10	.85 .20	19 4.05 .96	1 .21 .05	.85 .20	18 3.84 .91	43 9.17 2.17	15 3.20 .76	2 .43 .10	0.00.	142 30.28
CT 24 (1) (2)	40 8.53 2.02	3 .64 .15	.43 .10	00.00	0 .00.	.00	0 00.	.00	0 .00	0 .00 .00	0 .00 .00	.85 .20	9 1.92 .45	2.99 .71	10 2.13 .50	.43 .10	0 .00	84 17.91 4.24
ALL SPEEDS (1) (2)	57 12.15 2.88	41 8.74 2.07	.85 .20	6 1.28 .30	.85 .20	2.56	8 1.71 .40	2.13 .50	28 5.97 1.41	37 7.89 1.87	23 4.90 16	28 5.97 1.41	61 13.01 3.08	86 18.34 4.34		10 2.13 .50	0 .00	469 100.00 23.66
(1)=PERCENT (2)=PERCENT										C= C/	ALM (W)	IND SP	EED LE	SS THA	N OR E	QUAL T	0.95	мрну

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

220.0 FT WIND DATA STABILITY CLASS E

WIND DIRECTION FROM

CLASS FREQUENCY (PERCENT) * 38.70

SPEED (MPH)		NNE	NE	ENE	ŧ	ESE	SE	SSE	\$	SSV	SH	WSW	w	WNW	NM	NNW	VRBL	TOTAL
CALH (1) (2)	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00.	00.00	0 .00	0 .00.	00. 00.	0 .00 .00	0 .00	0 00.	0 .00.	0 .00	0 .00	0 00.	0 .00 .00	0 00.
C-3 (1) (2)	, 13 , 05	2 .26 .10	0 .00 .00	13 .05	0 00.	20 -20 -10	.13 .05	0 00.00	0 .00 .00	.13 .05	0 .00 .00	.13 .05	1 .13 .05	.13 .05	0 .00 .00	0 .00 .00	00.00	11 1.43 .55
4-7 (1) (2)	2 -26 -10	39 . 15	.26 .10	0 00.00	.26 .10	2 .26 .10	7 .91 .35	.91 .35	.26 .10	.52 .20	.65 .25	.52 .20	.52 .20	.13 .05	.13 .05	2 .26 .10	0 .00	48 6.26 2.42
8-12 (1) (2)	5 .05 .25	.13 .05	39 .39 .15	.39 .15	2 .26 .10	.52 .20	.78 .30	11 1.43 .55	13 1.69 .66	21 2.74 1.06	13 1.69 .66	16 2.09 .81	19 2.48 .96	18 2.35 .91	15 1.96 .76	10 1.30 .50	0 .00.	160 20.86 8.07
13-18 (1) (2)	8 1.04 .40	.39 .15	2 .26 .10	0 00.	.13 .05	1.20 .50	22 2.87 1.11	33 4.30 1.66	28 3.65 1.41	47 6.13 2.37	50 6.52 2.52	46 6.00 2.32	58 7.56 2.93	29 3.78 1.46	23 3.00 1.16	12 1.56 .61	0.00.	372 48.50 18.77
19-24 (1) (2)	26 .10	6 .78 .30	,13 ,05	0 00.	0 .00 .00	.52 .20	.65 .25	0 .00.	6 .78 .30	38 4.95 1.92	20 2.61 1.01	22 2.87 1.11	14 1.83 .71	16 2.09 .81	13 1.69 .66	6 .78 .30	0 .00.	153 19.95 7.72
GT 24 (1) (2)	11 1.43 .55	0 00. 00.	13 .13 .05	0 00.	0 .00 .00	0 .00 .00	0 .00.	0 .00.	.00	2 -26 -10	0 .00 .00	0 .00.	1 - 13 - 05	3 .39 .15	.52 .20	, 13 , 05	0 .00.	23 3.00 1.16
ALL SPEEDS (1) (2)	29 3.78 1.46	15 1.96 .76	9 1.17 .45	.52 .20	.65 .25	22 2.87 1.11	41 5.35 2.07	51 6.65 2.57	49 6.39 2.47	14.73	88 11.47 4.44	89 11.60 4.49	97 12.65 4.69	68 8.87 3.43	56 7.30 2.83	31 4.04 1.56	0 .00.	767 100.00 38.70
(1)=PERCENT																		

(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

C* CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

.

de

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

Q

							v	IND DI	RECTIO	N FROM								
SPEED (MPH)	*	NNE	NE	ENE	ε	ESE	SE	SSE	\$	ssu	su	พรพ	v	มหม	NW	-	VRBL	TOTAL
CALM (1) (2)	0 00.00	0 .00 .00	.24 .05	0 .00 .00	0 .00 .00	0 00.	00. 00.	0 .00.	0 .00	0 00.	0 .00 .00	0 .00 .00	0 .00 .00	0 00.	0 .00	0 .v0 .00	0 .00 .00	1 .24 .05
C-3 (1) (2)	0 00.00	0 .00 .00	,24 .05	00. 00.	0 00.	.24 .05	0 .00 .00	1 .24 .05	1 .24 .05	3 .71 .15	-24 -05	1 -24 -05	.48 .10	0 .00 .00	0 .00	0 .00	0 .00 .00	2.62 .55
4-7 (1) (2)	0 00.	1 .24 .05	.24 .05	.48 .10	3 .71 .15	.71 .15	1 -24 -05	.71 .15	.48 .10	.95 .20	8 1.90 .40	3 .71 .15	2 .48 .10	1.19 .25	5 1.19 .25	.48 .10	0 .00.	45 10.71 2.27
8-12 (1) (2)	.24 .05	3 .71 .15	3 1.90 .40	.95 .20	1 .24 .05	0 .00. 00.	5 1.19 .25	12 2.86 .61	11 2.62 .55	8 1.90 .40	13 3.10 .66	7 1.67 .35	11 2.62 .55	12 2.86 .61	8 1.90 .40	8 1.90 .40	00.00	112 26.67 5.65
13-18 (1) (2)	.71 .15	2 .48 .10	.48 .10	0 00.	0 . Du	.24 .05	15 3.57 .76	28 6.67 1.41	11 2.62 .55	25 5.95 1.26	12 2.86 .61	10 2.38 .50	2.14 .45	2.14 .45	1.19 .25	.48 .10	0 .00.	134 31.90 6.76
19-24 (1) (2)	.71 .15	13 3.10 .66	0 .00 .00	0 00.	0 .00 .00	0 .00 .00	8 1.90 .40	1 .24 .05	0 00.	2.14 .45	18 4.29 .91	1.19 .25	1 .24 .05	2 .48 .10	1 .24 .05	7 1.67 .35	0 .00 .00	68 16.19 3.43
GT 24 (1) (2)	13 3.10 .66	29 6.90 1.46	.00	0 00.00	0 .00.	0 .00	2 .48 .10	0 .00 .00	0.00	0 .00 .00	0 .00.	1 .24 .05	.00 .00	1 .24 .05	0 .00.	3 .71 .15	0 .00.	49 11.67 2.47
ALL SPEEDS (1) (2)	20 4.76 1.01	48 11.43 2.42	13 3.10 .66	6 1.43 .30	.95 .20	1.19 .25	31 7.38 1.56	45 10.71 2.27	25 5.95 1.26	49 11.67 2.47	52 12.38 2.62	27 6.43 1.36	25 5.95 1.26	29 6.90 1.46	19 4.52 .96	22 5.24 1.11	0 .00 .00	420 100.00 21.19
(1)=PERCENT (2)=PERCENT										C* C	ALM CW	IND SPE	EED LET	S THAP	OR E	PUAL T	0.95	MPH.)

.

44 of 48

-

PILGRIM OCT91-DEC91 MET DATA JOINT FREQUENCY DISTRIBUTION (220-FOOT TOWER)

b₀

220.0 FT	WIND D	ATA		STABIL	ITY C	LASS G			CLASS	FREQU	HENCY (PERCEN	1) *	3.78				
							w	IND DI	RECTIO	N FROM	(
SPEED (MPH)		NNE	ME	ENE	ε	ESE	SE	SSE	s	ssv	sv	พรษ		WNW	NU	NNW	VRBL	TOTAL
CALM (1) (2)	0 .00 .00	0 .00 .00	0 .00 .00	1.33 .05	0 .00. 00.	0 00.	0 .00	0 00. 00	0 00.	0 .00 .00	00.00	0 .00 .00	0 .00.	00.00.	0 .00 .00	0 .00.	0 00.	1.33 .05
C-7. (1) (2)	0 .00 .00	0 .00 .00	0 00.00	0 00.	0 .00.	0 00.00	0 .00	0 .00 .00	0 00.	0 .00 .00	0 00. 00.	00.00	0 .00	0 .00 .00	1.33 .05	0 .00.	0 .00.	1 1.33 .05
4-7 (1) (2)	0 00.	0 .00.	0 .00 .00	0 .00 .00	,00 ,00	0 00.00	0 00.	1.33 .05	0 00.00	00.00	0 00.	00.00	1.33 .05	2.67 .10	2.67 .10	0 .00 .00	0 00.00	8.00 .30
8-12 (1) (2)	0 .00	0 .00 .00	0 00.	0 .00 .00	.00	0 00.00	0 00.	1.33	5.33 .20	4.00 .15	4.00 .15	4.00 .15	1.33 .05	1.33 .05	0 .00 .00	0 .00.	0 .00.	21.33 .81
13-18 (1) (2)	0 .00 .00	0 .00 .00	0 .00	0 00. 00	0 .00	1.33 .05	0 .00. 00.	2 2.67 .10	00.00	1.33 -05	6.67 .25	2.67 .10	3 4.00 .15	2.67 .10	0 .00 .00	0 .00 .00	0 .00.	16 21.33 .81
19-24 (1) (2)	1.33 .05	0 .00 .00	00.00	0 .00 .00	0 .00	0 00.00	0 .00	0 .00.	0 00.00	1.33	9 12.00 .45	1.53 .05	0 .00 .00	0 .00.	0 .00.	0 .00 .00	0.00.	12 16.00 .61
GT 24 (1) (2)	17 22.67 .86	5.33 .20	.00 .00	0 .00.	0 .00.	.00	0 .00	0 .00	0 .00 .00	0 .00 .00	1.33	0 .00	0 .00 .00	0 .00 .00	1.33 .05	0 .00 .00	0 .00.	23 30.67 1.16
ALL SPEEDS (1) (2)	18 24.00 .91	5.33 .20	0 .00 .00	1.33 .05	00.00.		0 .00 .00	5.33 .20	5.33 .20	6.67 .25	18 24.00 .91	8.00 .30	6.67 .25	5 6.67 .25	5.33 .20	0 .00 .00	0 .00.	75 100.00 3.78
(1)=PERCENT (2)=PERCENT																		

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

PILGRIM OCT91-DEC91 MET	DATA JOINT	FREQUENCY	DISTRIBUTION	(220-FOOT TOWER)

220.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) # 100.00

.

E

R

								,	WIND D	RECTI	ON FROM	4							
1	SPEED (MPH)		NNE	NE	ENE	E	E SE	SE	SSE	5	ssw	se	WSW		WNW	NW	NNW	VRBL	TOTAL
	CALM (1) (2)	0 .00 .00	0 .00.	.05	, 05 , 05	0 .00 .00	0 .00 .00	0 .00	.00 .00	0 .00	,00	0 .00 .00	0 , 00 , 00	.00	.00	.00	0 .00	0 .00 .00	.10 .10
	C-3 (1) (2)	2 .10 .10	2 .10 .10	.05	3 .15 .15	0 .00	3 .15 .15	.05 .05	2 .10 .10	1 .05 .05		2 - 10 - 10	.10		.05	.05 .05	0 .00	0 .00	28 1.41 1.41
	4-7 (1) (2)	8 .40 .40	8 .40 .40	.30	.35 .35	7 .35 .35	.25 .25	.45 .45	12 .61 .61	.20 .20	.45	16 .81 .81	9 .45 .45	.71 .71	.81	21 1.06 1.06	8 .40 .40	0 .00.	159 8,02 8,02
	8-12 (1) (2)	13 -66 -66	6 .30 .30	.61	9 .45 .45	9 .45 .45	12 .61 .61	14 .71 .71	26 1.31 1.31	53 2.67 2.67	2.22	44 2.22 2.22	37 1.87 1.87		2.93	40 2.02 2.02	23 1.16 1.16	0 .00	448 22.60 22.60
	13-18 (1) (2)	23 1.16 1.16	14 .71 .71	.20	0 .00 .00	.05 .05	25 1.26 1.26	44 2.22 2.22	69 3.48 3.48	52 2.62 2.62	86 4.34 4.34	81 4.09 4.09	76 3.83 3.83	104 5.25 5.25	3.03	51 2.57 2.57	26 1.31 1.31	0 .00.	716 36.13 36.13
	19-24 (1) (2)	.71 .71	55 2.77 2.77	.05	0 .00 .00	0 .00	.35 .35	13 .66 .66	,15 ,15	12 .61 .61	77 3.88 3.88	48 2.42 2.42	35 1.77 1.77	36 1.82 1.82	3.28	33 1.66 1.66	19 .96	.00	418 21.09 21.09
	CT 24 (1) (2)	100 5.05 5.05	38 1.92 1.92	. 15	0 .00 .00	0 .00 .00	0 .00	.10 .10	0 .00	0 .00 .00	3 - 15 - 15	1 .05 .05	6 .30 .30	11 .55 .55		17 .86 .86	7 .35 .35	0 .00	211 10.65 10.65
٨	LL SPEEDS (1) (2)	160 8.07 8.07	123 6.21 6.21	28 1.41 1.41	20 1.01 1.01	17 .56 .86	52 2.62 2.62	83 4.19 4.19	112 5.65 5.65		223 11.25 11.25	192 9.69 9.69	165 8.32 8.32	216 10.90 10.90	11.25	163 8.22 8.22	83 4,19 4,19	0 .00.	1982 100.00 100.00
(1)=PERCENT 2)=PERCENT	OF ALL	6000 6000	OBSERV	ATIONS	FOR T	HIS PA HIS PE	GE R 1 DD											

C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

5. OFF-SITE DOSE CALCULATION MANUAL REVISIONS

The PNPS Off-site Dose Calculation Manual (ODCM) was revised two times during the time frame of July-December, 1991.

Revision 4 vent into effect in late September, 1991. The following revisions were made:

- Updated to reflect changes in station organization
- Revised all pages that contained equations and definitions to include machine generated scientific characters
- Address required sampling of gardens identified during the annual garden census
- Expanded the definition of "Lower Limit of Detection" in Appendix B.

Revision 5 went into effect in late October, 1991. This revision addresses monitor setpoints for the Steam Jet Air Ejector Monitor.

A complete copy of the revisions is included as Appendices A and B.

6. <u>REFERENCES</u>

- U. S. Nuclear Regulatory Commission, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", Regulatory Guide 1.21, Revision 1, June 1974.
- A. R. Williams memorandum to L. A. Loomis, "Effluent and Waste Disposal Semiannual Report Reg. Guide 1.21 (Table 3)", dated January 23, 1992.
- 3.

T. A. Messier memorandum to K. J. Sejkora, "PNPS Met Data JFD Tables July 1991 - December 1991", dated February 11, 1992. APPENDIX A

PILGRIM NUCLEAR POWER STATION

OFFSITE DOSE CALCULATION MANUAL

APPROVED BY: Olma CHEMISTRY DIVISION date MANAGER 26/91 APPROVED BY: RADIOLOGICAL SECTION date MANAGER for REVIEWED BY: Rochart G. Dug J.A. Sesry 1 9-25-91 ORC CHAIRMAN date ORC Meetins 91-137

Rev. O was originally reviewed by ORC on June 10, 1983

ORC REVIEW REQUIRED

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Semiannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

REV. NO.	IDENTIFICATION OF CHANGE	DATE APPROVED	DOCUMENT SECTION AND PAGE
0	Original Submittal	6/10/83	All Sections
1	Update of TLD and Air Sampler Locations	6/01/87	7.0/7-7 & 7-8
2	Changes in response to NRC questions on PNPS ODCM (TAC #63012). Changes in response to technical review performed by BECo Radiological Section.	7/15/88	All Sections
3.	Changes in response to NRC comments on PNPS ODCM Rev. 2 (TAC #69867). Correct typographical error in Table A-3. Incorporate new TLD locations. Change responsible division.	7/12/89	Preliminary pages, 3.3, 4.2, 6.1, 7.0 (7-3 & 7-5), 8.1, A-3
4.	Update signature page to reflect new responsible organization. Update record a so int clarges. Renumber 20165 through vii to includ cal ffective page revision feater pages containing equations and definitions to include machine-generated scientific characters. Address gardens identified during 1990 garden census in Table 7-5 is fordance with Technical feater of Lower Limi of detection and Appendix B.	e s.	Page i through vii; pages 13-15, 17-23 25-28, 30-32, 49, and A-4; Appendix B.

LIST OF EFFECTIVE PAGE REVISIONS

1

M

Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev
1	4	18	4	42	3	A-4	4	A-28	3		
11	4	19	4	43	3	A-5	3	A-29	3		
111	4	20	4	44	3	A-6	3	A-30	3		
١v	4	21	4	45	3	A-7	3	A-31	3		
V	4	22	4	46	3	A-8	3	A-32	3		
V1	4	2.3	4	47	3	A-9	3	A-33	3		
vii	4	24	3	48	3	A-10	3	A-34	3		
1	3	25	4	49	4	A-11	3	A-35	3		
2	3	26	4	50	3	A-12	3	A-36	3		
3	3	27	4	51	3	A-13	3	B-1	4		
4	3	28	4	52	3	A-14	3	B-2	4		
5	3	29	3	53	3	A-15	3	B-3	4		
6	3	30	4	54	3	A-16	3				
7	3	31	4	55	3	A-17	3				
8	3	32	4	56	3	A-18	3				
9	3	33	3	57	3	A-19	3				
10	3	34	3	58	3	A-20	3			-	
11	3	35	3	59	3	A-21	3				
12	3	36	3	60	3	A-22	3				
13	4	37	3	61	3	A-23	3				
14	4	38	3	62	3	A-24	3			Sector of the sector of	
15	4	39	3	A-1	3	A-25	3				
16	3	40	3	A-2	3	A-26	3			-	-
17	4	41	3	A-3	3	A-27	3	(201-10-0100-10-00-00-00-00-00-00-00-00-00			

A-3

TABLE OF CONTENTS

Section				Page
1.0 Int	roduction			1
2.0 Lin	niting Condi	tions fo	r_Operation and Operational Objectives	2
3.0 Re1	ease Point	and Moni	tor Description	5
3.1	Radioact	tive Eff1	uent Release Point Description	5
	3.1.2 R	eactor Bu	: Gas Releasc uilding Exhaust Vent Release liation Waste Effluent Release	5 5 6
3.1	Radioact	tive Eff1	uent Monitoring System Description	7
	3.2.2 R	eactor Bu	Gas Monitoring System uilding Exhaust Vent Monitoring System Hiation Waste Effluent Monitoring System	7 8 8
3.	3 Measurer	ment Meth	nod During Release	12
	3.3.2 L	aseous Ef iquid Eff imitation	fluent	12 12 12
4.0 Ca	lculational	Methods		13
4. 4.			of Liquid Effluents s Dose Assessment Methodology	13 14
	4.2.1	Liquid Pa	athways Annual Dose Rates	14
		4.2.1.1	Aquatic Foods Ingestion (Fish,	14
		4.2.1.2		15
		4.2.1.3	Recreational Area) Swimming (White Korse Beach) Yachting/Boating (Cape Cod Bay)	15 15
	4.2.2	Definitio	ons	15

TABLE OF CONTENTS (continued)

Secti		Gaseou	Effluents Dose Asse	ssment Methodology	Page 17
		4.3.1	Gaseous Pathways Ann Noble Gas <u>es</u>	ual Dose Rates from	18
			4.3.1.1 Gamma Air D 4.3.1.2 Beta Air Do 4.3.1.3 Total Body 4.3.1.4 Skin Dose	se	18 18 18 19
		4.3.2	Gaseous Pathways Ann 131 and 133, Particu Greater Than 8 Days,	ual Dose Rates from Iodine lates with a Half-life and Tritium	19
			4.3.2.1 Ground Plan 4.3.2.2 Breathing/I 4.3.2.3 Leafy Veget 4.3.2.4 Root Crop/N Ingestion	nhalation ation Ingestion	19 19 20 21
			4.3.2.5 Milk Ingest 4.3.2.6 Meat Ingest	ion	21 21
		4.3.3	Definitions		22
	4.4	Total	ose to a Member of t	he Public	27
5.0	Recept	tor Loc	tions, Hydrology, an	d Meteorology	28
6.0	Monito	or Set	oints		32
	6.1 6.2	Liquid Gaseou	Effluent Monitor Effluent Monitors		32 33
7.0	Radio and Me	logical easurem	Environmental Sampli nt Locations	ng	35
8.0	Descr	iption	of Radwaste Systems		57
	8.1 8.2	Liquid Treate	Radwaste System I Gaseous Radwaste Sy	stem	57 59
9.0	Refer	ences			61
	Append	dix A	Data Required for Eff	luent Calculations	A-1
	Appen	dix B	efinition of the Low	ver Limit of Detection	B-1

LIST OF FIGURES

Figure No	2.	Page
7-1	Pilgrim NucTear Power Station Environmental Thermoluminescent Dosimeter and Air Sampling Locations Within Exclusion Area	52
7-2	Pilgrim Nuclear Power Station Environmental Thermoluminescent Dosimeter and Air Sampling Locations Outside Exclusion Area to About 3 Miles	53
7-3	Pilgrim Nuclear Power Station Environmental Thermoluminescent Dosimeter and Air Sampling Locations Outside Property Boundary	54
7-4	Pilgrim Nuclear Power Station Terrestrial and Aquatic Sampling Locations	55
7-5	Pilgrim Nuclear Power Station Environmental Sampling and Measurement Control Locations	56
8-1	Liquid Radwaste Treatment System Schematic	58
8-2	Gaseous Effluent Treatment System Schematic	60

vi

LIST OF TABLES

Table No.	사내는 이 사람이 있는 것 같은 것을 가장해야 해야 하는 것을 가 없다.	Page
2-1	PNPS Technical Specifications/Offsite Dose Calculation Manual Cross-Reference for Limiting Conditions for Operation and Operational Objectives	3
3-1	Radiation Effluent Monitor Data	10
5-1	Critical Receptor Locations and Atmospheric Dispersion Factors	30
7-1	Pilgrim Nuclear Power Station Operational Kadiological Environmental Monitoring Program	37
7-2	Pilgrim Nuclear Power Station Air Particulate, Radioiodine, and Soil Sampling Locations	42
7-3	Pilgrim Nuclear Power Station Environmental Thermoluminescent Dosimter (TLD) Locations	43
7-4	Pilgrim Nuclear Power Station Pressurized Ion Chamber (PIC) Survey Locations	48
7-5	Pilgrim Nuclear Power Station Terrestrial and Aquatic Sampling Locations	49
7-6	Maximum Values for the Lower Limits of Detection (LLD)	51

霞

vii

4.0 Calculations Methods

This section presents the calculational specifics required to demonstrate compliance with each of the Technical Specifications for limiting conditions for operation and operational objectives identified in Section 2 of this document.

The equations in this section are based on the equations and calculational methods described in Reference 1, unless otherwise specified. These equations have, in some cases, been presented in a slightly different form in an effort to simplify their use. The subscripts used are "a" for age group, "j" for organ, "i" for radionuclide, "p" for pathway and "l" for location. Capital letters have been used on the dose/dose rate, use factor, concentration, and dose conversion factor abbreviations to designate pathways. "A" is for aquatic foods, "S" for shoreline deposits, "W" for swimming, "Y" for yachting/boating, "N" for noble gas, "G" for ground plane deposition, "B" for breathing/inhalation, "L" for leafy vegetation, "R" for root crops/non-leafy vegetation, "M" for milk, and "C" for meat.

The descriptions of constants, variables, and parameters in this section are also based on those described in Reference 1, unless otherwise specified. The descriptions have, in some cases, been modified to describe the constant, variable, and parameter specific application in the corresponding equation. In addition, some of the constants and variables values have been revised to include more site specific values, to include more technically correct information, or to provide uniformity (e.g., λ_i values always presented in hr⁻¹). Values for parameters which only have a single value will appear along with the definition. For those parameters which can take on different values for different conditions, the appropriate value will appear in the referenced tables. All numerical contants have been derived from the indicated base conversion factors and are represented in scientific notation to the third significant digit.

4.1 Concentrations of Liquid Effluents

The following equation shall be used to determine the discharge flow rate such that concentrations of radioactive effluents released to unrestricted areas do not exceed the concentration limits specified in IOCFR20 Appendix B, Table II, Column 2:

DFR = $CW \div \sum (C_{wi} / MPC_i)$ where:

> DFR = Maximum discharge release rate of liquid effluent, (gal/min).

- CW = Flow rate of dilution water, (gal/min).
- Cwi = Concentration of nuclide i in the liquid waste discharge volume prior to any dilution as determined by current isotopic analysis for gamma emmitting nuclides and most recent results from pure beta and alpha emitters, (μCi/mi).
- MPC₁ = Maximum Permissible Concentration of each nuclide i from 10CFR20 Appendix B, Table II, Column 2, (µCi/ml).

4.2 Liquid Effluents Dose Assessment Methodology

The following equations shall be used to estimate the annual dose rates due to release of radioactive liquid effluents. All input parameters (i.e. activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate limits for periods different than one year. For comparison to monthly limits and quarterly limits, results would be scaled by 1/12 and 1/4, respectively. To determine the dose or dose commitment for a desired period, multiply the annual dose rate by the fraction of the year for the dose period desired. For purposes of projecting resulting dose estimates for the subsequent month, the release rates and concentrations are assumed to be equal to the previous conth's release.

Pathways assuming internal deposition of radionuclides (i.e., ingestion) involve the use of a 50-year committed dose conversion factor. This dutire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving extornal radiation to the total body (i.e., shoreline activity, swimming, beating), the dose to all other organs is assumed equal to the total body (Reference 1, Appendix E).

Summation of the dose rates from the equations below should be performed for all significant pathways.

4.2.1 Liquid Pathways Annual Dose Rates

4.2.1.1 Aquatic Food Ingestion (Fish, Shellfish)

 $DA_{ajp} = UA_{ap} \sum_{i} CA_{ip} DFI_{aij}$

where:

 $CA_{ip} = CW_{i1} B_{ip} e^{-\lambda_i t_h}$

 $CW_{11} = 1.00E12 Q_1 (M_1/V) e^{-\lambda_1 t_1}$

Above equations derived from Reference 1 equations 2 and A-3.

- 14 -

A-9

4.2.1.2 Shoreline Deposits (Discharge Canal and Recreational Area)

where:

 $CS_{11} = 2.89 \ CW_{11} \ (1 - e^{-\lambda_1 t}b) + \lambda_1$

 CW_{11} = same as indicated in equation 4.2.1.1 Above equation derived from Ref. 1 equations A-4 through A-7.

4.2.1.3 Swimming (White Horse Beach)

 $DW_{aj1} = UW_{a1} \sum_{i} CW_{i1} DFW_{ij}$

where:

 $CW_{11} = same as indicated in equation 4.2.1.1$

Above equations derived from Reference 14 equation 41 on page 151 .

4.2.1.4 Yachting/Boating (Cape Cod Bay)

 $DY_{aj1} = 0.50 UY_{a1} \sum_{i} CW_{i1} DFW_{ij}$ where:

 $CW_{i1} = same as indicated in equation 4.2.1.1$

Above equations derived from Reference 14 equation 41 on page 151 .

4.2.2 Definitions:

B_{ip} is the equilibrium bioaccumulation factor for radionuclide i, in aquatic foods pathway p, expressed as the concentration in biota (pCi/kg), divided by the concentration in waCi/liter) from Table A-1, (liters/kg);

CA_{ip} is the concentration of radionulcide i in pathway p of aquatic foods, (pCi/kg);

CS₁₁ is the effective surface concentration of radionuclide i in sediments at location 1, (pCi/m²);

US_{al} is the use factor (amount of time) an individual in age group a, engages in shoreline activities at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);

 UW_{a1} is the use factor (amount of time) an individual in age group a, engages in swimming at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);

 UY_{a1} is the use factor (amount of time) an individual in age group a, engages in yachting/boating at location 1, from Table E-5 for maximum individual, Table E-4 for average individual, (hr/yr);

V is the total annual discharge rate of liquid effluent + condensor cooling/dilution water, (liters/yr);

W₁ is the shoreline width factor for location 1, from Table A-3, (dimensionless);

 λ_i is the radioactive decay constant of radionuclide i, (hr^{-1}) ;

0.50 is a scaling factor for yachting/boating assuming that doses received while on the surface of the water are 1/2 of doses received while immersed in water from Reference 14, (dimensionless);

2.89 is the factor to convert for transfer of nuclides from water to sediment, equal to 100 liters/m²-day from Reference 16 multiplied by 1 day/24 hr and by ln 2 (to convert reciprocal λ_i to halflife), as calcuated in Reference 1 equation A-5, (liter/m²-hr);

1.00E12 is the factor to convert from Ci to pCi, (pCi/Ci);

4.3 Gaseous Effluents Dose Assessment Methodology

The following equations shall be used to estimate the annual dose rates due to release of radioactive gaseous effluents. All input parameters (ie, activity and volume) must be normalized to a 1 year release period. Modification of final results is necessary for comparison to dose rate limits for periods different than one year. For comparison to monthly limits and quarterly limits, results would be scaled by 1/12 and 1/4, respectively. To determine the dose or dose commitment for a desired period multiply the annual dose rate by the fraction of the year for the dose period desired.

Pathways assuming internal deposition of radionuclides (i.e., inhalation, ingestion) involve the use of a 50-year committed dose conversion factor. This entire prospective dose will be assigned to the individual for the year of intake (Reference 1). For pathways involving external radiation to the total body (i.e., noble gas total body dose, ground plane deposition), the dose to all other organs is assumed equal to that for the total body (Reference 1, Appendix E).

Summation of the doses rates from the equations below should be performed for all significant pathways and all release points from which significant radioactive effluent releases have occurred (i.e., Main Stack and Reactor Building Exhaust Ven.).

4.3.1 Gaseous Pathways Annual Dose Rates from Noble Gases

4.3.1.1 Gamma Air Dose

 $DN\gamma = \sum_{i} C_{i\gamma} DFN_{i\gamma}$

where:

 $C_{1Y} = 3.17E4 [X/Q]_{Y} Q_{1}$

Above equations derived from Ref. 1 equations 6, 7, B-1, B-2, B-4, and B-5, as well as References 3 and 4.

4.3.1.2 Beta Air Dose

 $DN_{\beta} = \sum_{i} C_{i\beta} DFN_{i\beta}$

where:

 $C_{1B} = 3.17E4 [X/Q]_{c} Q_{j}$

Above equations derived from Ref. 1 equations 7, B-4, and B-5.

4.3.1.3 Total Body Dose

 $DN_{TB} = S \sum_{i} C_{iY} DFN_{iTB}$

where:

C_{iy} = Same as indicated in equation 4.3.1.1.

Above equations derived from Ref. 1 equations 8, 10, B-1, B-2, B-4, B-5, B-6, and B-8, as well as References 3 and 4.

A-12

4.3.1.4 Skin Dose

 $DN_S = \sum_{i} C_{i\beta} DFN_{iS} + 1.11 S DN_Y$

where:

 C_{1B} , DN_{Y} = same as indicated above in equations 4.3.1.2 and 4.3.1.1, respectively.

Above equations derived from Ref. 1 equations 6, 7, 9, 11, B-1, B-2, B-4, B-7, and B-9, as well as References 3 and 4.

4.3.2 Gaseous Pathways Annual Dose Rates from Iodine 131 and 133, Particulates with a Half-life Greater than 8 Days, and Tritium.

> PNPS Technical Specifications do not consider doses from C-14 and I-135 for compliance. However, equations for these radionuclides are included in this section for completeness.

4.3.2.1 Ground Plane Deposition

 $DG_j = S \sum_i CG_i DFG_{ij}$

where:

 $CG_{i} = 1.00E12 \text{ [D/Q] } Q_{i} (1 - e^{-\lambda_{i}t}b) \div \lambda_{i}$

Above equations derived from Ref. 1 equations 12, C-1, and C-2.

4.3.2.2 Breathing/Inhalation

 $DB_{aj} = UB_a \sum_{i} CB_i DFB_{aij}$

where:

Above equations derived from Ref. 1 equations 13, C-3, and C-4.

4.3.2.3 Leafy Vegetation Ingestion

$$DL_{aj} = UL_{a} f_{1} \sum_{i} CL_{i} DFI_{aij}$$

where:

CL_j = leafy vegetation concentration as calculated below.

Above equation derived from Ref. 1 equations 14 and C-13.

where:

 $CH_{i}, CL_{i}, CP_{i}, CR_{i} = 1.19E7 Q_{i} [X/Q]_{c} \div H$ for H = 3 $CH_{i}, CL_{i}, CP_{i}, CR_{i} = 2.18E7 p_{i} [X/Q]_{c}$ for C = 14

CH₁, CL₁, CP₁, CR₁ = 5.71E7 [D/Q] Q₁ *

$$\begin{array}{c|c} \hline r_{I} & (1 - e^{-\lambda}Ei^{\dagger}e) \\ \hline Y_{V} & \lambda_{Ei} \\ \hline \\ \hline \\ \hline \\ \hline \\ P & \lambda_{i} \\ \hline \\ \hline \\ P & \lambda_{i} \\ \hline \\ \end{array} \begin{array}{c} + \\ e^{-\lambda_{i}t_{h}} \\ \hline \\ \\ \hline \\ \\ I - 135 \\ \hline \end{array} \begin{array}{c} \text{for I-131,} \\ I - 133, \text{ and} \\ I - 135 \\ \hline \end{array}$$

CH₁, CL₁, CP₁, CR₁ = 1.14E8 [D/Q] Q₁ *

$$\frac{\left[\frac{r_{p}(1 - e^{-\lambda}Ei^{\dagger}e)}{Y_{v} - \lambda_{Ei}}\right]}{\frac{B_{iv}(1 - e^{-\lambda_{i}^{\dagger}b})}{P_{\lambda_{i}}} = e^{-\lambda_{i}^{\dagger}t}h \qquad \text{for particulates} \\ \text{with } T_{\lambda} > 8 \text{ days}$$

Above equations derived from Ref. 1 equations C-5 through C-9.

4.3.2.4 Root Crop Non-Leafy Vegetation Ingestion

DRaj = URa fr [CRi DFIaij

where:

 $CR_i = root crop concentration as calculated in 4.3.2.3.$

Above equations derived from Ref. 1 equations 14 and C-13.

4.3.2.5 Milk Ingestion

 $DM_{aj} = UM_a \sum_i CM_i DFI_{aij}$

where:

 $CM_{i} = F_{im} CF_{i} Q_{f} e^{-\lambda_{i} t_{f}}$

 $CF_{i} = f_{p}f_{s}CP_{i} + (CH_{i}(1-f_{p})) + CH_{i}f_{p}(1-f_{s})$

CP₁,CH₁ = concentration in pasture grass and harvested/stored feed as calculated in equation 4.3.2.3.

Above equations derived from Ref. 1 equations 14, C-10, C-11, and C-13

4.3.2.6 Meat Ingestion

 $DC_{aj} = UC_a \sum_{i} CC_i DFI_{aij}$

where:

CCi = Fif CFi Qf e-lits

 $CF_1 = concentration in forage as calculated in equation 4.3.2.5$

Above equations derived from Ref. 1 equations 14, C-12, and C-13

A-15

4.3.3 Definitions

 B_{iv} - is the concentration factor for uptake of radionuclide i, from soil in the edible portions of crops, in pCi/kg (wet weight) per pCi/kg dry soil, from Table E-1, (kg/kg);

 $C_{1\beta}$ is the effective semi-infinite cloud concentration of noble gas i, for the purpose of calculating beta air dose, (pCi/m^3) ;

 C_{1Y} - is the effective finite cloud concentration of noble gas i for the purpose of calculating gamma air dose, (pCi/m^3) ;

CB₁ - is the ground-level airborne concentration of radionuclide i, (pCi/m³);

CC₁ - is the concentration of radionuclide i in meat, (pCi/kg);

 CF_i - is the concentration of radionuclide i on forage, (pCi/kg);

CG₁ - is the ground plane concentration of radionuclide i, (pCi-hr/m²-yr);

CH_i - is the concentration of radionuclide i on harvested/stored feed, (pCi/kg);

CM_i - is the concentration of radionuclide i in milk, (pCi/liter);

CLi = is the concentration of radionuclide i in leafy vegetables, (pCi/kg);

CP_i - is the concentration of radionuclide i on pasture
grass, (pCi/kg);

CR_i - is the concentration of radionuclide i in root crops/non-leafy vegetables, (pCi/kg);

DB_{aj} - is the total annual dose rate from breathing/ inhalation to organ j, of an individual in age group a, (mrem/yr);

DC_{aj} - is the total annual dose rate from ingestion of meat to organ j; of an individual in age group a, (mrem/yr);

 DFB_{aij} - is the inhalation 50-year committed dose conversion factor for organ j, of individuals in age group a, from radionuclide i, from Tables E-7 through E-10, (mrem/pCi);

 DFG_{ij} - is the open field ground plane dose conversion factor for organ j, from radionuclide i, from Table E-6, (mrem $-m^2/pCi-hr$); DFI_{aij} - is the ingestion 50-year committed dose conversion factor for organ j, for individuals in age group a, from radionuclide i, organ j, from Table E-11 through E-14, (mrem/pCi);

DFN_{1S} - is the beta skin dose conversion factor for a semi-infinite cloud of noble gas i, which includes the attenuation by the outer "dead" layer of skin, from Table B-1, (mrem-m³/pCi-yr);

DFN_{jTB} - is the total body dose conversion factor for a semi-infinite cloud of noble gas i, which includes the attenuation of 5 g/cm² of tissue, from Table B-1, (mrem-m³/pCi-yr);

DFN₁B⁻ is the beta air dose conversion factor from a semi-infinite cloud of noble gas i, from Table B-1, (mrad-m³/pCi-yr);

DFN_{jy} - is the gamma air dose conversion factor from a semi-infinite cloud of noble gas i, from Table B-1, (mrad-m³/pCi-yr);

DG_j - is the total annual dose rate to organ j from direct exposure to the contaminated ground plane from all radionuclides, (mrem/yr);

 DL_{aj} - is the total annual dose rate from ingestion of leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);

DMaj - is the total annual dose rate from ingestion of milk to the organ j, of an individual in age group a, (mrem/yr);

DN_S - is the total annual skin dose rate due to immersion in a finite cloud of noble gases, (mrem/yr);

DN_{TB} - is the annual total body dose rate due to immersion in a finite cloud of noble gases, (mrem/yr);

 DN_{β} - is the annual beta air dose rate to a semi-infinite cloud of noble gases, (mrad/yr);

DN, - is the annual gamma air dose rate due to a finite cloud of noble gases, (mrad/yr);

DR_{aj} - is the total annual dose rate from ingestion of root crop or non-leafy vegetables to the organ j, of an individual in age group a, (mrem/yr);

[D/Q] - is the deposition rate considering depletion at the receptor location in question, from Table 5-1, (m^{-2}) ; t_e - is the time period that crops are exposed to radionuclide deposition during the growing season, from Table E-15, (hr);

 t_{f} - is the average transport time of the activity from the feed into the milk and to the receptor from Table E-15, (hr);

 t_h - is the holdup time that represents the time interval between hrvest and consumption of the food, from Table E-15, (hr);

 t_s - is the average time for radionuclides to pass from feed through meat to the consuming individual, (hr; assumed to be 480 hr = 20 days);

 UB_a - is the annual breathing rate, for individuals in the age group a, from Table E-5 for maximum individual. Table E-4 for average individual, (m³/yr);

 UC_a - is the annual intake of meat, for individuals in age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);

UL_a - is the annual intake of leafy vegetables, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);

 UM_a - is the annual intake of milk, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (liter/yr);

URa - is the annual intake of root crops/non-leafy vegetables, for individuals in the age group a, from Table E-5 for maximum individual, Table E-4 for average individual, (kg/yr);

 Y_v - is the agricultural productivity/yield, from Table E-15, (kg/m², wet weight);

 $[X/Q]_{C}$ - is the appropriate value of undepleted atmospheric dispersion factor used to estimate ground level airborne concentration of gaseous, (i.e., non-particulate) radionuclides, from Table 5-1, (sec/m³);

 $[X/Q]_d$ - is the appropriate value of the average gaseous dispersion factor corrected for depletion of particulates and radioiodines, from Table 5-1, (sec/m³);

 $[X/Q]\gamma$ - is the appropriate value of gamma atmospheric dispersion factor used to estimate ground lovel gamma dose rate from an elevated or ground level plume as calculated in References 3 and 4, from Table 5-1, (sec/m³);

 λ_j - is the radioactive decay constant of radionuclide i. (hr -1);

 λ_{Ej} - is the effective removal rate constant for radionuclide i from crops, in hr⁻¹, where $\lambda_{Ej} = \lambda_j + \lambda_w$, λ_j is the radioactive decay constant, and λ_w is the removal rate constant for physical loss by weathering $\lambda_w = 0.0021$ hr⁻¹, (hr⁻¹);

1.11 - is the average ratio of the tissue to air energy absorption coefficients, (mrem/mrad);

3.17E4 is equal to 1.00E12 pCi/Ci divided by 3.15E7 sec/yr, (pCi-yr/Ci-Sec)

1.19E7 - is equal to 1.00E12 pCi/Ci divided by 3.15E7 sec/yr and multiplied by 1.00E3 g/kg and by 0.5 g H-3 in plant water per g H-3 in atmospheric water from Reference 23 (dimensionless) and by 0.75 g water per g plant (dimensionless), as calculated in Reference 1 equation C-9, (pCi-yr-g/Ci-sec-kg);

2.18E7 - is equal to 1.00E12 pCi/Ci divided by 3.15E7 sec/yr and multipled by 1.00E3 g/kg and by 0.11 g Carbon/g plant mass from References 24 and 25 divided by 0.16 g Carbon/m³ of air, as calculated in Reference 1 equation C-8, (pCi-yr-m³/Ci-sec-kg):

5.71E7 - is the conversion factor to correct for activity, time units, and elemental forms of radioiodines, equal to the particulate radionuclide conversion factor 1.14E8 multiplied by an elemental iodine fraction of 0.5 from Reference 26, (pCi-yr/Ci-hr);

1.14E8 - is the conversion factor to correct activity units and time units for particulate radionuclides, equal to 1.00E12 pCi/Ci multiplied by 1 yr/8760 hr, (pCi-yr/Ci-hr);

1.00E12 - is the conversion factor to correct for activity
units, (pCi/Ci);

4.4 Total Dose to a Member of the Public

The purpose of this section is to describe the method used to calculate the cumulative dose contributions from liquid and gaseous effluents in accordance with PNPS Technical Specifications for total dose. This method can also be used to demonstrate compliance with the Environmental Protection Agency (EPA) 40CFR190, "Environmental Standards for the Uranium Fuel Cycle".

Compliance with the PNPS Technical Specifications dose objectives for the maximum individual demonstrates compliance with the EPA limits to any member of the public, since the design dose objectives from 10CFR50 Appendix I are much lower than the 40CFR190 dose limits to the general public. With the operational objectives in PNPS Technical Specifications sections 7.2.A, 7.3.A and 7.4.A being exceeded by a factor of two, a special analysis must be performed. The purpose of this special analasis is to demonstrate if the total dose to any member of the public (real individual) from all uranium fuel cycle sources (including all real pathways and direct radiation) is limited to less than or equal to 25 mrem per year to the total body or any organ except for the thyroid which is limited to 75 mrem per year.

If required, the total dose to a member of the public will be calculated for all significant effluent release points for all real pathways including direct radiation. Only effluent releases from PNPS (Pilgrim Station) need to be considered since no other nuclear fuel cycle facilities exist within a 50 mile radius. The calculations will be based on the equations contained in this section, with the exception that the usage factors and other site specific parameters will be modified using more realistic assumptions, where appropriate.

The direct radiation component from the facility can be determined by using environmental TLD results. These results will be corrected for natural background and for actual occupancy time of the recreational areas accessible to the general public at the location of maximum direct radiation. It is recognized that by including the results from the environmental TLDs into the sum of total dose component, the direct radiation dose may be overestimated. The TLD measurements may include the exposure from noble gases, ground plane deposition, and shoreline deposition, which have already been included in the summation of the significant dose pathways to the general public. However, this conservative method can be used, if required, as well as any other method for estimating the direct radiation dose from contained radioactive sources within the facility. The methodology used to incorporate the d'rect radiation component into total dose estimates will be outlined whenever total doses are reported.

Therefore, the total dose will be determined based on the most realistic site specific data and parameters to assess the real dose to any member of the general public.

5.0 Receptor Locations, Hydrology, and Meteorology

The purpose of this section is to identify those receptor locations which represent critical pathway locations and the methods used to estimate dilution and dispersion factors for these locations.

For the dose calculations from liquid effluents, the maximum individual is assumed to: 1) ingest fish and shellfish from the discharge canal, 2) receive direct radiation from shoreline deposits at both the discharge canal and PNPS shoreline recreational area, and 3) receive external radiation while swimming at White Horse Beach as well as while boating on the Cape Cod Bay. The doses are calculated for the various age groups (i.e., infant, child, teenager and adult), as well as for the various organs, (i.e., bone, liver, thyroid, kidney, lung, gastrointestinal tract/lower large intestine, skin, and total body). The maximum total body and organ doses are selected from the totals of the various age group and organ doses calculated as described above.

For liquid effluent pathways, Table A-3 lists the conservative values for the mixing ratio and shore width factor for the various aquatic receptor locations.

For the dose calculations for gaseous effluents, the maximum individual is assumed to reside at the receptor location that provides the highest dose from the dose contributions from all gaseous release points where significant releases have occurred. The locations selected in Table 5-1 are the site boundary, a garden at the site boundary, and the nearest milk animal at the Plimoth Plantation. The dose calculations are performed for each release point and totalled for the following dose pathways; 1) noble gas immersion, 2) ground plane deposition, 3) inhalation, and 4) ingestions of leafy vegetable, root crops/non-leafy vegetables, milk, and meat. The doses are also calculated for the various age groups and for the various organs as described for liquid effluents. The maximum total body, skin, and organ doses are selected from the totals of the various age group and organ doses calculated as descrif J above.

In order to estimate atmospheric dispersion and deposition factors for each of these locations, a computer code supplied by the Yankee Atomic Electric Company was used. The code, AEOLUS (Reference 3) was used to calculate guarterly average values of dispersion and deposition factors.

Meteorological data for a three year period, January 1, 1977 to December 31, 1979, were used for these analyses. The most conservative quarterly average values of ground level average atmospheric dispersion factor before depletion $[X/Q]_c$, ground level average atmospheric dispersion factor factor after depletion $[X/Q]_d$, average gamma dilution factor $[X/Q]_Y$, and average deposition rate [D/Q] for the three year period were chosen for each of the critical receptor locations.

	TABLI	E 5-1		
CRITICAL RECEPTOR	LOCATIONS AND	ATMOSPHERIC	DISPERSION	FACTORS

A	tmc	151	ph	e	ri	Ċ.	Di	5	p	e	r	5	1	on	F	a	¢	t	Ó	r
200)	R	ea	C	to	r	Bu	1	1	d	1	n	q	V	en	t				

2) Main Stack

P

<u>Techn</u>	ical Specification Section	[X/Q] (sec/	Section 2.	[X/Q] _d (sec/m ³)	[X/Q]Y (sec/m ³)	[D/Q] (1/m ²)
3.8.D	Gaseous Effluent Dose Rate					
	Site Boundary ⁽¹⁾		40E-06 69E-07	7.04E-06 4.69E-07	4.69E-06 1.68E-06	5.22E-08 2.92E-09
	Nearest Garden ⁽²⁾		40E-06 69E-07	7.04E-06 4.69E-07	4.69E-06 1.68E-06	5.22E-08 2.92E-09
	Nearest Milk Animal ⁽³⁾		29E-07 73E-08	4.21E-07 3.70E-08	1.70E-07 3.22E-08	7.93E-10 2.46E-10
3.8.F	Gaseous Effluent Treatment					
	Site Boundary ⁽¹⁾		40E-06 69E-07	N/A N/A	4.69E-06 1.68E-06	N/A N/A
7.4	Dose - Iodine-131, Iodine-133, Radioactive Materials in Particulate Form, and Tritium					
	Site Boundary ⁽¹⁾		40E-06 69E-07	7.04E-06 4.69E-07	N/A N/A	5.22E-08 2.92E-09
	Nearest Garden ⁽²⁾		40E-06 69E-07	7.04E-06 4.69E-07	N/A N/A	5.22E-08 2.92E-09
	Nearest Milk Animal ⁽³⁾		29E-07 73E-08	4.21E-07 3.70E-08	N/A N/A	7.93E-10 2.46E-10

TABLE 5-1 (Continued) CRITICAL RECEPTOR LOCATIONS AND ATMOSPHERIC DISPERSION FACTORS

Atmospheric Dispersion Factor 1) Reactor Building Vent 2) Main Stack

Technical Specification Section	[X/Q] _c	[X/Q] _d	[X/Q]Y	[U/Q]
	(sec/m ³)	(sec/m ³)	(sec/m ³)	(1/m ²)
7.5 Total Dose				
Site Boundary ⁽¹⁾	1) 7.40E-06	7.04E-06	4.69E-06	5.22E-08
	2) 4.69E-07	4.69E-07	1.68E-06	2.92E-09
Nearest Garden(2)	1) 7.40E-06	7.04E-06	4.69E-06	5.22E-08
	2) 4.69E-07	4.69E-07	1.68E-06	2.92E-09
Nearest Milk Animal ⁽³⁾	1) 4.29E-07	4.21E-07	1.70E-07	7.93E-10
	2) 3.73E-08	3.70E-08	3.22E-08	2.46E-10

NOTES:

- (1) "Site Boundary" means the location at or beyond the boundary of the restricted area with the highest calculated dispersion and/or deposition factor.
- (2) "Nearest Garden" is considered to be the same as the site boundary due to the abundance of small gardens near Pilgrim Station.
- (3) "Nearest Milk Animal" is presently considered to be at the Plimoth Plantation, 2.2 miles west of Pilgim Station.

6.0 MONITOR SETPOINTS

6.1 Liquid Effluent Monitor

The setpoint for the liquid effluent & monitor (see Section 3.2.3) is established as follows:

- Prior to a liquid batch release, the waste discharge tank is recirculated for at least 60 minutes and a sample is taken.
- The liquid effluent sample is analyzed (see Section 3.3) to determine the concentrations of each detectable isotope in µCi/ml. (See Appendix B for the definitions of lower limit of detection.)
- The efficiency (in counts/sec per µCi/ml) of the liquid discharge monitor is calculated based on prior release experience.
- 4) The setpoint for the liquid effluent monitor is calculated as follows:

a) Monitor setpoint based on activity concentration

$$c = \frac{CF}{f}$$

Where:

c = the setpoint of the radioactivity monitor measuring the radiocativity concentration in the effluent line prior to dilution and subsequent release; the setpoint, which is proportional to the volumetric flow of the effluent line and inversely proportional to the volumetric flow of the dilution stream plus the effluent stream, represents a value, which if exceeded, would result in concentrations exceeding the limits of 10 CFR 20 in the unrestricted area, $(\mu Ci/ml)$;

C = the effluent concentration limit implementing 10 CFR 20 for the site (μ Ci/ml);

Where:

 $C = \sum C_{wi} + \sum (C_{wi} / MPC_i)$

 $C_{wi} = \text{concentration of nuclide i in the liquid waste}$ discharge volume prior to any dilution as determined by current isotopic analysis for gamma emitting nuclides and most recent results from pure beta emitters as specified in Table 4.11-2 of PNPS Effluent Controls, (µCi/ml);

A-24

TABLE 7-5 PILGRIM NUCLEAR POWER STATION TERRES IAL AND AQUATIC SAMPLING LOCATIONS

Sampling Location (Designation)

Distance and Direction from Reactor

TERRESTRIAL

Cranberries

Manomet Pt. Bog* (MR) Bartlett Rd. Bog* (BT) Pine St. Bog Control* (PS)	2.7	Miles Miles Miles	SSE	
Forage				
Plymouth County Farm* (CF) Davis Farm (DF) Whitman Farm Control* (WF)	3.1	Miles Miles Miles	S	
Milk				
Plymouth County Farm* (CF) Whitman Farm Control* (WF)		Miles Miles		
Surface Water				
Discharge Canal* (DIS) Bartlett Pond* (BP) Powder Point Control* (PP)	1.7	Miles Miles Miles	SE	
Varatation				

Vegetation

Plymouth County Farm*		3.5	Miles W
Bridgewater Farm Cont.	* (BF)	20	Miles W

Additional samples of vegetables/vegetation will be collected each year at or near selected gardens identified during the most recent land use census. The locations of these selected gardens are listed in the station procedure describing crop sampling.

* Indicates sampling locations required by PNPS Technical Specifications

	B-air (DFN _{1B})	B-skin (DFN _{1S})	y-air (DFNiy)	y-body (DFhitB)
<u>Nuclide</u>	mrad-m ³ /pCi-yr	mrem-m ³ /pCi-yr	mrad-m ³ /pCi-yr	mrem-m ³ /pCi-yr
Kr-83m	2.88E-04		1.93E-05	7.56E-08
Kr-85m	1.97E-03	1.46E-03	1.23E-03	1.17E-03
Kr-85	1.95E-03	1.34E-03	1.72E-05	1.61E-05
Kr-87	1.03E-02	9.73E-03	6.17E-03	5.92E-03
Kr-88	2.93E-03	2.37E-03	1.52E-02	1.47E-02
Kr-89	1.06E-02	1.01E-02	1.73E-02	1.66E-02
Kr-90	7.83E-03	7.29E-03	1.63E-02	1.56E-02
Xe-131m	1.11E-03	4.76E-04	1.56E-04	9.15E-05
Xe-133m	1.48E-03	9.94E-04	3.27E-04	2.51E-04
Xe-133	1.05E-03	3.06E-04	3.53E-04	2.94E-04
Xe-135m	7.39E-04	7.11E-04	3.36E-03	3,12E-03
Xe-135	2.46E-03	1.86E-03	1.92E-03	1.81E-03
Xe-137	1.27E-02	1.22E-02	1.51E-03	1.42E-03
Xe-138	4.75E-03	4.13E-03	9.21E-03	8.83E-03
Ar-41	3.28E-03	2.69E-03	9.30E-03	8.84E-03

* Data presented in this table are from Reference 1.

APPENDIX B

Definition of Lower Limit of Detection

For purposes of analyzing effluents and environmental samples for radioactivity, the lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system backy ound, that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

It should be recognized that the listed LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of the measurement system or analytical process, and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses should be performed in such a manner that the stated LLDs will be achieved under routine conditions. Usually, samples are counted for a period of time sufficient to ensure that the listed LLDs, based on normal analytical and counting parameters, are achieved.

Printouts of analytical results typically list the <u>a posteriori</u> minimum detectable concentration (MDC) which was actually achieved on a particular measurement. In those cases where a given sample MDC is less than or equal to the listed <u>a priori</u> LLD, the required LLD has been achieved. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering radionuclides, or other uncontrollable circumstances may result in the MDC for a particular measurement not meeting the listed LLD. In such cases, the contributing factors shall be identified and described in the Semiannual Radioactive Effluent and Waste Disposal Report (for effluents) or the Annual Radiological Environmental Monitoring Report (for environmental samples).

The value of the counting standard deviation (s_b) used in the calculation of the LLD for a particular measurement system should be based on the actual observed standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, rather than on an unverified, theoretically-predicted variance. One acceptable method for deriving s_b is as follows:

 $s_b = [B/T]^{\frac{1}{3}}$

Where:

 s_b - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample (counts/minute);

B - is the background counting rate or counting rate of an appropriate blank sample (counts/minute);

T - is the counting time interval for sample analysis (minutes).

A-27

Lower Limit of Detection For Effluent Samples

For a particular measurement system or analytical process which may include radiochemical separation used to analyze effluent samples, the lower limit of detection is calculated as follows:

LLD; = 4.66 sb + (E V 2.22E6 Y e-1;t)

Where:

LLDi - is the <u>a priori</u> lower limit of detection for radionuclide i, $(\mu Ci/ml \text{ or } \mu Ci/g)$;

4.66 - is the combined numerical constant corresponding to 95% probability of detection, with 5% probability of falsely identifying background as a "real" signal;

 s_b - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, (counts/minute);

E - is the counting efficiency, (counts/disintegration);

V - is the sample size, (milliliters or grams);

2.22E6 - is the conversion factor for disintegrations/minute per μ Ci;

Y - is the fractional radiochemical yield, when applicable;

 λ_j - is the radioactive decay constant for radionuclide i, (hr^{-1}) ;

t - is the elapsed time between the midpoint of sample collection and time of counting, $(hr)_{\cdot}$

Typical values of E, V, Y, and t used for normal effluent sample analyses should be used in this calculation.

Lower Limit of Detection For Environmental Samples

For a particular measurement system or analytical process which may include radiochemical separation used to analyze effluent samples, the lower limit of detection is calculated as follows:

$$LLD_{i} = 4.66 \text{ sh} + (E \vee 2.22 \times e^{-\lambda_{i}t})$$

Where:

LLDi - is the <u>a priori</u> lower limit of detection for radionuclide i, (pCi/liter, pCi/m³, or pCi/kg);

4.66 - is the combined numerical constant corresponding to 95% probability of detection, with 5% probability of falsely identifying background as a "real" signal;

 s_b - is the standard deviation of the background counting rate or of the counting rate of an appropriate blank sample, (counts/minute);

E - is the counting efficiency, (counts/disintegration);

V - is the sample size, (liters, cubic meters, or kilograms);

2.22 - is the conversion factor for disintegrations/minute per pCi;

Y - is the fractional radiochemical yield, when applicable;

 λ_i - is the radioactive decay constant for radionuclide i, (hr⁻¹);

t - is the elapsed time between environmental sample collection or end of the sample collection period, and time of counting, (hr).

Typical values of E, V, Y, and t used for normal effluent sample analyses should be used in this calculation.

PILGRIM NUCLEAR POWER STATION

OFFSITE DOSE CALCULATION MANUAL

APPROVED BY: CHEMISTRY DIVISION date MANAGER 91 APPROVED BY: 0 RADIOLOGICAL SECTION date MANAGER 191 REVIEWED BY: len CHAIRMAN ØRC date

Rev. O was originally reviewed by ORC on June 10, 1983

ORC REVIEW REQUIRED

Changes to this document shall be reviewed by the Operations Review Committee and submitted to the Nuclear Regulatory Commission in the next Semiannual Effluent Release Report. All such changes shall be recorded below.

RECORD OF DOCUMENT CHANGES

REV. <u>NÖ.</u>	IDENTIFICATION OF CHANGE	DATE APPROVED	DOCUMENT SECTION AND PAGE
0	Original Submittal	6/10/83	All Sections
1	Update of TLD and Air Sampler Locations	6/01/87	7.0/7-7 & 7-8
2	Changes in response to NRC questions on PNPS ODCM (TAC #63012). Changes in response to technical review performed by BECo Radiological Section.	7/15/88	All Sections
3.	Changes in response to NRC comments on PNP5 ODCM Rev. 2 (TAC #69867). Correct typographical error in Table A-3. Incorporate new TLD locations. Change responsible division.	7/12/89	Preliminary pages, 3.3, 4.2, 6.1, 7.0 (7-3 & 7-5), 8.1, A-3
4.	Update signature page to reflect new responsible organization. Update record of document changes. Renumber pages iii through vii to includ list of effective page revision Revise pages containing equations and definitions to include machine-generated scientific characters. Address gardens identified during 1990 garden census in Table 7-5 in accordance with Technical Specification 7.1.B.1 Expand definition of Lower Lim of detection in Appendix B.	ns. 2.	Page i through vii; pages 13-15, 17-23 25-28, 30-32, 49, and A-4; Appendix B.
5.	Add Steam Jet Air Ejector Monitor section addressing monitor setpoints.	tor 10/30/91	Pages i, ii, iii, v, 34a

LIST OF EFFECTIVE PAGE REVISIONS

K

1

Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev.	Page	Rev.
i	5	18	4	41	3	A-3	3	A-27	3		
ii	5	19	4	42	3	A-4	3	A-28	3		
111	5	20	4	43	3	A-5	3	A-29	3		
iv	4	21	4	44	3	A6	3	A-30	3		
V	5	22	4	45	3	A-7	3	A-31	3		
vi	4	23	4	46	3	A-8	3	A-32	. 3		
v11	4	24	3	47	3	A-9	3	A-33	3		-
1	3	25	4	48	3	A-10	3	A-34	3		
2	3	26	4	49	4	A-11	3	A-35	3		
3	3	27	4	50	3	A-12	3	A-36	3		
4	3	28	4	51	3	A-13	3	B-1	4		1
5	3	29	3	52	3	A-14	3	B2	A	-	-
6	3	30	4	53	3	A-15	3	B-3	4	And a second	
7	3	31	4	54	3	A-16	3				
8	3	32	4	55	3	A-17	3		-		-
9	3	33	3	56	3	A-18	3				1
10	3	34	3	57	3	A-19	3				-
11	3	34a	5	58	3	A-20	3				
12	3	35	3	59	3	A-21	3				-
13	4	36	3	60	3	A-22	3				
14	4	37	3	61	3	A-23	3				+
15	4	38	3	62	3	A-24	3		-		-
16	3	39	3	A-1	3	A-25					
17	4	40	3	A-2	3	A-26				1	

611

B-3

TABLE OF CONTENTS (ccitinued)

Sectio	00				Daga
<u>27. N. N. N. 1. 1</u>	4.3	Gaseou	s Effluen	ts Dose Assessment Methodology	Page 17
		4.3.1	Gaseous Noble Ga	Pathways Annual Dose Rates from ses	18
			4.3.1.2	Gamma Air Dose Beta Air Dose Total Body Dose Skin Dose	18 18 18 19
		4.3.2	131 and	Patnways Annual Dose Rates from Iodine 133, Particulates with a Half-life Than 8 Days, and Tritium	19
			4.3.2.2	Ground Plane Desposition Breathing/Inhalation Leafy Vegetation Ingestion Root Crop/Non-Leafy Vegetation Ingestion	19 19 20 21
			4.3.2.5 4.3.2.6	Milk Ingestion Meat Ingestion	21 21
		4.3.3	Definiti	ons	22
	4.4	Total	Dose to a	Member of the Public	27
5.0	Recep	tor Loc	ations, H	lydrology, and Meteorology	28
6.0	Monit	or Setp	oints		32
	6.1 6.2 6.3	Gaseou	is Effluer	t Monitor ht Monitors Ejector Monitor	32 33 34a
7.0	Rc and M	logical leasurem	Environm ment Locat	nental Sampling tions	35
8.0	Descr	iption	of Radwas	ste Systems	57
	8.1 8.2	Liquid Treate	l Radwaste ed Gaseous	e System s Radwaste System	57 59
9.0	Refei	rences			61
	Apper	ndix A	Data Requ	uired for Effluent Calculations	A-1
	Apper	ndix B	Definitio	on of the Lower Limit of Detection	B-1

V

6.3 Steam Jet Air Ejector Monitor

The steam jet air ejector (SJAE) monitor is used to measure the release rate of noble gases in main condenser offgas prior to its further treatment and release from the main stack. This monitor's primary function is to provide alarm and isolation of this process flow stream in the event of excessively high release rates of noble gases from the condenser and recombiner. The maximum allowable release rate of noble gases in the SJAE offgas is 500,000 μ Ci/sec, as established in Technical Specification 3.8.G. For conservatism, the Hi-Hi alarm is set at 75% of this limit, or 375,000 μ Ci/sec.

Since this gaseous stream undergoes further processing downstream of the SJAE monitor and is ultimately released via the main stack and monitored by the main stack gaseous effluent monitor, the SJAE monitor does not strictly qualify as a primary effluent monitor. Therefore, it is not normally recognized as such. However, the methodology for establishment of alarm setpoints is included in this section for completeness. These setpoints are established as follows:

- A grab sample of the SJAE offgas is collected. The SJAE monitor reading (mR/hr) is recorded in conjunction with this sample.
- 2) Isotopic analyses are performed on the offgas sample and the total noble gas concentration (μ Ci/cc) is coupled with the flow rate (CFM) to calculate the SJAE release rate (μ Ci/sec).
- 3) The release rate (μ Ci/sec) is divided by the monitor reading (mR/hr) to determine the SJAE monitor conversion factor (μ Ci/sec/mR/hr).
- 4) The Hi-Hi alarm setpoint (mR/hr) is determined by dividing the maximum tolerable release rate of 375,000 μ Ci/sec by the SJAE monitor conversion factor (μ Ci/sec/mR/hr).
- 5) The Hi alarm setpoint is set at 50% of the corresponding Hi-Hi alarm setpoint.

Grab samples of the SJAE offgas are collected: 1) at least once every 31 days; or, 2) if the gross radioactivity release rate increases by 50% or more over the previous day (after factoring out changes in reactor thermal power level). Upon collection of these grab samples, new values are established for the total noble gas concentration, SJAE monitor conversion factor, and alarm setpoints. Typically, existing setpoints will be used unless the newly calculated setpoints yield lower values. In this case, the setpoints will be lowered to the newer, more conservative values.