OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES

mm“mm' mlmg::.ﬁtﬂ
e1
PDR _NUREG

CR-3599 R PDR

NUREG/CR-3599
ORNL/Sub/82-22252/2

Sources of Uncertainty in the
Calculation of Loads on
Supports of Piping Systems

E. C. Rodabaugh

Work Performed for
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Under Interagency Agreement DOE 40-550-75
NRC FIN No. BO474



Printed in the United States of America. Available from
National Technical Information Service
U.S Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161

Available from

GPO Sales Program
Division of Technicai Information and Document Control
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

This report was prepared as an acconnt of work sponsored by an agency of the
United States Government Neither the United States Government nor any agency
thersof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefuiness of any information, apparatus, product or process disclosed, or
represents that its use would not infringe pi vately owned .iphts Reierence heremn
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, Or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency therso! The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereot.




NUREG/CR-3599
ORNL/Sub/82-22252/2
Dist. Category RM

Engineering Technology Division

SOURCES OF UNCERTAINTY IN THE CALCULATION OF LOADS
ON SUPPORTS OF °TPING SYSTEMS

E. C. Rodabaugh

Manuscript Completed — May 1, 1984
Date Published — June 1984

Report Prepared by
E. C. Rodabaugh Associates, Inc.
4625 C:aetery Road
Hilliara, Ohio 43026
under
Subcontract No. 19X-22252C

Work Performed for
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
under
DOE Interagency Agreement No. 40-550-75

NRC FIN No. B0474

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-840R21400



i1

CONTENTS

'omom LA R AR R R R R R R R R R R RN EE NN

mucum! (AR B R R R R R R N I I B O

usmﬂ LA A AR R R R R R R E R E R R R R R RN I A N I

1.
2.

4.

7.

INTRODUCTION c.cocccccoccscnscscoosscessssccsssssssnssnsoocsesse
PIPING SYSTEM MODELS ccccosscscssnssssssssossssccoccssnssnssscse
2.1 Piping Systems and Piping System Loads ....cccevvveccscnne
2.2 Piping Dimensions and Properties ...ceceescccccosncscssses
2.3 Input Load Description ..cecsccscscssss .oessccssscssasoss

2.3.1 Weight and restraint of thermal expansion .........
2.3.2 MC load. LA R R R R R R R R LR R RN E RN RN RN NN

28 RIsRAC ARBLYSLR csosnssvcsnsnsancssosnsosessnsssorssnsées
ELBOW FLEXIBILITY ccccccccoccvcccssocsscocsscssossscsenssssssss
3:1 No-Bad~BEfacts TROOEY ccvsoccoscacossssssssesssnnssnssoss
3.2 Nominal ve Actual Dimensions ..eeeecevsccsccvscssssnsssses
3.3 Internal Pressure Effect ..ccceeccsceccccsccocscssosnsssss
38 T BECQREE  50cis oot st st totscscsassss cassstenssssssnsssses
3.5 Static-Loading ExXamples ...ccceccccscscsscsscssasssosssans
3.6 Dynamic-Loading EXamples .ccccccccccccsscssssssssssconsscss
POREEE PLERIBILITY o000 0000t000006000un000es0etetssssesnsssstns
4.1 Available Data on Nozzle Flexibility .eeveeesvescoscsssnes
4.2 Representative Values of ky, and Koy sssseritiiniinniiinns
4.3 Static-loading BRamples .cccccsssscssesososssnsesssnsssese
4.4 Dynamic-Loading Examples ...cevvvevsvosns seceserressene
SUPPORT CHARACTERISTICS .sevvcscvscconnen: « sousssssssssee
3el ABCRORE sscscscevnsscssrssncsasee 7 veessesesssssse
5¢2 Other Restraints ccccccocevscccssssarosesscce. soossssssese
5.3 Spring and Constént~Load SUPPOTLS .evvescsscoscssscsescsne
Sl BIIORE 2000000000000 0080000s8008000000es0s0sssssesnshe
CONSTRUCTION MISALIGNMENTS .ccceccscscscscccccosososssssnsossss
BUILDING STRUCTURE FLEXIBILITY scvecesocccsccsssconscsnssonanse

Page

v
vii

W @ 00 ® N o i &M W e e

W W W W N NN NN = - e
ngNNONu—-A—U‘NO

37



iv

8. I“LASTIC E'FECTS .C.......C.II..O.....C..............O..'.....

B PRRIANE . s5tisetnsstnssshatnssbmbnabt s noiss i sasarydosrerivis
e o e L S W
9. SUMMARY AND RECOMMENDATIONS .uvveeccassscnonscsosasnnssncsesses
L SR e S Pl e NP S R VD PR W CReC R,
ek TRODDIREREINNE cososorossansnntnnintsinkesntabotiseesiies
o R S R Sl N S RN D It AU B e
APPENDIX A. DYNAMIC LOADING THEORY svvvevccsvsnscocncoscssnnncenns
AFPENDIZ 5. STATIC LOADIND THRORE senvosscasescsssossossstnesssses



FOREWORD

The work reported here was sponsored by the U.S. Nuclear Regulatory
Commission's (NRC) ASME Code Section III — Technical Support Program,
which is managed at ORNL by G. T. Yahr. It was performed under a subcon-
tract to E. C. Rodabaugh Associates that was monitored by S. E. Moore.
The original manager for the NRC, E. T. Baker, was succeeded by
- De Js G\lzy-
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SOURCES OF UNCERTAINTY IN THE CALCULATION OF LOADS
ON SUPPORTS OF FIPING SYSTEMS

E. C. Rodabaugh

ABSTRACT

Loads on piping supports are obtained from an analysis
of the piping system. The analysis involves uncertainties
from various sources. These sources of uncertainties are
discussed and ranges of uncertainties are illustrated by
simple examples. The sources of uncertainty are summarized
and assigned a judgmental ranking of the typical relative
significance of the uncertainty.

1. INTRODUCTION

Failure of one or more supports* of a piping system does not neces-
sarily lead to a leak or break in the piping pressure boundary. However,
fallure of supports may lead to large displacements which, in extreme
cases, cov'l permit the pipe to strike adjacent equipment or reduce the
flow capacity of the pipe. Failures of supports could also lead to
higher-than-»nticipated loads on pumps, compressors, heat exchaugers,
valves, or other equipment attached to the piping.

Failure of a support, depending upon its function, may not be sig-
nificant until a rupture occurs (e.g., fracture of a hanger rod or pull
cut of bolts holding the support to a concrete structure). However,
gross plastic deformation of the support may be considered to be a fuil-
ure in that it may permit unanticipated large displacements and loads on
attached equipment.

The objective of this report is to describe and discuss the sources
of uncertainty in the calculation of piping support loads as obtained
from an analysis of the piping system. Sections 2 through 7 deal with
elastic (but not necessarily linear) responses of the piping and supports
to static or dynamic applied loads. Section 2 is a brief overview of how
piping system analyses are performed and some of the uncertainties in-
volved in this process. Section 3 discusses elbow flexibility and, using
some simple examples, indicates how elbow flexibility ma, change calcu-
lated support loads for both static and dynamic applied loads. Section 4
discusses nozzle flexibilities and presents available data, which can be
used as a guide to estimate nozzle flexibility. These nozzle flexibili-
ties are then used in some simple examples to indicate how they may
change calculated support 'oads for both static and dynamic applied
loads.

*The term “support” is used in this report to include such devices
as hangers, spring or constant load hangers, guides, stops, and snubbers.



Sections 5, 6, and 7 describe, in conceptual terms, how the support
characteristics (e.g., gaps), construction misalignment, and building
structure rigidity might change calculated support loads. Section 8 dis-
cusses and gives some sinple examples of the effects of inelastic behav-
ior of the piping and discusses the effects of inelastic behavior of the
supports in conceptual terms. Section 9 contains a discussion and sum—-
mary, listing the many sources of uncertainties in calculating piping
support loads.

Design or construction errors are also a source of uncertainties in
calculated piping support loads, but this report does not address such
errors.

Support loads for small-size (e.g., 2 NPS or smaller) piping systems
are often estimated by so-called "chart methods.” The uncertainties
involved in such estimates are not addressed in this report.



2. PIPING SYSTEM MODELS

2.1

Piping Systems and Piping System Loads

Loads on piping supports are calculatid by a piping system analysis.
A piping system consists of the piping components (straight pipe, curved
pipe, tees, valves, etc.) and the piping supports bhetween two or more an-
chors. The piping system analytical model represents this complex assem-
blage of components and supports by straight- or curved-line sexments as

illustrated by Fig. 1. Except where a flexibility factor is used, the

Tsometric of simple piping system.




resistance of these line segments to deformation is taken to be the same
as straight pipe.
Loads on piping systems consist of

1. weight of piping components and their contained fluid and insulation;

2. restraint of thermal expansion;

3. dynamic eifects such as water hammer, relief valve thrust, and earth-
quakes; and

4. wind and weight of ice or snow for outdoor piping.

2.2 Piping Dimensions and Properties

The overall dimensions of the piping system are described by global
coordinates of "ncde points” (e.g., in Fig. 1, Node 3 is located at
X=0,Y=8, Z=-4,5) in appropriate~length units. The pipe cross sec-
tions are assumed to have nominal dimensions (e.g., 12-in. NPS Schedule
40 pipe is assumed to have an outside diameter of 12,75 in. and a wall
thickness of 0.406 in.). The stiffness is proportional to Ei, where E
is a Code* tabulated (Ref. 1) modulus of elasticity and I is the nominal
moment of inertia of the pip. cross section (e.g., I = 300 in.“ for 12-
in. Schedule 40 pipe).

Aside from design errors (e.g., node point has wrong coo-~dinates) or
construction errors (e.g., Schedule 80 pipe used rather than the Schedule
40 assumed in the analysis), these data are relatively accurate (+10%).

The flexibility of elbows is included .n the model by use of Code-
specified flexibility fac ors. As discussed in Sect. 3, significant un-
certainty may arise from inaccurate elbow flexibility factors.

Nozzles are often considered to be anchors. As discussed in Sect. 4,
nozzles may permit significant rotations; hence, the "anchor” assumption
may introduce large uncertainties in calculated support loads.

Restraints may consist of

l. spring or constant-load hangers used for weight support;

2. relatively rigid members, such as tie rods; and

3. snubbers, which have negligible resistance to slow movement but act as
rigid restraints for fast movement. Thece are used for restraint of
dynamic loads (see Sect. 5.4).

Restraints may restrict displacement {n one, two, or three directions.
Guides may be used to restrict rotations as well as displacements. Stops
permit a prescribed movement beyond which the stop prevents further
movement .

These various restraints are usually iancluded in the analytical model
in an idealized manner (e.g., a tie rod prevents any displacement in the
direction of the tie rod). The effect of the flexibility of the tie rod,
local flexibility of the pipe (e.g., the pipe clamp), and any clearances
that may exist are usually ignored. The effect of these flexibilities and
clearances are discussed in Sect. 5. Further, the flexibility of supports

*The term “"Code” in this report refers to the ASME Boiler and Pres-
sure Vessel Code, Sect. III, Division 1 (see Ref., 1).



may depend upon the way they are attached to the building and the
flexibility of the building. This is discussed in Sect. 7.

2.3 Input Load Description

2.3.1 Weight and restraint of thermal expansion

Weight of the pipe, fluid contents, and insulation are nominal
weights but are relatively accurate. However, these distributed weights
may be included in the analytical model as lumped masses. The number and
spacing of the lumped masses is usually governed by the requirements for
an adequate dynamic analysis; this usually ensures adequate representa-
tion of distributed weights for the static weight evaluation. Valves and
valve operators are also represented by lumped masses. Usually two
masses are used: one represents the valve mass, and the other, the valve
operator mass, connected by a line element with stiffness represc¢nting
that of the valve-to-operator connecting structure. Evaluation of the
welght loads is deemed to be accurate within about £20%. Large uncer-
tainties may exiet In the weights of ANSI B16.9 tees and elbows and in
the flexihility of elbows. The effect on flexibility of over-nominal-
thickness elbows is discussed in Sect. 3.2.

Unrestrained thermal expansion is calculated by the product aATL,
where g is Lhe coefficient of thermal expansion, AT is the change in tem-
perature, and L is the length in a given direction. To the extent that
the piping system is connected to equipment that changes temperature, the
thermal expansion of that equipment is included in the restraint of Cther-
mal expansion evaluation. Vzlues of aq and L are accurately known (£10%),
and the value of AT is also accurately known for a relatively slow fluid
temperature transient throughout the piping system. However, for rapid
fluid temperature transients or where branch lines are subjected to dif-
ferent fluid flow conditions, the appropriate value(s) ~f AT (severai
different values of AT may be needed t> represent the thermal expansion)
may be uncertain. Several bounding calculations may be needed to repre-
sent changes in the system as a function of time.

Under some fluid-flow conditions, a thermal gradient may exist
around the circumference of the pipe (e.g., the top of the pipe nay be
hotter than the bottom or vice versa). This type of thermal gradient
produces bowing of an unrestrained pipe, which leads to the equivalent of
additional "free thermal expansion” that {s seldom considered in piping
system analyses.

2.3.,2 Dynamic loads

For earthquake evaluation, the input consists of motion of the pip-
ing system support points. Usually, this input is Jerived from floor re-
sponse spectra in which acceleration is given as a function of frequency
for sne ifled amounts of damping (e.g., 2% of critical damping).

The piping-input response spectrum is usually an envelope of the re-
sponse at all support points. The peaks are broadened by %15% to par-
*{ally compensate for inaccuracies in floor response specira and in tae



calculated piping system frequencies. This is an important aspect be-
cause, as illuetrated in Fig. 2, the input acceleration varies rapidly
with frequency and a small error in the calculated frequency could lead
to a large theoretical error in the calculated support loads.

The floor response spectra are determined by an evaluation of the
building response to the postulated earthquake. The characteristics and
frequency of occurrence of earthquakes at a given site are subject to
large uncertainties. For example, the operating basis earthquake (OBE)
is typically expected to occur once in one hundred years, and the safe
shutdown earthquake (SSE), once in one thousand years. However, because
this 1s a probability estimate based on limited data, one cannot say with
certainty that an earthquake larger than the SSE will not occur.

Additional uncertainties exist in the piping system evaluation in
that an earthquake produces both horizontal and vertical ground motions.
For a nonplanar piping system, "horizontal” is an infinity of directions,
each of which would lead to a different piping system response. The
usual procedure consists of calculating responses for two horizontal
directions that are 90° apart and then combining the two responses with
the vertical-motion response. The combination is usually done by
R = (Rﬁl + Rﬁz + Rs)l/z. This "square root of the sum of the squares”

(SRSS) method has some probabilistic basis.

Earthquake evaluations obviously are subject to large uncertainties.
However, the present day procedures for earthquake evaluation tend to be
conservative because of the use of low damping factors and response-
spectra analyses rather than time-history analyses and because inelastic
effects are ignored. Accordingly, the evaluations tend to overestimate
loads on the supports for the postulated OBE and SSE for a given nuclear
power plant.

For water-hammer or relief-valve thrust, the load input data usually
consist of a time-history of forcing functions. These forcing functions
are derived from fluid-flow momentum change evaluations. An appropriate
damping factor must be estimated as input for the analysis. The dynamic
analysis i{s subject to many of the uncertainties of an earthquake analy-
sis (e.g., calculated natural frequencies). The input forcing functions
are usually deterministic in nature, and the uee of a time-history, rather
than a response-spectrum approach, tends to produce results having lower
uncertainties than for earthquake evaluations. However, some types of
water hammer are difficult to anticipate or evaluate (e.g., control valve
instability, pump startup into a partially empty line, or steam bubble
collapse). Large uncertainties exist for these types of water hammer, and
the best defense usually consists of design features and operating proce-
dures that minimize the occurrence and/or severity of such types of water
hammer,

2.4 Elastic Analysis

Currently, routine piping system analyses are based on linear elas-
tic piping system and support modeis. Nonlinear elastic efrects are dis-
cussed in Sect. 3 (eibow, internal pressure) and Sect. 5 (gaps, non~
linearity of snubbers). A discussion of inelastic effects is presented
in Sect. 8.
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3. ELBOW FLEXIBILITY

3.1 No-End-Effects Theory

Flexibility factors for elbows (and curved pipe) that are routinely
used in a piping system analysis are obtained by the equations

k = 1,65/h » 1.0 for M; and M, , (1)
k = 1.00 for M, , (2)
where b = tR/r? and , and M, are defined in Fig. 3.

Equations (1) a (2? are hnscd on thaeories of a uniform-wall,
toroidal shell and are included in the Code. The effect of uhatovcr is
attached to the ends of the elbow (e.g., straight pipe or pressure vessel
nozzle) are ignored by the theory. Conditions under which Eqs. (1) and
(2) may be inaccurate are discussed in the following.

Flexibility factors are used in piping system analyses in the form

kR a
o.ﬁjo' Hdc- (3)

ORNL -DWG 844087 ETD

Fig. 3. Elbow nomenclature.



If, for example, M is constant through a 90° elbow, Eq. (3) gives

where 6 {s the rotation of one end of elbow with respect to the other
end.

3.2 Nominal vs Actual Dimensions

Equation (1) is based on theories which assume that an elbow is a
portion of a toroidal shell with t, r, and R constant. The effect of a
smooth variation in thickness t around the cross section has been studied
by Spence and Findlay;? their results indicate that a variation in t of
$+20% produces about 5% variation in flexibility. Because thickness
variations in typical elbows or bent pipe do not exceed #20%, it appears
that thickness variations are not significant in elbow flexibility,

The effect of variation in r (out-of~roundness) has been studied by
Clark, Gilroy, and Reissner’ and by Findlay and Spence.* The change in
flexibility depends upon the orientation of the out-of-roundness with re-
spect to the elbow. However, for any orientation, out=-of~-roundness
(d-nx/dnin' d = 2r) of up to 1.08 does not change the flexibility by more
than about +10%., Because out-of ~roundness in typical elbows and bent
plpe does not exceed 1.08, {t appears that out-of-roundness effects have
a minor effect on elbow flexibility,

Occasionally, an elbow may be purchased that has an average wall
thickness that {is significantly greater than nominal. This is because
ANSI B16.9 (which includes elbows) does not contain a maximum thickness
(or weight) 1imit, One could, for example, order a 30-in. by 0.375<1n.
wall elbow and receiva a 30-in. elbow with 0.500-in. average wall taper-~
bored at the ends to match a 0.375-1n.-wall pipe. For that elbow, k =
15.95, rather than k = 21.45 for a 30-in.-wall elbow that might he used
in the piping system analysis. Also, the moment of {nertia would be
higher by about 31%, so that the flexibility would be overestimated by a
factor of 1,31 x 21.45/15.95 = 1.76. This could have a significant ef-
fect on calculated support loads.

3.3 Internal Pressure Effect

For Class 2 and 3 piping the Code does not consider the effect of
internal pressure on elbow flexibility., Por Claes 1 piping, the Code
gives the equation

k = (1.65/h) [1 + 6(Pr/tE)(r/t)"/3 (R/e)V/3)=1 5 1.0 . (5)

Equation (5) was developed by Rodabaigh rnd George® using "no-end-effects”
theory. It is applicable to My and M, as defined in Fig, 3, According to
Eq. (5), k 18 a nonlinear function of internal pressure P,
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To illustrate the eignificance of Eq. (5), we apply it to a 30-in.
by 0.375-1in. wall elbow having a 45-in. bend radius with pressure loading
Pr/t = 15,000 psi. Pr/t is the nominal hoop stress resulting from inter-
nal pressure and 15,000 psi is the Code Class 2 or 3 allowable stress for
SA-106 Grade B material at temperatures up to 650°F, Using E = 2.79 x 107

psi, Eq. (5) gives

k = (1.65/n) [1 + 6(15,000)(39.5)%/3 (3.088)}/3/(2.79 x 107)]~}

= (1.65/h)1.632 . (6)

For the 30-in. elbow, h = 0.375 x 45/14,81252 = 0,0769. Accordingly,

¥ = 13,15 with an internal pressure corresponding to Pr/t = 15,000 psi

(P = 1013 psi), compared with k = 21,45 when the {nternal pressure effect
is ignored.

For most piping, r/t tends to be smaller than the 14.81 of the ex-
ample and Pr/t tends to be less than the Code allowable stress. Hence,
in most cases, the pressure effect is less than indicated by the example.
Nevertheless, ignoring the internal pressure may lead to a significant
overestimation of the elbw flexibility.

3.4 End Effects

The flexibility of an elbow derives from its tendency to become out-
of-round when subjected to M, or M, loading. However, if ovalization is
prevented by restraints at the ends of the elbow, for example, by 2 heavy
clamp tightly secured to one end, Eq. (1) may overestimate the flexi-
bility factor. C(ensequently, the piping system will be stiffer than cal-
culated.

The subject of end-effects for straight pipe on elbows 1is discussed
by Rodabaugh and Moore.® For {n-plane moments on elbows in which a = 90°,
having straight pipe of at least two diameters in length attached to both
ends, they found that the value of k 1s equal to 1.30/h (»1.0) rather than
1.65/h (51.0) by Eq. (1).® For a = 45°, k = 1.1/h (»1.0), and as q + 0,
k + 1.0 regardless of the value of h., Of course, for small g, the elbow
flexibility does not contribute much to the piping sytem flexibility [see
!q' (3)]0

For the considerably more complex out-of-pleane moment (note that
on one end of a 90° elbow becomes a torsional moment at the other
end), Rodabaugh and Moore® suggests that k = 1.25/h (51.0) for both M,
and "i'

Although the stralight-pipe end effects are not necessarily insig-
nificant, {f one or both ends of an elbow are restrained by something
more rigid than straight oipe, the end effects become more significant,
That “something” might be a heavy clamp, tightly bolted to the pipe
adjacent to the elbow, or a vessel nozzle, a pump nozzle, a valve, or a
flange.
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For "flanges" attached to one or both ends, the Code [see foot~
note 3, Fig. NC-3673.2(b)-1] gives

k = 1,65/h5/6 31.0 for one end flanged , (7)
k = 1.65/h2/3 51,0 for both ends flanged . (8)

;1;;1bility factors obtained by Eqs. (1), (7), and (8) are shown ia
able 1,

Equations (7) and (8) were based on test data given by Pardue and
Vigness.” In recent years, several authors have published additional
data on the effect of flanges attached at the ends of elbows. In par-
ticular, Whatham® and Thompson and Spence?® have developed theories appli-
cable to elbows with flanged ends subjected to in-plane moments. Com-
parisons of their results with Eqs. (1) and (8) are shown in Table 2.

Table 1. Flexibility factors as influenced by end effects

k
- 2
Sise . R h = tR/r No flanges One flange Two flanges
[Eq. (1)] [Bq. (7)] [Eq. (8)]
4 0.237 6 0.313 5.27 4,34 3.58
12 0.375 18 0.176 9.36 7.01 5.25
30 0.375 45 0.0769 21.45 13.99 9.12

Table 2. Influence of end effects on flexibility factors:
Comparison with other studies

k
Sise . R " No flanges Two flanges Whathan® Thompson_and
Eq. (1) Eq. (8) Jponccb
4 0.237 6 0,313 5.27 3.58 2.0 2.0
12 0.375 18 0.176 9.36 5.25 2.6 2.2
30 0.375 45 0.0769 21.45 9.12 2.9 2.6

dSee Ref, 8,
bgee Ref. 9.

The theoretical values for k are significantly lower than those given
by Eq. (8), particularly for small h. 1In addition, as might be expected
intuitively, the theories show that k depends on the elbow angle a and R/r
in addition to h.
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Another facet of end effects is illustrated when two 90° elbows are
welded to each other to produce an S shape, a not uncommon configuration
in piping systems. When such a configuration is subjected to in-plane
moments, the tendencies for the elbows to ovalize oppose each other ac
the juncture. This also occurs for an out-of-plane moment at the junc-
ture (torsion at both ends). 1It, thus, seems reasonable to speculate
that the flexibility of the elbows is much like that of a flanged-at-one-
end elbow.

3.5 Static Loading Examples

Data presented to this point indicate that elbow flexibilities may
be drastically reduced by end effects (e.g., from 21.45 to about 3).
However, the effect of this uncertainty in elbow flexibility on supports
of a piping system will depend on the details of the piping system. This
interaction is {llustrated by some simple examples using the configura-
tion shown in Fig. 4(a).

Table 3 shows calcula‘ca* support loads (Fy, Fy, My, and M) for
several pipe sizes and lengths L) and L. The loads are for restraint of
thermal expansion resulting from an increase in pipe temperature from 70
to S00°F (AT = 430°F) for pipe material having a coefficient of thermal
expansion of 7.02 x 107® {n./in./°F. These specific assumptions provide
a basis for giving the support forces in pounds and support moments in
in.~kips (1000 in.~1b). However, the ratios of the support loads (which
we are mainly interested in) would remain the same for any other AT or
coefficient of thermal expansion. The k = 2.0 used in Table 3 is intended
to represent the maximum end effects. This might occur if both ends are
restrained, for example, in the context of the model of Fig. 4(a’, by
heavy clamps at both ends of the elbow.

Examples | through 4 in Table 3 are intended to represent typical
propottions of straight pipe to elbows in piping systems. The leg lengths
L) and Ly are either 20 or 10 times the nominal size. Example 5 is in-
cluded to 1llustrate the effect of increasing the proportion of straight
pipe to elbows. Example 6 1s the opposite of Example 5 i{n that the system
is all elbow.

The ratio of calculated support loads using k = 2.0 to those using
k calculated by Eq. (1) varies from 10.7 (Example 6 in Table 1) to 1.09
(Example 1, M2). Example 6 i{s a double upper bound of the ratios in that
k= 2,0 {8 a maximum possible end effect and the system is all elbow.
Examples 1 through 4 are judged to be more representative. For these, the
support load ratios vary from 2.7 (Example 3, Fy) to 1.09 (Example 1, M2).

It may be observed in Table 3 that support” loads decrease as the
flexibility factor Increases. However, this should not be assumed to
always be true for static loading. Figure 5 shows simple examples in
which increasing the flexibility of one portion of a "piping system” in-
creases the support loads at another portion of the system.

*The calculation method is described in Appendix B.
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(a)

(O INDICATES NOZZLE REPRESENTED
BY A POINT SPRING

(h)

(O INDICATES NOZZLE OR ELBOW
REPRESENTED BY A POINT SPRING

C same as )

Fig. 4. Configuration used in examples, (a) Static-load model;
(b) dynamic-load model; and (¢) dynamic-load model support loads and

elbow moment Hj .



Table 3.

Examples of effect of elbow flexibility on support
loads, static lo.dlng“

e

Example Pipe, 1L;° rR? W g i M7 M, M,
1 4 80 40 6 2.00 4,880 1,420 127 —45.9 56.5
5.27 3,990 —960 117 —34.2 33.9
2 12 240 120 18 2,00 20,900 6,100 —1640 —591 729
9.36 15,300 —3,160 —1440 ~368 293
3 30 600 300 45 2.00 45,960 13,400 —9000 —3240 4000
21.45 29,200 4,900 7460 —1650 842
4 30 300 300 45 2,00 39,300 39,300 6200 —6200 4550
21.45 18,900 18,990 4380 4380 783
5 30 6000 3000 45 2.00 479 —145 909 —344 518
21.45 383 —97.1 -815 248 328
- 30 45 45 45 2.00 6,560° —6,560° _80.6° —80.6° 41.6°
21.45 611° —611¢ —7.52¢ ~7.52¢ 3.88°

9See Fig. 4(a) for definition of support loads and elbow moment
straint of thermal expansion of 0.003019 in./1n., corresponding to an
70 to S00°F of carbon steel piping.

Pt = 0.237 1n. for 4-in. size; t = 0.375 in. for all other sizes.
®See Fig. 4(a) for definitions of L;, Ly, and R.
dthe second k in each example is from Bgq. (1).

®Loads divided by 1000.

This example is for re-
ncrease in temperature from

%1
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- L :! M, = w L2/12, NO HINGE
o ! Myp= w L2/8, WITH HINGE
I~ P
- { a". = (6/8) wL,W!TH HINGE
oR 4 A My, > My AND Ry, > Ry
Myn
Ry OR Ry,
@)
' c My = (BEIB/E3) / (1 /634112, NO HINGES
Wy gty & _‘I My, = mwvg)r [21(3ae, /el
1 B WITH HINGES
Cj M'n\ M| FORQ|/Q2QO.7'
3 .
Min
b)

Fig. 5. Simple {llustrations of possibility that increasing flex-
ibility of part of pipi.g system may Iincrease support load at another lo-
cation of piping system. (a) Distributed load w(lb/in.), A = hinge lo-
cation; (b) prescribed displacement &§; B, C = hinge locations.

3.6 Dynamic-Loading Examples

The configuration in Fig. 4(b) was used to develop some simple ex-
amples showing the effect of elbow flexibility on support loads with a
simple type of dynamic load. Development of the applicable theory is de-
scribed in Appendix A. The dynamic load consists of the sudden applica~
tion of a load W at the location shown in Fig. 4(b). The load is then
maintained constant. This loading {s somewhat like a safety-valve thrust
force on a piping system. However, the main motivation in selecting this
particular dynamic loading was (ts relative simplicity.

In the dynamic analysis, the elbow flexibility factor is embodied in
the parameter

y= (w/Z)(anLl)(R/Ll)k " (9)

where

(mop/BT)L /0L,

mass of pipe per unit length,

modal frequency,

modulus of elasticity,

moment of inertia,

length of leg | [see Fig. 4(b)],

bend radius of elbow,

flexibility factor of elbow [see Eqs. (1) and (3)].

— s g
" 5 % 38 2
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Table & gives results of the dynamic analyses for Ly = Lz, and Table 5
gives results for L; = L2/2.

The analysis gives the values of a,L, and a,L, shown in Tables 4
and 5. These values are independent of the cptctfic type of dynamic
loading. It can be seen in Table 4 that, for L; = L2, the first, third,
and fifth modes do not depend on the elbow flexibility. This 1is because
the modal shapes are characterized by y, = —y,. The elbow does not carry
any moment; this is indicated in Table l tﬁc column headed My/WL,.

The second and fourth modes are dependent on elbow flexibility, as
indicated by the results for y = 0, 1, and 10, lotlng that w,, the modal
frequency, 1is proportional to a? and, thus, to (aj,L,)?, 1t can be seen
that elbow flexibility producccna change in ¥, This, of course, 1is
significant in evaluating earthquake loadings because the dynamic {input
is frequency dependent (see Fig. 2).

The generalized results can be related to specific dimensions as
L1lustrated by the following example in which Ly = L = 600 {n. for 30=in.
NPS pipe with 0.375 in. wall and a long-radius elbow with R = 45 in. The
value of k derived by Eq. (1) 1s 21.45, but we want to see what happens
if the actual flexibility factor were 2 (e.g., as a result of end ef-
fects). For the second mode, using Eq. (9) in which ‘nL| = 1,281y and
k = 21,45 glves

y = (n/2)(1.281%)(45/600)(21.45) = 10,17 .
Using Eq. (9) in which a L, = 1,402x, k = 2 gives
y = (n/2)(1.40in)(45/600)(2) = 1,04 ,

The values of y from Eq. (9) are not exactly the same as those values in
Table 4 used to determine the values of a,L,. For improved accuracy, one
could interpolate the values given in Table 4 and {terate to find corre-
sponding values of y and anl,, for a specific value of k. Alternatively,
one could use the theory of Appendix A and {terate to find corresponding
values of y and a,l;. However, for the purpose here, the correspondence
is adequate. Accordingly, for this example, decreasing the flexibility
factor from 21,45 to 2 increases the second mode frequency by a factor

of (1.40/1.28)2 = 1,20, This is a bit larger uncertainty than covered

by the practice of peak broadening by #15% (see Fig. 2). The example
constitutes an extreme case in flexibility factor uncertainty and, in
most piping systems, the peak broadening could be expected to encompass
the uncertainties in elbow flexibilities., However, peak broadening s
usually considered to represent uncertainties in developing the response
spectra from the ground motion through the building structure to the
piping system support locations. From this viewpoint, uncertainties in
piping system natural frequencles would conceptually entail additional
peak broadening.






Table 5. Examples of elbow flexibility on support loads,
dynamic loading,® L; = L2/2

Mode Yb agly /= aply /v fq(x)],* o® Hlml "2,‘11 'l!N '2," Fry/W Fox/W 'le
1 0  0.69 1.392 ~0.5801 17.6 -0.0276 0.0799 0.0857 -0.171 0,160 0.0606 0.0479
1 1 0.665 1.3%0 -0.5322 57.4 -0.0085 0.0445 0.0263 0.092) 0.0780 0.0198 0.0151
1 10 0.6326 1.2652 —0.4837 1540 ~0.0003 0.0088 0.0010 -0.0175 0.0126 0.0008 0.0006
2 0 1.15372 2.30744 —1.327 6.22 -0.0650 -0.105 0,241 0.381 0.314 -0.107 0.0267
2 1 1.147 2.294 ~1.317 11.4 -0.035% -0.0307 0.132 0.291 0.233 -0.0558 0.0156
2 10 1.1314 2.2628 -1.295 158 ~0.0026 0.0229 0.0095 0.0814 0.059% -0.0036 0.0013
3 0 1.39 2.790 —1.560 1.37 -0.2% 0.103 1.025 <0.448 ~0.275 -0.963 0,144
3 1 1.336 2.672 —-1.524 1.18  -0.293 0.0806 1.215 -0.338 -0.290 ~1.040 <0.108
3 10 1.2657 2.5314 —1.461 1.02  -0.3%2 0.0245  1.444 -0.0977 -0.0973 -1.039 0.0248
4 0 1.704 3.408 -1.500 9.40 -0.0223 0.0455 0.118 0.244 -0.234 -0.0948 -0.0309
4 1 1.667 3.334 -1.529 28.7 ~0.0078 -0.0288 0.0401 0.150 -0.130 -0.0348 -0.0105
4 10 1.6324 3.2648 —-1.552 801 ~0.0003 -0.0059 0.0015 0.0301 -0.0223 -0.0014 -0.0004
5 o 2.155 4.310 ~0.7776 5.99 -0.0113 0.0178 0.0766 -0.120 ~0.099 0.0369 -0.0047
5 1 2.147 4.294 -0.7940 10.9 —0.0064 0.0143 0.0431 0.0964 -0.0768 0.0193  -0,0029
b 10 2.1315 4,253 -0.8271 161 -0.0005 0.0041 0,0031 -0.0274 0.0202 0.0012 -0,0002

?Load suddenly applied at point shown in Fig. 4(») and maintained constant.
by = (n/2) (lu;l) (lll.l)k. where k = elbow flexibility factor.
“See Appendix A for significance of these parameters.

81
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The total support loads can be obtained by summing the loads for
each mode. Continuing with the 30-in. by 0.375~in. pipe and elbow ex-
ample for which L} = L = 600 in., M;/WL; is (~0.187 — 0,154 — 0.0228 —
0.0081 + 0.0249) = —0.347 for y = 1 (k = 2), whereas M /WL 1s (-0.187 —
0.179 — 0.0228 — 0.0195 + 0.0249) = —0.383 for y =10 (k = 21.45). Con-
sidering the drastic assumption regarding the change in k, this {s a very
small change in the support load M;.

The cognizant reader will be aware that Tables 4 and 5 ‘nclude only
the first five modes and that higher modes could change the total support
loads. Also, as discussed in Appendix A, data on loads from Tables 4
and 5 may be subject to rounding errors and inaccuracies in the numerical
integration technique used. However, the particular dynamic loading ex-
ample was selected (in part) because the total support loads can be ob-
tained from a static analysis, using a dynamic load factor of 2.0.

Table 6 summarizes the bounds derived from the static analysis of
the configuration shown in Fig. 4(b). The first two lines of the two
groups of data in which Lz/L; = 1.0 and L2/L; = 2.00 show the bounds of
support loads for Tables 4 and 5, respectively. (The third line of each
group and the last two groups in Table 6 will be discussed in Sect. 4.)

It can be seen in Table 6 that, even at the bounds, the change in M;
is small. Lerge percentage changes might occur in My, sz. and F,, but
these loads are small compared with M1, Fiy, and Fp,; hence, the effect
on the adequate design of supports for calculated loads would be small.
This, of course, cannot be generalized, even for the same typa of load-
ing, but where Ly/L; = 0.25, it is apparent from Table 6 that F y and F
can become dominant support forces and could change llgnificnnt%y with
the elbow flexibility.

As mentioned previously in Sect. 3.5, Table 6 shows examples in
which an increase in the flexibility of part of a piping system will in-
crease the support loads. Accordingly, in general, it is impossible to
define a "conservative” elbow flexibility factor either for static or
dynamic loads. A sensitivity studv is needed to establish the parameters
(e.g., ratio of s*raight pipe lengths to elbow lengths) where elbow
flexibility {s significant with respect to support loads. The results
given in Tables 3, 4, and 5 represent an initial step toward this objec-
tive. .



Table 6. Bounding solutions? to dynamic loading examples,
static analysis with dynamic load factor of 2.0

L2/ +° Yy MWL, Ma/WL)  Fig/W Fay/W Fix/W Fox/W My /WL,
1 0 0 -0.3125 0.0625  1.1875 -0.1875 -0.1875 —0.8125 —0.1250
- 0 —0.3750 0 1.375 0 0 —0.625 0
0 - 0 0.1071  0.7857 —0.3214 —0.3214 —1.2143 -0.2142
2 0 0 —0.3333  0.0417 1.250 -0.0625 —0.9625 -0.7500 —0.08333
® 0 -0.3750 0 1.375 0 0 -0.6250 0
0 . 0 0.0750  0.850 —0.1125 -0.1125 -1.1502 —0.1500
0.5 0 0  -0.2917 9.0833 1.125 —0.500 —0.500 —0.875 —0.1667
- 0 -0.3750 o0 1.375 0 0 ~0.625 0
0 ® 0 0.1364  0.7273 —0.8181 —0.8181 —1.2727 —0.2727
0.25 0 0 —0.2750 0.100 1.075  —-1.200 —1.200 —0.925 —0.2000
- 0 —0.3750 0 1.375 0 0 —0.625 0
0 » 0 2.1579  0.6842 —1.8947 —1.8947 —1.3158 —0.3158

“See Fig. 4(b and ¢). Support loads are those applied to the supports by the
piping.

bsee F1g. 4(b).

°y = (/2) (a, /L)) (R/L )k, where k = elbow flexibility factor.

dvb = (anLl)kb d/Lx‘ where k, = nozzle flexibility factor.

0z
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4. NOZZLE FLEXIBILITY

4.1 Available Data on Nozzle Flaxibility

Flexibility of nozzles is usually not considered in a piping system
analysis, even though there is some (nonmandatory) guidance in NB-3686.5
by the equations

k = 0.1(0/T)3/ 2[(T/ty)(a/D) 11/ 2(e/T) for Myy , (10)
k = 0.2(D/T)[(T/ty)(d/D) ]}/ 2(t/T) for My, , (11)
¢ = kMd/EI, . (12)

(The nomenclature used in Eqs. (10), (11), and (12) is given in Fig. 6.)

Equations (10) through (12) were developed by kul+baugh and Moore.l0
They are based on correlations with finite-element analysis and available
test data and are intended to be applicable to fabricated branch connec-
tions with D/T < 100 and d/D < 0.5,

As Indicated in Pig. 6, the flexibility of a nozzle is intended to
be used in a piping system analysis as a point-spring at the surface of
the vessel or run pipe. The value of k gives the ratio of the rotation
of the point-spring to the rotation of a one-diameter length of branch
pipe. When the value of k 1s so expressed, it has an immediate signifi-
cance. If k 1s small compared to the length (in diameters) of pipe at-
tached to the nozzle, then the nozzle flexibility will have little in-
fluence on support loads. Conversely, if k 1is large compared to the
attached pipe length, the nozzle flexibility may have a large influence
on support loads. Examples are given in Sects. 4.3 and 4.4,

Equations (10) and (11) were developed for piping for which D/T
seldom exceeds 100, Steelell! gives data that are applicable to larger
values of D/T. His data are significant because a plping system may be
attached to a nozzle in a thin-wall tank with D/T >> 100. As will become
apparent, ignoring the nozzle flexibility in thin-wall tanks can lead to
gross errors in calculated support loads.

Steele!!l gives data on the flexibility of a rigid cross-section
(plug) nozzle in the form of a graph of M/ET3¢0 as a function of A, where
M 1s either My; or M,;, #0 1s the rctation in degrees, and A = (4/D)/D/T.
That data can be used to calculate a flexibility factor for the nozzle by

¢ = (n/180) (M/[ET3£(N))) , (13)

where f(1) = (M/ET349) for a particular value of A. Equation (13) can be
written as

o = Md [n2 (2)2 (2)2 L4 S (14)
E(rd3t/8) [8 x 180\1) \p) T £C)
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Fig. 6. Nozzle terminology.

and k is the quantity in brackets. In developing Eq. (14) from Eqs. (12)
and (13), the approximation Ib * ndit/8 was used. Of course, because the
Steele!! data are for a "plug’ nozzle, the introduction of (t/T) in k is
simply to express the flexibility of a plug nozzle in terms of a nozzle
with a given (t/T).

Table 7 shows the available test data on nozzle flexibility!2~18 gnd
comparisons with Eqs. (10) and (11), headed Code, and with Eq. (14),
headed Ref. 11, In converting measured rota.lons to k-factors, E was




23

Table 7. Test data on flexibility of nozzles and comparisons
with Eqe. (10), (11), and (14)

Ref. Out-of -plane moment, k,; In-plane moment, %,
No .8 /T d/0 c/!'b 7
¢ Test® Code?  mef. 11° Test® Code’ Ref. 117
12 7% 0.18 0.76 3 24.5 26 17 5.62 2.8
44
13 % 0.13 0.45 11 16.7 12 5.6 wn 3.2
19
14 9 0.12 0.42 10 20.1 14 4.0 4,18 3.6
21
14 9 0.18 0.7% 27 33.0 kX 8.0 6.83 -
63
15 1050 0.011 0.63 S2 283 52 2 17.5 32
Y3
15 1050 0.028 1.09 310 594 310 140 36.7 120
450
16, 17 25% 0.010 0.5 140 926 180 S8 36.8 9
220
16 25% 0.0% 0.9 1200 2070 690 240 82.4 -
1800
18 960 0.0042 1.00 b4 193 16 51 12.4 11
18

%See Sect. 10 for references.
bt ™ for all specimens,

®Carbon steel test specimens tested at room temperature; X = 3 x 10/ pel used
in obtaining values for k from measured rotations.

‘lquun (10).

®Equation (14); the first value is for A = 14; second value is for A = =,
Fequatton (11).
Prquation (14); not dependent on A,

taken as 3 x 107 pet. All test specimens were made of carbon steel mate-
rial and were tested at room temperature, In all specimens, the branch
pipe was long enough to be effectively of infinite length and, in all
specimens, t = ¢t .,

For Myy (ouf-of-plane moment) Steele'! gives M/ET0 ag o function of
A for A = 14, 50, 100, and =; where A = L//DT, and L {s the length of the
vessel, The data are based on a thin-shell analysis of a cylindrical
shell with "simple support at the ends of the cylinder.” Table 7 shows
kg3 for A = 14 and =, Steele!' covers A only up to 1.5 for Mz3, hence,
the dashes in Table 7 for specimens in which A > 1.5. Only one curve for
Mz3 (labeled A = 14) 18 given, and the observation that n,,/nr3o° has “a
very weak dependence on the cylinder length” is made.
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Examination of Table 7 indicates that the Code equations, when ex-
trapolated to D/T >> 100, tend to overestimate ky; and underestimate k,j.
Resulis of Steelel!l for ky;, based on A = 14, are in reasonable agreement
with the tests, but results for k,; tend to be more erratic with respect
to test data. It should be noted that the experimental determination of
flexibility of nozzles in vessels or run pipe requires an appropriate ref-
erence frame for mounting dial gages tc measure rotation, accurate control
of the moment load, and accurate displacement readings. Some of the die-
crcpancies apparcnt in Table 7 may be the result of inadequate experi-
mental techniques.

Table B8 shows comparisons of nozzle flexibility factors obtained by
finite element analyses (FEA) with Eqs. (10) and (11), the Cod2 equations,
and Eq. (14), headed Ref. (11). Dashes are inserted where data from
Steele!l do not cover the model (i.e., for A > 1.5 for M,; and for A > 3
for &3, A= 16Io

The first group of six models are 2ssentially unreinforced with re-

pect to a pressure that fully utilizes the vessel or run-pipe wzll thick-
ness. In theee models, t/T = t /T = d/D. The second group of 14 models

Table B. Finite-element analysis (FEA) data on flexibility of
nozzles and comparisons with Egs. (10), (11), and (14)

Out-of-plane moment k.3 In-plane moment k,3
/T d/D and t/T £ /T L Code, i pea Code,  Ref. 11,
Eq. (10) - Eq. (11) Eq. (14)

A= 14 A==

102 0.5 0.5 47.0 51.5 - 150 8.89 10.2 -
82 0.5 0.5 37.2 37.1 - 100 7.68 8.2 -
42 0.5 0.5 16.2 13.6 - 38 4.58 4.2 -
22 0.5 0.5 6.92 5.16 6.4 15 2.65 2.2 -
12 0.5 0.5 2.84 2.08 2.9 5.4 1.50 1.2 -
12 0,08 0.c8 1.96 0.33 0.052 0.062 1.91 0.19 0.034

102 0.5 4,36 17.8 17.5 - 150 2.70 3.46 -
82 0.5 4.0 14.5 13.1 - 100 2,42 2.9 -
42 0.5 3. 14 6.32 5.43 - 38 1.46 1.68 -
22 0.” 2,45 2.3} 2.33 15 6.4 0.72 0.99 -
12 0.5 1.92 0.69 1.06 2.9 5.4 0.24 0.61 -
42 0.32 2.56 4,07 3.08 7.1 15 1.09 0.95 -
22 0.32 1.98 1.41 1.32 3.1 5.2 0.49 0.57 0.42
12 0.32 1.52 0.3 0.61 1.3 1.9 0.07 0.35 0.35
42 0.16 1.88 2.11 1.27 2.2 3.1 1.14 0.39 0.62
22 0.16 1.43 0.95 0.55 0.78 1.0 0.71 0.24 0.33
12 0.16 1.08 0.3% 0.26 0.29 0.3%7 0.28 0.15 G.14
42 0.08 1.38 2.02 0,52 0.47 0.56 1.85 0.16 0.22
22 0.08 1.03 1.43 0.23 .15 0.18 1.39 0.10 0.092
12 0.08 0.72 0.81 0.11 0.052 U, %% 0.80 0,06 0.034
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is fully reinforced with respect to a pressure that fully utilizes the
vessel or run-pipe wall thickness. The reinforcing 1s in accordance with
the rules of NB-3640, with reinforcement shape as indicated in Fig. 6.

Because the Steele!! data are for plug nozzles, the values of k
derived from them are independent of tn/T for a given t/T. 1In this
respect, the data are notably inconsistent with both the finite-element
analysis and the Code equations. There are other inconsistencies in the
comparisons (e.g., the sixth model for which the finite-element nnal{cio
gives ky3 = 1.96 as compared with the Code kx3 = 0.33 and the Steele!l!l
kx3 - 0.05 or 0-06)0

Although there are inconsictencies in the available data and more
work 1s needed to accurately quantify flexibility of nozzles, two general
aspects are apparent.

1. For vessels or run pipe having small D/T, such as reactor pressure
veseels and the connected pipe, kx3 and k,3 are small and will have
little influence on calculated support loads.

2. For veseels or run pipe having large D/T, ky3 and k;3 may be large and
may have a significant influence on calculated support loads.

The third moment My3 1s a torsional moment on the nozzle. For small
d/D, one could speculate that kyg would be close to unity. However, we do
not have any data to support that speculation.

Further study is obviously needed to establish the parameters where
nozzle flex'bility is significant with respect to support loads (e.g.,
ratio of nozzle flexibility factor to length of piping). The results
given later in Sects. 4.3 and 4.4 represent an initial step toward this
objective,.

4.2 Representative Values of kx3 and k.3

Table 9 shows representative values of ky3 and k,3 that might be
encountered in piping systeme. Typically, piping (or branch pipes in
fabricated branch connections) tend to have a lower d/t than the D/T of
the vessel or run pipe. The set of k values in Table 9 headed t/T =
t,/T = 2d/D represent such nozzles. Conceptually, the branch pipe is
welded directly to the vessel or run pipe without any local thickening at
the vessel or run pipe. Such nozzles always meet Code reinforcing re-
quirements for some design pressure, which is roughly one-half of the
maximum allowable pressure for the unperforated vessel or run pipe. The
Code-required reinforcement comes from excess thickness in the vessel or
run-pipe wall.

The other set of k values in Table 9 are for configurations like
Fig. 6 with t /T such that the following equation is met:

dT = 2L[t, — (4/D)T) . (15)



Table 9. Representative values

flexibility factors Ky3 and

0.03%
0.089
0.302
0.760
1.90
6.40

). 136
0.342
16
.92

qumn!')h (10)

3
Equation (14); ) . of | o not depend

"Equatton (11)
J

Cn /T obtalined

The nozzle length L is taken as © ngt;ff, the length of countable rein-
forcement in NB-3640 (with r; = 0), These k values are representative of
nozzles in vessels where all the Code-required reinforcement comes from
extra thickness in the nozzle.

Table 9 indicates k values ranging from near zero, where the nozzle
is essentially an anchor, to 447, where the nozzle is almost a hinge.
Values of D/T up to 100 and d4/D up to 0.5 are applicable to branch con-
nections in piping. Values of D/T of 500 and 1000 are applicable to
large, low-pressure storage tanks; a d/D of 0.10 is about an upper bound
for piping to such tanks.

It is pertinent to bring out another aspect of k-factors using, as
an example, a tank with D/T = 1000, d4/D = 0,048, t/T = tn/T = 24/D =
0,096, Let us assume that D = 375 in., and T = 0.375 in. Then d = 0,048
375 = 18 in. and t = t, = 0.036 in. Now, cerbon steel pipe is normally
available in standard weight; for 18-in. pipe, the wall thickness is

x
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0.375 in. The 18-1in. pipe attached to this tank is much more likely to
have t = t, = 0.375 in. than 0.036 in. Fowever, in that case, t_/T =
t/T = 1.00 and Eq. (10) gives ky3 = 633, whereas Eq. (14), for A = =,
gives ky3 = /52,

Accordingly, for the purpose of assessing the influence of nozzle
flexibility on support loads, we are interested in values of k ranging
from essentially zero to about 1000.

4.3 Static-Loading Examples

The effect of nozzle flexibility on support loads is illustrated in
Table 10, using the configuration shown in Fig. 4(a). The nozzle flex~
ibility factor is identified as ky, to distinguish it from the elbow flex-
ibility factor k.

If the piping 1s anchored to a thick-wall vessel or if d/D is small,
the nozzle flexibility will be small and little error will be caused by
assuming a nozzle flexibility of zero. However, if (1) the piping 1ie
anchored to a thin-wall vessel, (2) an out-of-plane moment is a major
loading, and (3) it is assumed that the nozzle flexibility 1s zero, gross
overestimates of the loads at the nozzle will be calculated.

As a specific example, for a vessel having D = 255 in. and T =
0.375 in., and for which the 12.75-in.-0D x 0.375-in.-wall branch is
“stubbed-in" without additional reinforcement D/T = 680, d/D = 0.05, and
t,/T = t/T = 1,00, Equation (10) gives

kp = 0.1 x (680)3/2 x (1 x 0,05)1/2 x | = 396 ,

and Eq. (14) [for out-of-plane moment, A = @, A= 1,39, f(1) = 0,019]
gives

ky = [7?/(8 x 180)] x (680)2 x (0.05)2 x 1/0.019 = 417 .

For this example, it can be seen in Table 10 by interpolating between

ky = 100 and 1000, that for ky, = 417, the moment at the nozzle (M;) would
be overestimated by a factor of around 100 if the nozzle flexibility is
ignored.

Overes.imating the nozzle loads may be harmful in that it might
cause the piping designer to add more restraints or reroute the piping
syatem. This would add to the cost and might result in a less reliable
piping system.

As can be seen in Table 10, loads on both th- nozzle and the anchor
at point 2 decrease with an increase in ky. However, as discussed in
Sects. 3.5 and 3.6, this should not be assumed to be true for all piping
systems.



Table 10. Examples of effect of nozzle flexibility on
support loads, static loadinga

L‘b I_2b 2? By l,d F,d o4 w4 "ed
(1n.) (4n.) (in.) b (Ib) (1b) (in.~kip) (in.-kip) (in.=kip)
240 120 18 2.00 0 20,900 —6,100 —1,640 ~591 729
1 20,500 5,570 —1,620 496 703

10 19,300 3,950 —1,570 —203 622

100 18,600 2,990  —1,540 -29.3 574

1000 18,500 —2,840: 1,540 -3.07 566

9.36 0 15,300 3,160  —I1,440 —368 293

1 15,100 =2,900 —1,430 313 286

10 14,700 —2,030 -1,410 ~134 264

100 14,400  —1,480  —1,400 -19.9 251

1000 14,400 —1,390  —1,400 -2.09 248

120 240 18 2.00 0 6,100 —20,900 —591 —1640 729
1 5,590 —16,700 —~550 —~1211 674

10 4,590 —8,280 469 —362 564

100 4,210 =5,150 —439 ~45,1 524

1000 4,170  —4,750 435 ~4.63 518

9.36 0 3,160 —15,300 —368 —1440 293

1 2,900 -11,900 —346 —~1080 272

10 2,360 4,960 —299 -329 228

100 2,150 —2,300 —281 ~41.4 211

1000 2,120 —1,960 -279 4,25 209

see Fig. 4(a) for configuration. Example is for 12-in., standard-weight pipe and

elbow.
bSee Fig. 4(a) for definitions of L;, Ly, and R.
%% = elbow flexibility factor, ky = nozzle flexibility factor.

d5ee Fig. 4(a) for definition of support loads and elbow moment M,. This example
is for restraint of thermal expansion of 0.003019 in./in. correcponding to an increase

in temperature from 70 to 500°F of carbon steel piping.

87
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4.4 Dynamic-Loading Examples

The configuration and specific éynamic loading used in Sect. 3.6 for
elbows was also used for a simple example showing the effect of nozzle
flexibility on modal frequencies and support loads. Deve'opment of the
applicable theory is described in Appendix A,

In the dynamic analysis, the nozzle flexibility factor is embodied
in the parameter

Yg ® (agl)dkpd/L) . (16)

Table 11 gives modal frequencies and support loads as a function of vy, .
The first three groups are for L) = Ly, first, second, and third modes,
followed by three groups for L; = L3/2 and three groups for L, = 2L,,
The last group is for L} = 4L,, first mode only.

For the dimensions used in the static loading example, d = 12.75 in.
and ky & 400. For L, = 240, Ly = 120, and apL); = 1.1677 (see Group 7 in
Table 11), Eq. (16) gives

Yp = (1.167%) x 400 x 12.75/240 = 78 .

There is a seemingly large lack of correspondence in using anl) = 1.167n
for vy, = 10 and the value of Yp = 78 for this specific example. However,
.nalogouo to the bounding aspect of y = 10 for elbow flexibility, in-
creasing v, above 10 does not change the modal frequencies significantly.
To illultrkte this, results for Yp = 100 are shown for Group 1 in

Table 11. The results for y, = 100 are almost identical to the theoreti-
cal solutior with the spring representing the nozzle flexibility replaced
by a hinge.

Accoidingly, for the specific example of D = 255 {n., T = 0.375 in.,
d= 12,75 1n., t = t, = 0.375 in., L; = 240 in., Ly = 120 {n., it can be
seen in Table 11 for Group 7 that assuming the nozzle flexibility 1s zero
leads to an overestimate in the first-mode frequency by a factor »f
(1.392/1.167)? = 1,42,

Noting that the modal frequency W, 18 proportional to a? and, thus,
to (agL;)?, it can be seen in Table il that the ratios of natural fre-
quencies [(aqL;)?, Yp = 0/(agL;)?, and Yp = 10] range from 1.42 to 1.03.
These represent the overestimate of modal frequencies because the nozzle
flexibility is assumed to be zero.

For Yp = 10 the nozzle appears to act almost like a hinge; thus, 1t
is informative to calcu'ate values of kb corresponding to Yb = 10. Equa-
tion (16) for % - 10 gives

10

kb = D@D "

Values of k, for a representative range of ajL) and d/L, are presented
in Table 12. With values of kb equal to or larger than the values in

Table 12, the nozzle flexibility 1s sufficient to essentially provide

2 hinge at the nozzle.
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Table 11. Examples of effect of nozzle flexibility on support loads
(dynamic loading)?

No. '{ Soly /v Snla/e "(.)'le o° LT Ma/NLy LT Fay/w Fix/¥ Fox /¥ My /WLy
1 0 1.2% 1.250 ~1.445 2.00 -0.187 n.187 0.73 -0.735 0.506 0. 506 o
0.1 1.235 1.23% ~1.628 .26 0.9 0.193 0.814 ~0.750 0.4%90 0.588 0H.013
1.0 1.159% 1.159% ~3.372 1.24 -0.140 0.20: 1.010 0,745 0.32 ~0.915 0.0717
10.0 1.0925 1.092% ~21.65 274 ~0.0269 3.202 0.984 0.727 0.196 -1.15%0 0.1
100 1.0801 1.080) ~20% 22,500 ~0.00317 0.221
2 0 1.50% 1.505% -1.588 1,00 -0.142 D.142 0.661 0.661 0.661 ~0.661 0.142
0.1 1.4918 1.45:8 -1.747 2.8 -0.119 0,143 0.600 0.6%9 ~0.657 -0.603 “0.1%7
1.0 1.4487 1.447 -3.271 16.6 ~0.0381 ~0.129 0.337 0.578 0.568 0.364 ~0.104
10 1.424 1.424 ~18.96 962 ~0.0039 0.108 0.1%6 0.474 -0.458 -0.225 -0.0177
3 o 2.2% 2.2%0 ~0.5704 2.00 -0.0228 0.0228 0.161 0.161 “0.114 0.114 o
0.1 2.2749 2.2369 -0.5277 .25 -0 019 0.0192 0,147 0.135 -0.09%09 0.109 0.0013
1.0 2.1602 2.1602 ~0.2156 7.26 -0.0028 0.0041 0.0382 -0.0277 0.013% 0.0352 0.0016
10 2.095? 2.0953 ~2.3026 286 0.0007 ~0.0059 -0.0539 0.0387 0.0115 -0.0627 <0.0039
4 0 0.696 1.392 ~0.5801 17.6 -0.0276 0.0799 0.0857 0.17 0.160 0.0606 N.0479
0.1 0.69% 1.3%0 ~0.7361 23.3 -0.9265 0.0879 0.0909 -0.189 0.176 0.1601 0.0514 .
1.0 0.689 1.378 -2.13) 10¢ ~0.017% 0.124 0.111 ~0.265 0.242 0.0529 0.0658
10 0.6848 1.3696 -16.12 4,320 -0.0032 0,144 0.114 ~0.3%06 0.27” 0.034]1 0.0728
S 0 1.15372 2.30744 -1.327 €.22 0,065 -0.10% 0.241 0,381 0.314 0.107 0.0267
0.1 1.1487 2.297%% ~1.522 £.57 -0.0710 <0.116 0.287 0.418 0.3%9 0.147 0.024
1.0 1.7 2.2344 ~3.318 1.9 -0.0774 ~0.161 0.541 0.563 0.381 ~0.640 -0.0112
10 1.0764 2.1528 -21.99 9 ~0.0193 ~0.179 0.699 0.606 0.281 0.791 -0,0762
L 0 1.39% 2.7% -1 .5604 1.3 -0.a2% 0.103 1.02% -0 .448 0.27% 0.963 0,144
0.1 1.97%% 2.748 -1.7320 1.52 -0.245 0.122 1.142 ~0.526 -0.374 ~1.083 0.172
1.0 1.2967 2.593% ~3.4309 ‘.16 -0.090) 0.128 0.713 -0.522 ~0.500 -0.788 “0.15%9
10 1.2554 2.5108 ~21.274 ses -0.0093 0.127 0.383 0,502 -0.502 0.5% ~0.1%
7 0 1.392 0.69 -1.5%9 06 0,307 0.107 1.327 ~0.664 0.469 ~1.239 -0.183
0.1 1.366 0.683 -1.728 9 ~0.286 0.108 1.3% -0.672 0.488 -1.2%2 0.192
1.0 1.2%2 0.626 ~3.432 huAL -0.16) 0.125 1.249 -0.764 -0.617 ~1.328 -0.227
10 1.167 0.583% -21.70 22! -0.0285 0.144 1.097 ~0.877 .748 ~1.44] ~0.268
L] 0 2.30744 1.15372 ~0.4410 .19 -0.0282 -0.017% 0.20% 0.13% “0.0574 N.168 0.0072
0.1 2.28% 1.1415 ~0.4059 A 0,028 0.014) 0.172 0.105 -0.0429 0.143 0.0065%
1.0  2.1%0 1.090 ~0.1306 5.80 -C.0019 ~0.0022 0.0263 0.0157 -0.004) 0.02%52 0.0015
10 2.102 1.051 2.5 407 0.0006 0.0040 ~0,0416 -0.0278 0.0041 -0.0490 -0.0032
9 o 2.7% 1.395 0.6276 3.69 0.0089 -0.0205 -0.0776 077 0.166 0.0476 0.0124
0.1 2.782 1.391 0.8018 4.60 0.009] -0.0237 -0.0878 0.204 “0.191 0.06%  -0.0140
1.0 2.7%1 1.375% 2.417 19.4 0.0067 ~0.035% -0.115% 0.363 ~0.278 “0.0404 -0.0188
10 2.7276 1.3638 18.91 807 2 0.0013 -0.0437 -0.120 0.369 -0.332 ~0.0191 -0.0211
10 0 1.43 0.359 ~1.577 1.06 -0.298 0.116 1.325% ~1.39 ~1.35% ~1.289 -0.228
0.1 1.408 0.3%2 ~1.744 1.28 -0.278 0.120 1.3 ~1.438 ~1.409 -1.303 0.236 "
1.0 1.292% 0.3231 ~3.432 5.32  -0.156 0.13 1.23% ~1.637 ~1.614 ~1.3%7 <0.27
10 1.2055% 0.3014 ~21.58 222 ~0.0271 0.157 1.075 —~1.887 ~1.866 ~1.460 0.312

Qoad W suddenly applied at polnt shown in Fig. &4(b) and maintsined constant.

Prp = (8gl,) kyd/L , ky = nossle flextbility factor.

“See Appendix A for significance of these parameters.
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Table 12. Nozzle flexibility factor ky for
the nozzle to act almost like a hinge

ky, to make y, = 10 for (agLy)/n of
d/L1

0.7 1.0 1.5 2.0 2.5 3.0

0.10 45.5 31.8 21.2 15.9 12.7 10.6
0.05 90.¢9 63.7 42.4 31.8 25.5 21.2
0.025 182 127 84.9 63.7 50.9 42.4

Table 11 shows support loads on a mode-by-mode basis and, if all
significant modes were included, the total support loads would be ob-
tained by summing the loads for each mode. The indiviuual mode contribu-
tions are relevant to dynamic loadings such as those resulting from
earthquakes. However, for the simple dynamic 1>ading that causes the
support loads shown in Table 11, the results of static analyses with a
dynamic load factor of 2.0 shown in Table 6 is more informative.

The third line of each group in Table 6 shows loads for a hinge at
the nozzle essentially equivalent to y, » 10, Comparisons of the first
and third lines in each group indicate the maximum effect of nozzle
flexibility. Of course, the moment at the nozzle goes to zero for large
values of y,. Other loads increase substantially (e.g., for Ly/L, =
0.25, Fzy and F,, increase by a factor of 1.58). This again 1illustrates
the point previously made that, in general, it is impossible to define a
conservative flexibility factor for either static or dynamic loads.
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5. SUPPORT CHARACTERISTICS

5.1 A_‘,],(jh),{‘l

By definition, an anchor is a support that prevents rotation or dis-
placement in any direction. In terms of a piping system analysis, the
s8ix degrees of freedom are all set equal to zero.

) course, no support is absolutely rigid; hence, none of the six
rotations/displacements is actually zero. The discussion of nozzle
flexibility in Sect. 4 indicates that if the rigidity of the anchor is

such that

M (18)

the effect of anchor rotations will be small. In Eq. (18), B is the ro-
tation in any direction, d and I are the diameter and moment of inertia
of the pipe being anchored, and M is the moment in any direction. Having
obtained adequate rotational rigidity, the displacement rigidity will
probably be adequate and the lowest natural frequency of the ancher will
probably be above the earthquake range (e.g., 230 Hz).

5.2 Other Restraints

By other restraints, we mean those supports that are intended to
prevent motion In five or fewer degrees of freedom. For example, a guide
may be used to restrict rotations and displacements in two directions.
Because a guide permits motion along the axis of the pipe, it must have a
clearance or gap. A pair of tie rods may be used to restrict displace-
ment in one plus or minus direction. Because the rods are attached to
pipe by bolted clamps, clearances exist between the bolts and bolt holes
A pipe supported on a roiler (for weight support) will restrict displace-
ment in one direction. Restraints that are intended to permit one or
more motions often have frictional resistance to the presumed unrestricted
motion.

In a static loading analysis, the effect of gaps, one-way displace~-
ment restraints, and frictional effects can be readily included in most
piping systems analyris computer programs. In practice, one-way dis-
placements are usaally included in the analysis; frictional effects and
gaps are seldom included.

In a dynamic analysis, the effect of gaps and frictional effects are
seldom included. To evaluate these and other nonlinear effects, a time-
history analysis must be used rather than the much less expensive linear-
modal superposition analysis.

In addition to the nonlinear effects, the flexibility of the sup-
ports may be significant. As a simple example, hanger rods are designed
so that the allowable load produces a nominal stress of 9000 psi in the
thread root area. The deflection at the allowable load is then
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& = (9000/E)L = 0.0003L , (19)

for E = modulus of elasticity = 3 x 107 psi and L = length of hanger rod
in inches.

It is relevant, mainly as a lead-in to Sect. 5.3, to compare the
displacement of a hanger rod with thermal displacements as given by the
equation

- 20
‘sth aATL (20)

P ’
where a = coefficient of thermal expansion of the pipe material, AT is

the piping temperature change, and Lp is the length of pipe. The rela-
tionship between 8¢y, and & 18

S ™ [ATpr/(SOxL)IG ’ (21)

for a = 6 x 1076 {n./4n./°F. Now, as an example, let us assume that the
iength of pipe Lg that influences the displacement at the hanger is 20d
and the length of the hanger rod is d. Then, for AT = 50°F, &y = 6. If
S¢p, 18 in a direction to unload the hanger, the thermal expansfor would
do so and a piping system analysis that assumes a rigid hanger would be
Incorrect. Of course, a hanger rod has other sources of flexibility,
such as the piping clamp, clevises, or turnbuckles. However, the message
remains: rigid (or assumed rigid) restraints should be used with caution
at points in a piping system where thermal expansion may occur in the
direction of the restraint. As discussed in Sect. 5.3, spring hangers or
constant-load hangers can be used.

For large displacements, another type of nonlinearity may occur that
could be very significant. As an example, consider a hanger used to
carry weight. The length of the hanger is equal to the pipe diameter d,
and the hanger 1is located in a span of pipe such that, when subjected to
a dynamic load, the pipe has a horizontal deflectioa equal to d//2. The
hanger 1is, therefore, at a 45° angle to the horizontal and is rectraining
the horizontal motion as well as the weight, Thus, the load on the
hanger might be subjected to loads that are several times those antici-
pated from the analysis. This nonlinear effect may contribute to the
explanation of failures of hangers during dynamic loads such as severe
water~hammers.

In both static and dynamic analyses, the effect of support flex-
ibility can be included in the piping system analysis with relatively
little difficulty. Brussalis!? gives results of a study that included
the effects of support stiffness as well as nonlinear effects assoclated
with enubbers (see Sect. 5.4); Barta et al.20 ghows extensive comparisons
between various types of earthquake analyses (linear modal superposition,
with and without support flexibility and time-history analyses with vari-
ous snubber gaps). An EPRI report2! on testing and analysis of feedwater
piping at Indian Point Unit 1 includes investigations of the effect of
assumed support stiffness on calculated dynamic responses of piping sys—
tems. However, we are not aware of any study of the large displacement
nonlinearity discussed in the preceding paragraph.
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5.3 Spring and Constant-Load Supports

Variable-load spring hangers are used to support the piping systems
where there is a moderate amount of thermal expansion movement, These
are available in a variety of load ratings and spring rates. Such hang-
ers are normally furnished with a turnbuckle so that the load can be set
to accommodate both the cold and hot load. The flexibility of variable-
load spring hangers can be and is normally included in both static~ and
dynamic-piping-system analyses. If properly selected and installed,
variable-load spring hangers should behave like linear elastic springs,
although like hanger rods, gaps resulting from clearances tetween bolts
and bolt holes will exist.

Constant-load spring hangers are used for support* of niping systems
where there i1s a large amount of thermal expansion movement or where, for
some other reason, a constant-load support is desirable. Constant-load
spring hangers involve a mechanical linkage between the load and a spring
such that, over the rated displacement, the load should remain essen-
tially constant. The loads of constant-load hangers can be and are nor-
mally included in a static analysis. Figure 7, from page A-5 of NUREG/
CR-3180,22 ghows measured force~deflection curves for some "constant-force
hangers.” One might speculate that such force-deflection curves would
depend upon the length of time in service and service environment (e.g.,
corrosion of linkage pins), how frequently (1f ever) lubricated, and the
details of the particular manufacturer's design (e.g., linkage pin clear-
ance). These aspects are not discussed in Blakely et al.2<¢ Figure 7 was
presumably developed under quasi-static loading. The force-deflection
response at a constant-load hanger might be quite different under dynanic
loading.

Another type of constant-load support that is fairly commonly used
in high-temperature industrial piping systems consists of a weight con-
nected by a flexible cable through a pulley to the pipe. We mentfon this
type mainly to call attention again to potential problems of appropri-
ately modeling constuant-load hangers for dynamic analysis. The support
load of interest, in this case, would be the support of the pulley.

5.4 Snubbers

Snubbers are intended to permit slow movement, such as that result-
ing from thermal expansion of the piping, but to prevent fast movements,
such as those resulting from an earthquake or a water hamme:. Snubbers
are usually attached to the pipe by pipe clamps and to the building
structure through adjustable tie rods; they involve the flexibility and
gaps of those attachments. Further, the mechanical action of snubbers is
usually nonlinear for small displacements.

*The piping designer using constant-load supports of a piping system
should be aware of the potential for large displacements due to unex-
pected weight loadings. Travel stops built into constant-load hangers
may be the only restriction to the displacements.
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Fig. 7. Experimentally determined force-displacement characteris-
tics of some "constant-force hangers.” (a) Constant-force hanger 5,
() constant force hanger 6, (¢) constant-force hanger 7, and (d) con-
stant-force hanger 4. Source: K. D. Blakely et al., “Pipe Damping
Studies and Nonlinear Pipe Benchmarks from Snapback Tests at the
Heissdampfreaktor,” ANCO Engineering, Inec., NUREG/CR-3180, July 1983,
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In a static analysis, snubbers are usually assumed to produce zero
load. However, in small piping, the weight of the snubber and fric-
tional resistance to slow movement may be sigrificant. Also, snubbers
may malfunction and "lock up.” The snubber then becumes the equivalent
of a "rigid” restraint and, because snubbers are used where thermal
expansion displacement is significant,* the pipe, the snubber, and/or
viie attachments may be overloaded.

In a dynamic analysis, snubbers are usually assumed to grovide zero
displacement along the axis of the snubber. Several papers2 » 2% have
been published on more realistic modeling of snubbers for a dynamic
analysis. These papers indicate that the actual response of snubbers to
dynamic loads is nonlinear and the response, in detail, depends on such
parameters as the velocity, frequency, stroke position, and magnitude of
load. There may be a "dead band,” resulting from the flow control ac-
tuation time. In addition, snubbers involve tie rods to the pipe and
building structure and some sort of pipe clamp; hence, they have flex-
ibilities and gaps like other linear restraints. All of these charac-
teristics feed back into the piping system dynamic analysis, adding
another uncertzinty to calculated support loads.

Snubbers in nuclear power plant piping are mainly used to reduce
calculated stresses in the piping or calculated loads on equipment noz-
zles resulting from earthquakes. As discussed in Sect. 2.3.2, earth-
quake analysis is deemed to be highly uncertain and the response of
snubbers is probably a minor part of the total uncertainty.

*For dynamic restraint at points of small thermal expansion dis-
placement, a “"rigid” restraint should be used.

aU S GOVERNMENT PRINTING OFFICE 1 9 84 746 067/ 4027 REGIONNO ¢



37

6. CONSTRUCTION MISALIGNMENTS

During construction of piping systems, the closing joint (weld or
flange) cannot be expected to line up exactly. In most cases, forces of
insignificant magnitude can be applied to oltain suitable alignment for
welding or inserting the bolts in flanged joints. However, the possi-
bility that significant forces may be used in construction to compensate
for misalignments is a part of uncertainties in support loads. Because
such loads are "displacement controlled,” a small amount of ylelding of
some portion of the piping and/or its restraints usually suffices to keep
these kinds of loads within acceptable bounds (see Sect. 8).
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7. BUILDING STRUCTURE FLEXIBILITY

Figures | and 4 indicate fixed points in space by the conveational
symbol of a line with some hash marks. The assumption i1s that whatever
Structure connects these points {s very rigid compared to the pipe.

For example, in Fig. 1, the structure connecting Node 1 to Node 12 is
assumed to be very rigid compared to the rigidity of the pipe between
Nodes 1 and 12. We call this connecting structure the bu!lding
structure.

For small piping, there is usually little question about the assump-
tion that the building structure is rigid relative to the piping. How-
ever, for large piping (e.g., 30-in, diam), it {s not apparent that the
assumption i1s true. For some perspective, consider a building structure
between the two anchor points indicated in Fig. 4(a) connecting 30- by
0.375-1n. wall pipe. The building structure consists of a 30-in.-deep
by 15-in.-flange-width I-beam, and we want the building structure to be
4 times as rigid as the pipe. Thus, the thickness of the I-beam must be
about 2.84 {in. (524 1b/ft I-beam!). Of course, the flexibility of a
30- by 0.375-1in. elbow would mitigate the requirement for building
structure. Nevertheless, it is apparent that, for large piping, building
structure rigidity also contributes to uncertainties in piping support
calculated loads.
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8. INELASTIC EFFECTS

As mentioned in Sect. 2.4, current routine piping system analyses
are based on linear elastic theory. Studies have been made of the effect
of gaps and nonlinearities, in particular, of snubbers. Section 3.3 de-
scribes a nonlinear (with regard to pressure) aspect of elbow behavior,
However, these analyses are based on elastic theory, Accordingly, a sig-
nificant assumption is that loads on the piping and its supports do not
cause gross plastic deformation. This assumption is discussed in the
following section on piping and in Sect. 8.2 on supports.

8.1 Piping

The primary-plus-secondary stress-range limit for Class 1 piping is
3S_. Table 13 shows values of 38-. vield strength S_, and the ratio
(3§-/Sy) for representative piping materials and te-gerntures. The ra-

tios (JS./Sy) range from 1.7 to 2.7, It is thus apparent that inelastic
effects can occur in Class 1 piping systems under normal operating loads.

The equivalent stress-range limit for Class 2 or 3 piping is given
by the equation

IM/Z < £(1.255, + 0.255) . (22)

Table 13 shows values of S_ and S, and the ratio 2(1.258, + O.ZSSh)/Sy.
In this ratio, the value o? f is implied to be 1.00, which i{s typical’in
analysis of Class 2 or 3 plping syst=ms. The factor of 2 in the ratio
reflects the fact that iM/Z, for elbows, gives about one-half of the
elastic stress. The ratios of 2(1.258c + Sh)/sy range from 1.3 to 2.9.
It is thus apparent that inelastic effects can also occur in Class 2 or 3
piping systems under normal operating loads.

To illustrate the significance of inelastic effects on support
loads, we continue with Example 4 of Table 3 in conjunction with

a. SA-312 Type 304 material and
b. thermal expansion for a temperature increase from 70 to 550°F; QAT =
(9.45 x 1076)(550 — 70) = 0.004536 .

Table 3 support loads and moment M, at the middle of the elbow are based
on aAT = 0.003019; hence, for this example the elastic-based loads and
elbow moment are obtained by multiplying the Table 1 values by (0.004536/
0.003019) = 1.503. The maximum calculated elastic stress occurs at the
middle of the elbow and is

Smax = (1.95/b2/3) x 783,000 x 1.503/255 = 49,800 pst : (23)



Table 13. Representative piping material properties, allowable
stresses, and ratios to material yield strength

Temperature S S S S a s 'D
Material (°F) (k:l) (kZi) (kgi) (kgi) 38-/8’ 2(S4)1/8y 2(Sp)2/5y
106-B 100 20.0 35.0 15.0 15.0 1.71 1.29 2.14
550 18.1 27.1 15.0 15.0 2.00 1.66 2.77
106-C 100 23.3 40.0 17.5 17.5 1,75 1.31 2:19
550 20.65 31.0 17:5 17.% 2.00 1.69 2.82
TP304 100 20.0 30.0 13.8 18.8 2.00 1.88 3.13
550 16.95 18.8 18.8 15.9 271 2.92 4.61
TP316 100 20.0 30.0 18.8 18.8 2.00 1.88 3.13
550 7.5 19.35 18.8 7.5 2.71 2.88 4.69

a(SA)l = 1,25 S, + 0.25 She The factor of 2 is used because, for elbows, 1 = C2/2.

b(SA)z = 1,25 (Sc + Sh)' This corresponds to Code Class 2 or 3 stress limit when
pressure and weight stresses are negligible.

0%
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for Class 1 piping, and

) = (1.80/h2/3) x 783,000 x 1,503/255 = 45,900 psi , (24)

for Class 2 or 3 piping. In Eqs. (23) and (24), h = tR/r2 = 0,0769 and
Z = 255 in.3 for the 30-in.-OD, 0.375-in.-wall, 45-in. bend radius elbow.
As indicated by footnote (1) of Code Table NB-3222-1, the usual practice
in determining S, for a cycle invelving different temperatures is to use
the average of at the cold and hot temperatures; in this example, 8, "
(20,000 + 16,950)/2 and 38, = 55,425 psi. The value of 2(1.258c +
0.258;) 1s 2(1.25 x 18,800 + 0,25 x 15,900) = 54,950 psi. Accordingly,
the example has calculated elastic stresses that are below Code allow-
ables.

We now postulate that the "piping system,” in Fig. 4(a), is heated
80 that the temperature increases linearly with time over a period of 8 h
or more, so that the time-dependency of inelastic effects is negligible.
The maximum elastic stress in the elbow can then be related to the tem-
perature T by

SCT) = [(T — 70)/480] x 49,800 , (25)

where we use the elbow stress from Eq. (23) (also used in succeeding
equations).
The material yield strength can be expressed as

8, = 31,630 — 23.3T . (26)
By equating S(T) to S_,, we find that the temperature T} at which inelas-
tic effects begin is obtained from:

[(T, — 70)/480] x 49,800 = 31,630 - 23.31, , (27)

thus, T} = 306°F. However, the inelastic effects are quite small until
the load produces through-the-wall plasticity. Before gross plastic de-
formation can occur, the yield stress level must propagate through the
wall- For an elbow, the maximum stress is almost pure through-the-wall
bending; hence, the loads must be increased by a factor of about 1.5
before gross plastic deformations occur. This aspect can be included in
the example by dividing the calculated stresses by 1.5. Thus, dividing
the left-hand side of Eq. (27) by 1.5, gives

T‘ - Tp - 394‘? . (28)

Accordingly, during the heat-up to 394°F, the elastic analysis 1s reason-
ably valid.
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Kachanov?5 and Spence and Mackenzie?® have developed theories that
lead to an effective elbow flexibility factor kg,, in the plastic region.
Material properties are represented by the equat;on*

e = Ao" | (29)

where e is the plastic strain, A 1s a constant, ¢ is the stress, and n is
a constant. 1In contrast to the elastic region, where k is closely ap~-
proximated as 1.65/h, 1.0, the value of k., 1s dependent on the exponent
n in Eq. (29) as well as the elbow para-eteg h = tR/r? and cannot be
expressed as a simple relationship. For example, for n = 3 and h = 0.10,
k., = 232 ar compared with k = 16.5 (elastic solution, n = 1,0). These
tﬁgorie. do not include end effects, which, even for long straight pipes
attached to both ends, may be quite significant. For the example used
here in which h = 0.0769, we use kep = 20k = 429, This value of k._ 1is
deemed to be reasonably reprelentatgve of the Type 304 material elﬁgv at
temperatures up to 550°F,

Table 14 summarizes the elastic-plastic calculations. The first
line, the initial 70°F condition, shows a row of zeros. The assumption
is that stresses resulting from weight and construction misalignments are
negligible. The second line, the 394°F condition, shows the elastic
loads at that temperature. The maximum pipe stress divided by 1.3 (its
plastic shape factor) {s less than Sy; hence, gross pipe yielding is not

yet involved.

The third line in Table 14, AT, shows the increment in loads and
stresses as the temperature 18 increased from 394 to 550°F. These are
calculated using k = kep = 429 and thermal expansion of 9.45 x 1076 x
(550 ~ 394) = 0.00147. "The fourth line, 550EP, shows the sum of the
second and third lines and is the elastic-plastic solution. The pipe
stress is slightly more than 1.3S_; hence, in principle, the solution is
not accurate. The plastic response of the pipe could, of course, be
included in an elastic-plastic analysis.

The fifth line shows the elastic solution. During cool-down to
70°F, these loads will be removed. In the absence of any reverse yileld-
ing, the loads at the return to 70°F are given by the elastic-plastic
solution minus the elastic solution. These values are shown in the last
line of Table 14, Because the stresses divided by the plastic shape fac-
*ors at return to 70°F are less than S, reverse yielding does not occur
in this example. 1If, after this heat-up cool-down cycle, the pipe were
cut at Point 2 of Pig. 4(a), for example, the pipe would move in re-
sponse to the reduction of Fe» Fy, and M, to zero. This phenomenon has
been observed in the field and ug-etinea is erroneously taken to be evi-
dence of construction misalignments.

Figure 8(a) 1llustrates the variation of effective elbow stress with
temperature. As indicated by the arrows, subsequent heat-up cool-down
cycles give a linear relationship. Figure 8()) is a conceptual represen-
tation of a condition of reverse yielding. To fllustrate the concept,

*Although the theory in Spence and Mackenzie?® {s for stationary
creep, it is applicable to time-independent plasticity by replacing
strain rate with plastic strain.



Table 14. Example? of inelastic effects on support loads
» Mp/Z  CoMe/z°
‘l'e.pzr;;ure ¥y 'y My M) M, T3 i3 Sy

1B (b)) (a.kip)  (In.kip)  (ne=k1D)  (roi) (kagy  (k8i)
70 0 0 0 0 0 0 0 30.0
394 19,200 —19,200 4440 4440 794 13.4 22.4 22.4
AT 7,000 -7,000 -1850 —-1850 61
550EP 26,200 —26,200 6290 —6290 855 19.0 24,1 18.8 &
S50E 28,400 28,400 —6580 —6580 1180
70 -2,200 2,200 290 290 -325 6.64 9.16 30.0

% xample No. 4 in Table 3, for TP.304 material, oAT = 0.004536 instead of QAT = 0.003019

in Table 3.

bSecond 70 is for return to 70°F. AT = (550-394)°F, during which temperature increase
the elbow undergoes plastic deformation.
irg, hence (CpMg/Z)/1.5 1s greater than Sy at 550°F.

%y = 1.95/02/2 = 1.95/0.07692/3 = 10.783.

The elbow plastic theory includes strain harden-
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the material yield strength is assumed to be one-half of that given by
Eq. (26) and ko, 18 assumed to be very large. After the first cycle, the
elbow undergoes cyclic plasticity, assuming the material neither hardens
nor softens under cyclic loading.

It can be seen in Table 14 (compare the 550E line with the SSOEP
line) that, in this particular example, the uncertainty in support loads
resulting from inelastic effects is small. Further, noting that Eq. (25)
is based on minimum specified or expected yield strengths, the actual
material yleld might be sufficieatly higher that the elastic solution
would still be correct.

A bound of support load uncertainty can be obtained by observing
that both 3S_ and 2(1.258, + 0.258,) can be above 2S,. Accordingly,
reverse yiel?ing can occur, in which case the supporz loads could be
overestimated by a factor of about 2. Although the support loads, in
the configuration of Fig. 4(a), would be lower than calculated by an
elastic analysis, the supports should be designed for both plus and minus
loads, an aspect not apparent from an elastic analysis.

Evaluation of inelastic effects for statie loads, including weight
and anchor movements, 1is relatively simple, provided the ylelding com-
ponents consfst of straight pipe or elbows. The inelastic response of
branch connections, tees, and nozzles, however, has not been adequately
developed.

E.2luation of inelastic effects for dynamic loads ic much more com-
plex. Inelastic effects would change the frequency of the piping system
and probably increase the damping significantly. Also, time-dependency
of plastic flow might become significant, even for the relatively slow
earthquake responses,

8.2 Supperts

Piping supports are covered by Subsection NF of the Code. For Level
A (normal operating conditions) primary membrane stresses are limited to
Sy for Class 1 or S for Class 2 or 3 supports. Primary membrane-plus-
bending stresses are limited to 1.58, for Class 1 or 1.5 for Class 2
or 3 supports.

Piping supports are usually made of a structural carbon steel mate-
rial such as SA36; the properties for SA% are shown in Table 15.

Table 15. Properties of SA36
structural carbon steel

T " I.SSm 1.58
emperature g S S NEEE S
- - y S S
(°F) y y
100 19.3 14.5 36.0 0.80 0.60

550 18.5 14,5 27.85 1.00 0.78
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because the allowable stresses do not exceed S, 3ross plastic deforma-

tion of supports should not occur under normal’ operating conditions. It

is important to note that stresses induced by restraint of thermal expan-

sion and anchor movements of the piping are considered to be primary

stresses for piping supports. .
The Level B stress limits are 1.33 times the Level A limits. The

primary membrane stress limits for SA36 material are below S_, but the

primary membrane-plus-bending stresses can exceed S,. For a support con-

sisting of an I-beam (plastic shape factor of ~1.0), this could permit .

gross plastic deformations in bending.
The Level C stress limits are 1.5 times the Level A limits. The

Level D limits for SA36 material are about 2.0 times the Level A limits.

After occurrence of a Level C or D event, the plant is intended to be

shut down and examined for damage and that damage repaired, if appropri-

ate, before resuming operation. However, because gross plastic deforma-

tion of piping supports may occur during Level C or Level D occurrences,

this adds one more uncertainty to calculated support loads during such

events.
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9. SUMMARY AND RECOMMENDATIONS

9.1 Sullllat'z

Table 16 summarizes the sources of uncertainties discussed in this
report.* The last column of Table 16 indicates the typical relative sig-
nificance of the uncertainties, in the writer's judgment. As indicated,
at least to some extent, by the simple examples included in the report,
the uncertainties of calculated support loads are highly dependent upon
the specifics of the piping system and the supports. Accordingly, the
word "typical” in the judgmental evaluation should not be overlooked.

The static loading examples in Tables 3 and 10 all indicate that
increasing the flexibility of piping systems leads to a decrease in sup-
port loads. However, it is pointed out that this may not be generally
true. As noted in Sects. 3 and 4, this leads to the conclusion that it
is impossible to define a “"conservative" flexibility factor (i.e., a
flexibility factor which will ensure that support loads are not under-
estimated in any part of the piping system). By extension, this dilemma
is also applicable to inaccurate assessment of flexibility from any
source (e.g., hanger or building flexibility or gaps in supports).

The list of uncertainties in Table 16 is rather lengthy and might be
taken as {mplying that calculated support loads are iikely to be signifi-
cantly in error. However, for most typical piping systems, the uncer-
tainties tend to be small and, to some extent, compensate for each other.
For example, overestimating the elbow flexibilities may partially compen-
sate for underestimating nozzle flexibilities. Further, piping systems
and supports in nuclear power plants are made of ductile materials so
that overloaded supports can "give" and shift excess load to redundant
supports. The inelastic effects discussed in Sect. 8 are highly signifi~-
cant in preventing failures of supports.

9.2 Recommendations

Currently, the PVRC Steering Committee on Piping Systems (S. H.
Bush, chairman) i{s conducting an extensive program to review the current
basis for design of piping systems under dynamic loadings with the major
emphasis an seismic loadings. The major technical areas are

1. spectral broadening,

2. seismic damping,

3. dynamic allowable stresses, and
4. 1industry practice,

*As pointed out in Sect. 1, this report does not discuss design or
construction errors.
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Table 16. Summary of sources of uncertainty in the calculation
of loads on supports of piping systems

Section? Source of uncertainty Significanceb
2.2 Use of nominal pipe properties: D, t, I, S
and weights
2:3.1 Weights of fluid, insulation, valves, etc.
2.3.1 Values of a and At
2.3.2 Earthquake dynamic loading
Input L
Analysis method L
Damping L
2.3.2 Other dynamic loadings
Input M
Analysis method M
Damping L
3.0 Elbow flexibility
3.2 Nominal versus actual dimensions
3.3 Internal pressure effect S
3.4 End effects M
4.0 Nozzle flexibility
Nozzles to large D/T vessels or run pipe L
Nozzles to small D/T vessels or run pipe S
5.0 Support characteristics
Flexibilities S
Gaps, nonlinearities (static loads) S
Gaps, nonlinearities (dynamic loads) U
Constant load support, response to U
dynamic loads
Snubber lockup L
6.0 Construction misalignments S
7.0 Building structure flexibility S
8.0 Inelastic effects
Static loads M
Dynamic loads U

Agection of report in which the uncertainty is discuss-d.

bJudg-zntll evaluation of the typical relative significance of
the uncertainty: S = small, M = medium, L = large, and U = uncertain.
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The PVRC Subcommittee on Dynamic Analysis of Pressure Components is
undertaking work in the following technical areas:

1. pressure transieats,

2. seismic analysis,

3. missile impact, and

4., dynamic stress criteria.

The PVRC Subcommittee on Piping, Pumps, and Valves is undertaking work
on allowable loads on pump nozzles.

The Electric Power Research Institute (EPRI) has conducted tests on
the Indian Point Unit 1| feed-water piping and is conducting laboratory
tests on straight-pipe, Z-bends, and more complex piping systems; some
of the results are now available and have been compared with calculaced
responses,21,27,28

NRC-RES has undertaken a cooperative effort with the Federal Repub-
lic of Germany in the Heissdampfreaktor (HDR) testing program to study
the response of piping systems subjected to various exitations. Corre-
lations of test data with calculated responses are contained in several
documents, 22,29-31

The activities and reports mentioned above are relevant, in various
degrees, to the subject of uncertainties in calculated loads on piping
supports. Some of the programs may lead to reducing the conservatisms
in current piping design practice (e.g., increased damping and perhaps
increased dynamic allowable stresses), making use of the ability of
piping to absorb plastic strains. If this occurs, it will become more
important to bound the uncertainties on calculated piping support locads.

The following recommendations are made in light of the above on-
going work, with the objective of supplementing but not duplicating that
ongoing work. Tt may be noted that the first two recommendations can be
related to static as well as dynamic loadings. With the potential re-
ductions in conservatism for dynamic load, the uncertainties in static
loadings may become even more significaut.

1. A sensitivity study should be made to establish the parameters
(e.g., ratio of straight-pipe lengths to elbow lengths) where elbow
flexibility is significant with respect to support loads. The re-
sults given in Tables 3, 4, and 5 represent an initial step toward
this objective. Extension to multiplane piping systems should be
included.

2, A sensitivity study should be made to establish the parameter (e.g.,
ratio of nozzle flexibility factor to length of piping), where noz-
zle flexibility is significant with respect to support loads. The
results given in Tables 10 and 1l represent an initial step toward
this objective. Extension to multiplane piping systems should be
included.

In addition, because limits on allowable loads on nozzles frequently
control the design of piping systems (e.g., require additional sup-

ports to keep nozzle loads within bounds), the study should include

development of rational, though not excessively conservative, crite-
ria for establishing allowable loads on nozzles in pressure vessels,
tanks, piping, etc.
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3. Available Dynamic loading Data Evaluation

a. Available test data on dynamic loading of piping systems and
subsystems (e.g., test on straight pipe lengths) should be
searched for and accumulated.

b. Available reports and papers that compare dynamic loading test
data on piping systems with calculated responses should be
searched for and accumulated. Examples of such reports are
available,?1,22,27-31

¢. An interpretive report should be prepared that addresses the

questions

i. How do calculated support loads compare with measured sup-
port loads?

ii. How do calculated piping stresses compare with measured
stresses?

114, 1If "failure" occured in a test (e.g., a crack or excessive
distortion), how do the test conditions compare with
allowable loadings under current piping design practice?

References 21, 22, and 27-3] concentrate almost exclusively on calcu-
lated vs measured comparisons of mode frequencies, acceleration time-
histories, and displacement time histories. These are significant pa-
rameters in checking whether a given analysis method (computer program)
is valid. However, current design practice entails an evaluation of
load-histories on supports and stress (or pseudo-stress, for stresses
above yield strength) histories in piping pressure boundaries. The
cited references give relatively little data on these basic parameters
from a design standpoint. However, it is believed that test data and
analyses relevant to these basic parameters may be available from the
authors of the cited references.

Recommendation 3 is broader than just support loads. The motiva-
tion is that. having accumulated available dynamic loading data, most of
the background information would be available for evaluating different
dynamic stress criteria as applied to piping pressure boundaries.
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Appendix A

DYNAMIC LOADING THEORY

Rather than use one of the many existing computer programs for dy~-
namic analysis of piping, it was expedient to develop the theory for the
simple configuration and loading that was used as an example in this re-
port. The parameters of {nterest (elbow and nozzle flexibilities) could

then be varied quickly and inexpensively.

A.l Theogl

The theory for structures with distributed mass and load given by
ligg.‘l 1s used as the basis of the development. The model is shown in

Fig. 4(b) and (e).

A.1.1 Leg 1

The modal shape of Leg 1 is given* by

#(x)) = A} sin agx; + A, cos apX; + Ag sinh apx,

+ Ag cosh a;x, , (A.1)
where

A} «.. Ag are constants of integration,
ap = (mwi/EI)1/4 | (A.2)
Mm = mass per unit length of pipe,
W, = natural frequency of n-th mode,

E = modulus of elasticity of pipe material,

I = moment of inertia of pipe cross section.

As detailed in the following, three of the four constants and can
be determined from boundary conditions at the ends of Leg 1. The other
constant (which we selected to be A;) can then be determined for a spe~-
cific type of dynamic loading.

For Leg 1, the boundary condition Y = 0 at x; = 0 gives A = Ag;
hence, Eq. (A.1) 1s reduced to

where S = gin apX), C = cos agx;, CH = cosh 8nX), and SH = sinh a,x,.

*See Eq. 4.5 of Ref. Al.
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For Leg 1, the boundary at x; = 0 involves the nozzle flexibility,
which is represented by a p int spring at location | [see Fig. 4(p)].
This, of course, is consistent with the Code definition of a nozzle
flexibility factor. The moment-rotation relationship is

My = [EI/(kpd)]e , (A.4)

where the subscript b has been added to distinguish the nozzle flexibil-
ity factor from the elbow flexibility factor k. Equation (A.4) leads to
the boundary condition

~Ely; = —Ely;/(kpd) at x; = 0 , (A.5)
and, by differentiating Eq. (A.3),

[-A)Sp + A2(~Cq — CHg) + AgSHg] 8;2\ = [ACq
+ Ap(~Sg — SHg) + As CHplag/kpd , (A.6)

where Sg = sin 0, etc. Equation (A.6) gives

~2Aza2 = (A + Ag)ag/kpd , (A7)
or

AS - —QYb Az‘— Al 8 (A.8)
where

Yp = agkyd . (A.9)
Equation (A.3) for Leg 1 can then be written as

0(x,) = A, (S — SH) + A,(C — CH — 2v,SH) . (A.10)

From the boundary condition y, = 0 at x; = L,

AX/AZ - -(Cl-- CH, —-ZYBSHX)/(SI-— SHl) R (A.11)

where C; = coe ajl), etc. Equation (A.10) for Leg ! can then be written
as

®(x,) = A, [(A /A;) (S — SH) + C — CH — 2y, SH] , (A.12)



and the derivatives are

" (x,) = Aj[(A,/A,) (C — CH) — § — SH — 2y, CHla_, (A.13)

9% (x,) = A,[(A/A,) (=5 — SH) — C — CH — 2, SHla , (A.14)

0°*“(x) = A,[(A/A;)) (~C = CH) + S — SH — 2y, cila’ . (A.15)
Al.2 Leg 2

Equation (A.1), with a different set of constants, also upplte! to
Leg 2. However, from the boundary condition y;, = 0 at x; = 0 and y, = 0
at x, = 0, we immediately obtain

where S = gin apl;, etc., and Ay and A, are constants of integration. The
boundary condition y = 0 at x, = L, gives

where C, = cos ayl,, etc. Equation (A.16) can then be written as
o(xy, = A, [(A3/A,) (S — SH) + C — CH] , (A.18)

and the derivatives are

¢°(x,) = A, [(A3/A,) (C — CH) — S — SH)a, , (A.19)
0°°(x;) = A [(Ay/A,) (~8 — SH) — C — CH]a2 , (A.20)
0°7*(x;) = A,[(A3/A,) (~C — CH) + S — SH]a) . (A.21)

A.1.3 Juncture of Leg | and 2

The boundary at the juncture involves the elbow flexibility factor.
The elbow is represented by a point spring at J. This was done to sim-
plify the analysis but means that the analysis is valid only if L /R e~d
Lz/R are greater than about 10. The moment-rotation relationship, for
the 90° elbow involved in the model, 1is

My = [2ET/(vkR)]6 , (A.22)
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where k is the elbow flexibility factor. Noting that ¢ = yI + yE,
Eq. (A.22) gives

—!IyI' = [2 EI/(7kR)) (y: + y;) et x =L,x,=1L,, (A.23) N

1 2 2

and, from Eqs. (A.12) and (A.18) and their derivatives
A, (YI(A, /M) (-8, —8H)) ~¢, — CH, — 2y, SH, ]
+ (A/A) (C, —CH)) ~S ~SH — 2y CH )
+ A, {(A3/A,) (C; — CHp) — S5 — SHz} = 0, (A.24)
where
Y = wa kR/2 ., (A.25)
In addition, at the juncture, Mjy1 = My2, giving
A, ((A/A)) (-8, —sH)) — C, — CH, — 2v,8H,}
— Ay ((A3/Ay) (83 — SH3) — C; — CHz} = 0 . (A.26) ’

A.1.4 Solution for modal frequencies and Ay /Ay

Equations (A.24) and (A.26) may be written as
bijA2 + bjoAy - 0, (A.27)
b21A2 — b2A, = 0 , (A.28)

where b)), b2, by;, and by, are the coefficients in braces in Eqs. (A.24)
and (A.26). Then

by1b2z2 + ba)byy = 0, (A.29)

Combiuations of a,L) and a,L; can be selected by iteration such that
Eq. (A.29) 1s satisfied. The values of apl) give the modal frequency

v = [(B1/m)!/2/12] (agL))? . (A.30)
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Also, having obtained values of apl) and ajl; that satisfy Eq. (A.29),
the ratio Ay/Ay 1s given by

A2/Ay = —b12/b1; = bza/by; . (A.31)

Now, the modal shapes can be written in terms of the remaining unknown
constant A; as

®(x,) = A [(A;/A,)) (S — SH) + C — CH — 2v,SH] , (A.32)
®(x2) = A2(Ay/A2) [(A3/Ay) (S — SH) + C — CH] . (A.33)

It may be noted that y, and Y are functions of a,. However, it is con-
venient to consider thsi as constants. For a given value of y or Yb and
with a“eeltnbliched, ky or k can be deterrined from Eq. (A.9) or (A 25).

The value of Ay, as discussed in Sect. A.1.5, depends upon the
specific kind of dynamic loading. However, the modal frequencies are
independent of A;. The theory, up to this point, can provide pertinent
information on how the modal frequencies vary with nozzle and elbow
flexibilities.

A.1.5 Specific dynanic-loading example

The value of Ay will depend upon the specific type of dynamic load-
ing. For example, an earthquake may be considered to apply accelerations
to the support points of the piping. Because the accelerations are a
function of frequency, earthquake analysis is relatively complicated.

The preceding theory, using modal partic!pation factors, could be used.
However, we here consider a simpler load .ng that, at least crudely, might
represent a safety valve discharge loadiag on a piping system.

The specific loading consists of & sudden application of a force W
at the point shown in Fig. 4(b). The force, after sudden application, 1is
considered to remain constant. The modal response is given* by

[(A,7A) (S¢ — s, + ¢, ~ CHe — 2y, SH ]W

vam / q%(x)dx

Yn(x,t) =

x (1 — cos wyt)fq(x) , (A.34)

where Sg = sin ayL;/2, etc., and q(x) = ®(x)/A;.

*See Eq. 4.24 of Ref. Al.
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The term (1 — cos w t), where t = time, has a maximum* value of 2.
To find maximum support Yoadt. we use (1 — cos w_t) = 2,

The integral in Eq. (A.34) must be evaluates over both Leg 1 and
Leg 2; that is,

L L
ﬁlz(x)dx - j;’ A qf(xl)dxl + f; 2 q%(xz)dxz . (A.35)

Noting that q,(x;) = &(x;)/A; and q,(x;) = #(x;)/A; and looking at
Eqs. (A.32) and (A.33) and the squares of these expressions, it is ap-
parent that a closed-form solution to the integrals would be difficult to
derive. Accordingly, we used numerical integration to obtain the inte-
gral of Eq. (A.35).

It may be noted that the quantity in braces in Eq. (A.34) is A, for
the particular type of dynamic loadi g consisting of sudden application
and maiatenance of a force W at the point x; = L;/2.

A.1.6 Calculation of support loads and moments at J

The moments and forces are obtained from the general relationships
M= -<Ely°” , (A.36)
F = <Ely““” , (A.37)

Support loads are identified in Fig. 4(c) as My, My, Fix, Foy, Flys
and Fzy' The moment at the “elbow,” point J in Fig. 4(b), is also of
interest.

Equations (A.32) and (A.33) and the derivatives thereof, along with
A, defined by the quantity in braces in Eq. (A.34), give the following
equation for moments in Leg 1:

M/WL, = 2[q(x)]¢/[QagLy)2] x [(A;/A,) (=6 — SH)

—C —CH - 2y, SH] , (A.38)

where
[q(x)lfL- (A /M) (8¢ —ls,“f) +Co —CH, = 2y SH , (A.39)
ge [J; : qf(x;)dxl + j; _ qg(xz)dxz]/t,l ’ (A.40)

In deriving Eq. (A.38), the relationship wﬁ = (EI/m) (anLl)“/L: was used.
This eliminates EI and m from Eq. (A.38).

*Damping is assumed to be negligible in the time to reach the first
value of (1 — cos wot) = 2,
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For Leg

2q(x)]¢/1QCa L, )4]

x {(A3/A,) (—8 — 8H) — C — CH] (A, /A;) . (A.41)
The shear forces are given for Leg 1 by

~F/W = 2[q(x)¢/Q(apl,)]

»

* “A:'/A,) (C—~CH) + S — SH —~ 2‘VH(THI

and for Leg 2 by

~% /W = .‘[.](x)]t "'[(_l(an!.v_ )]

R(’f!‘r('nt‘e‘

Al. John M. Biggs, Introducti
Book Co., New York, 1964,
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Appendix B

STATIC LOADING THEORY

The theory for the model shown in Fig. 4(a) consists of an eiemen-
tary application of beam theory. Thermal expansion produces displace-
ments 6§y and 8y of point 2 with respect to point 1 but no rotation. The
three forces are obtatned from the set of equations

ApFx + AjpFy + A3M, = BT, , (B.1)

A21Fx + AyFy + Ay, = -£15y , (B.2)

A3 Fx + A3pFy + AggM, = 0, (B.3)
where

Ay = (Ly + R)2 Ly + kR[(n/2) L§ + 2LyR + (n/4)R2] + L;/3

+ kg(Ly + R)2 |

Rily + R) Ly + (Ly + R) Ly/2 + kRZ [(2/2 = 1) L, + R/2]
+ kg (Ly + R) (Ly + R) ,

(Ly + R) Ly + kR [(0/2) Ly + RI + L3/2 + kg (Ly + B ,
RZ2Lyg + RLy + kR3 (3n/4 — 2) + L3/3 + ke (Ly + R)2 ,

RLy + kRZ (1/2 = 1) + L/2 + kg (L + R) ,

Lx + KR/2 + Ly + kg ,

A21 = Az, A3y = Aj3, and Ay, = Ay,

>
~
'

> > > >
“w N N —
w oW N w
L] " i e

In the above, L, = (L; —R); LX = (L, = R); k = elbow flexibility; and
“g = ky/d, the nozzle flexibil ty as defined by Eq. (12) divided by the
pgpe diameter d,

Solution of the set of equations (B.1), (B.2), and (B.3) gives F
Fy» and M. The moment M, [see Fig, 4(a)] 1s

xl
My= Fxly + FyL, + M, ., (B.4)
The moment at the middle of the elbow is

Me = Fy(L, — 0 2929R) + 0,2929 FyR + M, . (B.5)
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