Boston Edison

Pilgrim Nuclear Power Station
Rocky Hill Road
Plymouth, Massachusetts 02360

E. T. Boulette, PhD

Senior Vice President - Muslear

September 25, 1995
BECo Ltr. \#95-101
U.S. Nuclear Regulatory Commission

Region I
475 Allendale Road
King of Prussia, PA 19406
Attn: William Ruland

Docket No. 50-293
License No. DPR-35

Station Blackout Follow-up Inspection dated August 5-11, 1995 NRC inspection No. 95-16. 23 Kv Load Flow Calculations

Dear Sir:
This letter is in response to the comnitment made by Boston Edison Company (BECo) at the Station Blackout Follow-up Inspection exit meeting on August 11, 1995. The commitment was to complete load flow calculations for the 23 Kv offsite source by September 11, 1995, and provide the results to the NRC thereafter by a letter.

We have completed the subject calculation, and a copy of the calculation is attached as requested by the NRC Inspector, Mr. George Morris. The results of the calculation are as follows:

- For safe shutdown conditions, both safety buses were energized with Turbine Trip loads. The source voltage during peak load condition was used for worst case. The calculated available voltages at the safety related loads are above the minimum required voltages for starting and running conditions.
- The load flow study was performed for the LOCA scenario, with one bus energized and with the source voltage peak load condition. The calculated available voltages at safety related loads exceed their minimurr, required voltages.
- Although the 23 KV source is not credited to satisfy LOCA mitigation with loads from both safety bur 3s, the calculations performed concluded all required safety loads will start and run properly with both emerçency LOCA loads. Shutdown transformer loading, however, will be above its continuous rating but below the overload rating. The momentary overload will result in a minimal loss of transformer life.
$6^{*} 60^{6}$
9511070388950925
PDR ADOCK $05000=3$
QP
PD

This letter completes our commitment made at the exit meeting on August 11, 1995
Piesse contact Mr. Walter Lobo of our Regulatory Relations Department, at (508) 830-794 have any further questions.

ETBWGL/Rap95/SBO9517

E. T. Boulette, PhD

Attachment

cc: \quad : : R. Eaton, Project Manager
Division of Reactor Projects - $1 / 1$
Mail Stop: 14D1
U. S. Nuclear Regulatory Commission

1 White Flint North
11555 Rockville Pike
Rockville, MD 20852
U.S. Nuclear Regulatory Commission

Attention: Document Control Desk
Washington, DC 20555
Senior Resident Inspector
Pilgrim Nuclear Power Station

CALCULATION COVER SHEET

PILGRIM NUCLEAR POWER STATION
SHEET 1 OF 4658

This design analysis \qquad DOES, \triangle DOES NOT require revision to affected design documents.

Affected Design Documents:
A PD \square Is IS, XIS NOT Required.

A Safety EvaluationIS. IS NOT Required. See attached preliminary evaluation checklist.
This design analysis \qquad DOES, \triangle DOES NOT affect the piping analysis index (PAI). If the PAI is affected, initiate a revision to Calculation M561.

Minor revisions made on pages N / \mathcal{A} of this calculation. See next revision.

Replaces Calc. No. N/A	Voided By Calc. No. N/A Or Attached Memo

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 2 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q \qquad

1. Purpose

The purpose of this calculation is to perform a load flow study for the 23 kV offsite source. This calculation will utilize the "DAPPER" program. The study will ensure that the proper voltage exists at each safety related load to operate as required under the following differeni scenarios:

- CASE A: Turbine Trip with the Manomet transformer in service and the series capacitor out of service
- CASE B: Turbine Trip with the series capacitor in service and the Manomet transformer out of service
- CASE C: LOCA w/load shed with only one bus energized (swing bus not connected) with the Manomet transformer in service and the series capacitor out of service
- CASE D LOCA w/load shed with only one bus energized (swing bus not connected) with the series capacitor in service and the Manomet transformer out of service
- CASE E LOCA w/load shed with both buses energized with the Manomet transformer in service and the series capacitor in service
- CASE F LOCA w/load shed with only one bus energized with the swing bus connected with the Manomet transformer in service and the series capacitor out of service

2. Summary of Results and Recommendation

The results of the calculation for Turbine Trip and LOCA are given in Table 1, Table 2, Table 3, and Table 4 . Only safety related MCC's and only safety related loads are evaluated.

Turbine Trip

From Table 1, it can be concluded that during CASE A) all required safety related loads will start and run at the lowest expected source voltage (i.e. during peak load conditions). The available voltages are well above the minimum required voltages. For CASE B) all required safety related loads will operate properly at the lowest expected source voltage. However, the available voltage is marginal. Aiso A5 and A6 bus voltages will be below the degraded voltage alarm setpoint. This calculation assumes that the operator will reset the alarm prior to initiating any manual starts. At this time, the bus voltages will be above the alarm reset value. The reset value at 4.16 kv level corresponds to a voltage of greater than 22.2 kv at the source. Calculations were also performed at this source voltage. The results indicate that the available voltages will be well above the minimum required for motor starting and running conditions.

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 3 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q

LOCA w/load shed with only one bus energived

A review of Table 2 indicates that for CASE C), the available voltages for all safety loads are well above the minimum required voltage. For CASE D) all safety loads will start and run properly, the available voltages are above the minimum required. Also as mentioned in page 15, during steady state loading the bus voltage will be below the low voltage alarm set point

LOCA w/load shed with both buses energized

The 23 kv source is not required to satisfy LOCA mitigation with loads connected to both emergency buses. However this calculation was performed to show that this offsite source is capable of accomodating LOCA loads on both emergency buses. The calculation was performed using the source voltage available with both the Manomet transformer and PNPS series capacitor in service.
From Table 3, it can be concluded that all required loads will start and run with adequate voltage margin.

However, during the starting of load block-1, the voltage available at MOV's MO202-5A/5B, MO1001-28B and MO1001-29B is below that which is required. Subsequently calculations were performed which indicate that after a slight time delay, the bus voltage will have improved (i.e. after 4 kv motors have started and are at steady state) the MOV's will have sufficient voltage to start.

Although the total calculated loading of 5.3 MVA on the Shutdown transformer during steady state condition(without manual loading) exceeds it's continuous rating of 5MVA, this loading is below the overload rating of 5.6MVA. The momentary overloading will result in a minimal loss of the transformer life.

LOCA w/load shed with only one bus energized w/Swing bus B6 connected.

 Although the swing bus B 6 will not be connected to the affected bus by design, this study was performed with the assumption that bus B6 is connected to the affected busA review of Table 4 indicates that the available voltages for all safety related loads are above the minimum required voltages for starting and running conditions. The available bus voltage during steady state condition will be above the degraded voltage setpoint.

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 4 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
Q \downarrow Non Q \qquad
3. Method of Solution
a. Identify all loads (i e both safety and non safety) that will be operating during the Turbine Trip and LOCA w/load shed scenarios
b. Identify the source voltages to be used in the calculation.
c. Input the data into the DAPPER program
d. Perform the load flow studies at the different source voltages for the different scenarios (see Section 1 of this calculation for the different scenarios which will be performed in this calculation) using the "DAPPER" program
e. Review the results to ensure proper voltage is available at each safety related load. Summarize the results in Section 2 and provide recommendations, if any

4. Input Data and Assumption

a. All loads that will be operating were obtained from calculation PS65A.
b. Power factor values for each load were assumed to be the same as those used in calculation PS65A.
,
c. Source voltages (i.e. voltage at Shutdown transformer terminal) were obtained from Attachment "A". Light and Peak load voltages were used.
d. 23 kV is the delayed offsite source as required per GDC17 to maintain reactor coolant pressure boundary limit. The 23 kv offsite source is required to suppiy both trains of Shutdown and 1 train of LOCA loads.
e. For LOCA scenarios with only one bus energized, bus "A5" was chosen as "A5" 1 loading is normally higher than "A6" bus.

At PNPS 23 kV is also considered as a reliable backup for one Emergency diesel generator (i.e. LCO situation when one EDG is out of service and hence one CSCS bus will be energized)
f. Only loads which will operate for the Turbine Trip scenarios and/or LOCA w/load shed scenarios will be evaluated. Loads which are off for these scenarios (as shown in PS65A) will not be evaluated

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Sheet 5 of 58
Checked by: Lisa Hansen
$Q \underline{\downarrow}$ Non Q \qquad
g. Due to the nature of the "DAPPER" program, many loads which do not operate appear in the "Bus Special Study Data" section of the printouts. These loads have not been verified as they are removed from the calculation by taking the appropriate feeder out of service.
h. This calculation only considers loads fed from safety related load centers/busses as the shutdown transformer is only connected to safety busses.

- All Turbine Trip scenarios include load centers B1, B2, and B6 and all the loads fed from them. It is assumed B1 feeds B6.
-For LOCA w/load shed scenario, three separate studies were performed One study with only "A5" connected, one w/o swing bus connected, one study with both buses "A5" and "A6" connected, one w/A5 connected w/swing bus connected
j. For any 480 v load requiring revision or addition, a demand factor of 90% (0.9 multiplier) was assumed. This is consistent with calculation PS65A.
k. The plant is assumed to have been operating normally at 100% power prior to the event.

1 It is assumed that no system testing is on going prior to the event and all systems are in their normal line-up (i.e no system failure assumed)
m. All manual action taken by the operators will be assumed to occur $10-15$ minutes into the event.
n. When "A5" and "A6" are energized after a dead bus transfer, only one TBCCW pump (P110A) will start after a 20 second time delay. This pump is capable of 1 maintaining system pressure. The redundant pump $(\mathbb{P} 110 \mathrm{~B})$ will not be started as long as P110A is running.
o. Per FSAR section 10.7 .5 , the maximum number of Salt Service Water pumps that are required during a LOCA is 2 pumps (i.e. 1 pump per loop) and 4 pumps during shutdown. The fifth pump P208C is not required to mitigate any design basis accident or any transient.
p. During normal power operation, only one CRD pump is running. During the dead bus transfer the pump will be tripped and will remain in the trip position. In Turbine Trip though it is not required, the operator may start one CRD pump manually. However during LOCA it will receive load shed signal

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 6 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q \qquad
q. While preparing this calculation, the cable impedance input for the feed from B2 to B18 was found to be incorrect. Subsequently an interim revision to calculation PS64 was issued. The cable impedance was recalculated and documented in PS-64-3. The revised value was entered into the DAPPER program
r. The minimum required voltages as mentioned in Table 1, Table 2, Table 3, and Table 4 are obtained from PS65 and PS65A unless otherwise noted.
s. The SBGT system is not required during loss of offsite power nor during Turbine Trip, however by design the system will start and hence was included in the calculation
t. In Turbine Trip motor starting cases, PS65A assumed the start of P208C at MCC B10 even though it clearly states that P208C is not required. This calculation will start the largest operating load (i.e. X101) at MCC B10 and not P208C.
4. At MCC B17, loads for B1735 and B17101 are 15 hp and 30hp respectively according to dwg.SE155 Sh2,Rev.E44. Similarly at MCC B18 load for B18101 is 30 hp These revised loads will be used in lieu of the loads used in PS65 and PS65A.
v. In Turbine Trip, PS65 and PS65A assumes both Control Room Air conditioning and CREAF system are operating. The CREAF system is the only manually operated load which will be started in the event of the loss of air conditioning system.

5. Calculation

The calculation will be performed for the following scenarios with different source voltages (as defined below)

- Turbine Trip transients
- LOCA w/load shed - shutdown transformer only connected to 4.16 KV safety bus "A5" (swing bus not connected)
- LOCA w/load shed- shutdown transformer connected to 4.16 KV safety buses "A5" and "A6"
- LOCA w/load shed - shutdown transformer only connected to 4.16 KV safety bus "A5" (swing bus connected)

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 7 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q \qquad

a) TURBINE TRIP CASE A

(Source voltage $22.4 \mathrm{kv}-23.8 \mathrm{kv}$)
From Attachment "A" with the Manomet transformer in service and the PNPS series capacitor out of service, the expected voltage at the primary side of the shutdown transformer is between 22.4 kv (during peak load) and 23.8 kv (during light load).

The following is the tabulation of the individual MCC's and loads that are connected to "A5" and "A6". These values were obtained from PS65A, page 29 and 30 .

MCC B15:	$276+\mathrm{j} 149 \mathrm{KVA}$
MCC B17:	$138+\mathrm{j} 75 \mathrm{KVA}$
MCC B29:	$1+\mathrm{j} 0 \mathrm{KVA}$
MCC B17A:	$8+\mathrm{j} 4 \mathrm{KVA}$
MCC B14:	$320+\mathrm{j} 173 \mathrm{KVA}$
MCC B18:	$119+\mathrm{j} 64 \mathrm{KVA}$
MCC B18A:	$8+\mathrm{j} 4 \mathrm{KVA}$
MCC B28:	$118+\mathrm{j} 67 \mathrm{KVA}$
MCC B10:	$233+\mathrm{j} 126 \mathrm{KVA}$
MCC B20:	$19+\mathrm{j} 10 \mathrm{KVA}$
P209A	$162+\mathrm{j} 87 \mathrm{KVA}$
P110A	$80+\mathrm{j} 46 \mathrm{KVA}$
G23	$66+\mathrm{j} 35 \mathrm{KVA}$
SWYD AUX	$66+\mathrm{j} 36 \mathrm{KVA}$

The above loads will be revised to reflect any addition or deletion of loads that have taken place since calculation PS65A was done. Calculation PS65A was calculated for the scenario where PNPS is powered via the Startup Transformer. 4. Hence loss of voltage was not assumed while making fast transfer

In this calculation ioads will be connected to the Shutdown Transformer (i.e. via 23 KV). Only safety buses A5 and A6 will be connected. The transfer from the Unit Aux. Transformer to the Shutdown Transformer is a dead bus tranisfer. Both buses will suffer a loss of voltage momentarily. Hence some of the loads will be revised accordingly.

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev, 0 Date 9/8/95
Sheet 8 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q \qquad
The revised loading is as follows:
MCC B15: $\underline{276+i 149 \text { KVA no change from PS65A }}$
MCC B17: MCC cubicle B1735 and B17101 loads decreased by 5hp and 16itp respectively (see Section 4, item u). Also B17A load was included in B17 loading in PS65A.

The revised loading

$$
\begin{aligned}
138+j 75=157 \mathrm{KVA}(& \text { PS65A }) \\
& -9 \mathrm{KVA}(\text { B17A ioad of } 10 * 0.9) \\
& -9 \mathrm{KVA}(\text { B17101 load of } 10 \mathrm{hp} * 0.9) \\
& -4.5 \mathrm{KVA}(\text { B1735 load of } 5 \mathrm{hp} * 0.9)
\end{aligned}
$$

$134.5 \mathrm{KVA}=118+\mathrm{j} 64$
MCC B29: $\underline{1+\mathrm{j} 0}$ no change from PS65A
MCC B17A:
$\underline{8+i 4}$ no change from PS65A
MCC B14: The Standby Gas Treatment loads were not included in PS65A. These loads are automatically started coincident with train "A" SBGT and shut off after 65 seconds if train "A" establishes the required flow.

The revised loading

$$
\begin{aligned}
320+\mathrm{j} 173 & =363.75 \mathrm{KVA}(\text { PS } 65 \mathrm{~A}) \\
& +13.5 \mathrm{KVA}(\mathrm{~B} 1426 \text { load of } 15 \mathrm{hp} * 0.9) \\
+ & 19.3 \text { KVA }\left(\text { B1416A load of } 21.4 \mathrm{kw}^{*} 0.9\right)
\end{aligned}
$$

396.55 KVA $=349+i 188$

MCC B18: MCC cubicle B18101 is decreased by 10 hp (see Section 4, item u). Also B18A load was included in PS65A

The revised loading

$$
119+j 64=135 \mathrm{KVA}(\text { PS } 65 A)
$$

- 9 KVA (B18101 load of 10 hp * 0.9)
- 9 KVA (B18A load of $10 \mathrm{KVA}^{*} 0.9$)
$117 \mathrm{KVA}=103+\mathrm{i} 56$
MCC B28
$118+\mathrm{j} 67$ no change from PS65A
MCC B18A
$\underline{8+j 4}$ no change from PS65A

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 9 of 58
MCC B10
MCC B20
P209A:

Prepared by: Swapan Das
Checked by: Lisa Hansen
$\mathrm{Q} \downarrow$ Non Q
$\underline{233+i 126}$ no change from PS65A $\underline{19+i 10}$ no change from PS65A $\underline{162+i 87}$ no change from PS65A

P110A $\underline{80+j 46}$ no change from PS65A
G23: $\quad \underline{66+j 35}$ no change from PS65A
SWYD AUX $\quad \underline{66+\mathrm{i} 36}$ no change from PS65A
The "DAPPER" runs are then performed with the inputs as calculated above. The following is the list of "DAPPER" runs for different conditions. Only the lowest minimum source voltage of 22.4 kv was used. If all loads can operate satisfactorily at source voltage of 22.4 kv , calculation with higher voltage (i.e. 23.8 kv) is not required/performed

1. Steady-state loading with voltage of 22.4 kv . This loading includes all automatic as well as manually operated loads that will be running. Loading for each MCC was taken from above. Results of the run are shown in Attachment " B "
2. Motor starting for each MCC: Verification that the largest motor on each MCC will start will prove that all other motors will have sufficient MCC voltage to start.

MCC B15. The largest motor on this MCC is a 100 hp Salt Service Water Pump (P208A, P208B). One pump (P208A) will automatically start after the voltage recovery. Pump P208B is then manually started by the operator if necessary. The loading on MCC B15 prior to start of this P208B pump is:
$204+\mathrm{j} 110$ KVA from PS65A, Page 70
The starting KVA for this motor is
$192+j 599$ KVA from PS65A Page 70
Results of the run are shown in Attachment "C"

MCC B14

Similar to B15. Salt Service Water pump P208E will be started for this MCC
The loading on MCC B14 prior to start of this pump is
396.55 KVA from Page 8
$-81.72 \mathrm{KVA}(\mathrm{P} 208 \mathrm{E}$ load of $908 \times 0.9)$
$314.83 \mathrm{KVA}=277+\mathrm{j} 149 \mathrm{KVA}$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 10 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen $Q \downarrow$ Non Q \qquad

The starting KVA for this motor is

$$
192 \text { + j599 KVA (PS65A, Page 65) }
$$

Results of the run are shown in Attachment "D"
MCC B17: the largest load in this MCC is P207A, a 50 hp motor. This motor is not required to operate for this scenario. However for conservatism this motor will be started
The starting KVA of this motor is

$$
123+j 304 \text { KVA (PS65A, Page 74) }
$$

Results of the run are shown in Attachment " E "

MCC B18: Similar to MCC B17. P207B will be started. The starting KVA of this motor is:

$$
123+\mathrm{j} 304 \mathrm{KVA}(\text { PS65A, page 76) }
$$

Results of the run as shown on Attachment " F "
MCC B20 The largest motor in this MCC is M01001-28B which is an isolation valve. This loading was not included in the steady state loading since it is a short term load (30 sec typical)

The starting KVA of this motor is:

$$
213+j 284.6 \text { KVA (PS65A page 78) }
$$

1 Resulis of this run as sh.Jwn on Attachment " G "
MCC B10: The largest load on this MCC that will be operating is Turning Gear X101, a 60 hp motor. This load is manually started and was included in the steady state loading.

The loading on MCC B10 prior to start of X101 is
186 + j 100 KVA (PS65A, Page 81)

bOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 11 of 58

Prepared by: Swapan Das Checked by: Lisa Hansen $Q \downarrow$ Non Q \qquad
The starting KVA of this motor is:

$$
140+j 365 \text { KVA (PS65A, Page 81) }
$$

Results of this run are shown in Attachment "H"

The results of each run are shown in Table 1 for comparison with the minimum required voltage for each load. This is to ensure that each load will start and run as required
b) TURBINE TRIP CASE B
(Source voltage 21.3-24.0 kv)
From Attachment "A", with the Manomet transformer out of service and PNPS series capacitor in service, the expected voltage at shutdown transformer is between 21.3 kv (during peak load) and 24.0 kv (during light load)
"DAPPER" runs will be performed utilizing both source voltages.
Steady state loading as calculated in A) will be used. The steady state loads are

```
MCC B15:276 + j149 KVA
MCC B17: 118+j65 KVA
MCC B17A: 
MCC B29: 1+ j0 KVA
MCC B14: 349 + j188 KVA
MCC B18: 102 + j55 KVA
MCC B18A: }8+j4 KVA
MCC B28: 118+j67 KVA
MCC B10: 233+j126 KVA
MCC B20: 19+ J10 KVA
P209A: 162+j87 KVA
G-23: 66 + j35 KVA
SWYD Aux 66+j36 KVA
```

The results of the DAPPER runs with source voltages of 21.3 kv and 24.0 kv are shown in Attachments "AA" and "AB" respectively. Figure 1 summarizes the results of DAPPER computer runs Attachments "AA" and "AB". From figure 1, it can be seen that with source voltage of 21.3 kv , the 4160 kv buses will set a low voltage alarm. Currently PNPS procedure 2.4 .144 (degraded voltage) is being revised to instruct the operator to shed non-essential loads to improve bus voltages. The steady state calculation includes both essential and non-essential loads

boston edison calculation sheet

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 12 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$\mathrm{Q} \downarrow$ Non Q \qquad

It is assumed that the bus voltages will be improved to be above the reset value of the undervoltage relays. The reset value of these undervoltage relays is approximately 3986 volts. The corresponding 23 kv voltage is approximately 22.3 kv , for conservatism and margin this calculation uses 22.2 kv as the source voitage This source voltage of 22.2 kv will be used to start large motors at each MCC.

For the steady state operation, from Figure 1, at 22.2 kv , the minimum available MCC bus voltage is greater than 440 volts which is well above the minimum required MCC bus voltage.

For motor starting in each MCC, the same loading as used in "A" was used with a source voltage of 22.2 kv . The results of each run are shown in Attachment AC for B15, Attachment AD for B14, Attachment AE for B17, Attachment AF for B18, AG for B20 and Attachment AH for B10.

The results of the steady state and motor starting runs are shown in Table 1 to compare against the minimum required voltage for each load. This is to ensure that all required safety related loads will start and run as required.
c) LOCA w/load Shed Study, Only "A5" Energized (swing bus not connected)CASES C AND D
(Source voltage: 23.8 - 22.4 kv , Manomet transformer in, series capacitor out source voltage: $24.0-21.3 \mathrm{kv}$ series capacitor in and Manomet transformer out)

This calculation will use the lowest source voltage values of 22.4 and 21.3 kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to the "A5" Bus. The values were obtained from PS65A, Page 35 and 36. This loading includes all automatic loads and manually 4. operated loads that may be operating

$$
\begin{array}{ll}
\text { MCC B10: } & 135+\mathrm{j} 73 \mathrm{KVA} \\
\text { MCC B20: } & 19+\mathrm{j} 10 \mathrm{KVA} \\
\text { MCC B15: } & 307+\mathrm{j} 166 \mathrm{KVA} \\
\text { MCC B17: } & 52+\mathrm{j} 28 \mathrm{KVA} \\
\text { P110A: } & 80+\mathrm{j} 46 \mathrm{KVA} \\
\text { P203A: } & 639+\mathrm{J} 309 \\
\text { P203C: } & 639+\mathrm{j} 309 \mathrm{KVA} \\
\text { P215A: } & 604+\mathrm{j} 318 \mathrm{KVA} \\
\text { G23: } & 66+\mathrm{j} 35 \mathrm{KVA}
\end{array}
$$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161

Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Checked by: Lisa Hansen
Sheet 13 of 58
Q \downarrow Non Q \qquad
The above loading will be revised to reflect the scenario assumed in this calculation.

In this scenario, a DBA LOCA was assumed with Einergency Diesel Generator "A" out of service. Hence swing bus B6 will be lined up with the B Loop. Bus "A5" will be energized in approximately 12.5 sec . upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will Le sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after volage recovery. Swing bus B6 will still be connected to the "B" loop. All 430 V large motors (Salt Service Water and RBCCW) will be loade' after time delays. Also various motor operated valves (short time loading, typically 30 sec) will be operating at different times during this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading.

- Starting of loads at various time intervals

When power is available,(i.e at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS$65 \mathrm{~A}, \mathrm{Pg} .88,89$) via A5 bus:

MCC B15: $47+j 25$ Steady state
MCC B17: $52+j 28$ Steady state
MCC B17: $42+j 55$ Starting
MCC B15: $84+$ j107 Starting
P215A will also start at approximately 12.5 seconds. The starting load for this motor is $840+\mathrm{j} 3910$ KVA(PS65A)

The DAPPER program was run with the above loading. The results are in Attachment SAB for 21.3 KV and Attachment SAA for 22.4 kv . From the results, all loads will start and accelerate with the exception of VEX210A. However, cables associated with this load were replaced via PDC 93-05. A voltage drop calculation was performed for the replacement cables using a Lotus Spreadsheet. Using the Lotus spreadsheet set up in calculation PS113, it was verified that VEX210A will be able to start with 410 v available voltage at MCC B15. See Attachment AAC

- Next loads (load block-2) that will be starting are

$$
\begin{array}{lc}
\text { P203A: } & 840+\mathrm{j} 3910 \text { (PS65A) } \\
\text { MCC B17: M01400-25A } & 74+\mathrm{j} 99 \text { (PS65A) }
\end{array}
$$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Checked by: Lisa Hansen
Sheet 14 of 58
$Q \downarrow$ Non Q \qquad
Steady state loading including loads that previously started is (valve loading neglected):
MCC B17: $52+\mathrm{j} 28$ (from previous run)
MCC B15: $47+j 25$ (from previous run)
$=53.23 \mathrm{kva}$
+1.35 kva (B1546 steady state load of $1.5 \mathrm{hp*0.9}$, previously started)
+14.35 kva (B1516A steady state load of $16 \mathrm{kw*} 0.9$, previously started)
+13.50 kva (B1526 steady state load of $15 \mathrm{hp*} 0.9$, previously started)
--............-
$82.50 \mathrm{kva}=73+\mathrm{j} 39 \mathrm{kv}$
P215A: $\quad 604+\mathrm{j} 318 \mathrm{kva}$
The program was run with the above input. The results are in Attachment SAC for 22.4 kv and Attachment SAD for 21.3 kv .

Results indicate that at 22.4 kv both the motor operated valve and P203A will start. At 21.3 kv M01400-25A will start, however the available voltage is marginal (402.3 required vs. 411 available)

- Next load that will start is P203C

$$
\begin{aligned}
& \text { P203C: Starting load: } 840+\mathrm{j} 3910 \mathrm{KVA} \\
& \text { Steady State Loading: } \\
& \text { MCC B15: } 73+\mathrm{j} 39 \\
& \text { MCC B17 } 52+\mathrm{j} 28 \\
& \text { P203A: } \quad 639+\mathrm{j} 309
\end{aligned}
$$

Results of both runs indicate (Attachments SAE and SAF) that P203C will start.

- The next pump is P208A, salt service water pump which will start at 25 seconds

$$
\text { P208A starting at B15: } 192+\mathrm{j} 599 \mathrm{KVA}
$$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 15 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$Q \downarrow$ Non Q \qquad
The steady state loading

MCC B15:	$73+\mathrm{j} 39$
MCC B17:	$52+\mathrm{j} 28$
P110A:	$80+\mathrm{j} 46$ (this pump was started at 20 seconds and is now at
steady state)	
P203A:	$639+\mathrm{j} 309$
P203C	$639+\mathrm{j} 309$

The results of both runs indicate that P208A will start (Attachment SAG, SAH)

- The last pump that will be sequenced on is P202A, RBCCW pump.

$$
\begin{aligned}
& \text { P202A: } 135+\mathrm{j} 353 \text { on B15 (PS65A, pg. 66) } \\
& \begin{aligned}
\text { MCC B17: } 52+\mathrm{j} 28
\end{aligned} \\
& \begin{aligned}
\text { MCC B15: } 73+\mathrm{j} 39 & =82.5 \mathrm{KVA} \\
& \begin{aligned}
+81.72 \mathrm{KVA}(P 208 A & \text { steady state load } 90.8 \times 0.9)
\end{aligned} \\
& =144.5+\mathrm{j} 78
\end{aligned} \\
&
\end{aligned}
$$

P110A: $80+j 46$
P203A: $639+j 309$
P203C: 639+j309
The results of both runs indicate that P202A will start (Attachment SAI, SAJ)
This completes the start sequence.
-Then the steady state loading was calculated for all loads automatically connected to this bus. Steady state loading is as follows from the previous run:

$$
\begin{array}{ll}
\text { MCC B17: } & 52+\mathrm{j} 28 \\
\text { MCC B15: } & 145+\mathrm{j} 78=164.22 \mathrm{KVA} \\
& \frac{50.94 \mathrm{KVA}(\mathrm{P} 202 \mathrm{~A} \text { load })}{} \\
& 215.16 \mathrm{KVA}=189+\mathrm{j} 102
\end{array}
$$

The DAPPER runs were performed and results are in Attachments AAA and $A A B$. A review of results indicate that at 22.4 kv , all loads will run with adequate margin. The voltage at A5 will be slightly above the bus undervoltage alarm set point.

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 16 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
Q \downarrow Non Q

The run at 21.3 kv indicates that all 480 v loads will operate marginally. All 4160 v loads will operate, however the available voltage will be only slightly above 90% (90.65%). The results also indicate that the bus voltage will be below the set point of the undervoltage alarm (approx 3950 v). This will set an alarm in the control room. Currently PNPS procedure 2.4 .144 is being revised to instruct the operator to take proper action in the event that this alarm is received when the plant is in this configuration. According to Attachment A, during peak loading with the Manomet transformer out, the voltage will be between 24 kv and 21.3 kv . The source voltage of 21.3 kv used is the worst case voltage during the peak loading. In reality, the voltage will be somewhat higher than 21.3 kv .

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start an additional SSW (P208B) pump without tripping an ECCS load. Also during the start of this pump we will load an additional RBCCW pump (P202B) as a steady state load

The steady state loading as follows are from the beginning of section C :
MCC B17: $52+j 28 \mathrm{KVA}$
P110A $\quad 80+j 46 \mathrm{KVA}$
P203A $639+j 309$ KVA
P203C $639+\mathrm{j} 309 \mathrm{KVA}$
P215A $604+j 318$ KVA
MCC B15: $307+\mathrm{j} 166 \mathrm{KVA}$ (includes P208B and P202B)
$=349.0 \mathrm{KVA}$

- 81.72 KVA (P208B loading of 90.8 * 0.9)

$236+\mathrm{j} 127 \mathrm{KVA}$

Also the starting load of P208B is $192+j 599$ KVA
The DAPPER run was performed and the results are in Attachment AAE. The results show that P 208 B will start properly at 22.4 KV . Also the steady state loading including P208B at steady state was run. The results in attachment AAD show that the available voltage is higher than the minimum required The manual loading with source voltage of 21.3 kv was not performed. As previously mentioned for the automatically connected loads, the 4.16 KV bus voltage is well below the alarm set point. It is assumed that the operator will clear the alarm prior to initiating any manual starts. The alarm reset point is approximately 3986 volts. The 3986 volts corresponds to approximately 22.4 KV Attachment AAE shows that P208B will start at 224 KV

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161

Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Checked by: Lisa Hansen
Sheet 17 of 58 Q \downarrow Non Q \qquad
d)LOCA w/load Shed Study "A5" and"A6" Energized - CASE E
(Source voltage: 24.6-23.8 kv, Manomet transformer in, and series capacitor in)
This calculation will use the lowest source voltage value of 23.8 kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to "A5" and "A6" Bus. The values were obtained from PS-65A, Page 35 and 36 . This loading includes all automatic loads and manually operated loads that may be operating

MCC B10:	$135+j 73 \mathrm{KVA}$	MCC B14:	$350+\mathrm{j} 189 \mathrm{KVA}$
MCC B20:	$19+\mathrm{j} 10 \mathrm{KVA}$	MCC B18:	$50+\mathrm{j} 27 \mathrm{KVA}$
MCCB15:	$307+\mathrm{j} 166 \mathrm{KVA}$	P203B:	$639+\mathrm{j} 309 \mathrm{KVA}$
MCC B17:	$52+\mathrm{j} 28 \mathrm{KVA}$	P203D:	$639+\mathrm{j} 309 \mathrm{KVA}$
P110A:	$80+\mathrm{j} 46 \mathrm{KVA}$	P215B:	$604+\mathrm{j} 318 \mathrm{KVA}$
P203A:	$639+\mathrm{j} 309 \mathrm{KVA}$		
P203C:	$639+\mathrm{j} 309 \mathrm{KVA}$		
P215A:	$604+\mathrm{j} 318 \mathrm{KVA}$		
G23:	$66+\mathrm{j} 35 \mathrm{KVA}$		

The above loading will be revised to reflect the scenario assumed in this calculation

In this scenario, a DBA LOCA was assumed with both Emergency Diesel Generators out of service. The swing bus B6 is lined up with the A Loop. Both buses will be energized in approximately 12.5 sec . upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will be sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after voltage recovery. Swing bus B6 will still be connected to the A loop. The vital M-G set from the swing bus will not be connected until 120 second. All 480 V large motors (Salt Service Water and RBCCW) will be loaded after time delays. Also various 1 motor operated valves (short time loading, typically 30 sec) will be operating at different times during this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading

- Starting of loads at various time intervals

When power is available, (i.e at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS65 A Pg. 88,89) via A5 bus

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 18 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$\mathrm{Q} \downarrow$ Non Q \qquad
MAC B15: $47+j 25$ Steady state, $84+j 107$ Starting
MCC B17: $52+\mathrm{j} 28$ Steady state, $42+\mathrm{j} 55$ Starting
MCC B14: $99+\mathrm{j} 54$ Steady state, $37+\mathrm{j} 17$ Starting
MCC B18: $50+\mathrm{j} 27$ Steady state, $39+\mathrm{j} 51$ Starting
IC B20: $19+\mathrm{j} 10$ Steady state, $16+\mathrm{j} 21$ Starting
MAC B10: $68+\mathrm{j} 37$ Steady state
Prior to the energization of both buses, the LPCI loop selection will be completed in approximately 4 seconds after the break. The isolation valves MO 1001-28A/28B and MO202-5A/5B will receive closure signal. These valves are powered via MCC B20 and should be included as Starting loads at 12.5 seconds. The revised loading for MCC B20 is:

$$
\begin{aligned}
& 16+\mathrm{j} 21 \text { (from above) } \\
& +213+\mathrm{j} 285(\mathrm{MO} 1001-28 \mathrm{~A} / 28 \mathrm{~B}, \text { PS } 65 \text { A page } 98) \\
& +74+\mathrm{j} 99(\mathrm{MO} 202-5 \mathrm{~A} / 5 \mathrm{~B}, \text { PS } 65 \mathrm{~A} \text { page } 98) \\
& +303+\mathrm{j} 405
\end{aligned}
$$

P215A and P215B will also start at approximately 12.5 seconds. The starting load for each of these motors is $840+j 3910 \mathrm{KV}$ (PS65A) The DAPPER program was run with the above loading. The results are in Attachment SAK. From the results, all loads will start and accelerate with the exception of VEX210A, M01001-28B and M0202-5A/5B. However, cables associated with VEX210A were replaced via PDC 93-05. A voltage drop calculation was performed for the replacement cables using a Lotus Spreadsheet. Using the Lotus spreadsheet set up in calculation PS113, it was verified that VEX210A will be able to start with 400 v available voltage at MCC B15. See Attachment SAK-1A. Also M01001-28B and M0202-5A/5B will not start within their manufacturer's limits. However after all other loads are successfully started, there will be an improvement in bus voltages. To verify that these valves will start after slight time delays, we will model the two core spray pumps as running loads. For conservatism we will keep remaining starting loads unchanged The results of the run (Attachment SAK-1B) indicate that these valves will start and accelerate properly.

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 19 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$\mathrm{Q} \downarrow$ Non Q \qquad

- Next loads (load block-2) that will be starting are:

P203A:	$840+j 3910$ (PS-65A)
P203B:	$840+\mathrm{j} 3910$ (PS-65A)
MCC B17: M01400-25A	$74+j 99$ (PS-65A)
MCC B18: M01400-25B	$74+j 99$ (PS-65A)
MCC B20: M01001-29A/29B	$74+j 99$ PS-65A)

P203A:
$840+\mathrm{j} 3910($ PS-65A $)$
MCC B17: M01400-25A
$74+$ j99 (PS-65A)
MCC B20: M01001-29A/29B
74 +j99 PS-65A)
Steady state loading including loads that previously started is (valves loading neglected)
MCC B17: $52+\mathrm{j} 28$ (from previous run)
MCC B15: $47+j 25$ (from previous run)
$=53.23 \mathrm{kva}$
+1.35 kva (B1546 steady state load of $1.5 \mathrm{hp*} 0.9$, previously started)
+14.35 kva (B1516A steady state load of $16 \mathrm{kw}^{*} 0.9$, previously started)
+13.50 kva (B1526 steady state load of $15 \mathrm{hp} * 0.9$, previously started)
$82.50 \mathrm{kva}=73+\mathrm{j} 39 \mathrm{kva}$
MCC B14: $99+\mathrm{j} 54$ (from previous run)
$=112.77 \mathrm{kva}$
+1.35 kva (B1446 steady state load of $1.5 \mathrm{hp}{ }^{*} 0.9$, previously started)
+18.00 kva (B1416B steady state load of 20kw*0.9, previously started)

	$132.12 \mathrm{kva}=1$
P215A:	$604+\mathrm{j} 318 \mathrm{kva}$
P215B	$604+\mathrm{j} 318 \mathrm{kva}$
MCC B18:	$50+\mathrm{j} 27 \mathrm{kva}$
MCC B10	$68+\mathrm{j} 37 \mathrm{kva}$
MCC B20	$19+\mathrm{j} 10 \mathrm{kva}$

The program was run with the above input. The results are in Attachment SAL results indicate that the motor operated valves, P203A and P203C will start with the exception of M01001-29B To verify that this valve will start, we will utilize the same method as used in the previous run. P203A and P203B will be used as steady state loads.
The results of the run (Attachment SAL-1A) indicate that M01001-29B will start

- Next loads that will start are P203C and P203D

P203C and P203D: Starting loads $840+j 3910$ KVA

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 20 of 58
Steady State Loading
MCC B15: $73+\mathrm{j} 39$
MCC B17 $52+j 28$
P203A: $639+j 309$
P203B: $\quad 639+j 309$
P215A: $604+j 318$
P215B: $\quad 604+j 318$
MCC B14: $117+\mathrm{j} 63$
MCC B18: $50+\mathrm{j} 27$
MCC B10: $\quad 68+\mathrm{j} 37$
MCC B20: $\quad 19+\mathrm{j} 10$
Results of both runs indicate (Attachment SAM) that both pumps P203C and P203D will start

- The next pumps are P208A and P208D (Salt Service Water pumps) which will start at 25 and 30 seconds respectively. Although these pumps will start at separate time intervals, for conservatism we will start them at the same time.

> P208A starting at B15: $192+\mathrm{j} 599 \mathrm{KVA}$
> P208D starting at B14: $192+\mathrm{j} 599 \mathrm{KVA}$

The steady state loading

$$
\text { MCC B15: } \quad 73+j 39
$$

MCC B17: $52+j 28$
MCC B14: $117+\mathrm{j} 63$
MCC B18: $\quad 50+\mathrm{j} 27$
MCC B10: $\quad 68+\mathrm{j} 37$
MCC B20: $\quad 19+j 10$
P110A: $\quad 80+j 46$ (this pump was started at 20 seconds and is now ar
steady state)
P203A: $639+j 309$
P203C: $639+j 309$
P203B: $\quad 639+j 309$
P203D $\quad 639+j 309$
P215A: $\quad 604+j 318$
P215B: $\quad 604+j 318$
The results indicate that both pumps P208A and P208D will start (Attachment SAN)

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161

Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Checked by: Lisa Hansen
Sheet 21 of 58
$\mathrm{Q} \downarrow$ Non Q \qquad

- The last two pumps that will be sequenced on are P202A and P202D (RBCCW pumps) at B15 and B14

```
P202A and P202D: 135 + j353 each (PS65A, pg. 66)
MCC B17: 52 + j28
MCC B18:50+j27
MCC B10:68+j37
MCC B20: 19 +j10
MCC B15:73+j39=82.5 KVA
                                    +81.72 KVA(P208A steady state load 90.8\times0.9)
                                    164.22 KVA = 144.5+j78
                                    = 145 +j78
MCC B14: 117+j63 =132.88 KVA
    + 81.72 KVA(P208D steady state load 90.8\times0.9)
    214.60 KVA = 189 +j102
P110A: 80+j46
P203A: 639+j309
P203C: 639+j309
P203B: 639+j309
P203D: 639+j309
P215A: 604+j318
P215B: 604+j318
```

The results indicate that P202A and P202D will start (Attachment SAO)
This completes the start sequence.

- Then the steady state loading was calculated for all loads automatically connected to both buses. Steady state loading is as follows from previous run

MCC B17	$52+\mathrm{j} 28$
MCC B15	$\begin{aligned} & 145+j 78=164.22 \mathrm{KVA} \\ & +50.94 \mathrm{KVA}(\mathrm{P} 202 \mathrm{~A} \text { steady state load of } 56.6 \mathrm{hp} \times 0.9) \\ & 215.16 \mathrm{KVA}=189+\mathrm{j} 102 \end{aligned}$
MCC B14	$\begin{aligned} & \text { 214.6 KVA } \\ & +50.94 \mathrm{KVA} \text { (P202D steady state load of } 56.6 \mathrm{hp} \times 0.9 \text {) } \end{aligned}$
	$265.54 \mathrm{KVA}=234+\mathrm{j} 126$
MCC B18	$50+j 27$
MCC B10	$68+j 37$
MCC B20	$19+\mathrm{j} 10$
P203A	$639+\mathrm{j} 309$

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 22 of 58

P203B $:$	$639+\mathrm{j} 309$
P203C $:$	$639+\mathrm{j} 309$
P203D $:$	$639+\mathrm{j} 309$
P215A $:$	$604+\mathrm{i} 318$
P215B $:$	$604+\mathrm{j} 218$
P110A $:$	$80+\mathrm{j} 45$

G23 : $\quad 66+\mathrm{j} 35$ (load started at 120 seconds and is now at steady

The DAPPER run was performed and results are on Attachments SAP. A review of results indicate that all loads will run with adequate margin. The voltage at both buses will be above the bus undervoltage alarm set point

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start two additional SSW (P208B,P208E) pumps at the same time without tripping an ECCS load. Also during the start of these pumps we will load additiona! RBCCW pumps (P202B, P202E) as a steady state loads.
The steady state loading which will be used are the same as beginning of this section except for B15 and B14

$$
\begin{aligned}
& \text { MCC B15: } 307+j 166 \text { KVA (includes P208B and P202B) } \\
& =349.0 \mathrm{KVA} \\
& \text { - } 81.72 \mathrm{KVA}(\mathrm{P} 208 \mathrm{~B} \text { loading of } 90.8 \text { * } 0.9 \text {) } \\
& 267=236+j 127 \mathrm{KVA} \\
& \text { MCC B14: } 350+\mathrm{j} 189=397.77 \mathrm{KVA} \text { (includes P208E and P202E) } \\
& \text { - 81.72 KVA (P208E loading of } 90.8 \text { * 0.9) } \\
& 316.05=278+j 150
\end{aligned}
$$

Also the starting load of P208B and P208E is $192+j 599$ KVA each
The DAPPER run was performed and the results are in Attachment SAQ. The results show that P208B and P208E will start properly. Also the steady state loading including P208B and P208E at steady state was run. The results in attachment SAR show that the available voltage is higher than the minimum required
e) LOCA w/load Shed Study, "A5" Energized Swing bus connected- CASE F (Source voltage: 23.8-22.4 kv, Manomet transformer in, series capacitor out)

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 23 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
Q \downarrow Non Q \qquad The calculation in section c) was performed with bus "A5" energized without the swing bus B 6 connected. Although the swing bus B6 will not be connected to "A5" in this scenario by design a sensitivity study will be performed assuming swing bus B6 is connected to "A5". Since it is a sensitivity study, only the Manomet transformer in with the series capacitor out condition will be evaluated This calculation will use the lowest source voltage values of 22.4 kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to the "A5" bus. The values were obtained from PS-65A, Page 35 and 36 . This loading includes all automatic loads and manually operated loads that may be operating.

$$
\begin{array}{ll}
\text { MCC B10: } & 135+\mathrm{j} 73 \mathrm{KVA} \\
\text { MCC B20: } & 19+\mathrm{j} 10 \mathrm{KVA} \\
\text { MCC B15: } & 307+\mathrm{j} 166 \mathrm{KVA} \\
\text { MCC B17: } & 52+\mathrm{j} 28 \mathrm{KVA} \\
\text { P110A: } & 80+\mathrm{j} 46 \mathrm{KVA} \\
\text { P203A: } & 639+\mathrm{j} 309 \\
\text { P203C: } & 639+\mathrm{j} 309 \mathrm{KVA} \\
\text { P215A: } & 604+\mathrm{j} 318 \mathrm{KVA} \\
\text { G23: } & 66+\mathrm{j} 35 \mathrm{KVA}
\end{array}
$$

The above loading will be revised to reflect the scenario assumed in this calculation.

In this scenario, a DBA LOCA was assumed with Emergency Diesel Generator "A" out of service. Swing bus B6 will be assumed to be lined up with the A Loop. Bus "A5" will be energized in approximately 12.5 sec . upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will be sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after voltage recovery. All 480V large motors (Salt Service Water and RBCCW) will ve loaded after time delays. Also various motor operated valves (short time loading, typically 30 sec) will be operating at different times durirg this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading.

- Starting of loads at various time intervals

When power is available,(i.e at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS$65 \mathrm{~A}, \mathrm{Pg} .88,89$) via A5 bus

MCC B15: $47+\mathrm{j} 25$ Steady state
MCC B17: $52+j 28$ Steady state

Calculation No. PS-161
Rev. 0 Date 9/8/95

Sheet 24 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen $Q \downarrow$ Non Q \qquad

MCC B10: $68+j 37$ Steady state MCC B20: $19+j 10$ Steady state
MCC B17: $42+\mathrm{j} 55$ Starting
MCC B15: $84+j 107$ Starting
MCC B20: $16+j 21$ Starting
P215A will also start at approximately 12.5 seconds. The starting load for this motor is $840+j 3910 \mathrm{KVA}(P S 65 \mathrm{~A})$. Also M0202-5A/5B and M01001-28A/28B will be starting at the same time. These valves are powered via MCC B20 and the starting loads will be added to the above MCC B20 starting load. The revised MCC B20 starting load

$$
\begin{aligned}
& 16+\mathrm{j} 21 \\
& +74+\mathrm{j} 99(\mathrm{M} 0202-5 \mathrm{~A} / 5 \mathrm{~B} \text { from PS65A page } 98) \\
& +213+285(\mathrm{M} 01001-28 \mathrm{~A} / 28 \mathrm{~B} \text { from PS65A page } 98) \\
& -303+\mathrm{j} 405 \mathrm{KVA}
\end{aligned}
$$

The DAPPER program was run with the above loading. The results are in Attachment SAAA. A review of the results indicate that all loads will start and accelerate properly.

- Next loads (load block-2) that will be starting are

P203A:	$840+j 3910$ (PS65A)
MCC B17: M01400-25A	$74+j 99$ (PS65A)
MCC B20: M01001-29A/29B	$74+j 99$ (PS65A)

Steady state loading including loads that previously started is (valve loading neglected)
MCC B17: $52+\mathrm{j} 28$ (from previous run)
MCC B15: $47+\mathrm{j} 25$ (from previous run)
$=53.23 \mathrm{kva}$
+1.35 kva (B1546 steady state load of $1.5 \mathrm{hp*} 0.9$, previously started)
+14.35 kva (B1516A steady state load of $16 \mathrm{kw}^{*} 0.9$, previously started)
+13.50 kva (B1526 steady state load of $15 \mathrm{hp*} 0.9$, previously started)
$82.50 \mathrm{kva}=73+\mathrm{j} 39 \mathrm{kva}$

P215A: $\quad 604+j 318 \mathrm{kva}$
MCC B10: $\quad 68+j 37 \mathrm{kva}$
MCC B20 $\quad 19+\mathrm{j} 10 \mathrm{kva}$

Calculation No. PS-161
Prepared by: Swapan Das
Rev. 0 Date 9/8/95
Checked by: Lisa Hansen Q \downarrow Non Q \qquad
Sheet 25 of 58
The program was run with the above input. The results are in Attachment SAAB. Results indicate that both motor operated valves and P203A will start

- Next load that will start is P203C

P203C: Starting load $840+j 3910 \mathrm{KVA}$
Steady State Loading
MCC B15: $73+\mathrm{j} 39$
MCC B17 $52+j 28$
P203A: $\quad 639+\mathrm{j} 309$
P215A $604+\mathrm{j} 318$
Results of the rin indicate (Attachment SAAC) that P203C will start
-The next pump is P208A, salt service water pump which will start at 25 seconds

```
P208A starting at B15: 192 + j599 KVA
```

The steady state loading

$$
\text { MCC B15: } \quad 73+j 39
$$

MCC B17: $\quad 52+\mathrm{j} 28$
Pl10A: $\quad 80+\mathrm{j} 46$ (this pump was started at 20 seconds and is now at
steady state)
P203A: $639+j 309$
P203C $639+j 309$
P215A $604+\mathrm{j} 318$
The results of the run indicate that P208A will start (Attachment SAAD)

- The last pump that will be sequenced on is P202A, RBCCW pump.

$$
\text { P202A: } 135+j 353 \text { on B15 (PS65A, } 2 \sim 66)
$$

MCC B17: $52+\mathrm{j} 28$
MCC B15: $73+\mathrm{j} 39=82.5 \mathrm{KVA}$

$$
\begin{aligned}
& \begin{aligned}
&+81.72 \mathrm{KVA}(\text { P208A steady state load } 90.8 \times 0.9) \\
& 164.22 \mathrm{KVA}=144.5+\mathrm{j} 78 \\
&=145+\mathrm{j} 78
\end{aligned}
\end{aligned}
$$

P110A: $80+j 46$
P203A: $639+j 309$
P203C: $639+\mathrm{j} 309$
P215A: $604+j 318$
\qquad
The result of the run indicate that P202A will start (Attachment SAAE)
This completes the start sequence.
-Then the steady state loading was calculated for all loads automatically connected to this bus. Steady state loading is as follows from the previous run:

```
MCC B17: \(52+j 28\)
MCC B15: \(\quad 45+j 78=164.22 \mathrm{KVA}\)
    50.94 KVA (P202A load)
    \(215.16 \mathrm{KVA}=189+\mathrm{j} 102\)
MCC B10: \(\quad 68+j 37\)
MCC B20 \(\quad 19+\mathrm{j} 10\)
P110A: \(\quad 80+j 46\)
P203A: \(\quad 639+j 309\)
P203B: \(\quad 639+j 309\)
P215A: \(\quad 604+j 318\)
G23: \(\quad 66+\mathrm{j} 35\) ( load was started at 120 seconds and is now at
                                    steady state)
```

The DAPPER runs were performed and results are in Attachments AAAA. A review of the results indicate that all loads will run with adequate margin. The voltage at AS will be slightly above the bus undervoltage alarm set point.

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start an additional SSW (P208B) pump without tripping an ECCS load. Also during the start of this pump we will load an additional RBCCW pump (P202B) as a steady state load.

The steady state loading as follows are from the beginning of section e:

$$
\begin{array}{lc}
\text { MCC B17: } & 52+\mathrm{j} 28 \mathrm{KVA} \\
\text { MCC B10: } & 135+\mathrm{j} 73 \mathrm{KVA} \\
\text { MCC B20: } & 19+\mathrm{j} 10 \mathrm{KVA} \\
\text { P110A: } & 80+\mathrm{j} 46 \mathrm{KVA} \\
\text { P203A } & 639+\mathrm{j} 309 \mathrm{KVA} \\
\text { P203C } & 639+\mathrm{j} 309 \mathrm{KVA} \\
\text { P215A } & 604+\mathrm{j} 318 \mathrm{KVA}
\end{array}
$$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 27 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
$\mathrm{Q} \downarrow$ Non Q \qquad

$$
\begin{aligned}
\text { MCC B15: } & 307+\text { j166 KVA (includes P208B and P202B) } \\
& =349.0 \mathrm{KVA} \\
& -81.72 \mathrm{KVA}\left(\text { P208B loading of } 90.8^{*} 0.9\right)
\end{aligned}
$$

```
236+j127 KVA
G23
    66+j35 KVA
Also the starting load of P208B is 192+ j599 KVA
```

The DAPPER run was performed and the results are in Attachment AAAB The results show that P208B will start properly. Also the steady state loading including P208B at steady state was run. The results in attachment AAAC show that the available voltage is higher than the minimum required

$M \angle L: B 10$

LASE A) HANOMET TRANSFORMER IN, SERIES CAPACITOR OUT
MINIMUM AVAILABLE ML BUS VOLTAGE
STEADY STATE: 460 V (ATTACHMENT'B') MOTOR STARTING: 434 V (ATTACHMENT'H, PG.19)
LASER) MANOMET TRANSFORMER OUT, SERIES CAPACITOR IN MINIMUM $\triangle V A I L A B L E$ NC BUS VOL pAGE STEADY STA价: 433 (Attachment $A A, P g .19$), >452 (FiG.1) MOTOR STARTNG: 430 V (AHachment $\mathrm{AH}, \mathrm{Pg} .21$)

REV DATE \qquad
FINAL PS - $16 \mid$, REV.O REV \qquad DATE
\qquad
CHECKED BY DATE
\qquad
APPVD $8 Y$ DATE
SHEET 29 OF 58
SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY

CASE A) MANOMET TRANSFORMER IN, SERIES CAPACITOR OUT
MINIMUM AVAILABLE ML BUS VOLTAGE
STEADY STATE: 450 OR (ATTACHMENTB, PAGE 14)
MOTOR STARTING: 401 V (ATTACHMEN TE) Pg 21)
LASE) MANOMET TRANSFORMER OUT, SERIES CAPACITOR IN MINIMUM $\triangle V A I L A B L E ~ M C C ~ B U S ~ V O L T A G E ~$ STEADY STA价: 422 V (AHachmet AA, Pag.14) $>442 \mathrm{~V}$ (FiG. 1 MOTOR GイARTNG: 396 V (Attachment $A C, \mathrm{Pg}_{\mathrm{g}} 21$)

PRELIMINARY

REV DATE
FINAL PS $-161, R_{\text {EU }} 0$ REV \qquad DATE \qquad boston EDISON

CAPITAL
AUTHORIZATION NO PREPARED BY_ DATE \qquad
\qquad
APPVD BY__ DATE
SHEET 30 OF 58
SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY

CASE A) HANOMET TRANSFORMER IN, SERIES CAPACITOR OUT MINIMUM AVAILABLE ML BUS VOLTAGE STEADY STATE: 457 V (ATTACHMEN TB, Page 16) MOTOR STARTING: 410 V (Attachment D, Pase 21)

LASE) MANOMET TRANSFORMER OUT, SERIES CAPACHOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 430 V (Attachment $A A, P g \cdot 16)$) $>452 \mathrm{~V}(\mathrm{Frat}$ Motor ŞARTNG: 405V (Attachment $A D, P$ 21)

REV DATE \qquad
\triangle FINAL PS - 161 , REV. O REV DATE \qquad

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW

MINIMUM AVAILABLE ML BUS VOLTAGE
STEADY STATE: AGIV (ATTACHMEN TB, PAGE 14) MOTOR STARTING: 433 V (Attachment E, P g. 21)

LAGER) HANOMET TRANSFORMER OUT, SERIES CAPACITOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 434 V (AHachmet $A A, ~ P g$ 14) $>454 \mathrm{~V}($ (761) Motor SイARTNG: 429 V (AHachment $A E, P g 21$)

PREPARED BY__ DATE
CHECKED BY DATE \qquad
\triangle FINAL PS - 161 , REV. O REV DATE \qquad BOSTON EDISON

APPVD BY_ DATE
SHEET 32 OF 58

$$
M \angle L: B 18 \text { AND B } 18 A
$$

CASE A) MANOMET TRANSFORMER IN, SERIES CAPACITOR OUT MINIMUM AVAILABLE ML BUS VOLTAGE STEADY STATE: 466 V (ATTACHMEN TB, Pg .16) MOTOR STARTING: 433 V (AHachment. F_{1} Pg.21)

LAGER) MANOMET TRANSFORMER OUT, SERIES CAPACITOR IN MINIMUM $\triangle V A L L A B L E C C$ BUS VOLTAGE STEADY STATE: 440 V (Attachment AA, Pg .16), >462V (Fi6.1) MoTOR SイARTNG: 428 V (AHachmuit AF, Pg. 21)

PREPARED BY_ DATE \qquad
\qquad
\searrow FINAL PS -161, REV.O REV DATE

MLL:B2O

LASE A) MANOMET TEANSFORIAER IN, SERIES CAPACItOR OUT
MINIMUM AVAILABLE ML BUS VOLTAGE STEADY STATE: 461 V (AHachwent $B, P g .19$) MOTOR STARTING: 429 V (AHachment $G, P g .21$)
(AGEE) MANOMET TRANSFORMER OUT, SERIES CAPACITOR IN MINIMUM $\triangle V A I L A B L E ~ M C C ~ B U S ~ V O L T A G E ~$ STEADY STATE: 434 V (Attachment $A A, \mathrm{Pg} 19$), $>452 \mathrm{~V}$ (FiG.1) Motor SイARTNq: 425 V (Attachment $\mathrm{AG}, \mathrm{Pg} 21$)

CALCULATION SHEET
PRELIMINARY
AUTHORIZATION NO.
PREPARED BY \qquad DATE
REV \qquad DATE \qquad
FINAL PS - 161 , Rev. 0
REV \qquad DATE \qquad BOSTON
CHECKFD BY \qquad DATE
APPVD BY \qquad DATE EDISON

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 2 PAGE
LOCA WITH 'AF' BUS

$$
M \angle L: B 15
$$

LASER) HANOMEX TEAHSFOFMER IN, SERIES CAPACITOR OUT CASED) MANOMET TRANSFOCLER OUT, SERIES CAPACITOR IN
STEADY STATE LOADING FOR CASE A. 467 V (AHachmont $A A A$) STEADY STATE LOADing FOR CASE B. 441 V (AHuchruent AA B)

* These loads are not required for local. only ONE PUMP PER LOOP IS REQUIRED LOADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE UANUAL OPERATION. SEE FSAR 10.5.5.3 AND 10.7.5

CALCULATION SHEET
PRELIMINARY
REV \qquad
\qquad
\triangle FINALISt 6 1, REV U REV. DATE E _ _.....

AUTHORIZATION NO PREPARED BY \qquad DATE \qquad -

CHECKED BY \qquad DATE \qquad
APPVD BY \qquad DATE \qquad
SHEET $\frac{30}{35}$ of $\frac{A 5}{58}$

FLOW STUDY
SUBJECT 23 kV OFFSITE SOURCE LOAD FLOW STUDY

(SEC) MANUMET TEANSFORHF? IN, SERIES CAPACITOR OUT CASED) MANOMET TKANSFCCLER OUT, SERIES CAPACITOR IN STEADY STATE LOADING FOR CASE. 47 SV (Attachment AAA) STEADY STATE LOADING FOR CASE B. 449 V (Attachment $A A B$)

* Based on these loads are started pride to LOAD BLOCK-1 (AHach meats, SAA, SAB)
* From PDC 91-59A, calculation PS -70

PRELIMINARY
REV \qquad DATE \qquad
FINAL PS - 161, REV. 0
REV \qquad DATE \qquad
CALCULATION SHEET
PREPARED BY \qquad DATE \qquad
CHECKED BY. \qquad DATE
APPVD BY \qquad DATE \qquad

LASE) HANOMET TEAMSFOZ1F? IN, SERIES CAPACITOR OUT CASED) MANOMET TKANSFOCLER OUT, SERIES CAPACITOR IN * ASSUMED 80% Start and 90% nun, NQ LOAD STARTING NOT PERFORMED
STEADY STATE LOADING FOR CASE. AKV-3984V $480 \mathrm{~V}-467 \mathrm{~V}$ (Attachment AAA) $\begin{aligned} & \text { STEADY STATE LOADING FOR CASE B }-4 \mathrm{KV}-3799 \text { U (Athchmart } A A B \text {) } \\ & 480 \mathrm{~V}-442 \text { (A her }\end{aligned}$

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE \qquad
FINAL PS -161, REV.O
REV \qquad DATE

CAPITAL. AUTHORIZATION NO. PREPARED BY \qquad DATE

CHECKED BY \qquad DATE \qquad
APPVD BY. \qquad DATE \qquad

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 3 PAGE 1
LOCA WITH AS AND A. 6
NC: B15

* these loads are not required for lock. only ONE PUMP PER LOOP IS REQUIRED. LOADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE MANUAL OPERATION SEE FSAR 10.5 .5 .3 AND 10.7.5.Avaibbe starting voltage for B1533 based on starting of higher hp (ie coo hp for B1544 Start) load.

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE \qquad
FINAL PS - 161 , REV. 0
REV DATE

AUTHORIZATION NO. \qquad
PREPARED BY \qquad DATE \qquad
CHECKED BY \qquad DATE \qquad
APPVO BY \qquad DATE \qquad
\qquad
\qquad

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY

TABLE 3 PAGE
LOCA WITH AS AND A 6

MAC: B17

* Based on these loads ane started prion to Load Block-1 (Attachment SAK)
* Required Run voltage based on PDC 91-59A

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE \qquad
FINAL PS -161, REV.O
REV. \qquad DATE
\qquad
PREPARED BY. \qquad DATE \qquad
CHECKED BY \qquad DATE \qquad
APPVD BY \qquad DATE \qquad EDISON
SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 3 PAGE
LOCA WITH AS AND A 6

MCC : B14

* These loads are not required for lock only ONE PUMP PER LOOP IS REQUIRED L LADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE MANJUAL OPERATION, SEE FSAR 10.5.5.3 AND 10.7.5. Available starting voltage for B1433 based on starting of higher hp (ie. 100 hp fun $B 1444$) load.
* Board on prion start of Load block-1 (AHschunt SAK)

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE \qquad
FINAL PS. 161 , REV .O
REV \qquad DATE \qquad

CAPITAL
AUTHORIZATION NO
PREPARED BY \qquad DATE \qquad
CHECKED BY \qquad DATE \qquad
APPVO BY \qquad DATE \qquad

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 3 PAGE 4
LOCA WITH AS AND A 6

NC: B18

* Based on there loads stanted prior to Load block-1 (Attachment SAK)

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE
FINAL PS-161, REV. O
REV. \qquad DATE \qquad

CAPIAL
AUTHORIZATION NO
PREPARED BY \qquad DATE \qquad
CHECKED BY \qquad DATE

APPVD BY \qquad DATE \qquad

SUBJECT: 23 kV OFFSITE SOURCE LOAD FLOW STUDY.
TABLE 3 PAGE 5
LOCA WITH AS AND A 6

MAC: BIO

\qquad
PREPARED BY \qquad
\qquad
REV__DATE \qquad
FINAL PS - 161 , REV.O REV \qquad DATE \qquad
\qquad EDISON
DATE
CHECKED BY \qquad DATE \qquad
SHEET 42 of 58
SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 3 PAGE
LOCA WITH AS AND A 6
$M \subset C: B 20$

CALCULATION SHEET
PRELIMINARY
REV \qquad DATE \qquad
FINAL PS $\mid 61$ - REVS
REV_ DATE

CAPITAL
AUTHORIZATION NO
PREPARED BY \qquad DATE \qquad
CHECKED BY \qquad DATE
APPVD BY \qquad DATE \qquad

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 3 PAGE
LOCA WITH AS AND A 6

The required starting and running voltages are asonned to $b e 80 \%$ and 90% respectively
\qquad DATE \qquad
FINAL PS -161, REV.O
PREPARED BY \qquad DATE

CHECKED BY \qquad DATE
\qquad DATE

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY.
TABIEA PAGE 1
LOCA WITH AS BUS AND SWING BUS BK

MC: BIO

PRELIMINARY
REV \qquad DATE \qquad
FINAL PS - 161 , REV .O
REV \qquad DATE \qquad

CALCULATION SHEET
AUTHORIZATION NO.
PREPARED BY \qquad DATE
CHECKED BY. \qquad DATE

APPVD BY \qquad DATE
SHEET. 45 OF \$ $\$ 58$

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 4 PAGE 2
LOCA WITH AS BUS
\square AND SWING BUS BK
MAC: BOO

REV DATE \qquad
CHECKED BY DATE
final ps -161. Rev
\qquad
LOCA WITH AS BUS
AND SWING KUSEG

MCC: B15

* These loads are not required for loca. only ONE PUMP PER LOOP IS REQUIRED. LOADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE MANUAL OPERATION SEE FSAR 10.5.5.3 AND 10.7.5. Avaibble Starting voltage for B1533 based on starting of higher hp (ie coohp fur B1544 Start) load

PRELIMINARY
REV \qquad DATE \qquad
FINAL PS - 161 , REV. 0
REV DATE

CALCULATION SHEET
AUTHORIZATION NO.
PREPARED BY \qquad DATE

CHECKED BY \qquad DATE

APPVD BY, \qquad DATE
SHEET 42 _OF 4658

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY
TABLE 4 PAGE 4
LOCA WITH AS BUS AND SWING BUS BC
MAC: BIT

* Based on these loads ane started prion to Load Block-1 (Attach meat SAAA)
* Required Run voltage based on PDC 91-59A

AUTHOAIZ

 REV__DATECHECKED BY
MOPED BY

SUBJECT: 23 KV OFFSITE SOURCE LOAD FLOW STUDY

* Assumed 80% START AND 90% RUN
\qquad

PRELIMINARY
REV__DATE \qquad
\triangle FINAL PS -161, REV.O REV. \qquad DATE \qquad

PREPARED BY YO M DATE $9 / 23 / 95$
CHECKED BY \qquad DATE \qquad
APPVD BY \qquad DATE \qquad
SHEET 49 OF 58

SUBJECT: $2,3 \mathrm{KV}$ OFFSITE SOURCE LOAD FLO

PRELIMINARY REV DATE \qquad FINAL PS-161, REV.O REV \qquad DATE \qquad

CAPITAL AUTHORIZATION NO \qquad
PREPARED BY \qquad DATE \qquad
CHECKED BY \qquad DATE \qquad
APPVD BY \qquad DATE \qquad
SHEET 50 OF 58

SUBJECT: 23 KV OFFSITE SOURCE VOLTAGF

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 28 of 58
51

Prepared by: Swapan Das Checked by: Lisa Hansen $Q \underline{\downarrow}$ Non Q \qquad

6. References

a. Calculation PS64, Rev. 0
b. Calculation PS65, Rev. 0
c. Calculation PS65A, Rev. 0
d. Drawing E1 Sh. 1, Rev. E15
e. Drawing E8, Rev. E16
f. Drawing E9, Rev. E39
g. Drawing E10, Rev. E29
h. National Electric Code - 1987
i. PNPS procedure 2.4.144
j. Calculation PS113, Rev 0
k. Drawing SE155 Sh.2, Rev.E4.4

1. GE LOCA Analysis, NEDC-31852P
m. FSAR sections 10.5 and 10.7

7. Attachments

Attachment A - BECo. Memorandum from Mr. J. F. Gurkin to Mr J Pawlak, dated September 16, 1988.

Attachment B - "Turbine Trip steady state load 23 kv source voltage 22 4"
Attachment C - DAPPER run "Turbine Trip Motor Start at B15 23 kv source voltage $22.4^{\prime \prime}$

Attachment D - DAPPER run "Turbine Trip Motor Start at B14 23 kv source voltage 2.2 "

Attachment E - DAFPER run "Turbine Trip Motor Start at B1723 kv source voltage $22.4^{\prime \prime}$

Attachment F - DAPPER run "Turbine Trip Motor Start at B18 23 kv source voltage 22.4"

Attachment G - "Turbine Trip Motor Start at B20-23 kv source voltage 22.4"
Attachment H - "Turbine Trip Motor Start at B10-23 kv source voltage 22.4"
Attachment AA - Turbine Trip Steady State Load - 23 kv source voltage $21.3^{\prime \prime}$
Attachment AB - "Turbine Trip Steady State Load - 23 kv source voltage 24.0 "

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 29 of 58
52

Prepared by: Swapan Das
Checked by: Lisa Hansen
Q \downarrow Non Q \qquad

Attachment AC - "Turbine Trip Motor Start At B15-23 kv source voltage 22.2 " Attachment AD - "Turbine Trip Motor Start at B14-23 kv source voltage 22.2 " Attachment AE - "Turbine Trip Motor Start At B17-23 kv source voltage 22.2" Attachment AF - "Turbine Trip Motor Start At B18-23 kv source voltage 22.2 " Attachment AG- "Turbine Trip Motor Start at B20-23 kv source voltage 22.2 " Attachrnent AH - "Turbine Trip Motor Start At B10-23 kv source voltage 22.2 "

Attachment AAA - "LOCA w/load shed with A5 Bus Steady State - 23 kv source voltage $22.4^{\prime \prime}$

Attachment AAB - "LOCA w/load shed with AS Bus Steady State - 23 kv source voltage $21.3^{\prime \prime}$

Attachment AAC -"Lotus spread shect showing VEX210A acceptable at 391 V "
Attachment AAD "LOCA w/load shed with A5 Bus SS w/MAN Loading-23kv source voltage 22.4 "

Attachment AAE "LOCA w/load shed with A5 Bus P208B starting -23kv source voltage 22.4 "

Attachment SAA - "LOCA w/load shed with A5 Bus Load block-1 starting source voltage 22.4 "

Attachment SAB - "LOCA w/load shed with A5 Bus Load block 1 starting source voltage $21.3^{\prime \prime}$

Attachment SAC - "LOCA w/load shed with A5 Bus Load block-2 starting source voltage 22.4 "

Attachment SAD - "LOCA w/load shed with AS Bus Load block-2 starting source voltage $21.3^{\prime \prime}$

Attachment SAE - "LOCA w/load shed with A5 Bus P203C starting source voltage 21 . $3^{\prime \prime}$

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 30 of 58

Prepared by: Swapan Das
Checked by: Lisa Hansen
Q \downarrow Non Q \qquad
53 Attachment SAF - "LOCA w/load shed with A5 bus P203C starting source voltage $22.4^{\prime \prime}$

Attachment SAG - "LOCA w/load shed with A5 Bus P208A starting source voltage $22.4^{\prime \prime}$

Attachment SAH - "LOCA w/load shed with A5 Bus P208A starting source voltage 21.3"

Attachment SAI - "LOCA w/load shed with A5 Bus P202A starting source voltage 21.3"

Attachment SAJ - "LOCA w/load shed with A5 Bus. P202A starting source voltage, 22.4 "

Attachment SAK - "LOCA w/load shed with Load block-1 starting source voltage 23.8 ."

Attachment SAK-1A - "Lotus spread sheet showing VEX210A acceptable at $400 \mathrm{~V}^{\prime \prime}$

Attachment SAK-1B - "LOCA w/load shed with M01001-28A/28B starting source voltage 23.8 ."

Attachment SAL - "LOCA w/load shed with Load block-2 starting source voltage 23.8 "

Attachment SAL-1A - "LOCA w/load shed with M01001-29B starting source voltage 23.8

Attachment SAM - "LOCA w/load shed with load P203C,P203D starting source voltage $23.8^{\prime \prime}$

Attachment SAN - "LOCA w/load shed with P208A,P208D starting source voltage $23.8^{\prime \prime}$

Attachment SAO - "LOCA w/load shed wi.h load P202A,P202D starting source voltage $23.8^{\prime \prime}$

Attachment SAP - "LOCA w/load shed with both bus steady state source voltage 23.8"

BOSTON EDISON CALCULATION SHEET

Calculation No. PS-161
Rev. 0 Date 9/8/95
Sheet 3 K of 58
54 Attachment SAQ - "LOCA w/load shed with P208B, P208E starting source voltage $23.8^{\prime \prime}$

Attachment SAR - "LOCA w/load shed with both bus steady state source voltage 23.8"

Attachment AAAA - "LOCA w/load shed with A5 bus steady state source voltage 22.4"

Attachment AAAB - "LOCA w/load shed with A5 bus P208B starting source voltage $22.4^{\prime \prime}$

Attachment AAAC - "LOCA w/load shed with A5 bus ss w/man load source voltage $22.4^{\prime \prime}$

Attachment SAAA - "LOCA w/load shed with A5 bus load block-1 starting source voltage $22.4^{\prime \prime}$

Attachment SAAB - "LOCA w/load shed with A5 bus load block-2 starting source voltage $22.4^{\prime \prime}$

Attachment SAAC - "LOCA w/load shed with A5 bus load P203C starting source voltage 22.4

Attachment SAAD - "LOCA w/load shed with A5 bus load P208A starting source voltage $224^{\prime \prime}$

Attachment SAAE - "LOCA w/load shed with A5 bus load P202A starting source voltage $22.4^{\prime \prime}$

RType A9. 02

PRELIMINARY EVALUATION CHECKLIST

1. IDENTIFICATION: Document Number PS -161 Revision 0

Description \qquad 23 kV OFFSITE SOURCE LOAD FLOW STUDY.
2. CLASSIFICATION:
\boxtimes Yes \square No a. Does the proposed change involve Q listed equipment?

\square Yes \boxtimes No \quad| b. For a new procedure, Temporary Procedure, or major |
| :--- |
| revision; does the Procedure contain procedural steps or |
| requirements in the FSAR? |
| |
| If yes, identify FSAR sections. |

c. Is this a new procedure or Temporary Procedure that is Fire Protection Program related or a major revision that makes an existing procedure Fire Protection Program related?
3. PRELIMINARY EVALUATION:

\square Yes \boxtimes No

Yes \boxtimes No

Yes \triangle No

Yes \triangle No

Yes \triangle No
\square Yes \boxtimes No
a. Would this modify plant characteristics or procedural steps described in the FSAR? If yes, identify section:
b. Does this affect the design of systems, structures, or components described in the FSAR?
c. Roes this affect the function of systems, structures, or components described in FSAR?
d. Does this affect the method of performing the function of systems, structures, or components described in FSAR?
e. Does this indirectly affect the capability of safety related systems, structures, or components described in the FSAR to perform their functions?
f. Does this create a new test not described in the FSAR that could affect plant safety?

PRELIMINARY EVALUATION CHECKLIST (Continued)

\square Yes \triangle No
\square Yes \triangle No
\square Yes \triangle No

Yes \triangle No

Yes

Yes No
g. Would this change assumptions used in the accident analyses described in FSAR Chapter 14? If yes, identify sections:
h. Does this change affect the ability of a system required to achieve and maintain safe shutdown in the event of a fire?
i. Does this change affect a requirement of, or major commitment to, 10CFR50 Appendix R?
j. Does this change affect a requirement of IE Circular 80-18 (for Radioactive Waste Systems)?
k. Could this affect the function of systems or components required for compliance with the Limiting Conditions for Operation in the Technical Specifications?

1. In the judgment of the evaluator, is a Safety Evaluation required?

If the answer to any question in Part 3 is "Yes", then a Safety Evaluation is required prior to implementation. Check the appropriate block and provide any explanatory comments below:
4. SAFETY EVALUATION REQUIRED? \square Yes \boxtimes No
5. PREPARED BY:

Date

APPROVED BY:
 Division Manages Date $9 / 8 / 95$ Calculation - Independent Verification Statement Record

Calculation \# PS 161, Revision \# 0 has been independently verified by the following methods), as noted below:

Mark each item yes, no or not applicable (N/A) and initial each item checked by you.
Design Review \boxtimes including verification that:
Lat. yes
Design inputs were correctly selected and included in the calculation. Assumptions are adequately described and are reasonable.
Input or assumptions requiring confirmation are identified, and if any exist, the calculation has been identified as "Preliminary" and a "Finalization Due Date" has been specified. Design requirements from applicable codes, standards and regulatory documents are identified and reflected in the design.
Applicable construction and operating experience was considered in the design.
The calculation number has been properly obtained and entered.
An appropriate design method or computer code was used.
A mathematical check has been performed.

* Where apoleable, computer Program (DAPPER) Las been Where applicable, computer program (DAPPER) has been Alternate Calculation \square i including verification of asterisked items noted above. The alternate calculation (pages) is attached. N / A

Qualification Testing \square for design feature noted above and the following:
including verification of asterisked items

- The test was performed in accordance with written test procedures.
- Most adverse design conditions were used in the test.
- Scaling laws were established and verified and error analyses were performed, if applicable.
. Test acceptance criteria were clearly related to the design calculation.
- Test results (documented in) were reviewed by the calculation Preparer or other cognizant engineer.

Independent Reviewer Comments: See p. 2

Preparer concurrence with findings and comment resolution

Note: Exhibit $3.06-B$ (Sheet 3 of 3) may to used for additional comments by IV as a part of the Independent Verification for calculations.

[^0]
Calculation Independent Verification Statement Record (Cont'd) - Calc. PS161 Rev. 0

- All previous comments have been resolved and the calculation text has been revised accordingly.
- Errors found in the input data were corrected and new DAPPER runs were performed
- In some instances the values shown in Tables 1,2 and 3 did not match the output of the DAPPER runs. These tables have been revised to accurately reflect the results of the DAPPER runs.
- Figure 1 is for the Turbine Trip case only, Figure 2 needed to be created to reflect the LOCA with load shed case.
- There are differences in the appearance of the DAPPER printouts between this calculation and PS65A. These differences do not impact the results of the calculation, they are only differences in appearance.
- The DAPPER outputs contain several "Isolated Busses". These isolated busses are created when the feeder cable to the bus/MCC is taken out of service (to model the scenarios in this calculation) but the feeder from the MCC to the load is left in service. In order to prevent these loads from showing up as "isolated busses", the feeder from the MCC to the load should also be taken out of service. However, this would be time-consuming and would not change the results of the calculation, only the appearance of the calculation.

[^0]: Document 4
 NESO 3.06 Rev. 7
 Page 1 of 1

