

Pilgrim Nuclear Power Station Rocky Hill Road Plymouth, Massachusetts 02360

E. T. Boulette, PhD Senior Vice President - Nuclear

September 25, 1995 BECo Ltr. #95-101

U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406 Attn: William Ruland

Docket No. 50-293 License No. DPR-35

Station Blackout Follow-up Inspection dated August 5-11, 1995 NRC Inspection No. 95-16. 23Kv Load Flow Calculations

Dear Sir:

This letter is in response to the commitment made by Boston Edison Company (BECo) at the Station Blackout Follow-up Inspection exit meeting on August 11, 1995. The commitment was to complete load flow calculations for the 23Kv offsite source by September 11, 1995, and provide the results to the NRC thereafter by a letter.

We have completed the subject calculation, and a copy of the calculation is attached as requested by the NRC Inspector, Mr. George Morris. The results of the calculation are as follows:

- For safe shutdown conditions, both safety buses were energized with Turbine Trip loads. The source voltage during peak load condition was used for worst case. The calculated available voltages at the safety related loads are above the minimum required voltages for starting and running conditions.
- The load flow study was performed for the LOCA scenario, with one bus energized and with the source voltage peak load condition. The calculated available voltages at safety related loads exceed their minimum required voltages.
- Although the 23Kv source is not credited to satisfy LOCA mitigation with loads from both safety buses, the calculations performed concluded all required safety loads will start and run properly with both emergency LOCA loads. Shutdown transformer loading, however, will be above its continuous rating but below the overload rating. The momentary overload will result in a minimal loss of transformer life.

9511070388 950925 PDR ADOCK 050002/3 GP PDR This letter completes our commitment made at the exit meeting on August 11, 1995.

Please contact Mr. Walter Lobo of our Regulatory Relations Department, at (508) 830-7940, if you have any further questions.

•

E. T. Boulette, PhD

ETB/WGL/Rap95/SBO9517

Attachment

cc: M:: R. Eaton, Project Manager Division of Reactor Projects - I/II Mail Stop: 14D1 U. S. Nuclear Regulatory Commission 1 White Flint North 11555 Rockville Pike Rockville, MD 20852

> U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Senior Resident Inspector Pilgrim Nuclear Power Station

art i

CALCULATION COVER SHEET PILGRIM NUCLEAR POWER STATION

SHEET 1 OF A658

CALC. NO	D.161	REV. O	FILE NO.	N/A	SR NSF		RTYPE
Subject: 23kv Offsite Source Load Flow Study					Prelim Finaliz	inary Calc. ation	
Discipline	Division Manager: E	Bruce Chenar	ď		Due Di	ate:	
Approval/	s/: Dome G	h	2	Date: 98	Final C	alc.	\boxtimes
ndepende	ent Reviewer: <u>Lisa H</u>	lansen	Is/ L	a. Hances	U Staten	nent Attache	ed 🛛
Page(s)	By: Swapan Das		Date	Ch'k'd Lisa Hans	en	Date	Agreed
All	Ist high y) and	9/9/95	1s/ 2 actor		9896	Yes

This design analysis DOES, DOES NOT require revision to affected design documents.

Affected Design Documents:

A PDC IS, XIS NOT Required.

A Safety Evaluation [] IS. X IS NOT Required. See attached preliminary evaluation checklist.

This design analysis DOES, DOES NOT affect the piping analysis index (PAI). If the PAI is affected, initiate a revision to Calculation M561.

Minor revisions made on pages ____/A__ of this calculation. See next revision.

Replaces Calc. No. N/A Voided By Calc. No. N/A Or Attached Memo	Replaces Calc. No. N/A	Voided By Calc. No. N/A
---	------------------------	-------------------------

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 2 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{-}$ Non Q_____

1. Purpose

The purpose of this calculation is to perform a load flow study for the 23kV offsite source. This calculation will utilize the "DAPPER" program. The study will ensure that the proper voltage exists at each safety related load to operate as required under the following different scenarios:

- CASE A: Turbine Trip with the Manomet transformer in service and the series capacitor out of service
- CASE B: Turbine Trip with the series capacitor in service and the Manomet transformer out of service
- CASE C: LOCA w/load shed with only one bus energized (swing bus not connected) with the Manomet transformer in service and the series capacitor out of service
- CASE D: LOCA w/load shed with only one bus energized (swing bus not connected) with the series capacitor in service and the Manomet transformer out of service
- CASE E: LOCA w/load shed with both buses energized with the Manomet transformer in service and the series capacitor in service
- CASE F: LOCA w/load shed with only one bus energized with the swing bus connected with the Manomet transformer in service and the series capacitor out of service

2. Summary of Results and Recommendation

The results of the calculation for Turbine Trip and LOCA are given in Table 1, Table 2, Table 3, and Table 4. Only safety related MCC's and only safety related loads are evaluated.

Turbine Trip

4

From Table 1, it can be concluded that during CASE A) all required safety related loads will start and run at the lowest expected source voltage (i.e. during peak load conditions). The available voltages are well above the minimum required voltages. For CASE B) all required safety related loads will operate properly at the lowest expected source voltage. However, the available voltage is marginal. Also A5 and A6 bus voltages will be below the degraded voltage alarm setpoint. This calculation assumes that the operator will reset the alarm prior to initiating any manual starts. At this time, the bus voltages will be above the alarm reset value. The reset value at 4.16kv level corresponds to a voltage of greater than 22.2kv at the source. Calculations were also performed at this source voltage. The results indicate that the available voltages will be well above the minimum required for motor starting and running conditions.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 3 of 58

٩

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

LOCA w/load shed with only one bus energized

A review of Table 2 indicates that for CASE C), the available voltages for all safety loads are well above the minimum required voltage. For CASE D) all safety loads will start and run properly, the available voltages are above the minimum required. Also as mentioned in page 15, during steady state loading the bus voltage will be below the low voltage alarm set point.

LOCA w/load shed with both buses energized

The 23kv source is not required to satisfy LOCA mitigation with loads connected to both emergency buses. However this calculation was performed to show that this offsite source is capable of accomodating LOCA loads on both emergency buses. The calculation was performed using the source voltage available with both the Manomet transformer and PNPS series capacitor in service. From Table 3, it can be concluded that all required loads will start and run with adequate voltage margin.

However, during the starting of load block-1, the voltage available at MOV's MO202-5A/5B, MO1001-28B and MO1001-29B is below that which is required. Subsequently calculations were performed which indicate that after a slight time delay, the bus voltage will have improved (i.e. after 4kv motors have started and are at steady state) the MOV's will have sufficient voltage to start.

Although the total calculated loading of 5.3MVA on the Shutdown transformer during steady state condition(without manual loading) exceeds it's continuous rating of 5MVA, this loading is below the overload rating of 5.6MVA. The momentary overloading will result in a minimal loss of the transformer life.

LOCA w/load shed with only one bus energized w/Swing bus B6 connected.

Although the swing bus B6 will not be connected to the affected bus by design, this study was performed with the assumption that bus B6 is connected to the affected bus.

A review of Table 4 indicates that the available voltages for all safety related loads are above the minimum required voltages for starting and running conditions. The available bus voltage during steady state condition will be above the degraded voltage setpoint.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 4 of 58 3. Method of Solution Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

a. Identify all loads (i.e. both safety and non safety) that will be operating during the Turbine Trip and LOCA w/load shed scenarios.

b. Identify the source voltages to be used in the calculation.

c. Input the data into the DAPPER program.

d. Perform the load flow studies at the different source voltages for the different scenarios (see Section 1 of this calculation for the different scenarios which will be performed in this calculation) using the "DAPPER" program.

e. Review the results to ensure proper voltage is available at each safety related load. Summarize the results in Section 2 and provide recommendations, if any.

4. Input Data and Assumption

4

a. All loads that will be operating were obtained from calculation PS65A.

b. Power factor values for each load were assumed to be the same as those used in calculation PS65A.

c. Source voltages (i.e. voltage at Shutdown transformer terminal) were obtained from Attachment "A". Light and Peak load voltages were used.

d. 23kV is the delayed offsite source as required per GDC17 to maintain reactor coolant pressure boundary limit. The 23kv offsite source is required to supply both trains of Shutdown and 1 train of LOCA loads.

e. For LOCA scenarios with only one bus energized, bus "A5" was chosen as "A5" loading is normally higher than "A6" bus.

At PNPS 23kV is also considered as a reliable backup for one Emergency diesel generator (i.e. LCO situation when one EDG is out of service and hence one CSCS bus will be energized)

f. Only loads which will operate for the Turbine Trip scenarios and/or LOCA w/load shed scenarios will be evaluated. Loads which are off for these scenarios (as shown in PS65A) will not be evaluated.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 5 of 58

ł,

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

g. Due to the nature of the "DAPPER" program, many loads which do not operate appear in the "Bus Special Study Data" section of the printouts. These loads have not been verified as they are removed from the calculation by taking the appropriate feeder out of service.

h. This calculation only considers loads fed from safety related load centers/busses as the shutdown transformer is only connected to safety busses.

•All Turbine Trip scenarios include load centers B1, B2, and B6 and all the loads fed from them. It is assumed B1 feeds B6.

•For LOCA w/load shed scenario, three separate studies were performed. One study with only "A5" connected, one w/o swing bus connected, one study with both buses "A5" and "A6" connected, one w/A5 connected w/swing bus connected.

j. For any 480v load requiring revision or addition, a demand factor of 90% (0.9 multiplier) was assumed. This is consistent with calculation PS65A.

k. The plant is assumed to have been operating normally at 100% power prior to the event.

1 It is assumed that no system testing is on going prior to the event and all systems are in their normal line-up (i.e. no system failure assumed).

m. All manual action taken by the operators will be assumed to occur 10-15 minutes into the event.

n. When "A5" and "A6" are energized after a dead bus transfer, only one TBCCW pump (P110A) will start after a 20 second time delay. This pump is capable of maintaining system pressure. The redundant pump (P110B) will not be started as long as P110A is running.

o. Per FSAR section 10.7.5, the maximum number of Salt Service Water pumps that are required during a LOCA is 2 pumps (i.e. 1 pump per loop) and 4 pumps during shutdown. The fifth pump P208C is not required to mitigate any design basis accident or any transient.

p. During normal power operation, only one CRD pump is running. During the dead bus transfer the pump will be tripped and will remain in the trip position. In Turbine Trip though it is not required, the operator may start one CRD pump manually. However during LOCA it will receive load shed signal.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 6 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

q. While preparing this calculation, the cable impedance input for the feed from B2 to B18 was found to be incorrect. Subsequently an interim revision to calculation PS64 was issued. The cable impedance was recalculated and documented in PS-64-3. The revised value was entered into the DAPPER program.

r. The minimum required voltages as mentioned in Table 1, Table 2, Table 3, and Table 4 are obtained from PS65 and PS65A unless otherwise noted.

s. The SBGT system is not required during loss of offsite power nor during Turbine Trip, however by design the system will start and hence was included in the calculation.

t. In Turbine Trip motor starting cases, PS65A assumed the start of P208C at MCC B10 even though it clearly states that P208C is not required. This calculation will start the largest operating load (i.e. X101) at MCC B10 and not P208C.

u. At MCC B17, loads for B1735 and B17101 are 15hp and 30hp respectively according to dwg.SE155 Sh2,Rev.E44. Similarly at MCC B18 load for B18101 is 30hp These revised loads will be used in lieu of the loads used in PS65 and PS65A.

v. In Turbine Trip, PS65 and PS65A assumes both Control Room Air conditioning and CREAF system are operating. The CREAF system is the only manually operated load which will be started in the event of the loss of air conditioning system.

5. Calculation

ŝ,

The calculation will be performed for the following scenarios with different source voltages (as defined below):

Turbine Trip transients

• LOCA w/load shed - shutdown transformer only connected to 4.16 KV safety bus "A5" (swing bus not connected)

• LOCA w/load shed- shutdown transformer connected to 4.16KV safety buses "A5" and "A6"

 LOCA w/load shed - shutdown transformer only connected to 4.16 KV safety bus "A5" (swing bus connected)

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 7 of 58

4

Prepared by: Swapan Das Checked by: Lisa Hansen Q√_Non Q_____

a) <u>TURBINE TRIP CASE A</u> (Source voltage 22.4 kv-23.8 kv)

From Attachment "A" with the Manomet transformer in service and the PNPS series capacitor out of service, the expected voltage at the primary side of the shutdown transformer is between 22.4 kv (during peak load) and 23.8 kv (during light load).

The following is the tabulation of the individual MCC's and loads that are connected to "A5" and "A6". These values were obtained from PS65A, page 29 and 30.

276 + j149 KVA
138 + j75 KVA
1 + j0 KVA
8 + j4 KVA
320 + j173 KVA
119 + j64 KVA
8 + j4 KVA
118+ j67 KVA
233 + j126 KVA
19 + j10 KVA
162+ j87 KVA
80 + j46 KVA
66 + j35 KVA
66 + j36 KVA

The above loads will be revised to reflect any addition or deletion of loads that have taken place since calculation PS65A was done. Calculation PS65A was calculated for the scenario where PNPS is powered via the Startup Transformer. Hence loss of voltage was not assumed while making fast transfer.

In this calculation loads will be connected to the Shutdown Transformer (i.e. via 23KV). Only safety buses A5 and A6 will be connected. The transfer from the Unit Aux. Transformer to the Shutdown Transformer is a dead bus transfer. Both buses will suffer a loss of voltage momentarily. Hence some of the loads will be revised accordingly.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 8 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen Q√_Non Q____

The revised loading is as follows:

MCC B15: 276 + j149 KVA no change from PS65A

MCC B17: MCC cubicle B1735 and B17101 loads decreased by 5hp and 10ir; respectively (see Section 4, item u). Also B17A load was included in B17 loading in PS65A.

The revised loading: 138 + j75 = 157 KVA (PS65A) - 9 KVA (B17A load of 10 * 0.9) - 9 KVA (B17101 load of 10hp * 0.9)

- 4.5 KVA (B1735 load of 5hp *0.9)

134.5 KVA = 118 + j64

MCC B29	1 + i0	no	change	from	PS65A
MCC B17A:	8 + j4	no	change	from	PS65A

MCC B14: The Standby Gas Treatment loads were not included in PS65A. These loads are automatically started coincident with train "A" SBGT and shut off after 65 seconds if train "A" establishes the required flow.

The revised loading:

٩

320 + j173 = 363.75 KVA (PS65A) + 13.5 KVA (B1426 load of 15hp * 0.9) + 19.3 KVA (B1416A load of 21.4kw * 0.9)

396.55 KVA = 349 + j 188

MCC B18: MCC cubicle B18101 is decreased by 10hp (see Section 4, item u). Also B18A load was included in PS65A.

The revised loading:

119 + j64 = 135 KVA (PS65A)

- 9 KVA (B18101 load of 10hp * 0.9)

- 9 KVA (B18A load of 10 KVA * 0.9)

 117 KVA= 103 + j56

 MCC B28:
 118 + j67 no change from PS65A

 MCC B18A:
 8 + j 4 no change from PS65A

Calculation No. PS-161 Rev. 0 Date 9/8/95		Prepared by: Swapan Das
		Checked by: Lisa Hansen
Sheet 9 of 58		Q√_Non Q
	MCC B10:	233 + j126 no change from PS65A
	MCC B20:	19 + i10 no change from PS65A
	P209A:	162 + i87 no change from PS65A
	P110A	80 + j46 no change from PS65A
	G23:	66 + i35 no change from PS65A
	SWYD AUX.	66 + i36 no change from PS65A

The "DAPPER" runs are then performed with the inputs as calculated above. The following is the list of "DAPPER" runs for different conditions. Only the lowest minimum source voltage of 22.4 kv was used. If all loads can operate satisfactorily at source voltage of 22.4 kv, calculation with higher voltage (i.e. 23.8kv) is not required/performed.

1. Steady-state loading with voltage of 22.4kv. This loading includes all automatic as well as manually operated loads that will be running. Loading for each MCC was taken from above. Results of the run are shown in Attachment "B".

2. Motor starting for each MCC: Verification that the largest motor on each MCC will start will prove that all other motors will have sufficient MCC voltage to start.

MCC B15: The largest motor on this MCC is a 100 hp Salt Service Water Pump (P208A, P208B). One pump (P208A) will automatically start after the voltage recovery. Pump P208B is then manually started by the operator if necessary. The loading on MCC B15 prior to start of this P208B pump is:

204 + j110 KVA from PS65A, Page 70

The starting KVA for this motor is:

192 + j599 KVA from PS65A Page 70

Results of the run are shown in Attachment "C"

MCC B14:

Similar to B15. Salt Service Water pump P208E will be started for this MCC.

The loading on MCC B14 prior to start of this pump is

396.55 KVA from Page 8 - 81.72 KVA (P208E load of 90.8 x 0.9) 314.83 KVA = 277 + j149 KVA

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 10 of 58

÷.

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

The starting KVA for this motor is

192 + j599 KVA (PS65A, Page 65)

Results of the run are shown in Attachment "D"

MCC B17: the largest load in this MCC is P207A, a 50 hp motor. This motor is not required to operate for this scenario. However for conservatism this motor will be started.

The starting KVA of this motor is:

123 + j304 KVA (PS65A, Page 74)

Results of the run are shown in Attachment "E"

MCC B18: Similar to MCC B17. P207B will be started. The starting KVA of this motor is:

123 + j304 KVA (PS65A, page 76)

Results of the run as shown on Attachment "F"

MCC B20: The largest motor in this MCC is M01001-28B which is an isolation valve. This loading was not included in the steady state loading since it is a short term load (30 sec. typical).

The starting KVA of this motor is:

213 + j284.6 KVA (PS65A page 78)

Results of this run as shown on Attachment "G"

1

MCC B10: The largest load on this MCC that will be operating is Turning Gear X101, a 60 hp motor. This load is manually started and was included in the steady state loading.

The loading on MCC B10 prior to start of X101 is

186 + j100 KVA (PS65A, Page 81)

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 11 of 58 The starting KVA of this motor is: Prepared by: Swapan Das Checked by: Lisa Hansen Q√ Non Q____

140 + j365 KVA (PS65A, Page 81)

Results of this run are shown in Attachment "H"

The results of each run are shown in Table 1 for comparison with the minimum required voltage for each load. This is to ensure that each load will start and run as required.

b) <u>TURBINE TRIP CASE B</u> (Source voltage 21.3-24.0 kv)

From Attachment "A", with the Manomet transformer out of service and PNPS series capacitor in service, the expected voltage at shutdown transformer is between 21.3 kv (during peak load) and 24.0 kv (during light load).

"DAPPER" runs will be performed utilizing both source voltages.

Steady state loading as calculated in A) will be used. The steady state loads are:

MCC B15: 276 + j149 KVA MCC B17: 118 + j65 KVA MCC B17A: 8 + j4 KVA MCC B29: 1 + j0 KVA MCC B14: 349 + j188 KVA MCC B18: 102 + j55 KVA MCC B18: 102 + j55 KVA MCC B18A: 8 + j4 KVA MCC B18A: 8 + j4 KVA MCC B28: 118 + j67 KVA MCC B10: 233 + j126 KVA MCC B20: 19 + J10 KVA MCC B20: 19 + J10 KVA G-23: 66 + j35 KVA

ŧ,

The results of the DAPPER runs with source voltages of 21.3kv and 24.0 kv are shown in Attachments "AA" and "AB" respectively. Figure 1 summarizes the results of DAPPER computer runs Attachments "AA" and "AB". From figure 1, it can be seen that with source voltage of 21.3 kv, the 4160 kv buses will set a low voltage alarm. Currently PNPS procedure 2.4.144 (degraded voltage) is being revised to instruct the operator to shed non-essential loads to improve bus voltages. The steady state calculation includes both essential and non-essential loads.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 12 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

It is assumed that the bus voltages will be improved to be above the reset value of the undervoltage relays. The reset value of these undervoltage relays is approximately 3986 volts. The corresponding 23kv voltage is approximately 22.3 kv, for conservatism and margin this calculation uses 22.2 kv as the source voltage. This source voltage of 22.2 kv will be used to start large motors at each MCC.

For the steady state operation, from Figure 1, at 22.2 kv, the minimum available MCC bus voltage is greater than 440 volts which is well above the minimum required MCC bus voltage.

For motor starting in each MCC, the same loading as used in "A" was used with a source voltage of 22.2 kv. The results of each run are shown in Attachment AC for B15, Attachment AD for B14, Attachment AE for B17, Attachment AF for B18, AG for B20 and Attachment AH for B10.

The results of the steady state and motor starting runs are shown in Table 1 to compare against the minimum required voltage for each load. This is to ensure that all required safety related loads will start and run as required.

c) LOCA w/load Shed Study, Only "A5" Energized (swing bus not connected)-CASES C AND D

(Source voltage: 23.8 - 22.4 kv, Manomet transformer in, series capacitor out source voltage: 24.0 - 21.3 kv series capacitor in and Manomet transformer out)

This calculation will use the lowest source voltage values of 22.4 and 21.3 kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to the "A5" Bus. The values were obtained from PS-65A, Page 35 and 36. This loading includes all automatic loads and manually operated loads that may be operating.

MCC B10:	135 + j73 KVA
MCC B20:	19 + j10 KVA
MCC B15:	307 + j166 KVA
MCC B17:	52 + j28 KVA
P110A:	80 + j46 KVA
P203A:	639 + J309
P203C:	639 + j309 KVA
P215A:	604 + j318 KVA
G23:	66 + j35 KVA

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 13 of 58

Ł

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

The above loading will be revised to reflect the scenario assumed in this calculation.

In this scenario, a DBA LOCA was assumed with Emergency Diesel Generator "A" out of service. Hence swing bus B6 will be lined up with the B Loop. Bus "A5" will be energized in approximately 12.5 sec. upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will Le sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after voltage recovery. Swing bus B6 will still be connected to the "B" loop. All 430V large motors (Salt Service Water and RBCCW) will be loaded after time delays. Also various motor operated valves (short time loading, typically 30 sec) will be operating at different times during this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading.

· Starting of loads at various time intervals

When power is available, (i.e. at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS-65A, Pg. 88,89) via A5 bus:

MCC B15: 47 + j25 Steady state MCC B17: 52 + j28 Steady state MCC B17: 42 + j55 Starting MCC B15: 84 + j107 Starting

P215A will also start at approximately 12.5 seconds. The starting load for this motor is 840 + j3910 KVA(PS65A).

The DAPPER program was run with the above loading. The results are in Attachment SAB for 21.3 KV and Attachment SAA for 22.4kv. From the results, all loads will start and accelerate with the exception of VEX210A. However, cables associated with this load were replaced via PDC 93-05. A voltage drop calculation was performed for the replacement cables using a Lotus Spreadsheet. Using the Lotus spreadsheet set up in calculation PS113, it was verified that VEX210A will be able to start with 410v available voltage at MCC B15. See Attachment AAC.

• Next loads (load block-2) that will be starting are:

P203A:	840 + j3910 (PS65A)
MCC B17: M01400-25A	74 + j99 (PS65A)

Prepared by: Swapan Das Calculation No. PS-161 Checked by: Lisa Hansen Rev. 0 Date 9/8/95 OV Non Q Sheet 14 of 58 Steady state loading including loads that previously started is (valve loading neglected): MCC B17: 52+j28 (from previous run) MCC B15: 47+j25 (from previous run) =53.23 kva +1.35 kva (B1546 steady state load of 1.5hp*0.9, previously started) +14.35 kva (B1516A steady state load of 16kw*0.9, previously started) +13.50 kva (B1526 steady state load of 15hp*0.9, previously started) 82.50 kva = 73+j39 kv 604+j318 kva P215A:

The program was run with the above input. The results are in Attachment SAC for 22.4 ky and Attachment SAD for 21.3 ky.

Results indicate that at 22.4 kv both the motor operated valve and P203A will start. At 21.3 kv M01400-25A will start, however the available voltage is marginal (402.3 required vs. 411 available)

Next load that will start is P203C.
P203C: Starting load: 840 + j3910 KVA Steady State Loading: MCC B15: 73 + j39 MCC B17 52 + j28 P203A: 639+j309

Results of both runs indicate (Attachments SAE and SAF) that P203C will start.

• The next pump is P208A, salt service water pump which will start at 25 seconds.

P208A starting at B15: 192 + j599 KVA

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 15 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{-Non Q}$

The steady state loading:

MCC B15: 73 + j39 MCC B17: 52 + j28 P110A: 80 + j46 (this pump was started at 20 seconds and is now at steady state) P203A: 639+j309 P203C 639+j309

The results of both runs indicate that P208A will start (Attachment SAG, SAH)

The last pump that will be sequenced on is P202A, RBCCW pump.

P202A: 135 + j353 on B15 (PS65A, pg. 66)

MCC B17: 52 + j28MCC B15: 73 + j39 = 82.5 KVA $\frac{+81.72 \text{ KVA}(\text{P208A steady state load } 90.8 \times 0.9)}{164.22 \text{ KVA}} = 144.5 + j78$ = 145 + j78

P110A: 80+j46 P203A: 639+j309 P203C: 639+j309

The results of both runs indicate that P202A will start (Attachment SAI, SAJ)

This completes the start sequence.

ŝ,

•Then the steady state loading was calculated for all loads automatically connected to this bus. Steady state loading is as follows from the previous run:

MCC B17: 52 + j28MCC B15: 145 + j78 = 164.22 KVA $\underline{50.94}$ KVA (P202A load) 215.16 KVA = 189 + j102

The DAPPER runs were performed and results are in Attachments AAA and AAB. A review of results indicate that at 22.4 kv, all loads will run with adequate margin. The voltage at A5 will be slightly above the bus undervoltage alarm set point.

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 16 of 58

i,

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

The run at 21.3 kv indicates that all 480v loads will operate marginally. All 4160v loads will operate, however the available voltage will be only slightly above 90% (90.65%). The results also indicate that the bus voltage will be below the set point of the undervoltage alarm (approx.3950v). This will set an alarm in the control room. Currently PNPS procedure 2.4.144 is being revised to instruct the operator to take proper action in the event that this alarm is received when the plant is in this configuration. According to Attachment A, during peak loading with the Manomet transformer out, the voltage will be between 24 kv and 21.3 kv. The source voltage of 21.3 kv used is the worst case voltage during the peak loading. In reality, the voltage will be somewhat higher than 21.3 kv.

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start an additional SSW (P208B) pump without tripping an ECCS load. Also during the start of this pump we will load an additional RBCCW pump (P202B) as a steady state load

The steady state loading as follows are from the beginning of section C:

MCC B17	52+ j28 KVA
P110A:	80+ j46 KVA
P203A	639+j309 KVA
P203C	639+j309 KVA
P215A	604+j318 KVA
MCC B15	307+ j166 KVA (includes P208B and P202B)
	= 349.0 KVA
	- 81.72 KVA (P208B loading of 90.8 * 0.9)

```
236+ j127 KVA
```

Also the starting load of P208B is 192+ j599 KVA

The DAPPER run was performed and the results are in Attachment AAE. The results show that P208B will start properly at 22.4 KV. Also the steady state loading including P208B at steady state was run. The results in attachment AAD show that the available voltage is higher than the minimum required. The manual loading with source voltage of 21.3 kv was not performed. As previously mentioned for the automatically connected loads, the 4.16 KV bus voltage is well below the alarm set point. It is assumed that the operator will clear the alarm prior to initiating any manual starts. The alarm reset point is approximately 3986 volts. The 3986 volts corresponds to approximately 22.4KV. Attachment AAE shows that P208B will start at 22.4KV.

 Calculation No. PS-161
 Prepared by: Swapan Das

 Rev. 0 Date 9/8/95
 Checked by: Lisa Hansen

 Sheet 17 of 58
 Q√_Non Q_____

 d)LOCA w/load Shed Study "A5" and "A6" Energized - CASE E
 (Source voltage: 24.6 - 23.8 kv, Manomet transformer in, and series capacitor in)

This calculation will use the lowest source voltage value of 23.8kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to "A5" and "A6" Bus. The values were obtained from PS-65A, Page 35 and 36. This loading includes all automatic loads and manually operated loads that may be operating.

MCC B10:	135 + j73 KVA	MCC B14:	350+j189 KVA
MCC B20:	19 + j10 KVA	MCC B18	50+j27 KVA
MCCB15:	307 + j166 KVA	P203B:	639+j309 KVA
MCC B17:	52 + j28 KVA	P203D	639+j309 KVA
P110A:	80 + j46 KVA	P215B:	604+j318 KVA
P203A:	639 + j309 KVA		
P203C:	639 + j309 KVA		
P215A:	604 + j318 KVA		
623	66 + 135 KVA		

The above loading will be revised to reflect the scenario assumed in this calculation.

In this scenario, a DBA LOCA was assumed with both Emergency Diesel Generators out of service. The swing bus B6 is lined up with the A Loop. Both buses will be energized in approximately 12.5 sec. upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will be sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after voltage recovery. Swing bus B6 will still be connected to the A loop. The vital M-G set from the swing bus will not be connected until 120 second. All 480V large motors (Salt Service Water and RBCCW) will be loaded after time delays. Also various motor operated valves (short time loading, typically 30 sec) will be operating at different times during this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading.

•Starting of loads at various time intervals

When power is available, (i.e. at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS-65A. Pg. 88,89) via A5 bus:

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 18 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen O√ Non Q

MCC B15: 47 + j25 Steady state, 84+j107 Starting MCC B17: 52 + j28 Steady state, 42+j55 Starting MCC B14: 99 + j54 Steady state, 37+j17 Starting MCC B18: 50 + j27 Steady state, 39+j51 Starting MCC B20: 19 +j10 Steady state, 16+j21 Starting MCC B10: 68 +j37 Steady state

Prior to the energization of both buses, the LPCI loop selection will be completed in approximately 4 seconds after the break. The isolation valves MO1001-28A/28B and MO202-5A/5B will receive closure signal. These valves are powered via MCC B20 and should be included as Starting loads at 12.5 seconds. The revised loading for MCC B20 is:

P215A and P215B will also start at approximately 12.5 seconds. The starting load for each of these motors is 840 + j3910 KV(PS65A). The DAPPER program was run with the above loading. The results are in Attachment SAK. From the results, all loads will start and accelerate with the exception of VEX210A, M01001-28B and M0202-5A/5B. However, cables associated with VEX210A were replaced via PDC 93-05. A voltage drop calculation was performed for the replacement cables using a Lotus Spreadsheet. Using the Lotus spreadsheet set up in calculation PS113, it was verified that VEX210A will be able to start with 400v available voltage at MCC B15. See Attachment SAK-1A. Also M01001-28B and M0202-5A/5B will not start within their manufacturer's limits. However after all other loads are successfully started, there will be an improvement in bus voltages. To verify that these valves will start after slight time delays, we will model the two core spray pumps as running loads. For conservatism we will keep remaining starting loads unchanged The results of the run (Attachment SAK-1B) indicate that these valves will start and accelerate properly.

Prepared by: Swapan Das Calculation No. PS-161 Checked by: Lisa Hansen Rev. 0 Date 9/8/95 OV Non Q Sheet 19 of 58 •Next loads (load block-2) that will be starting are: 840 + i3910(PS-65A) P203A: 840 +j3910(PS-65A) P203B: 74 + j99 (PS-65A) MCC B17: M01400-25A 74 +j99 (PS-65A) MCC B18: M01400-25B 74 +i99 PS-65A) MCC B20: M01001-29A/29B Steady state loading including loads that previously started is (valves loading neglected): MCC B17: 52+j28 (from previous run) MCC B15: 47+j25 (from previous run) =53.23 kva + 1.35 kva (B1546 steady state load of 1.5hp*0.9, previously started) +14.35 kva (B1516A steady state load of 16kw*0.9, previously started) +13.50 kva (B1526 steady state load of 15hp*0.9, previously started) 82.50 kva = 73+j39 kva MCC B14: 99+i54 (from previous run) =112.77 kva + 1.35 kva (B1446 steady state load of 1.5hp*0.9, previously started) +18.00kva (B1416B steady state load of 20kw*0.9, previously started) ------132.12 kva= 117+j63 kva 604+j318 kva P215A: 604+i318 kva P215B: MCC B18: 50 +j27 kva 68 +j37 kva MCC B10: MCC B20 19 +j10 kva The program was run with the above input. The results are in Attachment SAL.

results indicate that the motor operated valves, P203A and P203C will start with the exception of M01001-29B. To verify that this valve will start, we will utilize the same method as used in the previous run. P203A and P203B will be used as steady state loads.

The results of the run (Attachment SAL-1A) indicate that M01001-29B will start.

Next loads that will start are P203C and P203D.

P203C and P203D: Starting loads 840 + j3910 KVA

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 20 of 58

> Steady State Loading: MCC B15: 73 + j39 MCC B17 52 + j28 P203A: 639+j309 P203B: 639+j309 P215A: 604+j318 P215B: 604+j318 MCC B14: 117+j63 MCC B18: 50+j27 MCC B10: 68+j37 MCC B20: 19+j10

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

Results of both runs indicate (Attachment SAM) that both pumps P203C and P203D will start.

•The next pumps are P208A and P208D (Salt Service Water pumps) which will start at 25 and 30 seconds respectively. Although these pumps will start at separate time intervals, for conservatism we will start them at the same time.

P208A starting at B15: 192 + j599 KVA P208D starting at B14: 192 + j599 KVA

The steady state loading:

MCC B15:	73 + j39
MCC B17:	52 + j28
MCC B14:	117+ j63
MCC B18:	50+j27
MCC B10:	68+j37
MCC B20:	19+j10
P110A:	80 + j46 (this pump was started at 20 seconds and is now at
steady state)
P203A:	639+j309
P203C:	639+j309
P203B:	639+j309
P203D	639+j309
P215A:	604+j318
P215B:	604+j318

The results indicate that both pumps P208A and P208D will start (Attachment SAN).

Prepared by: Swapan Das Calculation No. PS-161 Checked by: Lisa Hansen Rev. 0 Date 9/8/95 QV Non Q Sheet 21 of 58 • The last two pumps that will be sequenced on are P202A and P202D (RBCCW pumps) at B15 and B14. P202A and P202D: 135 + j353 each (PS65A, pg. 66) MCC B17: 52 + j28 MCC B18: 50 + j27 MCC B10: 68 +j37 MCC B20: 19 +j10 MCC B15: 73 + j39 = 82.5 KVA +81.72 KVA(P208A steady state load 90.8 x 0.9) 164.22 KVA = 144.5 + j78 = 145 + i78MCC B14: 117+j63 =132.88 KVA + 81.72 KVA(P208D steady state load 90.8 x 0.9) 214.60 KVA = 189 + j102P110A: 80+j46 P203A: 639+j309 P203C: 639+j309 P203B: 639+j309 P203D: 639+j309 P215A: 604+j318 P215B: 604+j318

The results indicate that P202A and P202D will start (Attachment SAO)

This completes the start sequence.

ł,

 Then the steady state loading was calculated for all loads automatically connected to both buses. Steady state loading is as follows from previous run:

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 22 of 58

P203B

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{-Non Q}$

 P203C
 639+j309

 F203D
 639+j309

 P215A
 604+j318

 P215B
 604+j318

 P110A
 80+j46

 G23
 66+j35 (load started at 120 seconds and is now at steady state)

The DAPPER run was performed and results are on Attachments SAP. A review of results indicate that all loads will run with adequate margin. The voltage at both buses will be above the bus undervoltage alarm set point.

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start two additional SSW (P208B,P208E) pumps at the same time without tripping an ECCS load. Also during the start of these pumps we will load additional RBCCW pumps (P202B, P202E) as a steady state loads. The steady state loading which will be used are the same as beginning of this section except for B15 and B14

MCC B15: 307+ j166 KVA (includes P208B and P202B)

= 349.0 KVA

639+j309

- 81.72 KVA (P208B loading of 90.8 * 0.9)

267 = 236 + j127 KVA

MCC B14: 350+j189= 397.77 KVA (includes P208E and P202E) - 81.72 KVA (P208E loading of 90.8 * 0.9)

316.05 = 278 + i150

Also the starting load of P208B and P208E is 192+ j599 KVA each.

The DAPPER run was performed and the results are in Attachment SAQ. The results show that P208B and P208E will start properly. Also the steady state loading including P208B and P208E at steady state was run. The results in attachment SAR show that the available voltage is higher than the minimum required.

e) LOCA w/load Shed Study, "A5" Energized Swing bus connected- CASE F (Source voltage: 23.8 - 22.4 kv, Manomet transformer in, series capacitor out)

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 23 of 58

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

The calculation in section c) was performed with bus "A5" energized without the swing bus B6 connected. Although the swing bus B6 will not be connected to "A5" in this scenario by design a sensitivity study will be performed assuming swing bus B6 is connected to "A5". Since it is a sensitivity study, only the Manomet transformer in with the series capacitor out condition will be evaluated. This calculation will use the lowest source voltage values of 22.4kv (peak load conditions). The following is the tabulation of the individual MCC's and loads that are connected to the "A5" bus. The values were obtained from PS-65A, Page 35 and 36. This loading includes all automatic loads and manually operated loads that may be operating.

MCC B10:	135 + j73 KVA
MCC B20:	19 + j10 KVA
MCC B15:	307 + j166 KVA
MCC B17:	52 + j28 KVA
P110A:	80 + j46 KVA
P203A:	639 + j309
P203C:	639 + j309 KVA
P215A:	604 + j318 KVA
G23:	66 + j35 KVA

The above loading will be revised to reflect the scenario assumed in this calculation.

In this scenario, a DBA LOCA was assumed with Emergency Diesel Generator "A" out of service. Swing bus B6 will be assumed to be lined up with the A Loop. Bus "A5" will be energized in approximately 12.5 sec. upon LOCA w/loop by the Shutdown Transformer. All large ECCS pumps will be sequentially loaded in 5 second intervals (approximately). All non-essential loads will be tripped via the load shed logic. Pump P110A will not be energized until 20 seconds after voltage recovery. All 480V large motors (Salt Service Water and RBCCW) will be loaded after time delays. Also various motor operated valves (short time loading, typically 30 sec) will be operating at different times during this scenario. MOV loads will be included as starting loads but will not be included in Steady State loading.

Starting of loads at various time intervals

ŧ.

When power is available, (i.e. at approximately 12.5 seconds) the following loads (load block-1) will be at steady state or will be starting (from PS-65A, Pg. 88,89) via A5 bus:

MCC B15: 47 + j25 Steady state MCC B17: 52 + j28 Steady state

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 24 of 58

MCC B10: 68 + j37 Steady state MCC B20: 19 +j10 Steady state MCC B17: 42 + j55 Starting MCC B15: 84 + j107 Starting MCC B20: 16 + j21 Starting Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{Non Q}$

P215A will also start at approximately 12.5 seconds. The starting load for this motor is 840 + j3910 KVA(PS65A). Also M0202-5A/5B and M01001-28A/28B will be starting at the same time. These valves are powered via MCC B20 and the starting loads will be added to the above MCC B20 starting load. The revised MCC B20 starting load:

> 16 + j21 +74+j99 (M0202-5A/5B from PS65A page 98) +213+285 (M01001-28A/28B from PS65A page 98)

303+j405 KVA

The DAPPER program was run with the above loading. The results are in Attachment SAAA. A review of the results indicate that all loads will start and accelerate properly.

Next loads (load block-2) that will be starting are:

P203A:		840 + j3910 (PS65A)
MCC B17:	M01400-25A	74 + j99 (PS65A)
MCC B20:	M01001-29A/29B	74 + j99 (PS65A)

Steady state loading including loads that previously started is (valve loading neglected): MCC B17: 52+j28 (from previous run)

MCC B15: 47+j25 (from previous run)

=53.23 kva

- +1.35 kva (B1546 steady state load of 1.5hp*0.9, previously started)
- +14.35 kva (B1516A steady state load of 16kw*0.9,
- previously started)
- +13.50 kva (B1526 steady state load of 15hp*0.9, previously started)

82.50 kva = 73+j39 kva

P215A: 604+j318 kva

MCC B10: 68+j37 kva

MCC B20 19+j10 kva

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 25 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen O√ Non O

The program was run with the above input. The results are in Attachment SAAB. Results indicate that both motor operated valves and P203A will start.

•Next load that will start is P203C.

P203C: Starting load: 840 + j3910 KVA Steady State Loading: MCC B15: 73 + j39 MCC B17 52 + j28 P203A: 639+j309 P215A 604+j318

Results of the run indicate (Attachment SAAC) that P203C will start ...

•The next pump is P208A, salt service water pump which will start at 25 seconds.

P208A starting at B15: 192 + j599 KVA

The steady state loading:

 MCC B15:
 73 + j39

 MCC B17:
 52 + j28

 P110A:
 80 + j46 (this pump was started at 20 seconds and is now at steady state)

 P203A:
 639+j309

 P203C
 639+j309

 P215A
 604+j318

The results of the run indicate that P208A will start (Attachment SAAD)

• The last pump that will be sequenced on is P202A, RBCCW pump.

P202A: 135 + j353 on B15 (PS65A, pg. 66)

MCC B17: 52 + j28MCC B15: 73 + j39 = 82.5 KVA $\frac{+81.72 \text{ KVA}(\text{P208A steady state load 90.8 x 0.9)}{164.22 \text{ KVA}} = 144.5 + j78$ = 145 + j78P110A: 80+j46P203A: 639+j309P203C: 639+j309P215A: 604+j318

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 26 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{-Non Q}$

The result of the run indicate that P202A will start (Attachment SAAE)

This completes the start sequence.

•Then the steady state loading was calculated for all loads automatically connected to this bus. Steady state loading is as follows from the previous run:

MCC B17:	52 + j28
MCC B15:	145 + j78 = 164.22 KVA
	50.94 KVA (P202A load)
	215.16 KVA = 189 +j102
MCC B10:	68 + j37
MCC B20:	19 + j10
P110A:	80 + j46
P203A:	639 + j309
P203B:	639 + j309
P215A:	604 + j318
G23:	66 + j35 (load was started at 120 seconds and is now at steady state)

The DAPPER runs were performed and results are in Attachments AAAA. A review of the results indicate that all loads will run with adequate margin. The voltage at A5 will be slightly above the bus undervoltage alarm set point.

The above steady state loading only includes the automatic loads which are required to mitigate a LOCA. However other manually operated loads could be started by the control room operator. These loads are brought on later on in the scenario after an ECCS pump has been manually tripped. In this calculation we will start an additional SSW (P208B) pump without tripping an ECCS load. Also during the start of this pump we will load an additional RBCCW pump (P202B) as a steady state load.

The steady state loading as follows are from the beginning of section e:

MCC B17:	52+ j28 KVA
MCC B10:	135+j73 KVA
MCC B20:	19+j10 KVA
P110A:	80+ j46 KVA
P203A	639+j309 KVA
P203C	639+j309 KVA
P215A	604+j318 KVA

Calculation No. PS-161Prepared by: Swapan DasRev. 0 Date 9/8/95Checked by: Lisa HansenSheet 27 of 58 $Q\sqrt{}$ Non QMCC B15: 307+ j166 KVA (includes P208B and P202B)= 349.0 KVA- 81.72 KVA (P208B loading of 90.8 * 0.9)- 236+ j127 KVAG2366+ j35 KVA

Also the starting load of P208B is 192+ j599 KVA

°(0

Ò

The DAPPER run was performed and the results are in Attachment AAAB. The results show that P208B will start properly. Also the steady state loading including P208B at steady state was run. The results in attachment AAAC show that the available voltage is higher than the minimum required.

REVDA FINAL PS REVDA	ATE	SITE S	BE	OSTOP DISON	CHECKED BY CHECKED BY APPVD BY SHEET 28 OF 58 FLOW STUDY	DATE DATE DATE 3_
MZZ:	BID	TABLE	<u>= 1, Pa</u> ine Tri	<u>GE1</u> P		SR
LOAV BKR#	EQUIPHENT I.D	REQUIRE VOLTA START	GE (V) RUN	Q/NQ	COUMENTS	
5.012	V 59		414.9	NR		
B1015	1147	378.7	416.9	WQ	1	
BIOIS	×-19	-	414.5	NR	ant and glower over a statement to be a state of a statement of the second statement of the statement of the st	
RIDZZA	164	-	414.4	NQ	a balance and a second	
B1023R	P146	422.2	433.0	NQ	an many water where we describe the same in an address of the same state of the same state of the same state of	
R1024B	×105	-	420.5	NQ	and a set of the set of	
B1025	P132	332.25	418.52	NR		
B1026	KIOI	397.18	422.74	NQ		
B1031	VACI04A	403.1	428.1	NR	e para mentang minang pala minang panang manang	
B1033A	VRCION		421.3	NQ		
B1034	VRFIDIA	412.9	429.1	NR		
B1041	P131	383.3	419.5	NR	and a series of the second	
B1042	P129	394.9	423	NQ		
B1044	XIOI	381.9	419.1	NQ	a para cala berta da sa bata da sa para sa a ana ana ana ana ana ana ana ana a	
B1064	KIOGC	397.3	425.1	NQ		

1

CASE A) MANOMET TEANSFORMER IN, SERIES CAPACITOR OUT

MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 460V (ATTACHMENT'B') MOTOR STARTING: 434V (ATTACHMENT'H', PG. 19)

(ASEB) HANOMET TRANSFORMER OUT, SERIES CAPACIFOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 433 (Attachment AA, Pg. 19), >452 (FIG. 1) MOTOR STATE: 430V (Attachment AH, Fg. 21)

	RY	CA	LCULAT	ION SH	EET	AUTHORIZATION M	NO
REV_DA	ATE					PREPARED BY	DATE
FINAL P:	5-161, REV	0		oct	180	CHECKED BY	DATE
REVD	ATE		SB	USIC	JIV	APPVD BY	DATE
		2	SEL	2120	NV.	SHEET 29 OF 5	£
JECT: 23	KV OFFS	ITE SO	URCE	LOAD	FLOW 5	TUPY	
W MARKS & A MILLION CONTRACTOR OF	NUMBER OF STREET, STREE	NORTH CARE IN CASE OF MICHINE	Deter of the second				SR [
		TABL	E 1, PA	GE2			
		TURB	INE TEI	P			NSR [
Lin.	015						
MZZI	BID						1
LOAD	EQUIPHEN	REQUIRI	ED MUL				
TUPH	I.P	VOLAA	ME (V)	Q/NQ	6	OMMENTS	
DKKH		START	RUN				
B1513	DII		417.4	Q			10 10 M
B1516A	VGTF201A	-	926.7	R	Loads not r	equined per FSP	alki q
B1516B	VCRFIOIA	-	-	Q	Not read.	Air conditionin	ng morning
B1521	VEXIOAA	381.4	41811	Da			
B1525	K104A	406.2	428.3	NQ	1	nequired me	FSAR "6"
B1526	VEX 210A	911.8	430.2	3	Leads not	1-1-1-	
B1531	P202A	372.4	415.5	<u>a</u>			
B1541	P208A	389.2	41910	2-		and a set of the second se	
B1544	P208B	389.2	419.0	-15			
B1563	VEX103A	385.1	41811	ng_			
					and the second start have been as the second start of the second s		
·* ···							
					I company and the second secon	NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF A DESCRIPTION OF TAXABLE PARTY.	

CASE A) MANOMET TEANSFORMER IN, SERIES CAPACITOR OUT

MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 950x(ATTACHMENTB, PAGE14) MOTOR STARTING: 901V (ATTACHMENTE, P321)

(LASEB) MANOMET TRANSFORMER OUT, SERIES CAPACIFOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE GTEADY STATE: 9220 (Attachment AA, Pg. 14), > 4920 (Fig. 1 MOTOR STATE: 396V (Attachment AC, Pg. 21)

PRELIMIN REVD FINAL P REVD	ARY ATE S-161, Re ATE	V. 0	BE	OSTO DISC	AUTHORIZATION NO PREPARED BY DATE_ CHECKED BY DATE_ APPVD BY DATE_ SHEET.30_OF_58
JECT: 23	3 KV OFFS	ITE SO	URCE	LOAD	FLOW STUDY
		TABL	E 1, PA	GE3	
		TURB	INE TEI	P	NSR
a in	DIA				
MZCI	814				
1 AA T	EQUIPHEN	REQUIRI	ED MLL		
LUAY	I.P	VOLTA	GE (V)	QIND	101117-144
SKRA		START	RUN	-INO	COMMEN 17
				~	
B1413	PI2	-	417.4	Q	
BIAIAA	DID		421.8	~	Loads not required Dex DAR, ""
B 1416A	VATEZOID		72110	R	hut ared A is conditioning Working
B1416B	VCKFIOID	100.1	428.9	NA	Not refu A in condition of thoras a
01425	KIDYD	4001	429.8	R	Loads not resuined Per FSAR, "5, "
81420	0202D	375.1	416.3	0	
DIAAL	PROGD	285.5	418.6	Q	
01004	POORE	384.9	418.5	Q	
R1461	P1528	383.4	418,2	Na	
B1463	VEX103B	385.3	418.7	NQ	

CASE A) MANOMET TEANSFORMER IN, SERIES CAPACITOR OUT

MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 457 V (ATTACHMENT B, Page 16) MOTOR STARTING: 410V (Attachment D, Pose 21)

(AGEB) HANOMET TRANSFORMER OUT, SERIES CAPACHOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 9300 (Attachment AA, Pg.16), >9520(Fict Motor STATING: 905V (Attachment AD, Pg.21)

PRELIMINA REVDA	ARY ATE 5-161, Rev	СА /. о	LCULAT	ION SH		AUTHORIZATION N PREPARED BY CHECKED BY	DATE DATE DATE
REVD	ATE		BEL	OST(DISO	N N	APPVD BY	DATE
JECT: 23	3 KV OFFS	ITE SO	OURCE	LOAD	FLOW	STUPY	Turner
		TABL	E 1, PA	GE4			SR
MZZ:	BIT AND B	TURB	INE 721	\$			NSR []
LOAD	EQUIPHENN I.P	REQUIRE	ED MLL GE (V)	Q/NQ	L	OHHENTS	
DKK+		START	RUN				
B1716	VAC205FI	379.7	418.2	NQ			
B1722	VAC202A	38616	4 19.7	R			
B1723	VAC 203A	378.2	411.1	Da			
B 1725	VAC204A	200 0	42017	ND			
B1726	VAC205 AT	200 6	421.3	NR			
B173	VAC 205 DI	290.4	424.5	Na			1000
B1/34	VAC 205 PI	384.6	419.9	NR			
B1724	VACTOCEL	401.8	425.6	NQ			
R1725	VAC 206AL	383.0	420.0	NQ			
B1736	VAC 206BI	3865	421.3	Na			
B1746	MO1400-25A	402.7	-	Q			
R1751	M0 1001-7A	3726		Q			
B1753	MO1001-7C	372.6		R			
B1754,	M01001-18A	370.5	-	Q			
B1763	M01001-16A	393.0		a			
B1783	M04060A	37018	-	a			
B1784	M04060B	370.8	-	a			
B.1794	×-74	-	414.3	a			
B17101	P124A	373.6	423.8	NQ	c. 0	00.01.00.	06.75
B17115	X55	-	596.0	X	From P	PC 41-59A,	25-73
17A13B	×57		376.0		From P.	11-59 D, 1	OF OUT

MINIMUM AVAILABLE MCL BUS VOLTAGE STEADY STATE: 4610 (ATTACHMENT B, PAGE 14) MOTOR STARTING: 433V (Attachment E, B.21)

(ASEB) MANOMET TRANSFORMER OUT, SERIES CAPACIFOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 434V (Allachment AA, Pg 14), >454V(FIGS) MOTOR STARTING: 429V (Allachment AE, Pg 21)

PRELIMINA	RY	CA	LCULATI	UN SIII	AUTHORIZATION	DATE
REVDA	TE				PREPARED BY	DATE
FINAL PS	-161, REV. 0		-	OCTO	CHECKED BY	DATE
REVDA	TE	-	BR	USIC	APPVD BY	DATE
		5	JEL EL)150	N SHEET 32 OF	58
UFOT OO		-		- 1.04	D FLOW STUDY	
SJECT: 23	KV OFF:	SITES	SOURCI	E LOP	transcence and the same for the same of the same of the same of the	
		1.010	= 1 01	145		SR
	1.1.1.1.1.1	TADL	- 1, 14	MEZ		
		TURB	INE TRI	P		NSR
MILLI	RIA AND E	10.4				L
1-1661	DIO AND E	TOR			and a second state of the second s	
LOAD	EQUIPHEN	REQUIRE	D MLL			
	I.D	VOLTA	GE (V)	Q/NO	COMMENT	5
BKRA		START	RUN	-1.1.2	1.10.01	·
B1816	VAC205FZ	396.4	923.8	Na		
B1822	VACZOTA	510.6	417.4	R	a constant and a start of the second start of the second start of the second start of the second start of the s	
B1825	VACZOUP	385.1	420.2 118.U	NA	and the second	
B1826	VALLOSAL	289.7	110.1	NR		
BI 31	VACLOSBE	2010	418.9	NIG		
01 52	VAC 20502	201.2	422.1	NQ		
B1833	VACEOSPE	388.7	421.3	NA		
D1025	VAG20012	387.6	421.8	NQ		
01832	VAC 206 B2	386.5	421.3	NQ		
B1844	H01001-25B	39 8.9	-	a		
B1851	M01001-78	372.2		Q		
B1853	M01001-70	371.8	-	Q	and the second	
B1854	MO 1001-18B	369,8		Q		
B1863	M01001-16B	387.4		4		
B1883	MOHOIDA	370.3	-	Q		
B1884	M04010B	370.4	-	Q	and the second statement of a second statement of a second statement of a second statement of a second statement	
B1885	× 75		414.6	Q		
B18101	P225A	377.4	417.8	NQ		
B18115	×56		396.0	Q,	PDC 91-59A, PS.70	
BIBAISR	×58		396.0	Q	PDC 91-59B, PS-7	3

CASE A) MANOMET TEANSFORMER IN, SEELES CAPACITOR OUT

MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 466 V (ATTACHMENT B, B.16) MOTOR STARTING: 433V (Allachment: F, Pg.21)

(LAGEB) MANOMET TRANSFORMER OUT, SERIES CAPACHOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE GTEAPY STATE: 9900 (Attachment AA, Pg. 16), 7462V MOTOR STARTNG: 928 V (Attachment AF, Pg. 21)

REVD	ATE		BE	OSTO DISO		-04	CHECKED BY APPVD BY SHEET <u>33</u> J STL	OF 5	DATE
MZZI	B20	TABLI TURB	E 1, PA	<u>666</u> . P					SR
LOAP BKR#	EQUIPHENN I.D	REQUIRE VOLTA START	ED MCC GE (V) RUN	Q/NQ		20	HHEN	114	
B2013A	x-40	-	915.4	NQ					
82019	X-50	-	415.6	NQ					
B2024	HU1001-294	382.1	-	Q					
B2026	MU 1001-29B	414.5	-	Q	t				
B2031	M01001-28A	379.3		Q					
B2034	MO 1001-28B	404.3		a			4 - X		
82041	M01001-19	379.9		a					
B2043	401001-32	370.9		a					
B2046	MO1001-50	382.8		a n	VALVE	10	LONGER	2 TN	SERVICE
82053	M01001-63	-		R	VALUE				
B2054	M0/201-2	3/01/		D					
BLUS6	MO1201-00	2120	419.3	a					

CASE A) MANOMET TEANSFORMER IN, SERIES CAPACITOR OUT

MINIMUM AVAILABLE MCC BUS VOLTAGE STEADY STATE: 461V (Attackment B. Pg. 19) MOTOR STARTING: 929V (Attackment G. Pg. 21)

(AGEB) HANOMET TRANSFORMER OUT, SERIES CAPACIFOR IN MINIMUM AVAILABLE MCC BUS VOLTAGE GTEAPY STATE: 934V (Attachment AA, Pg 19),7952V MOTOR STATE: 934V (Attachment AG, Pg 21) (FIG.1)

PRELIMINA	RY	OAL	LOOLAN		PF	REPARED BY	DATE	
REVDA	TE				CH	ECKED BY	DATE	
FINAL PS	- 16 [, Lev.0	1	BB	OSTC	N A	PPVD BY DATE_		
HEVUA		2	FI	50	N	1557 29 OF 46		
				1150	51	34 58	61916	
BJECT: 23	KV OFFSIT	E SOUR	LCE LO	AO FL	ON STUDY			
an and an and a cost of the set	Chalander sanstellen in Stadion State op en en einer eine						SR X	
		TABLE	EZ PA	GE.L				
		LOCA	4 WIT	4 . 42	BUS		NSR	
		20						
MLL:	B15							
		0	10 1//		AVIOLARLE	AVAILABLE	Z	
LOAP	EQUIPHEN	KEQUIKE	GF (V)		VOLT	VOLT.		
RYPH	I.P			Q/NQ	START	START	11	
Prr.		STAR1	RUN		CASEC	CASE D		
P1+:2	DII		417.4	Q	N/A	N/A		
B1516A	V& TE201A		426.7	a	NIA	NIA		
BISIBB	VERFIDIA		430.0	Q	NIA	C R 13		
B1526	VEX210A,	411.8	430.2	R	432 CAHA SAA	Dec 19.10	4+1	
B1531	PZOZA	372.4	415.5	a	432 (AH. SAJ)	ADDIAE. 2	M L J	
¥B1533	P202B	375.1	416.3	A	N/K	(Att: SA	(4)	
B1541	P208A	389.2	419.8	10	ALLA SALLA	N/A		
\$81544	P 208B	389.2	419.8	4	1 39/ A (SAA)	CAH.	SAB)	
B1546	PIALA	382.4	4117	NOL	-	-		
B1563	VEXIOZA	385.1	41017	R	432(AH.SAA)	410 LAH	SAB)	
_B1564	H03800	369.2		R	432(AH 5AA)	410CALL.	SAB)	
B1566	M03801	50001	1					
			-					
	1	1				1		
			1	1	1	1		

CASEC) MANDMET TEANSFORMER IN, BERIES CAPACITOR OUT CASED) MANOMET TRANSFORMER OUT, SERIES CAPACITOR IN STEADY STATE LOADING FOR CASE A. 467V (Attachment AAA) STEADY STATE LOADING FOR CASE B. 441V (Attachment 4AB)

* THESE LOADS ARE NOT REQUIRED FOR LOCA. ONLY ONE PUMP PER LOOP IS REQUIRED LOADINGS WERE NOT INCLUDED IN THIS CALCULATION, LOADINGS ARE YANUAL OPERATION. SEE FSAR 10.5.5.3 AND 10.7.5

	ARY	CA	LCULATI	ON SHI	EET AU	THOHIZATION N	0		
REV D	ATE				PA	EPARED BY	DATE_		
FINALPSI 6	I. REV.U				CH	ECKED BY	DATE_		
REV_D	ATE	2	BOSTON APPVD BY						
		3	FEL	3150	N SH	EET 30 OF 41	Ę		
		-			F1 au) 61	UDY 52)		
JECT 2	3 KV OFF	SITE S	OURCE	LOAD	FLOW SI	and the second se			
							SR 🛛		
		TABLI	EZ PA	GE2					
		LOCA	A WIT	H . 49	BUS		NSR L		
MLL:	B17								
	Conserved and	0-0110	ED MIL		AVAILABLE	AVAILABL	E		
LOAD	EQUIPHENI	VOLTA	GE (V)	01.0	VOLT	VOLT.			
BKR#	2.0		Qual	a/na	START.	START	5. S. B.		
Prate		START	KUN		CASEC	CASED			
81712	6103A		418.8	NQ	N/K	NIK	· N		
BITIL	VSF208A	372.8	915.1	Q	7437 *	7415 0	*		
81722	VAC202A	386.6	419.65	Q	7437 ¥	7415.	Y Y		
B1725	VAC204B	389.7	421.6	a	7437 7	1915	CAR)		
B1741	M01400-3A	373.1	-	Q	437 (AHCKISAA)	AIS/Aller	SAR)		
B1763	M01001-16A	392.9	-	R	437 AHOCASAA)	dIC (Athach	· SA8)		
B1796	M04084	372.3		a	43/(AH. SAA)	415 (Attack	.SAB)		
B1786	M04065	371.3	-	R	45/CAR SALAS	N/A			
B1794	×74		919.3	A	N/4	NIA			
B17115	X55	-	396.0	a	1 33(AH. SAC)	415 (Att. :	AD)		
B1746	NO1400-25A	402.7			722	1			
				1					
						1			
			-	1					
		1							
		+	diameter arrester						

STEADY STATE LOADING FOR CASE B. 490 (Attachment AAA) STEADY STATE LOADING FOR CASE B. 490 (Attachment AAA)

* BASED ON THESE LOADS ARE STARTED PRIOR TO LOAD BLOCK-1 (Allachments, SAA, SAB)

* * From PDC 91-59A, colculation PS-70

		TABLE	Z PA	6 <u>63</u> H 'A9	" P.04		SR NSR
LOAP	EQUIPHENN I.D	REQUIRE	GE (V)	Q/NQ	AVXILABLE VULT.	AVAILABL VOLT. START	E
BKRA		START	RUN		CASEC	CASE S	2
A503	P203A P203C	3328*	3744*	R	3638 (AH. SAC) 3589 (AH. SAF)	3438 CAR 5	AE)
A 507 B106	P215A P110A	3328¥ 368¥	3744¥ 414¥	NR	3657.(Att: JAA)	-	
						×	
	-						

CASED) MANOMET TRANSFOCHER OUT, SERIES CAPACITOR IN

* ASSUMED BO% Start and 90% NUN, NO LOAD STARTING NOT PERFORMED STEADY STATE LOADING FOR CASE A 4KV-3984U (AHACKMENT AAA)

STEADY STATE LOADING FOR CASE B - 4KV-3779 U(Athchment AAB) 480V-442 (Athchment AAB)

F	DA DA	RY TE TE KV OFFS	CA DITE SO	ES PA	OSTO DISC		NUTHORIZATION NO REPARED BY HECKED BY PPVD BY HEET 37 OF 58	D DATE DATE DATE SR X
::	в	15	LOCA	WITH	A5 A	UD AG		NSR
LOAD		EQUIPHEN	REQUIRED MLL VOLTAGE (V)		0/10	NOLT.	VOLT.	E
#		2.7	START	RUN	and	START	RUN (ATTACH.	SAR)
3	-	DII		NA	a	N/L	472	
61	A	VGITE201A		N/A	Q	NIA	472	
61	B	VERFIDIA		N/A	Q	NIA	472	
26	5	VEX210A	411.8	430,2	Q	See Page 18	472	
31		P202A	372.4	415.5	Q	437 (Attch SAD	472	
3	3	P2028	375.1	416.3	Q	2.40 HEAHKA SAQ	972	
4	T	P208A	389,2	419.8	Q	423 (AHCL. SAW)	472	
4	4	P208B	389.2	419.8	Q	401 (AHCH. SAR)	972	
4	6	PIALA	382.4	417.9	NQ	400 (A Heb. SAK	472	
6	3	VEX103A	385.1	418.7	NQ	-	972	
6	4	N03800	369.2	-	Q	400 (AHCH SAK)	472	
61	6	M03801	368.1	-	R	400 (AHCL.SAK)	472	

* THESE LOADS ARE NOT REQUIRED FOR LOCA. ONLY ONE PUMP PER LOOP IS REQUIRED. LOADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE MANUAL OPERATION. SEE FSAR 10.5.5.3 AND 10.7.5. Available Standing voltage for BIS33 based on stanting of higher hp (i.e 100hp for BIS44 Start) load.

INAL PS	5-161, Rev. ATE	0	BE	OST(DISO		HECKED BY	DATE
ECT: 23	KV OFFSIT	TABLI LOCA	RCE L E3 PA WITH	GEZ AS AN	NDA6	DY	SR 🕅
LOAD BKR#	EQUIPHENN I.P	REQUIRE VOLTA START	ED MUL GE (V) RUN	Q./NQ	AVAILABLE VOLT. START	AVAILABLE VOLT. RUN CATTACHMEN	UT SAR)
B1713	C102A		418.8	NQ	N/A	4 86	
R1714	VSF208A	372.8	415.1	Q	7405 ¥	486.	
B1722	VAC202A	386.6	419.65	Q	7405 \$	486	
B1725	VAC204B	389.7	421.6	Q	7405 \$	486	
RIZAL	M0400-3A	373.1		Q	405 (AHCL SAK)	486	
B1762	MO1001-16A	392.9	-	Q	405 (Attch: SAK)	486	
B1796	404084	372.3	-	Q	405 (AHCA.SAK)	486	
B1786	M04065	371.3	-	Q	405 (AACh.SAK)	486	
DITOD	VHL	-	414.3	Q	NIA	486	
01714	×55	-	396**	Q	N/A	486	
B1746	101400-25A	402.7	-	Q	908 (AHCH-SAL)	486	

Load Block-1 (Attachment SAK)

** Required Run voltage based on PDC 91-59A

REVDA	TE				PF	REPARED BY	DATE
FINAL PS	-161, REV.0			o ma	CH	ECKED BY	DATE
REVDA	TE		B	OSIC	JN AF	PVD BY	DATE
		Su	JEL EL	2150	N SF	HEET 39 OF 58	
				1		TUDY	
JEC1: 23	KV OFFS	ITE SO	URCE	LOAD	trow s	-	nya dagi kutoka disila di sila dagi sakasi sakasi saka
		1					SR X
		TABLE	= 3 PA	GE3_			
		LOCA	WITH	AS AN	JDA6		NSR
						l	
MCC' 6	314						
	CONTRACT	REDUIRE	D MUL		AVAILABLE	AVAILABLE	
LOAV	TO	VOLTA	GE (V)	11.0	VOLT.	VOLT.	
BKR#	1.5	11.06	Qual	a/NQ	START	RUN	(10)
		STAKT	KUN			LATTACHMEN	1 SA(C)
R1413	PI2		417.4	R	N/A	480	
B1414A	P13		421.0	R	N/A	480.	
BHI6B	VERFIOIB	-	419.0	R	NIA	400	
B1431	P202P	375.0	416.3	R	442 (AHCK SAO)	480	
B1433	PZOZE	375.9	416.3	Q	>412(Atch-SAR)	480	
BH41	P208D	385.4	918.5	R	428 (AHLA-SAN)	480	
× B1444	P208E	384	118.4	R	AIZ (AHChSAR)	480	
B1446	PIAIR	383.3	118.1	NR	418 (AHCA'SAK)	480	
B 1461	P152B	383.3	918.2	NR	12418-7	480	
BK463	VEX103B	385.3	418.7	NR	2418	480	
B1464	M03806	369,5		a	AIR (AHCHISAN)	48 0	5
01466	M03806_	369.2		4	110 (4104 344)	•	
						• • • • • • • • • • • • • • • • • • •	
						1	
				1			
1							
	1	1	1	A CONTRACTOR OF THE OWNER	eder our out our owner oppose remains the		

NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE WANUAL OPERATION. SEE FSAR 10.5.5.3 AND 10.7.5. Available starting voltage for B1433 based on starting of higher hp (1.e. 100 hp for B1444) load.

PF 14110

** Board on prior start of Load block-1 (Attachment SAK)

REVDA FINAL PS REVDA	TE	E SOU	BEEL ECE L		AF N SH	REPARED BY HECKED BY PPVD BY HEET <u>40</u> OF <u>58</u>	DATE DATE DATE
		TABLE	E3 PA	GE4			SR
Lizzi Pl	~	LOCA	WITH	A5 AN	JA 46	l	NSR
LOAD BKR#	EQUIPHENN I.D	REQUIRE VOLTA GTART	ED HLL GE (V) RUN	Q/NQ	AVAILABLE VOLT. START	AVAILABLE VOLT. RUN (ATTACHMEN	TSAR)
B1813A	C104A	-	42.5	NQ	N/A	491	
B1822	VAC201A	378.5	417.3	Q	7419#	491.	
B1825	VAC204D	385.7	420.2	Q	7919#	491	
81841	M01400-38	372.0		R	419 (AlkhSAK)	491	
B1846	MO 400-258	398.9	-	Q	409 (AHChSAL)	491	
B1863	M01001-168	387.3		Q	AIA (AHCH.SAK)	491	
B1885	×.75		414.5	Q	N/A	491	
B1896	M04083	369.9	-	R	919 (AKch.SAK)	491	
B19115	×-56	-	419.0	a	NIA	491	
B18116	VEX 214B	375.5	415.8	Q	7419*	471	
						an - ana ang ang ang ang ang ang ang ang ang	

(Attachment SAK)

EVDATE	V OFFSITE	TABLE LOCA	E LOA	D FLO	N STUDY	PVD BY HEET <u>4</u> /_OF_ <u>578</u>	DATE
ECT: 2 3 K	V OFFSITE	TABLE LOCA	E LOA	D FLO	W STUDY	Staryoga and a man optic contact and an	57
ACC: BID			WITH	A5 AN	JD AG		SR 🛛
LOADE	QUIPHENN	REQUIRE	ED MCC GE (V)	01.0	AVAILABLE VOLT.	AVAILABLE VOLT	
KR#	1.5	START	RUN	and	START	RUN (ATTACHMEN	TT SAR)
R 1013	X-59		414.9	Na	N/A	485	
RIDIS	×-19		414.5	Ng	NIA	485.	
B1023A	16L	-	914.3	NQ	NIA	485	
B1023B	P-146	422.1	433.8	NQ	-	485	
BIO24B	X-105	-	42014	NQ	N/A	485	
B1026	K-101	397.1	422,7	NQ	-	485	
B1041	P-131	383.3	919.4	NQ		485	
		and a set of the set of the set					
		1	1	1	1	antanta da angan ang kang da ang kang d	

PRELIMINA	RY	CA	LCULAT	ION SH	EET AL	JTHORIZATION NO	
REV DA	TE				PF	REPARED BY	DATE
FINAL PS	-161, REV.0				CH	ECKED BY	DATE
REV DA	TE		SB	OSTO		PVD BY	DATE
		2	FEI	DISO	N a	1557 42 OF 58	
		F			5 - 51	1	-
JECT: 23	KV OFFSIT	E SOUR	CE LUI	AD FL	OW STUD	To the second	
		TABLI	E3 PA	GE6			on M
		LACA	WITH	AS AN	JD AG		NSR
		LOCA	10.111	~~ ~			
	020						Construction of the second second second
mee.	Lauren (14	0-0-0	ED W//		AVIABLE	AVAILABLE	
LOAD	EQUIPHEM	VOLTA	GE (V)		VOLT.	VOLT.	
BKR#	2.1		0.1	a/NQ	START	RUN	
		STAR1	KUN			(CA Huch ment	SAR)
R20134	X-40		915.4	NR	N/K	485	
R 2014	×-50		415.6	NQ	NIA	485.	
B2024	H01001-294	382.1	-	Q	407 (AHCHSAY)	435	
B2026	M01001-29 B	414.5	-	Q	ARI (Alch SAL-1A)	485	
82031	M01001-28A	379.3	-	R	394 (AHLA.SAK)	485	
R. 2034	M01001-28 B	404.3	-	Q	164 (AHch. 5453)	485	
B2054	MO1201-2	370.6		9	394 (Althe SAK)	485	
82056	MO 1201-80	373.4		Q	394(AHChSAK)	485	
R 2.083	M0202-5A	403.7	-	Q	464 (AH . SAK-18)	485	
B 2046	M0202-5B	403.7	-	R	464 (AH SAK-18)	485	
						•	
						1	
			+				
			1	1			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PRELIMIN REVD FINAL PS REVD	ARY ATE SIGI- REV-C ATE SKV OFFSIT	CA TE SOUR TABLE LOCA	LCULAT BE ECE LA WITH	OSTO DAD E	LOW STUE	APITAL UTHORIZATION NO REPARED BY HECKED BY PPVD BY HEET <u>43</u> _OF_58	DA DA DA SR NSR	TE TE TE
A 503 P 203A 3328 \ 3744 Q 3459 (AHL SAL) 4131 (AHCL SAR) A 506 P 203C 3328 3744 Q 3419 (AKL SAH) 9130 (AHCL SAR) A 507 P 215A 3328 3744 Q 3514 (AHL SAK) 9130 (AHCL SAR) A 603 P 203B 3328 3744 Q 3514 (AHL SAK) 9130 (AHCL SAR) A 603 P 203B 3328 3744 Q 3514 (AHL SAK) 9130 (AHCL SAR) A 606 P 203D 3328 3744 Q 3439 (AHL SAK) 9130 (AHCL SAR) A 606 P 203D 3328 3744 Q 3439 (AHL SAK) 9130 (AHCL SAR) A 606 P 203D 3328 3744 Q 3406 (AKL SAK) 9130 (AHCL SAR) A 606 P 215B 3528 3744 Q 3498 (AHL SAK) 9130 (AHCL SAR) B 606 G 23 368 414 NQ 478 (AHCL SAR) 9125 (AHCL SAR) B 606 G 23 368 414 NQ 478 (AHCL SAR) 9126 (AHCL SAR) B 606 G 23 368	LOAD BKR#	EQUIPHENT I.D	REQUIRE VOLTA 41AR1	ED MLL GE (V) RUN	Q/NQ	AVAILABLE VOLT. START	AVAILABLE VOLT. RUN		
A506 P203C. 3328 3744 Q 341QAKLSAN 4130 (AHch: SAR) A506 P203C. 3328 3744 Q 3514 (AHch SAK) 4130 (AHch: SAR) A507 P21SA 3328 3744 Q 3514 (AHch SAK) 4130 (AHch: SAR) A603 P203B 3328 3744 Q 3439(AHASAL) 4186 (AHch: SAR) A606 P203D 3328 3744 Q 3439(AHASAL) 4186 (AHch: SAR) A606 P203D 3328 3744 Q 3406 (AKhSAM) 9130 (AHch: SAR) A606 P203D 3328 3744 Q 349 (AHch:SAK) 4125 (AHch: SAR) A607 P215B 3328 3744 Q 349 (AHch:SAK) 4125 (AHch: SAR) B106 P110A 368 Q14 NQ - 478 (AHch:SAR) B606 G23 368 AM NQ - 481 (AHch:SAR)	1503	P203A	3328 1	3744	Q	3459 (AHLA-SAL)	4131 (AHCh.	SAR)	1
A 507 P215A 3328 3744 Q 3514 (AKLSAK) 4130 (AHCLSAR) A 603 P203B 3328 3744 Q 3439(AKLSAK) 4125 (AHCLSAR) A 606 P203D 3328 3744 Q 3406 (AKLSAM) 4130 (AHCLSAR) A 607 P215B 3328 3744 Q 3496 (AKLSAM) 4130 (AHCLSAR) A 607 P215B 3328 3744 Q 3496 (AKLSAK) 4125 (AHCLSAR) B 106 P110A 368 414 NQ - 478 (AHCLSAR) B 606 G23 368 4M NQ - 481 (AHCLSAR) B 606 G23 368 4M NQ - 481 (AHCLSAR)	A 506	P203C.	3328	3744	Q	3419(Allch SAM)	4130 (A Hch:	SAR)	-
A603 P203B 3328 3744 Q 3439(AHLASAL) 41R5(AHCh.SAR) A606 P203D 3328 3744 Q 3406(AKLASAM) 9130(AHCh.SAR) A606 P203D 3328 3744 Q 3406(AKLASAM) 9130(AHCh.SAR) A607 P215B 3328 3744 Q 349(AHLASAK) 9130(AHCh.SAR) B106 P110A 368 914 NQ - 478(AHCh.SAR) B606 G23 368 414 NQ - 481(AHCh.SAR)	A507	PZISA	3328	3744	Q	3514 (AHLA SAK)	4130 (AHch)	SAR)	-
A 606 P 203D 3328 3744 Q 3406 (AKASAM) 9130 (AHCh: SAR) A 607 P215B 3328 3744 Q 349 (AKASAK) 9125 (AHCh: SAR) B106 P110A 368 914 NQ - 478 (AHCh: SAR) B606 923 368 94 NQ - 981 (AHCh: SAR)	4603	P2038	3328	3744	R	3439 (ANLA SAL)	4185(AHch.	SAR)	+
A 607 P215B 3328 3744 Q 3495 (AHLA.SAK) 4125 (AHLA.SAR) B106 P110A 368 414 NQ - 478 (AHLA.SAR) B606 G23 368 4M NQ - 481 (AHLA.SAR)	A 604	P 203P	3328	3744	9	3406 (AlkchisAM)	9130 (AHch.	SAR)	-
BIOG PILOA 368 414 NQ - 478 (AHCH-SAR) B606 623 368 4M NQ - 481 (AHCH-SAR)	A607	P215B	3328	3744	Q	3495 (AHEL SAK)	4125 (AHch.	SAR)	-
B606 G23 368 4M NQ - 481 (AHch.SAR)	B106	PIIOA	368	414	NQ	-	478 (AHch.	SAR)	-
	<u>B606</u>	6723	368	4 M	NQ		481 (Alteh .	>A&)	

The required starting and running voltages are asomuld to be 80% and 90% respectively

AND DESCRIPTION OF THE OWNER OF T

PRELIMINA REVD/ FINAL P: REVD/ JECT: 2.3	ARY ATE 5-161, REV ATE	C E SOUR	BEE LOA	OSTO SISO	DN AI DN SI	HECKED BY	DATE DATE DATE
		LOCA AND	NITH SWING	AS B BUS	05 B6		SR (
LOAD BKR#	EQUIPHENI I.D	REQUIRE NOLTA START	ED HLL GE (V) RUN	@/NQ	AVAILABLE VOLT.	AVAILABLE VOLT IZUN (ATTACHMEN	TAAAQ)
B 1013 B 1015 B 1023A B 1023B B 1024B B 1024B B 1026 B 1041	X-59 X-19 16L P-146 X-105 K-101 P-131	- - 422.1 - 397.1 383.3	4)9.9 419.5 414.3 433.8 420.4 422.7 919.4	200 200 200 200 200 200 200 200 200 200	NIA NIA NIA NIA	463 463 463 463 463 463 463 463	

*

-	AUTHORIZATION NO	
	PREPARED BY	DATE
	CHECKED BY	DATE
	APPVD BY	DATE
	SHEFT 45 OF 46 58	

SUBJECT: 23KV OFFSITE SOURCE LOAD FLOW STUDY

REV_DATE_____

REV__DATE____

		LOCA ANP :	WITH SWING	A5 B BUS B	36	NSR
MCC:	820					
LOAD BKR#	EQUIPHEN	REQUIRI	ED HLL GE (V)	@/NQ	AVAILABLE VOLT.	VOLT
	1.1	START	RUN		START	(A HuchmutAAAC)
220124	X-40		415.4	NR	N/K	463
R 2014	x-50		415.6	Na	NIA	463
B2024	401001-29A	382.1	-	9	425 (AHCh SAAB)	463
R2026	M01001-298	414.5		Q	425 (AHCLISAAB)	463
R2031	M01001-28A	379.3	-	R	406 (AHd. SAAA)	463
E 2020	1001001-28 B	404.3	-	R	406 (AHCh. SAAA)	463
R 2054	401201-2	370.6	-	q	406(Allch SAAA)	463
82056	MO 1201-80	373.4		Q	406 (AHdy SAAA)	463
P2083	M0202-5A	403.7	-	Q	406 (AHCh. SAAA)	465
B 2046	M0202.5B	403.7	-	R	406 (Altch SAAA)	465
						an ann annanadh ann a' bhan a' bha ann an tha ann an Arainn an Arainn an Arainn an Arainn a' Arainn
						and the second

CALCULATION SHEET

BOSTON

PREL REV_ FINAL REV_	IMINA 	ARY TE TE KV OFFS	CA ITE SO TABLI	E A PA	OSTO DISC LOAD		CHECKED BY CHECKED BY CHECKED BY CHECKED BY CHECKED BY SHEET 46 OF 46	DATE DATE DATE DATE SR
MC	C: B	515	LOCA	BWING	AS B	AVAILABLE	AVAILABLE	
BKR		I.P	VOLTA GTART	GE (V) RUN	Q/NQ	VOLT. START	VOLT. RUN (ATTACH.4	AAC)
R15	13	DII		NA	q	N/L	450	
BIS	16A	VGTF201A	-	N/A	a	NIA	450	
B15	16B	VERFIDIA	-	N/A	Q	NIA	450	
B15	26	VEX210A	411.8	430,2	Q	412 (Attch. SAAA	450	
B15	31	P202A	372.4	415.5	Q	429 (AHd. SAAE	450	
XB15	33	P202B	375.1	416.3	Q	398 (AHCA AAAB	450	
BIG	541	P208A	389.2	419.8	Q	417 (AHCh. SAAD	450	
VRIG	544	P208B	389.2	419.8	R	398 (AHCH. AAAB	450	
RIC	41	PIALA	382.4	417.9	NQ	gizlathch. SAAA	400	
RIL	563	VEXIO3A	385.1	418.7	NQ	-	450	
RIC	564	N03800	369.2	-	Q.	412 (Attch. SAAA	450	
BIS	566	M03801	368.1		Q	1)2(AHCh-SAAA)	

* THESE LOADS ARE NOT REQUIRED FOR LOCA. ONLY ONE PUMP PER LOOP IS REQUIRED. LOADINGS WERE NOT INCLUDED IN THIS CALCULATION. LOADINGS ARE MANUAL OPERATION SEE FSAR 10.5.5.3 AND 10.7.5. Available Standing voltage for BIS33 based on starting of higher hp (i.e 100hp for BIS44 Start) load.

ENAL PS	KV OFFSIT	TABLE	BCE L	OSTO DISO	PR CH AP N SH SH	HECKED BY	DATE DATE DATE JATE
MCC: E	317	LOCA AND S	WITH	A5 8 BUS	US B6	AVAILABLE	
LOAD BKR#	EQUIPHENN I.D	KEQUIRE VOLTA START	GE (V) RUN	Q/NQ	NOLT. START	VOLT. RUN CATTACHME	NTAGAC)
0.717	-107A		418.8	NQ	W/A-	464	
B1713	LICSA VICZORA	372.8	415.1	Q	>417 *	464	
81714	VSF 200A	286.6	419.65	Q	>417 ¥	464	
DITZA	VACULA	389.7	421.6	Q	>417 *	464	
61725	VACLOGE	373.1	-	Q	AIT (Altch. SAAA)	464	
B1741	MOHOO-SA	392.9	-	Q	417 (ANCH. SAAA)	464	
B1765	M01001-104	372.3		Q	417 (AAch. SAAA)	464	
B1716	104084	271.3	-	Q	417 (AAd. SAAA)	464	
B1786	104065		414.3	Q	NIA	469	
B1794	×74		396**	Q	N/A	469	
B17[15 B1746	× 25 M 01400-25A	402.7		q	425 (AHch. SA A8)	464	

* Based on these loads are stanted prior to Load Block-1 (Attachment SAAA)

* * Required Run voltage based on PDC 91-59A

TINAL PS	-161, Rev. C			OST DISC	NON SH	IECKED BY C PVD BY C IEET <u>48</u> OF <u>58</u>	DATE
IECT: 23	KV OFFSI	LOCA AND S	WITH WING 1	GEE AS B BOS E	US 36	SR NSF] 1
LOAP BKR#	EQUIPHENS I.P	REQUIRE VOLTA START	GE (V) RUN	Q/NQ	AVAILABLE NOLT. START	AVAILABLE VOLT. RUN	
A 503	P203A	3328 \$	3744 \$	Q	3605(4HL 54 AB)	3960 (Altch, AAAC	2
A506	P203C	3328*	3744*	Q	3582 (AHCh.SAAC)	2960/AHd AAA	c)
A 507	P215A	3328¥	37447	Q	36 19 / AHSA - 5 A A4/	A 56 (AH4. AAA	c)
B106	PIIOA	368 ¥	4147	Na		459 (AHch AA	Ac)
B606	623	368 ¥	419 "	NQ			
					-		

* ASSUMED 80% START AND 90% RUN

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 28 of 58

.

Prepared by: Swapan Das Checked by: Lisa Hansen Q√_Non Q____

6. <u>References</u>

a. Calculation PS64, Rev. 0

b. Calculation PS65, Rev. 0

c. Calculation PS65A, Rev. 0

d. Drawing E1 Sh. 1, Rev. E15

e. Drawing E8, Rev. E16

f. Drawing E9, Rev. E39

g. Drawing E10, Rev. E29

h. National Electric Code - 1987

i. PNPS procedure 2.4.144

j. Calculation PS113, Rev.0

k. Drawing SE155 Sh.2, Rev.E44 1 GE LOCA Analysis, NEDC-31852P

m. FSAR sections 10.5 and 10.7

7. Attachments

Attachment A - BECo. Memorandum from Mr. J. F. Gurkin to Mr. J. Pawlak, dated September 16, 1988.

Attachment B - "Turbine Trip steady state load 23 kv source voltage 22.4"

Attachment C - DAPPER run "Turbine Trip Motor Start at B15 - 23 kv source voltage 22.4"

Attachment D - DAPPER run "Turbine Trip Motor Start at B14 - 23 kv source voltage 22.4"

Attachment E - DAFPER run "Turbine Trip Motor Start at B17-23 kv source voltage 22.4"

Attachment F - DAPPER run "Turbine Trip Motor Start at B18 - 23 kv source voltage 22.4"

Attachment G - "Turbine Trip Motor Start at B20- 23 kv source voltage 22.4"

Attachment H - "Turbine Trip Motor Start at B10 - 23 kv source voltage 22.4"

Attachment AA - Turbine Trip Steady State Load - 23 kv source voltage 21.3"

Attachment AB - "Turbine Trip Steady State Load - 23 kv source voltage 24.0"

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 29 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen Q√ Non Q

Attachment AC - "Turbine Trip Motor Start At B15 - 23 kv source voltage 22.2"

Attachment AD - "Turbine Trip Motor Start at B14 - 23 kv source voltage 22.2"

Attachment AE - "Turbine Trip Motor Start At B17-23 kv source voltage 22.2"

Attachment AF - "Turbine Trip Motor Start At B18 - 23 kv source voltage 22.2"

Attachment AG- "Turbine Trip Motor Start at B20-23 kv source voltage 22.2"

Attachment AH - "Turbine Trip Motor Start At B10- 23 kv source voltage 22.2"

Attachment AAA - "LOCA w/load shed with A5 Bus Steady State - 23 kv source voltage 22.4"

Attachment AAB - "LOCA w/load shed with A5 Bus Steady State - 23 kv source voltage 21.3"

Attachment AAC -"Lotus spread sheet showing VEX210A acceptable at 391V"

Attachment AAD "LOCA w/load shed with A5 Bus SS w/MAN Loading-23kv source voltage 22.4"

Attachment AAE "LOCA w/load shed with A5 Bus P208B starting -23kv source voltage 22.4"

Attachment SAA - "LOCA w/load shed with A5 Bus Load block-1 starting source voltage 22.4"

Attachment SAB - "LOCA w/load shed with A5 Bus Load block 1 starting source voltage 21.3"

Attachment SAC - "LOCA w/load shed with A5 Bus Load block-2 starting source voltage 22.4"

Attachment SAD - "LOCA w/load shed with A5 Bus Load block-2 starting source voltage 21.3"

Attachment SAE - "LOCA w/load shed with A5 Bus P203C starting source voltage 21.3"

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 30 of 58 Prepared by: Swapan Das Checked by: Lisa Hansen Q√_Non Q____

53 Attachment SAF - "LOCA w/load shed with A5 bus P203C starting source voltage 22.4"

Attachment SAG - "LOCA w/load shed with A5 Bus P208A starting source voltage 22.4"

Attachment SAH - "LOCA w/load shed with A5 Bus P208A starting source voltage 21.3"

Attachment SAI - "LOCA w/load shed with A5 Bus P202A starting source voltage 21.3"

Attachment SAJ - "LOCA w/load shed with A5 Bus. P202A starting source voltage, 22.4"

Attachment SAK - "LOCA w/load shed with Load block-1 starting source voltage. 23.8."

Attachment SAK-1A - "Lotus spread sheet showing VEX210A acceptable at 400V"

Attachment SAK-1B - "LOCA w/load shed with M01001-28A/28B starting source voltage 23.8."

Attachment SAL - "LOCA w/load shed with Load block-2 starting source voltage 23.8."

Attachment SAL-1A - "LOCA w/load shed with M01001-29B starting source voltage 23.8.

Attachment SAM - "LOCA w/load shed with load P203C,P203D starting source voltage 23.8"

Attachment SAN - "LOCA w/load shed with P208A, P208D starting source voltage 23.8"

Attachment SAO - "LOCA w/load shed with load P202A,P202D starting source voltage 23.8"

Attachment SAP - "LOCA w/load shed with both bus steady state source voltage 23.8"

Calculation No. PS-161 Rev. 0 Date 9/8/95 Sheet 34 of 58

Prepared by: Swapan Das Checked by: Lisa Hansen $Q\sqrt{-}$ Non Q

54 Attachment SAQ - "LOCA w/load shed with P208B,P208E starting source voltage 23.8"

Attachment SAR - "LOCA w/load shed with both bus steady state source voltage 23.8"

Attachment AAAA - "LOCA w/load shed with A5 bus steady state source voltage 22.4"

Attachment AAAB - "LOCA w/load shed with A5 bus P208B starting source voltage 22.4"

Attachment AAAC - "LOCA w/load shed with A5 bus ss w/man load source voltage 22.4"

Attachment SAAA - "LOCA w/load shed with A5 bus load block-1 starting source voltage 22.4"

Attachment SAAB - "LOCA w/load shed with A5 bus load block-2 starting source voltage 22.4"

Attachment SAAC - "LOCA w/load shed with A5 bus load P203C starting source voltage 22.4.

Attachment SAAD - "LOCA w/load shed with A5 bus load P208A starting source voltage 22.4"

Attachment SAAE - "LOCA w/load shed with A5 bus load P202A starting source voltage 22.4"

PSS 0758 EXHIBIT 4 Sheet 1 of 2

RType A9.02

à

-

PRELIMINARY EVALUATION CHECKLIST

0

 \bigcirc

1.		IDENT	IFIC	ATION:		Document Number <u>P5-161</u> Revision <u>O</u>
De	scri	iption		23K	V OF	FSITE SOURCE LOAD FLOW STUDY.
2.		CLASS	IFIC	ATION:		
	\boxtimes	Yes		No	a.	Does the proposed change involve Q listed equipment?
		Yes	\boxtimes	No	b.	For a new procedure, Temporary Procedure, or major revision; does the Procedure contain procedural steps or requirements in the FSAR?
						If yes, identify FSAR sections.
		Yes	\boxtimes	No	c.	Is this a new procedure or Temporary Procedure that is Fire Protection Program related or a major revision that makes an existing procedure Fire Protection Program related?
3.		PRELI	MINA	RY EV	ALUATI	ON:
		Yes	\boxtimes	No	a.	Would this modify plant characteristics or procedural steps described in the FSAR? If yes, identify section:
		Yes		No	b.	Does this affect the design of systems, structures, or components described in the FSAR?
		Yes	\boxtimes	No	c.	Does this affect the function of systems, structures, or components described in FSAR?
		Yes	\boxtimes	No	d.	Does this affect the method of performing the function of systems, structures, or components described in FSAR?
		Yes	\boxtimes	No	e.	Does this indirectly affect the capability of safety related systems, structures, or components described in the FSAR to perform their functions?
		Yes	Ø	No	f.	Does this create a new test not described in the FSAR that could affect plant safety?

250 of (8 EXHIBIT 4 Sheet 2 of 2

PRELIMINARY EVALUATION CHECKLIST (Continued)

	Yes		No	g.	Would this change assumptions used in the accident analyses described in FSAR Chapter 14? If yes, identify sections:
	Yes		No	h.	Does this change affect the ability of a system required to achieve and maintain safe shutdown in the event of a fire?
	Yes		No	۱.	Does this change affect a requirement of, or major commitment to, 10CFR50 Appendix R?
	Yes		No	j.	Does this change affect a requirement of IE Circular 80-18 (for Radioactive Waste Systems)?
	Yes	Ø	No	k.	Could this affect the function of systems or components required for compliance with the Limiting Conditions for Operation in the Technical Specifications?
	Yes	Ø	No	1.	In the judgment of the evaluator, is a Safety Evaluation required?
F the	answ	er to	any qu	est	ion in Part 3 is "Yes", then a Safety Evaluation is

If the answer to any question in Part 3 is "Yes", then a Safety Evaluation is required prior to implementation. Check the appropriate block and provide any explanatory comments below:

No No Yes SAFETY EVALUATION REQUIRED? 4. PREPARED BY: Iwapan Das. Sk. Electrical Engg Date 8/7/75 Title Date 9/8/95 APPROVED BY: Brue Children Division Manager Date 9/8/95 Title 5.

Calculation - Independent Verification Statement Record

PSIGI Rev.C RAUS of the fall P. 58 of 58

Calculation # PS161, Revision # 0 has been independently verified by the following method(s), as noted below:

Mark each item yes, no or not applicable (N/A) and initial each item checked by you.

Design Review X including verification that:

Salt. Yes Design inputs were correctly selected and included in the calculation.

Jak. Yes Assumptions are adequately described and are reasonable.

- Dall N/A Input or assumptions requiring confirmation are identified, and if any exist, the calculation has been identified as "Preliminary" and a "Finalization Due Date" has been specified. the UKS Design requirements from applicable codes, standards and regulatory documents are identified and reflected in the design.
- Latte Les Applicable construction and operating experience was considered in the design.

at The calculation number has been properly obtained and entered.

An appropriate design method or computer code was used.

A mathematical check has been performed.

Let The output is reasonable compared to the input.

Where applicable, conputer program (DAPPER) Las been previous if quained and therefore vesuets of DAPPER runs Alternate Calculation [] including verification of asterisked items noted above. The

alternate calculation (pages) is attached. N/A

Qualification Testing [] for design feature, including verification of asterisked items noted above and the following: NA

- The test was performed in accordance with written test procedures. .
- Most adverse design conditions were used in the test.
- Scaling laws were established and verified and error analyses were performed, if applicable.
- Test acceptance criteria were clearly related to the design calculation.
- Test results (documented in) were reviewed by the calculation Preparer or other cognizant engineer.

Independent Reviewer Comments: Sel P.2

Independent Reviewer

Preparer concurrence with findings and comment resolution

Preparer or Other Cognizant Engineer

Note: Exhibit 3.06-B (Sheet 3 of 3) may to used for additional comments by IV as a part of the Independent Verification for calculations.

Document4 NESD 3.06 Rev. 7 Page 1 of 1

Calculation Independent Verification Statement Record (Cont'd) - Calc. PS161 Rev. 0

PS161 Rev. 0

P.58 of 58

- All previous comments have been resolved and the calculation text has been revised accordingly.
- · Errors found in the input data were corrected and new DAPPER runs were performed.
- In some instances the values shown in Tables 1,2 and 3 did not match the output of the DAPPER runs. These tables have been revised to accurately reflect the results of the DAPPER runs.
- Figure 1 is for the Turbine Trip case only, Figure 2 needed to be created to reflect the LOCA with load shed case.
- There are differences in the appearance of the DAPPER printouts between this calculation and PS65A. These differences do not impact the results of the calculation, they are only differences in appearance.
- The DAPPER outputs contain several "Isolated Busses". These isolated busses are created when the feeder cable to the bus/MCC is taken out of service (to model the scenarios in this calculation) but the feeder from the MCC to the load is left in service. In order to prevent these loads from showing up as "isolated busses", the feeder from the MCC to the load should also be taken out of service. However, this would be time-consuming and would not change the results of the calculation, only the appearance of the calculation.