RESAR-SP/90 REACTOR SYSTEM

•

WESTINGHOUSE ADVANCED PRESSURIZED WATER REACTOR

STANDARD PLANT DESIGN

8408080289 840731 PDR ADOCK 05000601 K PDR

TABLE OF CONTENTS

			Reference SAR Section
Section	Title	Page	Status
1.0	INTRODUCTION AND GENERAL DESCRIPTION OF	1 1-1	,
1.0	PLANT	1.1-1	
1.1 .	INTRODUCTION	1.1-1	II
1.2	GENERAL PLANT DESCRIPTION	1.2-1	II
1.2.2	Principal Design Criteria	1.2-1	II
1.2.3	Plant Description	1.2-1	II
1.2.3.1	Reactor System	1.2-1	II
1.3	COMPARISON TABLES	1.3-1	II
1.3.1	Comparison With Similar Facility Designs	1.3-1	II
1.5	REQUIREMENTS FOR FURTHER TECHNICAL	1.5-1	II
	INFORMATION		
1.5.1	Fuel System Tests	1.5-1	I
1.5.1.1	Fuel Assembly Tests	1.5-1	I
1.5.1.1.1	Fuel Assembly Structural Tests	1.5-1	I
1.5.1.1.2	Fuel Assembly Hydraulic Flow Tests	1.5-2	I
1.5.1.2	Core Components Tests	1.5-3	I
1.5.1.2.1	Rod Cluster Control and Gray Rod	1.5-3	I
	Assembly Tests		
1.5.1.2.2	Water Displacer Rod Assembly Tests	1.5-3	I
1.5.1.3	Drive Mechanism Tests	1.5-4	I
1.5.1.3.1	Control Rod Drive Mechanism Tests	1.5-4	I
1.5.1.3.2	Water Displacer Rod Drive Mechanism	1.5-5	I
	Tests		
1.5.2	Reactor Internals Design Verification	1.5-6	I
	Tests		
1.6	MATERIAL INCORPORATED BY REFERENCE	1.6-1	II
1.8	CONFORMANCE WITH THE STANDARD REVIEW	1.8-1	II
	PLAN		

WAPWR-RS 1476e:1d

•

•

JULY, 1984

×...

4

			Reference
			SAR Section
Section	<u>Title</u>	Page	Status
			1
2.0	SITE CHARACTERISTICS	2.0-1	NA
3.0	DESIGN OF STRUCTURES, COMPONENTS,	3.1-1	II
	EQUIPMENT AND SYSTEMS		
3.1	CONFORMANCE WITH NRC GENERAL DESIGN	3.1-1	II
	CRITERIA		
3.2	CLASSIFICATION OF STRUCTURES, COMPONENTS,	3.2-1	II
	SYSTEMS		
3.2.1	Seismic Classification	3.2-2	II
3.2.2	System Quality Group Classification	3.2-2	II
3.2.3	Safety Classes	3.2-2	II
3.2.4	References	3.2-2	II
3.9	MECHANICAL SYSTEMS AND COMPONENTS	3.9-1	II
3.9.2	Dynamic Testing and Analysis	3.9-1	II
3.9.2.3	Dynamic Response Analysis of Reactor	3.9-1	I
	Internals Under Operational Flow		
	Transients and Steady-State Conditions		
3.9.2.4	Preoperational Flow-Induced Vibration	3.9-1	1
	Testing of Reactor Internals		
3.9.2.5	Dynamic System Analysis of the Reactor	3.9-2	t
	Internals Under Faulted Conditions		
3.9.2.6	Correlations of Reactor Internals	3.9-3	I
	Vibration Tests With Analytical Results		
3.9.4	Rod Drive Systems	3.9-3	I
3.9.4.1	Descriptive Information of the Control and	3.9-3	I
	Gray Rod Drive Systems		
3.9.4.1.1	Control Rod Drive Mechanism (CRDM) and	3.9-3	I
	Gray Rod Drive Mechanism (GRDM)		
3.9.4.1.1.1	RCCA and GRA Withdrawal	3.9-7	I
3.9.4.1.1.2	RCCA and GRA Insertion	3.9-9	I

•

•

.

1

iii

.

			Reference
	[일부분] 이 가격했다. 이 가격 :	20.00	SAR Section
Section	Title	Page	Status
3.9.4.1.1.3	Holding and Tripping of the RCCAs and	3.9-10	, I
3.9.4.1.2	Applicable Control Rod and Gray Rod Drive System Design Specifications (CRDS/GRDS)	3.9-11	1
3.9.4.1.2.1	Design Bases	3.9-11	I
3.9.4.1.2.2	Design Stresses	3.9-11	I
3.9.4.1.2.2.1	Allowable Stresses	3.9-12	I
3.9.4.1.2.2.2	Dynamic Analysis	3.9-12	I
3.9.4.1.2.3	Control Rod Drive Mechanisms (CRDMs)/Gray Rod Drive Mechanisms (GRDMs)	3.9-12	1
3.9.4.1.2.4	CRDM/GRDM Operational Requirements	3.9-12	I
3.9.4.1.3	CRDM/GRDM Design Loads, Stress Limits,	3.9-13	I
	and Allowable Deformations		-
3.9.4.1.3.1	Pressure Retaining Components	3.9-13	I
3.9.4.1.3.2	Drive Rod Assembly and Hub Extension Assembly	3.9-14	Ι.
3.9.4.1.3.3	Latch Assembly and Coil Stack Assembly	3.9-15	I
3.9.4.1.3.3.1	Results of Dimensional and Tolerance Analysis	3.9-15	I
3.9.4.1.4	CRDM/GRDM Performance Assurance Program	3.9-16	I
3.9.4.2	Displacer Rod Drive System	3.9-18	I.
3.9.4.2.1	Descriptive Information of the Displacer Rod Drive System	3.9-18	1
3.9.4.2.2	Displacer Rod Drive Mechanism (DRDM)	3.9-18	1
3.9.4.2.3	Displacer Rod Drive Operation	3.9-21	I
3.9.4.2.3.1	Design Bases	3.9-22	1
394:32	Design Stresses	3.9-22	I

•

			Reference SAR Section
Section	Title	Page	Status
		2 0 22	۰.
3.9.4.2.3.3	Allowable Stresses	3.9-23	1
3.9.4.2.3.4	Dynamic Stresses	3.9-23	I
3.9.4.2.4	Displacer Rod Drive Operational	3.9-23	1
	Requirements		
3.9.5	Reactor Internals	3.9-23	1
3.9.5.1	Description	3.9-23	I
3.9.5.1.1	Calandria	3.9-24	I
3.9.5.1.2	Upper Internals Assembly	3.9-25	I
3.9.5.1.2.1	Water Displacer Rod Guide Structure	3.9-26	I
3.9.5.1.2.2	RCCA Guide Structure	3.9-26	I
3.9.5.1.3	Lower Internals	3.9-26	I
3.9.5.1.3.1	Core Barrel Assembly	3.9-27	I
3.9.5.1.3.2	Radial Core Support Keys	3.9-27	1
3.9.5.1.3.3	Secondary Core Support	3.9-27	I
3.9.5.1.3.4	Bottom Mounted Instrumentation	3.9-28	I
3.9.5.1.3.5	Head and Vessel Alignment Pins	3.9-28	I
3.9.5.1.3.6	Hold Down Spring	3.9-29	1
3.9.5.1.3.7	Upper Core Plate Guide Pins	3.9-29	1
3.9.5.1.3.8	Irradiation Specimen Guides	3.9-30	1
3.9.5.1.3.9	Safety Injection Nozzle Deflectors	3.9-30	1
3.9.5.1.3.10	Radial Reflector	3.9-30	1
3.9.5.2	Design Loading Conditions	3.9-31	I
3.9.5.2.1	Normal Conditions Transients (Operating	3.9-31	I
	Condition I)		
3.9.5.2.2	Upset Conditions Transients (Operating	3.9-31	I
	Condition II)		
3.9.5.2.3	Emergency Conditions Transients	3.9-32	I
	(Operating Condition III)		

•

•

.

			Reference
			SAR Section
Section	Title	Page	Status
3.9.5.2.4	Faulted Conditions Transients	3 9-32	, T
	(Operating Condition IV)	0.0 02	•
3.9.5.3	Design Bases	3.9-32	I
3.9.5.3.1	Allowable Stresses	3.9-33	I
3.9.6	References	3.9-34	II
4.0	REACTOR	4.1-1	I
4.1	SUMMARY DESCRIPTION	4.1-1	I
4.2	FUEL SYSTEM DESIGN	4.2-1	I
4.2.1	Design Bases	4.2-2	I
4.2.1.1	Cladding (Zircaloy-4)	4.2-3	1
4.2.1.2	Fuel Material	4.2-4	1
4.2.1.3	Fuel Rod Performance	4.2-5	1
4.2.1.4	Spacer Grids	4.2-6	1-
4.2.1.5	Fuel Assembly	4.2-6	I
4.2.1.6	Core Components	4.2-9	1
4.2.1.7	Testing, Irradiation Demonstration	4.2-11	I
	and Surveillance		
4.2.2	Design Description	4.2-12	I
4.2.2.1	Fuel Rods	4.2-14	I
4.2.2.2	Fuel Assembly Structure	4.2-14	I
4.2.2.2.1	Bottom Nozzle	4.2-14	I
4.2.2.2.2	Top Nozzle	4.2-15	I
4.2.2.2.3	Guide and Instrumentation Thimbles	4.2-16	I
4.2.2.2.4	Grid Assemblies	4.2-18	1
4.2.2.3	Core Components	4.2-19	1
4.2.2.3.1	Roa Cluster Control Assemblies	4.2-19	I
4.2.2.3.2	Gray Rods	4.2-20	1

			Reference
			SAR Section
Section	Title	Page	Status
			· .
4.2.2.3.3	Neutron Source Assembly	4.2-21	I
4.2.2.3.4	Water Displacer Rods	4.2-21	I I
4.2.3	Design Evaluation	4.2-22	I
4.2.3.1	Cladding	4.2-23	1
4.2.3.2	Fuel Material Consideration	4.2-28	1
4.2.3.3	Fuel Rod Performance	4.2-29	1
4.2.3.4	Spacer Grids	4.2-38	I —
4.2.3.5	Fuel Assembly	4.2-38	I
4.2.3.6	Reactivity Control Assemblies and	4.2-39	I
	Source Rods		
4.2.4	Testing and Inspection Plan	4.2-41	I
4.2.4.1	Quality Assurance Program	4.2-41	I
4.2.4.2	Quality Control	4.2-42	I-
4.2.4.3	Core Component Testing and Inspection	4.2-46	I
4.2.4.4	Tests and Inspections by Others	4.2-48	I
4.2.4.5	Onsite Inspection	4.2-48	I
4.2.5	References	4.2-48	1
4.3	NUCLEAR DESIGN	4.3-1	I
4.3.1	Design Basis	4.3-1	1
4.3.1.1	Fuel Burnup	4.3-2	1
4.3.1.2	Negative Reactivity Feedbacks	4.3-3	1
	(Reactivity Coefficient)		
4.3.1.3	Control of Power Distribution	4.3-4	I
4 3 1 4	Maximum Controlled Reactivity Insertion	4.3-5	I
	Rate		
4315	Shutdown Margins	4.3-6	I
4.3.1.5	Stability	4.3-8	I
4.3.1.7	Anticipated Transients Without Trip	4.3-9	I
4.3.1.7	Description	4.3-9	I
4.3.6			

•

•

vii

Section	<u>Title</u>	Page	Reference SAR Section Status
4.3.2.1	Nuclear Design Description	4.3-9	I
4.3.2.2	· Power Distributions	4.3-13	, I
4.3.2.2.1	Definitions	4.3-13	I
4.3.2.2.2	Radial Power Distributions	4.3-16	I
4.3.2.2.3	Assembly Power Distributions	4.3-17	I
4.3.2.2.4	Axial Power Distributions	4.3-17	I
4.3.2.2.5	Local Power Peaking	4.3-19	I
4.3.2.2.6	Limiting Power Distributions	4.3-20	I
4.3.2.2.7	Experimental Verification of Power	4.3-29	I
	Distribution Analysis		
4.3.2.2.8	Testing	4.3-33	I
4.3.2.2.9	Monitoring Instrumentation	4.3-33	1
4.3.2.3	Reactivity Coefficients	4.3-33	1
4.3.2.3.1	Fuel Temperature (Doppler) Coefficient	4.3-35	Ι
4.3.2.3.2	Moderator Coefficients	4.3-36	Ι.
4.3.2.3.3	Power Coefficient	4.3-38	1
4.3.2.3.4	Comparison of Calculated and Experimental	4.3-39	I
	Reactivity Coefficients		
4.3.2.3.5	Reactivity Coefficients Used In Transient	4.3-39	I
	Analysis		
4.3.2.4	Control Requirements	4.3-40	I
4.3.2.4.1	Doppler	4.3-41	I
4.3.2.4.2	Variable Average Moderator Temperature	4.3-41	I
4.3.2.4.3	Redistribution	4.3-41	I
4.3.2.4.4	Void Content	4.3-42	I
4.3.2.4.5	Rod Insertion Allowance	4.3-42	I
4.3.2.4.6	Burnup	4.3-42	I
4.3.2.4.7	Xenon and Samarium Poisoning	4.3-42	I
4.3.2.4.8	pH Effects	4.3-43	I
43249	Experimental Confirmation	4.3-43	I

•

•

9

			Reference
			SAR Section
Section	Title	Page	Status
4.3.2.4.10	Control	4.3-43	Í
4.3.2.4.11	Chemical Poison	4.3-43	. 1
4.3.2.4.12	Rod Cluster Control Assemblies	4.3-44	1
4.3.2.4.13	Water Displacer Rod Assemblies	4.3-45	1
4.3.2.4.14	Gray Rod Assemblies and Load Following	4.3-46	1
4.3.2.4.15	Reactor Coolant Temperature	4.3-47	1
4.3.2.4.16	Integral Fuel Burnable Absorbers (IFBA)	4.3-48	1
4.3.2.4.17	Peak Xenon Startup	4.3-48	I
4.3.2.4.18	Load Follow Control and Xenon Control	4.3-48	I
4.3.2.4.19	Burnup	4.3-49	I
4.3.2.5	Control Rod, Gray Rod, Water Displacer	4.3-49	1
	Rod Patterns and Reactivity Worths		
4.3.2.6	Criticality of the Reactor During	4.3-52	Т
	Refueling and Criticality of Fuel		
	Assemblies		
4.3.2.7	Stability	4.3-55	I
4.3.2.7.1	Introduction	4.3-55	I
4.3.2.7.2	Stability Index	4.3-56	I
4.3.2.7.3	Prediction of the Core Stability	4.3-56	I
4.3.2.7.4	Stability Measurements	4.3-57	I
4.3.2.7.5	Comparison of Calculations with	4.3-59	1
	Measurements		
4.3.2.7.6	Stability Control and Protection	4.3-60	1
4.3.2.8	Vessel Irradiation	4.3-61	1
4.3.3	Analytical Methods	4.3-62	1
4.3.3.1	Fuel Temperature (Doppler) Calculations	4.3-63	1
4.3.3.2	Macroscopic Group Constants	4.3-64	I
4 2 2 3	Spatial Few-Group Diffusion Calculations	4.3-66	1

•

			Reference
			SAR Section
Section	<u>[itle</u>	Page	Status
			,
4.3.4	Changes	4.3-67	I
4.3.5	References	4.3-68	I
4.4	THERMAL AND HYDRAULIC DESIGN	4.4-1	II
4.4.1	Design Basis	4.4-1	I
4.4.1.1	Departure from Nucleate Boiling Design	4.4-2	I
	Basis		
4.4.1.2	Fuel Temperature Design Basis	4.4-4	I
4.4.1.3	Core Flow Design Basis	4.4-4	I
4.4.1.4	Hydrodynamic Stability Design Basis	4.4-5	I
4.4.1.5	Other Considerations	4.4-5	I
4.4.2	Description	4.4-6	I
4.4.2.1	Summary Comparison	4.4-6	I
4.4.2.2	Critical Heat Flux Ratio or Departure	4.4-7	1
	from Nucleate Boiling Ratio and Mixing		
	Technology		
4.4.2.2.1	Departure from Nucleate Boiling	4.4-7	1
	Technology		
4.4.2.2.2	Definition of Departure from Nucleate	4.4-8	1
	Boiling Ratio		
4.4.2.2.3	Mixing Technology	4.4-9	1
4.4.2.2.4	Hot Channel Factors	4.4-11	1
4.4.2.2.5	Effects of Rod Bow on DNBR	4.4-13	I
4.4.2.3	Linear Heat Generation Rate (LHGR)	4.4-14	I
4.4.2.4	Void Fraction Distribution	4.4-14	I
4.4.2.5	Core Coolant Flow Distribution	4.4-14	I
4.4.2.6	Core Pressure Drops and Hydraulic Loads	4.4-14	I
4.4.2.6.1	Core Pressure Drops	4.4-14	I
4 4 2 6 2	Hydraulic Loads	4.4-15	I

			Reference SAR Section
Section	Title	Page	Status
	And the second second second		'.
4.4.2.7	Correlation and Physical Data	4.4-16	1
4.4.2.7.1	Surface Heat Transfer Coefficients	4.4-16	I
4.4.2.7.2	Total Core and Vessel Pressure Drop	4.4-17	I
4.4.2.7.3	Void Fraction Correlation	4.4-19	I
4.4.2.8	Thermal Effects of Operational Transients	4.4-20	I
4.4.2.9	Uncertainties in Estimates	4.4-20	I
4.4.2.9.1	Uncertainties in Fuel and Cladding	4.4-20	I
	Temperatures		
4.4.2.9.2	Uncertainties in Pressure Drops	4.4-21	1
4.4.2.9.3	Uncertainties Due to Inlet Flow	4.4-21	1
	Maldistribution		
4.4.2.9.4	Uncertainty in DNB Correlation	4.4-22	I
4.4.2.9.5	Uncertainties in DNBR Calculations	4.4-22	ľ
4.4.2.9.6	Uncertainties in Flow Rates	4.4-23	I
4.4.2.9.7	Uncertainties in Hydraulic Loads	4.4-23	I
4.4.2.9.8	Uncertainty in Mixing Coefficient	4.4-23	I
4.4.2.10	Flux Tilt Consideration	4.4-24	I
4.4.2.11	Fuel and Cladding Temperatures	4.4-25	I
4.4.2.11.1	UO, Thermal Conductivity	4.4-26	I
4.4.2.11.2	Radial Power Distribution in UD ₂	4.4-27	I
	Fuel Rods		
4.4.2.11.3	Gap Conductance	4.4-27	I
4.4.2.11.4	Surface Heat Transfer Coefficients	4.4-29	1
4.4.2.11.5	Fuel Clad Temperatures	4.4-29	1
4.4.2.11.6	Treatment of Peaking Factors	4.4-29	I
4.4.3	Description of the Thermal and Hydraulic	4.4-30	1
	Design of the Reactor Coolant System		
4.4.3.1	Plant Configuration Data	4.4-30	I

•

.

			Reference
		Page	Status
Section	IITIe	rage	
	Operating Postnictions on Pumps	4.4-31	í I
4.4.3.2	Operating Restrictions on Fumps	4.4-31	I
4.4.3.3	Power-Flow Operating Map	4.4-31	I
4.4.3.4	Temperature - Power operating hap	4.4-32	I
4.4.3.5	Load Following characteristics	4 4-32	I
4.4.3.6	Thermal and Hydraulic characteristics	4.4 00	
	Summary Table	4 4-32	T
4.4.4	Evaluation	4.4-32	I
4.4.4.1	Critical Heat Flux	4.4 32	T
4.4.4.2	Core Hydraulics	4.4-32	T
4.4.4.2.1	Flow Paths Considered in Core Pressure	4.4-32	
	Drop and Thermal Design		r
4.4.4.2.2	Inlet Flow Distributions	4.4-33	-1
4.4.4.2.3	Empirical Friction Factor Correlations	4.4-34	1
4.4.4.3	Influence of Power Distribution	4.4-35	1
4.4.4.3.1	Nuclear Enthalpy Rise Hot Channel Factor, F	4.4-35	1
4.4.4.3.2	Axial Heat Flux Distributions	4.4-37	1
4.4.4.4	Core Thermal Response	4.4-38	1
4445	Analytical Techniques	4.4-39	I
4 4 4 5 1	Core Analysis	4.4-39	1
4.4.4.5.2	Steady-State Analysis	4.4-39	I
4.4.4.5.3	Experimental Verification	4.4-40	I
4.4.4.5.5	Transient Analysis	4.4-40	I
4.4.4.5.4	Hydrodynamic and Flow Power Coupled	4.4-41	1
4.4.4.0	Instability		
	Fuel Rod Behavior Effects from Coolant	4.4-44	I
4.4.4.7	Flow Blockage		
	Testing and Verification	4.4-46	I
4.4.5	learling and ter the second		

•

•

xii

			Reference
			SAR Section
Section	Title	Page	Status
.4.5.1	Tests Prior to Initial Criticality	4.4-46	I
4.4.5.2	Initial Power and Plant Operation	4.4-46	I
4.4.5.3	Component and Fuel Inspections	4.4-46	1
4.4.6	Instrumentation Requirements	4.4-46	1
4.4.6.1	Incore Instrumentation	4.4-47	I
4.4.6.2	Overtemperature and Overpower AT	4.4-47	1
	Instrumentation		
4.4.6.3	Instrumentation to Limit Maximum Power	4.4-48	
	Output		I
4.4.7	References	4.4-49	1
4.5	REACTOR MATERIALS	4.5-1	1
4.5.1	Control Rod Drive System Structural	4.5-1	1
	Materials		-
4.5.1.1	Control Rcd Drive Mechanism (CRDM)	4.5-1	I
	and Gray Rod Drive Mechanism (GRDM)		
	Materials Specifications		
4.5.1.2	Fabrication and Processing of Austenitic	4.5-2	I
	Stainless Steel Components		
4.5.1.3	Contamination Protection and Cleaning of	4.5-3	I
	Austenitic Stainless Steel		
4.5.1.4	Other Materials	4.5-3	I
4.6	FUNCTIONAL DESIGN OF REACTIVITY CONTROL	4.6-1	I
	SYSTEMS		
4.6.1	Information for the Control Rod Drive	4.6-1	I
	System (CRDS)		
4.6.2	Evaluation of the CRDS	4.6-1	1
4.6.3	Testing and Verification of the CRDS	4.6-2	1

•

			Reference
			SAR Section
Section	Title	Page	Status
4.6.4	Information for Combined Performance	4.6-2	Ĺ
	of Reactivity Systems		,
4.6.5	Evaluation of Combined Performance	4.6-3	I
4.6.6	References	4.6-4	1
5.0	REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS	5.0-1	NA
6.0	ENGINEERED SAFETY FEATURES	6.0-1	NA
7.0	INSTRUMENTATION AND CONTROLS	7.0-1	NA
8.0	ELECTRIC POWER	8.0-1	NA
9.0	AUXILIARY SYSTEMS	9.0-1	NA
10.0	STEAM AND POWER CONVERSION SYSTEM	10.0-1	NA
11.0	RADIOACTIVE WASTE MANAGEMENT	11.0-1	NA
12.0	RADIATION PROTECTION	12.0-1	NA
13.0	CONDUCT OF OPERATIONS	13.0-1	NA
14.0	INITIAL TEST PROGRAM	14.0-1	NA
15.0	ACCIDENT ANALYSES	15.0-1	II
15.0.1	General	15.0-1	11
15.0.2	Classification of Plant Conditions	15.0-1	II
15.0.2.1	Condition I - Normal Operation and	15.0-2	II
	Operational Transients		
15.0.2.2	Condition II - Faults of Moderate	15.0-4	11
	Frquency		
15.0.2.3	Condition III - Infrequent Faults	15.0-6	II
15.0.2.4	Condition IV - Limiting Faults	15.0-7	11
15.0.3	Optimization of Control Systems	15.0-8	II
15.0.4	Plant Characteristics and Initial	15.0-9	II
	Conditions Assumed in the Accident		
	Analyses		1. St. St.
15.0.4.1	Design Plant Conditions	15.0-9	II

•

			Reference SAR Section
Section	Title	Page	Status
15 0 4 2	Initial Conditions	15 0-9	,
15.0.4.2	Power Distribution	15.0-10	II
15.0.4.5	Posetivity Coefficients Assumed	15.0-11	TT
15.0.5	in the Accident Analyses	15.0-11	**
15.0.6	Rod Cluster Control Assembly	15.0-12	II
	Insertion Characteristics		
15.0.7	Trip Points and Time Delays	15.0-13	11
	to Trip Assumed in Accident		
	Analyses		
15.0.8	Instrumentation Drift and Calorimetric	15.0-14	11
	Errors - Power Range Neutron Flux		
15.0.9	Plant Systems and Components Available	15.0-15	11
	for Mitigation of Accident Effects		
15.0.10	Fission Product Inventories	15.0-16	II
15.0.10.1	Inventory in the Core	15.0-16	11
15.0.10.2	Inventory in the Fuel Pellet	15.0-16	11
	Clad Gap		
15.0.10.3	Inventory in the Reactor Coolant	15.0-16	II
15.0.11	Residual Decay Heat	15.0-17	II
15.0.11.1	Total Residual Heat	15.0-17	II
15.0.12	Computer Codes Utilized	15.0-17	II
15.0.12.1	FACTRAN	15.0-17	II
15.0.12.2	LOFTRAN	15.0-18	II
15.0.12.3	TWINKLE	15.0-19	II
15.0.12.4	THINC	15.0-19	11
15.0.13	References	15.0-19	11

•

•

0

			Reference
			SAR Section
Section	Title	Page	Status
15.4	REACTIVITY AND POWER DISTRIBUTION	15.4-1	ÍI
15.4.1	Uncontrolled Rod Cluster Control Assembly Bank Withdrawal from a Subcritical or Low-Power Startup Condition	15.4-2	1
15.4.1.1	Identification of Causes and Accident Description	15.4-2	1
15.4.1.2	Analysis of Effects and Consequences	15.4-4	I
15.4.1.2.1	Method of Analysis	15.4-4	I
15.4.1.2.2	Results	15.4-7	I
15.4.1.3	Conclusions	15.4-7	I
15.4.2	Uncontrolled Rod Cluster Control Assembly Bank Withdrawal at Power	15.4-8	I
15.4.2.1	Identification of Causes and Accident Description	15.4-8	I
15.4.2.2	Analysis of Effects and Consequences	15.4-10	I
15.4.2.2.1	Method of Analysis	15.4-10	I
15.4.2.2.2	Results	15.4-12	I
15.4.2.3	Radiological Consequences	15.4-14	I
15.4.2.4	Conclusions	15.4-14	I
15.4.3	Rod Cluster Control Assembly Misoperation (System Malfunction or Operator Error)	15.4-15	11
15.4.3.1	Identification of Causes and Accident Description	15.4-15	11
15.4.3.2	Analysis of Effects and Consequences	15.4-17	II
15.4.3.2 1	Method of Analysis for Dropped or Misaligned RCCA	15.4-18	II
15.4.3.2.2	Statically Misaligned RCCA Results	15.4-18	I
15.4.3.2.3	Single RCCA Withdrawal Method of Analysis	15.4-19	I

WAPWR-RS 1476e:1d

•

•

JULY, 1984

			Reference
			SAR Section
Section	<u>Title</u>	Page	Status
		S. A. Salah	
15.4.3.2.4	Single RCCA Withdrawal Results	15.4-20	I
15.4.3.3	Radiological Consequences	15.4-20	I
15.4.3.4	Conclusions	15.4-21	I
15.4.7	Inadvertent Loading and Operation of a	15.4-21	I
	Fuel Assembly in an Improper Position		
15.4.7.1	Identification of Causes and Accident	15.4-21	I
	Description		
15.4.7.2	Analysis of Effects and Consequences	15.4-22	I
15.4.7.2.1	Method of Analysis	15.4-22	I
15.4.7.2.2	Results	15.4-23	I
15.4.7.3	Radiological Consequences	15.4-24	I
15.4.7.4	Conclusions	15.4-24	I
15.4.8	Spectrum of Rod Cluster Control Assembly	15.4-25	Ĩ
	Ejection Accident		
15.4.8.1	Identification of Causes and Accident	15.4-25	I
	Description		
15.4.8.1.1	Design Precautions and Protection	15.4-25	I
15.4.8.1.1.1	Mechanical Design	15.4-25	1
15.4.8.1.1.2	Nuclear Design	15.4-26	I
15.4.8.1.1.3	Reactor Protection	15.4-27	1
15.4.8.1.1.4	Effects on Adjacent Housings	15.4-27	I
15.4.8.1.1.5	Effects of Rod Travel Housing Longitudinal	15.4-27	I
	Failures		
15.4.8.1.1.6	Effects of Rod Travel Housing	15.4-28	I
	Circumferential Failures		
15.4.8.1.1.7	Possible Consequences	15.4-28	I
15.4.8.1.1.8	Summary	15.4-28	I
15.4.8.1.2	Limiting Criteria	15.4-29	I

•

			Reference
			SAR Section
Section	Title	Page	Status
15.4.8.2	Analysis of Effects and Consequences	15.4-30	I
15.4.8.2.1	Calculation of Basic Parameters	15.4-32	I
15.4.8.2.1.1	Ejected Rod Worths and Hct Channel	15.4-32	I
	Factors		
15.4.8.2.1.2	Reactivity Feedback Weighting Factors	15.4-33	I
15.4.8.2.1.3	Moderator and Doppler Coefficients	15.4-34	I
15.4.8.2.1.4	Delayed Neutron Fraction, Beff	15.4-34	I
15.4.8.2.1.5	Trip Reactivity Insertion	15.4-34	I
15.4.8.2.1.6	Reactor Protection	15.4-35	I
15.4.8.2.1.7	Results	15.4-36	I
15.4.8.2.1.8	Fission Product Release	15.4-39	I
15.4.8.2.1.9	Pressure Surge	15.4-39	I
15.4.8.2.1.10	Lattice Deformation	15.4-39	Ĩ
15.4.8.3	Radiological Consequences	15.4-40	I
14.4.8.3.1	Analytical Assumptions	15.4-40	I
15.4.8.3.1.1	Source Term Calculations	15.4-40	I
15.4.8.3.1.2	Mathematical Models Used in the Analysis	15.4-41	I
15.4.8.3.1.3	Identification of Leakage Pathways and	15.4-41	I
	Resultant Leakage Activity		
15.4.8.3.2	Identification of Uncertainties and	15.4-42	I
	Conservative Elements in the Analysis		
15.4.8.3.3	Conclusions	15.4-43	I
15.4.8.3.3.1	Filter Loadings	15.4-43	1
15.4.8.3.3.2	Dose to Receptor at the Exclusion Area	15.4-43	I
	Boundary and Low Population Zone		
	Outer Boundary		
15.4.9	References	15.4-44	II

•

			Reference
			SAR Section
Section	Title	Page	Status
			1
15A	ACCIDENT ANALYSIS RADIOLOGICAL	15.A-1	11
	CONSEQUENCES EVALUATION MODELS AND		
	PARAMETERS		
15A.1	General Accident Parameters	15.A-1	II
15A.2	Offsite Radiological Consequences	15.A-1	II
	Calculational Models		
15A.2.1	Accident Release Pathways	15.A-2	II
15A.2.2	Single-Region Release Model	15.A-2	II
154.2.3	Two-Region Spray Model in Containment (LOCA)	15.A-4	II
15A.2.4	Offsite Thyroid Dose Calculation Model	15.A-5	II
15A.2.5	Offsite Beta - Skin Dose Calculational	15.A-6	II
	Model		
15A.2.6	Offsite Gamma-Body Dose Calculational	15.A-6	11
164 2	Model	15 A-7	11
IDA.J	Calculational Models	1914 1	
154 2 1	Integrated Activity in Control Room	15.A-7	П
154.3.3	Integrated Activity Concentration in	15.A-9	II
15A.3.2	Control Room From Single-Region		
	Sustem		
154 3 3	Control Room Thyroid Dose Calculational	15.A-9	11
126.0.0	Model		
15A.3.4	Control Room Beta - Skin Dose	15.A-10	11
	Calculational Model		
15A.3.5	Control Room Gamma - Body Dose	15.A-11	11
	Calculation		
15A.3.5.1	Model for Radiological Consequences Due	15.A-11	II
	to Radioactive Cloud External to the		
	Control Room		
WADWR-RS			JULY, 1984

1476e:1d

•

			Reference SAR Section
Section	Title	Page	Status
15A.4	References	15.A-12	II
16.0	TECHNICAL SPECIFICATIONS	16.0-1	N/A
17.0	QUALITY ASSURANCE	17.1-1	II
17.1	Quality Assurance During Design and	17.1-1	II
	Construction		
17.1.1	References	17.1-1	II

•

•

0

KEY TO "REFERENCE SAR SECTION STATUS" COLUMN:

Category I

Those sections which are complete and for which no additional information is to be provided for the PDA application.

Category II

Those sections which are complete insofar as providing material relevant to this system module but for which additional information will be provided in support of subsequent modules.

Category III

Those sections for which information on interfacing systems will be provided at a later date.

NA

Those sections for which categorization is not applicable. Only the section titles are included for clarity.

LIST OF TABLES

Number

•

•

Title

1

1.3-1	Design Comparison	1.3-2
1.6-1	Material Incorporated by Reference	1.6-2
1.8-1	Standard Review Plan Deviations	1.8-2
1.8-2	Conformance to US NRC Regulatory Guides	1.8-3
	Applicable to the WAPWR Reactor System	
3.1-1	GDC Applicable to the Reactor System	3.1-2
3.2-1	Classification of Structures, Systems, and	3.2-3
	Components for the Reactor System	
4.1-1	Reactor Design Comparison Table	4.1-4
4.1-2	Analytical Techniques In Core Design	4.1-9
4.1-3	Design Loading Conditions Considered for	4.1-11
	Reactor Core Components	
4.3-1	Reactor Core Description	4.3-73
4.3-2	Nuclear Design Parameters	4.3-77
4.3-3	Reactivity Requirements for Rod Cluster	4.3-80
	Control Assemblies	
4.3-4	Benchmark Critical Experiments	4.3-82
4.3-5	Axial Stability Index for Pressurized Water	4.3-83
	Reactor Core With a 12-Foot Height	
4.3-6	Typical Neutron Flux Levels (n/cm ² -sec)	4.3-84
	At Full Power	
4.3-7	Comparison of Measured and Calculated	4.3-85
	Doppler Defects	
4.3-8	Saxton Core II Isotopics Rod MY, Axial Zone 6	4.3-86
4.3-9	Critical Boron Concentrations, HZP, BOL	4.3-87
4.3-10	Benchmark Critical Experiments, B4C Control	4.3-88
	Rod Worth	

JULY, 1984

LIST OF TABLES

Number

•

•

Title

4.3-11	Comparison of Measured and Calculated Moderator	4.3-89
	Coefficients at HZP, BOL	
4.4-1	Thermal and Hydraulic Comparison Table	4.4-58
15.0-1	Nuclear Steam Supply System Power Ratings	15.0-21
15.0-2	Values of Pertinent Plant Parameters Utilized	15.0-22
	In Accident Analyses (ITDP)	
15.0-2a	Values of Pertinent Plant Parameters Utilized	15.0-23
	In Accident Analyses (non-ITDP)	
15.0-3	Summary of Initial Conditions and Computer	15.0-24
	Codes Used	
15.0-4	Trip Points and Time Delays to Trip Assumed	15.0-27
	In Accident Analyses	
15.0-5	Determination of Maximum Overpower Trip Point -	15.0-28
	Power Range Neutron Flux Channel-Based on	
	Nominal Setpoint Considering Inherent	
	Instrument Errors	
15.0-6	Plant Systems and Equipment Available for	15.0-30
	Transient and Accident Conditions	
15.0-7	Fuel and Rod Gap Inventories, Core (Ci)	15.0-34
15.0-8	Reactor Coolant Ludine Concentrations for	15.0-35
	1 µCi/gram and 60 µCi/gram of Dose	
	Equivalent I-131	
15.0-9	Reactor Coolant Noble Gas Specific Activity	15.0-36
	Based on One Percent Defective Fuel	
15.0-10	Iodine Appearance Rates In the Reactor Coolant	15.0-37
	(Curies/sec.)	

LIST OF TABLES

Number	Title	, Page
15.4-1	Time Sequence of Events for Incidents Which Result in Reficivity and Power Distribution Anomalies	15.4-46
15.4-2	Minimum Calculated DNBR for Rod Cluster Control Assembly Misalignment	15.4-50
15.4-3	Parameters Used in the Analysis of the Rod Cluster Control Assembly Ejection Accident	15.4-51
15.4-4	Parameters Used in Evaluating the Radiological Consequences of a Control Rod Ejection Accident (For a Typical Four-Loop Westinghouse PWR)	15.4-52
15.4-5	Radiological Consequences of a Control Rod Ejection Accident (For a Typical Four-Loop Westinghouse PWR)	15.4-55
15A-1	Parameters Used in Accident Analysis	15.A-13
15A-2	Limiting Short-Term Atmospheric Dispersion Factors for Accident Analysis (S/M ³)*	15.A-14
15A-3	Dose Conversion Factors Used in Accident Analysis	15.A-15

•

•

8

xxiv

.

LIST OF FIGURES

Number

9

•

•

Title

1.2-1	Fuel Assembly Outline
1.2-2	Reactor Vessel
1.2-3	Integrated Head Pack ge
1.2-4	Displacer Rod Drive Mechanism
1.2-5	Comparison of 414 and WAPWR
3.9-1	Typical Full-Length Control Rod Drive
	Mechanism
3.9-2	Typical Full-Length Control Rod Drive
	Mechanism Schematic
3.9-3	Nominal Latch Clearance at Minimum
	and Maximum Temperatures
3.9-4	Nominal Control Rod Drive Mechanism
	Latch Clearance Thermal Effect
3.9-5	DRDM Vent System
3.9-6	Displacer Rod Drive Mechanism
3.9-7	WAPWR Reactor Internals (General
	Assembly Layout)
3.9-8	WAPWR Calandria Conceptual Design Layout
3.9-9	WAPWR, WDRC, RCCA Cross Section
3.9-10	WAPWR Inner Barrel Conceptual Design
	Layout
3.9-11	Radial Reflector Overall Plan View
	(Quadrant)
3.9-12	WAPWR Radial Reflector Module General
	Assembly (Typical)
4.2-1	19x19 Fuel Assembly With 16 Guide Thimbles
4.2-2	WAPWR 19x19 Fuel Assembly

LIST OF FIGURES

Number

•

•

2

Title

	Fuel Ded Schematic
4.2-3	
4.2-4	Top and Bottom Nozzles
4.2-5	Guide Thimble to Bottom Grid and Nozzle Joint
4.2-6	Plan View of Mid-Grid to Guide Thimble
	Joint (Bottom View)
4.2-7	Elevation View of Mid-Grid to Guide Thimble
	Joint
4.2-8	Top Grid to Guide Thimble and Top Nozzle
	Attachment
4.2-9	Rod Cluster Control and Drive Rod
4.2-10	RCCA and Gray Rod Assembly
4.2-11	Gray and Absorber Rodlet Schematic
4.2-12	Secondary Source Rod Schematic
4.2-13	Water Displacer Rodlet Schematic
4.2-14	Water Displacer Assembly
4.2-15	Typical Rod Cluster Arrangement - 19x19
	Fuel Assembly Array, 16 Guide Thimbles
	Per Assembly
4.3-1	First Core Loading Pattern
4.3-2	Production and Consumption of Higher Isotopes
4.3-3	Boron Concentration Versus First Cycle Burnup
4.3-4	Fuel Assembly Cross-Section
4.3-5	Normalized Power Density Distribution Near
	Beginning of Life, Unrodded Core, Hot Full
	Power, No Xenon, WDR's and GR's Inserted
4.3-6	Normalized Power Density Distribution Near
	Beginning of Life, Unrodded Core, Hot Full
	Power, Equilibrium Xenon, WDR's and GR's
	Inserted

WAPWR-RS 1476e:1d xxvi

JULY, 1984

LIST OF FIGURES

Title

4.3-7	Normalized Power Density Distribution Near
	Beginning of Life, Group D at 18% Inserted,
	Hot Full Power, Equilibrium Xenon, WDR's
	and GR's Inserted
4.3-8	Normalized Power Density Distribution Near
	Middle of Life, Unrodded Core, Hot Full
	Power, Equilibrium Xenon, WDR's and GR's Inserted
4.3-9	Normalized Power Density Distribution, Unrodded
	Core, Hot Full Power, Equilibrium Xenon,
	WDR's and GR's Inserted
4.3-10	Normalized Power Density Distribution, Group D
	at 18% Inserted, Hot Full Power, Equilibrium
	Xenon, WDR's and GR's Inserted
4.3-11	Normalized Power Density Distribution, Unrodded
	Core, Hot Full Power, Equilibrium Xenon, Following
	Withdrawal of WDR's and GR's
4.3-12	Normalized Power Density Distribution, Group D
	at 18% Inserted, Hot Full Power, Equilibrium
	Xenon, Following Withdrawal of WDR's and GR's
4.3-13	Normalized Power Density Distribution Near
	End of Life, Unrodded Core, Hot Full Power,
	Equilibrium Xenon With WDR's and GR's Withdrawn
4.3-14	Normalized Power Density Distribution Near
	End of Life, Group D at 18% Inserted, Hot
	Full Power, Equilibrium Xenon
4.3-15	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-12), Near Beginning
	of Life, Hot Full Power, No Xenon, Unrodded
	Core, WDR's and GR's Inserted

WAPWR-RS

•

•

Number

xxvii

JULY, 1984

LIST OF FIGURES

Title

4.3-16	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-17), Hot Full Power,
	Equilibrium Xenon, Unrodded Core, WDR's
	and GR's Inserted
4.3-17	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-13), Near Beginning
	of Life, Hot Full Power, No Xenon, Unrodded
	Core, WDR's and GR's Inserted
4.3-18	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-13), Hot Full Power,
	Equilibrium Xenon, Unrodded Core, WDR's
	and GR's Inserted
4.3-19	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-12), Near End of
	Life, Hot Full Power, Equilibrium Xenon,
	Unrodded Core, WDR's and GR's Withdrawn
4.3-20	Rodwise Power Distribution in a Typical
	Assembly (Assembly F-13), Near End of
	Life, Hot Full Power, Equilibrium Xenon,
	Unrodded Core, WDR's and GR's Withdrawn
4.3-21	Typical Axial Power Shapes Occurring at
	Beginning of Life, WDR's and GR's Inserted
4.3-22	Typical Axial Power Shapes Occurring
	at Middle of Life, WDR's and GR's Inserted
4.3-23	Typical Axial Power Shapes Occurring at
	End of Life, WDR's and GR's Inserted
4.3-24	Typical Axial Power Shapes Occurring at
	End of Life, WDR's and GR's Withdrawn

•

•

•

Number

xxviii

LIST OF FIGURES

Number

•

•

Title

4.3-25	Comparison of Assembly Axial Power
	Distribution With Core Average Axial
	Distribution Bank Slightly Inserted
4.3-26	Flow Chart for Determining Spike Model
4.3-27	Predicted Power Spike Due to Single
	Non-flattened Gap in the Adjacent Fuel
4.3-28	Power Spike Factor as a Function of Axial Power
4.3-29	Maximum F _o x Power Versus Axial Height
	During Normal Operation (Typical Envelope)
4.3-30	Peak Linear Power During Control Rod
	Malfunction Overpower Transient
4.3-31	Peak Linear Power During Boration/Deboration
	Overpower Transients
4.3-32	Typical Comparison Between Calculated and
	Measured Relative Fuel Assembly Power Distribution
4.3-33	Comparison of Calculated and Measured Axial Shape
4.3-34	Comparison of Calculated and Measured Peaking
	Factor, [FnxPpri] Max Envelope as a Function of
	Core Height
4.3-35	Doppler Temperature Coefficient at BOL and
	EOL, Cycle 1
4.3-36	Doppler Only Power for the at BOL and EOL,
	Cycle 1
4.3-37	Doppler Only Power Defect at 30L and EOL,
	Cycle 1
4.3-38	Moderator Temperature Coefficient at BOL,
	Cycle 1. No Rods, WDR's and GR's Inserted

LIST OF FIGURES

Title

4.3-39	Moderator Temperature Coefficient Near EOL,
	Cycle 1 WDR's and GR's Inserted
4.3-40	Moderator Temperature Coefficient at EOL,
	Cycle 1, WDR's and GR's Withdrawn
4.3-41	Moderator Temperature Coefficient as a Function
	of Boron Concentration, BJL, Cycle I, No Rods,
	WDR's and GR's Inserted
4.3-42	Hot Full Power Temperature Coefficient During
	Cycle 1 for the Critical Boron Concentration
4.3-43	Total Power Coefficient, BOL, EOL, Cycle 1
4.3-44	Total Power Defect, BOL, EOL, Cycle 1
4.3-45a	Rod Cluster Control Assembly and Gray Rod Pattern
4.3-45b	DRDM/WDRC Group Pattern
4.3-46	Accidental Simultaneous Withdrawal of Two Control
	Banks, EOL, HZP, Banks C and B Moving in Same
	Plane
4.3-47	Typical Design Trip Curve
4.3-48	Normalized Rod Worth Versus Percent Insertion,
	All Rods But One
4.3-49	Axial Offset Versus Time, PWR Core With a 12 ft.
	Height and 121 Assemblies
4.3-50	XY Xenon Test Thermocouple Response Quandrant
	Tilt Difference Versus Time
4.3-51	Calculated and Measured Doppler Defect and
	Coefficient at BOL, 2-Loop Plant, 121 Assemblies,
	12 ft. Core
4.3-52	Comparison of Calculated and Measured Boron
	Concentration for 2-Loop Plant, 121 Assemblies,
	12 ft. Core

WAPWR-RS 1476e:1d

•

•

1

Number

XXX

.

LIST OF FIGURES

Number

•

•

a'

Title

Comparison of Calculated and Measured C _R , 3-Loop
Plant, 157 Assemblies, 12 ft. Core
Comparison of Calculated and Measured C _R , 4-Loop
Plant, 193 Assemblies, 12 ft. Core
Improved Thermal Design Procedure Illustration
Measured Versus Predicted Critical Heat Flux, WRB-2
Correlation
TDC versus Reynolds Number for 26 inch Grid Spacing
Normalized Radial Flow and Enthalpy Rise
Distribution at Elevation of 1/3 of Core Height
Normalized Radial Flow and Enthalpy Rise
Distribution at Elevation of 2/3 of Core Height
Normalized Radial Flow and Enthalpy Rise
Distribution at Core Exit Elevation
Void Fraction Versus Thermodynamic Quality
H-HSAT/HG-HSAT
Thermal Conductivity of UO2 (Data Corrected to
95% Theoretical Density)
Reactor Coolant System Temperature Percent
Power Map
Distribution of Incore Instrumentation
Illustration of Core Thermal Limits and DNB
Protection (N-Loop Operation)
Doppler Power Coefficient Used In Accident
Analysis
RCCA Position vs. Time to Dashpot
Normalized RCCA Reactivity Worth vs. Fraction
Insertion

xxxi

LIST OF FIGURES

Number

•

•

Title

15.0-5	Normalized RCCA Bank Reactivity Worth vs.
	Normalized Drop Time
15.4-1	Neutron Flux Transient for Uncontrolled Rod
	Withdrawal from a Subcritical Condition
15.4-2	Thermal Flux Transient for Uncontrolled Rcd
	Withdrawal from a Subcritical Condition
15.4-3	Fuel and Clad Temperature for Uncontrolled
	Rod Withdrawal from a Subcritical Condition
15.4-4	Nuclear Power Transient and Heat Flux
	Transient for Uncontrolled Rod Withdrawal
	from Full Power with Minimum Feedback and 75
	pcm/sec Withdrawal Rate
15.4-5	Pressurizer Pressure and Water Volume
	Transients for Uncontrolled Rod Withdrawal
	from Full Power with Minimum Feedback and
	75 pcm/sec Withdrawal Rate
15.4-6	Core Average Temperature Transient and DNBR
	vs. Time for Uncontrolled Rod Withdrawal
	from Full Power with Minimum Feedback and
	75 pcm/sec Withdrawal Rate
15.4-7	Nuclear Power Transient and Heat Flux Transients
	for Uncontrolled Rod Withdrawal from Full Power
	with Minimum Feedback and 1 pcm/sec Withdrawal
	Rate
15.4-8	Pressurizer Pressure and Water Volume Transients
	for Uncontrolled Rod Withdrawal from Full Power
	with Minimum Feedback and 1 pcm/sec Withdrawal
	Rate

xxxii

LIST OF FIGURES

Title Number Core Average Temperature Transient and DNBR 15.4-9 vs. Time for Uncontrolled Rod Withdrawal from Full Power with Minimum Feedback and 1 pcm/sec Withdrawal Rate Rod Withdrawal at Power (100% Power) 15.4-10 15.4-11 Rod Withdrawal at Power (60% Power) Representative % Change in Local Assy. Avg. 15.4-12 Power for Interchange Between Region 1 and Region 3 Assy. Representative % Change in Local Assy. Avg. 15.4-13 Power for Interchange Between Region 1 and Region 2 Assy. with BP Rods Retained by the Region 2 Assy. Representative % Change in Local Assy. Avg. 15.4-14 Power for Interchange Between Region 1 and Region 2 Assy. with the BP Rods Transferred to Region 1 Assy. Representative % Change in Local Assy. Avg. 15.4-15 Power for Enrichment Error (Region 2 Assy. Loaded into Core Central Position) Representative % Change in Local Assy. Avg. 15.4-16 Power for Loading Region 2 Assy. into Region 1 Position Near Core Periphery Nuclear Power Transient BOL, Voided, Full 15.4-17 Power Hot Spot Fuel and Clad Temperature vs. Time 15.4-18 BOL. Voided, Full Power

80

xxxiii

LIST OF FIGURES

Title

15.4-19	Nuclear Power Transient, EOL, Flooded,
	Zero Power
15.4-20	Hot Spot Fuel and Clad Temperatures vs.
	Time EOL, Flooded, Zero Power
15.A-1	Release Pathways

•

•

Number