

STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION

SECTION 2.4.8

COOLING WATER CANALS AND RESERVOIRS

REVIEW RESPONSIBILITY

Primary - Site Analysis Branch (SAB)

Secondary - None

AREAS OF REVIEW

This section of the applicant's safety analysis report (SAR) presents the basis for the hydraulic design of canals and reservoirs used to transport and impound plant cooling water. In addition, the hydraulic design basis for protection of structures (e.g., riprap) is reviewed. For canals, the review covers the design basis for capacity, protection against wind waves, erosion, and freeboard, and (where applicable) the ability to withstand a probable maximum flood (PMF), surges, etc. For reservoirs, the areas of review include the design basis for capacity, probable maximum flood design basis, wind wave and runup protection, discharge facilities (low level outlet, spillway, etc.), outlet protection, and freeboard.

II. ACCEPTANCE CRITERIA

The acceptance criteria for the protection of cooling water canals from wind waves, PMF, surges, etc., are the same as those outlined in Standard Review Plans 2.4.3, 2.4.4, 2.4.5, and 2.4.7. The criterion for canal capacity is that the canal must be capable of transmitting to the plant sufficient water to meet all safety requirements during postulated extreme hydrologic events (i.e., both floods and droughts). Where canals comprise a part of the ultimate heat sink, Regulatory Guide 1.27 is used as a basis for the adequacy of design criteria and provisions. The design basis for canal capacity is analyzed, in any case, to assure that safety-related water requirements can be supplied under all reasonably severe conditions, or that alternative conveyance systems are designed to be available during the postulated conditions. The potential need for Technical Specifications to limit plant operation if normal plant water requirements may be adversely affected by extreme hydrologic phermena is determined. Techniques developed by the Bureau of Reclamation (USBR) and Corps of Engineers are used to analyze the hydraulic design.

The acceptance criteria for the hydraulic design of reservoirs are as follows:

USNRC STANDARD REVIEW PLAN

Standard review plans are prepared for the guidance of the Office of Nuclear Reactor Regulation staff responsible for the review of applications to construct and operate nuclear power plants. These documents are made available to the public as part of the Commission's policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission's regulations and compliance with them is not required. The standard review plan sections are keyed to Available 2 the Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants. Not all sections of the Standard Format have a corresponding review plan.

Published standard review plans will be revised periodically, as appropriate, to accommodate comments and to reflect new information and experience

Comments and suggestions for improvement will be considered and should be sent to the U.S. Nuclear Regulatory Commission. Office of Nuclear Regulation. Weshington, D.C. 20566.

- 1. For protection of structures against wind waves, input from SAR Sections 2.4.3, 2.4.4, 2.4.5, 2.4.6, and 2.4.7 for PMF, probable maximum hurricane (PMH), surge, seiche, or tsunami levels and coincident waves and runup must be considered to establish the maximum and minimum water level and wave conditions. Also, normal pool level and coincident probable maximum wind-wave activity must be considered. Criteria and methods as reported in Corps of Engineers publications are generally acceptable for design of embankment protection (riprap, grass, soil cement, tetrapods, dolosse, etc.) and freeboard.
- 2. For emergency storage evacuation, the spillways are acceptable if they can safely pass the PMF, or controlling design basis flood, without endangering safety-related facilities or increasing the hazard to downstream residents. In addition, a low level outlet should be provided to evacuate the storage in an emergency.
- 3. For reservoir routings, the maximum still water level is acceptable if the spillway design flood has been routed through the spillway (and outlet works, if applicable) using standard methods as suggested by the Corps of Engineers, USBR, and others, and a minimum of three feet of freeboard (including waves) is available. However, the antecedent reservoir level to be used with the flood routing must be at least as high as that suggested by Regulatory Guide 1.59, "Design Basis Floods for Nuclear Power Plants."

The probable minimum low water level is acceptable if the flow during the design basis drought (from SAR Section 2.4.11) has been routed through the reservoir using standard methods as suggested by the Corps of Engineers, USBR, and others. The antecedent reservoir level for this routing, if reservoir storage is the sole water supply source, must be the lowest reasonably possible, considering regional conditions at the beginning of the drought and water demands, including plant requirements. In no case should the antecedent reservoir level be greater than the established normal operating level.

4. Where not covered above, the hydraulic design for low level outlets, conduits, spillways (gated and ungated, regulating and emergency), and embankment protection is required where the failure of such items could constitute a threat to essential plant facilities or to safety-related water supplies. The design is acceptable if standard techniques have been used as suggested by the Corps of Engineers, USBR, and others such that the minimum design water level for safety-related pumps would not be violated.

III. REVIEW PROCEDURES

In general, the conservatism of the applicant's design basis is judged against the criteria indicated above. SAR Sections 2.4.3, 2.4.4, 2.4.5, 2.4.6, and 2.4.7 should provide the hasic data for analyzing the high flow hydraulic design basis of the facility. The applicant's hydraulic design basis is judged against standard design practices discussed in Corps of

For those plants proposing multiple reservoirs for water supply, analyses must be provided to assure that storage allocated for safety-related water supply in alternate reservoirs will be available during postulated drought conditions. Additionally, evidence of the right to use the water consumptively must be documented.

Engineers (Waterway Experiment Station) or USBR publications. Low flow input data are taken from SAR Section 2.4.11. The review procedure consists of independently "designing" (hydrologically and hydraulically), when necessary, the applicant's facilities (e.g., dams, canals, spillways) using the above methods and comparing the resultant "design" with the applicant's. Wave and runup protection is evaluated using the methods of References 20 and 21.

The above reviews are performed only when applicable to the site or site region. Some items of review may be done on a generic basis.

IV. EVALUATION FINDINGS

For construction permit (CP) reviews the findings will consist of a statement of the applicant and staff estimates of the tyre and adequacy of required structure protection and the hydraulic design basis of canals and reservoirs. Because of the advanced design required for the CP and where the design has received a detailed review at the CP stage, the operating license (OL) findings will only be an acknowledgement of any changes and a statement of acceptability. If a design or flooding potential was not reviewed in detail at the CP stage, it will be done at the OL stage.

Sample statements from CP reviews follow:

"Although postulated flood waters are not expected to reach plant grade, protection of the essential auxiliary and main dams against their respective probable maximum floods is to be provided by riprap protection of exposed embankment surfaces (including areas in the plant site vicinity along the auxiliary reservoir intake channel) and concrete overflow spillways. At our request, the applicant provided design bases for riprap protection and the hydraulic design criteria for the two spillways. The applicant at our request, in Amendment No. 31 to the PSAR, provides criteria for the windwave riprap protection based upon an empirical relationship for the median size stone to be placed in a blanket approximately two feet thick and indicated its specifications for stone gradation. A filter blanket approximately one foot thick is to be placed under the riprap to prevent piping (removal of smaller material) through the larger armor riprap cover layer. Criteria were provided for the filter gradation, angularity, durability of the riprap, and placement which provides assurance that erosive failure of safety-related embankments should not occur. An armor protection layer also is provided. We find these riprap design bases and spillway hydraulic design criteria to be acceptable.

"Storage in the three reservoir system, runoff from the contributing drainage area, and diversion of A River flows to the main reservoir during periods of low runoff and high reservoir evaporation, will constitute the water supply for the four unit once-through cooling systems.

"The applicant has provided analyses of the capability of the main and auxiliary reservoirs to supply water during emergency conditions requiring emergency shutdown and cooldown of one unit and the simultaneous normal shutdown and cooldown of the remaining three units as suggested in Regulatory Guide 1.27 - Ultimate Heat Sink. In addition, the applicant has provided analyses of the operation of the plant and the main reservoir under historical and a synthesized 100-year drought conditions. For the shutdown conditions the applicant has demonstrated that the two reservoir - A River diversion system constituting the ultimate heat sink would have a water supply available in excess of thirty days in the auxiliary reservoir if water were not available from the main reservoir - auxiliary reservoir - A River diversion facilities. The operation of the sink as a whole will require that the auxiliary reservoir be kept at its normal operating level of elevation 250 feet MSL at all times by pumping water from the main reservoir to make up for water lost to normal evaporation.

"For the analyses of evaporation under normal plant operation during periods of assumed reoccurrence of historical droughts, the applicant has used historical flow records for the A River and synthesized flow data for the drainage area contiguous to the reservoir system. For the analysis of evaporation during a more extreme drought than has occurred historically, the applicant has synthesized flows from both the A River and the contiguous drainage areas for what is called a 100-year frequency drought. The staff, in consonance with our consultant (the U.S. Geological Survey), independently developed and analyzed synthesized flows from both drainage areas. We concluded that it is likely that flows from both areas could be substantially less than estimated by the applicant. The applicant is installing a streamflow gage near the plant to determine runoff characteristics from the contiguous drainage which should allow more accurate analysis of the operating capability of the reservoir system prior to plant operation. Inaccuracies in estimation of runoff are considered to be only indirectly safety related since an adequate shutdown and cooldown water supply will be available in the auxiliary reservoir should evaporation and the lack of runoff prevent replenishment of main reservoir storage above the minimum operating level of elevation 244 feet MSL."

V. REFERENCES

- Am. Soc. Civil Engineers "Hydraulic Models," Manual of Engineering Practice No. 25 (1963).
- Leo R. Beard, "Flood Control Operation of Reservoirs," Jour. Hydraulics Division, Proc. Am. Soc. Civil Engineers, Vol. 88, No. HYI, pp. 1-25 (1963).
- Leo R. Beard, "Methods for Determination of Safe Yield and Compensation Water from Storage," Seventh International Water Supply Conference, Barcelona, Spain (1966).

- E. F. Brater and H. W. King, "Handbook of Hydraulics for the Solution of Hydrostatic and Fluid-Flow Problems," McGraw-Hill Book Company, New York (1963).
- V. T. Chow (ed), "Handbook of Applied Hydrology," McGraw-Hill Book Company, New York (1964).
- 6. V. T. Chow (ed), "Open Channel Hydraulics," McGraw-Hill Book Company, New York (1959).
- C. V. Davis (ed), "Handbook of Applied Hydraulics," McGraw-Hill Book Company, New York (1964).
- 8. G. W. Fair, J. C. Geyer, and D. A. Okien, "Water Supply and Waste Water Removal," John Wiley & Son, Inc., New York (1966).
- G. A. Hathaway, "Determination of Spillway Requirements for High Dams," Proc. Fourth International Conference on Large Dams, New Delhi, Vol. 2, pp. 301-347 (1951).
- H. W. King and E. F. Brater, "Handbook of Hydraulics," McGraw-Hill Book Company, New York (1963).
- R. K. Linsley and J. B. Franzini, "Water-Resources Engineering," McGraw-Hill Book Company, New York (1964).
- 12. H. Rouse (ed), "Engineering Hydraulics," John Wiley & Son, Inc., New York (1951).
- 13. "Hydraulic Design Criteria," prepared by the Corps of Engineers Waterways Experiment Station, loose-leaf by serials.
- 14. "Hydraulic Design of Flood Control Channels," Engineer Manual 1110-2-1601, Corps of Engineers, July 1970.
- "Hydraulic Design of Spillways," Engineer Manual 1110-2-1603, Corps of Engineers, March 1965.
- 16. "Hydraulic Tables," Corps of Engineers (1944).
- "Hydrologic Engineering Methods for Water Resources Development," Volumes 1 through 12, Corps of Engineers Hydrologic Engineering Center, Davis, California (1971).
- 18. "Reservoir Regulation," Engineer Manual 1110-2-3600, Corps of Engineers, May 1959.
- "Reservoir Storage-Yield Procedures," Corps of Engineers Hydrologic Engineering Center (1967).
- "Shore Protection Manual," Technical Report No. 4, Third Edition, Corps of Engineers Coastal Engineering Research Center (1966).

- 21. "Shore Protection Manual," Corps of Engineers Coastal Engineering Research Center (1973).
- 22. Hydraulic Model Studies of the Corps of Engineers Waterways Experiment Station. $\frac{2}{}$
- 23. "Design of Small Dams," Second Edition, Bureau of Reclamation, U.S. Dept. of the Interior (1973).
- 24. "Design Standards No. 3, Canals and Related Structures," Chapter 2 of "General Design Information for Structures," Bureau of Reclamation, U.S. Dept. of the Interior, April 1962.
- 25. "Hydraulic Model Studies" of the Bureau of Reclamation, U.S. Dept. of the Interior.
- 26. "Hydraulic Model Studies" 2/ of the Dept. of Water Resources, State of California.
- 27. Regulatory Guide 1.70, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants," Revision 2.
- 2/ A series of such studies exists in the literature too numerous to mention here. In addition to the three specifically cited series studies by others will be utilized on an "as available" basis.

SRP 2.4.9