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ABSTRACT

This two-volure report presents the procedures and analyses performed in
developing an approach for struciuring expert judgrments to estimate human
error probahilities. Volume | presents an overview of work performed in
developing the approach: SLIM-MAUD (Success Likelihood Index Methodology,
implerented through the use of an interactive computer proaram called
MAUD--Multi-Attribute litility Decomposition). Volume Il provides a more
detailed analysis of the technical issues underlving the approach.
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i. PURPOSE OF THE WORK

This two-vclume report presents the results of a research program devoted
to the refinement and further development of the Success Likelihood Index
Methodology (SLIM). SLIM camprises a set of procedures for eliciting and
organizing tho estimates of experts concerning the probability of success or
failure of specified human actions in nuclear power plants. The geal is to
produce human error probability (HEP) estimates in support of human reliabil-
ity anaiysis (HRA) seaments of probabilistic risk assessments (PRA) of nuclear
power plants,

The SLIM research program consisted of three phases of investigation:
phase | involved an exnerimental evaluation of SLIM; in phase Tl a field test
of SLIM was conducted; and in phase 11l SLIM was linked to @ computer bhased
elicitation procedure based upon Multi-Attribute Utility Decamposition (MAUD).
This report discusses the results obtained in each cf the separate phases of
investigation, together with a detailed plan for the next phase of research,
the assessment of the utility of the MAIID-based implementation of SLIM
(SLIM-MAUD),

Volume I of this report presents an overview of SLIM, a discussion of the
results of the experiment and field test, a discussion of the linking of SLIM
to MAUD, and an outline of a Test Plan for the next phase of research.

Volume TI discusses criteria for evaluating subjective techniques for
estimating human reliability, presents an in-depth, theoretical and technical
discussion of SLIM and the SLIM-MAUD implementation, and provides a detailed
description of the Test Pian for the next research phase. In addition, task
descriptions used by subjects in the SLIM experiment and definitions of per-
formance shaping factors (PSFs) used in the field test are presented, together
with an example of a frame-by-frame computer interaction from a SLIM-MAUD
session, along with the results produced.

8 BACKGROUIND

PRA is an approach which has been extensively applied in recent years to
the nuclear, chemical, offshore 0il drilling, and other industries in order to
identify the potential risks in a system and to evaluate their probahility of
occurrence and the expected consequences. The PRA process involves first
modeling the system to evaluate the various ways in which subsystem failures
can occur, and then assigning probahilities to these failures. These are
subsequently corbined together to qive the overall probability of failure for
the systeam as a whole. Oriainally, PRA was primarily ccncerned with failures
of harduare components such as pumps and valves, particularly where these were
part of safety related systems. In recent years there has been a qrowing
realization that human actions can have a significant effect on *he likelihooa
of failure of a system. This was reinforced by incidents such as Three Mile
Island, where human errors, exacerhated by desian deficiencies, led to the
most serious incident yet experienced by the nuciear industry in the U,S.



Ore of the major problems encountered in human reliahbility assessment is
the special difficulty of obtaininag data on human errors for use in PRA, In
the case of hardware components, such as valves, it is relatively easy to ob-
serve how many mechanical failures cccur compared with the number of success-
ful operations. The frequency of failures divided by the total number of
operations can then be used to estimate the probability of failure.

In the case of human actions, the situation is considerably more compli-
cated, Blame and quilt tend to be associated with errors, and therefore many
erronens actions are not reported hecause of the likelihood of punitive ac-
tions against the individual operatur. In addition, many errors are due to
“cognitive malfunctions" such as inappropriate decision makina or a mispercep-
tion of the nature of a situation. Thus, a failure to operate a valve is an
external "error mode" which could have arisen from a variety of cognitive mal-
functions such as a failure to understand which valve was to be operated, or
confusing the situation with another similar situation., Clearly, it is not
possible to directly observe the number of times such internal "coagnitive mal-
functions" occur, and therefoe it is almost impossible to collect numerical
data on these events, Althouach some numerical data on the probability of
human errors is availabhle, these tend to he confined to fairly simple, easily
ohservable actions obtained either from production line situations or labora-
tory experiments, There are considerable problems associated with extrapolat-
ing such data to the very different enviromment of a nuclear power plant.

These problems can he overcome to a large extent by the use of techniques
which utilize expert judgment. The rationale underlying such approaches is
that, using experienced judges, it is possibie to elicit estimates of the ways
in which the probability of error is likely to he affected by factors such as
the operators level of training, time available to carry out the required ac-
tion, the existence of good quality procedures, etc. If this information can
he used to derive failure probabilities for individual human actions, then the
data problem is considerably reduced. The question of the validity of this
aoproach, in tems of the deqree to which it generates similar probability
estimates as field data on the same human errors collected from a real plant,
is discussed in detail in Volume II, Section 1,10 of this report,

SLIM, the expert judument methodoloqy which was refined and developed
further in this study, is an extension of previous work on the problem
(Embrey . 1983a) NUREG/CR-2986, DNuring that earlier work, the basic form of
SLIM was developed and a limited piiot experiment carried out to test the
approach. Phase | of the SLIM research program concerned itself with testing
some of the underlying assumptions of the method. Phase II was devoted to
carrying out a field study to detemine the applicahility of SLIM to real and
representat ive nuclear power plant critical scenarios and to evaluate the
reactions of potential users of the technique. Phase IIl, representing a
major proportion of the work reported here, was the development of a computer
hased implementation of the original SLIM methodology using an interactive



program cal led MAUD*, SLIM will be described in detail in subsequent sec-
tions, toagether with a plan for the testing and validation of the approach by
potential users.

3. THE SUCCESS LIKFLIHOON INDEX METHODOLODY (SLIM)

A detailed technical description of SLIM is available in a number of pub-
lications, e.q., Embrey (1982a,h,c), and an explanation of the theory under-
lying SLIM is presented in Volume II, Section 1.6 of this report. In this
section, the original form of the apprecach will be described, together with
the procedures for carrying out a SLIM assessment. The procedure is generally
carried out using multiple judges (either working alone or together in a
qroup), in order to take into account a range ot experience and to reduce
hiases which may be present within individual judaments.

The basic rationale underlying SLIM is that the likelihood of an error
occuring in a particular situation depends on the cambined effects of a rela-
tively small set of performance shaping factors (PSFs). In brief, PSFs in-
clude both human traits and conditions of the work setting that likely
influence an individual's performance. Examples of human traits that “shape"
performance might include the competence of an operator (as detemined by
training ar* expe-ience), his/her morale and motivation, etc. Conditions of
the work setting affecting perfomance might include the time &.ailable to
complete a task, task performance aids, etc. It is assumed that an expert
judge (or judges) is able to assess the relative importance (or weight) of
each PSF with reqard to its effect on reliability in the task being evaluated.
It is also assumed that, independent of the assessment of relative importance,
the judge(s) can make a numerical rating of how aood or how bad the PSFs are
in the task under consideration, (e.q., achieving recirculatien in a pres-
surized water reactor [PWR] loss-of-conlant accident [LNCA]) where "good" or
"had" mean that the PSFs will either enhance or deqrade reliability.

Having obtained the relative importéence weights and ratings, these are
multipl'ied toagether for each PSF and the resulting products are then summed to
give the Success Likelihood Index (SLI). The SLI is a quantity which repre-
sents the owerall belief of the judge(s) reaarding the positive or negative
effects of the PSfs on the likelihood of success for the task under considera-
tion. If we can assume that as a result of their knowledge and experience the
judge(s) have a correct idea of the effects of the PSFs on the likelihood of
success, then we would expect the SLI to be related to the probability of suc-
cess that would be observed in the long run in the situation of interest
(i.e., the actuarially determined probability).

A major assumption of the SLIM approach is that a SLI qgenerated by this
process hbears a consistent relationship to the expected long-termm probability

*MAUD (Multi-Attribute litility Decomposition) is a stand alone interactive
software package running under the CP/M operating system, which aids the user
in assessing alternatives., MAID is proprietary to the Decision Analysis
linit, London School of Economics, and was made available for this study
througn a non-exclusive end user license.
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of success and can be converted to it in a simple manner, Experimental evi-
dence suqaests that the SLI is related to the logarithm of the probability of
success for a task. Pontecorvo (1965) showed a logarithmic relationship
hetween an index similar to the SLI and the loq probability of success for
maintenance tasks, Hunns (1982) provides an intuitive argument qiving support
to the notion of a logarithmic relationship in this context. The main justi-
fication for the use of a logarithmic relationship is, however, empirical
rather than theoretical. Thus, support for a logarithmic relationship, or any
other consistent relationship assumed within SLIM, must come from actual data.
There are also practical advantages in using a logarithmic relationship
because of the wide ranqe of magnitudes of human error probabilities (HEPs)

(1 to 10-5) which need to he considered.

The logarithmic relationship between expert judaments and success probh-
abilities can be expressed with the followina calibration equation:

log of the success probability = a SLI + b
where:
a and b are empirically derived constants,

In order to produce an empirical calibration relationship between the SLI and
the log of the success probability, at least two tacsks must be availahle for
which the probability of success is known, in the task set being evaluated.

If this is the case, the constants a and b in the above equation can be
evaluated and the calibration equation can then be ‘ised to transform any SLI
value produced by the judge(s) into a Toq probahili.y of success for the task.
The o, probahility of success is readily convertable into the probability of
success. An estimate of the HEP or likelihood of task failure, the ultimate
qoal of SLIM, is found by simply subtracting the success probability from one.

3.1 An Example of the SLI Procedure

The concepts described above can best be illustrated hy a simple worked
example., This section will also provide a detailed description of the practi-
cal application of SLIM, Supnose one desired to evaluate the probability that
an operator will correctly diagnose the state of a nuclear power plant, and
initiate manual intervention when a failure occurs in an emeraency feed-
water pump during a transient, The following steps would be carried out.

3.1.1 Step 1: Modeling and Specification of PSFs

Nuring this first step, the judaes thorouahly discuss the task to be
evaluated, with particular attention being paid to identifying the various
ways in which errors of omission and commission could occur (error modes) and
the PSFs which could impact on these error modes. The various forms of task
analysis which are available may be employed here, together with documentation
of emerqgency operating procedures, photoagraphs of the control roam, etc.
Operator input is very important at this stage. The modeling should be as
exhaustive as possible and the results documented to indicate the error modes



tnat the judaes have in mind when making their assessment, This is necessary
so that the procedure can bhe subsequently audited if required. The documen-
tation could he in the form of a fault tree, the technique used to represent
failure modes in the hardware assessment aspects of PRA, or some other fo-m of
representation, At the end of the modeling phase, all credible error mode .
will have heen considered and the PSFs which have a sianificant effect on
these errors will have been identified.

In our example, we will assume that the judaes have decided that the
following PSFs are the major factors influencing success in the task being
evaluated:

e Nuality of the information availahle to the operator from the control
panel.,

e Nuality of the procedures,

e Time availabhle to diagnose the situation and to carry out the appro-
priate actions.

o Deqree of operator training.

The documentation for this phase should include some description of exactly
what is meant by each of these PSFs as used in the modeling session. The pro-
cess of documenting the sessions will be monitored by the facilitator, the
individual who leads the exercise.

3.1.2 Step ?2: Weighting the PSFs

The determination of the relative importance of the PSFs can be accom-
plished by several procedures. In the initial feasibility study, Fmbrey
(1983a), the simple multiattribute rating technique (SMART) (Edwards, 1977)
was used to estimate weights, A variant of this technique was used in the
phase | evaluation experiment to be described shortly. In this particular
variant of SMART, judaes are first asked to consider the task beingy assessed
and to visualize a situation where all the PSFs are as bad as they could
credibly be in a real plant. They are then asked to decide which single PSF
would have the most sianificant effect on enhancing the probability of success
if it were improved., This is assigned a weiqht of 100, The PSF which would
have the next most sianificant effect on success is then chosen and a weight
is assigned to it relative to the most siaqnificant PSF. Thus, if the second
PSF were judaed to he half as important as the first in terms of its effect on
success likelihood, it would be qiven a weight of 50. This process is then
repeated for all the PSFs. The results for our example might be as shown in
Table 3.1,

The nomalized weights are obtained by dividing each individual weight by
the sum of the weights, The normalized weights sum to one and represent the
relative importance of each PSF in terms of how strongly it influences the
likelihood of success.






Table 3.2 Calculation of the SLI,

Normalized

Weight (From) Product
PSF Table 3.1) Rating Weight x Rating
Ouality of information 0.50 70 35.0
Training 0.25 20 5.0
Time availahle 0,15 10 1.5
Procedures 0.10 50 5.0
Z=1.00 SLI = £ = 46,5

3.1.5 Step 5: Conversion of the SLI to Probabhilities

Transforming the SLI to 3 probability estimate can be achieved by several
procedures, These various procedures are discussed in detail in Volume II,
Section 1.10 of this report. For the purpose of this example, the approach
employed requires the availability of at least two tasks for which the prob-
ahilities of success (or failure) are known. In this case, let the tasks be
Task A, with a known failure probability of 10=3 (0.001) and Task B, with a
failure probability of 10-2 (0.01). The success probability is 1 minus the
failure probability. This means the success probabilities for Tasks A and B
are 0,999 and 0.99, respectively. Assume that the judaes assianed SLI values
of B0 to Task A and 20 to Task R, using the same procedure as has been out-
lined for the original task.

These values are substituted into the calibration equation given earlier,
i.e.:

log of the Probability of Success = a SLI + h

This produces two simultaneous equations which can be solved as follows:

Solution for a: Task A loa (.999) = ad0 + b
Task 8 log (.99) = a20 + b
-.000434 = a80 + b
-,004365 = a20 + b
.00393 = a6
a = 0000655

Solution for b: Substituting -.000434
-,000434

(.0ND006K55) 80 + b
0054 + b
N0567

Substituting the values obtained for the constants a and h back into the
oriainal equation gives:

loq of the Probability of Success = 0.000065 SLI - 0,0057.
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Estimate the chances that the follow- THIS END OF THE SCALE IS FOR
ing will occur: INCORRECT ACTIONS WITH A HIGH

LIKELIHOOND OF OCCURRENCE
An operator is performing an initial

control room evaluation., He fails Chance of
to detect that an indicator light Probability Occurrence
shows that a component is in an in-
correct state. No written materials 1.0 T 1 Chance in 1
are used,

5 + 1 Chance in 2

What assumptions did you make that

affected your answer: s + 1 Chance in 5
R | —+— 1 Chance in 10
.05 4+ 1 Chance in 20
.02 4+ 1 Chance in 50
.0 -—+— 1 Chance in 100
lipper Bound .0N5 + 1 Chance in 200
% 1 Chance in 333
.002—" 4+ 1 Chance in 500
_~001 ~—4+— 1 Chance in 1,000
Estimate .0005 -+ 1 Chance in 2,000
0002 -+ 1 Chance in 5,000
.0001 —+— 1 Chance in 10,000

.00005 <+ 1 Chance in 20,000

. 2N002 <+ 1 Chance in 50,000
,00001 _-+— 1 Chance in 100,000

.000005 <~ 1 Chance in 200,000

.000002 <+ 1 Chance in 500,000
.00N001 —— 1 Chance in 1,000,000

Lower Bound

.0000005 -+ 1 Chance in 2,000,000

nN000002  +
0000001 ——

1 Chance in 5,000,000
1 Chance in 10,000,000
THIS END OF THE SCALE IS FOR INCORRECT
ACTIONS WITH A LOW LIKELIHOOD OF
OC CURRENCE

Fiqure 3.1 Logarithmic probability odds scale for obtaining direct estimates
of upper and lower bounds of SLIM produced HEP estimates.



When SLIM is conducted as a consensus process, the uncertainty hounds
should he arrived at consensually. When iudges independently estimate HEPs
with SLIM, uncertainty bounds can also be estimated on an individual basis.
Aagreaating hoth the HEPs and the uncertaintv bounds is accomplished by taking
the ceametric mean of the estimated values.

Statistical estimation of uncertainty bounds is a straightforward appli-
cation of statistical theorv to the prohlem of estimating probabilities.
Confidence limits, or error hounds in this application, are placed around HEP
estimates on the bas‘s of the standard deviation computed from the variability
in HEP estimates hy the individual! judges. Specific procedures for accomplish-
ing this are discussed in detail in Seaver and Stillwell (1983).

In many instances, upper and lower uncertainty bounds will be availahle
for the calibratinn tasks used to solve the logarithmic calibration equation
presumed to underlie SLIM, If these hounds are available, they can he used to
derive calibration equations for wenerating uncertainty bounds for all tasks
heing assessed.

3.1.7 Summary

It can be seen that SLIM is a systematic method for positioning the like-
lTihood of success of a task on a scale as a function of the differing condi-
tions influencing the successful completion of the tasks. The absolute
probability of su.cess for tasks placed on this scale can be detemined hy
calibrating the scale with reference tasks.

4, PHASE I RESEARCH - EXPERIMENTAL EVALUATION OF SLIM

in a previous investigation a preliminary pilot experiment to evaluate
the feasibility of SLIM was carried out (Embrey, 1983a). In ‘hat experiment,
the SLT methodoloaqy was applied to the evaluation of six human factors experi-
mental tasks (not directly related to nuclear power plants) for which known
failure probabilities were available. The results indicated a significant
dearee of correlation hetween the log probability of success and the SL!
(r = .98), suqgesting that the assumed calibration equation linking these
quantities (i.e., l1og of the Probability of Success = a SLI + b) was
supported.

The first ohjective of Phase | research was to extend the earlier pilot
experiment to provide a more realistic evaluaticn of SLIM with a wider range
of task types and expert judages. Detailed descriptions of this experiment are
provided in Volume !I, Section 2.1. Twenty-one tasks were utilized for which
probabilities of failure were known. The ?1 tasks, presented in detail in
Yolume 11 Appendix A, were chosen such that they formed three gqroups of seven
tasks each; the three aroups hroadly correspond to the three cateqories of
tasks described in a classification scheme developed by Jens Rasmussen of
Risg National Laboratory in Denmark (Rasmussen, 1981). This classification
scheme comprises three general types of categories--skill, rule, and knowledge
hased behavior.

- D =



® Skill hased behavior - occurs when an individual is responding
directly to some initiating event without having to think about kis or
her response in detail, or refer to a set of procedures. FExamples of
such behavior would be a driver braking heavily to avoid a sudden
collision or an operator immediately silencing a “"nuisance alam"
which was constantly sounding in a control room.

e Rule based hehavior - involves the individual following a set of rules
or procedures to achieve a goal. In a nuclear power plant, an example
would be the calibration of the Nuclear Instrumentation System, or
following an Emergency Operating Procedure after a particular incident
had been diagnosed.

e Knowledge based behavior - is required when the operator is in an un-
familiar situation for which no defined procedures exist and therefore
diaanosis, prohlem solving, and the formulation of a strateqy may be
necessary.

The reason for applying th:s classification scheme was to group together
tasks which could be expected to be influenced in similar ways by the PSFs
heina considered., In other words, all tasks within a cateqory were expected
to have common relative weights associated with the PSFs.,

In addition to the requirement that the 21 tasks could be classified into
the ahove three groups, two other criteria were applied. The first of these
was realism, in the sense that the tasks should be either collected from field
situations in the process and power industries or should be realistic simula-
tions of these situations. This criterion proved extremely difficult to meet,
especially with regard to the knowledge based cateqory of tasks. Data from
lahoratory experiments utilizing problem solving tasks similar to those in the
process industries were therefore used. As is usual in the human reliability
field, data from real plant situations were virtually unobtainable from the
open literature and the only human error data available from a chemical pro-
cess industry was confidential information. This information was used in the
experiment althouah its origins were concealed.

The other criterion applied was that the tasks should encampass as broad
a range of probabilities as possible. This also proved a difficult criterion
to meet, As might be expected, virtually all of the probabilities of failure
were in the high to medium (10'1 to 10'3) range because of difficulties of
collecting data on rare errors. In addition, most laboratory tasks are de-
signed to produce fairly high failure rates in order to obtain sufficient data
from reag onahbly sized experiments. The lowest failure probability employed
(5 x 10=7) came from an industrial assembly operation (omission of a
so]dered joint) and this was two orders of magnitude lower than the next group
of probabilities. Although this task was hardly typical of those encountered
in PRAs of nuclear power plants, it was included to provide an "extreme"
probability,

- I =
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The goodness of fit between the plotted data and the straight line, in-
dicating the strength of association hetween the two sets of data, can be
measured with the correlation coefficient r, If all the data points fall
exactly on the straight line, r will be either 1.0 or -1.0 depending on
whether the relationship is positive or negative. If the points are randomly
scattered, indicating no relationship whatsoever between the two data sets, r
will be zero. The higher the r value, the greater the certainty in predict-
ing the data points of one set from the second set.

Figure 4,1 shows the plot of the l1oq HEPs and the median SLI values, with
a superimposed best fitting straight line* drawn through the data. As can be
seen from the fiqure, the points are generally scattered, tending not to
cluster near the straight line. The correlation coefficient which measures
the degree of association between the loq HEPs and the SLIs was -.47 (the
negative sign occurs because as the SLI increases the log failure probability
decreases). This correlation is shown by statistical testc to be no stronger
than would he expected to occur by chance. Thus, at first, the results seem
to qive no strong support to the assumed logarithmic relationship between the
probahility of success and the SLI,

There are several plausible explanations for this result. The assumed
logarithmic calibration equation for converting SLIs to HEPs may be incorrect.
Or, there may be sources of variation in the weights or ratings which have not
been explicitly considered, and these may have attenuated the results.

Because of the positive support for SLIM in the earlier pilot experiment
(Embrey, 1983a), it seemed premature to dismiss the methodology on the hasis
of the weaker results reported above. Instead, other reasons for these re-
sults were investigated. A likely explanation lies with the classification
system that was used., [f, as is auite feasihle, the tasks were assigned to
incorrect cateqories, then the generic weights applied to all tasks within a
cateqory for calculating the SLIs would also be incorrect. This would have
the effect of adding random error to the SLIs with the consequence that any
consistent relationship between the SLIs and the 1og HEPs would be attenuated.
In fact, much difficulty was encountered in assigning tasks to appropriate
cateqories durinag the design phase of the experiment., The 21 tasks assessed
came from a very wide variety of laboratory and production situations. In
contrast, the Rasmussen classification scheme had been developed for a far
more limited range of situations--primarily for nuclear or chemical process
control settings.

It was therefore decided not to utilize the PSF weights and instead to
calculate the SLI values assuming that equal weights applied to all the PSFs,
i.e., all the PSFs were equally important in affecting the success likelihood.
The SLIs were recalculated on this basis, The correlation coefficient between
the loq HEPs and the new SLI values, obtained using the equal weights assump-
tion, was calculated, The correlation coeffizient now became -0.60, a highly
significant result which has a probability of less than 5 in 1,000 of

*Netermined by the method of ordinary least squares (0LS).
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occurring hy chance. The SLIs were then plotted against the log HEPs as shown
in Fiqure 4,2 and, it can be seen, the points now fall much closer to the
straight line than in Fiqure 4.1.

Three of the tasks were then removed from the analysis on the hasis of a
content analysis (see Volume I, Appendix A) which indicated that they con-
tained insufficient information to allow a proper evaluation of the SLIs. The
remaining 18 SLIs were plotted against the corresponding loq failure probhabil-
ities as shown in Fiqure 4.3, The correlation coefficient increased to -0.71.
Statistical tests aqain indicate that this has a very low prohahility of being
a chance relationship (less than 2 in 1,000), These results lend support to
the log relationship assumed to underlie SLIM, The fact that importance
weights were not used in this experiment does not mean that thcy would not be
employ~d in other applications of the SLIM technique. Whether the use of in-
dividual importance weights derived for each task would have produced a higher
correlation coefficient than the -0.71 obtained in the present experiment re-
mains an open question, since this information was not collected. However, if
the judges actually possess some prior knowledge recarding the relative impact
of the PSFs on likelihood of success, combining this information with the rat-
inas should always produce better results than if equal weights are assumed.
The results obtained in this experiment are therefore conservative, in that
they assume that the judges possess no prior infermation on the relative im-
portance of the PSF. As reported above, in the initial work on developing
SLIM (Embrey, 1983a), a correlation coefficient of 0,98 was obtained when the
judges derived both importance weights anu ratings for each of the tasks they
were assessing.

The support for the loa relationship between the probability of error and
the SLI is important because it provides the justification for converting the
SLT values to probabilities via the calibration equation derived from refer-
ence tasks., It should he emphasized, however, that other relationships be-
tween HEPs and SLIs are possible. The qoal of the research reported here is
not necessarily to estahlish the logarithmic relationship as being superior to
any other relationship on theoretical grounds. Rather, the irtention is to
provide empirical support for a calibration equation which can be used praq-
matically to derive HEPs from SLIs in PRA work, The validity of SLIM does not
stand or fall on the basis of whether a particular calibration relationship is
the "correct" one, but on the bhasis of the consistency in the relationship
hetween the SLIs and HEPs. The generality of the logarithmic relationship can
only he established by further research.

4.2 DNiscussion

A number of useful findings emeraed from the study. Perhaps the most
important of these is that the assignment of aeneric weights to broad groups
of tasks is only appropriate when an adequate task classification scheme is
available. 0Ntherwise, task specific weights should be derived when using
SLIM. Problems also arose when the judaes attempted to use the predefined
PSFs for all the tasks in the study. Althouagh the PSFs were very applicable
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to the industrial (process control and nuclear) tasks, they were less appro-
nriate for the lahoratory tasks. These results underscore the importance in

ifeveloping an adequate task classification scheme or taxonaomy.

Anot her finding was that in many cases it was impossible to provide much
of the information required by the judges to carry out their assessments.

Fven published studies were remarkably lacking in the detailed information
+

he
need for specific information on the situation being assessed. This suqgests
that when SLIM is being used to assess nuclear power plants it will be impor-
tant to include an individual on the assessment team with plant and preferably
site specific knowledae to provide the necessary detailed information,

required to adequately weight and rate the PSF. This finding emphasized

The difficulties experienced in collecting the original data for this
experiment re-emphasize problems endemic to work in the human reliability
area. The apparently modest requirement to collect human error data on 21
skill, rule, and knowledge based tasks from the nuclear and process industries
was impossible to achieve, particularly for the knowledge based cateqory.

Even published experimental work using nuclear training simulators yielded
very little data which were usable for human reliability purposes. This
almost total! ahsence of first hand data emphasizes the 41 fficulty of any human
reliability evaluation approach based on a data bank concept.

The final ronclusion to emerage from the study is the need to train asses-
-, The robustness of SLIM was demonstrated in that it was able to produce
reasonahly coherent results despite the fact that it was the jucges' first

encounter with the methodoloay and they had a relatively short time with which
¢

sore

o familiarize themselves with the tasks to be assessed. It seems reasonable
assume that further trainina would have contributed to improved perfomm-
\'“l.

{IASF 11 RESFARCH “1FLD STUDY OF SLIM

addition to the experimental evaluation described in the preceding sec-
on, SLIM was also applied in a field setting to evaluate human reliability
in dearaded core scenarios of nuclear power plants. A quantirication work-
shop was held during which time expert judges assessed five such scenarios.
Ising SLIM, the judges produced quantitative estimates of the probability of
an operator failing to carry out eight critical actions for the five
scenarios.

udaes iv'w(‘,',\v(\d 1n the (“"1’1'/

The pooi of 12 judges available for the study included PRA analysts, a
human factors specialist, simulator instructors who had operational experience
in some of the plants being evaluated, and a thermohydraulics expert. Either
seven or eight of these judges were used to evaluate each of the eight human
actions assessed. Because of scheduling difficulties, only three of the
iudoes were common to all eight assessments, the remainder being drawn from
the pool as available.




During the first session, the set of PSFs that were to be used for the
purposes of quantification, were distributed and discussed. These PSF: had
bee) developed as a result of interviews with fo.mer plant operators, super-
visors, and simulator instructors during earlier phases of the study. From
the session discussions, definitions of the following seven PSFs were de-
veloped. (See Volume 11, Appendix A for a detailed description of the PSFs,)
The PSF definitions established the end points for each PSF scale in tamms of
the featu es of the worst licensable pnlant and of the hest feasible plant.

iality of desian
Meaninafulness of procedures
Role of operations

Teams

Stress
Morale/motivation
Competence.

There was general agreement that the set of PSFs provided were compre-
hensive, and accurately represented the major influences on operator perfor-
mance in the sequences to be considered., After the PSFs had been defined and
discussed, the next step was to consider the sequences in detail. These dis-
cussions occupied a considerabla proportion of the available time, but were
necessary in order that all of the experts had a shared perception in temms of
their understanding of the required operator q("’],‘;r\g, and the factors which
impinged on the likelihood of these actions being achieved. SLIM was then

exercised as described below.

The weighting and rating assessments were carried out independently by
the judge(s) as described in Section 3. These were then reviewed by the groug
as a whole and in some cases the judge(s) mndified their individual assess-
nents., No attampt, however, was made to force consensus.

As the final step in the procedure, the judges were ed to make ahso-
lute the probability of failure for two "h¢ y conditions.
These were for the best credible situation, “.e., all the PSI heing as Qoo
1s they could credibly be in a real plant, and the worst case situation where

the PSFs were as bad as could credibly occur in a licensed power nlant, for

each scenario considered, These judgments were made independently, and then

fiscussed in order to reach a cunsensu In most cases it was possible to

aqree on ahsolute probability estimates for the two boundarv conditions
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with the individual judge's boundary c¢unditidn (best or wo'st) prebability
estimates to arrive at a log HEP value for e2zh judge for each scanario.
Finally, the geom tric mean of all judoes’ Tag HEP values was calculated to
give an estima’e uf the overall HEP for esth scenario. The second procedur?
used the consensus boundary condition Hi¥Yy ana the post consensus weights and
ratings, where these differed from the pre-consensus values. A statistical
test indicated that the HFFs calculated using tnese two slightly different
anvroaches to aqgregation were not significantly different.

I'sing the individual log HEPs for the thres judaes who participated in
al. the assessments, it was possible to carry cut a nurber of furthor analyses
of the data. The first area investfgated was the degree »f inter-judae con-
sistency, Results from an analysis of variance statisuical procedurd (ANOVA)
indiceted that the degree of agreement among the juaces approached statistical
sigriticance, and that most ©f the var'ability in the log HEPs could be
attributed to the differences hetween sconarioc, not Letween judges.

Statistical uncertainty bounds or the leg Hifs were calculated ising the
metwd described by Seayer and Stillwell (1983). 1he average uncertainty (95%
confiderce limits) ahout ihe iog HEP estimates was '.N4 log units. Only one
esiimate had an uncertainty of vreater than one log unit,

Sensitivity analvaxs were carried %t to investigate which PSFs were
judaged to have the greatest effa:t on the HEPs evaluated. TheSe analyses in-
dicated tne relative importance 2f the PSFs as shown in Table 5.3 below.

Table 5.3 Comparison of PSF Importance.

- -

Weight R~ ative to

PSP Mean Weight Least Important PSF
conpetence 93,80 3.00
Teams 86.91 2.75
Procedures 85.71 270
Desiuyn 68,47 2,10
Strecs 58.24 1.80
Morale 35.80 1.10
Role of Operations 31.60 1.00

Netailed analyses of the statisti.allv siouificant differences between
PSFs are given in Volume 1, Section 2.2.4., Howeve~, it is apparent that the
three hiahest ranked PSFs (competence, teams, and procedures) are perceived to
he considerably more important than the three lowest ranked PSFs (siress,
morale, and operatiras); the average uf the m:an weights for the highest three
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is more than twice the average for the lowest three, In addition, the statis-
tical analyses of the FSF weights showed that their relative mportance was
not significantly different between the critical actions evaluated. Thus, in
this test of SLIM, it would have been permissahle to use a generic set of
weights for all the scenarios.

The final analysis conducted was for the rating data. This indicated
that between plants there were significant differences in the way in which the
PSFs were rated, indicating that some PSFs were perceived to be significantly
worse than others in the plants examined., Significant differences in PSF rat-
inas were also found between scenarios. This means that the plants considered
were not identical in terms oy the overall ratings obtained when all the PSFs
were aqqgregated together. However, the rank-ordering of the ratings did not
differ hetween plants; i.e., the PSF rated as most important for one plant was
similarly rated for the other plants.

5.4 Discussion

In general, the field evaluation of the basic SLI methodology was suc-
cessful in achieving several objectives. Although it was not possible to
verify the accuracy of the human error estimates produced by SLIM because of
the absence of sufficient field data on the rare event scenarios being
evaluated, the judges involved in the exercise had considerable confidence in
the results., It also seemed apparent that SLIM provided a useful structure
which assisted the judges in modeling the potential failure modes. There was
general aqreement among the judges that SLIM possessed a high dearee of face
validity.

The detailed sensitivity analysis showed the relative impacts of the dif-
ferent PSFs on the overall probability of error for the various human actions
evaluated. This information is especially useful to management since it can
be used by desianers and managers to reduce error probability in a cost-
effective way.

6. RECOMMENDED PROCEDURES FOR USING SLIM

Section 3.1 presented an outline of the procedures to be followed in
using SLIM., The procedures recommended there, however, were preliminary to
the additional experience gained in the experiment and field study implementa-
tion of SLIM. Taking into account that additional experience, the sections
that follow present the current recommendations for implementing the basic
form of SLIM. These recommendations, it should be noted, do not apply to the
MAlID-based version of SLIM described in Section 7.

6.1 Step 1: Modeling and Specification of PSFs

The fundamental question to be addressed in this phase of SLIM implemen-
tation is whether judges shoula orig.nate the set of PSFs for the scenarios
being assessed, or whether judges should be provided with a pre-defined set of
PSFs. The preferred procedure is to provide judqes with a set of pre-defined
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That set of PSFs seems to be sufficiently gener to be applic across a
range of plants and scenarios.

"‘.'\‘ the recommendation that judqges should bhe provided with a set of
pre-defined PSFs can be accamplished through a plant specific pre-analysis or
by the use generic PSFs, Regardless of the source of the pre-defined PSFs,
however, it must be emphasized and made clear to judages that the set of PSFs

provided them are not the only possihle ones affecting human performance.
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and deletina irrelevant ones) in the 1ight f their own knowledage and
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experience,

Step 72: Weighting the PSFs

The approach described in Section 3.1.2 where judges first assign a
weight of 100 to the most important PS/ d then weight the remaining PSFs as
)f the most Important one is sti recommended., The additional step
] the group of judge liscuss their individual PSFs to arrive a con-

weights, . ( ed in Section 5.2, is also recommended. The
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would involve calculating a reqression equation between the log of the known
HEPs and the corresponding SLIs produced by the judges. The equation can then
be used to convert the SLIs into HEPs for the tasks being assessed.

If there are only a few, but at least two, tasks with known HEPs, the
procedure described in Section 3.1.5 can be used to convert the SLIs to HEPs.
In particular, the known HEPs can be substituted into the logarithmic cali-
bration equation to solve for the equations two unknowns (parameters). The
equation can then be used to convert the SLIs on the assessed tasks - ° HEPs,
A simple computer code to complete this task is given in Velume II, Section
3-5-

In instances where there are no tasks available with known HEPs, the
procedure described in Section 5.2 will need to be followed. That procedure
involves having the judges make absolute judgments of the HEPs for two bound-
ary con“itions, usina the 1og probability/odds scale presented in Fiqure 3.1.

6.6 Step 6: Calculation of Uncertainty Bounds

Judgmental and statistical uncertainty bounds can be estimated by follow-
ing the procedures described in Section 3.1.6. In the case of judgmental
estimation, it is recommended that the consensus procedure be followed since
this is consistent with the emphasis placed on a consensual process for imple-
menting SLIM. If uncertainty bounds are available for the calibration tasks,
the recammended procedure is to derive calibration equations from the upper
and lower bounds and to use these equations to generate uncertainty bounds for
the tasks heing assessed.

6.7 Background of Judges

An ideal team of judges should include experts with o, 2rational ex-
perience in the specific plant and with the types of scenarios beinag assessed.
Otherwise, preference should be given to judues who have experience as similar
as is feasibly possible to the specific plant and with the types of scenarios
being assessed. Othe: acceptable members of a team of judges would include
PRA experts, thermohydraulic experts, training supervisors, and human factors
special ists.

7.  PHASE IIl RESEARCH - SLIM-MAUD: AN IMPLEMENTATION OF SLIM THROUGH THE
USE OF MAID

A major aspect of the work carried out during this study has been the im-
plementation of SLIM using MAIID.* MAUD is derived from multiattribute utility

*MAUD is available from the Necision Analysis Unit, Landon School of Econo-
mics, Houghton Street, London, WC24 2AE. The Decision Analysis Unit version
of MAUD can be run on a wide variety of microcamputers. To use MAUD, the
minimal requirements of the microcomputer are 64K hytes of memory, and 2
floppy disk drives. The computer must also be able to operate under the CP/M
operating system or under IBM/PC DOS. DNetails of how to obtain MAUD and to
conf igure it to implement SLIM are described in Volume II, Sections 3.1 and
el
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theory, and is a flexible, interactive canputer based system which has the
capability of implementing a methodology like SLIM., Implementing SLIM through
the use of MAIUD represents a more sophisticated way of eliciting from judges
the rating and weighting information utilized in the basic SLIM approach.

Furthermore, the elicitation procedures of MAUD are in closer accord with the
theoretical assumptions underlying the SLI methodolujy than is the case for
SMART, the procedure used in the previous development of SLIM, including the
experiment and field test described above. The MAUD-based implementation has
the additional advantage of being able to deal with the evaluation of up to 10
tasks in the same session. It also employs MAUD's built-in checks to monitor
any dependencies hetween PSFs which may be present. The MAUD system is fully
interactive and is sufficiently "user friendly" such that it can be used un-
supervised by individuals or qroups of judges with minimal training in com-
puter-based techniques. An example of the dialoque used in SLIM-MAUD and a
detzled technical description of the technique is presented in Chapter 3 of
Volume !1I,

In a typical MAUD session, the system first asks the judge(s) to name the
various tasks for which ilEPs are required. It is assumed that the SLIs for
all the tasks being assessed in a particular session can be detemiried hy the
same PSFs with the same relative weights, At least two reference tasks for
which HEPs are available need to be included in the session for calibration
purposes. SLIM-MAID then elicits interactively the PSFs which are relevant in
determining probability of success. MAUD performs a comprehensive set of con-
sistency checks on the judges' use of these PSFs in assessing the courses of
action under consideration. This process is repeated with the various caom-
hinations of tasks to generate a series of factors which are equivalent to the
PSFs that are elicited directly in the basic SLIM technique.

With SLIM-MAUD, judges first rate tasks and then weight them, reversing
the order used in the other SLIM elicitation technique. Thus, judge(s) are
first asked to rate each of the tasks nn nine-point scales, and define their
"ideal" point on each scale, i.e,, the rating scale value which would be op-
timal in promoting success. MAUD uses this information to re-scale the PSFs
so that increasing scale values always indicate increasing likelihood of
Success.

The next step of SLIM-MAUD develops the PSF weights by comparing pairs of
tasks which have different values on two of the PSF scales. SLIM-MAID asks
the judges which of the two tasks would he most likely to succeed, and then
iteratively "dejrades" one of the PSF ratings of the task most likely to suc-
ceed and improves one of those of the task less likely to succeed. This
process is repeated until the judages' opinions reverse themselves with respect
to which of the two tasks is most likely to succeed, By repeating this pro-
cess for a range of PSFs, SLIM-MAIID is able to determine the relative weights
of the various PSFs for the task set under consideration, as perceived by the
judge(s).

A separate computer program (described in Volume II, Section 3.5) may

then be used to convert the SLI values into probabilities usina the calibra-
tion equation derived from the two reference tasks.
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8. OUTLINE OF TEST PLAN

This section presents an outline of the Test Plan for the next phase of
research. It ennumerates both key requirements for conducting a valid test of
SLIM=MAUD and the issues underlying the criteria for assessing the method's
utility, Chapter 4 of Volume Il is devoted to a full description of The Test
Plan,

8.1 Risk Analysis Tasks

The first requirement of a valia test of SLIM-MAUD is to select a repre-
sentative set of risk analysis tasks which will encompass the whole range of
situations which the technique may be required to evaluate. The Test Plan
will be implemented by using all 15 level A tasks and 12 of the 20 level B
tasks taken from the list of risk analysis tasks (35 in all) developed by the
U.S. Nuclear Requlatory Commission (NRC) and Sandia National Labhoratories
(SNL) (SNL, 1983). A detailed list of the 35 risk analysis tasks is presented
in Volume II, Appendix B of this report.

8,2 Task Classification Scheme

A second reaguirement is the need to develop a task classification scheme
for tasks to be assessed with SLIM to ensure that tasks within each category
being assessed are homogeneous. The classification scheme should be checked
to be certain it is applicable across the variety of tasks likely to be evalu-
ated in nuclear power plant PRAs and across the whole range of potential users
of the approach. The Test Plan describes an approach based upon multi-dimen-
sional scaling (MDS) for identifying homogeneous subsets of tasks separately
within the level A and level B tasks sets (see Volume II, Section 4.5.1).

8.3 Subject Matter Experts

A third requirement is the need to detemine the types of judge expertise
most appropriate for SLIM assessments. In order to assess the effects of dif-
ferent types of judges using the technique, three cateqories of expert groups
should be investigated, i.e., PRA specialists, operators or trainers, and a
qroup comprising engineers and plant designers. A comprehensive assessment of
the effects of judge expertise on HEP estimates would require two panels of
six judges for each of the three expert groups.

Facnh of the individual judgec would take all possible pairs of tasks and
assess the degree of "relatedness" of the tasks on a simple 10-point scale.
Relatedness in this context refers to the dearee to which pairs of tasks are
perceived to be similar in terms of their likelihood of success; this being
inferred for those PSFs with similar profiles and similar relative importance.

These data should be analyzed using clustering and Multi-Dimensional Scal-
ing (MNS) techniques (Kruskal and Wish, 1978). This will enable a comparison
to be made within and between each type of expert agroup of individual judge's
perceptions of task similarity (with regard to likelihood of success). MDS



enahles groups of tasks which are perceived to he similar to be arouped into
clusters or categories. Thus, MDS analyses permit an investigation of the
extent to which different expert agroups perceive tasks to be clustered in the
same way.

The clusters for the individual expert groups can be compared with the
clusters which emerge when the MDS analysis is applied to the whole of the
data across all the groups. The dearee to which the task clusters for the
ina +idual aroups correspond to the global clusters for all the judges, will
indicate the feasihility of a classification structure that can be used to
elicit judgments from 211 types of experts.

Assuming that such a generic classification structure emerges fram the
analysis, SLIM can be used to identify the PSFs associated with each category
of tasks. This can be done using new sets of experts from each of the three
groups described earlier, i.e., PRA specialists, operators or trainers and
designer/plant ergineers, A composite group containing individuals from all
of these categories could also hbe employed where feasible., Each of the expert
groups would carry out a SLIM assessment for each of the task categories. The
differences between the PSFs assianed by the different expert groups would
*“en be investigated., If the PSFs are sufficiently similar across groups, a

<k classification scheme or taxonomy will have been developed, with a set of
Pors associated with each task cateqory.

This taxonomy will be of considerable value in carrying out SLIM-MAUD
analyses. In particular, the reference tasks required for calibration can be
associated with each task category.

Should it prove impractical to assemble the number and types of judges
recommended above, a modified initial test of SLIM could be conducted with a
group of judges having common expertise. All features of the Test Plan,
except for an examination of the effects of different types of expertise, can
then be implemented.

8.4 Criteria for Assessing the Utility of SLIM-MAUD

The utility of the MAIID-based implementation of SLIM can be assessed on
the basis of three key criteria: practicality, acceptabiiity, and usefulness.
Practicality emphasizes the pragmatic concerns associated with any method-
oloqy, such as the required time and resources, and the degree of flexihility
in applying the methodology in a wide variety of settings. Acceptability
refers to the actual adoption of the methodoloay by users who are responsihle
for producing HEP estimates. The usefulness of a methodology .an be deter-
mined on the basis of prevailing conventions of scientific standar.s.

The three criteria comprise a number of specific issues which can bhe

rigorously addressed within the Test Plan. These are described in detail in
Chapter 4 of Volume II and are summarized in Tahle 8.1.

e



Table 8.1 SLIM-MAUD Test Plan: Issues and Procedures.

Issues M thors /Data Analysis
Practicality:
Cost Actua) costs incurred for impleren. Costs summation plus discusalons
tating Test Plan. of notential cost additions or
reduct ions,
Subject Matter If feasihle, hy examining three ex- Mlti-dimensional Scaling (MDS)
Faperts pert aroups: PRA spectaligts, on- of user responses,
erators or trainers, and enqineers,

Support Ennureration of equipment and other Discussion of equipment used and
Requirements materials newled to ‘mplement Test other equipment capable of using
Plan, MAUD,

Transportabi!ity Test wil) like'y he implented fn Experience in setting up and
more than one location, running SLIM-MAUD in seperate
locat ions.
Expandabiiity Neveloprent of cateqorization Cluster analysis of user
scheme, responses,
Time Requirerents Actual experience gained in ime Niscussion of experienced time
plementing Test Plan, considerations and factors
affecting time,
Interface With Ensured by tasks to be evaluated, None needed,
Reltahility Data
flank
Imnlementahility of Use of more than one session Conparisqn of the degree of dif-
Procedure facilitator, ficulty edperienced by different

facilitators.

:«cugunnn!:

Scient1fic Community Professiona! fournal submission, Reviewer comments and/or accep-
tance of articles.
Expert Participants Dehrinfing interview and survey, Evaluatton of interviews and
analysis of survey data.
Potential lsers Informa! survey, Fvaluat ton of responses.
Nuclear Heaulatory None, None,
Cowvission (NRC)
Nuclear fiti)1ttes None, None,
Usefulness:
Reliahility Inter-tudaoe consistency, Use of MNS to assess consistency
hetween individual results,
Face Validity Survey of expert participants, Evaluation of open-ended conments
tnformal survey of potentia! users, and analysis of survey data.
Converoent Validity Comparison with HEP estimates pro- Examinatton of magnitude of
vided hy other subiective differences.,
techniques.

9. CONCLUSIONS

The aim of this volume has been to provide a nontechnical overview of a
research program devoted to the refinement and further development of SLIM,
including the implementation of SLIM using MAUD., More detailed discussions of
nearly all the areas covered in this overview are provided in Volume 11 nf
this report.

The results which have been obtained in the present study indicate that
the use of SLIM is a viable approach to “he evaluation of human reliability.
The MAUD-based implementation of SLIM has a number of built-in features which
facilitate a comprehensive assessment of the strengths and weaknesses of the
SLI Methodology in practical applications. A recommended plan for testing the
MAUD-hased implementation is described in detail in Chapter 4 of Volume II.
The Test Plan is applicable to any implementation procedure associated with
SLIM, Because of its several clear advantages, however, the MAUD-based
approach is the recommended implementation procedure in the Test Plan.
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