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ABSTRACT

This two-volune report presents the procedures and analyses perforned in

developing an approach for structurinq expert judgments to estimate hunan
error probabilities. Volume I presents an overview of wrk performed in
developing the approach: SLIM-MAUD (Success Likelihood Index Methodology,
implenented through the use of an interactive computer program called
MAUD--Multi-At tribute Iltili ty Decomposition). Volume II provides a more

detailed analysis of the technical issues underlying the approach.
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1. PURPOSE OF THE WORK

This two-vclure report presents the results of a research progran devoted
to the refinerent and further developrent of the Success Likelihood Index

Methodology (SLIM). SLIM canprises a set of procedures for eliciting and
organizing tha estimates of experts concerning the probability of success or
failure of specified human actions in nuclear power plants. The goal is to
produce huran error probability (HEP) estimates in support of huran reliabil-
ity analysis (HRA) segments of probabilistic risk assessments (PRA) of nuclear'

power plants.

The SLIM research program consisted of three phases of investigation:
phase I involved an experimental evaluation of SLIM; in phase II a field test
of SLIM was conducted; and in phase III SLIM was linked to a computer based
elicitation procedure based upon Multi-Attribute Utility Deconposition (MAUD).
This report discusses the results obtained in each cf the separate phases of
investigation, together with a detailed plan for the ne'xt phase of research,
the assessment of the utility of the MAllD-based implementation of SLIM

(SLIM-MAUD ) .

Volume I of this report presents an overview of SLIM, a discussion of the
results of the experinent and field test, a discussion of the linking of SLIM
to MAUD, and an outline of a Test Plan for the next phase of research.

Volume II discusses criteria for evaluating subjective techniques for
estimatinq huren reliability, presents an in-depth, theoretical and technical
discussion of SLIM and the SLIM-MAUD impicmentation, and provides a detailed
description of the Test Plan for the next research phase. In addition, task
descriptions used by subjects in the SLIM experiment and definitions of per-
formance shaping factors (PSFs) used in the field test are presented, together
with an example of a frame-by-frame ca7puter interaction from a SLIM-MAUD
session, along with the results produced.

2. BACKGROUND

PRA is an approach which has been extensively applied in recent years to
the nuclear, chemical, offshore oil drilling, and other industries in order to
identify the potential risks in a system and to evaluate their probability of
occurrence and the expected consequences. The PRA process involves first
nodeling the systen to evaluate the various ways in which subsystem failures
can occur, and then assigning probabilities to these failures. These are
subsequently combined together to give the overall probability of failure for
the system as a whole. Originally, PRA was primarily ccncerned with failures
of hardtare components such as pumps and valves, particularly where these were

i part of safety related systems. In recent years there has been a growing
realization that huran actions can have a significant effect on the likelihood
of failure of a system. This was reinforced by incidents such as Three Mile
Island, where huren errors, exacerbated by desian deficiencies, led to the
most serious incident yet experienced by the nuclear industry in the U.S.

-1-
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Ore of the najor problems encountered in human reliability assessnent is
the special difficulty of obtaining data on human errors for use in PRA. In
the case of hardware camponents, such as valves, it is relatively easy to ob-
serve how nany rechanical f ailures cccur compared with the number of success-
ful operations. The frequency of failures divided by the total nunber of
operations can then be used to esticate the probability of failure.

In the case of hucan actions, the situation is considerably more compli-
cated . Blane and guilt tend to be associated with errors, and therefore nany
erroneous actions are not reported because of the likelihood of punitive ac-
tions against the individual operator. In addition, many errors are due to
" cognitive nalfunctions" such as inappropriate decision naking or a mispercep-
tion of the nature of a situation. Thus, a failure to operate a valve is an
external " error node" which could have arisen from a variety of cognitive nal-
functions such as a failure to understand which valve was to be operated, or
confusing the situation with another similar situation. Clearly,it is not
possible to di rectly observe the number of times such internal " cognitive mal-
functions" occur, and therefore it is almost impossible to collect numerical

data on these events. Although some numerical data on the probability of
huran errors is available, these tend to be confined to fairly simple, easily
observable actions obtained either fran production line situations or labora-
tory experiments. There are considerable problems associated with extrapolat-
ing such data to the very different environment of a nuclear power plant.

These problems can be overcane to a large extent by the use of techniques
which utilize expert judqnent. The rationale underlying such approaches is
that, using experienced judges, it is possible to elicit estimates of the ways
in which tha probability of error is likely to be affected by factors such as
the operators level of training, time available to carry out the required ac-
tion, the existence of good quality procedures, etc. If this information can
he used to derive failure probabilities for individual human actions, then the
data problen is considerably reduced. The question of the validity of this
approach, in tenns of the degree to which it generates similar probability
estimates as field data on the sane human errors collected from a real plant,
is discussed in detail in Volume II, Section 1.10 of this report.

SLIM, the expert judgment methodology $1ch was refined and developed
f urther in this study, is an extension of previous work on the problen
(Embrey , 1983a ) Nt!R EG/CR-2986. During that earlier work , the basic form of
SLIM was developed and a limited pilot experirent carried out to test the
approach. Phase I of the SLIM research progran concerned itself with testing
some of the underlying assumptions of the method. Phase II was devoted to "

carrying out a field study to detennine the applicability of SLIM to real and
representative nuclear powe.r plant critical scenarios and to evaluate the
reactions of potential users of the technique. Phase III, representing a
major proportion of the work reported here, was the development of a computer
based implementation of the original SLIM nethodology using an interactive

-2-
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progran cal led MAUD*. SLIM will be described in detail in subsequent sec-
tions, together with a plan for the testing and validation of the approach by
potential users.

3 _ THE SUCCESS LIKELIHOOD INDFX METHODOLODY (SLIM)

A detailed technical description of SLIM is available in a number of pub-
lications, e.g. , Embrey (1983a,b,c), and an explanation of the theory under-
lying SLIM is presented in Volume II, Sectior,1.6 of this report. In this
section, the original forn of the approach will be described, together with
the procedures for carrying out a SLIM assessment. The procedure is generally
carried out using multiple judges (either working alone or together in a
group), in order to take into account a range of experience and to reduce
biases which may be present within individual judanents.

The basic rationale underlying SLIM is that the likelihood of an error
occuring in a particular situation depends on the combined ef fects of a rela-
tively snall set of performance shaping factors (PSFs). In brief, PSFs in-
clude both human traits and conditions of the work setting that likely
influence an individual's pe'rformance. Examples of human traits that " shape"
perfornance night include the competence of an operator (as determined by
training an' experience), his/her norale and notivation, etc. Conditions of
the work setting affecting performance night include the time asailable to
complete a task , task performance aids, etc. It is assumed that an expert
judge (or judges) is able to assess the relative importance (or weight) of
each PSF with regard to its effect on reliability in the task being evaluated.
It is also assured that, independent of the assessment of relative importance,
the judge (s) can nake a numerical rating of how good or how bad the PSFs are
in the task under consideration, (e.g. , schieving recirculation in a pres-
surized heter reactor [PWR] loss-of-coolant accident [LOCA]) where " good" or4

" bad" nean that the PSFs will either enhance or degrade reliability.

Having obtained the relative importance weights and ratings, these are
multiplied together for each PSF and the resulting products are then sunned to
give the Success Likelihood Index (SLI). The SLI is a quantity which repre-
sents the overall belief of the judge (s) regarding the positive or negative
effects of the PSFs on the likelihood of success for the task under considera-
tion. If we can assure that as a result of their knowledge and experience the
judge (s) have a correct idea of the ef fects of the PSFs on the likelihood of
success, then we would expect the SLI to be related to the probability of suc-
cess that would he observed in the long run in the situation of interest
(i.e. , the actuarially determined probability).

;
'

A najor assumption of the SLIM approach is that a SLI generated by this
process bears a consistent relationship to the expected long-term probability

OMAUD (Multi-Attribute Utility Decomposition) is a stand alone interactive
software package running under the CP/M operating systen, which aids the user

;

in assessing alternatives. MAUD is proprietary to the Decision Analysis
Unit, London School of Economics, and was made available for this study

,

| through a non-exclusive end user license.

(
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of success and can be converted to it in a simple manner. Experimental evi-
dence suggests .that the SLI is related to the logarithm of the probability of

success for a task. Pontecorvo (1965) showed a logarithmic relationship
between an index similar to the SLI and the log probability of success for
naintenance tasks. Hunns (1982) provides an intuitive argument giving support
to the notion of a logarithmic relationship in this context. The nain ,iusti-
fication for the use of a logarithmic relationship is, however, empirical
rather than theoretical. Thus, support for a logarithmic relationship, or any
other consistent relationship assuned within SLIM, must came fran actual data.
There are also practical advantages in using a logarithnic relationship
because of the wide range of magnit'udes of human error probabilities (HEPs)
(1 to 10-5) which need to be considered. .

The logarithmic relationship between expert judgments and success prob-
abilities can he expressed with the following calibration equation:

109 of the success probability = a SLI + b

where:

a and b are s7pirically derived constants.

In order to produce an sapirical calibration relationship between the SLI and
the log of the success probability, at least two tasks must be available for
which the probability of success is known, in the task set being evaluated.
If this is the case, the constants a and b in the above equation can be
evaluated and the calibration equation can then be ised to transform any SLI
value produced by the judge (s) into a log probability of success for the task.
The los probability of success is readily convertable into the probability of
s ucces s. An estimate of the HEP or likelihood of task failure, the ultirate
goal of SLIM, is found by simply subtracting the success probability from one.

3.1 An Example of the SLI Procedure

The concepts described above can best be illustrated by a simple worked
exampl e. This section will also provide a detailed description of the practi-
cal application of SLIM. Suppose one desired to evaluate the probability that
an operator will correctly diagnose the state of a nuclear power plant, and
initiate manual intervention when a failure occurs in an energency feed-
water puno during a transient. The following steps would be carried out.

'

3.1.1 Step 1: Modeling and Specification of PSFs

Durinq this first step, the judges thoroughly discuss the task to be
evaluated, with particular attention being paid to identifying the various
ways in which errors of omission and connission could occur (error nodes) and
the PSFs which could impact on these error modes. The various fon7s of task
analysis which are available may be enployed here, together with documentation
of energency operating procedures, photographs of the control roon, etc.
Operator input is very important at this stage. The modeling should be as
exhaustive as possible and the results docunented to indicate the error nodes

-4-
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tnat the jud'ges have in mind when naking their assessment. This is necessary
so that the procedure can be subsequently audited .if required. The documen-<

tation could be in the fann of a fault tree, the technique .used to represent
failure nodes in the hardware assesscent aspects of PRA, or sone other form of
representation. At the end of the nodeling phase, all credible error mode;
will have been considered and the PSFs which have a significant ef fect on'

these errors will have been identified.

In our example, we will assune that the judges have decided that the
following PSFs are the najor factors influencing success in the task being

evaluated:

e Quality of the information available to the operator from the control
panel.

o Ouality of the procedures,

e Tine available to diagnose the situation and to carry out the appro-
priate actions.

e Degree of operator training.

The documentation for this phase should include some description of exactly'

what is meant by each of these PSFs as used in the nodeling session. The pro-
cess of documenting the sessions will be monitored by the facilitator, the
individual who leads the exercise.

3.1.2 Step 2: Weighting the PSFs

The determination of the relative importance of the PSFs can be accon-

plished by several procedures. In the initial feasibility study, Embrey
(1983a), the simple multiattribute rating technique (SMART) (Edwards,1977)
was used to estinate weights. A variant of this technique was used in the
phase I evaluation experirent to be described shortly. In this particular,

variant of SMART, judges are first asked to consider the task being assessed
and to visualize a situation where all the PSFs are as bad as they could,

credibly be in a real plant. They are then asked to decide which single PSF
would have the most significant effect on enhancing the probability of success
i f it were improved. This is assigned a weight of 100 The PSF which would
have the next nost significant effect on success is then chosen and a weight
is assigned to it relative to the nost significant PSF. Thus, i f the second
PSF were judged to be half as important as the first in terns of its effect on
success likelihood, it would be given a weight of 50. This process is then
repeated for all the PSFs. The results for our example might be as shown in
Table 3.1..

The nonna11 zed weights are obtained by dividing each individual weight by
the sun of the weights. The normalized weights sun to one and represent the
relative importance of each PSF in tenns of how strongly it influences the
likelihood of success.

4
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Table 3.1 PSF Weights.

Assigned No rmalized
PSF Weight Weight

Quality of information 100 100/200 = 0.50
Training 50 50/200 = 0.25
Tire available 30 30/200 = 0.15
Procedures 20 20/200 = 0.10

I = 200 E = 1.00

3.1.3 Step-3: Rating the Task

The rating procedure is carried out next with the judge (s) directly
assigning a numerical value to each PSF on a scale af 0-100,* where zero
indicates that the PSF is as paor as is credibly likely, and where 100
indicates that it is as good as is credibly likely in a real plant, in terns
of its effect on the likelihood of success. At this point, it is important to
differentiate between importance weights and ratings. The ratings are
independent of the weights assigned to the PSFs. The weights indicate the

relative importance of the PSFs in terms of their overall ef fect on the
success likelihood, and are, therefore, not independent of one another. The
ratings essentially represent the experts opinions' regarding the actual
situation in the nuclear power plant for the task being assessed. The rating
assigned to each PSF is independent of all the others in the set of PSFs being
a ssessed .

In our example, we will assume that the following ratings have been
assigned: quality of information, 70; training, 20; time available,10; pro-
cedures, 50. These ratings might arise from the following situation: The
operator has a wide variety of information available which is much better than
average, but not as good as in the best plants. The operator's training for
this particular situation is inadequate and the tine available to perforn the

) action is so short that it will negatively inpact on the likelihood of suc-
cess. The procedures are about average for the nuclear industry.

3.1.4 Step 4: Calculation of SLIs

The calculation procedure for each SLI is shown in Table 3.2 below. As
can be seen from Table 3.2 the process of calculating each SLI involves simply
forning the products of the nornalized weights and the ratings for each PSF
and then sunning the results. The SLI can range from 0 to 100, where 0 indi-
cates that the task has a high probability of failing, and 100 where it has a
high probability of success. The SLI of 46.5 in this example indicates that

the task has a slightly less than average likelihood of success.

*0ther rating scale ranges can be used, depending upon the assumptions of
particular applications. For example, the MAUD-based implementation of SLIM
uses a scale of 0-1. The range of possible SLI values is the sane as the

range of the rating scale.
(

'
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. Table 3.2 Calculation of the SLI.

Normalized
Weight (From) Product

PSF Table 3.1)' Rating Weight x Rating

Ouality of information -0;50 70 35.0
Training 0.25 20 5.0
Tine .ava il able 0.15 - 10 1.5
Procedures 0.10 50 5.0

I = 1.00 SL I = I = 4 6. 5

3.1.5 Step 5: Conversion of the SLI to Probabilities

Transfonning the SLI to a probability estinate can be achieved by several-

procedures. These various procedures are discussed in detail in Volume II,
Section 1.10 of this report. For the purpose of this example, the approach
- employed requires the availability of at least two tasks for which the prob-

abilities of success (or failure) are known. In this case,. let the tasks be
Task A, with a known failure probability of 10-3 (0.001) and Task 8, with a
failure probability of 10-2 (0.01). The success probability is 1 ninus the
failure probability. This means the success probabilities for Tasks A and B
are 0.999 and 0.99, respectively. Assume that the judges assigned SLI values
of 80 to Task A and 20 to Task R, using the same procedure as has been out-
lined for the original task.

These values are substituted into the calibration equation given earlier,
i.e.:

log of the Probability of Success = a SLI + b

This produces two sinultaneous equations which can be solved as follows:

Solution for a: Task A log (.999) - ad0 + b
Task B 100 (.99) = a20 + b

.000434 = a80 + b

.004365 = a20 + b

.00393 = a60
a = .0000655

Solution for b: Substituting .000434 = (.0000655) 80 + b
.000434 = .0054 + b

= .00567

Substituting the values obtained for the constants a and b back into the

original equation givas:

log of the Probability of Success = 0.000065 SLI - 0.0057.

-7-
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This is a general calibration equation for the group of tasks evaluated
by this particular set of judges. We can therefore substitute the SLI value
of 46.5 into this equation to obtain the probability of success for the speci-
fic task in our example. If we do this, we obtain a log probability of suc-
cess of -0.002654 This is equivalent to a success probability of about
0.994, i.e. , a failure probability of 0.006. In other words, the operator

night be expected to fail to correctly diagnose the situation and perforn the
appropriate actions on about six occasions out of every thousand times that
this action is required. As a rough check on this result, one would expect an
SLI of 50 which lies half way between the reference task SLIs of 20 and 80, to
correspond to a failure probability of 0.005, which is half way between the
reference event failure probabilities of 0.01 and 0.001. The calculated fail-
ure probability for an SLI of 46.5 is 0.006. In other words, the failure

probability for an SLI of 46.5 is slightly worse (6 per thousand attempts) as .
compared to that for an SLI of 50 (5 per thousand attenpts).

In this example, the SLIs were converted to probabilities by using two
tasks (A and 3) for which the probabilities were assumed to be known. How-
ever, reference tasks with known probabilities may not always be available. In
such instances, it may be necessary for judges to nake absolute probability
estimates for two tasks which would then serve as reference tasks for convert-
ing the SLis to probabilities. One procedure would have judges nake absolute
probability estimates of two of the original tasks in the set being assessed.
Another procedure would have judaes consider two hypothetical situations where
all PSFs are first as good as they could credibly be and second where they are
as bad as they could credibly be in a real plant. The first situation would
he assigned an SLI of 100 and the second situation and SLI of zero. The
latter procedure was the one taken in the Phase II research, the field study

which is described in Section 5.

3.1.6 Step 6: Calculation of Uncertainty Rounds
.

The neasurement of any phenonenon always involves a certain amount of
error, or degree of uncertainty. In a PRA context, it is necessary to have a
measure of the uncertainty of the failure probabilities included in fault-
trees so that upner and lower bounds can be calculated for the overall systen
rel i abil i ty. This reluirement also applies to HEP estimates; therefore, a
method for generating unce,rtainty bounds around the point estimates produced
by SLIM i s needed.

There are several approaches to generating uncertainty bounds around SLIM
produced HEPs. In the first of these procedures, judges are asked to make a
direct estimate of the upper and lower bounds for each HEP estimate produced
by SLIM. Seaver and Stillwell (1983) suggest the use of a logarithmic
probability / odds scale (see Fiqure 3.1), together with a question such as:

"For this event, what are the upper and lower bounds of the HEP
that make you 95% certain that the true HEP falls between these
bounds?"

-8-
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- Estinate the chances that- the follow- THIS END OF THE SCALE IS FOR
ing will occur: INCORRECT ACTIONS WITH A HIGH

LIKELIHOOD & OCCURRENCE
An operator is performing an initial

control roan evaluation. He fails Chance of
to detect that an indicator light Probability Occurrence
shows that a camponent is in an in-
correct state. No written materials 1.0 --- 1 Chance in 1
a re used .

.5 -- 1 Chance in 2
' What assumptions did you make that

affected your answer: .2 -- 1 Chance in 5
.1 1 Chance in 10

.05 -- 1 Chance in 20

02 ,,.-- 1 Chance in 50
0 1 Chance in 100

Upper Round .005 -- 1 Chance in 200
1 Chance in 333

002 / -)(- 1 Chance in 500
.001 1 Chance in 1,000

Estimate .0005 -- 1 Chance in 2,000

0002 -- 1 Chance in 5,000
.0001 1 Chance in 10,000

.00005 -- 1 Chance in 20,000

.00002 -- 1 Chance in 50,000
.00001 1 Chance in 100,000

000005 -- 1 Chance in 200,000

Lower Bound
.000002 -- 1 Chance in 500,000
000001 1 Chance in 1,000,000

.0000005 -- 1 Chance in 2,000,000

.0000002 -- 1 Chance in 5,000,000
0000001 1 Chance in 10,000,000

THIS END OF THE SCALE IS FOR INCORRECT
ACTIONS WITH A LOW LIKELIHOOD OF

OC CURRENCE

Fiqure 3.1 Logarithnic probability odds scale for obtaining direct estimates
of upper and lower bounds of SLIM produced HEP estinates.
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When SLIM is conducted as a consensus process, the uncertainty bounds
should he arrived at consensually. When ,iudges independently estinate HEPs
with SLIM, uncertainty bounds can also be estimated on an individual basis.
Aggreaating both the HEPs and the uncertainty bounds is accomplished by taking
the gemetric mean of the estimated values.

Statistical estination of uncertainty bounds is a straightforward appli-
cation of statistical theory to the problem of estinating ' probabilities. .

Confidence limits, or error bounds in this application, are placed around HEP
estimates on the basis of the standard deviation computed from the variability
in HEP estinates by the individual judges. Specific procedures for accomplish-
ing this are discussed in detail in Seaver and Stillwell (1983).

In many instances, upper and lower uncertainty bounds will be available
for the calibration tasks used to solve the logarithnic calibration equation
presumed to underlie SLIM. If these bounds are available, they can be used to
derive calibration equations for lenerating uncertainty bounds for all tasks
being assessed.

3.1.7 Sunna ry

It can be seen that SLIM is a systematic nethod for positioning the like-
lihood of success of a task on a scale as a function of the differing condi-
tions influencing the successful completion of the tasks. The absolute
probability of success for tasks placed on this scale can be detennined by
calibrating the scale with reference tasks.

4. PHASE I RESEARCH - EXPERIMENTAL EVALUATION OF SLIM

in a previous investigation a preliminary pilot experiment to evaluate
the feasibility of SLIM was carried out (Embrey,1983a). In that experiment,
the SLI methodology was applied to the evaluation of six human factors experi-
mental tasks (not directly related to nuclear power plants) for which known
failure probabilities were available. The results indicated a significant
degree of correlation between the log probability of success and the SLI
(r = .98), suggesting that the assumed calibration equation linking these
quantities (i.e., log of the Probability of Success = a SLI + b) was
sup ported.

The first objective of Phase I research was to extend the earlier pilot
experiment to provide a more realistic evaluation of SLIM with a wider range
of task types and expert judges. Detailed descriptions of this experiment are
provided in Volune II, Section 2.1. Twenty-one tasks were utilized for which
probabilities of failure were known. The 21 tasks, presented in detail in
'!olume II Appendix A, were chosen such that they fonned three groups of seven
tasks each; the three groups broadly correspond to the three categories of
tasks described in a classification scheme developed by dens Rasmussen of
Risp National Laboratory in Denmark (Rasmussen,1981). This classification
schene cmprises three general types of categories--skill, rule, and knowledge
based behavior.

4

- 10 -
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e Skill based behavior - occurs when an individual is responding
23rectly to sone initiating event without having to think about his or
her response in detail, or refer to a set of procedures. Examples of
such behavior would be a driver braking heavily to avoid a sudden
collision or an operator immediately silencing a " nuisance alarm"
which was constantly sounding in a control room.

e Rule based behavior - involves the individual following a set of rules
or procedures to achieve a goal . In a nuclear power plant, an example
would be the calibration of the Nuclear Instrumentation System, or
following an Emergency Operating Procedure after a particular incident
had been diagnosed.

, Knowledge based behavior - is required when the operator is in an un-e
familiar situation for which no defined procedures exist and therefore
diagnosis, problem solving, and the formulation of a strategy may be
necessa ry.

The reason for applying this classification scheme was to group together
tasks which could be expected to he influenced in similar ways by the PSFs
being considered. In other words, all tasks within a category were expected
to have comron relative weights associated with the PSFs.

In addition to the requirement that the 21 tasks could be classified into
the above three groups', two other criteria were applied. The first of these
was _ realism, in the sense that the tasks should be either collected from field
situations in the process and power industries or should be realistic simula-
tions of these situations. This criterion proved extremely dif ficult to meet,
especially with regard to the knowledge based category of tasks. Data fran
laboratory experiments utilizing problem solving tasks similar to those in the
process industries were therefore used. As is usual in the hunan reliability
field, data from real plant situations were virtually unobtainable from the
open literature and the only human error data available from a chemical pro-
cess industry was confidential information. This information was used in the
experiment although its origins were concealed.

The other criterion applied was that the tasks should encanpass as broad
a range of probabilities as possible. This also proved a difficult criterion
to meet. As might be expected, virtually all of the probabilities of failure
were in the high to medium (10-1 to 10-3) range because of difficulties of
collecting data on rare errors. In addition, most laboratory tasks are de-
signed to produce fairly high failure rates in order to obtain sufficient data
from reasonably sized experiments. The lowest failure probability employed
(5 x 10-5) came fron an industrial assenbly operation (omission of a
soldered joint) and this was two orders of magnitude lower than the next group
of probabilities. Although this task was hardly typical of those encountered
in PRAs of. nuclear power plants, it was included to provide an " extreme"
probability.

,

- 11 -
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The judges who participated in the exercise were four reliability
analysts, two individuals with nuclear operating experience, and two human
f actors specialists--eight judges in all. They were provided with compre-
hensive descriptions of six PSFs to be used in the assessment. The PSFs were
as follows (detailed definitions are available in Volume II., Appendix B):

1. Relevance and comprehensiveness of training
2. Tine available to perform task
3. Motivation
4. Information available
5. Quality of procedures
6. Degree of checking and supervision.

As described in Section 3, the typical procedure for obtaining the SLIs
first involves obtaining importance weights for each PSF for each of the 21
tasks being evaluated, i.e. , six PSF weights for each task. The importance
weights are then nonnalized by dividing each weight by the sum of the weights
on a task-by-task basis. Next, each PSF is rated for quality on a task-by-
task basis on a scale ranging from 0 to 100. The SLI is then obtained for
each of the 21 tasks by sunming the products of the normalized importance
weights and the quality ratings of each PSF on a task-by-task basis. An over-
all SLI for each task can then be obtained by taking the mean of the indi-
vidual judge's SLIs.

Because of time constraints, it was not possible to calculate the PSF
importance weichts for each of the 21 tasks on a task-by-task basis. Instead,

the judges were asked to consider each of the three broad categories of tasks
(skill, rule, and knowledge based) and to assume that it was reasonable to
assion one set of PSF importance weichts to each category. In ef fect, this

meant that all seven tasks falling within a given category received the same

PSF importance weights. The judges were then asked to give PSF importance
weights for each task category--skill, rule, or knowledge-based. This re-
sulted in three sets of normalized PSF importance weights (i.e., six weights
for each of the three categories). For discussion purposes, it is convenient
to refer to these category specific importance weights as " generic weights."

To compute the SLIs, the generic weights were multiplied by the PSF qual-
ity ratings for each task within the particular category to which the tasks
bel onged . The SLI for each task was calculated by summing together these
products, the typical procedure for combining weights ana ratings into SLI.

4.1 Results

The first part of the analysis involved a comparison between the logs of
the HEPs for the 21 tasks and the corresponding median (a fonn of average) of
the SLI values for each task, averaged across the judges. If these two quan-
tities are plotted against one another, the extent to which the resulting
points fall along a straight line (when plotted on a log scale) indicates the
degree to which the underlying logarithnic assumption of SLIM is supported.

- 12 -
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The goodness of fit between the plotted data and the straight line, in-
dicating the strength of association between the two sets of data, can be
nessured with the correlation coefficient r. If all the data points fall
exactly on the straight line, r will be either 1.0 or -1.0 depending on
whether the relationship is positive or negative. If the points are randonly
scattered, indicating no relationship whatsoever between the two data sets, r
will be zero. The higher the r value, the greater the certainty in predict-
ing the data points of one set from the second set.

Figure 4.1 shows the plot of the log HEPs and the median SLI values, with
a superimposed best fitting straight line* drawn through the data. As can be
sten from the figure, the points are generally scattered, tending not to
cluster near the straight line. The correlation coef ficient which measures
the degree of association between the log HEPs and the SLIs was .47 (the
negative sign occurs because as the SLI increases the log failure probability
decreases). This correlation is shown by statistical tests to be no stronger
than would be expected to occur by chance. Thus, at firs.t the results seem
to give no strong support to the assumed logarithnic relationship between the
probability of success and the SLI.

There are several plausible explanations for this result. The assumed
logarithmic calibration equation for converting SLIs to HEPs may he incorrect.
Or, there may be sources of variation in the weights or ratings which have not
been explicitly considered, and these may have attenuated the results.

Because of the positive support for SLIM in the earlier pilot experiment
(Embrey,1983a), it seemed premature to dismiss the methodology on the basis
of the weaker results reported above. Instead, other reasons for these re-
sults were investigated. A likely explanation lies with the classification
systen that was used. If, as is ouite feasible, the tasks were assigned to
incorrect categories, then the generic weights applied to all tasks within a
category for calculating the SLIs would also he incorrect. This would have
the effect of adding random error to the SLIs with the consequence that any
consistent relationship between the SLIs and the log HEPs would be attenuated.
In fact, much difficulty was encountered in assigning tasks to appropriate
categories during the design phase of the experinent. The 21 tasks assessed
came from a very wide variety of laboratory and production situations. In
contrast, the Rasmussen classification scheme had been developed for a far
more limited range of situations--primarily for nuclear or chemical process
control settings.

It was therefore decided not to utilize the PSF weights and instead to

; calculate the SLI values assuming that equal weights applied to all the PSFs,
i.e. , all the PSFs were equally important in affecting the success likelihood.

'

Tne SLIs were recalculated on this basis. The correlation coefficient between
the log HEPs and the new SLI values, obtained using the equal weights assump-
tion, was calculated. The correlation coef ficient now became -0.60, a highly
significant result which has a probability of less than 5 in 1,000 of

* Determined by the nethod of ordinary least squares (0LS).

|
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CORRELATION COEFFICIENT r =-0.47
( n = 21, n.s. ) -0 -
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Figure 4.1 Success likelihood index (calculated using generic weights)
vs.109 empirical human error probabilities.
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occurring by chance. The SLIs were then plotted against the log HEPs as shown
i in Fiqure 4.2 and, it can be seen, the points now fall much closer to the

straight line than in Figure 4.1.

Three of the tasks were then removed from the analysis on the basis of a
content analysis (see Volune II, Appendix A) which indicated that they con-
tained insufficient information to allow a proper evaluation of the SLIs. The
remaining 18 SLIs were plotted against the corresponding log failure probabil-
ities as shown in Figure 4.3. The correlation coefficient increased to -0.71.
Statistical tests again indicate that this has a very low probability of being
a chance relationship (less than 2 in 1,000). These results lend support to
the 100 relationship assumed to underlie SLIM. The fact that importance
weights were not used in this experiment does not mean that thcy would not be
enployed in other applications of the SLIM technique. Whether the use of in-
dividual importance weights derived for each task would have produced a higher
correlation coefficient than the -0.71 obtained in the present experiment re-
mains an open question, since this information was not collected. However, i f

,

the judges actually possess some prior knowledge reoarding the relative impact
of the PSFs on likelihood of success, combining this information with the rat-
ings should always produce better results than if equal weights are assumed.
The results obtained in this experiment are therefore conservative, in that
they assume that the judges possess no prior information on the relative im-
portance of the PSF. As reported above, in the initial work on developing
SLIM (Enbrey,1983a), a correlation coefficient of 0.98 was obtained when the
judges derived both importance weights and ratings for each of the tasks they

; were assessing.

The support for the log relationship between the probability of error and
the SLI is important because it provides the justification for converting the
SLI values to probabilities via the calibration equation derived from refer-
ence tasks. It should be snphasized, however, that other relationships be-
tween HEPs and SLIs are possible. The goal of the research reported here is
not necessarily to establish the logarithmic relationship as being superior to
any other relationship on theoretical grounds. Rather, the intention is to
provide empirical suppor.t for a calibration equation which can be used prag-
matically to derive HEPs from SLIs in PRA work. The validity of SLIM does not
stand or fall on the basis of whether a particular calibration relationship is
the " correct" one, but on the basis of the consistency in the relationship
between the SLIs and HEPs. The generality of the logarithmic relationship can
only be established by further research.

4.2 niscussion

A number of useful findings emerged from the study. Perhaps the most
important of these is that the assignment of generic weights to broad groups
of tasks is only appropriate when an adequate task classification scheme is
available. Otherwise, task specific weights should be derived when using
SLIM. Problems also arose when the judges attempted to use the predefined
PSFs for all the tasks in the study. Although the PSFs. were very applicable

- 15 -
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Figure 4.2 Success likelihood index (calculated using equal weights)
vs.10q empirical human error probabilities.
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Figure 4.3 Success likelihood index (calculated using equal weights)
vs. log empirical human error probabilities, based upon
the removal of three tasks from the analysis.
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to the industrial (process control and nuclear) tasks, they were less appro- - _
'

priate for the laboratory tasks. These results underscore the importance in Jr
~

developing an adequate task classification schene or taxonomy. -

?
'

Another finding was that in many cases it was impossible to provide much -

of the inforcation required by the judges to carry out their assessnents. --

Even published studies were renarkably lacking in the detailed information -

required to adequately weight and rate the PSF. This finding emphasized the -

--e

need for specific information on the situation being assessed. This suggests _

that when SLIM is being used to assess nuclear power plants it will be impor- a
tant to include an individual on the assessment team with plant and preferably _

e=-

site specific knowledge to provide the necessary detailed information. __

-

The difficulties experienced in collecting the original data for this -;
experiment re-emphasize problems endemic to work in the hunan reliability
area. The apparently modest requirement to collect human error data on 21 d-
skill, rule, and knowledge based tasks from the nuclear and process industries

--

was impossible to achieve, particularly for the knowledge based category. ;

Even published experimental work using nuclear training simulators yielded - "

very little data which were usable for hunan reliability purposes. This [_
almost total absence of first hand data enphasizes the difficulty of any human
reliability evaluation approach based on a data bank concept. r,_

-

"-The final conclusion to energe from the study is the need to train asses-
sors . The robustness of SLIM was demonstrated in that it was able to produce Eiq
reasonably coherent results despite the fact that it was the judges' first -

"

encounter with the methodology and they had a relatively short time with which _

to f amiliarize themselves with the tasks to be assessed. It see'ms reasonable
'

to assume that further training would have contributed to improved perform-
-

ance. __

5. tHASE II RESEARCH - A FIELD STUDY OF SLIM --

In addition to the experimental evaluation described in the preceding sec- 45!
''tion, SLIM was also applied in a field setting to evaluate human reliability

-in degraded core scenarios of nuclear power plants. A quanti fication work-
shop was held during which time expert judges assessed five such scenarios. -

Using SLIM, the judges produced quantitative estimates of the probability of j[.
an operator failing to carry out eight critical actions for the five

-

scenarios.
-

:M =

5.1 Judges Employed in the Study
-

The pool of 12 judges available for the study included PRA analysts, a
human factors specialist, simulator instructors who had operational experience -

in some of the plants being evaluated, and a thermohydraulics expert. Either
seven or eight of these judges were used to evaluate each of the eight human

-

actions assessed. Because of scheduling difficulties, only three of the
judges were cannon to all eight assessments, the remainder being drawn from "

the pool as available. }_

__

-

- 18 -
__

1

&

.... _ _ _



r

5.2 Procedure

During the first session, the set of PSFs that were to be used for the
purposes of quantification, were distributed and discussed. These PSF 3 had
beea developed as a result of interviews with fonner plant operators, super-
visors, and simulator instructors during earlier phases of the study. From
the session discussions, definitions of the following seven PSFs were de-
vel oped. (See Volure II, Appendix A for a detailed description of the PSFs.)
The PSF definitions established the end points for each PSF scale in tenns of
the featuces of the worst licensable plant and of the best feasible plant.

1. $uality of design
2. Meaningfulness of procedures
3. Role of operations
4. Teams
5. Stress
6. Moral e/ motivation
7. Competence.

There was general agreenent that the set of PSFs provided were compre-
hensive, and accurately represented the major influences on operator perfor-
mance in the sequences to he considered. After the PSFs had been defined and

L.discussed, the next step was to consider the sequences in detail . These di s-
cussions occupied a considerabla proportion of the available time, but were
necessary in order that .all of the experts had a shared perception in tenns of
their understanding of the required operator actions, and the factors which

,

impinged on the likelihood of these sctions being achieved. SLIM was then
exercised as described below.

,

The weighting and rating assessments were carried out independently by
the judge (s) as described in Section 3. These were then reviewed by the group
as a whole and .in sone cases the judge (s) modified their individual assess-
ments. No attenpt, however, was made to force consensus.

As the final step in the procedure, the judges were asked to nake abso-
lute judgrents .of the probability of failure for two "houndary conditions."
These were for the best credible situation, i.e. , all the PSFs being as good
as they could credibly be in a real plant, and the worst case situation where
the PSFs were as bad as could credibly occur in a licensed power plant, for
each scenario considered. These' judgments were made independently, and then
discussed in order to reach a cor,sensus. In most cases it was possible to
agree on absolute probability estimates for the two boundary conditions. With
three of the eight critical operator actions, however, no consensus was ob-
tained, and in these cases alternative boundary values were retained to calcu-
late separate values for the failure probabilities, as described below.

5.3 Calculations and Results

A typical set of data obtained fran a SLIM session for one of the eight
operator actions assessed is shown in Tables 5.1 and 5.2. The data presented
pertains to action 1 in Scenario 1.

- 19 -
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Table 5.1 Weights.

PSFs

Role
Judge Design Proc. Oper. Teams Stress Morale Competence

A 90 90 80 100 50 50 95
B 70 55 60 100 85 20 50
C 70 75 0 100 70 0 90
0 70 70 70 100 50 20 95
E 70 80 40 90 60 50 100
F 50 70 25 40 60 20 100
G 50 80 10 100 40 10 95

n=7

Table 5.2 Ratings.

Esticated
PSFs Bounda ry Condi tions

Role
Judge Design Proc. Oper. Teams Stress Morale Comp. Best Worst

A 70 90 75 90 60 70 90 5x10-4 5x10-2
B 65 85 80 85 85 80 70 10-4 10-2
C 75 60 75 75 50 75 80 10-4 10-2
0 70 60 75 85 60 75 85 10-4 10-2
E 75 75 90 85 70 85 85 10-5 10-2
F 70 70 80 70 50 60 75 10-5 10-2
G 80 80 80 90 50 70 90 10-4 10-1

n=7 Consensus Values for bounds 10-4 10-2

As described in more detail in Volume II, Section 2.2, two separate pro-
cedures were followed in calculating the human error probability (HEP) for
each scenario. The first of these procedures involved the following three
steps. First, an SLI was calculated for each judge on the basis of the
elicited PSF weights and ratings. Then, the resultant SLIs were used together

- 20 -
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with the individual judge's boundary condition .(best or wo</st) probability! <
estimates to arrive at a log HEP valuRfor_ehgh judge for each scanario;
Fi nal ly , t he geon,s tric nean of all judoes' }og , HEP values was calculat'ed' to
give an estina0e of the overall HEP for 'egli scenario. The second procedure,
used the consensus boundary condition HLh and the post consensus weights and
ratings, where these differed from the pr;e-consensus values. A stat'istical
test indicated that the HFPs calculated using tnese two slightly dif ferent
apuroaches to aggregation Qie not significantly different. ' '

,

,tJsing the individual log HEPs for the,$three judoes who participated in
al$ the assessments, it was possible to carry cut a nurber,0f furthqr analyses .
oftheJata. The first area investigated was the degree of inter-ju,dge con-
siste6cy - Results from an analysis af variance statistical procedurv(ANOVA)
indicated that the degree of agreenent among the Juages approachtd statistical
signiMcance, and that most'of the var'. ability _in the log ,HEPs'could be ,

,

attributed .to the dif ferences b" tweer scenarios, not between judges.
.h + '' .,

,, ,

( Statistical uncertainty' bcunds oh. the log HEPs. ,were calculateLEsing the ,

meted described by Seayer ,and Stillwell (1983).
~ ~The' average uncertainty (95%

,

confiderce limits) about the log HEf] estimates was l.04 log units. Only one #

~

estimate ha<1 an uncertajaty of greater than one log; unit. ' "
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Sensitivity analyrps were cadried uJt to investigate which,PSFs were
'

judged to;have the greitest effect on the, HEPs evaluated. These analysas in .
dic,ated the relative finportance' 'of the PSFs as shown in Table 5.3 bel owI |f
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PS'r! ' Mean Weight.-

'

'

' 3.00ponpetence 93.80 '

Teams 86.91 2.75
Procedures 8 5. 71 2.'70 - )f

.Desion ' 68.47 2.10
Strers < 58.24 1.80
Morate'' 35.80 1.10

' Role of ' Operations 31.60 1.00
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Detailed analyses of the statistidellf sfokificant differences between'

PSFs are given in' Volume II, Section 2/2/4." However, it is apparent that the
three highest ranked PSFs (competence, teams,' and procedures) are perceived to '

he considerably more important than the' three' lowest ranked PSFs (st.ress,
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is more than twice the average for the lowest three. In addition, the statis-
tical analyses of the PSF weights showed that their relative importance was
not significantly different between the critical actions evaluated. Thus, in
this test of SLIM, it would have been permissable to use a generic set of
weights for all the scenarios.

The final analysis conducted was for the rating data. This indicated
that between plants there were significant differences in the way in which the
PSFs were rated, indicating that some PSFs were perceived to be significantly
worse than others in the plants examined. Significant differences in PSF rat-
ings were also found between scenarios. This means that the plants considered
were-not identical in terms of the overall ratings obtained when all the PSFs
were aggregated together. However, the rank-ordering of the ratings did not
differ hetkeen plants; i.e., the PSF rated as most important for one plant was
similarly rated for the other plants.

5.4 Discussion

In general, the field evaluation of the basic SLI methodology was suc-
cessful in achieving several objectives. Although it was not possible to
verify the accuracy of the human error estimates produced by SLIM because of
the absence of sufficient field data on the rare event scenarios being
evaluated, the judges involved in the exercise had considerable confidence in
the results. It also seemed apparent that SLIM provided a useful structure
which assisted the judges in modeling the potential failure modes. There was
general agreenent among the judges that SLIM possessed a high degree of face
val idi ty.

The detailed sensitivity analysis showed the relative impacts of the di f-
ferent PSFs on the overall probability of error for the various huren actions
evalua ted . This information is especially useful to management since it can
be used by designers and nanagers to reduce error probability in a cost-
ef fective way.

6. RECOMMENDED PROCEDURES FOR USING SLIM

Section 3.1 presented an outline of the procedures to be follcwed in
using SLIM. The procedures recommended there, however, were prelininary to
the additional experience gained in the experiment and field study implementa-
tion of SLIM. Taking into account that additional experience, the sections
that follow present the current reconmendations for implementing the basic
form of SLIM. These recommendations, it should be noted, do not apply to the
MAtID-based version of SLIM described in Section 7.

6.1 Step 1: Modeling and Specification of PSFs

The fundamental question to be addressed in this phase of SLIM implemen-
tation is whether judges should orig.nate the set of P9Fs for the scenarios
being assessed, or whether judges should be provided with a pre-defined set of
PS Fs. The preferred procedure is to provide judges with a set of pre-defined
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PSFs. Following this procedure not only facilitates the assessment process,
but also assists in orienting the judges to the tasks to be assessed.

The preferred way of arriving at a pre-defined set of PSFs is to conduct
an in-depth pre-analysis of the specific plant and scenarios to be assessed
with individuals having operating experience with the plant. Extensive dis-
cussions should be conducted with the aim of obtaining a consensus on the set
of PSFs that are relevant to the plant and scenarios to be assessed.

Should an in-depth pre-analysis prove infeasible, the set of PSFs used in
the field test of SLIM described in Section 5 (presented in detail in Volume
II, Appendix A) can be used as a starting point in the elicitation process.
That set of PSFs seems to be sufficiently generic to ba applicable across a
range of plants and scenarios.

Thus, the recomrendation that judges should be provided with a set of
pre-defined PSFs can be accanplished through a plant specific pre-analysis or
by the use of generic PSFs. Regardless of the source of the pre-defined PSFs,
however, it must be emphasized and made clear to judges that the set of PSFs
provided them are not the only possible ones affecting human performance.
Judges should be encouraged to modify the set (i.e. , by adding relevant PSFs
and deleting irrelevant ones) in the light of their own knowledge and
experience. ,

|
|6.2 Step 2: Weighting the PSFs '

The approach described in Section 3.1.2 where judges first assign a
weight of 100 to the most important PSF and then weight the remaining PSFs as
a ratio of the most important one is still reconnended. The additional step
of having the group of judges discuss their individual PSFs to arrive a con-
sensus weights, as described in Section 5.2, i s also recannended. The
consensus step is reconnended to avoid the loss of information that occurs
when mathematical aggregation procedures are followed.

6.3 Step 3: Rating the Tasks

As with the recamrended weighting procedure, it is recanmended that
ratings from the individual judges are fit. . obtained, which are subsequently
discussed to arrive at consensus ratings.

6.4 Step 4: Calculation of the SLIs

SLIs are calculated by forming the products of the normalized weights and
ratings for each PSF and then summing the results as shown in Section 3.1.4.

6.5 Step 5: Conversion of the SLIs to Probabilities
4

The recomrended calibration procedure depends upon the availability of
calibration tasks with known HEPs. If a sufficiently large number of tasks
with known HEPs are available a regression approach can be followed. This
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would involve calculating a regression equation between the log of the known
HEPs and the corresponding SLIs produced by the judges. The equation can then
be used to convert the SLIs into HEPs for the tasks being assessed.

If there are only a few, but at least two, tasks with known HEPs, the
procedure described in Section 3.1.5 can be used to convert the SLIs to HEPs.
In particular, the known HEPs can be substituted into the logarithmic cali-
bration equation to solve for the equations two unknowns (parameters). The
equation can then be used to convert the SLIs on the assessed tasks 5"e HEPs.
A simple computer code to complete this task is given in Volume II, Section
3.5.

In instances where there are no tasks available with known HEPs, the
procedure described in Section 5.2 will need to be followed. That procedure
involves having the judges make absolute judgments of the HEPs for two bound-
ary conditions, using the log probability / odds scale presented in Figure 3.1.

6.6 Step 6: Calculation of Uncertainty Bounds

Judgmental and statistical uncertainty bounds can be estimated by follow-
ing the prncedures described in Section 3.1.6. In the case of judgnental
estination, it is recommended that the consensus procedure be followed since
this is consistent with the emphasi.s placed on a consensual process for imple-
menting SLIM. If uncertainty bounds are available for the calibration tasks,
the recomrended procedure 1s to derive calibration equations from the upper
and lower bounds and to use these equations to generate uncertainty bounds for
the tasks being assessed.

6.7 Background of Judges

An ideal team of judges should include experts with operational ex-
perience in the specific plant and with the types of scenarios being assessed.
Otherwise, preference should be given to judges who have experience as similar
as is feasibly possible to the specific plant and with the types of scenarios
being assessed. Othei acceptable members of a team of judges would include
PRA experts, thermohydraulic experts, training supervisors, and huran factors
s pecial i sts.

7 PHASE III RESEARCH - SLIM-MAUD: AN IMPLEMENTATION OF SLIM THROUGH THE
USE OF MAUD

A major aspect of the work carried out during this study has been the in-
plementation of SLIM using MAUD.* MAUD is derived from multiattribute utility

*MAUD is available from the Decision Analysis Unit, Landon School of, Econo-
mics, Houghton Street, London, WC24 2AE. The Decision Analysis Unit version
of MAUD can be run on a wide variety of microcanputers. To use MAUD, the
minimal requirements of the microcomputer are 64K bytes of nemory, and 2
floppy disk drives. The canputer must also be able to operate under the CP/M
operating systen or under IBM /PC DOS. Details of how to obtain MAUD and to
configure it to implement SLIM are described in Volume II, Sections 3.1 and
3.2.
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theory, and is a flexible, interactive cmputer based system which has the
capability of implementing a methodology like SLIM. Implementing SLIM through
the use of MAUD represents a more sophisticated way of eliciting from judges
the rating and weighting information utilized in the basic SLIM approach.

Furthermore, the elicitation procedures of MAUD are in closer accord with the
theoretical assumptions underlying the SLI methodology than is the case for
SMART, the procedure _ used in the previous development of SLIM, including the
experiment and field test described above. The MAUD-based inplementation has
the additional advantage of being able to deal with the evaluation of up to 10
tasks in the same session. It also enploys MAUD's built-in checks to monitor
any dependencies between PSFs which may be present. The MAUD system is fully
interactive and is suf ficiently " user friendly" such that it can be used un-
supervised by individuals or groups of judges with ninimal training in com-
puter-based techniques. An example of the dialogue used in SLIM-MAUD and a
detailed technical description of the technique is presented in Chapter 3 of
Volume II.

In a typical MAUD ses.sion, the systen first asks the judge (s) to name the
various tasks for which ilEPs are required. It is assumed that the SLIs for
all the tasks being assessed in a particular session can be detennined by the
same PSFs with the same relative weights. At least two reference tasks for
which HEPs are available need to be included in the session for calibration
purposes. SLIM-MAUD then elicits interactively the PSFs which are relevant in
detemining probability of success. MAUD perfoms a comprehensive set of con-
sistency checks on the judges' use of these PSFs in assessing the courses of
action under consideration. This process is repeated with the various cm-
binations of tasks to generate a series of factors which are equivalent to the
PSFs that are elicited directly in the basic SLIM technique.

With SLIM-MAUD, judges first rate tasks and then weight them, reversing
the order used in the other SLIM elicitation technique. Thus, judge (s) are

i first asked to rate each of the tasks on nine-point scales, and define their
" ideal" point on each scale, i.e. , the rating scale value which would be op-
timal in prmoting success. MAUD uses this infonnation to re-scale the PSFs
so that increasing scale values always indicate increasing likelihood of
s uC Cess.

The next step of SLIM-MAUD develops the PSF weights by cmparing pairs of
tasks which have different values on two of the PSF scales. SLIM-MAUD asks
the Judges which of the two tasks would be nost likely to succeed, and then
iteratively "delrades" one of the PSF ratings of the task most likely to suc-
ceed and improves one of those of the task less likely to succeed. This
process is repeated until the judges' opinions reverse themselves with respect
to which of the two tasks is most likely to succeed. By repeating this pro-
cess for a range of PSFs, SLIM-MAUD is able to determine the relative weights
of the various PSFs for the task set under consideration, as perceived by the
judge (s).

A separate computer program (described in Volune II, Section 3.5) may
then be used to convert the SLI values into probabilities using the calibra-
tion equation derived from the two reference tasks.
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8. .0UTLINE OF TEST PLAN

This section presents an outline of the Test Plan for the next phase of
research. It ennumerates both key requirements for conducting a valid test of
SLIM-MAUD and the issues tmderlying the criteria for assessing the method's
utility. Chapter 4 of Volune II is devoted to a full description of The Test
Plan.

8.1 Risk Analysis Tasks

- The first requirement of a valid test of SLIM-MAUD is to select a repre-
sentative set of risk analysis tasks which will encompass the whole range of
situations which the technique may be required to evaluate. The Test Plan
will be implemented by using all 15 level A tasks and 12 of the 20 level B
tasks taken from the list of risk analysis tasks (35 in all) developed by the
U.S. Nuclear Regulatory Commission (NRC) and Sandia National Laboratories
(SNL) (SNL,1983). A detailed list of the 35 risk analysis tasks is presented
in Volume II, Appendix B of this report.

8.2 Task Classification Scheme

A second requirement is the need to develop a task classification scheme
for tasks to be assessed with SLIM to ensure that tasks within each category
being assessed are homogeneous. The classification scheme should be checked
to be certain it is applicable across the variety of tasks likely to be evalu-
ated in nuclear power plant PRAs and across the whole range of potential users
of the approach. The Test Plan describes an approach based upon multi-dimen-
sfonal scaling (MDS) for identifying homogeneous subsets of tasks separately
within the level A and level B tasks sets (see Volume II, Section 4.5.1).

' 8.3 Subiect Matter Experts

A third requirement is the need to detennine the types of judge expertise
i most appropriate for SLIM assessments. In order to assess the effects of dif-
'

ferent types of judges using the technique, three categories of expert groups
should be investigated, i.e. , PRA specialists, operators or trainers, and a
group comprising engineers and plant designers. A comprehensive assessnent of
the effects of judge expertise on HEP estinates would require two panels of
six judges for each of the three expert groups.

Each of the individual judges would take all possible pairs of tasks and
assess the degree of " relatedness" of the tasks on a simple 10-point scale.
Relatedness in this context refers to the degree to which pairs of tasks are
perceived to be similar in terms of their likelihood of success; this being
inferred for those PSFs with similar profiles and similar relative importance.

These data should be analyzed using clustering and Multi-Dimensional Scal-
ing (MDS) techniques (Kruskal and Wish,1978). This will enable a comparison
to be made within and between each type of expert group of individual judge's
perceptions of task sinflarity (with regard to likelihood of success). MDS

I
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enables groups of tasks which are perceived to be similar to be grouped into
clusters or categories. Thus, MDS analyses permit an investigation of the
Cxtent to which different expert groups perceive tasks to be clustered in the
same way.

The clusters for the individual expert groups can be compared with the'

clusters which emerge when the MDS analysis is applied to the whole of the
-data across all the groups. The degree to which the task clusters for the
ina:"idual groups correspond to the global clusters for all the judges, will
indicate the feasibility of a classification structure that can be used to
elicit judgments from all types of experts.

Assuning that such a generic classification structure energes from the
analysis, SLIM can be used to identify the PSFs associated with each category
of tasks. This can be done using new sets of experts from each of the three
groups described earlier, i.e. , PRA specialists, operators or trainers and
d: signer / plant engineers. A composite group containing individuals from all
of these categories could also be employed where feasible. Each of the expert
groups would carry out a SLIM assessnent for each of the task categories. The
differences between the PSFs. assigned by the different expert groups would
+5en be investigated. If the FSFs are sufficiently similar across groups, a

-k classification scheme or taxonomy will have been developed, with a set of
Pars associated with each task category.

This taxonomy will be of considerable value in carrying out SLIM-MAUD
analyses. In particular, the reference tasks required for calibration can be
associated with each task category.

Should it prove impractical to assemble the number and types of judges
recomrended above, a modified initial test of SLIM could be conducted with a
group of judges having cannon expertise. All features of the Test Plan,
except for an examination of the effects of different types of expertise, can
then be implemented.

8.4 Criteria for Assessing the Utility of SLIM-MAUD

The utility of the MAllD-based implementation of SLIM can be assessed on
,

the basis of three key criteria: practicality, acceptability, and usefulness.
Practicality emphasizes the pragnatic concerns associated with any method-
ology, such as the required time and resources, and the degree of flexibility
in applying the methodology in a wide variety of settings. Acceptabili ty
refers to the actual adoption of the methodology by users who are responsible
for producing HEP estimates. The usefulness of a methodology can be deter-
mined on the basis of prevailing conventions of scientific standards.<

The three criteria comprise a number of specific issues which can he
rigorously addressed within the Test Plan. These are described in detail in
Chapter 4 of Volume II and are summarized in Table 8.1.
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Table 8.1 SLIM-MAUD Test Plan: Issues and Procedures.

Issues Mathods/ Data Analysis

Practicality:

Cost Actual costs incurred for impleren. Costs sumnation plus discusilons
tating Test Plan. of potential cost addittons or

reductions.
Suhject Matter If feasible. by examining three ex. ?titi. dimensional Scaling (MDS)

Emperts pert aroups: PRA snectalists, op. of user responses,
erators of trainers, .and engineers.

Support Ennureration of _ equipment and other Olscusston of equipcent used and
Requi reents materials nemied to ir'plement Test other equiprent capable of sting

Plan. . MAUD.
Transpo rt abil t ty Test will likely he implented in Experience in setting up and

rore than one location, running SL!M.MALID in seperate
loca tions.

Expandability Developrent of categorization Cluster analysis of user
scheme. responses.

Time Requirerents Actual esperience gained in in. Discussion of experienced time
plementing Test plan, considerettons and factors

affecting time.
Interface With Ensured by tasks to be evaluated. None needed.
Reliability Data

Pank
Implerentability of Use of rore than one session Conparlsqn of the degree of dif.
Procedure facilitator, ficulty e Apertenced by dif ferent

facilitators.

Accentability:

j Scientific Comunity Professional journal submission. Reviewr comrents and/or accep.
tance of art teles.

Expert Participants Dehrt.f tnq interview and survey. Evaluation of interviews and
analysts cf survey data.

Potential Users Informal survey. Fvaluation of responses.
Nuclear Regulatory None. None.
Canmission (NRC)

Nuclear tittltties None. None.

Usefulness:
Reli abili ty Inter.judoe consistency. Use of MDS to assess consistency

betwen individual results.
Face Validtty Survey of expert participants. Evaluation of open entted cmrents

informal survey of potential users. .nd analysis of survey data.
Ceavernent validtty Comparison with HEP estimates pro. Examination of magnitutte of

vfded by other subfective differences.
technique s.

9 CONCLUSIONS

The aim of this volume has been to provide a nontechnical overview of a
research program devoted to the refinement and further development of SLIM,
including the implementation of SLIM using MAUD. More detailed discussions of
nearly all the areas covered in this overview are provided in Volume II of
this report.

The results which have been obtained in the present study indicate that
the use of SLIM is a viable approach to *.he evaluation of human reliability.
The MAUD-based implementation of SLIM has a number of built-in features which
facilitate a comprehensive assessment of the strengths and weaknesses of the
SLI Methodology in practical applications. A recelmended plan for testing the
MAUD-based implementation is described in detail in Chapter 4 of Volume II.
The Test Plan is applicable to any implementation procedure associated with
SLIM. Because of its several clear advantages, however, the MAUD-based
approach is the recommended implementation procedure in the Test Plan.
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