NUREG/CR-3826 UCRL-53538

Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Greater than Four Inches Thick

Martin W. Schwartz

Prepared for U.S. Nuclear Regulatory Commission



8408010155 840731 PDR NUREG CR-3826 R PDR NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their empl., ees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights

#### NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 1717 H Strept, N.W. Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports, vendor reports and correspondence; Commission papers, and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-3826 UCRL-53538 RM, RT

.

Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Greater than Four Inches Thick

Manuscript Completed: April 1984 Date Published: July 1984

Prepared by Martin W. Schwartz

Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. A0374

#### PREFACE

This report summarizes the results of research conducted to provide recommendations for fracture toughness acceptance criteria for spent fuel shipping containers made from thick wall ferritic steels. The work was done by Lawrence Livermore National Laboratory and was funded by the Mechanical/Structural Engineering Branch within the Division of Engineering Technology of the U.S. Nuclear Regulatory Commission.

The author wishes to thank Richard Haelsig of the Nuclear Packaging Corporation in Tacoma, Washington for his valuable assistance in developing the cost analysis associated with the various criteria studied in this report.

## TABLE OF CONTENTS

n.

|                                                        |                                         |                                                                                  |                                                         |                                      |                            |                     |                                         |       |              |            |              |             |            |                                         |        |             |                                         |       | Page                           |
|--------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------|---------------------|-----------------------------------------|-------|--------------|------------|--------------|-------------|------------|-----------------------------------------|--------|-------------|-----------------------------------------|-------|--------------------------------|
|                                                        | PREFA<br>LIST<br>LIST<br>ABSTR<br>EXECU | OF ILLU<br>OF ILLU<br>OF TABLE<br>RACT .<br>UTIVE SUM                            | STRATI                                                  | ONS                                  | ••••••                     | ••••••              | ••••••••••••••••••••••••••••••••••••••• | ••••• | ••••••       | •••••      | ·<br>·<br>·  | ·<br>·<br>· | ••••••     | ••••••                                  | •••••• |             | ••••••                                  | ••••• | i<br>iv<br>v<br>vii<br>ix      |
| 1.0                                                    | INTRO                                   | DUCTION                                                                          |                                                         |                                      |                            | •                   |                                         |       | •            | •          | •            | •           | ÷          |                                         | •      | •           | •                                       |       | 1                              |
| 2.0<br>2.1<br>2.2<br>2.3                               | BRITT                                   | LE FRACT<br>Fracture<br>Fracture<br>Drop Tes                                     | TURE A<br>e Arre<br>e Init<br>st .                      | CCEP<br>st C<br>iati                 | TANC<br>rite<br>on C       | E C<br>eria<br>Crit | RITI<br>eri                             | ERI/  | A            |            | :            | :           | :          | ••••••••••••••••••••••••••••••••••••••• | •••••• | :<br>:<br>: | ••••••••••••••••••••••••••••••••••••••• | ••••• | 3<br>3<br>6<br>6               |
| 3.0<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4<br>3.4.<br>3.4. | COST                                    | AND SAFE<br>Approach<br>Candidat<br>Cost Ana<br>Safety A<br>Fracture<br>Fracture | TY AN<br>te Fer<br>alysis<br>Analys<br>e Arre<br>e Init | ALYS<br>riti<br>is .<br>st C<br>iati | IS<br>c St<br>rite<br>on C | eel<br>             | s<br>                                   |       | ••••••       | ••••••     | •••••••      | ••••••      | ••••••     | ••••••                                  | •••••• | •           | · · · · · · · · · · · ·                 |       | 9<br>9<br>10<br>15<br>15<br>17 |
| 4.0<br>4.1<br>4.2                                      | DISCU                                   | USSION OF<br>Cost Ana<br>Safety A                                                | RESU<br>RESU<br>Analys                                  | LTS<br>es .                          | :                          | :                   | :                                       | :     | •            | :          | :            | :           | :          |                                         | :      | :           | :                                       | :     | 27<br>27<br>27                 |
| 5.0                                                    | CONCL                                   | USIONS A                                                                         | ND RE                                                   | сомм                                 | ENDA                       | TIO                 | NS                                      |       |              |            |              |             |            |                                         |        |             |                                         |       | 31                             |
| 6.0                                                    | REFER                                   | ENCES .                                                                          | •                                                       |                                      |                            | •                   |                                         |       |              | •          |              |             |            |                                         |        |             |                                         |       | 33                             |
| APPENDIX                                               | Α.                                      | Charts I<br>Various                                                              | ndica<br>Britt                                          | ting<br>le F                         | App<br>ract                | lic                 | abi<br>Aci                              | lity  | / of<br>tanc | Fe<br>ce ( | erri<br>Crit | itic        | : St<br>ia | eel                                     | ls t   |             |                                         |       | A-1                            |
| APPENDIX                                               | в.                                      | Ferritio                                                                         | : Forg                                                  | ing                                  | Cask                       | Co                  | st E                                    | Esti  | imat         | e          |              |             |            |                                         |        |             |                                         |       | B-1                            |
| APPENDIX                                               | с.                                      | Design (                                                                         | Cost F                                                  | acto                                 | rs.                        |                     |                                         |       |              |            |              |             |            |                                         |        |             |                                         |       | C-1                            |
| APPENDIX                                               | D.                                      | Engineer                                                                         | ing A                                                   | naly                                 | sis                        | Cos                 | ts                                      |       |              |            |              | •           |            |                                         |        |             |                                         |       | D-1                            |
| APPENDIX                                               | E.                                      | Quality                                                                          | Assur                                                   | ance                                 | Eng                        | ine                 | eri                                     | ng (  | Cost         | s          |              |             |            |                                         |        |             |                                         |       | E-1                            |
| APPENDIX                                               | F.                                      | Manufact                                                                         | uring                                                   | Cos                                  | t As                       | sum                 | ptio                                    | ons   | and          | E E        | stin         | nate        | es         | •                                       |        |             | •                                       |       | F-1                            |
| APPENDIX                                               | G.                                      | Wage and                                                                         | I Sala                                                  | ry R                                 | ates                       | • •                 |                                         |       |              | •          | •            |             | ·          |                                         |        |             |                                         |       | G-1                            |
| APPENDIX                                               | н.                                      | Basic Co                                                                         | st Fa                                                   | ctor                                 | s.                         |                     |                                         |       |              |            |              |             |            |                                         | •      |             |                                         |       | H-1                            |
| APPENDIX                                               | I.                                      | Limit St<br>Arrest C                                                             | ate P<br>riter                                          | roba<br>ia                           | bili                       | ity .               | Imp                                     | lied  | d by         | / Fi       | ract         | ture        | •          |                                         |        |             |                                         |       | I-1                            |

#### TABLE OF CONTENTS (cont.)

#### APPENDIX J. Derivation of Expression for Limit State Probability Implied by the Fracture Initiation Criterion at Yield Stress Levels . . . . . . . . . . . J-1 . . . . APPENDIX K. Applicable Ferritic Steels for Each Brittle Fracture Acceptance Criterion Assuming Yield Strength Levels of Stress . . . . . . . . . . . . K-1 . . . LIST OF ILLUSTRATIONS Figure 1. Fracture arrest boundary curves for a range of wall thickness based upon an extrapolated exponential fracture toughness reference curve (FA-EX) . . . . . . . . . 4 Figure 2. Fracture arrest boundary curves for a range of wall thicknesses based on an asymptotic extrapolation of fracture 5 Figure 3. Relationship between cost and fracture toughness for ferritic steels 11 . . . . Figure 4. Ferritic steels applicable to FA-EX-YS at -20°F lowest service temperature . . . 12 . . . . Figure 5. Baseline forged steel cask . . . . . . . . 13 Figure 6. Corporate cost markup model . . . . . . . 14 . . Figure 7. Limit state probability for FA-EX-YS . 16 . . . . . Figure 8. Limit state probability for FA-AX-YS 17 . . . . . . Figure 9. Limit state probability versus thickness for FA-EX-YS . 18 Figure 10. Limit state probability versus thickness for FA-AX-YS . . . 19 Figure 11. Probability of non-detection of a flaw as a function of its depth for an ultrasonic inspection . . . . . 20 Derivation of curve of reference stress intensity factor (KIR). 22 Figure 12. Figure 14. Limit state probabilities versus thickness implied by fracture initiation criterion (FI-YS) . . . . . . . . 25 Figure J1. Overlap of response and resistance probability density function

#### Page

# LIST OF TABLES

Page

| Table | 1. | TNDT requirements for LST = $-20^{\circ}$ F using exponential K <sub>ID</sub> / $\sigma_{YD}$ reference curve based on Pellini data (FA-EX) 4           |   |
|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table | 2. | $T_{NDT}$ requirements for: LST = -20°F using asymptotic $K_{ID}/\sigma_{YD}$ reference curve (FA-AX)                                                   |   |
| Table | 3. | T <sub>NDT</sub> requirements based upon allowable ASME Section XI flaw<br>sizes for brittle fracture using the fracture initiation<br>approach (FI-YS) |   |
| Table | 4. | Candidate ferritic steels for shipping casks 10                                                                                                         |   |
| Table | 5. | Summary of forging cost estimates for various brittle fracture criteria                                                                                 |   |
| Table | 6. | Limit state probabilities implied by fracture initiation<br>criterion (FI-YS)                                                                           |   |
| Table | 7. | Applicable ferritic steels for twelve inch wall thickness 29                                                                                            |   |
| Table | 81 | Baseline ferritic forging cost estimate                                                                                                                 |   |
| Table | B2 | Forging cost estimate for criteria FA/EX-YS                                                                                                             |   |
| Table | БЗ | Forging cost estimate for criteria FA/EX-PS                                                                                                             |   |
| Table | B4 | Forging cost estimate for criteria FA/AX-YS                                                                                                             |   |
| Table | 85 | Forging cost estimate for criteia FI-YS                                                                                                                 |   |
| Table | 86 | Forging cost estimate for criteria FI-PS                                                                                                                |   |
| Table | B7 | Forging cost estimate for criteria DT                                                                                                                   |   |
| Table | D1 | Baseline design and materials analysis engineering<br>labor estimates                                                                                   |   |
| Table | D2 | Design and materials analysis labor estimates for criteria<br>FA/EX-YS and DT                                                                           |   |
| Table | D3 | Design and materials analysis labor estimates for criteria<br>FA/EX/PS and FA/AX/PS                                                                     | 0 |
| Table | D4 | Design and materials analysis labor estimates for criteria<br>FI-YS                                                                                     | 1 |
| Table | D5 | Design and materials analysis <sup>1</sup> or estimates for criteria<br>FI-PS                                                                           | 2 |

| Table | G1  | Analysis of hourly rate | industry dat data | a for er | ngin<br>• | nering and | ma | anı | ufactu            | ring<br>• |     | G-3 |
|-------|-----|-------------------------|-------------------|----------|-----------|------------|----|-----|-------------------|-----------|-----|-----|
| Table | н1  | Analysis of             | industry dat      | a for o  | verl      | head and G | 4A | ma  | arkup             | fact      | ors | H-4 |
| Table | 11  | Limit state             | probability       | implied  | by        | FA-EX-YS,  | т  | =   | -200F             |           |     | I-2 |
| Table | 12  | Limit state             | probability       | implied  | by        | FA-EX-YS,  | T  | =   | -10°F             |           |     | I-2 |
| Table | 13  | Limit state             | probability       | implied  | by        | FA-EX-YS,  | т  | =   | 0°F               |           |     | I-3 |
| Table | 14  | Limit state             | probability       | implied  | by        | FA-EX-YS,  | т  | =   | 10°F              |           |     | I-3 |
| Table | 15  | Limit state             | probability       | implied  | by        | FA-EX-YS,  | т  | =   | 20 <sup>0</sup> F |           |     | I-4 |
| Table | 16  | Limit state             | probability       | implied  | by        | FA-AX-YS,  | т  | =   | -20°F             |           |     | 1-4 |
| Table | 17  | Limit state             | probability       | implied  | by        | FA-AX-YS,  | т  |     | -10°F             |           |     | I-5 |
| Table | 18  | Limit state             | probability       | implied  | by        | FA-AX-YS,  | т  | =   | 0°F               |           |     | I-5 |
| Table | 19  | Limit state             | probability       | implied  | by        | FA-AX-YS,  | т  | =   | 10°F              |           |     | I-6 |
| Table | 110 | Limit state             | probability       | implied  | by        | FA-AX-YS,  | т  | =   | 200F              |           |     | I-7 |

#### ABSTRACT

Various criteria for protecting against brittle fracture in spent-fuel shipping containers made from ferritic steel forgings greater than four inches thick are evaluated. A fracture initiation criterion based upon yield stress levels and allowable flaw sizes specified in Section XI of the ASME Code is recommended. This recommendation is based upon a value impact evaluation taking into account its effect upon industry and the risk of brittle fracture.

### EXECUTIVE SUMMARY

The Lawrence Livermore National Laboratory (LLNL) under contract to the U.S. Nuclear Regulatory Commission (NRC) conducted a study to develop recommendations for criteria that will prevent brittle fracture of shipping containers made of thick wall ferritic stee! forgings under hypothetical accident conditions resulting in high levels of dynamic loading. These recommendations are based upon an assessment of their impact upon industry in the area of costs and safety considerations as manifested by the limit state probabilities associated with various criteria. The criteria examined were those developed during FY82 and are summarized as follows.

- 1. A fracture arrest criterion based upon an exponential extrapolation of the Pellini fracture toughness reference curve where it is applicable to a range of stress from 0.2 of the yield strength to the yield strength. The latter will, hereafter be referred to as the FA-EX-YS criterion; the former as the FA-EX-PS.
- 2. A fracture arrest criterion based upon an asymptotic extrapolation of the Pellini fracture toughness reference curve which is also applicable to a range of stress from 0.2 of the yield strength to the yield strength. The latter will, hereafter be referred to as the FA-AX-YS criterion; the former as the FA-AX-PS.
- 3. A fracture initiation criterion based upon the allowable flaw sizes specified in Table IWB-3510-1 of Section XI of the ASME Boiler and Pressure Vessel Code. At yield strength level this criterion will be referred to at FI-YS and at stress less than yield as FY-PS.
- A drop test acceptance criterion based upon the incroduction of flaws at critical locations in propress specimen. This criterion is referred to as DT.

The approach adopted was to consider all the ferritic steels that might be candidates for the construction of shipping casks and to select from these the specific types that meet the various criteria for a particular thickness and lowest service temperature. The cost of fabricating a shipping container in accordance with each of the criteria was computed for the least expensive qualified steel, and the limit state probability associated with each steel type, thickness, and lowest service temperature, was assessed. The results are illustrated in the following pages for a twelve-inch wall section chosen to be most relevant for the purpose of selecting an acceptance criterion.

There is no significant difference in cost impact between the fracture arrest and fracture initiation criteria at yield stress levels. However, the limit state probabilities implied by the fracture initiation criterion at yield stress are lower than that of the fracture arrest criteria at a lowest service temperature of -20°F. The limit state probabilities connected with the fracture arrest criteria improve with an increase in lowest service temperature. However, only SA-508-4A can demonstrate a lower limit state probability for the fracture arrest criteria and then only at a lowest service temperature of 20°F. On the other hand, SA-508-4A, SA-508-4B, and A-350LF-3 can satisfy the fracture initiation criterion at  $-20^{\circ}$ F.

The drop test has a limit state probability equal to or better than the fracture initiation design criterion, however it is more costly. Criteria involving design stresses less than yield result in both higher costs and lower reliability. Consequently, the recommended criterion for qualifying ferritic steels for brittle fracture is fracture initiation at yield stress levels with initial flaw sizes not exceeding those indicated by Table IWB-3510-1 in Section XI of the ASME Coge. However, if inspection procedures associated with steels qualified for prevention of fracture initiation are applied to steels selected in accordance with fracture arrest criteria, casks fabricated of such materials would have the lowest limit state probabilities with a relatively modest cost increase.



Applicable 12-inch-thick ferritic steels for lowest service temperature of -20°F.



Applicable 12-inch-thick ferritic steels for lowest service temperature of -10°F.



Applicable 12-inch-thick ferritic steels for lowest service temperature of 0°F.



Applicable 12-inch-thick ferritic steels for lowest service temperature of 10°F.

- xiv -



Applicable 12-inch-thick ferritic steels for lowest service temperature of 20°F.

#### 1.0 INTRODUCTION

The U.S. Nuclear Regulatory Commission (NRC) is in the process of developing Regulatory Guides for the prevention of failure by brittle fracture in ferritic steel shipping containers greater than four inches thick. A research program was conducted in FY82 to investigate various criteria for preventing brittle fracture in such containers. The results of this research were deliberately published without specific recommendations (1), since such recommendations are to be accompanied by a value impact assessment. Consequently, this report provides recommendations for brittle fracture design criteria arrived at after consideration of their impact on the shipping container industry as well as on the safety margins implied by these recommendations. Assistance in evaluating the impact of the design criteria on industry was obtained from the Nuclear Packaging Corporation, a company experienced in the design and production of containers for the transport of radioactive material.

#### 2.0 BRITTLE FRACTURE ACCEPTANCE CRITERIA

A study conducted in FY82 (1), examined a number of approaches for qualifying thick wall ferritic steel shipping containers for resistance to brittle fracture. These were:

- A. A fracture arrest approach utilizing two different fracture toughness reference curves.
- B. A fracture initiation approach based upon yield strength and below yield strength levels of dynamic stress.
- C. Performance of a drop test to qualify the cask for brittle fracture resistance.

In the FY82 study, these criteria were investigated assuming a lowest service temperature (LST) of -20°F. This report also considers the effects of increasing this LST.

#### 2.1 FRACTURE ARREST CRITERIA

Fracture arrest is a material selection criterion which guarantees that if a fracture initiated at flaws in embrittled areas of the cask, a through-wall crack may be generated without causing further catastrophic crack propagation. Choosing a suitable ferritic steel for the anticipated ambient temperature is facilitated using the Pellini fracture toughness reference curve, a description of which, together with the application of the methodology, is described in Refs. 1 and 2. For ferritic steels greater than four inches thick, it was necessary to extrapolate the Pellini curve to determine the required nil ductility transition temperature (NDTT) for candidate steels. Two extrapolation schemes were investigated. The first was based upon the assumption that the Pellini data could be described by an exponential function which could then be analytically extrapolated to IDTT's associated with ferritic steels as thick as twenty inches. The second extrapolation was based upon the assumption that beyond about NDTT plus 140°F the behavior of most ferritic steels applicable to casks would display upper shelf behavior and would be well outside the range of brittle fracture. This latter extrapolation is described by an inverse function asymptotic to NDTT plus 140°F. The T-NUTT requirements for ferritic steels to meet the fracture arrest criteria are summarized in Figs. 1 and 2. NDTT requirements for an LST of -20°F are summarized in Tables 1 and 2. Note that for brevity the fracture arrest criterion utilizing the exponential extrapolation is referred to as FA-EX, while the fracture arrest criterion utilizing the inverse function is referred to as FA-AX. A criterion based on yield strength levels of dynamic stress would then be FA-EX-YS and FA-AX-YS with respect to the two fracture arrest criteria. Where the material selection is based upon predicted stresses lower than yield, the designations are respectively FA-EX-PS and FA-AX-PS.





|                    |                                    | TNDT                               | (°F)                               |                                    |                                    |
|--------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Tnickness<br>(in.) | $\frac{\sigma}{\sigma_{yD}} = 1.0$ | $\frac{\sigma}{\sigma_{yD}} = 0.8$ | $\frac{\sigma}{\sigma_{yD}} = 0.6$ | $\frac{\sigma}{\sigma_{y0}} = 0.4$ | $\frac{\sigma}{\sigma_{yU}} = 0.2$ |
| 4                  | -123                               | -115                               | -107                               | -98                                | -90                                |
| 3                  | -143                               | -136                               | -129                               | -122                               | -115                               |
| 12                 | -153                               | -147                               | -141                               | -135                               | -129                               |
| 16                 | -161                               | -155                               | -149                               | -143                               | -137                               |
| 20                 | -167                               | -161                               | -155                               | -149                               | -143                               |

Table 1.  $T_{NDT}$  requirements for LST = -20°F using exponential  $K_{ID}/\sigma_{YD}$  reference curve based on Pellini data (FA-EX).

- 4 -



Figure 2. Fracture arrest boundary curves for a range of wall thicknesses based on asymptotic extrapolation of fracture toughness reference curve (FA-AX).

|                    |                                    | TNDT                               | (°F)                               |                                    |                                    |  |
|--------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Thickness<br>(in.) | $\frac{\sigma}{\sigma_{yD}} = 1.0$ | $\frac{\sigma}{\sigma_{yD}} = 0.8$ | $\frac{\sigma}{\sigma_{yD}} = 0.6$ | $\frac{\sigma}{\sigma_{yD}} = 0.4$ | $\frac{\sigma}{\sigma_{yD}} = 0.2$ |  |
| 4                  | -123                               | -115                               | -107                               | -98                                | -90                                |  |
| 8                  | -135                               | -130                               | -126                               | -121                               | -117                               |  |
| 12                 | -140                               | -137                               | -134                               | -131                               | -127                               |  |
| 16                 | -144                               | -141                               | -138                               | -135                               | -132                               |  |
| 20                 | -146                               | -143                               | -141                               | -137                               | -135                               |  |

Table 2.  $T_{NDT}$  requirements for: LST = -20°F using asymptotic  $K_{1D}/\sigma_{YD}$  reference curve (FA-AX).

## 2.2 FRACTURE INITIATION CRITERIA

The fracture initiation criterion prevents the initiation of crack propagation at locations where flaws may exist. It requires that the selected material demonstrates sufficient fracture toughness to preclude flaw instability for whatever stress level and maximum allowable flaw size are permitted by design and fabrication specifications. To be consistent with the fracture arrest criterion, a materials selection approach was adopted wherein both the stress levels and the allowable flaw size were specified, and the resulting fracture toughness requirements met by selecting steels having NDTTs that reflect this fracture toughness. These NDTT requirements are based upon a yield strength level of dynamic stress and the maximum allowable flaw sizes indicated in Table IWB-3510-1 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code. These requirements are summarized in Table 3. The fracture initiation criterion hereafter will be referred to as FI-YS for fracture initiation at yield stress levels and FI-PS for fracture initiation at predicted stress levels.

#### 2.3 DROP TEST

A third criterion for qualifying shipping containers for resistance to brittle fracture is the 9-meter (30-feet) drop test. This criterion mitigates the requirements for analysis of fracture toughness stress intensities. However, this test must demonstrate that catastrophic crack propagation cannot occur even with the presence of flaws. Consequently, a unique requirement of this test is that flaws be introduced at the most vulnerable location in the shipping cask. While the size and configuration of the flaw may be at the option of the applicant, it should be recognized that the flaw size used in a test that is ultimately successful is the flaw size that will establish the inspection limits for production shipping casks.

|           | FI         | law aspect | ratio, $a/l =$ | 0.5    |      |
|-----------|------------|------------|----------------|--------|------|
| Thickness | a = 0.035B | $a_i = 2a$ | KID/ YD        | T-NDTT | TNDT |
| 8 (in.)   | (in.)      | (in.)      | √in.           | (°F)   | (°F) |
| 4         | 0.14       | 0.28       | 0.69           | 20     | -40  |
| 8         | 0.28       | 0.56       | 0.97           | 53     | -73  |
| 12        | 0.42       | 0.84       | 1.19           | 69     | -89  |
| 16        | 0.56       | 1.12       | 1.38           | 80     | -100 |
| 20        | 0.70       | 1.40       | 1.54           | 87     | -107 |
|           | F          | aw aspect  | ratio, a/l =   | 1/6    |      |
| Thickness | a = 0.024B | $a_i = 2a$ | KID/ avo       | T-NDTT | TNDT |
| B (in.)   | (in.)      | (in.)      | √in.           | (°F)   | (°F) |
| 4         | 0.10       | 0.20       | 0.87           | 44     | -64  |
| 8         | 0.19       | 0.38       | 1.20           | 70     | -90  |
| 12        | -0.29      | 0.58       | 1.48           | 85     | -105 |
| 16        | 0.38       | 0.76       | 1.69           | 94     | -114 |
| 20        | 0.48       | 0.96       | 1.90           | 101    | -121 |
|           | F          | law aspect | ratio, a/2 +   | • 0    |      |
| Thickness | a = 0.018B | $a_i = 2a$ | KID/ TYD       | T-NDTT | TNDT |
| B (in.)   | (in.)      | (in.)      | √in.           | (°F)   | (°F) |
| 4         | 0.072      | 0.144      | 0.84           | 41     | -61  |
| 8         | 0.144      | 0.288      | 1.19           | 69     | -89  |
| 12        | 0.216      | 0.432      | 1.46           | 84     | -104 |
| 16        | 0.288      | 0.576      | 1.66           | 93     | -113 |
| 20        | 0.360      | 0.720      | 1.88           | 100    | -120 |

Table 3. TNDT requirements based upon allowable ASME Section XI flaw sizes for brittle fracture using the fracture initiation approach (FI-YS).

## 3.1 APPROACH

Recommendations relating to which of the criteria is most applicable to the prevention of brittle fracture in shipping casks under dynamic loading conditions are based upon what they imply with regard to levels of safety and their impact upon the shipping cask industry. Thus, it is necessary to rank each of the criteria with respect to some quantitative measure of these implications. For industry the controlling factor is cost, while safety can be quantified in terms of relative risk. The approach used in the evaluation of these criteria was to identify all the ferritic steels that may be applicable for the construction of shipping casks, assemble a data base for cost and fracture toughness properties of these steels, develop a cask model that could serve as a basis for comparison of costs, and finally, determine the limit state probabilities associated with each of the candidate materials and for each fracture toughness qualification criterion. Assistance in identifying candidate ferritic steels, compiling the cost and properties data base, and analyzing the cask model for cost comparisons was provided by a representative of the shipping cask industry under a sub-contract.

#### 3.2 CANDIDATE FERRITIC STEELS

A list of candidate materials together with their cost and fracture toughness properties as reflected by their NDTT's is shown in Table 4. Information about these materials appears in detail in Refs. 3 - 10 as indicated in the last column of the table. The plate materials would be applicable to shipping casks of up to about seven-inch wall thickness, while forgings would probably be required for shipping casks of greater thicknesses. To illustrate the relationship between cost and toughness, the data in Table 4 is plotted on Fig. 3. If the NDTT requirements associated with each brittle fracture prevention criterion are superposed on Fig. 3, the candidate ferritic steels that can meet the criterion for the entire range of thicknesses can be identified. This is shown, for example, in Fig. 4 for criterion FA-EX-YS at an LST of -20°F. This type of diagram applicable to all the relevant criteria and for a range of LSTs is placed in Appendix A.

| Material      | <br>  Billet Cost                                                                                                | NDT     | NDTT (°F)            |    |  |
|---------------|------------------------------------------------------------------------------------------------------------------|---------|----------------------|----|--|
|               | \$/16.                                                                                                           | Mean    | Std. Dev.            |    |  |
| Plate         |                                                                                                                  |         |                      |    |  |
| A 36          | 0.36                                                                                                             | 25.1    | 1 10.78              | 3  |  |
| A 516, GR. 70 | 0.55                                                                                                             | -23.8   | 1 15.66              | 3  |  |
| Forgings      |                                                                                                                  |         |                      |    |  |
| SA-508-1      | 0.65 1                                                                                                           | -47.71  | 1 10.99              | 4  |  |
| SA-508-2      | 0.72                                                                                                             |         |                      |    |  |
| B&W           | 1                                                                                                                | 19.40   |                      | 5  |  |
| Swedish       | i de la companya de la | -9.40   | is a literated       | 6  |  |
| Japan Stl     | 1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                        | -27.68  | 1 16.01              | 7  |  |
| SA-508-2A     | 0.72                                                                                                             | 19.40   |                      | 6  |  |
| SA-508-3      | 0.72                                                                                                             |         | 1                    |    |  |
| U.S.          | 1                                                                                                                | -22.00  | The subscript of the | 6  |  |
| Japan Stl     | 1                                                                                                                | -24.39  | 15.02                | 7  |  |
| SA-508-4A     | 0.89                                                                                                             | -158.33 | 1 10.52              | *  |  |
| SA-508-4B     | 0.89                                                                                                             | -148.00 |                      | 8  |  |
| SA-350-LF5    | 0.65                                                                                                             | -76.00  |                      | 9  |  |
| SA-350-LF3    | 0.77                                                                                                             | -120.00 |                      | 10 |  |

Table 4. Candidate ferritic steels for shipping casks.

\*Nuclear Packaging Corporation, personal communication from Dr. R. J. Andreini, Jorgenson Steel, Forge Division, Seattle, WA, April 1983.

### 3.3 COST ANALYSIS

.The impact of the various criteria on cost was determined by comparing the cost of a forged ferritic steel baseline cask having no particular fracture toughness requirements with identical casks made of candidate steels selected in accordance with the various fracture toughness criteria.

Figure 5 shows the configuration of this baseline cask. The payload was assumed to be 7 PWR fuel assemblies each with a decay heat of about 1 Kw and a weight of 1262 lbs. The wall thickness was established on the basis of strength assuming impact loads of about 100 g's and shielding requirements equivalent to six inches of lead ( $CO^{60}$ ). Both neutron shielding and impact limiters were ignored, since they are not influenced by fracture toughness considerations for a comparative cost study.

The elements making up the total cost of the shipping cask are identified in Fig. 6. Basic information relating to labor and material costs, overhead, and corporate GPA may be found in Appendices C through H.















Figure 6. Corporate cost markup model.

The differences in cost manifested by the various criteria are due to the level of analytical effort required, the degree of quality assurance to be maintained, and the material cost applicable for each criterion. The fracture arrest and initiation criteria, assuming yield stress levels, require lesser analytical effort than those cases where specified stress levels may not be exceeded. On the other hand, the fracture initiation criteria, at any stress level, require a higher degree of quality control to assure that flaw sizes do not exceed the specified maxima. The material cost used was that corresponding to the lowest cost material that would qualify for a particular criterion based on the thickness of the baseline cask. A summary of the cost of the forged ferritic steel shipping casks relative to the baseline cask is presented in Table 5 for each fracture toughness acceptance criterion. The cost breakdown, computed in accordance with the corporate cost markup model shown in Fig. 6, is given in Appendix B for the baseline cask and for each of the fracture toughness acceptance criteria.

| Criterion     | Total<br>Engr.<br>Cost<br>(\$) | Fabr.<br>Cost<br>(\$) | Total<br>Unit<br>Cost*<br>(\$) | Cost<br>Relative to<br>Baseline<br>Cask |
|---------------|--------------------------------|-----------------------|--------------------------------|-----------------------------------------|
| Baseline Cask | 578337                         | 289641                | 456986                         | 1.0                                     |
| FA/EX-YS      | 607688                         | 317416                | 494921                         | 1.083                                   |
| FA/EX-PS      | 695733                         | 322711                | 520745                         | 1.140                                   |
| FA/AX-YS      | 607688                         | 317416                | 494921                         | 1.083                                   |
| FA/AX-PS      | 695733                         | 322711                | 520745                         | 1.140                                   |
| FI-YS         | 641876                         | 314994                | 499899                         | 1.094                                   |
| FI-PS         | 872526                         | 314769                | 551995                         | 1.208                                   |
| DT            | 867978                         | 289641                | 522300                         | 1.143                                   |

Table 5. Summary of forging cost estimates for various brittle fracture criteria.

\*Based upon a production run of five casks.

### 3.4 SAFETY ANALYSIS

#### 3.4.1 Fracture Arrest Criteria

The fracture arrest criterion provides a fracture toughness requirement based upon the thickness of the containment which is then translated into a required NDTT by means of the Pellini fracture toughness reference curve. This criterion assures that the behavior of the steel chosen for a particular ambient temperature is well beyond the transition from brittle to ductile fracture. Since the Pellini curve is based upon a lower bound of fracture toughness for all ferritic steels, it can be concluded that the T-NDTT indicated by the Pellini curve represents an upper bound on the T-NDTT requirement, and that the probability of a requirement exceeding this is essentially zero. While it may be argued that there is a finite probability of a lesser requirement, the rules of the fracture arrest criterion make this assumption inadmissable. Consequently, instead of representing the T-NDTT requirement as a probabilistically distributed parameter, we are forced to regard it as a deterministic quantity in computing the limit state probability. On the other hand, the material selected to meet the T-NUTT requirement will display a variation in fracture toughness and it is the statistical characterization of the material that will determine the limit state probability associated with this criterion. The limit state probability is then simply the probability of non-exceedance of the T-NDTT for the selected steel. This is illustrated in Fig. 7 for FA-EX-YS, and Fig. 8 for FA-AX-YS, using an eight-inch wall thickness of SA-508-4A as an example. In Fig. 7 the toughness requirement for an eight-inch wall thickness is a T-NDTT of 123°F, while for a LST of -20°F, the mean T-NDTT value for SA-508-4A is 138°F. Based on a standard deviation of 10.50 for this steel, the limit state probability is 7.6 x  $10^{-2}$ . For the FA-AX-YS criterion the lower NDTT requirement results in a limit state probability of 1.4 x  $10^{-2}$ . It is important to point out that the limit state probability is not necessarily the failure probability. It is, rather, the probability of exceeding the capability of the material as defined by the relevant criterion.





٠





The analysis described above was performed for each of the steels that met the fracture arrest criterion within the thickness range considered. A tabulation of the results of this analysis is provided in Appendix I and curves summarizing these results for FA-EX-YS and FA-AX-YS at -20°F are illustrated in Figs. 9 and 10, respectively.

## 3.4.2 Fracture Initiation Criteria

The fracture initiation criterion provides a fracture toughness requirement that is governed both by anticipated levels of stress and the size and configuration of an existing flaw. The magnitude and dispersion of these parameters determine the magnitude and dispersion of the applied normalized dynamic stress intensity,  $K_{\rm I}/\sigma_{\rm YD}$ . Combining this with the distribution function for the critical stress intensity of the ferritic steel yields the limit state probability associated with the fracture initiation criterion.





٠

For the case where yield stress levels are assumed (FI-YS), the expression for applied stress intensity due to a surface flaw is simply,

$$\frac{\kappa_1}{\sigma_{yD}} = C \sqrt{a}, \qquad (1)$$

where C is a constant reflecting the configurations of the flaw, and a is the flaw depth. In this case only the statistics associated with the flaw depth are required to determine the probability density function of the stress intensity. The uncertainty regarding the flaw depth is associated with the





probability of non-detection of the flaw. The results of considerable research in this area are summarized in Fig. 11 which shows the probability of non-detection of a flaw as a function of its depth obtained by a number of investigators. The values chosen for this study are those recommended by Harris (11). For a log-normally distributed probability density function, these values are 0.25 for the median flaw depth, and 1.33 for the reciprocal of the standard deviation of the log of the flaw depth.



Figure 11. Probability of non-detection of a flaw as a function of its depth for an ultrasonic inspection.

The limit state probability associated with the fracture initiation criterion at yield stress levels is expressed by

$$P_{F} = \int \phi \left[ \frac{\sigma_{en} \hat{\kappa}_{ID}}{\sigma_{en} \hat{\kappa}_{ID}} \right] f_{\hat{\kappa}}(\hat{\kappa}_{1}) d\hat{\kappa}_{1}$$
(2)

where

$$\phi = \int_{0}^{[---]} \frac{1}{\sqrt{2\pi}} \exp^{\frac{1}{2}[---]^{2}} d\hat{k}_{10}$$

$$[---] = \left[\frac{\ln k_{\rm ID} - \mu_{\rm en} \hat{K}_{\rm ID}}{\sigma_{\rm en} \hat{K}_{\rm ID}}\right]$$

and

$$f_{\tilde{k}_{1}}(\tilde{k}_{1}) = \frac{2}{R_{1} \sigma_{gnA}} \exp - \frac{1}{2} \left\{ \frac{1}{\sigma_{gnA}} - \frac{1}{2} \left\{ \frac{1}{\sigma_{gnA}} - \frac{1}{2} \left\{ \frac{1}{\sigma_{gnA}} \right\}^{2} \right\}^{2}$$
(4)

The derivation of the above equation is given in Appendix J.

The statistical parameters for the fracture toughness of ferritic steel in linear elastic fracture mechanics units were obtained from the data collection shown in Fig. 12. The data, which are presented in terms of  $K_{IR}$  versus temperature relative to NDTT, represent the results of tests conducted by numerous investigators to determine the fracture toughness of ferritic steels used by the nuclear industry. A regression analysis of this data after normalization at a dynamic yield stress level of 70 ksi and using an exponential function resulted in the following expressions for the mean and standard deviation of the fracture toughness as a function of NDTT.

$$\mu(\frac{^{N}ID}{^{\sigma}yD}) = 0.3592 \exp 0.01284(T-NDTT) + 0.4$$
(5)

$$\sigma(\frac{K_{\rm ID}}{\sigma_{\rm VD}}) = 0.264 \ \mu(\frac{K_{\rm ID}}{\sigma_{\rm VD}} - 0.4) \tag{6}$$

The probability density function for the fracture toughness properties was also assumed to be log-normal.

The method for determining the limit state probability associated with FI-YS is illustrated in Fig. 13. The limit state probability, P<sub>F</sub>, is computed by convolving the pdf for the applied stress intensity with that of the critical stress intensity as shown for Fig. 13. The example shown considers the case of twenty-inch thickness with a flaw having an aspect ratio approaching zero, that is, a flaw that is very long compared with its depth. The maximum allowable flaw depth based on Table IWB-3510-1 of Section XI of the ASME BPV Code (13) is 0.360 inches and the critical flaw size is established at twice this depth, or 0.720 inches. The ferritic steel chosen for this application must be tough enough to resist fracture with a flaw depth of 0.720 inches so that it would require a T-NDTT value of 100°F corresponding

(3)

to a  $K_{ID}/\sigma_{YD}$  of 1.88. (See Table 3.) For this case the limit state probability is 2.8 x 10<sup>-4</sup>. The analysis was extended to include the full range of wall thicknesses and flaw aspect ratios. The results are summarized in Table 6 and plotted in Fig. 14.






Figure 13. Limit state probability for FI-YS.

|                     | Flaw   | Aspect F             | Ratio a/e                                           | = .5; a/au               | = 1.0: C   | = 1.3      | 1997 W. LA LANDA COLLEGE MANAGEMENT |
|---------------------|--------|----------------------|-----------------------------------------------------|--------------------------|------------|------------|-------------------------------------|
| Thickness<br>B(in.) | a(in.) | a <sub>i</sub> (in.) | Design<br>K <sub>ID</sub> /σ <sub>YD</sub><br>(√īn) | Design<br>T-NDTT<br>(°F) | ), c<br>   | σ<br>(√īñ) | P <sub>F</sub>                      |
| 4                   | 0.14   | 0.28                 | 0.69                                                | 20                       | 0.864      | 0.122      | 9.9 x 10 <sup>-5</sup>              |
| 8                   | 0.28   | 0.56                 | 0.97                                                | 53                       | 1.109      | 0.187      | 2.4 x 10 <sup>-5</sup>              |
| 12                  | 0.42   | 0.84                 | 1.19                                                | 69                       | 1.271      | 0.230      | 1.1 x 10 <sup>-5</sup>              |
| 16                  | 0.56   | 1.12                 | 1.38                                                | 80                       | 1.403      | 0.265      | 6.4 x 10 <sup>-6</sup>              |
| 20                  | 0.70   | 1.40                 | 1.54                                                | 87                       | 1.498      | 0.290      | 4.6 x 10 <sup>-6</sup>              |
|                     | Flaw   | Aspect Ra            | atio a/l =                                          | .167; σ/σγ               | D = 1.0; ( | c = 1.925  |                                     |
| 4                   | 0.10   | 0.20                 | 0.87                                                | 44                       | 1.032      | 0.167      | $1.4 \times 10^{-3}$                |
| 8                   | 0.19   | 0.38                 | 1.20                                                | 70                       | 1.282      | 0.233      | $4.3 \times 10^{-4}$                |
| 12                  | 0.29   | 0.58                 | 1.48                                                | 85                       | 1.470      | 0.282      | $2.0 \times 10^{-4}$                |
| 16                  | 0.38   | 0.76                 | 1.69                                                | 94                       | 1.601      | 0.317      | $1.3 \times 10^{-4}$                |
| 20                  | 0.48   | 0.96                 | 1.90                                                | 101                      | 1.714      | 0.347      | 9.3 x 10 <sup>-5</sup>              |
|                     | Fla    | aw Aspect            | Ratio a/                                            | e = 0; σ/σγ              | D = 1.0; C | = 2.2      |                                     |
| 4                   | 0.072  | 0.144                | 0.84                                                | 41                       | 1.008      | 0.161      | 4.4 x 10 <sup>-3</sup>              |
| 8                   | 0.144  | 0.228                | 1.19                                                | 69                       | 1.271      | 0.230      | $1.3 \times 10^{-3}$                |
| 12                  | 0.216  | 0.432                | 1.46                                                | 84                       | 1.456      | 0.279      | $6.4 \times 10^{-4}$                |
| 16                  | 0.288  | 0.576                | 1.66                                                | 93                       | 1.586      | 0.313      | $4.0 \times 10^{-4}$                |
| 20                  | 0.360  | 0.720                | 1.88                                                | 100                      | 1.697      | 0.342      | 2.8 × 10-4                          |

Table 6. Limit state probabilities implied by fracture initiation criterion (FI-YS).



Figure 14. Limit state probabilities versus thickness implied by fracture initiation criterion (FI-YS).

#### 4.1 COST ANALYSIS

The results of the cost analysis shown in Tab. 5, indicate that a cost penalty is incurred by specifying a requirement for brittle fracture resistance under dynamic loading conditions. The least penalty is incurred when the fracture arrest criteria is based on yield stress levels, since little sophistication is required in the way of stress analyses or inspection procedures. The fracture initiation criteria at yield stress levels incurs a slightly higher cost primarily due to more stringent inspection requirements. All criteria which require a stress analysis to demonstrate acceptability are still higher in cost reflecting the additional expenditures required for stress analyses and computer time. The highest cost is incurred by the FI-PS criteria which require the most sophisticated analyses since a flaw initiated by a stress higher than the one computed could conceivably lead to catastrophic fracture. Finally, the cost of a drop test using full-scale specimens appears to be the same as that incurred by using the fracture arrest criteria at stress levels less than yield.

These observations reflect only the relative cost implied by each criterion. The absolute cost differences will be influenced by the number of shipping casks produced of a particular configuration. For one or two casks the difference in absolute costs could be significant. For a large number of casks, the additional analyses and quality assurance efforts comprise a corresponding smaller fraction of the unit cost. Even for a production run of five casks as assumed in the cost analyses, the difference in costs incurred between the fracture arrest and initiation criteria is negligible. In any event, the relative costs implied by all the criteria are close enough considering the uncertainties of the cost analyses, to conclude that cost is not the major consideration in selecting an appropriate acceptance criterion.

#### 4.2 SAFETY ANALYSES

A summary of all the acceptable ferritic steels in accordance with the fracture arrest and initiation criteria of yield stress levels is presented for a range of limit state probabilities, thicknesses, and LSTs in Appendix K. This tabulated data shows that fewer ferritic steels qualify as the limit state probability decreases. No ferritic steel can be qualified in accordance with the fracture arrest criteria at an LST of -20° that has a limit state probability less than  $10^{-2}$ , except for thicknesses less than four inches. However, the number of steels that can be qualified increases as the LST requirements are relaxed. The fracture initiation criterion, on the other hand, admits a number of ferritic steels at an LST of -20°F. However, this number decreases with decreasing limit state probability rather abruptly below  $10^{-4}$  for flaw aspect values approaching zero and one-sixth, and below  $10^{-5}$ 

The relative merits of each brittle fracture acceptance criterion can be brought into sharper focus if we devote our attention to the twelve-inch thickness. This thickness is selected because it is within the range of thicknesses required for monolithic thick walled shipping casks. For thicknesses less than twelve inches, the applicability of the fracture arrest criteria are enhanced since NDTT requirements decrease with thickness. For thicknesses greater than twelve inches, the fracture initiation criteria is enhanced since the probability of non-detection of a flaw decreases with thickness if the ASME Section XI rules for allowable flaw sizes are adopted. The matrix of acceptable ferritic steels approximately twelve inches thick with their associated LST and limit state probability is shown in Table 7.

| Criterion         | PF<              | -20°F                     | -10°F                     | 0°F                       | 10°F                               | 20°F                               |
|-------------------|------------------|---------------------------|---------------------------|---------------------------|------------------------------------|------------------------------------|
| FA-EX-YS          | 10-2             | x                         | x                         | 508-4A                    | 508-4A                             | 508-4A<br>508-4B                   |
|                   | 10-3             | X                         | x                         | Х                         | 508-4A                             | 508-4A                             |
|                   | 10-4             | X                         | X                         | X                         | Х                                  | 508-4A                             |
|                   | 10 <sup>-5</sup> | x                         | X                         | X                         | X                                  | 508-4A                             |
|                   | 10 <sup>-6</sup> | x                         | X                         | Х                         | X                                  | 508-4A                             |
| FA-AX-YS          | 10-2             | X                         | 508-4A                    | 508-4A                    | 508-4A<br>508-4B                   | 508-4A<br>508-4B                   |
|                   | 10-3             | x                         | x                         | 508-4A                    | 508-4A                             | 508-4A<br>508-4B                   |
|                   | 10-4             | X                         | Х                         | x                         | 508-4A                             | 508-4A                             |
|                   | 10-5             | X                         | X                         | X                         | 508-4A                             | 508-4A                             |
|                   | 10 <sup>-6</sup> | X                         | X                         | Х                         | Х                                  | 508-4A                             |
| ÊI-YS<br>a/ & + 0 | 10-2             | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |
|                   | 10-3             | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |
| FI-YS<br>a/& +1/6 | 10-2             | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |
|                   | 10-3             | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |

Table 7. Applicable ferritic steels for twelve inch wall thickness.

| Criterion          | PF<              | -20°F                     | <br>  -10°F               | 0°F                                | <br>  10°F                         | 20°F                               |
|--------------------|------------------|---------------------------|---------------------------|------------------------------------|------------------------------------|------------------------------------|
| FI-YS<br>a/& + 1/2 | 10 <sup>-2</sup> | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |
|                    | 10-3             | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |
|                    | 10 <sup>-4</sup> | 508-4A<br>508-4A<br>350-3 | 508-4A<br>508-4B<br>350-3 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 | 508-4A<br>508-4B<br>350-3<br>350-5 |

Table 7. (continued)

#### 5.0 CONCLUSIONS AND RECOMMENDATIONS

The cost difference between the fracture arrest material selection criteria and the fracture initiation criteria at yield stress levels is too narrow to influence a recommendation based upon cost impact alone; more significant, however, is the impact of these criteria on comparative limit state probabilities. On this basis, the lower limit state probabilities associated with FI-YS make it more desirable as a brittle fracture prevention criterion than either FA-EX-YS or FA-AX-YS. Furthermore, FI-YS allows the use of a variety of materials at the LST of -20°F. Note, however, that if inspection procedures associated with steels qualified for prevention of fracture initiation are applied to steels selected in accordance with fracture arrest criteria, casks fabricated of such steels would have the lowest limit state probabilities for a relatively modest increase in cost.

All criteria involving the specification of stresses less than yield suffer a cost penalty due to the necessity of performing a stress analysis. In addition to the cost penalty the uncertainties associated with these analyses can only result in a further reduction in limit state probability below those associated with criteria based on yield stress levels for FA-EX-PS and FA-AX-PS. In the case of FI-PS, the use of lower stresses in conjunction with ASME Section XI allowable flaw sizes would result in lower limit state probabilities. However, the uncertainties associated with the stress analysis would counter this advantage. To quantify this effect one would not only have to establish the statistics relating to the accuracy of the stress analysis, but would also have to evaluate the joint distribution of the stress analysis and the flaw size variations. This latter effort is beyond the scope of the program.

In the case of the drop test, the cost is somewhat greater than the design criteria based on yield stress levels. However, the uncertainties associated with the stress analyses need not be considered so that the limit state probabilities would be as low or lower than the criteria based on yield stress levels. Further quantification of limit state probabilities associated with the drop test cannot be done, since the allowable flaw size is established at some fraction of an arbitrary test flaw. If the test flaw is assumed critical or "quasi-critical," then the limit state probability would be about the same as that associated with FI-YS.

### 6.0 REFERENCES

- Schwartz, M.W., "Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Greater than Four Inches Thick," Lawrence Livermore National Laboratory report UCRL-53045, December 1982.
- Holman, W.R. and Langland, R.T., "Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers up to Four Inches Thick," U.S. Nuclear Regulatory Commission report NUREG/CR-1815, June 1981.
- 3. James, L.A., "Fracture Mechanics Analysis of Flaws in Nuclear Snipping Casks," Nuclear Packaging Corp., Tacoma, WA, June 1980.
- Japan Steel Works, Muroran Plant, Report MP-528-76 Rev. 1 (SA-508 Cl. 1), April 1977.
- Electric Power Research Institute, "Nuclear Pressure Vessel Steel Data Base," June 1978.
- Logsdon, W.A., "Dynamic Fracture Toughness of ASME SA-508-Class 1 and 2A Base and HAZ Material," Westinghouse R&D Center, Scientific paper TT-IET-E-FLAW-PI, May 1977.
- Japan Steel Works, Muroran Plant, Report MP-293-75 Rev. 2 (SA-508 Class 2 and 3, SA-533 Gr. B Class 1), November 1977.
- Japan Steel Works, Muroran Plant, Report PV-79-7-55 (SA-508 C1 4E), July 1979.
- Japan Steel Works, Muroran Flant, Report R(AC) 80-075 (SA 350 LF 5) November 1980.
- 10. Japan Steel Works, Muroran Plant, Report TR-182-MF (SA-350 LF 3), May 1983.
- 11. Harris, D.O., Lim, E.Y., and Dedhia, D.D., "Probability of Pipe Fracture in the Primary Coolant Loop of a PWR Plant, Volume 5: Probabilistic Fracture Mechanics Analysis," NUREG/CR-2189 Vol. 5, p. 49, 1981.
- PVRC Ad Hoc Task Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," WRC Bulletin 175, p. 16, 1975.
- ASME Boiler and Pressure Vessel Code Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," American Society of Mechanical Engineers, New York, 1980.
- 14. U.S. Nuclear Regulatory Commission, "Design Criteria for Structural Analysis of Shipping Cask Containment Vessels," U.S. Nuclear Regulatory Commission Reg. Guide 7.6 Rev. 1, March 1978.
- Charman, C.M., Grenier, R.H., Nickell, R.E., "Large Deformation Inelastic Analysis of Impact for Shipping Casks," Computer Methods in Applied Mechanics and Engineering, Vol. 33, 1982.

- 16. Sutherland, S.H. and Huerta, M., "Three Dimensional Finite Element Analysis of Radioactive Material Packaging," PATRAM 1983 Proceedings (to be published), New Orleans, LA, May 1983.
- 17. Wright, J.W., The American Almanac of Jobs and Salaries, Avon Books, 1982.
- Trot, L., <u>Almanac of Business and Industrial Financial Ratios</u>, Prentice Hall Inc., 1981-2 edition.

# APPENDIX A

Charts Indicating Applicability of Ferritic Steels to Various Brittle Fracture Acceptance Criteria



- A-2 -



- A-3 -



A-4 



- A-5

1



.

A-6

a.

κ.

COST/LB.



- A-7 -



COST/LB.

- A-8 -







COST/LB.

- A-11 -



- A-12 -



- A-13 -

.

COST/LB.



- A-14 -



- A-15 -



- A-16 -



COST/LB.

- A-17 -



- A-18 -



- A-19 -



- A-20 -



- A-21 -



- A-22 -



- A-23 -

COST/LB.



# APPENDIX B

# Ferritic Forging Cask Cost Estimate

## APPENDIX B. FERRITIC FORGING CASK COST ESTIMATE

A detailed analysis of the cost associated with the baseline cask and each of the fracture toughness acceptance criteria is presented in Tables B1 through B7. An explanation of the bases for these costs is presented in the following subsequent appendices.

| Appendix | С | Design Cost Factors                          |
|----------|---|----------------------------------------------|
| Appendix | D | Engineering Analysis Costs                   |
| Appendix | Ε | Quarterly Assurance Engineering Costs        |
| Appendix | F | Manufacturing Cost Assumptions and Estimates |
| Appendix | G | Wage and Salary Rates                        |
| Appendix | н | Basic Cost Factors                           |

夏
| COST<br>COMPONENT                                                                                                                    | Hours                                      | LABOR<br>Rate<br>\$                                | Extension<br>\$                                   | Qty  | MAT<br>Unit | ERIALS<br>Rate<br>\$ | Extension<br>\$                            |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------|------|-------------|----------------------|--------------------------------------------|
| ENGINEERING DEVELOPMENT<br>Design<br>Analysis & Materials<br>Design Verification<br>Design QA<br>Design Review<br>Program Management | 2500<br>5210<br>1156<br>887<br>450<br>2653 | 14.43<br>18.84<br>16.96<br>18.17<br>20.71<br>26.34 | 36067<br>98151<br>19617<br>16110<br>9320<br>69862 |      |             |                      | 1803<br>25158<br>981<br>806<br>466<br>3493 |
| Subtotals<br>Labor Fringe @ 40%<br>Engr. 0/H @ 56.44%                                                                                | 12855                                      | 19.38                                              | 249128<br>99651<br>196851                         |      |             |                      | 32707                                      |
| Direct Engr. Cost:                                                                                                                   |                                            |                                                    |                                                   |      |             |                      | 578337                                     |
| FABRICATION - 5th Artic<br>Forged Steel<br>Mat'ls Engr.<br>Mfr. Liaison<br>QA @ 12.5%<br>Program Management                          | 1e<br>6146<br>540<br>275<br>1066<br>489    | 11.56<br>18.74<br>14.38<br>18.17<br>26.34          | 71076<br>10119<br>3953<br>19262<br>12877          | 9010 | )0 1bs      | 0.65                 | 58565<br>2300<br>198<br>968<br>644         |
| Subtotals<br>Labor Fringe @ 30%<br>Mfr. 0/H @ 47.73%                                                                                 | 8516                                       | 13.78                                              | 117387<br>35216<br>74364                          |      |             |                      | 62675                                      |
| Direct Mfr. Cost:                                                                                                                    |                                            |                                                    |                                                   |      |             |                      | 289641                                     |
| UNIT COST (5 Items)<br>Direct Engr. Cost<br>Direct Mfr. Cost<br>G&A @ 12.75%                                                         |                                            |                                                    | 115667<br>2899641<br>51677                        |      |             |                      |                                            |
| TOTAL COST (5th Item):                                                                                                               |                                            |                                                    | 456986                                            |      |             |                      |                                            |

Table B1. Baseline ferritic forging cost estimate.

Table B2. Forging cost estimate for criteria FA/EX-YS.

| COST                    |       | LABOR      |                 | 1    | MAT   | FRIALS     |                 |
|-------------------------|-------|------------|-----------------|------|-------|------------|-----------------|
| COMPONENT               | Hours | Rate<br>\$ | Extension<br>\$ | Qty  | Unit  | Rate<br>\$ | Extension<br>\$ |
| ENGINEERING DEVELOPMENT |       |            |                 | -    |       |            |                 |
| Design                  | 2500  | 14.43      | 36067           |      |       |            | 1803            |
| Analysis & Materials    | 5615  | 18.84      | 105721          |      |       |            | 25873           |
| Design Verification     | 1217  | 16.96      | 20647           |      |       |            | 1032            |
| Design QA               | 933   | 18.17      | 16956           |      |       |            | 848             |
| Design Review           | 450   | 20.71      | 9320            |      |       |            | 466             |
| Program Management      | 2786  | 26.34      | 73368           |      |       |            | 3668            |
| Subtotals               | 13501 | 19.41      | 262080          |      |       |            | 33690           |
| Labor Fringe @ 40%      |       |            | 104832          |      |       |            |                 |
| Engr. 0/H @ 56.44%      |       |            | 207085          |      |       |            |                 |
| Direct Engr. Cost:      |       |            |                 |      |       |            | 607688          |
| FABRICATION - 5th Artic | le    |            |                 |      |       |            |                 |
| Forged Steel            | 6146  | 11.56      | 71076           | 9010 | 0 lbs | 0.89       | 80189           |
| Mat'ls Engr.            | 600   | 18.74      | 11232           |      |       |            | 2600            |
| Mfr. Liaison            | 275   | 14.38      | 3953            |      |       |            | 198             |
| QA 9 12.5%              | 1124  | 18.17      | 20418           |      |       |            | 1021            |
| Program Management      | 520   | 26.34      | 13686           |      |       |            | 684             |
| Subtotals               | 8664  | 13.89      | 117387          |      |       |            | 84692           |
| Labor Fringe @ 30%      |       |            | 35216           |      |       |            |                 |
| Mfr. 0/H @ 47.73%       |       |            | 74364           |      |       |            |                 |
| Direct Mfr. Cost:       |       |            |                 |      |       |            | 317416          |
| UNIT COST (5 Items)     |       |            |                 |      |       |            |                 |
| Direct Engr. Cost       |       |            | 121538          |      |       |            |                 |
| Direct Mfr. Cost        |       |            | 317416          |      |       |            |                 |
| G&A @ 12.75%            |       |            | 57690           |      |       |            |                 |
| TOTAL COST (5th Item):  |       |            | 494921          |      |       |            |                 |

| COST<br>COMPONENT                                                                                                                    | <br>  Hours                                 | LABOR<br>Rate<br>\$                                | Extension<br>\$                                    | Qty  | MAT<br>Unit | ERIALS<br>Rate<br>\$ | Extension<br>\$                             |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------|------|-------------|----------------------|---------------------------------------------|
| ENGINEERING DEVELOPMENT<br>Design<br>Analysis & Materials<br>Design Verification<br>Design QA<br>Design Review<br>Program Management | 2500<br>6468<br>1345<br>1031<br>450<br>3067 | 14.43<br>18.84<br>16.96<br>18.17<br>20.71<br>26.34 | 36067<br>121855<br>22818<br>18739<br>9320<br>80760 |      |             |                      | 1803<br>53162<br>1141<br>937<br>466<br>4038 |
| Subtocals<br>Labor Fringe @ 40%<br>Engr. 0/H @ 56.44%                                                                                | 14861                                       | 19.48                                              | 289561<br>115824<br>228800                         |      |             |                      | 61547                                       |
| Direct Engr. Cost:                                                                                                                   |                                             |                                                    |                                                    |      |             |                      | 695733                                      |
| FABRICATION - 5th Artic<br>Forged Steel<br>Mat'ls Engr.<br>Mfr. Liaison<br>QA @ 12.5%<br>Program Management                          | 1e<br>6146<br>600<br>275<br>1230<br>547     | 11.56<br>18.72<br>14.38<br>18.17<br>26.34          | 71076<br>11232<br>3953<br>22356<br>14416           | 9010 | 0 lbs       | 0.89                 | 80189<br>2600<br>198<br>1118<br>721         |
| Subtotals<br>Labor Fringe @ 30%<br>Mfr. 0/H @ 47.73%                                                                                 | 8799                                        | 13.98                                              | 123034<br>36910<br>77941                           |      |             |                      | 84826                                       |
| Direct Mfr. Cost:                                                                                                                    |                                             |                                                    |                                                    |      |             |                      | 322711                                      |
| UNIT COST (5 Items)<br>Direct Engr. Cost<br>Direct Mfr. Cost<br>G&A @ 12.75%                                                         |                                             |                                                    | 139147<br>322711<br>59576                          |      |             |                      |                                             |
| TOTAL CUST (5th Item):                                                                                                               |                                             |                                                    | 520745                                             |      |             |                      |                                             |

Table B3. Forging cost estimate for criteria FA/EX-PS.

| COST                                                                                                        |                                         | LABOR                                     |                                          | 1    | MATERIALS |            |                                     |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|------|-----------|------------|-------------------------------------|--|
| COMPONENT                                                                                                   | Hours                                   | Rate<br>\$                                | Extension \$                             | Qty  | Unit      | Rate<br>\$ | Extension<br>\$                     |  |
| ENGINEERING DEVELOPMENT                                                                                     |                                         |                                           |                                          |      |           |            |                                     |  |
| Design<br>Analysis & Materials<br>Design Verification<br>Design QA<br>Design Provider                       | 2500<br>5615<br>1217<br>933             | 14.43<br>18.84<br>16.96<br>18.17          | 36067<br>121855<br>22818<br>18739        |      |           |            | 1803<br>25873<br>1032<br>848        |  |
| Program Management                                                                                          | 2786                                    | 26.34                                     | 80760                                    |      |           |            | 3668                                |  |
| Subtotals<br>Labor Fringe @ 40%<br>Engr. 0/H @ 56.44%                                                       | 13501                                   | 19.41                                     | 262080<br>104832<br>207085               |      |           |            | 33690                               |  |
| Direct Engr. Cost:                                                                                          |                                         |                                           |                                          |      |           |            | 607688                              |  |
| FABRICATION - 5th Artic<br>Forged Steel<br>Mat'ls Engr.<br>Mfr. Liaison<br>QA @ 12.5%<br>Program Management | 1e<br>6146<br>600<br>275<br>1124<br>520 | 11.56<br>18.72<br>14.38<br>18.17<br>26.34 | 71076<br>11232<br>3953<br>20418<br>13686 | 9010 | 0 1bs     | 0.89       | 80189<br>2600<br>198<br>1021<br>684 |  |
| Subtotals<br>Labor Fringe @ 30%<br>Mfr. O/H @ 47.73%                                                        | 8664                                    | 13.89                                     | 120365<br>36109<br>76250                 |      |           |            | 84692                               |  |
| Direct Mfr. Cost:                                                                                           |                                         |                                           |                                          |      |           |            | 317416                              |  |
| UNIT COST (5 Items)<br>Direct Engr. Cost<br>Direct Mfr. Cost<br>G&A @ 12.75%                                |                                         |                                           | 121538<br>317416<br>56656                |      |           |            |                                     |  |
| TOTAL COST (5th Item):                                                                                      |                                         |                                           | 494921                                   |      |           |            |                                     |  |

.

Table B4. Forging cost estimate for criteria FA/AX-YS.

2.13

B. 755

Table B5. Forging cost estimate for criteria FI-YS.

| COST<br>COMPONENT                                                                                                                                 | Hours                                               | LABOR<br>Rate<br>\$                                | Extension<br>\$                                              | MATERIALS<br>Qty Unit Rate<br>\$ | Extension<br>\$                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| ENGINEERING DEVELOPMENT<br>Design<br>Analysis & Materials<br>Design Verification<br>Design QA<br>Design Review<br>Program Management<br>Subtotals | 2500<br>6085<br>1288<br>987<br>450<br>2940<br>14250 | 14.43<br>18.81<br>16.96<br>18.17<br>20.71<br>26.34 | 36067<br>114449<br>21843<br>17938<br>9320<br>77439<br>277058 |                                  | 1803<br>26945<br>1092<br>897<br>466<br><u>3872</u><br>35075 |
| Labor Fringe @ 40%<br>Engr. 0/H @ 56.44%                                                                                                          | 14200                                               |                                                    | 110823<br>218920                                             |                                  |                                                             |
| Direct Engr. Cost:                                                                                                                                |                                                     |                                                    |                                                              |                                  | 641876                                                      |
| FABRICATION - 5th Artic<br>Forged Steel<br>Mat'ls Engr.<br>Mfr. Liaison<br>QA @ 12.5%<br>Program Management                                       | le<br>6146<br>690<br>275<br>1194<br>561             | 11.56<br>18.71<br>14.38<br>18.17<br>26.34          | 71076<br>12910<br>3953<br>21690<br>14781                     | 90100 lbs 0.77                   | 69377<br>3050<br>198<br>1084<br>739                         |
| Subtotals<br>Labor Fringe @ 30%<br>Mfr. 0/H @ 47.73%                                                                                              | 8866                                                | 14.03                                              | 124410<br>37323<br>78813                                     |                                  | 74448                                                       |
| Direct Mfr. Cost:                                                                                                                                 |                                                     |                                                    |                                                              |                                  | 314994                                                      |
| UNIT COST (5 Items)<br>Direct Engr. Cost<br>Direct Mfr. Cost<br>G&A @ 12.75%                                                                      |                                                     |                                                    | 128375<br>314994<br>58483                                    |                                  |                                                             |
| TOTAL COST (5th Item):                                                                                                                            |                                                     |                                                    | 499899                                                       |                                  |                                                             |

| COST                    |       | LABOR      |                 |       | MATERIALS |            |                 |  |  |
|-------------------------|-------|------------|-----------------|-------|-----------|------------|-----------------|--|--|
| COMPONENT               | Hours | Rate<br>\$ | Extension<br>\$ | Qty   | Unit      | Rate<br>\$ | Extension<br>\$ |  |  |
| ENGINEERING DEVELOPMEN  | T     |            |                 | ·     |           |            |                 |  |  |
| Design                  | 2500  | 14.43      | 36067           |       |           |            | 1803            |  |  |
| Analysis & Materials    | 7791  | 18.83      | 146710          |       |           |            | 136101          |  |  |
| Design Verification     | 1544  | 16.96      | 26186           |       |           |            | 1304            |  |  |
| Design VA               | 1183  | 18.17      | 21505           |       |           |            | 1075            |  |  |
| Design Review           | 450   | 20.71      | 9320            |       |           |            | 405             |  |  |
| Program Management      | 3502  | 26.34      | 92224           |       |           |            | 4011            |  |  |
| Subtotals               | 16970 | 19.56      | 332012          |       |           |            | 145366          |  |  |
| Labor Fringe @ 40%      |       |            | 132805          |       |           |            |                 |  |  |
| Engr. 0/H @ 56.44%      |       |            | 262343          |       |           |            |                 |  |  |
| Direct Engr. Cost:      |       |            |                 |       |           |            | 872526          |  |  |
| FABRICATION - 5th Artic | cle   |            |                 |       |           |            |                 |  |  |
| Forged Steel            | 6146  | 11.56      | 71076           | 90100 | ) lbs     | 0.65       | 58565           |  |  |
| Mat'ls Engr.            | 690   | 18.71      | 12910           |       |           |            | 3050            |  |  |
| Mfr. Liaison            | 275   | 14.38      | 3953            |       |           |            | 198             |  |  |
| QA @ 12.5%              | 1407  | 18.17      | 25567           |       |           |            | 1278            |  |  |
| Program Management      | 617   | 26.34      | 16242           |       |           |            | 812             |  |  |
| Subtotals               | 9135  | 14.20      | 129748          |       |           |            | 63903           |  |  |
| Labor Fringe @ 30%      |       |            | 38924           |       |           |            | 00000           |  |  |
| Mfr. 0/H @ 47.73%       |       |            | 82194           |       |           |            |                 |  |  |
| Direct Mfr. Cost:       |       |            |                 |       |           |            | 314769          |  |  |
| UNIT COST (5 Items)     |       |            |                 |       |           |            |                 |  |  |
| Direct Engr. Cost       |       |            | 174505          |       |           |            |                 |  |  |
| Direct Mfr. Cost        |       |            | 314769          |       |           |            |                 |  |  |
| 6&A @ 12.75%            |       |            | 551995          |       |           |            |                 |  |  |
| TOTAL COST (5th Item):  |       |            | 494921          |       |           |            |                 |  |  |
|                         |       |            |                 |       |           |            |                 |  |  |

Table B6. Forging cost estimate for criteria FI-PS.

| COST                   |       | LABOR      |                 |      | MATERIALS |            |                 |  |
|------------------------|-------|------------|-----------------|------|-----------|------------|-----------------|--|
| COMPONENT              | Hours | Rate<br>\$ | Extension<br>\$ | Qty  | Unit      | Rate<br>\$ | Extension<br>\$ |  |
| ENGINEERING DEVELOPMEN | r     |            |                 |      |           |            |                 |  |
| Design                 | 2500  | 14.43      | 36067           |      |           |            | 1803            |  |
| Analysis & Materials   | 5210  | 18.84      | 98151           |      |           |            | 25158           |  |
| Design Verification    | 1156  | 16.96      | 19617           |      |           |            | 901             |  |
| Design QA              | 887   | 18.1/      | 16610           |      |           |            | 000             |  |
| Design Review          | 450   | 20.71      | 9320            |      |           |            | 2403            |  |
| Program Management     | 2653  | 20.34      | 09802           |      |           |            |                 |  |
| Subtotals              | 12855 | 19.38      | 249128          |      |           |            | 32707           |  |
| Labor Fringe @ 40%     |       |            | 99651           |      |           |            |                 |  |
| Engr. 0/H @ 56.44%     |       |            | 196851          |      |           |            |                 |  |
| Direct Engr. Cost:     |       |            |                 |      |           |            | 867978          |  |
| FABRICATION - 5th Arti | cle   |            |                 |      |           |            |                 |  |
| Forged Steel           | 6146  | 11.56      | 71076           | 9010 | 0 1bs     | 0.65       | 58565           |  |
| Mat'ls Engr.           | 540   | 18.74      | 10119           |      |           |            | 2300            |  |
| Mfr. Liaison           | 275   | 14.38      | 3953            |      |           |            | 198             |  |
| QA @ 12.5%             | 1066  | 18.17      | 19362           |      |           |            | 968             |  |
| Program Management     | 489   | 26.34      | 12877           |      |           |            | 644             |  |
| Subtotals              | 8516  | 13.78      | 117387          |      |           |            | 62675           |  |
| Labor Fringe @ 30%     |       |            | 35216           |      |           |            |                 |  |
| Mfr. 0/H @ 47.73%      |       |            | 74364           |      |           |            |                 |  |
| Direct Mfr. Cost:      |       |            |                 |      |           |            | 289641          |  |
| UNIT COST (5 Items)    |       |            |                 |      |           |            |                 |  |
| Direct Engr. Cost      |       |            | 173596          |      |           |            |                 |  |
| Direct Mfr. Cost       |       |            | 289641          |      |           |            |                 |  |
| G&A @ 12.75%           |       |            | 59063           |      |           |            |                 |  |
| TOTAL COST (5th Item): |       |            | 522300          |      |           |            |                 |  |
|                        |       |            |                 |      |           |            |                 |  |

Table B7. Forging cost estimate for criteria DT.

## APPENDIX C

Design Cost Factors

## APPENDIX C. DESIGN COST FACTORS

Much of the engineering effort is proportional to the complexity of the design. Complexity takes many forms: numbers of subassemblies, differing types of subsystems, the required precision in the fabrication or machining of these subsystems, etc. The present focus of the U.S. nuclear industry is upon the transportation of well-aged nuclear fuel. This implies passive casks with "dry" cuoling systems. The engineering level-of-effort factors presented in this section are applicable only to this form of transportation cask without active mechanical cooling systems and without "wet" cavities. This limitation avoids introduction of different major engineering disciplines into an already complex program.

Engineering design, along with analysis, is considered to be a "lead" discipline with other engineering functions derived from these activities. With the limitation noted above, the complexity of an irradiated fuel cask is proportional to the number of component subassemblies and the degree of fabrication or machining precision required. Engineering design is assumed to be directly proportional to these factors. Experience indicates that the average subassembly generates about 2.5 sheets of engineering fabrication drawings. Experience also indicates that each sheet of drawings requires, on the average, about 80 hours of engineering design/drafting effort, split equally between design and drafting. Since "false starts" are a fact of life with design, a "false start" correction factor of 1.25 is used. This results in a labor effort factor of 100 hours for each engineering drawing, or 250 hours for each subassembly. The total is increased by 15% to account for miscellaneous drawings of ancillary support equipment and presentation type materials (reports, reviews, etc.). This is subdivided among design phases as follows: 10% conceptual phase, 30% preliminary phase, 60% final design phase.

The remaining labor level-of-effort factors, for a conventional irradiated fuel cask design, are tabulated below along with a recapitulation of the engineering design effort described above. All values are based upon experience and judgment.

|   | Labor Category                                                     | Factor                      | Base                                                                                 |
|---|--------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|
| • | Engineering Design<br>• Concept<br>• Preliminary<br>• Final Design | 30 hrs<br>85 hrs<br>175 hrs | Per subassembly<br>Same<br>Same                                                      |
| • | Design Verification                                                | 15%                         | All design and analysis disipiines                                                   |
| • | Manufacturing Liaison                                              | 13%<br>11%<br>9%            | Design hours, 1st article<br>Design hours, 5th article<br>Design hours, 20th article |
| • | Quality Assurance (Con                                             | ventional Only)             |                                                                                      |
|   | <ul> <li>Design Pnase</li> </ul>                                   | 10%                         | Design, analysis, materials                                                          |
|   | <ul> <li>Fabrication</li> </ul>                                    | 12%                         | Design, analysis, materials plus<br>liaison, 1st article                             |
|   |                                                                    | 10%                         | Same, 5th article                                                                    |
|   |                                                                    | 8%                          | Same, 20th article                                                                   |
|   |                                                                    |                             |                                                                                      |

- C-2 -

|   | Labor Category     | Factor  | Base                                           |
|---|--------------------|---------|------------------------------------------------|
| • | Design Review      | 150 hrs | Per review (preparation and presen-<br>tation) |
| • | Program Management | 26%     | All direct engineering                         |

4

# APPENDIX D

1,0

1

# Engineering Analysis Costs

22

ties of the state

60

1 Ser

à

μŧ.

## APPENDIX D. ENGINEERING ANALYSIS COSTS

## D1. ANALYSIS REQUIREMENTS ASSUMPTIONS

The analysis requirements implied by the several brittle fracture recommendations differ. However, the required complexity is inversely proportional to the conservatism associated with each material selection criterion. In the following sections the bases for estimating the costs of engineering analyses are established.

## D1.1 Fracture Arrest Analysis Requirements

Fracture arrest criteria based on yield stresses (FA-EX-YS, FA-AX-YS) require no additional stress analyses to assure prevention of brittle fracture. Fracture arrest criteria based on stresses less than yield (FA-EX-PS, FA-AX-PS) permit reductions in required T-NDTT provided it can be demonstrated that the stresses are less than yield. The analysis requirements for this demonstration are:

- A. The required stress analysis methods need not exceed the levels of detail required by existing NRC Regulatory Guide 7.6, (14). Analysis conditions must be selected for physical realism and not merely for convenience.
- B. Only linear elastic analysis methods need be used. This is consistent with the objective to demonstrate that stresses are at, or less than, yield.
- C. Dynamic stresses may be determined by quasi-static simplified methods provided the deformable (crushable) elements and the containment vessel demonstrate that natural response frequencies differ by at least a factor of three. Fracture toughness levels associated with fracture arrest principles, based upon dynamic KID properties possess sufficient conservatism to arrest a crack arising from transient dynamic phenomena.
- D. 3-D stress analyses are not required provided the point of impact, in accident evaluation senarios, is not part of the homogeneous containment vessel. If impact limiters are provided or if the containment vessel and the outer shell structural elements are separated by intermediate shielding material, concentrated impact forces are distributed.

## D1.2 Fracture Initiation Analysis Requirements

The two fracture initiation criteria impose stringent requirements upon the ability of inspection personnel to consistently detect flaws of a specified minimum size. The first of these fracture initiation recommendations (FI-YS) presumes stresses at yield. The only analysis requirement here is to consider normal service conditions to demonstrate that "end-of-life" flaw size remains consistent with criteria assumptions. Stress analysis methods used for normal conditions are sufficient for this purpose.

The second fracture initiation option (FI-PS) requires accurate determination of stresses for use in classical LEFM analyses. This is a severe challenge since, unlike the fracture arrest approach, the material is no longer presumed to possess sufficient toughness to arrest a running crack arising from a transient dynamic stress condition. Thus, the analysis method used must either be accurate or sufficiently conservative to provide an upper-bound estimate of stresses. For fracture initiation, "stress" refers to primary and secondary membrane and bending stresses as defined in NRC Regulatory Guide 7.6. Local stress concentrations are excluded. Exclusion is based upon the premise that crack growth will cease after modest extension due to the relaxation of localized constraints inducing this stress. The analysis requirements for this case are:

- A. Linear elastic dynamic analysis.
- B. Model in sufficient detail to determine transient dynamic states of stress. Where impact limiters are not provided, 3-D analyses will be required. If finite element methods are employed, the model will reveal both extensional and flexural modes of behavior. The degree of approximation implicit in the extensional model, due to finite geometry, should be demonstrated by comparison with a wave propagation idealization. If modal analysis methods are employed for dynamic analysis, sufficient modes should be utilized to limit the errors of modal truncation to no mor than 5%, as determined on the basis of stress (not displacement). Evaluation of truncation errors should be required. If direct integration algorithm should be demonstrated and compared with the requirements of the dynamic analysis.
- C. Dynamic properties of the package should be used. This would include modulus of elasticity and a conservatively chosen value for the damping coefficient.

## Ul.3 Drop Test Analysis Requirements

The drop test brittle fracture acceptance criteria (DT) requires that the cask be "flawed" at the location of maximum stress prior to test. The analysis requirements are that the location of maximum stress be determined. Note that this is a "qualitative" requirement not a "quantitative" requirement. Existing methods and procedures for analysis of accident conditions are considered sufficient for this determination.

## D2. LEVEL OF EFFORT ESTIMATES

Analysis and materials technology labor estimates are defined in this section. For purposes of this study these estimates are assumed to vary little with the shipping cask construction details. The estimates are prepared for a "baseline" requiring no special brittle fracture prevention considerations to which is added one of the incremental labor estimate budgets corresponding to the different brittle fracture prevention criteria designated below:

### Criterion

#### Description

- FA-EX-YS Fracture Arrest, Exponential Extrapolation (of Pellini curve), Yield Stress Assumed.
- FA-EX-PS Fracture Arrest, Exponential Extrapolation (of Pellini curve), Yield Stress Assumed.

- FA-AX-YS Fracture Arrest, Asymptotic Extrapolation (of Pellini curve), Predicted Stress Utilized.
- FI-YS Fracture Initiatiion, Yield stress Assumed.
- FI-PS Fracture, Initiation, Predicted Stress Utilized.
- DT Drop Test qualification.

### U2.1 Baseline Design and Materials Analysis Labor Estimate

Labor costs are estimated for concept design, preliminary design, SAR preparation and licensing, detail (final) design and fabrication. The summary estimate of hours and material dollars for "baseline" efforts is shown in Table D1. Labor rates used to derive composite rates for each phase are based upon the industry figures developed in Appendix G.

It should be emphasized that this baseline engineering estimate includes only analysis and materials labor skills and assumes that brittle fracture is not a substantive technical issue. Unlike fabrication estimates, engineering labor estimates vary widely, depending not only upon the engineering organization but also upon the judgement, experience, and degree of optimism of the estimator. However, these differences will have little impact upon conclusions based on relative costs.

Concept Design explores the feasibility of various ideas, or "concepts" and selects the "best" according to cost, licensability or performance criterion. Just enough analyses are done to size and select materials or components for pricing and general configuration compatibility.

Preliminary Design establishes the configuration, materials and sizes of all significant components and assemblies. "Scrap and rework" is a fact of life throughout this phase of work and a 25% markup is employed to cover this aspect. Subsystem specifications are drafted where external procurements appear likely. Analyses are performed to the extent that all functional and safety issues are examined for conformance with applicable criteria and regulations. Unless requested by the customer, no formal design analysis report is issued. However, results are typically available for in-house review in organized engineering note or analysis form.

SAR Preparation and Licensing translates the preliminary design information into a USNRC formatted Safety Analysis Report (SAR) to demonstrate conformance with 10 CFR 71 requirements. If a design analysis report has been prepared during Preliminary Design, the SAR repeats and expands the safety related portions. This document is limited to regulatory issues only and frequently differs from the design analysis report in several significant ways. "Worst-case" assumptions frequently replace "best-estimate" assumptions. "Proprietary" data is excluded to the greatest extent possible and functional behavior is neglected unless it impacts safety. Upon submittal to the NRC and review by their technical staff, a set of questions typically result. The process continues for, typically, three question-response cycles. In this cost model, labor markups of 30%, 20%, and 10% are assumed for three review cycles based on the labor totals of all prior work within this phase. Detailed Design producing fabrication drawings and specifications is performed upon the completion of the licensing process. While this is a labor intensive phase for design engineering, the analysis functions are typically limited to the sizing of "non-structurals" and ancillary (non-licensed) support equipment.

Fabrication actions by the materials and analysis functions are typically limited to the support of Material Review Board (MRB) decisions concerning scrap and/or rework.

## D2.2 Incremental Tasks, Criterion FA-EX-YS

The detailed assignment of incremental hours and material dollars for brittle fracture criterion FA-EX-YS is shown in Table D2. There is no additional analysis effort imposed by brittle fracture requirements. However, the SAR/Licensing phase is increased by 80 hours of analysis effort to allow preparation of a brittle fracture design criterion description. The incremental materials labor effort is assumed to be 20% of baseline for all phases to accommodate preparation of additional test and inspection criteria for brittle fracture.

## D2.3 Incremental Tasks, Criterion FA-EX-PS

The detail assignment of incremental hours and material dollars for brittle fracture criterion FA-EX-PS is shown in Table D3. Additional analyses are required to determine the magnitude of dynamic stresses. Except for these additional analysis costs, the effort remains the same as for FA-EX-YS, which assumes yield stresses. An impact limiter, or energy absorber, is presumed to protect the package thus allowing use of quasi-static analysis methods or relatively coarse finite element modeling. The additional analysis tasks are:

A. <u>Preparation of a Cask Half-Symmetric Model</u>. This model is assumed to possess 6 nodes through the sidewall located at 10° circumferential increments and 25 longitudinal increments. Thus the model size is approximated by

| Noues:     | (6) $(180/10)(25)$ | = | 2700 |
|------------|--------------------|---|------|
| Elements:  |                    |   |      |
| Shells     | (17)(24)(2)        | = | 816  |
| Quads      | (17)(24)(5)        | = | 2040 |
| # Elements |                    | = | 2856 |

This model size is reasonably consistent with the models used by General Atomics (15), and Sandia (17), for high-level waste casks. Labor for model development and checkout is estimated, from experience, at approxi- mately 5 minutes per node or,

(2700)(5)/60 = 225 hours.

B. <u>Three Solution Runs (Side, End, Corner)</u>. Labor is assumed at 20% of development labor for solution and 35% of development labor for engineering interpretation or,

$$(3)(225)(55\%) = 371$$
 hours.

Commercial computing cost estimates for this model are based upon representative DYNA3D runs using the CRAY at Boeing Computer Service (BCS).+

|        | \$         | = | (Rate)(CCU)                 |
|--------|------------|---|-----------------------------|
|        | CCU        | = | (#Elements)(#Timesteps)/100 |
|        |            | = | (2856)(4000)/100 = 114,240  |
| Where: | CCU        | = | BCS Billing Unit            |
|        | Rate       | = | \$ 0.015/CCU, overnight     |
|        |            |   | \$ 0.034/CCU, 1 hour        |
|        |            |   | \$ 0.0245/CCU, average used |
|        | #Elements  | = | 2856                        |
|        | #Timesteps | 2 | 4000                        |

The (#Timesteps) value is one-half to one-third that reported in Ref. 16. This reduction approximates the simplification achieved by use of an energy absorber (decoupling cask dynamic response from absorber dynamic response). Assuming two and one-half runs for every valid solution, the total computing cost is:

(3 Solutions)(2-1/2 Runs)(114,240CCU)(\$.0245) = \$20,992.

This is increased by 30% for postprocessing (printing, plotting, and data manipulation) of computer results.

C. Documentation of Results. Labor is assumed at 25% of solution and model development, or

(225 + 371)(25%) = 150 hours.

### D2.4 Incremental Tasks, Criterion FA-AX-YS

This effort is identical to that for criteria FA-EX-YS. (See Table D2.)

## D2.5 Incremental Tasks, Criterion FA-AX-PS

This effort is identical to that for criteria FA-EX-PS. (See Table D3.)

### D2.6 Incremental Tasks, Criterion FI-YS

The effort for this criterion is very similar to that for criterion FA-EX-YS. Incremental SAR/Licensing analysis labor is increased by 50% to 120 hours in order to evaluate end-of-life flaw size. The incremental materials labor effort is assumed at 50% of baseline, in all phases, to reflect the added concern for flaw size. The detailed assignment of incremental hours and material dollars for brittle fracture criterion FI-YS is shown in Table D4.

<sup>+</sup>Information obtained from Nuclear Packaging Corporation, personal communication from Robert C. Lundquist, Boeing Computer Services, Co., June 1983.

## D2.7 Incremental Tasks, Criterion FI-PS

The effort for this criterion is identical to that for criterion FI-YS except that analysis tasks increase significantly to accurately calculate dynamic stresses. The model is assumed to be twice the size of that described in Section D2.3. The number of time steps is also assumed to increase by a factor of two. Thus, the labor and computing costs are estimated as:

Labor: (225 + 371 + 150)(2) = 746 hours Computing: (\$20,992)(1.3)(2)(2) = \$109,156.

The detailed assignment of incremental hours and material dollars for brittle fracture recommendation FI-PS is shown in Table D5.

## D2.8 Incremental Tasks, Criterion DT

For comparative purposes, this incremental effort is assumed identical to criteria alternative FA-EX-YS (Table D2). Test program development and execution is costed in Appendix B.

| PROJECT PHASE      | Hours  | Salary<br>Rate | Extension  | Description     | Amount     |
|--------------------|--------|----------------|------------|-----------------|------------|
| CONCEPT DESIGN     |        |                |            |                 |            |
| ** Analysis **     | 430.0  | \$18.89        | \$ 8124.47 | Compute & Repro | \$ 1250.00 |
| ** Materials **    | 180.0  | \$18.61        | \$ 3350.15 | D. Base & Repro | \$ 500.00  |
| SUBTOTAL-Concept   | 610.0  | \$18.81        | \$11475.00 |                 | \$ 1750.00 |
| PRELIM. DESIGN     |        |                |            |                 |            |
| ** Analysis **     | 1068.8 | \$18.89        | \$20143.36 | FEM Computing   | \$ 7812.50 |
| ** Materials **    | 440.0  | \$18.61        | \$ 8189.93 | D. Base & Lab   | \$ 3075.00 |
| SUBTOTAL-Prelim    | 1508.8 | \$18.81        | \$28383.28 |                 | \$10887.50 |
| SAR/LICENSING      |        |                |            |                 |            |
| ** Analysis **     | 2350.9 | \$18.89        | \$44419.61 | Computing       | \$12520.00 |
| ** Materials **    | 360.0  | \$18.61        | \$ 6701.28 |                 | \$ 0.00    |
| SUBTUTAL-SAR       | 2710.9 | \$18.86        | \$51120.89 |                 | \$12520.00 |
| DETAIL DESIGN      |        |                |            |                 |            |
| ** Analysis **     | 280.0  | \$18.89        | \$ 5290.38 |                 | \$ 0.00    |
| ** Materials **    | 100.0  | \$18.61        | \$ 1681.41 |                 | \$ 0.00    |
| SUBTOTAL-Detail    | 380.0  | \$18.82        | \$ 7151.79 |                 | \$12520.00 |
| FABRICATION (Per U | Unit)  |                |            |                 |            |
| ** Analysis **     | 240.0  | \$18.89        | \$ 4534.40 |                 | \$ 800.00  |
| ** Materials **    | 300.0  | \$18.61        | \$ 5583.99 | Travel          | \$ 1500.00 |
| SUBTUTAL-Fab.      | 540.0  | \$18.74        | \$10118.39 |                 | \$ 2300.00 |

Table D1. Baseline design and materials analysis engineering labor estimates.

|                       |        | LABOR          |             | OTHER             |
|-----------------------|--------|----------------|-------------|-------------------|
| PROJECT PHASE         | Hours  | Salary<br>Rate | Extension   | Expense<br>Amount |
| CONCEPT DESIGN        |        |                |             |                   |
| Baseline              | 610.0  | \$18.89        | \$11475.00  | \$ 1750.00        |
| Increment-Materials   | 36.0   | \$18.61        | \$ 669.96   | \$ 100.00         |
| SUBTOTAL-Concept:     | 646.0  | \$18.80        | \$12144.96  | \$ 1850.00        |
| PRELIM. DESIGN        |        |                |             |                   |
| Baseline              | 1508.8 | \$18.81        | \$28383.28  | \$10887.50        |
| Increment-Materials   | 88.0   | \$18.61        | \$ 1637.68  | \$ 615.00         |
| SUBTUTAL-Prelim:      | 1596.8 | \$18.80        | \$30020.96  | \$11502.50        |
| SAR/LICENSING         |        |                |             |                   |
| Baseline              | 2710.9 | \$18.89        | \$44419.61  | \$12520.00        |
| Increment-Analysis    | 80.0   | \$18.89        | \$ 1511.20  | \$ 0.00           |
| Increment-Materials   | 72.0   | \$18.61        | \$ 1339.92  | \$ 0.00           |
| Review Markup         | 108.8  | \$18.76        | \$ 2041.40  | \$ 0.00           |
| SUBTOTAL-SAR:         | 2710.9 | \$18.86        | \$51120.89  | \$12520.00        |
| DETAIL DESIGN         |        |                |             |                   |
| Baseline              | 380.0  | \$18.8         | \$ 7151.79  | \$ 0.00           |
| Increment-Materials   | 20.0   | \$18.61        | \$ 372.20   | \$ 0.00           |
| SUBTOTAL-Detail:      | 400.0  | \$18.81        | \$ 7523.99  | \$ 0.00           |
| TOTAL-All A/M Engr:   | 5614.5 | \$18.83        | \$105703.32 | \$25872.50        |
| FABRICATION -Per Unit |        |                |             |                   |
| Baseline              | 540.0  | \$18.74        | \$10118.39  | \$ 2300.00        |
| Increment-Materials   | 60.0   | \$18.61        | \$ 1116.60  | \$ 300.00         |
| SUBTUTAL-Fab:         | 600.0  | \$18.72        | \$11234.99  | \$ 2600.00        |

Table D2. Design and materials analysis labor estimates for Criteria FA/EX-YS and DT.

|                       | 1 <u></u> | LABOR          |             | OTHER             |
|-----------------------|-----------|----------------|-------------|-------------------|
| PROJECT PHASE         | Hours     | Salary<br>Rate | Extension   | Expense<br>Amount |
| CONCEPT DESIGN        |           |                |             |                   |
| Baseline              | 610.0     | \$18.89        | \$11475.00  | \$ 1750.00        |
| Increment-Materials   |           | \$18.61        | \$ 669.96   | \$ 100.00         |
| SUBTOTAL-Concept:     | 646.0     | \$18.80        | \$12144.96  | \$ 1850.00        |
| PRELIM. DESIGN        |           |                |             |                   |
| baseline              | 1508.8    | \$18.81        | \$28383.28  | \$10887.50        |
| Increment Analysis    | 596.0     | \$18.89        | \$11258.44  | \$27289.60        |
| Increment-Materials   | 88.0      | \$18.61        | \$ 1637.68  | \$ 615.00         |
| SUBTOTAL-Prelim:      | 2192.8    | \$18.82        | \$41279.40  | \$38792.10        |
| SAR/LICENSING         |           |                |             |                   |
| Baseline              | 2710.9    | \$18.86        | \$51120.89  | \$12520.00        |
| Increment-Analysis    | 230.0     | \$18.89        | \$ 4344.70  | \$ 0.00           |
| Increment-Materials   | 72.0      | \$18.61        | \$ 1339.92  | \$ 0.00           |
| Review Markup         | 216.2     | \$18.82        | \$ 4070.19  | \$ 0.00           |
| SUBTOTAL-SAR:         | 3229.1    | \$18.85        | \$60875.70  | \$12520.00        |
| DETAIL DESIGN         |           |                |             |                   |
| Baseline              | 380.0     | \$18.82        | \$ 7151.79  | \$ 0.00           |
| Increment-Materials   | 20.0      | \$18.61        | \$ 372.20   | \$ 0.00           |
| SUBTOTAL-Detail:      | 400.0     | \$18.81        | \$ 7523.99  | \$ 0.00           |
| TUTAL-A11 A/M Engr:   | 6467.9    | \$18.84        | \$121824.05 | \$53162.10        |
| FABRICATION -Per Unit |           |                |             |                   |
| Baseline              | 540.0     | \$18.74        | \$10118.39  | \$ 2300.00        |
| Increment-Materials   | 60.0      | \$18.61        | \$ 1116.60  | \$ 300.00         |
| SUBTOTAL-Fab:         | 600.0     | \$18.72        | \$11234.99  | \$ 2600.00        |

Table D3. Design and materials analysis labor estimates for criteria FA/EX/PS and FA/AX/PS.

|                       |        | LABOR          |             | OTHER             |  |
|-----------------------|--------|----------------|-------------|-------------------|--|
| PROJECT PHASE         | Hours  | Salary<br>Rate | Extension   | Expense<br>Amount |  |
| CONCEPT DESIGN        |        |                |             |                   |  |
| Baseline              | 610.0  | \$18.89        | \$11475.00  | \$ 1750.00        |  |
| Increment-Materials   | 90.0   | \$18.61        | \$ 1674.90  | \$ 250.00         |  |
| SUBTOTAL-Concept:     | 700.0  | \$18.79        | \$13149.90  | \$ 2000.00        |  |
| PRELIM. DESIGN        |        |                |             |                   |  |
| Baseline              | 1508.8 | \$18.81        | \$28383.28  | \$10887.50        |  |
| Increment-Materials   | 220.0  | \$18.61        | \$ 4094.20  | \$ 1537.50        |  |
| SUBTOTAL-Prelim:      | 1728.8 | \$18.79        | \$32477.48  | \$12425.00        |  |
| SAR/LICENSING         |        |                |             |                   |  |
| Baseline              | 2710.9 | \$18.86        | \$51120.89  | \$12520.00        |  |
| Increment-Analysis    | 120.0  | \$18.89        | \$ 2266.80  | \$ 0.00           |  |
| Increment-Materials   | 180.0  | \$18.61        | \$ 3349.80  | \$ 0.00           |  |
| Review Markup         | 214.8  | \$18.72        | \$ 4021.49  | \$ 0.00           |  |
| SUBTOTAL-SAR:         | 3229.1 | \$18.84        | \$60758.98  | \$12520.00        |  |
| DETAIL DESIGN         |        |                |             |                   |  |
| Baseline              | 380.0  | \$18.82        | \$ 7151.79  | \$ 0.00           |  |
| Increment-Materials   | 50.0   | \$18.61        | \$ 930.50   | \$ 0.00           |  |
| SUBTOTAL-Detail:      | 430.0  | \$18.80        | \$ 8082.29  | \$ 0.00           |  |
| TOTAL-All A/M Engr:   | 6084.5 | \$18.81        | \$114468.65 | \$26545.00        |  |
| FABRICATION -Per Unit |        |                |             |                   |  |
| Baseline              | 540.0  | \$18.74        | \$10118.39  | \$ 2300.00        |  |
| Increment-Materials   | 150.0  | \$18.61        | \$ 2791.50  | \$ 750.00         |  |
| SUBTOTAL-Fab:         | 690.0  | \$18.71        | \$12909.89  | \$ 3050.00        |  |
|                       |        |                |             |                   |  |

Table D4. Design and materials analysis labor estimates for criteria FI-YS.

|                       |        | LABOR   |             | OTHER       |
|-----------------------|--------|---------|-------------|-------------|
|                       |        | Salary  |             | Expense     |
| PROJECT PHASE         | Hours  | Rate    | Extension   | Amount      |
| CONCEPT DESIGN        |        |         |             |             |
| Baseline              | 610.0  | \$18.89 | \$11475.00  | \$ 1750.00  |
| Increment-Materials   | 90.0   | \$18.61 | \$ 1674.90  | \$ 250.00   |
| SUBTOTAL-Concept:     | 700.0  | \$18.79 | \$13149.90  | \$ 2000.00  |
| PRELIM. DESIGN        |        |         |             |             |
| Baseline              | 1508.8 | \$18.81 | \$28383.28  | \$ 10887.50 |
| Increment-Analysis    | 1192.0 | \$18.89 | \$22516.88  | \$109156.00 |
| Increment-Materials   | 220.0  | \$18.61 | \$ 4094.20  | \$ 1537.50  |
| SUBTOTAL-Prelim:      | 2920.8 | \$18.83 | \$54994.36  | \$121581.00 |
| SAR/LICENSING         |        |         |             |             |
| Baseline              | 2710.9 | \$18.86 | \$51120.89  | \$12520.00  |
| Increment-Analysis    | 420.0  | \$18.89 | \$ 7933.80  | \$ 0.00     |
| Increment-Materials   | 180.0  | \$18.61 | \$ 3349.80  | \$ 0.00     |
| Review Markup         | 429.6  | \$18.81 | \$ 8079.06  | \$ 0.00     |
| SUBTOTAL-SAR:         | 3740.5 | \$18.84 | \$70483.55  | \$12520.00  |
| DETAIL DESIGN         |        |         |             |             |
| Baseline              | 380.0  | \$18.82 | \$ 7151.79  | \$ 0.00     |
| Increment-Materials   | 50.0   | \$18.61 | \$ 930.50   | \$0.00      |
| SUBTOTAL-Detail:      | 430.0  | \$18.80 | \$ 8082.29  | \$ 0.00     |
| TOTAL-All A/M Engr:   | 7791.3 | \$18.83 | \$146710.10 | \$136101.00 |
| FABRICATION -Per Unit |        |         |             |             |
| Baseline              | 540.0  | \$18.74 | \$10118.39  | \$ 2300.00  |
| Increment-Materials   | 150.0  | \$18.61 | \$ 2791.50  | \$ 750.00   |
| SUBTUTAL-Fab:         | 690.0  | \$18.71 | \$12909.89  | \$ 3050.00  |

Table D5. Design and materials analysis labor estimates for criteria FI-PS.

## APPENDIX E

Quality Assurance Engineering Costs

### APPENDIX E. QUALITY ASSURANCE ENGINEERING COSTS

### E1. INSPECTION REQUIREMENTS

Cask design and fabrication, regardless of material selection or manufacturing techniques, involves similar Quality Engineering and Inspection activities. These activities include:

### Design Review

The Quality Engineering effort during design review entails checks of material selection, special processes (welding, heat treatment, plating, etc.), NDE requirements, general inspectability, and adherence to contractual design criteria.

### Quality Inspection Planning

Quality Engineering must develop Inspection Planning for use during manufacturing that can be utilized to assure add rence to the design requirements. The Planning provides direction for performance of material verification, dimensional checks, special process control or verification, NDE functional checks, identification, control and disposition of discrepancies, and final acceptance.

#### Inspection

The quality inspection function is critical to the success of the fabrication effort. The regulatory atmosphere present in the nuclear industry requires that all products are produced with strict controls throughout all phases. The requirements are certification of material, dimensions, processes, and function. The Inspector, utilizing appropriate quality planning documents, inspects those areas of concern and provides the certification of adherence to design and regulatory requirements.

### E2. PROCESS CONTROL REQUIREMENTS

Regardless of the construction method, all casks require the same basic dimen- sional, special process and NDE Quality Control activity. The variation in cost is associated with the difficulty of inspection of welded laminate versus forged and welded fabrication. The ASTM-A508 series forged and welded casks are more difficult to inspect than a typical ferritic steel plate and lead shielded cask. Also, the potential for fabrication related discrepancies is slightly greater which results in more rigorous inspection and Quality Engineering (QA) requirements. Therefore, the labor hours for inspection of forgings is assumed to be 25% greater than that for a typical ferritic steel plate and lead cask.

Additionally, the NDE of a forged cask is somewhat more involved than the NDE of the welded plate cask due to the requirements to locate flaws in the forging utilizing UT methods. The size of the flaw is not a factor in the cost for the NDE. The increased NDE cost is simply a result of the increased time required to perform UT to locate the flaws.

## E3. LEVEL OF EFFOR ESTIMATES

The QA fabrication labor factors of Appendix C are adjusted for forged ferritic steels as follows:

|              | Ferritic<br>Plate | Ferritic<br>Forging |
|--------------|-------------------|---------------------|
| lst Article  | 12%               | 15%                 |
| 5th Article  | 10%               | 12.5%               |
| 20th Article | 8%                | 10%                 |

# APPENDIX F

P

N. 1

Y

Manufacturing Cost Assumptions and Es:imates

### APPENDIX F. MANUFACTURING COST ASSUMPTIONS AND ESTIMATES

For simplicity, manufacturing costs consider only three major shop categories: forging, machining, and fabrication, which includes welding, cutting, grinding, and rolling operations.

For forging operations, the manufacturing costs added to the raw billet materials cost consists of both shop labor and equipment charges reflecting cost recovery of capital investment. Analysis of both domestic and Japanese forging prices indicates that, for cask size forgings, manufacturing costs are approximated by using \$1.66/lb for forged and rough machined products (1982 prices). For consistency with other manufacturing prices, this charge is converted to an equivalent labor charge of 5.5 hours per hundred pounds of forged and machined product, using the rates given in Appendix H. Thus, the labor for forged subassemblies is assumed to be:

> Forge Hours =  $5.5 \times CWT_F$ where:  $CWT_c$  = Forged subassembly weight in hundred pounds.

For fabrication shop activities, the labor level of effort is basically proportional to the length of the welds, or cuts, and the thickness of the part (due to multiple weld passes, etc.). In plate type materials, this is also roughly proportional to fabricated steel weight. Experience indicates that approximately 3.6 labor hours are expended per 100 lbs of fabricated product of ferritic steels, such as ASTM 516, Grade 70. Using the rates given in Appendix H, this is equivalent to a present labor cost of \$1.09/lb.

For machined subassemblies, the labor costs tend to be proportional to the amount of metal removed and inversely proportional to the cutting speed. This is complicated by the fact that the absolute size of the machined component influences set-up and tear-down time charges, handling charges and stand-by time awaiting access to equipment. A review of available data has failed to disclose a simple model reflecting all these factors. It has been found, however, that cost differences in various materials are closely approximated by the traditional Machinability Index.

Taking the above factors into account, the labor effort ranges from 4.8 hours/CWT to 12.1 hours/CWT. Using the rates given in Appendix H, this is equivalent to a present labor cost of \$1.45 to \$3.66/lb. The higher value tends to be applicable to small machined parts, the lower value to large assemblies. Accounting for this size factor leads to the following assumptions, for machined subassemblies:

Machinist Hours = 7.54\*(CWT<sub>M</sub>)<sup>.839</sup>/MI
where: CWT<sub>M</sub> = Machined sub-assembly weight in hundred pounds
MI = Machinability Index
(AISI B1112 Steel = 100%).

# APPENDIX G

# Wage and Salary Rates

٠

### APPENDIX G. WAGE AND SALARY RATES

Wage and salary rates for both engineering and shop personnel are summarized in Table Gl. The rates for engineering are tabulated by major functions which relate to development, licensing, or production of an irradiated fuel transportation package. The wage rates for engineering functions were developed by assuming a staff profile for each function. These staff profile assumptions were based solely upon experience and judgement. Wage rates for each hypothetical staff member were based upon U.S. Bureau of Labor Statistics (BLS) data, National Survey of Professional, Administrative, Technical, and Clerical Pay, March 1980, summarized in (17). These data are categorized by "Tevel of experience and achievement", as shown in columns 2 and 3 of Table Gl.

Shop rates for manufacturing personnel are derived in a similar fashion using BLS data, Federal Wage Survey - Blue Collar Workers, 1980, as summarized in Ref. 17. The Federal wage data was compared with other BLS data, Area Wage Surveys, describing equivalent private industry wage ranges. The Federal wage data was at, or slightly above, the mean of private industry data and was therefore appropriate for this cost analysis. Since blue collar wages for pertinent skills vary little, there was no attempt to provide the functional resolution applied to engineering wage rates.

| ENGINE TRING<br>AND SHOP LABOR<br>CATEGORY | BLS<br>Engr.<br>Grade | Salary<br>Quar-<br>tile | 1980<br>Annual<br>Salary | 1982-3<br>Hourly<br>Wage | Staff<br>Ratio<br>(%) | 1982-3<br>Hourly<br>Contrib. |
|--------------------------------------------|-----------------------|-------------------------|--------------------------|--------------------------|-----------------------|------------------------------|
| ANALYSIS                                   |                       |                         |                          |                          |                       |                              |
| Jr. Engr.                                  | II                    | 2                       | \$21000.00               | \$11.89                  | 5%                    | \$ 0.59                      |
| Assoc. Engr.                               | III                   | 2                       | \$23821.00               | \$13.48                  | 10%                   | \$ 1.35                      |
| Sr Engr.                                   | IV                    | 3                       | \$31111.00               | \$37.61                  | 35%                   | \$ 6.15                      |
| Engr. Specialist                           | VI                    | 3                       | \$41295.00               | \$23.38                  | 20%                   | \$ 4.68                      |
| Analysis Composite                         |                       |                         |                          |                          | 100%                  | \$18.89                      |
| MATERIALS                                  |                       |                         |                          |                          |                       |                              |
| Sr. Engr.                                  | IV                    | 2                       | \$28200.00               | \$15.96                  | 40%                   | \$ 6.39                      |
| Engr. Specialist                           | ٧                     | 3                       | \$36000.00               | \$20.38                  | 60%                   | \$12.23                      |
| Materials Composite                        |                       |                         |                          |                          | 100%                  | \$18.61                      |
| DESIGN                                     |                       |                         |                          |                          |                       |                              |
| Jr. Engr.                                  | II                    | 1                       | \$19492.00               | \$11.03                  | 20%                   | \$ 2.21                      |
| Assoc. Engr.                               | III                   | 2                       | \$23821.00               | \$13.48                  | 40%                   | \$ 5.39                      |
| Sr. Engr.                                  | IV                    | 2                       | \$28200.00               | \$15.96                  | 30%                   | \$ 4.79                      |
| Engr. Suprv.                               | ۷                     | 3                       | \$36000.00               | \$20.38                  | 10%                   | \$ 2.04                      |
| Design Composite                           |                       |                         |                          |                          | 100%                  | \$14.43                      |
| QUALITY ASSURANCE                          |                       |                         |                          |                          |                       |                              |
| Sr. Engr.                                  | IV                    | 2                       | \$28200.00               | \$15.96                  | 50%                   | \$ 7.98                      |
| Engr. Specialist                           | ٧                     | 3                       | \$36000.00               | \$20.38                  | 50%                   | \$10.19                      |
| QA Composite                               |                       |                         |                          |                          | 100%                  | \$18.17                      |
| DESIGN VERIFICATION                        |                       |                         |                          |                          |                       |                              |
| Analysis                                   |                       |                         |                          | \$18.89                  | 40%                   | \$ 7.56                      |
| Design                                     |                       |                         |                          | \$14.43                  | 40%                   | \$ 5.77                      |
| QA                                         |                       |                         |                          | \$18.18                  | 20%                   | \$ 3.63                      |
| Verification Comp.                         |                       |                         |                          |                          | 100%                  | \$16.96                      |
| DESIGN REVIEW                              |                       |                         |                          |                          |                       |                              |
| Design Verif.                              |                       |                         |                          | \$16.96                  | 60%                   | \$10.18                      |
| Project Mgmt.                              |                       |                         |                          | \$26.34                  | 40%                   | \$10.53                      |
| Design Review Comp.                        |                       |                         |                          | 420101                   | 100%                  | \$20.71                      |
|                                            |                       |                         |                          |                          |                       |                              |
| Accos Frank                                | 111                   |                         | 101040 00                | e10.00                   |                       |                              |
| Assoc. Engr.                               | 111                   | 2                       | \$21840.00               | \$12.30                  | 50%                   | \$ 6.18                      |
| Engr Specialist                            | IV V                  | 2                       | \$20083.00               | \$15.90                  | 30%                   | \$ 4.79                      |
| Ligit specialist                           |                       | 6                       | \$30083.00               | \$17.03                  | 20%                   | \$ 3.41                      |
| Liaison Composite                          |                       |                         |                          |                          | 100%                  | \$14.38                      |

Table Gl. Analysis of industry data for engineering and manufacturing hourly rate data.

| ENGINEERING<br>AND SHOP LABOR<br>CATEGORY | BLS<br>Engr.<br>Grade | Salary<br>Quar-<br>tile | 1980<br>Annual<br>Salary | 1982-3<br>Hourly<br>Wage | Staff<br>Ratio<br>(%) | 1982-3<br>Hourly<br>Contrib. |
|-------------------------------------------|-----------------------|-------------------------|--------------------------|--------------------------|-----------------------|------------------------------|
| PROJECT MANAGEMENT                        |                       |                         |                          |                          |                       |                              |
| Principal Engr.                           | VI                    | 3                       | \$41295.00               | \$23.38                  | 30%                   | \$ 7.01                      |
| Sr. Mgmt. Engr.                           | VII                   | 3                       | \$46908.00               | \$26.55                  | 50%                   | \$13.28                      |
| Executive Engr.                           | VIII                  | 3                       | \$53414.00               | \$20.24                  | 20%                   | \$ 6.05                      |
| Project Mgmt. Comp.                       |                       |                         |                          |                          | 100%                  | \$26.34                      |
| SHOP LABOR                                |                       |                         |                          |                          |                       |                              |
| Boiler Maker                              |                       |                         | \$21144.00               | \$11.97                  | 25%                   | \$ 2.99                      |
| Machinist                                 |                       |                         | \$20533.00               | \$11.62                  | 30%                   | \$ 3.49                      |
| Pipefitter                                |                       |                         | \$21051.00               | \$11.92                  | 10%                   | \$ 1.19                      |
| Welder                                    |                       |                         | \$19654.00               | \$11.13                  | 35%                   | \$ 3.89                      |
| Shop Labor Composit                       | e                     |                         |                          |                          | 100%                  | \$11.56                      |

Table G1. (continued)

NOTES:

- Escalation from 1980 to 1982-3 based on average hourly manufacturing earnings, Ref. (18): 17.74%.
- BLS Engineering salary data, columns 2 to 4 taken from pages 413 to 415, Ref. 6.5.
- 3. Shop wage data for "Blue Collar" workers taken from page 659, Ref. 6.5.

APPENDIX H

-

# Basic Cost Factors

1

## APPENDIX H. BASIC COST FACTORS

### GENERAL RATES

This Appendix discusses the corporate and individual labor rates consistently used for all subsequent cost analyses. These include corporate markups comprising overhead, general and administrative (G&A) expenses, and labor rates applicable to all engineering and manufacturing tasks.

### OVERHEAD AND G&A MARKUPS

Few firms accumulate and report their indirect expenses in precisely the same fashion or use identical definitions of expense categories. Thus, sideby-side comparisons of reported overhead and G&A rates is relatively meaningless. To circumvent these difficulties, published expense ratios for major industries were categorized according to the conventional markup formula shown in Fig. 6 in the body of the report. The resulting markups are completely consistent, reflect the averaged expenses of all applicable U.S. industries, and are totally unbiased. The data is based upon averages derived from over 50 billion dollars revenue volume.

The financial ratios data, applicable to 1981-1982, are taken from Troy (18), which considers data for the following applicable industrial sectors:

- Fabricated Structural Metal Products
- Metal Forgings and Stampings
- Special Industrial Machinery
- Engineering Services

Financial ratios data, for each industrial sector, was categorized into overhead and G&A pools. This was done using a rule which limited G&A to "corporate" expenses such as officer salaries and financial costs. This suggests a categorization of the Trey data, as follows.

#### Overhead

G&A

Repairs Rent Pension & Benefit Plans Other Expenses Compensation of Officers Bad Debts Taxes (excl. Fed.) Interest Depreciation Advertising

The detailed analysis is carried out in Table H1 and is self-explanatory. The Troy data lumps both purchased material and labor under the category "Cost of Operations." An assumption was used to split this category into the two basic elements. A 40% labor fraction (of operating costs) was assumed for all manufacturing operations. Discussions with fabrication shops dealing with ferritic materials, in the thickness range of concern have indicated that this percentage may vary from 37% to 48%. The final values for overhead and G&A derived in Table H1 are as follows.

| OVERHEAD AS A % LABOR  | Percent |
|------------------------|---------|
| Fabricated Structurals | 41.33%  |
| Forgings & Stampings   | 44.34%  |
| Industrial Machinery   | 67.95%  |
| All Manufacturing      | 48.73%  |
| Engineering            | 56.44%  |
| G&A. GLOBAL AVERAGE    | 12.75%  |

|                                  | Fabricated<br>Structures | Forgings<br>& Stamping | Industrial<br>Machinery | Engineering  |
|----------------------------------|--------------------------|------------------------|-------------------------|--------------|
| Total Revenue M\$:               | 20829.60                 | 9101.70                | 10955.10                | 9509.90      |
| EXPENSE ITEMS:                   |                          |                        |                         |              |
| (% Net Sales)                    | 75.0                     | 70.00                  | <b>60.00</b>            | <b>C4</b> C0 |
| Officers Salary                  | 2.50                     | /3.30                  | 68.80                   | 54.20        |
| Repairs                          | 0.50                     | 1.70                   | 0.60                    | 0.30         |
| Bad Debts                        | 0.20                     | 0.10                   | 0.30                    | 0.20         |
| Rental                           | 0.70                     | 0.70                   | 0.80                    | 2.70         |
| Taxes                            | 2.40                     | 2.70                   | 2.80                    | 3.30         |
| Interest                         | 1.40                     | 1.10                   | 1.40                    | 1.10         |
| Depreciation                     | 2.00                     | 2.50                   | 2.30                    | 2.40         |
| Advertising                      | 0.40                     | 0.20                   | 0.70                    | 0.20         |
| Benefits                         | 1.40                     | 2.80                   | 2.40                    | 2.50         |
| Net Profit                       | 9.80                     | 7.80                   | 14.90                   | 20.50        |
| net riorit                       |                          | 4.50                   | 2.00                    | 1.50         |
|                                  | 100.00                   | 100.00                 | 100.00                  | 100.00       |
| OPS. COST DISTR.<br>ASSUMPTIONS: |                          |                        |                         |              |
| Labor % of Cost                  | 40.00                    | 40.00                  | 40.00                   | 85.00        |
| Fringe % of Wage                 | 30.00                    | 30.00                  | 30.00                   | 40.00        |
| POOL ALLOCATION:                 |                          |                        |                         |              |
| Salary                           | 23.08                    | 22.55                  | 21.17                   | 32.91        |
| Fringe                           | 6.92                     | 6.77                   | 6.35                    | 13.16        |
| Subtotal, Labor                  | 30.00                    | 29.32                  | 27.52                   | 46.07        |
| Materials                        | 45.00                    | 43.98                  | 41.28                   | 8.13         |
| Subtotal, Ops.                   | 75.00                    | 73.30                  | 68.80                   | 54.20        |
| Overhead                         | 12.40                    | 13.00                  | 18.70                   | 26.00        |
| Subtotal Direct                  | 87 40                    | 86 30                  | 97 50                   | 80.20        |
| G&A                              | 8.90                     | 9.20                   | 9.90                    | 18.30        |
| Profit                           | 3.70                     | 4.50                   | 2.60                    | 1.50         |
|                                  | 100.00                   | 100.00                 | 100.00                  | 100.00       |
| NODEL ALLOCATION                 |                          |                        |                         |              |
| MODEL ALLOCATION:                | 41.00                    |                        | 67 AF                   |              |
| Overhead & Labor                 | 41.33                    | 44.34                  | 67.95                   | 56.44        |
| Gen & Direct                     | 53./3                    | 57.64                  | 88.34                   | /9.01        |
| dan a Direct                     | 10.10                    | 10.00                  | 11.31                   | 22.82        |

Table H1. Analysis of industry data for overhead and G&A markup factors.

|                    | Fabricated<br>Structures | Forgings<br>& Stamping | Industrial<br>Machinery | Engineering |
|--------------------|--------------------------|------------------------|-------------------------|-------------|
| Total Revenue M\$: | 20829.60                 | 9101.70                | 10955.10                | 9509.90     |
| INDUSTRY TOTALS:   |                          |                        |                         |             |
| Materials, M\$     | 9373.32                  | 4002.93                | 4522.27                 | 7/3.15      |
| Wages, M\$         | 4806.83                  | 2052.78                | 2319.11                 | 3129.44     |
| Total Labor, MS    | 6248.88                  | 2668.62                | 3014.84                 | 4381.21     |
| Overhead, MS       | 2582.87                  | 1183.22                | 2048.60                 | 2472.57     |
| GAA. MS            | 1853.83                  | 837.36                 | 1084.55                 | 1740.31     |
| Total Revenue, M\$ | 20819.60                 | 9101.70                | 10955.10                | 9509.90     |
| MODEL AVERAGES:    |                          | Manufacturer           | Global                  |             |
| Overhead % Labor   |                          | 48.73                  | 50.80                   |             |
| Overhead, % Wage   |                          | 63.35                  | 67.33                   |             |
| G&A, % Direct      |                          | 10.59                  | 12.75                   |             |

Table H1. (continued)
## APPENDIX I

# Limit State Probability Implied by Fracture Arrest Criteria

| 8<br>(in.) | T-NDTT<br>Reqd.<br>°F | T<br>°F | NDTT<br>Reqd.<br>°F | Matl.  | Matl.<br>NDTT<br>°F | Matl.<br>(NDTT)<br>°F | Matl.<br>T-NDTT<br>°F | ۵T | <u>م</u> ۲<br>م(NDT1 | P <sub>F</sub>          |
|------------|-----------------------|---------|---------------------|--------|---------------------|-----------------------|-----------------------|----|----------------------|-------------------------|
| 4          | 103                   | -20     | -123                | 508-4B | -148                | 13                    | 128                   | 25 | 1.923                | 2.7 x 10 <sup>-2</sup>  |
| 4          | 103                   | -20     | -123                | 508-4A | -158                | 10.5                  | 138                   | 35 | 3.333                | $4.4 \times 10^{-4}$    |
| 8          | 123                   | -20     | -143                | 508-4B | -148                | 13                    | 128                   | 5  | 0.385                | $3.5 \times 10^{-1}$    |
| 8          | 123                   | -20     | -143                | 508-4A | -158                | 10.5                  | 138                   | 15 | 1.428                | 7.6 x 10 <sup>-2</sup>  |
| 12         | 133                   | -20     | -153                | 508-4A | -158                | 10.5                  | 138                   | 5  | 0.476                | 3.16 x 10 <sup>-1</sup> |

NAME AND POST OFFICE ADDRESS OF TAXABLE

Table II. Limit state probability implied by FA-EX-YS,  $T = -20^{\circ}F$ .

Table I2. Limit state probability implied by FA-EX-YS,  $T = -10^{\circ}F$ .

| 8<br>(in.) | T-NDTT<br>Reqd.<br>°F | T<br>°F | NDTT<br>Reqd.<br>°F | Matl.  | Matl.<br>NDTT<br>°F | Matl.<br>(NDTT)<br>°F | Matl.<br>T-NDTT<br>°F | ΔT | <u>∆T</u><br>₀(NDTT | P <sub>F</sub>         |
|------------|-----------------------|---------|---------------------|--------|---------------------|-----------------------|-----------------------|----|---------------------|------------------------|
| 4          | 103                   | -10     | -113                | 350-3  | -120                | 13                    | 110                   | 7  | 0.538               | 3 x 10 <sup>-1</sup>   |
| 4          | 103                   | -10     | -113                | 508-4B | -148                | 13                    | 138                   | 35 | 2.692               | $3.6 \times 10^{-3}$   |
| 4          | 103                   | -10     | -113                | 508-4A | -158                | 10.5                  | 148                   | 45 | 4.29                | 9.1 x 10 <sup>-6</sup> |
| 8          | 123                   | -10     | -133                | 508-4B | -148                | 13                    | 138                   | 15 | 1.15                | 1.2 x 10 <sup>-6</sup> |
| 8          | 123                   | -10     | -133                | 508-4A | -158                | 10.5                  | 148                   | 25 | 2.38                | 8.6 x 10 <sup>-3</sup> |
| 12         | 133                   | -10     | -143                | 508-48 | -148                | 13                    | 138                   | 5  | 0.385               | $3.5 \times 10^{-1}$   |
| 12         | 133                   | -10     | -143                | 508-4A | -158                | 10.5                  | 148                   | 15 | 1.43                | 7.7 x 10 <sup>-2</sup> |
| 16         | 141                   | -10     | -151                | 508-4A | -158                | 10.5                  | 148                   | 7  | 0.67                | $2.5 \times 10^{-1}$   |
| 16         | 147                   | -10     | -157                | 508-4A | -158                | 10.5                  | 148                   | 1  | 0.01                | $5 \times 10^{-1}$     |

| 8                                                                                          | T-NDTT<br>Reqd.<br>°F                                                                                                                  | T.<br>°F                                                                          | NDTT<br>Reqd.                                                                                                     | Matl.                                                                                                                         | Matl.<br>NOTT<br>°F                                                                                                                         | Matl.<br>(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Matl.<br>T-NDTT<br>°F                                                                                                        | ΔT                                                                                                                                                                     | <u>م</u><br>م(NDTT                                                                                                       | P <sub>F</sub>                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                                                                                          | 103                                                                                                                                    | 0                                                                                 | -103                                                                                                              | 350-3                                                                                                                         | 13                                                                                                                                          | -120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                          | 17                                                                                                                                                                     | 0.31                                                                                                                     | 9.5 x 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                               |
| 4                                                                                          | 103                                                                                                                                    | 0                                                                                 | -103                                                                                                              | 508-48                                                                                                                        | 13                                                                                                                                          | -148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                          | 45                                                                                                                                                                     | 3.46                                                                                                                     | 2.7 x 10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                               |
| 4                                                                                          | 103                                                                                                                                    | 0                                                                                 | -103                                                                                                              | 508-4A                                                                                                                        | 10.5                                                                                                                                        | - 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 158                                                                                                                          | 55                                                                                                                                                                     | 5.24                                                                                                                     | 8.1 x 10 <sup>-8</sup>                                                                                                                                                                                                                                                                                                                               |
| 8                                                                                          | 123                                                                                                                                    | 0                                                                                 | -123                                                                                                              | 508-4B                                                                                                                        | 13                                                                                                                                          | -148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                          | 25                                                                                                                                                                     | 1.92                                                                                                                     | 2.7 x 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                               |
| 8                                                                                          | 123                                                                                                                                    | 0                                                                                 | -123                                                                                                              | 508-4A                                                                                                                        | 10.5                                                                                                                                        | -158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 158                                                                                                                          | 35                                                                                                                                                                     | 3.33                                                                                                                     | 4.3 x 10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                         | 133                                                                                                                                    | 0                                                                                 | -133                                                                                                              | 508-48                                                                                                                        | 13                                                                                                                                          | -148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                          | 15                                                                                                                                                                     | 1.15                                                                                                                     | 1.2 × 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                         | 133                                                                                                                                    | 0                                                                                 | -133                                                                                                              | 508-4A                                                                                                                        | 16.5                                                                                                                                        | - 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 158                                                                                                                          | 25                                                                                                                                                                     | 2.38                                                                                                                     | 8.6 x 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                               |
| 16                                                                                         | 141                                                                                                                                    | 0                                                                                 | -141                                                                                                              | 508-4B                                                                                                                        | 13                                                                                                                                          | -148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                          | 7                                                                                                                                                                      | 0.538                                                                                                                    | $3.0 \times 10^{-1}$                                                                                                                                                                                                                                                                                                                                 |
| 16                                                                                         | 141                                                                                                                                    | 0                                                                                 | -141                                                                                                              | 508-4A                                                                                                                        | 10.5                                                                                                                                        | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 158                                                                                                                          | 17                                                                                                                                                                     | 1.62                                                                                                                     | 5.3 x 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                         | 147                                                                                                                                    | 0                                                                                 | -147                                                                                                              | 508-4B                                                                                                                        | 13                                                                                                                                          | -148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                          | 1                                                                                                                                                                      | 0.08                                                                                                                     | 4.7 x 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                         | 147                                                                                                                                    | 0                                                                                 | -147                                                                                                              | 508-4A                                                                                                                        | 10.5                                                                                                                                        | -158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 158                                                                                                                          | 11                                                                                                                                                                     | 1.05                                                                                                                     | $1.5 \times 10^{-1}$                                                                                                                                                                                                                                                                                                                                 |
| Table                                                                                      | 14. L                                                                                                                                  | imit                                                                              | state                                                                                                             | probabil                                                                                                                      | ity im                                                                                                                                      | plied by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA-EX-YS                                                                                                                     | , T                                                                                                                                                                    | = 10°F.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |
| Table<br>B<br>(in.)                                                                        | T-NUTT<br>Reqd.                                                                                                                        | imit<br>T<br>°F                                                                   | state<br>NUTT<br>Reqd.<br>°F                                                                                      | probabil<br>Matl.                                                                                                             | Matl.                                                                                                                                       | plied by<br>Matl.<br>σ(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F                                                                                            | , Τ<br>ΔΤ                                                                                                                                                              | = 10°F.<br><u>AT</u>                                                                                                     | PE                                                                                                                                                                                                                                                                                                                                                   |
| Table<br>B<br>(in.)                                                                        | T-NUTT<br>Reqd.<br>°F                                                                                                                  | imit<br>T<br>°F                                                                   | state<br>NUTT<br>Reqd.<br>°F                                                                                      | probabil<br>Matl.                                                                                                             | Matl.<br>NDTT<br>°F                                                                                                                         | plied by<br>Matl.<br>σ(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F                                                                                            | , Τ<br>ΔΤ                                                                                                                                                              | = 10°F.<br><u>AT</u><br>o(NDTT                                                                                           | Pŗ<br>)                                                                                                                                                                                                                                                                                                                                              |
| Table<br>B<br>(in.)<br>4                                                                   | T-NUTT<br>Reqd.<br>°F                                                                                                                  | imit<br>T<br>°F<br>10                                                             | state<br>NUTT<br>Reqd.<br>°F<br>-93                                                                               | probabil<br>Matl.<br>350-3                                                                                                    | Mat!.<br>NDTT<br>°F<br>-120                                                                                                                 | plied by<br>Matl.<br>σ(NDTT)<br>°F<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130                                                                                     | , Τ<br>ΔΤ<br>27                                                                                                                                                        | = 10°F.<br><u>AT</u><br>o(ND77<br>2.08                                                                                   | P <sub>F</sub><br>7)<br>1.9 x 10 <sup>7 2</sup>                                                                                                                                                                                                                                                                                                      |
| Table<br>(in.)<br>4<br>4                                                                   | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103                                                                                           | imit<br>T<br>°F<br>10<br>10                                                       | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93                                                                        | probabil<br>Matl.<br>350-3<br>508-4B                                                                                          | Mat!.<br>NDTT<br>°F<br>-120<br>-148                                                                                                         | plied by<br>Matl.<br>σ(NDTT)<br>°F<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158                                                                              | , Τ<br>ΔΤ<br>27<br>35                                                                                                                                                  | = 10°F.<br><u>AT</u><br>o(ND71<br>2.08<br>4.23                                                                           | PF<br>7)<br>1.9 x 10 <sup>-2</sup><br>1.2 x 10 <sup>-5</sup>                                                                                                                                                                                                                                                                                         |
| Table<br>(in.)<br>4<br>4<br>4                                                              | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103                                                                                    | imit<br>T<br>°F<br>10<br>10<br>10                                                 | state<br>NUTT<br>Read.<br>°F<br>-93<br>-93<br>-93                                                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A                                                                                | Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158                                                                                                 | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168                                                                       | , Τ<br>ΔΤ<br>27<br>35<br>65                                                                                                                                            | = 10°F.<br><u>∆T</u><br>∞(ND7T<br>2.08<br>4.23<br>6.19                                                                   | PF<br>)<br>1.9 x 10 <sup>-2</sup><br>1.2 x 10 <sup>-5</sup><br>3.0 x 10 <sup>-1</sup>                                                                                                                                                                                                                                                                |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>8                                                    | 103<br>103<br>103<br>123                                                                                                               | imit<br>T<br>°F<br>10<br>10<br>10<br>10                                           | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113                                                         | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3                                                                       | Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120                                                                                         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130                                                                | , Τ<br>ΔΤ<br>27<br>35<br>65<br>7                                                                                                                                       | = 10°F.<br><u>AT</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538                                                          | PF<br>1.9 x 10 <sup>-2</sup><br>1.2 x 10 <sup>-5</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup>                                                                                                                                                                                                                                           |
| Table<br>(in.)<br>4<br>4<br>4<br>8<br>8                                                    | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>123<br>123                                                                      | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10                                     | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113                                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-43                                                             | Mat!.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148                                                                                 | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158                                                         | , Τ<br>ΔΤ<br>27<br>35<br>65<br>7<br>35                                                                                                                                 | = 10°F.<br><u>AT</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69                                                  | PF<br>1.9 x 10 <sup>-2</sup><br>1.2 x 10 <sup>-5</sup><br>3.0 x 10 <sup>-3</sup><br>3.0 x 10 <sup>-3</sup><br>3.5 x 10 <sup>-5</sup>                                                                                                                                                                                                                 |
| Table<br>(in.)<br>4<br>4<br>4<br>8<br>8<br>8<br>8                                          | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>123<br>123<br>123                                                        | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10                               | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113<br>-113                                         | probabil<br>Mat1.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-43<br>508-43                                                   | Mat!.<br>NDTT<br>*F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158                                                                         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>1.<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168                                                  | , T<br>ΔT<br>27<br>35<br>65<br>7<br>35<br>45                                                                                                                           | = 10°F.<br><u>AT</u><br>o(ND7T<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29                                          | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup>                                                                                                                                                                                       |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>8<br>12                          | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>123<br>123<br>123<br>123<br>123<br>133                                   | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10<br>10                         | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113<br>-113<br>-123                                 | probabil<br>Mat1.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-43<br>508-48<br>508-4A                                         | Matl.<br>NDTT<br>*F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-158<br>-148                                                         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>1.<br>10.5<br>13<br>1.<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168<br>158                                           | , T<br>ΔT<br>27<br>35<br>65<br>7<br>35<br>45<br>25                                                                                                                     | = 10°F.<br><u>∆T</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29<br>1.92                                  | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup><br>2.7 x 10 <sup>-1</sup>                                                                                                                                                             |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>8<br>12<br>12                    | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>123<br>123<br>123<br>123<br>123<br>123<br>133<br>133                     | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10<br>10                         | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-113<br>-113<br>-113<br>-123<br>-123                                | probabil<br>Matl.<br>350-3<br>508-48<br>508-4A<br>350-3<br>508-48<br>508-48<br>508-48<br>508-48                               | Mat!.<br>NDTT<br>•F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158                                         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>1.<br>10.5<br>13<br>1.<br>10.5<br>13<br>1.<br>10.5<br>13<br>1.<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168<br>158<br>168<br>158<br>168                      | , T<br>ΔT<br>27<br>35<br>65<br>7<br>35<br>45<br>25<br>35                                                                                                               | = 10°F.<br><u>AT</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29<br>1.92<br>3.33                          | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup><br>2.7 x 10 <sup>-1</sup><br>4.3 x 10 <sup>-1</sup>                                                                                                                                   |
| Table<br>(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>12<br>12<br>16                        | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>103<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>12 | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10             | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113<br>-113<br>-123<br>-123<br>-131                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4A<br>508-4B<br>508-4B<br>508-4A                               | Mat!.<br>NDTT<br>*F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-148                                         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>1.<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13                                                                                                                                                             | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168<br>158<br>168<br>158<br>168<br>158               | <ul> <li>, Τ</li> <li>ΔΤ</li> <li>27</li> <li>35</li> <li>65</li> <li>7</li> <li>35</li> <li>45</li> <li>25</li> <li>35</li> <li>17</li> </ul>                         | = 10°F.<br><u>AT</u><br>o(ND7T<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29<br>1.92<br>3.33<br>1.31                  | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup><br>2.7 x 10 <sup>-1</sup><br>4.3 x 10 <sup>-1</sup><br>9.5 x 10 <sup>-1</sup>                                                                                                         |
| Table<br>B(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>12<br>12<br>12<br>16<br>16           | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>103<br>123<br>123<br>123<br>123<br>123<br>123<br>133<br>133<br>133<br>13 | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113<br>-113<br>-123<br>-123<br>-131<br>-131         | probabil<br>Mat1.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B           | Matl.<br>NDTT<br>*F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158         | plied by<br>Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168<br>158<br>168<br>158<br>168<br>158<br>168        | <ul> <li>, Τ</li> <li>ΔΤ</li> <li>27</li> <li>35</li> <li>65</li> <li>7</li> <li>35</li> <li>45</li> <li>25</li> <li>35</li> <li>17</li> <li>27</li> </ul>             | = 10°F.<br><u>AT</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29<br>1.92<br>3.33<br>1.31<br>2.57          | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup><br>2.7 x 10 <sup>-1</sup><br>4.3 x 10 <sup>-1</sup><br>9.5 x 10 <sup>-1</sup><br>5.1 x 10 <sup>-1</sup>                                                     |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>12<br>12<br>12<br>16<br>16<br>20 | I4. L<br>T-NUTT<br>Reqd.<br>°F<br>103<br>103<br>103<br>103<br>103<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>12 | imit<br>T<br>°F<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | state<br>NUTT<br>Reqd.<br>°F<br>-93<br>-93<br>-93<br>-113<br>-113<br>-113<br>-123<br>-123<br>-123<br>-131<br>-131 | probabil<br>Mat1.<br>350-3<br>508-48<br>508-4A<br>350-3<br>508-48<br>508-48<br>508-48<br>508-48<br>508-48<br>508-48<br>508-48 | Matl.<br>NDTT<br>•F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148 | plied by<br>Matl.<br>$\sigma(NDTT)$<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13 | FA-EX-YS<br>Matl.<br>T-NDTT<br>°F<br>130<br>158<br>168<br>130<br>158<br>168<br>158<br>168<br>158<br>168<br>158<br>168<br>158 | <ul> <li>, Τ</li> <li>ΔΤ</li> <li>27</li> <li>35</li> <li>65</li> <li>7</li> <li>35</li> <li>45</li> <li>25</li> <li>35</li> <li>17</li> <li>27</li> <li>11</li> </ul> | = 10°F.<br><u>AT</u><br>o(NDTT<br>2.08<br>4.23<br>6.19<br>1.538<br>2.69<br>4.29<br>1.92<br>3.33<br>1.31<br>2.57<br>0.846 | PF<br>1.9 x 10 <sup>-1</sup><br>1.2 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.0 x 10 <sup>-1</sup><br>3.5 x 10 <sup>-1</sup><br>9.1 x 10 <sup>-1</sup><br>2.7 x 10 <sup>-1</sup><br>4.3 x 10 <sup>-1</sup><br>9.5 x 10 <sup>-1</sup><br>5.1 x 10 <sup>-1</sup><br>2.0 x 10 <sup>-1</sup><br>2.0 x 10 <sup>-1</sup> |

Table 13. Limit state probability implied by FA-EX-YS, T = 0°F.

- I-3 -

| B<br>(in.)                                                                          | T-NDTT<br>Reqd.<br>°F                                                                                                     | T<br>°F                                                                                     | NDTT<br>Reqd.<br>°F                                                                                                                  | Matl.                                                                                                                 | Matl.<br>NDTT<br>°F                                                                                                    | Matl.<br>(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matl.<br>T-NDTT<br>°F                                                                                                               | ΔT                                                                   | <u>م</u><br>م( ND1 T                                                                                                    | P <sub>F</sub>                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                                                                                   | 103                                                                                                                       | 20                                                                                          | -83                                                                                                                                  | 350-3                                                                                                                 | - 120                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                 | 37                                                                   | 2.85                                                                                                                    | 2.2 × 10 <sup>-3</sup>                                                                                                                                                                                                                                   |
| 4                                                                                   | 103                                                                                                                       | 20                                                                                          | -83                                                                                                                                  | 508-4B                                                                                                                | -148                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                 | 65                                                                   | 5.0                                                                                                                     | 2.9 x 10-7                                                                                                                                                                                                                                               |
| 4                                                                                   | 103                                                                                                                       | 20                                                                                          | -83                                                                                                                                  | 508-4A                                                                                                                | -158                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                 | 75                                                                   | 7.14                                                                                                                    | 4.6 x 10 <sup>-1</sup>                                                                                                                                                                                                                                   |
| 8                                                                                   | 123                                                                                                                       | 20                                                                                          | -103                                                                                                                                 | 350-3                                                                                                                 | -120                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                 | 17                                                                   | 1.31                                                                                                                    | 9.5 x 10-2                                                                                                                                                                                                                                               |
| 8                                                                                   | 123                                                                                                                       | 20                                                                                          | -103                                                                                                                                 | 508-4B                                                                                                                | -148                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                 | 45                                                                   | 3.46                                                                                                                    | 2.7 x 10 <sup>-4</sup>                                                                                                                                                                                                                                   |
| 8                                                                                   | 123                                                                                                                       | 20                                                                                          | -103                                                                                                                                 | 508-4A                                                                                                                | -158                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                 | 55                                                                   | 5.24                                                                                                                    | 8.1 x 10-8                                                                                                                                                                                                                                               |
| 12                                                                                  | 133                                                                                                                       | 20                                                                                          | -113                                                                                                                                 | 350-3                                                                                                                 | -120                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                 | 7                                                                    | 0.538                                                                                                                   | $3.0 \times 10^{-1}$                                                                                                                                                                                                                                     |
| 12                                                                                  | 133                                                                                                                       | 20                                                                                          | -113                                                                                                                                 | 508-48                                                                                                                | -148                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                 | 35                                                                   | 2.69                                                                                                                    | $3.5 \times 10^{-3}$                                                                                                                                                                                                                                     |
| 12                                                                                  | 133                                                                                                                       | 20                                                                                          | -113                                                                                                                                 | 508-4A                                                                                                                | -158                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                 | 45                                                                   | 4.29                                                                                                                    | 9.1 x 10-6                                                                                                                                                                                                                                               |
| 16                                                                                  | 141                                                                                                                       | 20                                                                                          | -121                                                                                                                                 | 508-4B                                                                                                                | -148                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                 | 27                                                                   | 2.08                                                                                                                    | 1.9 x 10 <sup>-2</sup>                                                                                                                                                                                                                                   |
| 16                                                                                  | 141                                                                                                                       | 20                                                                                          | -121                                                                                                                                 | 508-4A                                                                                                                | -158                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                 | 37                                                                   | 3.52                                                                                                                    | 2.1 x 10 <sup>-4</sup>                                                                                                                                                                                                                                   |
| 20                                                                                  | 147                                                                                                                       | 20                                                                                          | -127                                                                                                                                 | 508-4B                                                                                                                | -148                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                 | 21                                                                   | 1.62                                                                                                                    | 5.3 x 10 <sup>-2</sup>                                                                                                                                                                                                                                   |
|                                                                                     |                                                                                                                           |                                                                                             |                                                                                                                                      |                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                          |
| 20                                                                                  | 147                                                                                                                       | 20                                                                                          | -127                                                                                                                                 | 508-4A                                                                                                                | - 158                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178                                                                                                                                 | 31                                                                   | 2.95                                                                                                                    | 1.6 x 10 <sup></sup>                                                                                                                                                                                                                                     |
| 20<br>Table<br>(in.)                                                                | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F                                                                                     | 20<br>imit<br>T<br>°F                                                                       | -127<br>state  <br>NDTT<br>Reqd.                                                                                                     | 508-4A<br>probabil<br>Matl.                                                                                           | -158<br>ity imp<br>Matl.<br>NDTT                                                                                       | Matl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178<br>FA-AX-YS<br>Matl.<br>T-NDTT                                                                                                  | 31<br>, Τ :<br>ΔΤ                                                    | 2.95<br>= -20°F.<br><u>AT</u>                                                                                           | P <sub>F</sub>                                                                                                                                                                                                                                           |
| 20<br>Table<br>(in.)                                                                | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F                                                                                     | 20<br>imit<br>T<br>°F                                                                       | -127<br>state<br>NDTT<br>Reqd.<br>°F                                                                                                 | 508-4A<br>probabil<br>Matl.                                                                                           | -158<br>ity imp<br>Matl.<br>NDTT<br>°F                                                                                 | Matl.<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178<br>FA-AX-YS<br>Matl.<br>T-NDTT<br>°F                                                                                            | 31<br>, Τ :<br>ΔΤ                                                    | 2.95<br>= -20°F.<br><u>ΔΤ</u><br>σ(NDTT                                                                                 | P <sub>F</sub>                                                                                                                                                                                                                                           |
| 20<br>Table<br>(in.)<br>4                                                           | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F                                                                                     | 20<br>imit<br>T<br>°F<br>-20                                                                | -127<br>state<br>NDTT<br>Reqd.<br>°F<br>-123                                                                                         | 508-4A<br>probabil<br>Mat1.<br>508-4B                                                                                 | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148                                                                         | 10.5<br>Dlied by Matl.<br>o(NDTT)<br>°F<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128                                                                                     | 31<br>, Τ :<br>ΔΤ<br>25                                              | 2.95<br>= -20°F.<br><u>AT</u><br>σ(NDTT<br>0.993                                                                        | P <sub>F</sub><br>)<br>2.7 x 10 <sup>-2</sup>                                                                                                                                                                                                            |
| 20<br>Table<br>(in.)<br>4<br>4                                                      | 147<br>16. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103                                                                       | 20<br>imit<br>T<br>°F<br>-20<br>-20                                                         | -127<br>state  <br>NDTT<br>Reqd.<br>°F<br>-123<br>-123                                                                               | 508-4A<br>probabil<br>Mat1.<br>508-4B<br>508-4A                                                                       | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158                                                                 | 10.5<br>Dlied by Matl.<br>o(NDTT)<br>°F<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138                                                                              | 31<br>, Τ :<br>ΔΤ<br>25<br>35                                        | 2.95<br>= -20°F.<br><u>Δ</u> I<br>σ(NDTT<br>0.993<br>3.333                                                              | $P_F$<br>()<br>2.7 x 10 <sup>-2</sup><br>4.4 x 10 <sup>-4</sup>                                                                                                                                                                                          |
| 20<br>Table<br>(in.)<br>4<br>4<br>8                                                 | 147<br>16. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115                                                                | 20<br>imit<br>T<br>°F<br>-20<br>-20<br>-20                                                  | -127<br>state  <br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-135                                                                       | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4B                                                             | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148                                                         | 10.5<br>plied by 1<br>Mat1.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128                                                                       | 31<br>, Τ<br>ΔΤ<br>25<br>35<br>13                                    | 2.95<br>= -20°F.<br><u>ΔT</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000                                                      | P <sub>F</sub><br>P <sub>F</sub><br>)<br>$2.7 \times 10^{-2}$<br>$4.4 \times 10^{-4}$<br>$1.6 \times 10^{-1}$                                                                                                                                            |
| 20<br>Table<br>(in.)<br>4<br>4<br>8<br>8                                            | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115                                                         | 20<br>imit<br>T<br>•F<br>-20<br>-20<br>-20<br>-20                                           | -127<br>state<br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-135<br>-135                                                                 | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4B<br>508-4A                                                   | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158                                                 | 10.5<br>plied by 1<br>Matl.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138                                                                | 31<br>, Τ<br>ΔΤ<br>25<br>35<br>13<br>23                              | 2.95<br>= -20°F.<br><u>AT</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190                                             | P <sub>F</sub><br>P <sub>F</sub><br>)<br>$2.7 \times 10^{-2}$<br>$4.4 \times 10^{-4}$<br>$1.6 \times 10^{-1}$<br>$1.4 \times 10^{-2}$                                                                                                                    |
| 20<br>[able<br>[b]<br>[in.]<br>4<br>4<br>8<br>8<br>8<br>12                          | 147<br>16. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115<br>115<br>120                                           | 20<br>imit<br>T<br>°F<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                             | -127<br>state<br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-123<br>-135<br>-135<br>-140                                                 | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B                                         | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158<br>-148                                         | 10.5<br>plied by 1<br>Matl.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138<br>138                                                         | 31<br>, Τ<br>ΔΤ<br>25<br>35<br>13<br>23<br>8                         | 2.95<br>= -20°F.<br><u>AT</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190<br>0.615                                    | P <sub>F</sub><br>P <sub>F</sub><br>$2.7 \times 10^{-2}$<br>$4.4 \times 10^{-4}$<br>$1.6 \times 10^{-1}$<br>$1.4 \times 10^{-2}$<br>$2.7 \times 10^{-1}$                                                                                                 |
| 20<br>Table<br>(in.)<br>4<br>4<br>8<br>8<br>12<br>12                                | 147<br>16. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115<br>115<br>120<br>120                                    | 20<br>imit<br>T<br>°F<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                      | -127<br>state<br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-123<br>-123<br>-135<br>-135<br>-135<br>-140<br>-140                         | 508-4A<br>probabil<br>Mat1.<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A                               | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158                                 | 10.5<br>plied by 1<br>Matl.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138<br>138<br>138                                                  | 31<br>, Τ<br>ΔΤ<br>25<br>35<br>13<br>23<br>8<br>18                   | 2.95<br>= -20°F.<br><u>Δ</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190<br>0.615<br>1.71                             | PF<br>PF<br>2.7 x $10^{-2}$<br>4.4 x $10^{-4}$<br>1.6 x $10^{-1}$<br>1.4 x $10^{-2}$<br>2.7 x $10^{-1}$<br>4.4 x $10^{-2}$                                                                                                                               |
| 20<br>Table<br>B<br>in.)<br>4<br>4<br>8<br>8<br>12<br>12<br>16                      | 147<br>16. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115<br>120<br>120<br>124                                    | 20<br>imit<br>T<br>*F<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20               | -127<br>state  <br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-123<br>-135<br>-135<br>-135<br>-140<br>-140<br>-144                       | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4A<br>508-4B<br>508-4A<br>508-4A<br>508-4B                     | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148                         | 10.5<br>plied by 1<br>Mat1.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138<br>138<br>138<br>138<br>138                                    | 31<br>, Τ :<br>ΔΤ<br>25<br>35<br>13<br>23<br>8<br>18<br>4            | 2.95<br>= -20°F.<br><u>AI</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190<br>0.615<br>1.71<br>0.308                   | PF<br>PF<br>PF<br>PF<br>PF<br>PF<br>PF<br>PF<br>PF<br>PF                                                                                                                                                                                                 |
| 20<br>Table<br>(in.)<br>4<br>4<br>8<br>12<br>12<br>12<br>16<br>16                   | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115<br>120<br>120<br>120<br>124<br>124                      | 20<br>imit<br>T<br>*F<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | -127<br>state  <br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-123<br>-135<br>-135<br>-135<br>-140<br>-140<br>-144<br>-144               | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A           | -158<br>ity imp<br>Matl.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158 | 10.5<br>plied by 1<br>Mat1.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138<br>138<br>138<br>138<br>138<br>138<br>138                      | 31<br>, Τ<br>ΔT<br>25<br>35<br>13<br>23<br>8<br>18<br>4<br>14        | 2.95<br>= -20°F.<br><u>AT</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190<br>0.615<br>1.71<br>0.308<br>1.333          | PF<br>PF<br>2.7 x $10^{-2}$<br>4.4 x $10^{-4}$<br>1.6 x $10^{-1}$<br>1.4 x $10^{-2}$<br>2.7 x $10^{-1}$<br>4.4 x $10^{-2}$<br>3.8 x $10^{-1}$<br>9.2 x $10^{-2}$                                                                                         |
| 20<br>Table<br>B(in.)<br>4<br>4<br>8<br>8<br>12<br>12<br>12<br>16<br>16<br>16<br>20 | 147<br>I6. L<br>T-NDTT<br>Reqd.<br>°F<br>103<br>103<br>115<br>115<br>120<br>120<br>120<br>120<br>124<br>124<br>124<br>126 | 20<br>imit<br>T<br>•F<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | -127<br>state<br>NDTT<br>Reqd.<br>°F<br>-123<br>-123<br>-123<br>-123<br>-135<br>-135<br>-135<br>-140<br>-140<br>-144<br>-144<br>-146 | 508-4A<br>probabil<br>Matl.<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B | -158<br>ity im;<br>Mat1.<br>NDTT<br>°F<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148         | 10.5<br>nlied by 1<br>Matl.<br>o(NDTT)<br>°F<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13 | 178<br>FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>128<br>138<br>128<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>128<br>138 | 31<br>, T ;<br>ΔT<br>25<br>35<br>13<br>23<br>8<br>18<br>4<br>14<br>2 | 2.95<br>= -20°F.<br><u>AT</u><br>σ(NDTT<br>0.993<br>3.333<br>1.000<br>2.190<br>0.615<br>1.71<br>0.308<br>1.333<br>0.154 | PF<br>PF<br>2.7 $\times 10^{-2}$<br>4.4 $\times 10^{-1}$<br>1.6 $\times 10^{-1}$<br>1.6 $\times 10^{-1}$<br>1.4 $\times 10^{-2}$<br>2.7 $\times 10^{-1}$<br>4.4 $\times 10^{-2}$<br>3.8 $\times 10^{-1}$<br>9.2 $\times 10^{-2}$<br>4.4 $\times 10^{-1}$ |

Table I5. Limit state probability implied by FA-EX-YS, T = 20°F.

- I-4 -

| B<br>in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T-NDTT<br>Reqd.<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T<br>°F                                                                                                   | NDTT<br>Reqd.<br>°F                                                                                                                  | Matì.                                                                                                                         | Matl.<br>NDTT<br>°F                                                                                                                                                   | Matl.<br>o(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matl.<br>T-NDTT<br>°F                                                                                                        | ΔT                                                                                                                                                                     | Δ <u>T</u><br>σ(NDTT                                                                                                   | P <sub>F</sub>                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -113                                                                                                                                 | 350-3                                                                                                                         | -120                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                                                                          | 7                                                                                                                                                                      | 0.538                                                                                                                  | 3 x 10 <sup>-1</sup>                                                                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -113                                                                                                                                 | 508-4B                                                                                                                        | -148                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                          | 35                                                                                                                                                                     | 2.69                                                                                                                   | 3.5 x 10                                                                                                                               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -115                                                                                                                                 | 508-4A                                                                                                                        | -158                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148                                                                                                                          | 45                                                                                                                                                                     | 4.29                                                                                                                   | 9.1 x 10                                                                                                                               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -125                                                                                                                                 | 508-4B                                                                                                                        | -148                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                          | 23                                                                                                                                                                     | 1.77                                                                                                                   | 3.8 x 10                                                                                                                               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -125                                                                                                                                 | 508-4A                                                                                                                        | -158                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148                                                                                                                          | 33                                                                                                                                                                     | 3.14                                                                                                                   | 8.4 x 10 <sup>-</sup>                                                                                                                  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -130                                                                                                                                 | 508-48                                                                                                                        | -148                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                          | 18                                                                                                                                                                     | 1.38                                                                                                                   | 8.3 x 10 <sup>-</sup>                                                                                                                  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -130                                                                                                                                 | 508-4A                                                                                                                        | -158                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148                                                                                                                          | 28                                                                                                                                                                     | 2.57                                                                                                                   | 3.8 x 10                                                                                                                               |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -134                                                                                                                                 | 508-4B                                                                                                                        | -148                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                          | 14                                                                                                                                                                     | 1.08                                                                                                                   | 1.4 x 10 <sup>-</sup>                                                                                                                  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -134                                                                                                                                 | 508-4A                                                                                                                        | -158                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148                                                                                                                          | 24                                                                                                                                                                     | 2.24                                                                                                                   | 1.1 x 10                                                                                                                               |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -136                                                                                                                                 | 508-4B                                                                                                                        | -148                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                          | 12                                                                                                                                                                     | 0.923                                                                                                                  | 1.8 x 10                                                                                                                               |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                       | -136                                                                                                                                 | 508-4A                                                                                                                        | -158                                                                                                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148                                                                                                                          | 22                                                                                                                                                                     | 2.10                                                                                                                   | 1.8 x 10                                                                                                                               |
| Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | imit                                                                                                      | state                                                                                                                                | probabil                                                                                                                      | ity im                                                                                                                                                                | plied by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FA-AX-YS                                                                                                                     | , т                                                                                                                                                                    | = 0°F.                                                                                                                 |                                                                                                                                        |
| Table<br>B<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18. L<br>T-NDTT<br>Rega.<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | imit<br>T<br>°F                                                                                           | state<br>NUTT<br>Reqd.<br>°F                                                                                                         | probabil<br>Matl.                                                                                                             | ity im<br>Matl.<br>NDTT<br>°F                                                                                                                                         | Matl.<br>(NDTT)<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F                                                                                            | , Τ :<br>ΔΤ                                                                                                                                                            | = 0°F.<br><u>AT</u><br>o(NDT1                                                                                          | P <sub>F</sub>                                                                                                                         |
| Table<br>B<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18. L<br>T-NDTT<br>Rega.<br>°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | imit<br>T<br>°F<br>O                                                                                      | state<br>NUTT<br>Reqd.<br>°F                                                                                                         | probabil<br>Matl.<br>350-3                                                                                                    | ity im<br>Matl.<br>NDTT<br>°F<br>-120                                                                                                                                 | plied by<br>Matl.<br>σ(NDTT)<br>°F<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120                                                                                     | ο, Τ :<br>ΔΤ<br>17                                                                                                                                                     | = 0°F.<br><u>∆⊺</u><br>⊲(NDT1<br>1.31                                                                                  | PF<br>T)<br>9.5 x 10                                                                                                                   |
| Table<br>B<br>(in.)<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18. L<br>T-NDTT<br>Rega.<br>°F<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imit<br>T<br>°F<br>0<br>0                                                                                 | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103                                                                                         | probabil<br>Matl.<br>350-3<br>508-4B                                                                                          | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148                                                                                                                         | Matl.<br>(NDTT)<br>°F<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148                                                                              | , Τ<br>ΔΤ<br>17<br>45                                                                                                                                                  | = 0°F.<br><u>∆⊺</u><br>⊲(NDT1<br>1.31<br>3.46                                                                          | PF<br>T)<br>9.5 x 10<br>2.7 x 10                                                                                                       |
| Fable<br>B<br>(in.)<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18. L<br>T-NDTT<br>Reqa.<br>°F<br>103<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | imit<br>T<br>°F<br>0<br>0<br>0                                                                            | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105                                                                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A                                                                                | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158                                                                                                                 | Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158                                                                       | , Τ<br>ΔΤ<br>17<br>45<br>55                                                                                                                                            | = 0°F.<br><u>AT</u><br>o(NDT1<br>1.31<br>3.46<br>5.24                                                                  | PF<br>7)<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10                                                                                           |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18. L<br>T-NDTT<br>Reqa.<br>°F<br>103<br>103<br>103<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | imit<br>T<br>°F<br>0<br>0<br>0<br>0                                                                       | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115                                                                         | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3                                                                       | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120                                                                                                         | Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120                                                                | , Τ<br>ΔΤ<br>17<br>45<br>55<br>5                                                                                                                                       | = 0°F.<br><u>∆T</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385                                                         | P <sub>F</sub><br>9.5 x 10 <sup>-</sup><br>2.7 x 10 <sup>-</sup><br>8.1 x 10 <sup>-</sup><br>3.5 x 10 <sup>-</sup>                     |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18. L<br>T-NDTT<br>Rega.<br>°F<br>103<br>103<br>103<br>115<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0                                                                  | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115                                                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B                                                             | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148                                                                                                 | plied by<br>Matl.<br>σ(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>13<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148                                                         | , T =<br>ΔT<br>17<br>45<br>55<br>5<br>33                                                                                                                               | = 0°F.<br><u>∆T</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54                                                 | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10                                                                         |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I8. L<br>T-NDTT<br>Rega.<br>°F<br>103<br>103<br>103<br>103<br>115<br>115<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115                                                         | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B<br>508-4A                                                   | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158                                                                                         | plied by<br>Matl.<br>o(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158                                                  | <ul> <li>, T</li> <li>ΔT</li> <li>17</li> <li>45</li> <li>55</li> <li>5</li> <li>33</li> <li>43</li> </ul>                                                             | = 0°F.<br><u>AI</u><br>o(NDTT<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10                                         | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10                                                             |
| (able<br>(b)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able)<br>(able) | 18. L<br>T-NDTT<br>Reqa.<br>°F<br>103<br>103<br>103<br>103<br>103<br>115<br>115<br>115<br>115<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115<br>-120                                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B<br>508-4A<br>508-4B                                         | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148                                                                                 | plied by<br>Matl.<br>o(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>13<br>10.5<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FA-AX-YS<br>Mat1.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158<br>158<br>148                                    | , T =<br>ΔT<br>17<br>45<br>55<br>5<br>33<br>43<br>28                                                                                                                   | = 0°F.<br><u>∆I</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10<br>2.15                                 | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10<br>1.6 x 10                                                 |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>8<br>8<br>8<br>8<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18. L<br>T-NDTT<br>Reqa.<br>°F<br>103<br>103<br>103<br>103<br>103<br>115<br>115<br>115<br>115<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115<br>-120<br>-120                                         | probabil<br>Matl.<br>350-3<br>508-48<br>508-4A<br>350-3<br>508-48<br>508-4A<br>508-48<br>508-48                               | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158                                                         | Matl.<br>(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158<br>148<br>158<br>148<br>158                      | <ul> <li>, T</li> <li>ΔT</li> <li>17</li> <li>45</li> <li>55</li> <li>5</li> <li>33</li> <li>43</li> <li>28</li> <li>38</li> </ul>                                     | = 0°F.<br><u>∆T</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10<br>2.15<br>3.62                         | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10<br>1.6 x 10<br>1.5 x 10                                     |
| Table<br>B<br>(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>8<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18. L<br>T-NDTT<br>Reqa.<br>°F<br>103<br>103<br>103<br>103<br>103<br>115<br>115<br>115<br>115<br>115<br>120<br>120<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115<br>-120<br>-120<br>-124                                 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B<br>508-4B<br>508-4B<br>508-4A<br>508-4B                     | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148                                                 | plied by<br>Matl.<br>σ(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158<br>148<br>158<br>148<br>158<br>148               | <ul> <li>, T</li> <li>ΔT</li> <li>17</li> <li>45</li> <li>55</li> <li>5</li> <li>33</li> <li>43</li> <li>28</li> <li>38</li> <li>24</li> </ul>                         | = 0°F.<br><u>∆I</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10<br>2.15<br>3.62<br>1.85                 | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10<br>1.6 x 10<br>1.5 x 10<br>3.2 x 10                         |
| Table<br>B(in.)<br>4<br>4<br>4<br>8<br>8<br>8<br>12<br>12<br>12<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I8. L T-NDTT<br>Reqa.<br>°F 103 103 103 103 103 103 103 103 103 103 103 103 103 104 124 124 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115<br>-115<br>-120<br>-120<br>-124<br>-124         | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4B           | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158         | plied by<br>Matl.<br>o(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158<br>148<br>158<br>148<br>158<br>148<br>158        | <ul> <li>, T</li> <li>ΔT</li> <li>17</li> <li>45</li> <li>55</li> <li>5</li> <li>33</li> <li>43</li> <li>28</li> <li>38</li> <li>24</li> <li>34</li> </ul>             | = 0°F.<br><u>AI</u><br>o(NDTT<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10<br>2.15<br>3.62<br>1.85<br>3.24         | PF<br>9.5 x 10<br>2.7 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10<br>1.6 x 10<br>1.5 x 10<br>3.2 x 10<br>6.0 x 10                         |
| Table<br>B(in.)<br>4<br>4<br>4<br>4<br>8<br>8<br>8<br>12<br>12<br>16<br>16<br>16<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>I8. L</li> <li>T-NDTT<br/>Reqa.<br/>°F</li> <li>103</li> <li>103</li></ul> | imit<br>T<br>°F<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | state<br>NUTT<br>Reqd.<br>°F<br>-103<br>-103<br>-105<br>-115<br>-115<br>-115<br>-115<br>-120<br>-120<br>-124<br>-124<br>-124<br>-126 | probabil<br>Matl.<br>350-3<br>508-4B<br>508-4A<br>350-3<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B<br>508-4A<br>508-4B | ity im<br>Matl.<br>NDTT<br>°F<br>-120<br>-148<br>-158<br>-120<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148<br>-158<br>-148 | plied by<br>Matl.<br>o(NDTT)<br>°F<br>13<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13<br>10.5<br>13 | FA-AX-YS<br>Matl.<br>T-NDTT<br>°F<br>120<br>148<br>158<br>120<br>148<br>158<br>148<br>158<br>148<br>158<br>148<br>158<br>148 | <ul> <li>, T</li> <li>ΔT</li> <li>17</li> <li>45</li> <li>55</li> <li>5</li> <li>33</li> <li>43</li> <li>28</li> <li>38</li> <li>24</li> <li>34</li> <li>22</li> </ul> | = 0°F.<br><u>∆I</u><br>o(NDT1<br>1.31<br>3.46<br>5.24<br>0.385<br>2.54<br>4.10<br>2.15<br>3.62<br>1.85<br>3.24<br>1.69 | PF<br>9.5 x 10<br>2.7 x 10<br>8.1 x 10<br>3.5 x 10<br>5.6 x 10<br>2.1 x 10<br>1.6 x 10<br>1.5 x 10<br>3.2 x 10<br>6.0 x 10<br>4.5 x 10 |

Table I7. Limit state probability implied by FA-AX-YS,  $T = -10^{\circ}F$ .

- I-5 -

| B<br>(in.) | T-NDTT<br>Reqd.<br>°F | T<br>°F | NDTT<br>Reqd.<br>°F | Matl.  | Matl.<br>NDTI<br>°F | Matl.<br>(NDTT)<br>°F | Matl.<br>T-NDTT<br>°F | ΔT |         | PF                      |
|------------|-----------------------|---------|---------------------|--------|---------------------|-----------------------|-----------------------|----|---------|-------------------------|
| 1          |                       |         |                     |        |                     |                       |                       |    | otinori | '                       |
| 4          | 103                   | 10      | -93                 | 350-3  | -120                | 13                    | 130                   | 27 | 1.31    | $1.9 \times 10^{-2}$    |
| 4          | 103                   | 10      | -93                 | 508-4B | -148                | 13                    | 158                   | 55 | 3.46    | 1.2 x 10 <sup>-5</sup>  |
| 4          | 103                   | 10      | -93                 | 508-4A | -158                | 10.5                  | 168                   | 65 | 5.24    | 3.0 x 10 <sup>-10</sup> |
| 8          | 115                   | 10      | -105                | 350-3  | -120                | 13                    | 130                   | 15 | 0.385   | $1.2 \times 10^{-1}$    |
| 8          | 115                   | 10      | -105                | 508-4B | -148                | 13                    | 158                   | 43 | 2.54    | $4.7 \times 10^{-4}$    |
| 8          | 115                   | 10      | -105                | 508-4A | -158                | 10.5                  | 168                   | 53 | 4.10    | $2.2 \times 10^{-7}$    |
| 12         | 120                   | 10      | -110                | 350-3  | -120                | 13                    | 130                   | 10 | 2.15    | 2.2 x 10 <sup>-1</sup>  |
| 12         | 120                   | 10      | -110                | 508-4B | -148                | 13                    | 158                   | 38 | 3.62    | $1.7 \times 10^{-3}$    |
| 12         | 120                   | 10      | -110                | 508-4A | -158                | 10.5                  | 168                   | 48 | 3.62    | $2.4 \times 10^{-6}$    |
| 16         | 124                   | 10      | -114                | 350-3  | -120                | 13                    | 130                   | 6  | 1.85    | $3.2 \times 10^{-1}$    |
| 16         | 124                   | 10      | -114                | 508-4B | -148                | 13                    | 158                   | 34 | 3.24    | $4.5 \times 10^{-3}$    |
| 16         | 124                   | 10      | -114                | 508-4A | -158                | 10.5                  | 168                   | 44 | 3.24    | $1.4 \times 10^{-5}$    |
| 20         | 126                   | 10      | -116                | 350-3  | -120                | 13                    | 130                   | 4  | 1.69    | $3.8 \times 10^{-1}$    |
| 20         | 126                   | 10      | -116                | 508-4B | -148                | 13                    | 158                   | 32 | 3.05    | $6.9 \times 10^{-3}$    |
| 20         | 126                   | 10      | -116                | 508-4A | -158                | 10.5                  | 168                   | 42 | 3.05    | 3.2 x 10 <sup>-5</sup>  |
|            |                       |         |                     |        |                     |                       |                       |    |         |                         |

Table 19. Limit state probability implied by FA-AX-YS,  $T = 10^{\circ}F$ .

| B<br>(in.) | T-NDTT<br>Reqd.<br>°F | T<br>°F | NDTT<br>Reqd.<br>°F | Matl.  | Matl.<br>NDTT<br>°F | Matl.<br>$\sigma(NDTT)$<br>°F | Matl.<br>T-NDTT<br>°F | ۵T | <u>مآ</u><br>σ(NDT | P <sub>F</sub>         |
|------------|-----------------------|---------|---------------------|--------|---------------------|-------------------------------|-----------------------|----|--------------------|------------------------|
|            | <u>.</u>              |         |                     |        |                     |                               |                       |    |                    |                        |
| 4          | 103                   | 20      | -83                 | 350-3  | -120                | 13                            | 130                   | 37 | 2.85               | 2.2 x 10 -             |
| 4          | 103                   | 20      | -83                 | 508-4B | -148                | 13                            | 158                   | 65 | 5.00               | 2.9 x 10 <sup>-5</sup> |
| 4          | 103                   | 20      | -83                 | 508-4A | -158                | 10.5                          | 168                   | 75 | 7.14               | 4.6 x 10-10            |
| 8          | 115                   | 20      | -95                 | 350-3  | -120                | 13                            | 130                   | 25 | 1.92               | 2.7 x 10 <sup>-1</sup> |
| 8          | 115                   | 20      | -95                 | 508-4B | -148                | 13                            | 158                   | 53 | 4.08               | 2.3 x 10 <sup>-4</sup> |
| 8          | 115                   | 20      | -95                 | 508-4A | -158                | 10.5                          | 168                   | 63 | 6.00               | $1.0 \times 10^{-7}$   |
| 12         | 120                   | 20      | -100                | 350-3  | -120                | 13                            | 130                   | 20 | 1.54               | $6.2 \times 10^{-1}$   |
| 12         | 120                   | 20      | -100                | 508-4B | -148                | 13                            | ?58                   | 48 | 3.69               | $1.1 \times 10^{-3}$   |
| 12         | 120                   | 20      | -100                | 508-4A | -158                | 10.5                          | 168                   | 58 | 5.52               | $1.7 \times 10^{-6}$   |
| 16         | 124                   | 20      | -104                | 350-3  | -120                | 13                            | 130                   | 16 | 1.23               | $1.1 \times 10^{-1}$   |
| 16         | 124                   | 20      | -104                | 508-4B | -148                | 13                            | 158                   | 44 | 3.38               | $3.6 \times 10^{-3}$   |
| 16         | 124                   | 20      | -104                | 508-4A | -158                | 10.5                          | 168                   | 54 | 5.14               | 1.4 x 10 <sup>-5</sup> |
| 20         | 126                   | 20      | -106                | 350-3  | -120                | 13                            | 130                   | 14 | 1.08               | $1.4 \times 10^{-1}$   |
| 20         | 126                   | 20      | -106                | 508-4B | -148                | 13                            | 158                   | 42 | 3.23               | $6.2 \times 10^{-3}$   |
| 20         | 126                   | 20      | -106                | 508-4A | -158                | 10.5                          | 168                   | 52 | 4.95               | 3.7 x 10 <sup>-5</sup> |
|            |                       |         |                     |        |                     |                               |                       |    |                    |                        |

Table IlO. Limit state probability implied by FA-AX-YS, T = 20°F.

.

### APPENDIX J

Derivation of Expression for Limit State Probability Implied by the Fracture Initiation Criterion at Yield Stress Levels

#### APPENDIX J. DERIVATION OF EXPRESSION FOR LIMIT STATE PROBABILITY IMPLIED BY FRACTURE INITIATION CRITERION AT YIELD STRESS LEVELS

The limit state probability,  $P_F$ , associated with the fracture initiation criterion is defined by the probability that the applied stress intensity is greater than the critical fracture toughness stress intensity of the ferritic steel. With reference to Fig. Jl, this is expressed by

 $P_{F} = P\{K_{ID}/\sigma_{yD} < K_{I}/\sigma_{yD}\}.$ (J1)

For convenience in notation, the normalized applied fracture toughness stress intensity random variable  $K_{1}/\sigma_{yD}$  will be expressed by  $K_{,1}$  while the normalized critical stress intensity random variable will be expressed by  $K_{1D}$ , and particular values of these variables will be expressed by  $k_{1D}$ , and particular values of these variables will be expressed by  $k_{1D}$ , and particular values of these variables will be expressed by  $k_{1D}$ , and particular values of these variables will be expressed by  $k_{1D}$ , respectively. As illustrated in Fig. Jl,

$$P\{(\hat{K}_{1} - \frac{dK_{1}}{2}) > \hat{K}_{1} > (\hat{K}_{1} + \frac{dK_{1}}{2})\} = f_{\hat{K}_{1}}(\hat{k}_{1})d(\hat{k}_{1})$$
(J2)

and

$$P\{\hat{\kappa}_{1D} < \hat{\kappa}_{1}\} = \int_{0}^{k_{1}} f_{\hat{\kappa}_{1D}}(k_{1D}) \hat{d}(k_{1D}) .$$
 (J3)

The infinitesimal of the limit state probability is the probability of the compound event defined by the simultaneous occurrence of the events expressed by Eqs. (2) and (3). Consequently

$$dP_{F} = f_{k_{1}}(\hat{k}_{1})d(\hat{k}_{1}) \times \int_{0}^{\hat{k}_{1}} f_{k_{1D}}(\hat{k}_{1D})d(\hat{k}_{1D}) \quad . \tag{34}$$

Integrating Eq. (4) gives

$$P_{F} = \int_{0}^{\infty} dP_{F} = \int_{0}^{\infty} f_{\hat{k}_{1}}(\hat{k}_{1}) [\int_{0}^{k_{1}} f_{\hat{k}_{1D}}(\hat{k}_{1D}) d(\hat{k}_{1D})] d(\hat{k}_{1}) . \quad (J5)$$





Probability density functions (pdf)  $f_{\hat{K}}(\hat{k}_{1D})$  and  $f_{\hat{K}}(\hat{k}_{1})$  are assumed to

be log-normal since this avoids the occurrence of negative values for these parameters. Consequently,

$$f_{1nk_{1D}}(1nk_{1D}) = \frac{1}{\sigma_{1nk_{1D}}} \exp - \frac{1}{2} \left[ \frac{\ln k_{1D} - \mu_{1nk_{1D}}}{\sigma_{1nk_{1D}}} \right]^2 . \quad (J6)$$

by a change of variable technique we note that

3

$$f_{1n\hat{k}_{1D}}(1n\hat{k}_{1D}) = \frac{f_{\hat{k}_{1D}}(k_{1D})}{d \ln k_{1D}} = \hat{k}_{1D} f_{\hat{k}_{1D}}(\hat{k}_{1D}) , \qquad (J7)$$

- J-3 -

and

$$f_{\tilde{K}_{1D}}(\hat{k}_{1D}) = \frac{1}{\hat{k}_{1D}} f_{1n\tilde{K}_{1D}}(1n\hat{k}_{1D})$$
 (J8)

substituting the expression for the pdf of  $lnk_{1D}$  from Eq. (6) into Eq. (8) we have

$$f_{\tilde{K}_{1D}}(\hat{k}_{1D}) = \frac{1}{\hat{k}_{1D}\sigma_{1n}\hat{k}_{1D}} \exp - \frac{1}{2} \left[ \frac{\ln k_{1D} - \mu_{1n} \hat{k}_{1D}}{\sigma_{1n} k_{1D}} \right]^2, \quad (J9)$$

1

$$\int_{0}^{\hat{k}_{1}} f_{\hat{k}_{1D}}(\hat{k}_{1D}) d(\hat{k}_{1D}) = \int_{0}^{\infty} \frac{1}{\hat{k}_{1D}\sigma_{1n} \kappa_{1D}} \exp - \frac{1}{2} \left[ \frac{\ln \hat{k}_{1D} - \mu_{1n} \hat{k}_{1D}}{\sigma_{1n} \hat{k}_{1D}} \right]^{2} d(\hat{k}_{1D})$$

$$= \frac{\ln \hat{k}_{1D} - \mu_{1n} \hat{k}_{1D}}{\sigma_{1n} \kappa_{1D}} \cdot (J10)$$

ę

Since yield stress levels are assumed, the applicable stress intensity is only a function of the size and configuration of the flaw, or

k<sub>1</sub>= C √a<sup>-</sup>.

Consequently, the dispersion in values of  $\hat{k}_1$  is determined by the uncertainty associated with the flaw size, "a." The pdf of  $\hat{k}_1$  can be determined from the pdf of "a" by the relationship

$$f_{K_1}(\hat{k}_1) = \frac{f_A(a)}{\frac{d}{da}\hat{k}_1(a)}$$
 (J11)

Now

 $\frac{d}{da} \hat{k}_{1}(a) = \frac{c}{2\sqrt{a}},$ 

so that

$$f_{K_1}(k_1) = \frac{2\sqrt{a}}{c} f_A(a)$$
, (J12)

since

$$f_{\ln A}(\ln a) = \frac{1}{\sqrt{2\pi} \sigma_{\ln A}} \exp - \frac{1}{2} \left[ \frac{\ln a - m_A}{\sigma_A} \right]^2$$
, (J13)

and

$$f_{\ln A}(\ln a) = \frac{f_A(a)}{d \ln a} = a f_A(a).$$
 (J14)

Then, companing Eqs. (12), (13), and (14) gives

$$f_{\tilde{k}_{1}}(\hat{k}_{1}) = \frac{2}{\hat{k}_{1}\sigma_{1n}A^{\sqrt{2n}}} \exp - \frac{1}{2} \left\{ \frac{1}{\sigma_{1n}A} \ln[\frac{(k_{1}f)}{c^{2} m_{A}}] \right\}^{2}.$$
 (J15)

Finally, the expression for the limit state probability given by Eq. (5) may be cast in the form

$$P_{F} = \int_{0}^{\infty} \Phi\left[\frac{\ln k_{10} - \mu_{1n} \hat{k}_{10}}{\sigma_{1n} \hat{k}_{10}}\right] f_{\hat{k}_{1}}(\hat{k}_{1}) d(\hat{k}_{1})$$
(J16)

which may be evaluated by numerical integration.

#### APPENDIX K

.

-

.

.

Applicable Ferritic Steels for Each Brittle Fracture Acceptance Criterion Assuming Yield Strength Levels of Stress APPLICABLE FERRITIC STEELS FOR LIMIT STATE PROBABILITY  $< 10^{-2}$ 

2

- 10 C

| 1          | <b>Fetterion</b> |     |     | 10 00 | SA-X |    | _   |     | FA-AX | SX- |    |     | -14 | NS a | 1 + 0 |    |     | FI-YS | 3/8 | = 1/6 |    |     | F1-Y5 | 3/8 | = 1/2 |    |
|------------|------------------|-----|-----|-------|------|----|-----|-----|-------|-----|----|-----|-----|------|-------|----|-----|-------|-----|-------|----|-----|-------|-----|-------|----|
| Terestal I | 1 0              | 00- | -10 | 0     | 10   | 20 | -20 | -10 | 0     | 10  | 20 | -20 | -10 | 0    | 10    | 20 | -20 | -10   | 0   | 10    | 20 | -20 | -10   | 0   | 10    | 20 |
| 1914191    | -                |     | 24  | -     | 2    |    |     |     | 1     |     |    | -   |     | •    | •     | •  |     |       | •   | •     | •  |     |       | •   | •     | •  |
|            | 8                |     |     | -     |      |    |     |     |       |     |    |     |     |      |       | •  |     |       |     |       | •  |     |       |     | •     | •  |
| \$A-508-1  | 12               |     |     |       |      |    |     |     | _     |     |    |     |     |      |       |    |     |       |     |       | 1  |     |       |     |       | 1  |
|            | 16               |     |     |       |      |    |     |     |       | _   |    | _   |     |      |       |    |     |       |     |       |    | T   |       |     |       | 1  |
|            | 20               |     |     |       |      |    |     |     | _     | _   |    | _   | -   |      |       |    |     |       |     |       |    | T   |       |     |       | 1  |
|            | 4                |     |     |       |      | _  |     |     |       | _   |    | •   | •   | •    | •     | •  | •   | •     | •   | •     | •  | •   |       | •   | •     | •  |
|            | 8                |     |     | _     |      | _  |     |     | _     |     |    |     |     | •    | •     | •  |     |       | •   | •     | •  | •   |       | •   | •     | •  |
| A-350-LF-5 | 12               |     |     | _     | _    | _  |     |     | _     | _   |    | -   | _   | -    | •     | •  |     |       |     | •     | •  |     |       | •   | •     | •  |
|            | 16               |     |     | _     |      |    | _   | _   | _     |     |    | -   |     |      |       | •  |     |       |     |       | •  |     | T     |     |       | •  |
|            | 20               | _   | _   |       |      |    | _   |     | _     | _   | _  |     | _   |      |       |    |     |       |     |       |    |     |       |     |       | •  |
|            | 4                |     |     |       |      | •  |     |     | -     | -   | •  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 80               |     |     |       |      |    | _   |     |       | _   |    | •   | •   | •    | •     | •  | •   | •     | •   | •     | •  | •   |       | •   | •     | •  |
| A-350-LF-3 | 12               |     |     | _     |      |    |     |     | _     | _   |    | •   | •   | •    | •     | •  |     |       | •   | •     | •  | •   |       | •   | •     | •  |
|            | 16               | _   | -   | _     |      |    | _   |     | _     |     | _  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 20               |     |     |       | _    |    |     |     |       | _   |    | •   | •   | •    | •     | •  | •   | •     | •   | •     |    | •   | •     | •   | •     | •  |
|            | 4                | _   | •   | •     | •    | •  |     | •   | •     | •   | •  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   |       | •   | •     | •  |
|            | 8                | _   |     | _     | •    | •  | _   |     | •     | •   | •  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   | •     | •   | •     | •  |
| SA-508-48  | 12               |     |     | _     |      | •  | -   | _   |       | •   | •  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 16               | _   | _   | _     | -    | -  | _   | -   | -     | •   | •  | •   | •   | •    | •     | •  | •   | •     | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 20               | _   |     | _     | _    | _  | -   | -   | -     | •   | •  | •   | •   | •    | •     | •  | •   | •     | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 4                | •   | •   | •     | •    | •  | •   | •   | •     | •   | •  | •   | •   | •    | •     | •  | •   |       | •   | •     | •  | •   |       | •   | •     | •  |
|            | 8                |     | •   | •     | •    | •  |     | •   | •     |     | •  | •   | •   | •    | •     | •  |     |       | •   | •     | •  | •   | •     | •   | •     | •  |
| SA-508-4A  | 12               | _   |     | •     | •    | •  | _   | •   | •     |     | •  | •   | •   | •    | •     |    | •   |       | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 16               | _   | _   | _     | •    | •  |     | _   | •     | •   | •  | •   | •   | •    | •     | •  |     | •     | •   | •     | •  | •   | •     | •   | •     | •  |
|            | 20               |     | _   | -     | -    | •  | -   | _   | •     | •   | •  | •   | •   | •    | •     | •  | •   | •     | •   | •     | •  | •   | •     | •   | •     | •  |

- K-2 -

ू **२**. - औ

er.

1

1

APPLICABLE FERRITIC STEELS FOR LIMIT STATE PROBARILITY < 10-3

್ಷ ಗಳು ಹಿಂದಿ ಕ್ರಿಂಗ್ 1

\*

e M 1.

9 <sub>3</sub>\$

.

| Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | terion |     |     | FA-EX | SA- |    |     | L.  | A-AX- | S  |    |     | Y-14 | 'S a/k | 0 + | -  |     | SX-1 | a / 8 = | 1/6 |    | F      | I-YS a | 1/2 = | 1/2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|-------|-----|----|-----|-----|-------|----|----|-----|------|--------|-----|----|-----|------|---------|-----|----|--------|--------|-------|-----|
| and the second se | 17     | -20 | -10 | 0     | 10  | 20 | -20 | -10 | 0     | 10 | 20 | -20 | -10  | 0      | 10  | 20 | -20 | -10  | 0       | 10  | 20 | -20 -1 | 0      | 10    | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  |     |      |         |     | -  | •      | -      | •     | •   |
| 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8      |     |     |       |     |    |     |     |       |    |    |     |      |        |     |    |     |      |         | -   |    | -      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  | 1   |      | 1       | -   | +  | -      | -      | +     | +   |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16     |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  |     |      | 1       | 1   | 1  |        | -      | +     | +   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20     |     |     |       |     |    |     |     |       |    |    |     |      |        |     | -  |     |      | 1       | +   | +  | +      | +      | +     | +   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  |     |      | 1       | -   | -  | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80     |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  |     |      |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |     |     |       |     |    |     |     |       | -  |    |     |      |        | •   |    |     |      | 1       |     |    | -      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16     |     |     |       |     |    |     |     |       |    |    |     |      |        |     |    | -   |      |         | -   |    | -      | -      | -     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20     |     |     |       |     |    |     |     |       |    |    |     |      |        | -   | -  |     |      |         | -   | -  | -      | -      | -     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      |     |     |       |     |    |     |     |       |    |    |     |      |        |     | -  |     |      |         | -   |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      |     |     |       |     |    |     |     |       |    |    |     |      |        |     | -  |     |      |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |     |     |       |     |    |     |     |       |    |    |     | •    | •      | •   | •  |     |      |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16     |     |     |       |     |    |     |     |       |    |    |     | •    | •      | •   |    |     | •    |         |     |    | •      | •      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20     |     |     |       |     |    |     |     |       |    |    |     |      |        | •   |    |     | •    |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      |     |     | •     | •   | •  |     |     | •     |    | •  |     |      |        |     |    |     |      | -       | -   |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      |     |     |       |     | •  |     |     |       |    | •  |     |      |        |     | 1  |     |      |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |     |     |       |     |    |     |     |       |    | •  |     |      | •      | •   |    |     | •    |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16     |     |     |       |     |    |     |     |       |    | •  |     |      | •      |     |    |     | •    |         | •   |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20     |     |     |       |     |    |     |     |       |    | •  | •   |      | •      | •   |    |     |      | •       |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      | •   | •   | •     | •   | •  |     |     | •     |    | •  |     |      |        | 1   | 1  | -   |      | 1       | -   | +  | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      |     |     | •     | •   | •  |     |     | •     | •  | •  |     |      |        |     | -  |     | •    |         |     |    | •      | •      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |     |     |       | •   | •  |     |     | •     |    | •  |     |      | •      | •   |    |     |      |         |     |    | •      | -      | •     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16     |     |     |       |     | •  |     |     | •     |    | •  |     |      | •      |     |    |     |      |         |     |    | •      | •      | •     | •   |
| 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20     |     |     |       |     |    |     |     | -     |    | •  |     |      | •      |     |    |     |      |         |     |    | •      | -      | •     | -   |

- K-3 -

n in Right di t

43

2

ះត្វា

\*

1

Ľ

APPLICABLE FERRITIC STEELS FOR LIMIT STATE PROBABILITY < 10<sup>-4</sup>

| 1/2      | 0 20      | • | •   | _        |    | -  | • | • | •          | •  | •  | • | • | •          | •  | •  | • | • | •         | •  | •  | • | • | •         | •  |   |
|----------|-----------|---|-----|----------|----|----|---|---|------------|----|----|---|---|------------|----|----|---|---|-----------|----|----|---|---|-----------|----|---|
| - 3/     | 1 0       |   |     |          |    | 1  |   |   |            | -  | -  |   |   |            |    |    |   |   |           |    |    |   |   |           |    | - |
| e SY-    | 0         |   |     | -        | -  | +  | - | - | -          | -  |    | - |   | -          | -  | -  | - | - | -         | -  | -  | - | - | 1         | -  |   |
| 13       | -1(       | • | _   |          | _  | -  | • | • | -          | _  | _  | • | • | •          | •  | •  | • | • | •         | •  | •  | • | • | •         | •  | - |
|          | -2(       | • |     |          | _  | _  | • | • | -          | _  | _  | • | • | •          | •  | •  | • | • | •         | •  | •  | • | • | •         | •  | - |
| 9        | 20        |   |     |          |    |    | _ |   | -          |    | •  |   | _ |            | -  | -  | - | _ |           | -  | •  |   | _ | _         | _  | - |
| = 1/     | 10        |   |     |          | _  | _  | _ | _ | _          |    | •  | _ | _ | _          | _  | _  | _ | _ | _         | -  | •  | - | - | -         | _  |   |
| 5 3/2    | 0         |   |     |          |    |    | _ | _ | 4          |    | •  | - | _ |            | _  |    |   |   | _         | -  | •  | - | _ | _         |    |   |
| FI-YS    | -10       |   |     |          |    |    |   |   |            |    | •  |   |   |            |    |    |   |   |           |    | •  |   |   |           |    |   |
|          | -20       |   |     |          |    |    |   |   |            |    | •  |   |   |            |    |    |   |   |           |    | •  |   |   |           |    |   |
|          | 20        |   |     |          |    |    |   |   | 1          |    |    |   |   | -          |    |    |   |   |           |    |    | 1 |   | 1         | 1  | - |
| 0 +      | 10        |   |     |          |    |    |   |   | 1          |    |    |   |   |            |    | 1  |   |   |           |    | 1  | 1 | 1 |           |    | 1 |
| S a/a    | 0         |   |     |          |    |    |   |   |            |    |    |   |   |            |    |    |   |   |           |    | 1  |   |   | 1         |    | - |
| 1-13     | -10       |   |     |          |    |    |   |   |            |    |    |   |   |            |    |    |   |   |           |    |    |   |   |           |    |   |
|          | -20       |   |     |          |    |    |   |   |            |    |    |   |   |            |    |    |   |   |           |    |    |   |   |           |    | Ī |
|          | 20        |   |     |          |    |    |   |   |            |    |    |   |   | -          |    |    | • | • |           |    |    | • | • | •         | •  | ľ |
| 5        | 10        |   |     |          |    |    |   |   |            |    |    |   |   |            |    |    |   |   |           |    |    |   |   |           |    | ľ |
| -AX-Y    | 0         |   |     |          |    |    |   |   |            |    |    |   |   | -          |    |    |   |   | -         |    |    |   |   | -         |    |   |
| FA       | 10        |   |     |          |    |    |   |   |            |    |    |   |   |            |    |    |   |   |           |    |    |   |   |           |    | t |
|          | - 02      | - | -   |          | -  |    |   | - | -          |    |    | - | - | -          |    |    |   |   | -         |    |    | - |   |           | -  |   |
|          |           | - | -   | -        | -  | -  | - | - | -          | -  | -  | - | - | -          | -  | -  | - | - | _         | -  | -  | - | - |           | -  | I |
|          | 12        | - |     | -        | -  | -  |   |   |            | -  | -  | - | - | -          |    | -  |   | - | -         |    | -  | - | - | -         |    | ł |
| EX-Y     | 1 1       | - | -   | -        | -  | -  | - | - |            |    | -  | - | - |            |    | -  | - |   | -         | -  | -  | - | - |           | -  | ł |
| FA.      | -         | - | -   | -        | -  | -  | - | - | -          |    | -  | - | - | -          | -  |    | - |   | -         | -  |    | • |   |           |    | t |
|          | -10       | - | -   | -        | -  | _  | _ | _ |            |    |    |   |   |            |    | -  |   |   | -         | _  |    | • |   | _         |    |   |
|          | I -20     | - | -   |          |    |    | _ | _ | _          | -  |    | - | _ | -          | _  | -  | - |   | -         | -  |    |   | - | -         |    | + |
| riterion | 8         | - | -00 | 12       | 16 | 20 | 4 | 8 | 12         | 16 | 20 | 4 | 8 | 12         | 16 | 20 | 4 | 8 | 12        | 16 | 20 | 4 | 8 | 12        | 16 |   |
| 1        | aterial [ |   |     | 5A-508-1 |    |    |   |   | A-350-LF-5 |    |    |   |   | 4-350-LF-3 |    |    |   |   | 5A-508-48 |    |    |   |   | 5A-508-4A |    | 1 |

. چيند ا **6**, 7,

2.35

APPLICABLE FERRITIC STEELS FOR LIMIT STATE PROBABILITY < 10-5

ક્રમ**ે** . "કે તે જે તે છે.

|          | 20     |   |   |         | 1  |    |   |   |            |    |    |   |   |           |    | •  |   |   |          | •  | •  |   |   |          | •  |    |
|----------|--------|---|---|---------|----|----|---|---|------------|----|----|---|---|-----------|----|----|---|---|----------|----|----|---|---|----------|----|----|
| = 1/2    | 10     |   |   |         |    |    |   |   |            |    |    |   |   |           | •  | •  |   |   |          | •  | •  |   | _ | -        | •  | •  |
| 3/8      | 0      |   |   |         |    |    |   |   |            |    |    |   |   |           | •  | •  |   |   | 1        | •  | •  | - | 1 | -        | •  | •  |
| FI-YS    | -10    |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | -20    |   | 1 |         | 1  |    |   | 1 |            |    |    |   |   |           |    | •  |   |   |          | •  | •  |   |   |          | •  |    |
| -        | 20     |   |   | 1       |    |    | 1 | 1 | 1          | 1  |    |   |   | 1         | 1  | 1  |   | 1 | 1        | 1  | 1  | 1 | 1 | 1        |    |    |
| - 1/6    | 10     | - | 1 | 1       |    | 1  | 1 | 1 | 1          | 1  | 1  | 1 |   | 1         | 1  |    | 1 |   | 1        | 1  |    |   | 1 |          |    | -  |
| 3/8      | 0      |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
| SY-1:    | -10    |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | -20    |   |   |         | 1  |    |   | 1 |            | 1  |    |   |   | 1         | 1  |    |   |   |          |    |    |   |   |          |    | Ĩ  |
|          | 20     | - |   | 1       | 1  | -  | - | - | 1          |    | 1  | 1 | - | 1         | 1  | 1  | 1 | 1 |          |    | 1  | 1 | 1 | 1        | 1  | -  |
| 0+       | 10     |   |   | -       |    | 1  |   |   |            |    | 1  |   | 1 |           | 1  | 1  | 1 | i | 1        | 1  | 1  | 1 | 1 | 1        | 1  | -  |
| S 2/2    | 0      |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
| FI-Y     | -10    |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | -20    |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | 20     |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
| 5        | 10     |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          | -  |    |   |   | 5        |    |    |
| -AX-Y    | 0      |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
| FA       | 01.    |   |   |         |    | 1  |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | 20     |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
|          | . 0    |   |   |         |    |    |   |   |            |    |    |   |   |           |    |    |   | - |          |    |    |   |   |          |    |    |
| S        | 0      | - |   |         |    |    |   |   |            |    |    |   |   |           |    |    | - |   |          |    |    |   |   |          |    |    |
| 1-EX-1   | 0      | - |   |         |    |    |   |   |            |    |    |   |   |           | -  |    |   |   |          | -  |    |   |   |          |    | -  |
| FI       | 10     |   |   | -       |    |    |   |   |            |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    | -  |
|          | 20 -   | - | - | -       |    | -  |   | - | -          |    |    |   |   |           |    |    |   |   |          |    |    |   |   |          |    |    |
| -        | 17     | - |   |         |    |    | - |   | -          |    |    |   |   |           |    |    |   | - |          |    |    |   |   |          |    | -  |
| Criterio | 0      | 4 | 8 | 12      | 16 | 20 | 4 | 8 | 12         | 16 | 20 | 4 | 8 | 12        | 16 | 20 | 4 | 8 | 12       | 16 | 20 | 4 | 8 | 12       | 16 | 00 |
|          | terial |   |   | A-508-1 |    |    |   |   | 1-350-LF-5 |    |    |   |   | -350-LF-3 |    |    |   |   | A-508-48 |    |    |   |   | A-508-4A |    |    |

- 11

APPLICABLE FERRITIC STEELS FOR LIMIT STATE PROBABILITY < 10<sup>-6</sup>

| 1          | Criterion | L   | -   | A-EX- | .YS |    | -   | u   | A-AX- | YS |    | -   | Y-13 | S a/£ | 0 + |    | ii. | -YS a | (£ = | 1/6 |    | FI- | IS al | 1 Z | 1/2 |    |
|------------|-----------|-----|-----|-------|-----|----|-----|-----|-------|----|----|-----|------|-------|-----|----|-----|-------|------|-----|----|-----|-------|-----|-----|----|
| Waterial   | 1         | -20 | -10 | 0     | 10  | 20 | -20 | -10 | 0     | 10 | 20 | -21 | -10  | 0     | 10  | 20 | -20 | -10   | 0    | 10  | 20 | -20 | -10   | 0   | 10  | 26 |
|            |           | L   |     | L     | -   |    |     | -   | -     | -  | -  | -   | -    | -     |     |    |     |       | _    |     |    |     |       | -   |     |    |
|            | *         | 1   | 1   | -     | -   | -  | -   | +   | +     | +  | -  | -   | +    | -     |     |    |     |       | L    |     |    |     |       |     |     |    |
|            | 8         | -   | -   | -     | -   | -  | +   | +   | +     | +  | +  | +   | +    | +     | -   | 1  | 1   | -     | +    | 1   |    |     |       | Ļ   | +   | +  |
| -A-508-1   | 12        |     |     |       |     |    |     | _   | -     | _  | -  | -   | -    | -     |     | _  |     | -     | -    |     |    |     | 4     | +   | +   | +  |
|            | 16        |     |     |       |     |    |     |     |       | _  |    | -   | _    | _     |     |    |     |       | -    |     |    |     | _     | -   | +   | +  |
|            | 20        |     |     |       |     |    |     |     |       | _  |    |     |      | _     |     |    |     |       | -    |     |    |     |       | -   | +   | -  |
|            | 4         |     |     |       |     | _  |     |     |       | _  | _  | _   |      | _     |     |    |     |       | -    |     |    |     | _     | -   | -   | +  |
|            | 8         |     |     |       |     |    |     | -   | -     | _  |    | -   |      | -     |     |    |     |       | -    |     |    |     |       | -   | -   | +  |
| A-350-LF-5 | 12        |     | -   |       |     |    |     |     |       |    | _  | -   |      | -     |     |    |     | -     | -    |     |    |     |       | +   | +   | +  |
|            | 16        |     |     |       |     |    |     |     | _     | _  | -  | -   | -    | -     |     |    |     | _     | -    |     |    |     | -     | 4   | +   | +  |
|            | 20        |     |     | -     |     | _  |     |     | -     | -  | -  | -   | -    | -     |     |    |     |       | -    |     |    |     | 1     | +   | +   | +  |
|            | 4         |     |     |       |     |    |     | _   |       | -  | _  | -   | -    | -     |     |    |     | -     | -    |     |    |     |       | +   | +   | +  |
|            | 8         |     |     |       |     |    |     | -   | -     |    | -  | -   | -    | -     |     |    |     |       | -    |     |    |     | 1     | +   | +   | +  |
| A-350-LF-3 | 12        |     |     |       | _   |    |     | -   | -     | -  | -  | -   | -    | -     |     | -  |     |       | -    | -   |    |     |       | +   | +   | +  |
|            | 16        |     |     |       |     |    | _   | -   | -     | -  | -  | -   | -    | -     |     |    |     | -     | -    |     |    |     | 1     | +   | +   | +  |
|            | 20        |     |     |       |     |    |     |     | -     | -  | -  | -   | -    | -     |     |    |     | -     | -    | -   |    |     | _     | +   | +   | +  |
|            | 4         |     |     |       |     | •  |     | _   | _     | -  | •  | -   | -    | -     |     |    |     |       | -    | -   |    |     | -     | -   | +   | +  |
|            | 80        |     |     |       |     |    |     | _   | -     |    | -  | -   | -    | -     |     |    |     |       | -    | -   |    |     | -     | +   | +   | +  |
| SA-508-48  | 12        |     |     |       | -   |    |     | _   | -     | -  | _  | -   | -    | -     |     |    |     |       | -    | -   |    |     | _     | +   | +   | +  |
|            | 16        |     |     |       |     |    |     | _   | -     | -  | -  | -   | -    | -     |     |    | -   |       | -    | -   |    |     | _     | -+  | +   | +  |
|            | 20        |     |     |       |     |    |     | -   | -     | -  | -  | -   |      | -     |     |    |     | -     | -    | -   |    |     |       | +   | +   | +  |
|            | 4         |     |     | •     | •   | •  |     | -   | •     | •  | •  | -   | -    | -     |     | -  | -   | -     | -    | -   | -  |     | 4     | +   | +   | +  |
|            | 8         |     |     | _     | -   | •  | -   | -   | -     | •  | •  | -   | -    | -     | -   | -  |     |       | -    | -   | -  |     | 1     | +   | +   | +  |
| SA-508-4A  | 12        |     |     | _     | -   | -  | _   | -   | -     | -  | •  | +   | -    | -     |     |    |     |       | +    | -   |    |     | 1     | +   | +   | +  |
|            | 16        |     |     |       | _   | -  | _   | -   | -     | +  | •  | +   | -    | -     |     |    | -   | _     | +    | -   | -  |     | 4     | +   | +   | +  |
|            | 20        |     | _   |       | _   | _  | _   | -   | -     | -  | •  | _   |      |       |     |    | _   | _     |      | _   | _  |     | _     | _   | -   | -  |

- K-6 -

| NC CONV 335 U.S. NUCLEAR REGULATORY COMMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NUREG/CR-3826                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIBLIOGRAPHIC DATA SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCPL-53538                                                                                                                                                                                                                                                                                                                           |
| TITLE AND SUBTITLE (Add Volume No. it appropriate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 ILeave D.anx                                                                                                                                                                                                                                                                                                                       |
| Recommendations for Protecting Against Failure by Brit<br>Fracture in Ferritic Steel Shipping Containers Greater<br>Four Inches Thick                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Than 3 RECIPIENTS ACCESSION NO                                                                                                                                                                                                                                                                                                       |
| AUTHORISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S DATE PEPORT COMPLETED                                                                                                                                                                                                                                                                                                              |
| Martin W. Schwartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MONTA                                                                                                                                                                                                                                                                                                                                |
| REBEORMING ORGANIZATION NAME AND MAILING ADDRESS Harlinda Zin C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | April 1984                                                                                                                                                                                                                                                                                                                           |
| Lawrence Livermore National Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MINTH YEAR                                                                                                                                                                                                                                                                                                                           |
| Post Office Box 808 L-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | July 1984                                                                                                                                                                                                                                                                                                                            |
| Livermore, Californi 94550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 (Leave biank)                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 (Leave blank)                                                                                                                                                                                                                                                                                                                      |
| 2 SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Code I                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 PROJECT TASK/WORK UNIT NO                                                                                                                                                                                                                                                                                                         |
| Division of Engineering Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 CONTRACT NO                                                                                                                                                                                                                                                                                                                       |
| US Nuclear Regulatory Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |
| Washington, D.C. 20555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A0374                                                                                                                                                                                                                                                                                                                                |
| 3. TYPE OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOD COVERED (Inclusive dates)                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |
| Technical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second                                                                                                                                                                                                                     |
| 5. SUPPLEMENTARY NOTES<br>6. ABSTRACT (200 words or less)<br>Various criteria for protecting against brittle to<br>containers made from ferritic steel forgings greater to<br>evaluated. A fracture initiation criterion based upon<br>allowable flaw sizes specified in Section XI of the AS                                                                                                                                                                                                                                                                                                            | 14 (Leave D(ank)<br>fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This                                                                                                                                                                                      |
| 5. SUPPLEMENTARY NOTES<br>6. ABSTRACT (200 words or less)<br>Various criteria for protecting against brittle to<br>containers made from ferritic steel forgings greater to<br>evaluated. A fracture initiation criterion based upon<br>allowable flaw sizes specified in Section VI of the At<br>recommendation is based upon a value impact evaluation<br>upon industry and the risk of brittle fracture.                                                                                                                                                                                               | 14 (Leave D(ank)<br>fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This<br>n taking into account its effect                                                                                                                                                  |
| <ul> <li>5. SUPPLEMENTARY NOTES</li> <li>6. ABSTRACT (200 words or (ess))</li> <li>Various criteria for protecting against brittle scontainers made from ferritic steel forgings creater in evaluated. A fracture initiation criterion based upon allowable flaw sizes specified in Section 4 of the Astrocommendation is based upon a value impact evaluation upon industry and the risk of brittle fracture.</li> <li>7. KEY WORDS AND DOCUMENT ANALYSIS 172.</li> <li>ferritic steel shipping containers</li> </ul>                                                                                   | fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This<br>n taking into account its effect                                                                                                                                                                      |
| <ul> <li>5. SUPPLEMENTARY NOTES</li> <li>6. ABSTRACT (200 words or less)</li> <li>Various criteria for protecting against brittle to containers made from ferritic steel forgings greater is evaluated. A fracture initiation criterion has dupon allowable flaw sizes specified in Section 14 of the At recommendation is based upon a value impact evaluation upon industry and the risk of brittle fracture.</li> <li>17. KEY WORDS AND DOCUMENT ANALYSIS 17a</li> <li>ferritic steel shipping containers</li> <li>17. DENTIFIERS/OPEN ENDED TERMS</li> </ul>                                         | It (Leave D(ank)<br>fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This<br>n taking into account its effect                                                                                                                                                  |
| <ul> <li>5. SUPPLEMENTARY NOTES</li> <li>6. ABSTRACT (200 words or less)</li> <li>Various criteria for protecting against brittle containers made from ferritic steel forgings greater i evaluated. A fracture initiation criterion hased upon allowable flaw sizes specified in Section 14 of the Atrecommendation is based upon a value impact evaluation upon industry and the risk of brittle fracture.</li> <li>7. KEY WORDS AND DOCUMENT ANALYSIS 17.</li> <li>ferritic steel shipping containers</li> <li>7b. IOENTIFIERS/OPEN ENDED TERMS</li> <li>8. AVAILABILITY STATEMENT</li> </ul>          | 14 (Leave D(ank)<br>fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This<br>in taking into account its effect<br>taking into account its effect<br>DESCRIPTORS                                                                                                |
| <ul> <li>5. SUPPLEMENTARY NOTES</li> <li>6. ABSTRACT (200 words or less)</li> <li>Various criteria for protecting against brittle containers made from ferritic steel forgings greater i evaluated. A fracture initiation criterion based upon allowable flaw sizes specified in Section A of the A: recommendation is based upon a value impact evaluation upon industry and the risk of brittle fracture.</li> <li>7. KEY WORDS AND DOCUMENT ANALYSIS 17a</li> <li>ferritic steel shipping containers</li> <li>7b. IDENTIFIERS/OPEN ENDED TERMS</li> <li>8 AVAILABILITY STATEMENT Unlimited</li> </ul> | 14 (Leave Diank)<br>fracture in spent-fuel shipping<br>than four inches thick are<br>n yield stress levels and<br>SME Code is recommended. This<br>in taking into account its effect<br>DESTRIPTORS<br>DESTRIPTORS<br>19 SECURITY CLASS (This report)<br>Unclassified<br>20 SECURITY CLASS (This report)<br>21 NO OF PA.<br>22 PRICE |

L

ist.

.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

> > 2

-

FOURTH-CLASS MAIL POSTAGE & FEES PAID USNRC WASH D.C. PERMIT No. <u>G.67</u>

244

٩.

.

120555078877 1 1AN US NRC ACM-DIV OF TIDC POLICY & PUB MGI RR-PDR NUREG W-501 WASHINGTON DC 20555