Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Future Plant Designs Subcommittee
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, February 20, 2020

Work Order No.: NRC-0803

Pages 1-223

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	FUTURE PLANT DESIGNS SUBCOMMITTEE
8	+ + + +
9	THURSDAY
10	FEBRUARY 20, 2020
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2D10, 11545 Rockville Pike, at 1:00 p.m., Dennis
17	Bley, Chair, presiding.
18	
19	COMMITTEE MEMBERS:
20	DENNIS BLEY, Chair
21	RONALD G. BALLINGER, Member
22	CHARLES H. BROWN, JR., Member
23	VESNA B. DIMITRIJEVIC, Member
24	WALTER L. KIRCHNER, Member
25	JOSE MARCH-LEUBA, Member
l	I

		2
1	DAVID PETTI, Member	
2	JOY L. REMPE, Member	
3	PETER RICCARDELLA, Member	
4	MATTHEW W. SUNSERI, Member	
5		
6	ACRS CONSULTANTS:	
7	MICHAEL L. CORRADINI	
8	STEPHEN SCHULTZ	
9		
10	DESIGNATED FEDERAL OFFICIAL:	
11	DEREK WIDMAYER	
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I	1	

	4
1	PROCEEDINGS
2	1:01 p.m.
3	CHAIR BLEY: Good afternoon. The meeting
4	will now come to order. This is a meeting of the
5	Advisory Committee on Reactor Safeguards, excuse me,
6	Subcommittee on Future Plant Designs. I'm Dennis
7	Bley, Chairman of the Subcommittee.
8	ACRS members in attendance are Joy Rempe,
9	Ron Ballinger, I think Charlie Brown will be back with
10	us, Walt Kirchner, Dave Petti is here, Vesna will be
11	back with us, Vesna Dimitrijevic. And I think Jose
12	March-Leuba will be back with us.
13	I forgot Matt. I've got him written on
14	the side here, Matt Sunseri, and Pete Riccardella, and
15	our consultant, Steve Schultz, and possibly our
16	consultant, Mike Corradini. I'm not sure if he'll be
17	here or not. Derek Widmayer of the ACRS staff is the
18	designated federal official for this meeting.
19	The purpose of today's meeting is to
20	discuss the draft Regulatory Guide 1364, Volcanic
21	Hazards Assessment for Proposed New and Advanced
22	Nuclear Power Reactor Sites.
23	As the NRC staff was preparing to review
24	and regulate this new generation of non-lightwater
25	reactors, it appeared that one of the developers might
I	I

(202) 234-4433

5 1 site a reactor in an area of potential volcanic 2 activity. While the staff has conducted reviews of 3 4 volcanic hazards for several existing facilities, 5 including one nuclear power plant, it has not issued guidance on considering these hazards using a risk-6 7 informed methodology. That's what this req quide is 8 proposing. The subcommittee will gather information, 9 analyze relevant issues and facts, and formulate 10 proposed positions and actions as appropriate. 11 This matter may be presented to the subcommittee again 12 after the public comment period if decided by the 13 14 subcommittee consistent with the committee's reviews 15 of regulatory guides. I lost my place. The ACRS was established 16 17 by statute and is governed by the Federal Advisory Committee Act, FACA. The NRC implements FACA in 18 19 accordance with its regulations found in Title 10, the Code of Federal Regulations, Part 7. 20 As a FACA committee, we can only speak 21 through our published letter reports. 22 We hold meetings to gather information and perform preparatory 23 24 work that will support our deliberations at a full committee meeting. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The rules for participation in all ACRS meetings, including today's, were announced in the Federal Register on June 13th, 2019. The ACRS section of the US NRC public website provides our charter, bylaws, agendas, letter reports, and transcripts of full and subcommittee meetings, including the slides presented there.

The meeting notice and agenda for this 8 9 meeting were posted there. As stated in the Federal 10 Register notice, and in the in a public meeting notice posted to the website, members of the public who 11 12 desire to provide written or oral input to the should 13 subcommittee may do SO and contact the 14 designated federal official five days prior to the 15 meeting.

16 Today's meeting is open to public 17 attendance, and we have received no written statements or requests to make an oral statement. We also set 18 19 aside ten minutes in the agenda for spontaneous comments from members of the -- of the public who are 20 attending our meetings or listening to them. 21

Today's meeting is being held with a telephone bridge line allowing participation of members of the public over the phone. a transcript of today's meeting is being kept. Participants in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

6

7 1 meeting should use the microphones located throughout the room and speak with sufficient clarity and volume 2 3 that they may be readily heard when they're SO 4 addressing the subcommittee. 5 At this time, I ask that the attendees in the room please silence all their cell phones and 6 7 other noise makers. And I remind speakers at the 8 front table to turn on the microphone, the little 9 button nearest you will turn it on, when they're 10 speaking and to turn it off when you're not speaking. But since we only have one presenter, it can stay on 11 all the time. 12 We will now proceed with the meeting, and 13 14 I call on Jenise Thompson of NRR to begin the 15 presentation. Jenise? 16 17 MS. THOMPSON: Thank you. Good afternoon, my name is Jenise Thompson. I'm a geologist in the 18 19 External Hazards Center of Expertise in NRR. And I'm here today to present to you the details contained in 20

draft Guide 1364, the Volcanic Hazards Assessment for

Proposed New and Advanced Nuclear Power Reactor Sites.

working group that met to determine the regulatory

need, decide on an optimal path forward, and then

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

This draft guide was the result of a staff

(202) 234-4433

21

22

23

24

25

	8
1	finally to produce the technical content and process
2	that is in the draft guide that is before you today.
3	As stated in the title, this draft guide
4	applies to new and advance reactor sites or applicants
5	applying for a NRC license under their applicable
6	regulation.
7	CHAIR BLEY: The guide makes a specific
8	point of doing a guide for reactors, but I don't see
9	anything in the guide that wouldn't apply to other
10	facilities that might, had to do a volcanic
11	assessment.
12	MS. THOMPSON: And that is correct. So
13	there's nothing in the guide that would preclude a
14	perspective applicant for another type of application
15	to use this Volcanic Hazards Analysis approach for
16	another licensing activity or another application.
17	But for the time being, the staff and the working
18	group focused just on the reactor, because that was
19	the near term need.
20	MEMBER REMPE: So along those lines, I
21	know it's just at the end of the draft guide, it talks
22	about that just a few miles away, with alternative
23	sites, you might see a considerable difference in the
24	hazard associated or posed by volcanoes. So along
25	those lines, if they were to site a new or advanced
	I

(202) 234-4433

	9
1	reactor near another reactor on a site that might not
2	be, well, anyway if they were to do that along another
3	site, do they have to consider co-located hazards in
4	this draft guide? Because I didn't see that notice.
5	And so it's like even though this new site
6	that's on a site, or this new plant that's on a site
7	might not pose a hazard, the volcano might hit another
8	facility, and that could cause a hazard. And has that
9	been considered in the approach or will it be?
10	MS. THOMPSON: I'm actually going to toss
11	that over to our volcanic hazards expert here, Britt.
12	MEMBER REMPE: Does the question make
13	sense, what I'm trying to ask, first of all? Because
14	I didn't say it as well as I could have.
15	MS. THOMPSON: Are you getting at, like,
16	a back fit, would a co-located nearby site have to
17	reassess their hazard based on what a new site would
18	have to do?
19	MEMBER REMPE: No, I'm putting a new
20	reactor on a site with other facilities. And as part
21	of that assessment, the volcanic flows would maybe go
22	by the co-located facilities where you might have a
23	hazard. So in addition to considering the new
24	location with the new facility, do they not need to do
25	sort of a back fit, but it's because it's co-located,
ļ	I

(202) 234-4433

(202) 234-4433

	10
1	is what I'm getting to.
2	MS. THOMPSON: So the intention of the
3	guide is not to impose a back fit on any of the
4	existing facilities. Because the draft guide that we
5	have developed we believe is consistent with the prior
6	licensing actions that the NRC staff have taken for
7	the current operating facilities. So I don't know if
8	anything
9	MEMBER DIMITRIJEVIC: Our concern is that
10	this can create additional hazard. Let's say that you
11	have a chemical factory with the lava, we can create
12	debris, can create some additional hazard.
13	MS. THOMPSON: Oh, so you're talking about
14	not just an NRC facility but
15	MEMBER DIMITRIJEVIC: Right.
16	MS. THOMPSON: any other facility
17	MEMBER DIMITRIJEVIC: Which can create
18	additional concern.
19	MS. THOMPSON: located near the
20	proposed site.
21	MEMBER REMPE: That's true, it might not
22	just be a reactor. But my thought process, I'm
23	thinking of a large site with a lot of facilities.
24	And you might want to put a new facility, as indicated
25	in your upcoming slides, on that large site. And
I	

(202) 234-4433

	11
1	there's a lot of other facilities there.
2	And, okay, so maybe you need to consider
3	those co-located facilities and the hazard posed by
4	the volcano for those other facilities in addition to
5	the new facility location.
6	I can get more explicit if we want to
7	talk, Idaho, for example, but there are a lot of other
8	facilities out there. And so maybe where the new
9	facility is is not so bad if you have a boundary. But
10	there's other facilities where the lava might flow and
11	could cause a problem.
12	MEMBER BROWN: But you're implying then,
13	that because you put this new facility there, the
14	other ones are going to have to back fit themselves
15	and
16	MEMBER REMPE: No. I'm saying with the
17	new facility they need to consider more than the lava
18	flows from that facility. There might be other co-
19	located hazards that they need to consider. And so
20	it's not really a back fit for the existing
21	facilities, but you need to consider where the lava
22	CHAIR BLEY: I think I understand what
23	you're
24	(Simultaneous speaking.)
25	CHAIR BLEY: Let me try it a little
I	I

(202) 234-4433

	12
1	different way?
2	MEMBER REMPE: Okay.
3	CHAIR BLEY: Because I thought at first it
4	was thinking of a back fit. But if there's a hazard
5	nearby that could affect the new reactor that could be
6	activated by the volcano, then that knock-on effect
7	ought to be considered.
8	MEMBER BROWN: Lava stream effect, in
9	other words.
10	MEMBER REMPE: Yes. And I don't see that
11	in the guide. But because of the way this discussion
12	was going, I thought I'd bring it up now.
13	DR. CORRADINI: Well, particularly if it's
14	regulated or had been licensed by a different group.
15	MEMBER REMPE: Yes.
16	MR. MARSHALL: If I can, this is Jane
17	Marshall, NRR Deputy Director of Division of
18	Engineering and External Hazards. Nearby facilities
19	are considered in the EIS development, so they are
20	considered. We'll take it back and see if we can put
21	a note somewhere in the reg guide to flag your
22	particular concern. But nearby facilities, whether
23	they're chemical plants or other nuclear sites, are
24	considered as part of the EIS.
25	CHAIR BLEY: Yes. They are but they
l	1

(202) 234-4433

	13
1	probably weren't, well, it's interesting where it
2	shows up. Because if the volcanic activity can affect
3	them, and they in turn can affect the plant, other
4	sorts of things fall into that category that would be
5	picked up. So it kind of means when they do that
6	analysis they need to have this in mind as well. I
7	don't know where that
8	MEMBER REMPE: An environmental impact
9	statement
10	MEMBER KIRCHNER: More specifically
11	MEMBER REMPE: may not address volcanic
12	hazards.
13	MEMBER KIRCHNER: for a while there was
14	consideration of high temperature reactors for
15	hydrogen production.
16	CHAIR BLEY: Yes, there was.
17	MEMBER KIRCHNER: And that would present
18	an interesting combination from an external hazards
19	standpoint.
20	MEMBER PETTI: Because I think the
21	question really is how nearby is nearby? The Idaho
22	site is quite large. If they wanted to site 40 miles
23	from their reactor, that doesn't sound nearby to me.
24	CHAIR BLEY: Well, you're going to hear
25	more about how far away is nearby.
	I

(202) 234-4433

	14
1	MEMBER PETTI: Yes, right.
2	MEMBER BROWN: And I'm still trying to
3	understand Joy's comment. In other words, I put a new
4	reactor in. This is a lot larger site with other
5	facilities on the site.
6	DR. CORRADINI: You want to get specific?
7	I know what she's going at.
8	MEMBER BROWN: Well, but her comment was
9	other volcanic hazards. She just made that statement.
10	MEMBER REMPE: A volcano comes by, it hits
11	the new reactor, okay. And also, maybe it misses the
12	new reactor, because it's up high. Oh, I'm sorry, I
13	didn't have my mic on. Maybe the new reactor site is
14	up high. But the volcanic flow goes to the site, hits
15	another facility.
16	MEMBER BROWN: You're talking about it
17	becomes now a hazard for the reactor plant because it
18	wasn't before because of its distance. But now,
19	because of the volcano, and whatever it does to it,
20	now it becomes a hazard to the new one.
21	MEMBER REMPE: To the new facility.
22	MEMBER BROWN: That's what I was trying to
23	get at, what she was driving at.
24	MEMBER REMPE: Sorry, I wasn't very clear
25	on what I asked.
ļ	1

(202) 234-4433

	15
1	(Simultaneous speaking.)
2	MEMBER REMPE: But I think the discussions
3	made my point clear.
4	MS. THOMPSON: Yes, and I've made a note
5	to look at that, as you called it, the knock on, you
6	know, kind of that domino effect of hazards. So I'll
7	make a note and take that back to the working group.
8	MEMBER REMPE: Thank you.
9	MS. THOMPSON: You're welcome. So today,
10	the presentation will give you a background of how the
11	staff assessed the regulatory need and determined that
12	developing a reg guide was the optimal path forward.
13	This was accomplished through the performance of a
14	regulatory analysis which I will share with you.
15	I will then provide you an overview of
16	volcanic hazards and some of the unique demands that
17	they may place on a nuclear power reactor. I will
18	then discuss the proposed approach in the draft guide
19	to perform the Volcanic Hazards Analysis or VHA.
20	I will discuss the harmonization of this
21	draft guide with the existing international guidance
22	document that is available with respect to volcanic
23	hazards. And then I'll share with you our next steps
24	and timeline for completion.
25	CHAIR BLEY: I hope we can pronounce that
I	1

(202) 234-4433

	16
1	acronym?
2	MEMBER BROWN: Which one?
3	CHAIR BLEY: VHA, ha, ha, ha.
4	MS. THOMPSON: So the staff working group
5	consists of staff.
6	MEMBER BROWN: Could I ask you one more
7	before you
8	MS. THOMPSON: Of course.
9	MEMBER BROWN: Obviously, we've been
10	building plants since the '60s.
11	DR. CORRADINI: Not long enough.
12	MEMBER BROWN: Well, we'll debate that,
13	obviously. At least two of them were being built.
14	And this is a new reg guide, and it doesn't sound like
15	anybody worried about volcanos for the last 60 years.
16	CHAIR BLEY: You weren't listening when we
17	oh, you weren't here when we
18	MEMBER BROWN: I wasn't here.
19	CHAIR BLEY: Ha, ha, ha.
20	MEMBER BROWN: I was in the
21	CHAIR BLEY: Are you going to talk about
22	that?
23	MS. THOMPSON: I am. It's going to come
24	up.
25	MEMBER BROWN: About why we need one now.
I	1

	17
1	MS. THOMPSON: Yes. So I will
2	(Simultaneous speaking.)
3	MS. THOMPSON: in just a few slides, I
4	will discuss why the working group made the decision
5	to assess the regulatory need and decide whether or
6	not action needed to be taken. I will give you a
7	summary of the
8	MEMBER BROWN: We'll get to background in
9	a little
10	MS. THOMPSON: We'll get there, yes.
11	MEMBER BROWN: Why we're doing a new
12	regulation.
13	MS. THOMPSON: I think it's on the next
14	slide actually, they why.
15	MEMBER KIRCHNER: Jenise, just along those
16	lines, since you already did it, actually, the NRC for
17	the Columbia plant, so will this be in the spirit of
18	other actions that the Agency is taking, technology
19	neutral?
20	Where I'm going with this is I don't know
21	why you're labeling it for advanced nuclear power
22	reactor sites.
23	MS. THOMPSON: That was the discussion
24	that the working group went back and forth on for a
25	fair amount of time, discussing whether the draft
ļ	1

(202) 234-4433

	18
1	guide should apply to any nuclear facility or just
2	focus on reactors for the time being.
3	MEMBER KIRCHNER: No, I'm keying on the
4	word advanced.
5	MS. THOMPSON: Advanced.
6	MEMBER KIRCHNER: Because I would think
7	this is a perfect candidate for technology neutral
8	regulation, not something that just gets a carve out
9	for new advanced plants. So I'm objecting to the
10	title.
11	MS. THOMPSON: You're objecting to
12	MEMBER KIRCHNER: But I've looked through
13	it. I didn't see anything, in my opinion, that made
14	it specific for advanced reactors.
15	DR. CORRADINI: If a new light water
16	reactor were to appear somewhere in the zone of
17	interest, does this apply? That's another way of
18	asking the question.
19	MS. THOMPSON: Yes. Because it would be
20	considered a new reactor. We specifically included
21	advanced reactors, because in some discussions saying
22	a new reactor seems to imply a light water reactor.
23	So new and advanced we felt adequately captured any of
24	the potential applicants for a Part 50 or Part 52
25	license that we may anticipate in the future.
ļ	I

(202) 234-4433

	19
1	MEMBER KIRCHNER: Yes. I just would seem
2	to me that I'm quibbling on the margin
3	MS. THOMPSON: Okay.
4	MEMBER KIRCHNER: if you'll bear with
5	me. But I would just strike
6	MS. THOMPSON: Strike advanced?
7	MEMBER KIRCHNER: new and advanced.
8	It's new sites that you're really
9	MS. THOMPSON: Correct.
10	MEMBER KIRCHNER: thinking about, not
11	the reactor technology. It's for reactors, obviously.
12	CHAIR BLEY: Well, even that, you guys are
13	convincing me we ought to wait until everybody's back
14	before we start a session.
15	(Laughter.)
16	CHAIR BLEY: This could apply to any
17	nuclear facility.
18	MEMBER KIRCHNER: Yes, that's what I was
19	thinking.
20	CHAIR BLEY: Could, they've written it to
21	apply to reactors.
22	MEMBER KIRCHNER: Yes, but example, it
23	should work for a fuel fabrication facility.
24	MS. THOMPSON: Correct.
25	MEMBER KIRCHNER: It could work for a
	1

```
(202) 234-4433
```

	20
1	medical isotope facility.
2	MS. THOMPSON: Yes.
3	MEMBER KIRCHNER: So again, that's just a
4	top level comment.
5	MS. THOMPSON: And the working group
6	actually had many conversations that sounded just like
7	this about whether we should include this to include
8	everything, especially because that IAEA Guide that I
9	will discuss later is designed for the full spectrum
10	of nuclear facilities. So that was something that the
11	working group did consider.
12	DR. CORRADINI: So let me ask now, a
13	quick, oh, I'm sorry.
14	MEMBER DIMITRIJEVIC: Sure, you started so
15	
16	DR. CORRADINI: No, no, you first.
17	MEMBER DIMITRIJEVIC: Oh, ladies, all
18	right. Jenise, I'm sort of curious about the
19	structure of your team. Is it mostly geologists, have
20	you got a PRA expert, the seismic content, or what
21	MS. THOMPSON: That's the next thing I was
22	going to get to.
23	MEMBER DIMITRIJEVIC: Oh, okay. All
24	right.
25	DR. CORRADINI: So my question is, is
I	

	21
1	there any other technology that has to worry about
2	volcanoes?
3	MS. THOMPSON: By technology, that's
4	regulated by the
5	DR. CORRADINI: Any sort of manmade
6	technology in the United States that has to worry
7	about volcanoes other than nuclear?
8	MS. THOMPSON: I would say that any
9	facility sited near a place where volcanic hazards may
10	impact your facility, they should be considered. I
11	think a great example is a new high school built in
12	Hawaii. I think that should consider
13	DR. CORRADINI: But I'm asking, I know
14	what should be, I'm asking are they? I don't think
15	chemical facilities are.
16	MS. THOMPSON: I would have to look that
17	up unless, Britt, do you, this is Dr. Brittain Hill.
18	He's the consultant to the staff.
19	DR. HILL: Brittain Hill, NRC consultant.
20	There are a number of facilities around the United
21	States that take into account the potential for
22	volcanic hazards. Jenise was mentioning certainly in
23	Hawaii, a geothermal power plant is located in the
24	East Rift, has active lava flow mitigation to it.
25	Around Mount Rainier there is debris flow monitoring,
I	I

(202) 234-4433

	22
1	debris flow remediation all around the suburbs east of
2	the Olympic Sound, Puget Sound.
3	DR. CORRADINI: Is this
4	DR. HILL: Many
5	DR. CORRADINI: state regulated or is
6	it federal?
7	DR. HILL: facilities though are not
8	built in areas of potentially active volcanism.
9	DR. CORRADINI: Okay.
10	MEMBER REMPE: But I think Mike's question
11	was different. Does another agency require those
12	facilities to consider, does the EPA require it, does
13	the state require that they consider volcanic
14	activity?
15	DR. CORRADINI: I understand it might be
16	prudent, but I'm just trying to decide is it a federal
17	mandate, is it a state mandate, is it, I was going to
18	use the word arbitrary, but that's not the word I'm
19	looking for.
20	PARTICIPANT: Local.
21	DR. CORRADINI: Local, thank you very
22	much, a local requirement. That's where I was going.
23	Because I was going to think of chemical plants. But
24	I see some of your examples. But are those examples
25	coming out because it's a federal requirement? Or is
I	

(202) 234-4433

	23
1	it a state requirement? Or is it a locale?
2	DR. HILL: I'm not aware of an overarching
3	federal requirement to explicitly address volcanic
4	hazards in planning.
5	DR. CORRADINI: I didn't think so.
6	DR. HILL: That usually is left at the
7	state level.
8	DR. CORRADINI: Okay.
9	DR. HILL: I know there is guidance at the
10	state level in, for example, Oregon, about potential
11	volcanic hazards. But I'm not aware if it has any
12	statutory authority behind it.
13	DR. CORRADINI: Okay. All right, thank
14	you.
15	MEMBER DIMITRIJEVIC: Well, this could be,
16	I mean, those questions could be really relevant when
17	we are discussing mitigating measures to divert the
18	lava. Because you cannot just run a mitigating
19	measure to build these lava diverters. You have to
20	watch out where you're diverting them if there is a
21	state regulation of it.
22	MS. THOMPSON: Yes. So to get back to
23	your question about the composition of the working
24	group, the working group is composed of numerous
25	technical and project management staff from NMSS and
I	I

(202) 234-4433

	24
1	from NRR.
2	Within NRR, the staff on the working group
3	come from the Divisions of New and Renewed Licenses
4	from Advanced Reactors and Non-power Production and
5	Utilization Facilities, and the Division of
6	Engineering and External Hazards.
7	We also have research involved as the
8	project management support for the draft guide and, as
9	I previously mentioned, we have contracted with the
10	Center for Nuclear Waste Regulatory Analyses to obtain
11	the consultation services of Dr. Hill here as an
12	expert volcanologist consulting the staff.
13	MEMBER DIMITRIJEVIC: Do you have a PRA
14	expert?
15	MS. THOMPSON: We do not have a PRA expert
16	on the working group.
17	So I think there was another question of
18	why did we pursue this action now. Oh, okay, sorry,
19	two different screens showing me two different things.
20	So the working group was formed based in
21	response to several factors. Most notably was that
22	recently Congress funded the Department of Energy
23	through the Nuclear Energy Innovation and Capabilities
24	Act of 2017 to develop advanced reactor projects at
25	the National Laboratory sites.
I	1

(202) 234-4433

	25
1	The Idaho National Laboratory site was
2	selected by the Department of Energy for the home of
3	the National Reactor Innovation Center which has
4	recently opened and was funded in this fiscal year.
5	DOE is also authorized, under the Atomic Energy Act,
6	to build and operate nuclear reactors which the NRC
7	has the licensing authority over.
8	DR. CORRADINI: If I might just ask.
9	MS. THOMPSON: Okay.
10	DR. CORRADINI: Historically, Idaho had
11	what is called the Test Station. And on the Test
12	Station was ATR, SL1, et cetera, et cetera, et cetera.
13	Were those all state regulated in terms of any sort of
14	this activity? Or it was just never recognized that,
15	because it was DOE orders that regulated the
16	facilities, that this was never considered before for
17	those facilities?
18	MS. THOMPSON: When you say this, do you
19	mean volcanic hazards?
20	DR. CORRADINI: Yes.
21	DR. HILL: Brittain Hill, NRC consultant.
22	Idaho National Environmental Engineering Lab, as it
23	used to be called, had an active program of volc
24	hazards analysis since about 1990. It's undergone
25	several major revisions since then. So volcanic
Į	1

(202) 234-4433

	26
1	hazards in INL
2	DR. CORRADINI: Does exist.
3	DR. HILL: have been well recognized by
4	the DOE and associated entities.
5	DR. CORRADINI: Okay.
6	MEMBER REMPE: So along that line of
7	questioning, I'm interested in exploring what's going
8	on with DOE and NRC, if there's an MOU, and if this
9	guidance might be passed on to DOE, and they might
10	want to adopt it as part of their orders.
11	Because in addition to the existing
12	facilities, my understanding is DOE's interested in
13	authorizing the start-up of the VTR. And it's a new
14	facility that would be a test reactor. And would they
15	apply this guidance with it? Or would they use this
16	since 1990 guidance that they have?
17	DR. HILL: Brittain Hill, the 1990 onward
18	was more the Volcanic Hazards Analysis. It wasn't
19	guidance.
20	MEMBER REMPE: Yes.
21	DR. HILL: The application of the Volcanic
22	Hazards Analysis to safety decisions would occur
23	through DOE's internal standard, STD 1020, which was
24	most recently revised. It has its own criteria for
25	what would be an acceptable volcanic analysis for DOE
Į	I

(202) 234-4433

	27
1	regulated facilities.
2	MEMBER REMPE: And how does that compare
3	with what's in your guidance? Is it more limiting, or
4	less limiting, or do you know?
5	DR. HILL: It's hard to draw a direct
6	comparison. In many of the areas that we are focusing
7	in a bit more detail, the DOE analyses really are
8	focused more on design basis development rather than
9	siting decisions.
10	MEMBER REMPE: Okay.
11	DR. HILL: I think we have a more risk-
12	informed performance based framework to implement a
13	variety of safety decisions more openly.
14	MEMBER REMPE: Thank you.
15	MS. THOMPSON: So the NRC and the
16	Department of Energy have both recognized that there
17	are volcanic hazards at the INL site. Additionally,
18	the staff also considered that there are other areas
19	of the United States, that may be considered at some
20	time in the future for a new reactor site, that may
21	also have the presence of known or potential volcanic
22	hazards that would need to be assessed in the site
23	characterization for that new reactor application.
24	And this draft guide would apply equally
25	to any site located within the United States, not just
I	I

(202) 234-4433

	28
1	within the Idaho National Laboratory area.
2	Additionally, the NRC has regulatory
3	requirements for site characterization, one of which
4	specifically calls out volcanic activity. But we do
5	not have specific guidance on how to assess those
6	volcanic hazards and what an acceptable approach would
7	look like for a Volcanic Hazards Assessment.
8	Those regulatory requirements are shown
9	here. I'm actually going to rely on my notes and read
10	these off so that I get the exact quotes correct. For
11	Part 52, General Design Criterion 2 states that
12	structures, systems, and components important to
13	safety shall be designed to withstand the effects of
14	natural phenomenon without loss of capability to
15	perform their safety functions.
16	Those S.C. design bases should reflect
17	appropriate consideration of the most severe of the
18	natural phenomena that have historically been reported
19	for the site and surrounding area with sufficient
20	margin for the limited accuracy, quantity, and period
21	of time in which the historical data have been
22	accumulated.
23	This language is then echoed in Part 52
24	for both an Early Site Permit application and Part
25	5279 for a combined license application. And within
	1

(202) 234-4433

29 1 this characterization, a severe natural phenomena would include something like volcanic hazards. 2 finally, 3 And then the only specific 4 mention of volcanic activity within the siting 5 regulations for reactors is in Part 100.23, Reactor Site Criteria, which states that each applicant shall 6 7 investigate all geologic and seismic factors, for example, volcanic activity, that may affect the design 8 9 and operation of the proposed nuclear power plant, irrespective of whether such factors are explicitly 10 included in this section. 11 despite the specific inclusion of 12 So volcanic hazards within our regulatory requirement, we 13 14 don't have quidance. But the staff has undertaken 15 several reviews in the past on an ad hoc basis for sites that did consider volcanic hazards. 16 17 These prior reviews or licensing actions are shown here on the figure in yellow. There are six 18 19 prior licensing actions that on some level considered volcanic hazards. The reviews for these sites 20 included facilities that ranged from nuclear power 21 22 reactors, spent fuel storage, enrichment facility, and nuclear waste. 23 24 These sites in yellow, you'll notice they are only four, although there were six reviews, that's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

30 1 because three of the reviews were conducted for facilities at the INL location, two for independent 2 3 spent fuel storage installation and one for an 4 enrichment facility. 5 The blue pin toward the top shows you the location of Mt. St. Helens, which last erupted in 1980 6 7 and, as you can see, is located between the only two reactors that were sited in the United States that 8 9 considered volcanic hazards. 10 MEMBER DIMITRIJEVIC: Well, how about the ash ---11 Yes, I'm going to ---12 MS. THOMPSON: SO the Columbia site is located 217 kilometers east of 13 14 Mt. Helens which, as I said, last erupted in 1980. At 15 the time of licensing, the Columbia plant considered 16 a design and operational basis volcanic event for 17 volcanic ash fall. And Columbia is the only operating reactor that has a design basis for a volcanic event. 18 The staff's conclusions for the Columbia 19 site were based on a demonstration of the plant's 20 21 ability to withstand the wet and dry loads of potential ash fall deposits at the site, operational 22 considerations for mitigating the effects of ash fall 23 24 on plant structures, systems, and components, and the

installation of oil bath air filters, excuse me,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	31
1	during an ash fall event. And this represents the
2	last time that the staff conducted a review for
3	volcanic hazards at a reactor site.
4	MEMBER KIRCHNER: For the record, those
5	were the emergency diesel generators, aren't
6	they?
7	MS. THOMPSON: Yes.
8	MEMBER KIRCHNER: Okay
9	DR. CORRADINI: That was the, I guess
10	Walt is more familiar, those were the only active
11	changes to the plant design is, essentially, the
12	air filtration going into the diesel generators,
13	or were there other things besides that?
14	MS. THOMPSON: I know of the air filters
15	for the diesel generators. And, Britt, did you want
16	to expand on that?
17	DR. HILL: This is Brittain Hill. There
18	are some operational considerations for ash removal
19	from, say in the electric switchyard, enhanced
20	maintenance cycles on some of the other air filtration
21	systems.
22	DR. CORRADINI: So it would be operator
23	actions?
24	DR. HILL: Operation actions, yes, sir.
25	DR. CORRADINI: Okay.
Į	1

(202) 234-4433

	32
1	MEMBER DIMITRIJEVIC: How about control
2	room, control room air filters.
3	MS. THOMPSON: The control air filters?
4	MEMBER DIMITRIJEVIC: And then also, if
5	there is operator action
6	PARTICIPANT: Green light on.
7	MEMBER DIMITRIJEVIC: we can pursue
8	many LOCA operator actions
9	MS. THOMPSON: I don't have anything on
10	the control room in my notes.
11	MEMBER DIMITRIJEVIC: I know, I know.
12	(Simultaneous speaking.)
13	MS. THOMPSON: But I can take that back to
14	look into it.
15	MEMBER DIMITRIJEVIC: We're not expecting
16	answers. I think the operator action is the one
17	thing, that's why I asked you do you have PRA people.
18	Because then you will know about the crucial
19	MS. THOMPSON: And looking at the Columbia
20	mitigation actions and the procedures that would be
21	implemented in the warning time is something that the
22	staff considered in the VHA approach, which I'll
23	discuss later when I get to the mitigation action
24	stuff within the VHA approach outlined in the draft
25	guide. So we're coming back to Columbia and the
I	

(202) 234-4433

	33
1	actions taken there.
2	The Trojan site is or was located 55
3	kilometers southwest of Mount St. Helens. At the time
4	of licensing, both ash fall and debris flow from the
5	Cascade volcanoes were considered.
6	At the time of licensing, the potential
7	effects of these future volcanic hazards were
8	determined to have an insignificant effect on the
9	design and operation of the facility because of the
10	low frequency of occurrence and the characteristics of
11	the potential phenomena expected at the site as a
12	result of a volcanic eruption.
13	Following the 1980 eruption of Mount St.
14	Helens, a debris flow in-filled the Columbia River
15	channel downstream of the Trojan intake valve and
16	several millimeters of ash were deposited at the
17	facility. Following this eruption and the receiving
18	of these volcanic hazards close to the Trojan site,
19	the hazards were re-evaluated based on the 1980
20	eruption characteristics, but no changes were made to
21	the design basis, excuse me, the plant operating
22	basis.
23	CHAIR BLEY: That's interesting. There
24	was minimal ash fall there.
25	MS. THOMPSON: Yes.
Ĩ	1

(202) 234-4433

	34
1	CHAIR BLEY: There was minimal ash fall
2	around Pasco and Richland, but further east, I think
3	beyond Columbia Station, there were several feet of
4	ash fall out that far.
5	MS. THOMPSON: There were favorable winds,
6	or Britt can explain it.
7	CHAIR BLEY: Yes, there were.
8	MS. THOMPSON: Essentially that's what it
9	comes down to. But, Britt, did you want to add
10	anything to that?
11	DR. HILL: Yes, Brittain Hill. The 1980
12	eruptions at St. Helens, there was really only one
13	day, I believe it was June 3rd, where the ash plume
14	was directed to the southwest towards Portland and the
15	Trojan Power Plant. All the other eruptions, the main
16	eruption of May 18th, it all went out to the east.
17	And so you were getting tens of centimeters, to almost
18	100 centimeters in some locations, of that ash fall
19	during the main event.
20	The volcanic hazards before that eruption
21	really didn't consider large volume debris flows
22	either. And of course, with the collapse of the north
23	face of Mount St. Helens, a huge amount of material
24	and debris was thrown into river drainage which ended
25	up at the Tootle River flowing into the Columbia and,
I	I

(202) 234-4433

	35
1	because of a combination of density and tidal effects,
2	traveled about nine miles upstream from the entrance
3	of the Tootle River into the Columbia.
4	But that debris was confined to the
5	central part of the Columbia River channel, whereas
6	the Trojan intakes were up towards the bank. So the
7	debris from the 1980 eruption didn't actually get
8	taken in to the intakes for the Trojan Water System.
9	Trojan was offline at the time for refueling during
10	the 1980 eruption.
11	MS. THOMPSON: And Trojan was
12	decommissioned in 1992.
13	The Idaho National site, as I mentioned
14	before, was subject to three different prior reviews
15	by the NRC staff. Two of these were for the TMI2 and
16	the Idaho spent fuel facility ISFSIs. And the third
17	review was conducted for the Eagle Rock enrichment
18	facility.
19	At the INL site, the staff determined that
20	lava flows and ash fall hazards were the primary
21	volcanic hazards under consideration.
22	MEMBER DIMITRIJEVIC: How far is the
23	volcano?
24	MS. THOMPSON: I'm sorry?
25	MEMBER DIMITRIJEVIC: How far is it from

(202) 234-4433

	36
1	the volcano?
2	MS. THOMPSON: Oh, for INL, I don't have
3	
4	MEMBER DIMITRIJEVIC: So Columbia is
5	(Simultaneous speaking.)
6	MS. THOMPSON: So Columbia's 200
7	kilometers, so INL is somewhere between, I would say,
8	depending on where you are on the site, yes, probably
9	600, 700.
10	DR. CORRADINI: It was a different
11	potential volcano.
12	MS. THOMPSON: Yes.
13	DR. CORRADINI: It's not the same one.
14	MEMBER BROWN: It's not the same, I mean,
15	there are lava flows all around
16	(Simultaneous speaking.)
17	MS. THOMPSON: I was going to say, to
18	clarify, the ash fall hazard considered at the INL
19	site was looking at the Cascade volcanoes and ash from
20	an eruption there reaching the INL site. The lava
21	flow hazard is sourced in the eastern Snake River
22	Plain where the INL site is physically located. So
23	it's two hazards from two different sources that were
24	considered at the time of licensing
25	DR. CORRADINI: Thank you.
1	I

(202) 234-4433

37 1 MS. THOMPSON: -- for the INL site. And 2 the acceptability of these volcanic hazards at the INL 3 site was demonstrated at the time of licensing from 4 the appropriate design and operational bases for ash 5 fall, again from these further located volcanoes, the low likelihood of lava flow inundation from lava flows 6 7 on the eastern Snake River Plain, and confidence in the licensee's ability to divert potential lava flow. 8 9 MEMBER REMPE: I have a dumb question just I know about the TMI S.C. in Idaho. I know 10 counting. about the proposed Eagle Rock facility. You said 11 third facility, the 12 there's a Idaho spent fuel What is that? 13 facility. 14 MS. THOMPSON: Yes, so this was a proposed 15 ISFSI that was, an application was submitted, but the 16 facility was never built. 17 MEMBER REMPE: Okay, so there's only one that's there, and the other two are ---18 19 (Simultaneous speaking.) Yes, so the review was 20 MS. THOMPSON: conducted. 21 22 MEMBER REMPE: Okay. MS. THOMPSON: The review considered 23 24 volcanic hazards, and the working group considered any review that was conducted, whether or not the outcome 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	was a constructed facility.
2	MEMBER REMPE: Thank you.
3	MEMBER DIMITRIJEVIC: May I ask why didn't
4	you, on Page 6, identify it as a volcano?
5	CHAIR BLEY: You need your green light on,
6	Vesna.
7	MEMBER DIMITRIJEVIC: Green light on. Now
8	I see. Why didn't you, on Page 6, identify all other
9	volcanoes considered?
10	MS. THOMPSON: The key consideration in
11	that is that the Mount St. Helens location is
12	essentially a point source of one volcano. The
13	eastern Snake River Plain is an area over which there
14	have been numerous flows in geologic history. So I
15	don't have a pointer, but I could point it out if you
16	wanted me to go back and do that.
17	MEMBER DIMITRIJEVIC: No, that's all
18	right. I was just thinking that the feature will be
19	better if you sort of identify all other hazards
20	CHAIR BLEY: Well, and there are other
21	Cascade mountains up there that are potential sites.
22	They're just showing us
23	MS. THOMPSON: We were trying to focus on
24	roughly where things were, and particularly Mount St.
25	Helens because that was a volcanic eruption that did
ļ	I

(202) 234-4433

	39
1	affect two reactor facilities. And I see that Britt
2	has something to add.
3	DR. HILL: I was just going to point out
4	there are about 500 volcanic eruptions in the eastern
5	Snake River Plain for the last 500,000 years. So
6	there are many, many dots that would kind of clutter
7	up the map for all of that.
8	MEMBER DIMITRIJEVIC: I just want to say
9	when we go through your guide, we will see that they
10	are required to identify the range of the hazards.
11	MS. THOMPSON: Yes, and
12	MEMBER DIMITRIJEVIC: And without those
13	500 dots, they will not be able to do this.
14	MS. THOMPSON: And we'll get to the range
15	of the hazards to be considered. And something that
16	I did look up anticipating a question like that is
17	that, according to the United States Geologic Hazards
18	Monitoring Program, there are 169 active volcanoes
19	capable of producing a wide range of hazards within
20	the United States alone. So not wanting to
21	(Simultaneous speaking.)
22	MS. THOMPSON: One hundred and sixty-nine.
23	So not wanting to cloud the figure any more than we
24	already had, we went with Mount St. Helens as the most
25	relevant to the discussion of volcanic hazards
	I

(202) 234-4433

	40
1	affecting a nuclear reactor.
2	CHAIR BLEY: Jenise, since Yucca Mountain
3	is showing up here, during the ASLB hearings on Yucca
4	there were a number of contentions filed with respect
5	to volcanism. And 25 of them were deemed admissible
6	contentions.
7	I know DOE responded to them. I'm not
8	sure if staff reached the point they responded. And
9	I don't think they were ever resolved by the ASLB.
10	They're still dangling there. Did you consider those?
11	Are any of those having any impact on the information
12	you're identifying for applicant's to use in this reg
13	guide?
14	MS. THOMPSON: So I see Britt standing at
15	the microphone.
16	CHAIR BLEY: I bet he is.
17	DR. HILL: Brittain Hill, NRC consultant.
18	In a former life I was the senior level advisor for
19	Repository Science. One of my principle areas of
20	responsibility was the Yucca Mountain Safety Analysis
21	proposed closure. I can say quite confidently that
22	none of those issues have been adjudicated by the
23	Atomic Safety and Licensing Board.
24	The NRC staff though was able to reach a
25	technical conclusion on acceptable safety for volcanic
I	I

(202) 234-4433

	41
1	hazards with full knowledge of the content of those
2	technical objections or contentions.
3	CHAIR BLEY: Thank you.
4	MS. THOMPSON: And that's a perfect bridge
5	to the discussion of Yucca Mountain that the working
6	group considered in the guide.
7	CHAIR BLEY: But my question wasn't what's
8	the status of it. I kind of knew that. My question
9	was did any of the underlying technical issues raised
10	in those contentions find its way into the reg guide?
11	DR. HILL: Brittain Hill, consultant. The
12	short and simple answer is no.
13	MS. THOMPSON: The working group was
14	primarily focused on prior NRC staff review actions.
15	So that was the focus of our background gathering of
16	these prior licensing reviews to inform the draft
17	guide for future licensing reviews.
18	So for Yucca Mountain, the staff
19	considered two periods, the pre-closure or operational
20	period, and the post-closure period. For the
21	operational period, the occurrence of a new volcano
22	was screened out for the operational period. And it
23	was determined by the staff that ash fall could be
24	mitigated.
25	DR. CORRADINI: Help remind me, I forget

(202) 234-4433

	42
1	what's the pre-closure period.
2	MS. THOMPSON: So the pre-closure period
3	is when the
4	DR. CORRADINI: No, I know what it is, but
5	what's the time window? That's what I was
6	MS. THOMPSON: Oh, the time window. Okay.
7	DR. CORRADINI: Is it 300? I was thinking
8	100 years.
9	MEMBER KIRCHNER: If my memory serves me
10	well, it's 300 years. But anyway, it's Mike,
11	what?
12	DR. CORRADINI: No, no, that's fine.
13	MEMBER KIRCHNER: It's 100 to 300. It was
14	when the hot fission products, the strontium and all
15	those dissipated their heat before closing. So
16	obviously
17	DR. CORRADINI: It's when it was
18	ventilated.
19	MEMBER KIRCHNER: the long timeframe
20	was the actinides.
21	MEMBER REMPE: In all these, I've never
22	seen one of these studies, and I'm just curious on how
23	you decide that it's a negligible amount of
24	consequences or increased in risk. Is it
25	quantitative?
	I

(202) 234-4433

	43
1	You can say, well, the frequency is less
2	than ten to the minus 13, so we don't care. And well,
3	if there's one that's within ten to the minus four
4	that might occur, do you look at the consequences and
5	say the increase in source term is less than whatever,
6	or how do you go?
7	MS. THOMPSON: So there were three key
8	components to the conclusions for Yucca Mountain that
9	were made by the staff. And those were based on a low
10	likelihood of a volcanic event occurring. I don't
11	have if there was a number, but it was determined to
12	be sufficiently low.
13	The second component was that the amount
14	of high level waste, at least for the post-closure
15	period where the occurrence of a new volcano was
16	considered as the primary volcanic hazard, the high
17	level waste that would be entrained or ejected during
18	that new volcano would be sufficiently small.
19	And then the third component was that the
20	combination of natural and engineered barriers would
21	be sufficient in the occurrence of a new volcano to
22	limit the radio nuclide release. So it was a three-
23	part conclusion. I don't have what those thresholds
24	were. But those were that
25	(Simultaneous speaking.)
ļ	I

(202) 234-4433

	44
1	CHAIR BLEY: That's for Yucca, but if I
2	might, if any of our questions are going to be
3	answered later in your slides, ask us to wait.
4	MS. THOMPSON: Well, that one was right
5	there on this slide.
6	MEMBER REMPE: Okay. Well, in the case of
7	the reactors, I'm wondering if you ever got to where
8	you got quantitative and said that
9	(Simultaneous speaking.)
10	MS. THOMPSON: So the process which I will
11	get to and discuss, it allows there to be a
12	demonstration that you have reached a sufficiently low
13	risk at numerous steps in the process where you can
14	complete your analysis and be done.
15	(Simultaneous speaking.)
16	MEMBER REMPE: But I'm asking in the past,
17	like for Columbia and Trojan. Did you just follow
18	this process, or did you actually do some sort of
19	quantification and say it's less than a curie that
20	gets out or something like that, or a millicurie. Did
21	they go that far in the evaluations?
22	MS. THOMPSON: I'm going
23	DR. HILL: Brittain Hill, I can speak to
24	Yucca Mountain which had a full blown probabilistic
25	risk assessment, it was called the Total Systems
I	

(202) 234-4433

Performance Assessment, that considered both the likelihood of events, and the consequences, and associated radiological doses into the accessible environment.

5 In the post-closure period, the twoleading sources of risk were disruption by volcanoes 6 7 and by earthquakes. But even when you factored in the 8 amount released and the likelihood and timing of that 9 release, the release levels were less than one 10 millirem per year. The standard for Yucca Mountain was 15 millirems a year. So these were quantified. 11 MEMBER REMPE: So that's good for Yucca 12 I'm just curious about the --13 Mountain. 14 MEMBER KIRCHNER: The siting of the other 15 two sites pre-dated PRA. 16 MEMBER REMPE: Yes, but they probably 17 didn't go into that level. MS. THOMPSON: And the working group did 18 19 not consider that, whether there was a bounding number that the applicant got to that the staff determined 20 was sufficient. 21 22 MEMBER REMPE: Thank you. So considering all of the 23 MS. THOMPSON: 24 prior licensing reviews, the staff wondered whether

this past approach of performing an ad hoc review was

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

45

1 sufficient and was adequately reflective of the NRC's principles regulation, 2 of qood of openness, 3 sufficiency, independence, clarity, and reliability. 4 So to answer this and other questions, the 5 working group performed a regulatory analysis to consider five different alternatives to both assess 6 7 the regulatory needs and determine the optimal path 8 forward. 9 regulatory analysis, these five The different alternatives considered were to take no 10 action or, in other words, to keep doing these ad hoc 11 reviews as sites came in that needed to consider 12 volcanic hazards, to develop and issue quidance, to 13 14 endorse the existing IAEA safety guide which I will discuss later in the harmonization section, to wait, 15 16 review, and consider for endorsement the development 17 of a consensus standard that is ongoing, and finally to review and approve for use a topical report 18 19 submitted by an applicant. To date, no applicant has indicated their 20 intention to submit a topical report. 21 We just included that as one of the possibilities that could 22 23 happen. The staff also considered the schedule for 24 completion, a cost benefit analysis, the technical 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

46

	47
1	content, control of the document as additional
2	factors, as well as the principles of good regulation
3	and risk-informed decision making in determining which
4	would be the optimal path forward. Following this
5	regulatory
6	DR. SCHULTZ: What was the fifth?
7	MS. THOMPSON: The fifth option was to
8	develop, or excuse me, to review and approve for use
9	a topical report submitted by an applicant. But no
10	applicant has submitted a
11	DR. SCHULTZ: No, I thought that was
12	MS. THOMPSON: a topical report or
13	indicated their intention to do so. We just included
14	it for the sake of considering every available
15	alternative that could happen.
16	The optimal path forward as determined by
17	the working group was to develop a regulatory guide.
18	Part of the reason for this is that not only does it
19	fit the schedule that we have outlined for ourselves,
20	it allows us to harmonize or draft guide with the
21	existing IAEA safety guide. It provides a mechanism
22	by which the staff can consider in the future any
23	consensus standard that becomes available for a
24	volcanic hazard assessment. And it also provides us
25	with multiple opportunities to interact with the
I	

(202) 234-4433

	48
1	public and external stakeholders on both the content
2	of the guide and how the guide is working.
3	DR. CORRADINI: If I might just ask
4	MS. THOMPSON: Yes.
5	DR. CORRADINI: So the IAEA guide and just
6	simply accepting it straight up was not considered
7	why?
8	MS. THOMPSON: I will get to that in the
9	harmonization section.
10	DR. CORRADINI: Okay.
11	MS. THOMPSON: But to give you a preview,
12	there were three key components that the staff
13	PARTICIPANT: Wanted.
14	MS. THOMPSON: yes, identified.
15	DR. CORRADINI: All right, thank you.
16	MS. THOMPSON: But we'll get to that
17	towards the end.
18	Recognizing the interest and importance
19	for some perspective applicants of a process to assess
20	volcanic hazards, the working group issued a draft
21	outline of the draft guide and solicited public
22	comments and feedback. We even held a public meeting
23	in October to meet with perspective applicants and
24	gain their feedback on some of the content proposed in
25	the draft outline.
Į	I

(202) 234-4433

49 1 In moving forward with the draft quide, 2 the staff identified several goals that should be met 3 by the regulatory guide, including to protect public 4 health, safety, and the environment, to provide an 5 open and traceable basis for regulatory decision 6 making. 7 We also considered what would be the appropriate burden on an applicant using this draft 8 9 quide to assess volcanic hazards at their site and to ensure that that burden should be commensurate with 10 the risk posed by the facility. 11 And we also wanted it to ensure that the 12 draft quide was consistent with the NRC's risk-13 14 informed, performance based framework as well as the 15 prior licensing actions and reviews that the staff had undertaken. 16 17 DR. SCHULTZ: Jenise? MS. THOMPSON: Yes? 18 19 DR. SCHULTZ: Just to back you up a bit, no need to go to the slides, it wasn't on there, but 20 you said that you identified potential applicants and 21

got together with them to discuss going forward plans.

How were they identified, and how many came to meet?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MS. THOMPSON: So we held a public meeting

We noticed it through the NRC pubic

(202) 234-4433

in October.

22

23

24

25

	50
1	meeting notification system so that any, whether they
2	were a perspective applicant or a member of the
3	public, they were welcome to attend.
4	We had one person attend in person, and we
5	had about 25 people call in on the phone. Many of
6	them were from advanced reactor organizations,
7	perspective vendors for advanced reactor technologies.
8	There was at least one that's considering a site for,
9	I'm not sure what type of application.
10	And the way that we interacted and
11	identified these people, in addition to making a
12	public notice, is through our working group contact in
13	the Division of Advanced Reactors and Non-power
14	Utilization and Protection Facilities. I think I got
15	that right.
16	We went to the advanced reactor
17	stakeholder meeting the month before out public
18	meeting to present, at a high level, the draft outline
19	is coming. This is the public meeting notice, and we
20	would look forward to you attending and providing us
21	your early feedback on this draft outline of a draft
22	guide. So we leveraged the PMs that are on the
23	working group
24	DR. SCHULTZ: Sure.
25	MS. THOMPSON: and the contacts that
ļ	I

(202) 234-4433

	51
1	they have.
2	DR. SCHULTZ: So you had an appropriate
3	outreach for the event
4	MS. THOMPSON: Yes. So the public meeting
5	notice went out through the advanced reactor ListServ,
6	I'm not sure, their mailing list that they have.
7	DR. SCHULTZ: Good.
8	MS. THOMPSON: And their stakeholders,
9	their monthly stakeholder's meeting.
10	DR. SCHULTZ: Sound's good, thank you.
11	MS. THOMPSON: The staff also identified
12	challenges associated with developing this draft
13	guide, most notably that there is no generally
14	accepted approach for developing or performing a
15	Volcanic Hazards Analysis or VHA. This is compared to
16	something like seismic hazards where many people are
17	familiar with the Probabilistic Seismic Hazard
18	Assessment, or PSHA.
19	The draft guide would also need to support
20	both siting decisions and potential design bases. The
21	staff and the working group also identified that
22	volcanic events are rare events with appreciable
23	uncertainties in the timing and nature of those
24	volcanic events.
25	And finally, the working group also
I	1

(202) 234-4433

acknowledged, and I'll share with you on the forthcoming slide, that there are a wide range of demands placed on facilities from a volcanic event. And there are limited design analyses available to assess those particular demands from those hazards, with the exception of ash fall, which I mentioned has been considered in prior reviews.

So some of the volcanic hazards that the 8 9 working group considered important that would need to 10 be considered, as well as the associated demands, the first that I'll share with you is ash fall. The photo 11 here shows a worker in the background, and the worker 12 is blowing the ash fall deposits off of the insulators 13 14 in an electrical switchyard. This is following a 15 volcanic eruption in Japan.

So unlike fly ash or what's in your fireplace, volcanic ash is a mix of pulverized rock and minerals, so it ranges in size up to about two millimeters. And it's hardness is comparable is most metals or alloys, so we're talking about things that are very heavy.

They also can be conductive, especially when they are damp from fog or a light rain, hence the reason why this worker is blowing the ash fall deposits off of these insulators so that they prevent

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

the arcing from the volcanic ash in the switchyard.

2 The airborne particle concentrations for 3 volcanic ash can be on the order of up to 100 4 milligrams per cubic meter. This will decrease typically in the days or weeks following an eruption. 5 6 The physical loads resulting from the deposition of 7 volcanic ash at a site can range from 100 to 1,000 8 kilograms per square meter. This is comparable to a 9 snow load event at a facility. And this can increase when the volcanic ash is wet. 10

And finally, volcanic ash can linger for days or weeks after an eruption. And as we saw following Mount St. Helens, volcanic ash can travel not just tens or hundreds of kilometers but thousands of kilometers affecting sites well removed from the location of the ash source.

17 CHAIR BLEY: One thing you didn't talk about there, and in the req quide when you go through 18 19 the methodology, you don't give a lot of advice about what failure modes could be induced by these events. 20 But when you get to the very tiny volcanic 21 ash, a thousandth of a millimeter, this stuff's so 22 small it could get into equipment in ways we don't 23 24 normally have to think about and probably interfere with the equipment but possibly really damage it as 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

53

we	1	1	•

1

2	Are you thinking of any other additional
3	information to be provided to applicants to have them
4	think about specific, how to think about, for all of
5	these hazards, the specific damage mechanisms that
6	might occur to SSCs at their site?
7	DR. SCHULTZ: And are there specific
8	threshold effects within that large range?
9	MEMBER DIMITRIJEVIC: That's missing from
10	the guide. And that's one of my biggest comments,
11	that there was no discussion about the connection of
12	SSCs in the failure modes connected with different
13	hazards, ash and all other hazards which you identify.
14	And that's where you actually have the nuclear
15	facility connects to this hazard through the failure
16	modes associated with different type of components and
17	
18	CHAIR BLEY: Your simplified, well, you're
19	going to get to the methodology later.
20	MS. THOMPSON: Yes, we're going to get to
21	that.
22	CHAIR BLEY: But your simplified PRAs, and
23	I wish you had had a PRA person helping with this,
24	they have some problems we'll talk about later, but
25	they assume that the vulnerable SSCs fail.
I	1

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

54

	55
1	MS. THOMPSON: Okay.
2	CHAIR BLEY: Which makes it easy.
3	MS. THOMPSON: Yes.
4	CHAIR BLEY: As long as the person doing
5	the analysis understands what the challenge is to
6	their SSCs.
7	MS. THOMPSON: Will be.
8	CHAIR BLEY: and, you know, the heavy
9	weight, that's an obvious one. Some of the others
10	maybe are more subtle. And if you don't give them
11	guidance on that, it'll be a toss-up while they think
12	about it.
13	MEMBER DIMITRIJEVIC: That's a big piece
14	in this guidance, because you have a two screening,
15	one when there's 200 percent failure and one when
16	you're adding these two probabilities of hazards and
17	eruption to put as a failure probability.
18	MS. THOMPSON: Yes.
19	MEMBER DIMITRIJEVIC: But the failure
20	modes and related SSCs are not in there.
21	MS. THOMPSON: Okay.
22	MEMBER KIRCHNER: Jenise, do you, in your
23	center or activities, put out some kind of, I'm trying
24	to think about vehicles you have at your disposal to
25	communicate to the industry. But do you give
	1

(202) 234-4433

	56
1	guidance, say, pick on something like seismic
2	analysis, something comparable, is there, to address
3	Dennis and Vesna's concern, do you put out any kind of
4	guidance that would suggest, separate from this reg
5	guide which is primarily citing how to protect, you
6	know, SSCs and especially safety-related or, so I
7	guess it's not all safety-related. This is not
8	necessarily safety-related. It's just power. But do
9	you see where I'm going?
10	MS. THOMPSON: Whether we issue
11	MEMBER KIRCHNER: Just power.
12	MS. THOMPSON: something more specific?
13	MEMBER KIRCHNER: Yes.
14	MS. THOMPSON: The external hazard COE
15	has not done that. But I can take that back as a
16	comment to consider.
17	MEMBER KIRCHNER: I was just thinking
18	that the reg guide might get unduly complicated
19	if you tried to do equipment failure modes and
20	effects kind of analyses as, you know, guidelines
21	and so on, like you were asking.
22	CHAIR BLEY: Well, maybe it would be an
23	appendix or a separate document. But there ought
24	to be something. I read through the IAEA stuff, but
25	I haven't read it carefully enough to know if they dig
	1

(202) 234-4433

(202) 234-4433

	57
1	into that. But I didn't see it.
2	MEMBER DIMITRIJEVIC: Well, my personal
3	thinking is just a high level, there's a lot of
4	technical equipment will be susceptible to ash. In
5	the case of lava, you have to worry about the things
6	on the ground level, you know, like electrical, and
7	more operator actions can be affected. It can be just
8	a couple of paragraphs of general guidance, and then
9	they can do the full analysis when they submit them.
10	MS. THOMPSON: So that is part of the
11	reason why, in the draft guide, we included specific
12	information about hazards like volcanic ash so that an
13	applicant following this guide would look at the
14	particle size and consider the range of particles
15	sizes of ash that may affect that site.
16	So you'll see that that is captured in the
17	draft guide. I understand your point that we didn't
18	take it that step further to consider the failure
19	modes from those specific particle sizes within
20	specific SSCs.
21	MEMBER DIMITRIJEVIC: What's the type of
22	limit could be considered a factor with this, you
23	know?
24	MS. THOMPSON: Okay.
25	MEMBER DIMITRIJEVIC: The same thing with
I	1

(202) 234-4433

	58
1	the lava flow. So whatever, you have this next, you
2	know, in the third slide you will have this
3	pyroclastic flow which I'm not sure I
4	MS. THOMPSON: And when we got into the
5	volcanic hazards assessment, the physical approach,
6	and the flow chart in the presentation here, there is
7	a step in the process where an applicant can choose to
8	do an additional analysis considering specific
9	physical properties of specific structures, systems,
10	and components within their proposed facility, given
11	the volcanic hazards that screen in and have not been
12	ruled out at that point in the analysis. So there is
13	a place where this more detailed site-specific
14	analysis would occur.
15	MEMBER DIMITRIJEVIC: But you have a step,
16	and we will get to that.
17	MS. THOMPSON: Yes.
18	MEMBER DIMITRIJEVIC: Where you have
19	initial risk here, based on this initial risk, you
20	think you should put everything failed, then from
21	there. It doesn't have to go
22	MS. THOMPSON: Right. So
23	MEMBER DIMITRIJEVIC: So you have to
24	select what's
25	MS. THOMPSON: Yes. And we'll get to

(202) 234-4433

	59
1	that, because there are actually three different steps
2	where this may be addressed with increasing detail.
3	MEMBER DIMITRIJEVIC: Okay.
4	CHAIR BLEY: I would just say if you don't
5	do it attached to your reg guide
6	MS. THOMPSON: Consider an appendix?
7	CHAIR BLEY: you will eventually do it,
8	because you won't be happy with what you get. And
9	you'll be doing lots of RAIs, and that sort of thing.
10	MS. THOMPSON: Okay.
11	MEMBER BROWN: I don't know. I'd be
12	careful. I mean, it's starting to sound like we want
13	to provide all the design information inside the reg
14	guide and become very prescriptive about what they
15	have to look at, and how they look at it, and what the
16	potential mitigating actions ought to be. And that's
17	the same thing we face about trying to be too
18	prescriptive on designing some of the systems,
19	particularly the protection and safeguard systems that
20	we've looked at.
21	I think there's a balance in there. We
22	just can't fill this thing up with prescriptive
23	information. You want it covered, you want them to
24	evaluate the potential hazards and tell you, but not
25	try to tell them what they have to look at. That's
ļ	I

(202) 234-4433

	60
1	just my thought on it. It's just a little counter
2	MEMBER KIRCHNER: I tend to agree with
3	Charlie too, because I'm thinking of the diesel
4	generators. When you see this threat to operating
5	your diesel generators then you go into a much more
6	detailed analysis as to whether I need oil filters or
7	not, as an example.
8	But to pile that all into the reg guide
9	might be asking for a lot
10	MEMBER DIMITRIJEVIC: Well, because they
11	will have a step. We will get to the steps
12	MS. THOMPSON: We'll get to the steps.
13	(Simultaneous speaking.)
14	MEMBER DIMITRIJEVIC: development.
15	MS. THOMPSON: And that point was
16	something that the working group considered, is we
17	wanted a guide that was broad enough that could be
18	considered at any site that may have volcanic hazards
19	present and making it not so descriptive that it
20	became cumbersome. You know, that was one of our
21	goals, was to be commensurate with risk and
22	appropriate burden.
23	So new vent opening, this shows a new vent
24	erupting in Hawaii. The opening of a new vent is
25	usually proceeded by several days or several weeks of
	I

(202) 234-4433

precursory earthquakes which is triggered by magma or 1 molten rock rising from a duct beneath the surface. 2 3 The opening of a new vent results in 4 ground deformation, usually a rift will be one to 5 several kilometers long and somewhere between on and ten meters wide. So we're talking about a significant 6 7 qash in the surface of the earth. 8 If that magma then erupts along that new 9 rift, there will be lava flows which may erupt on one 10 to two main vents in this new ground opening in a day. continued eruption would result in volcanic 11 The ballistics and other ejecta. These may be up to 12 several meters in diameter and occur within about 13 14 several kilometers of the vent opening. So this is 15 not a point hazard right at the opening of the new 16 vent but can be a hazard from some distance away as well. 17 It may result in the creation of a scoria 18 19 cone, and I was told to mention this, because today is the 77th anniversary of the eruption of Paricutin, a 20 scoria cone in Mexico, so very timely for us. 21 There also may be a smaller volcanic 22 edifice as a result of the opening of a new vent. 23 Ιf 24 there are interactions with shallow ground water,

there also may be small blasts or surges also within

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

61

	62
1	several kilometers of the vent. So the opening of a
2	new vent is a spatial consideration for some diameter
3	away from the new vent opening.
4	CHAIR BLEY: Tephra is ash or
5	MS. THOMPSON: Ash, small
6	CHAIR BLEY: something like ash?
7	MS. THOMPSON: Small volcanic particles,
8	yes.
9	DR. SCHULTZ: Jenise, you mentioned that
10	there is usually some precursory indication that
11	something is going to happen. But that's usual, it's
12	not always.
13	MS. THOMPSON: It's not always, but it
14	would be more unusual for there to be no indication
15	than it would be unusual for there to be indication.
16	So typically, most likely there would be
17	precursory activity no activity, and then a
18	volcanic event where the new vent opening would be a
19	rare occurrence.
20	DR. SCHULTZ: All right. Okay. Thank
21	you.
22	MS. THOMPSON: Lava flows are another
23	hazard with significant demands placed on surrounding
24	facilities. The photo here is from Hawaii, the 2018
25	Kilauea East Rift eruption.
	1

(202) 234-4433

	63
1	The steaming vent in the background is the
2	two-kilometer-long rift from which that main lava flow
3	is erupting coming into the foreground of the photo.
4	Lava flows are molten rock at the surface
5	of the earth. They are very dense, up to 2,500
6	kilograms per cubic meter. And we're talking about
7	very hot molten rock, 1,000 degrees Celsius or more.
8	The heat capacity of a lava flow is
9	comparable to most metals. And the flow rate can vary
10	from about one until about 10 meters per second, or
11	about 22 miles per hour. And the flow rate will
12	depend on the local topography and other factors.
13	Although most lava flows will follow
14	topography, lateral breakouts can be common.
15	Additionally, lava flows have been known to damn
16	waterways resulting in localized flooding.
17	Another flow hazard that should be
18	considered are pyroclastic flows, which you may
19	sometimes see referred to as pyroclastic density
20	currents. And the photo here shows a mall pyroclastic
21	flow on Mount St. Helen's from 1980.
22	Pyroclastic flows are mixtures of
23	pulverized rock and gas excuse me they are hot,
24	greater than about 300 degrees Celsius, with deposit
25	densities that range from 1,000 to 2,000 kilograms per
ļ	I

(202) 234-4433

	64
1	cubic meter.
2	Unlike a lava flow, which is moving up to
3	about 10 meters per second, a pyroclastic flow is very
4	fast moving at hundreds of meters per second.
5	Additionally, pyroclastic flows, similar
6	to volcanic ash, can travel longer distances looking
7	at tens to upwards of a hundred kilometers from the
8	source vent.
9	And they also although smaller flows
10	will tend to stick to their topographic channel, a
11	larger flow may overtop barriers that could be
12	hundreds of meters high.
13	CHAIR BLEY: I assume they're called
14	"density currents" because they flow from high density
15	to low density; is that right?
16	MS. THOMPSON: I have seen both flow and
17	density currents.
18	CHAIR BLEY: Okay.
19	MS. THOMPSON: There are other volcanic
20	hazards that would be considered within the scope of
21	the volcanic hazards assessment outlined in the draft
22	guide.
23	These hazards would tend to be located
24	near the volcano or the source vent, except for debris
25	flows, which can flow tens of kilometers from event.
l	I

(202) 234-4433

	65
1	And the photo here shows the debris flow
2	from Mount St. Helen's. This is along the Toutle
3	River and shows the deposit of the debris flow,
4	sometimes called a "lahar."
5	The bridge in the background, it's kind of
6	the green figure, is destroyed. And the rock in the
7	foreground is about two meters in diameter and was
8	carried in this debris flow.
9	And if you look very closely, there is a
10	small rock hammer on that rock for scale.
11	MEMBER DIMITRIJEVIC: How far is the
12	Toutle?
13	MS. THOMPSON: The Toutle River?
14	MEMBER DIMITRIJEVIC: Yes.
15	MS. THOMPSON: So, this did not reach
16	Trojan. So, this is within less than 50 kilometers
17	from the
18	CHAIR BLEY: Two things. I want to ask
19	you something about the list, but
20	MS. THOMPSON: Okay. I'm going to get to
21	the list.
22	CHAIR BLEY: for my colleagues, if you
23	ever get a chance to go visit Mount St. Helen's, do
24	it. The blast went about 20 miles.
25	The trees are laying flat 20 miles away
Į	I

(202) 234-4433

	66
1	years after the event.
2	DR. CORRADINI: Not anymore.
3	CHAIR BLEY: Huh?
4	DR. CORRADINI: Not anymore.
5	CHAIR BLEY: Yeah, they are. I was there
6	just a couple years ago and they were
7	DR. CORRADINI: But I thought there is new
8	growth.
9	CHAIR BLEY: There is new growth coming
10	back, but the old tress 20 miles out you'll see them
11	laying down.
12	I took your list against on your slide
13	against the list in the reg guide and against the list
14	in the IAEA-specific safety guide.
15	MS. THOMPSON: Uh-huh.
16	CHAIR BLEY: And pretty much the list and
17	your guide has picked up almost everything they talk
18	about there. It's kind of rearranged some of the
19	maybe lesser things in the group down here.
20	I had a question about the in the reg
21	guide, it says the earthquakes are typically less than
22	М5.
23	Is that always or what's "typical" mean or
24	generally generally less than M5, how big an
25	earthquake could we have?

(202) 234-4433

67 1 MS. THOMPSON: I think greater than 5 would be a very rare occurrence as to what a possible 2 3 _ _ 4 CHAIR BLEY: Well, the whole thing's --5 MS. THOMPSON: Maximum magnitude --CHAIR BLEY: -- pretty darn rare anyway. 6 7 MS. THOMPSON: -- I'm going to defer to our volcanologist. 8 9 CHAIR BLEY: Sure. DR. HILL: Brittain Hill. 10 It's a little difficult to put a maximum 11 magnitude because it scales to the size of the 12 eruption and there have been some huge eruptions in 13 14 gas. But typically --- for example, the 1980 15 eruption of Mount St. Helen's ---16 CHAIR BLEY: Yeah. 17 DR. HILL: -- the May 18th was triggered 18 19 by a magnitude 5.1 earthquake, which the seismologists 20 said that was a fairly significant earthquake for that part of the Pacific Northwest, magnitude 5.1. 21 CHAIR BLEY: Is it usually the earthquake 22 23 triggers the volcano or vice versa? 24 DR. HILL: The -- it's a combination because the one at St. Helen's was more of a tectonic 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	earthquake than one of molten rock.
2	Paricutin, when that one started, there
3	were magnitude 3s and 4s as the magma moved up from
4	depth.
5	There's another well-instrumented eruption
6	in Russia, 1975. The Tolbachik eruption was, again,
7	magnitude 4 to about 4-1/2 as molten rock moved up
8	from tens of kilometers depth.
9	So, unless you're talking about an
10	extremely large eruption, something much larger than
11	Mount St. Helen's, the local earthquakes, the moment
12	magnitudes would be a magnitude 5 or less would be
13	a very good rule of thumb, but you can't rule out that
14	something bigger could happen in a giant sort of an
15	eruption.
16	Very typical like you would do for a
17	seismic hazard analysis, I'm not aware in the United
18	States that anything has a background source that has
19	a maximum magnitude of less than 5.5.
20	So, it seems very reasonable that a
21	volcanically sourced earthquake would be captured
22	within the regional seismic zones in the US seismic
23	source model.
24	CHAIR BLEY: Uh-huh.
25	MEMBER KIRCHNER: Can I ask a specific
	I

(202) 234-4433

	69
1	question about a it's site-specific. So, forgive
2	me, but Hebgen Lake outside of Yellowstone had a
3	significant earthquake in '59. It's worth visiting as
4	well to see what happened.
5	How do you sort out maybe cause and effect
6	after what you just said about Mount St. Helen's? Do
7	you would you if you have a situation like that
8	in an active zone and I'm not a geologist, so I may
9	not use the right clinical terminology how do you
10	would you enhance your assessment of the
11	probability of a volcano-like event as a result of,
12	you know, you had this rather massive earthquake there
13	and it's not that far, or do the seismic people do
14	their thing and the volcanologists do theirs, or is
15	there some coming together?
16	CHAIR BLEY: Well, they're mixed together.
17	The person we were talking to does both. I mean,
18	that's her field.
19	MEMBER KIRCHNER: But this is explicitly
20	a volcanology hazards
21	MS. THOMPSON: Yes.
22	MEMBER KIRCHNER: assessment and I'm
23	just wondering how you match the seismic if indeed
24	there's a situation where you might have cause and
25	effect, you know, one comes first and, boom, then
I	1

(202) 234-4433

	70
1	comes the volcano or vice versa.
2	MS. THOMPSON: So, the consideration of
3	the working group was assuming the moment magnitude
4	of less than or about 5, was that that moment
5	magnitude from the volcanic earthquakes would be
6	adequately captured in a seismic source model
7	performed by our seismology counterparts for the
8	specific site.
9	MEMBER KIRCHNER: Okay. All right.
10	CHAIR BLEY: I have a couple more
11	questions.
12	MS. THOMPSON: Okay.
13	CHAIR BLEY: Not on your slide, but in
14	your reg guide, one of the things grouped together at
15	the end are two things associated with debris
16	avalanches, and I have a question about each. Let me
17	put them both on the table.
18	One is if it's underwater, goes into
19	water, it could create a seiche
20	MS. THOMPSON: Yep.
21	CHAIR BLEY: or a tsunami.
22	MS. THOMPSON: I was just about to get to
23	that.
24	CHAIR BLEY: I was assuming that the
25	people who look at seiches and tsunamis would always
I	

(202) 234-4433

	71
1	ask, is there a volcano or defunct one that could have
2	a debris avalanche?
3	And for just the debris avalanche above
4	ground, not here, do you get something like the ash
5	falls associated with that?
6	Do they lead to a lot of
7	MS. THOMPSON: They will lead
8	CHAIR BLEY: dust and particles in the
9	air?
10	MS. THOMPSON: They will lead to dust and
11	particles in the air, but unlike
12	CHAIR BLEY: Are they local?
13	MS. THOMPSON: unlike ash fall it's not
14	going to be a hundreds-of-kilometer hazard.
15	CHAIR BLEY: And it doesn't have the heat
16	to lock it.
17	MS. THOMPSON: Yes.
18	CHAIR BLEY: Okay.
19	MS. THOMPSON: And compared to something
20	like a landslide that would just occur in, let's say,
21	a granitic mountain, you would have dust in the air
22	following the landslide, but you would not find dust
23	in the air several hundred kilometers away.
24	CHAIR BLEY: Okay. So, it would have to
25	be right on top of you.
	I

```
(202) 234-4433
```

	72
1	MS. THOMPSON: Yes. So, a debris
2	avalanche from a the collapse of a volcanic
3	edifice, you'll see dust.
4	But unless it's occurring contemporaneous
5	with the eruption of additional ash, you would not see
6	that ash fall traveling the distances that we see in
7	ash fall that's erupted from a volcano.
8	CHAIR BLEY: And two more small things.
9	On your slide, you list lightning. You don't list
10	that in your reg guide.
11	MS. THOMPSON: Oh, okay.
12	CHAIR BLEY: You might make them
13	consistent.
14	And the last thing is, and this is one I
15	know nothing about, the SSG21
16	MS. THOMPSON: Uh-huh.
17	CHAIR BLEY: the IAEA report, also
18	mentions mud volcanoes, which aren't really volcanoes,
19	but then it says you can use the same kind of
20	analysis.
21	Are they anything to care about? I don't
22	know what they are.
23	DR. HILL: Mud volcanoes?
24	CHAIR BLEY: Mud, M-U-D.
25	DR. HILL: Yeah. Yeah. I know.
I	1

```
(202) 234-4433
```

	73
1	CHAIR BLEY: I don't know what they are,
2	but they mention it. And then they say it's out of
3	it's out of the scope of their document.
4	NRC staff doesn't mention it in there
5	document and then they say, oh the IAEA says, well,
6	although it's out of scope, you can use the same
7	techniques to look at these.
8	Is it
9	MS. THOMPSON: I see Britt holding the
10	microphone.
11	CHAIR BLEY: Yeah. Britt, tell us, all
12	right, because I have no idea about that one.
13	DR. HILL: Brittain Hill.
14	The mud volcanoes I believe that IAEA was
15	referring to are the ones that can occur where you
16	have trapped over-pressured fluid in a large
17	sedimentary basin and they erupt, if you will, without
18	a seismic trigger.
19	So, they're not like sand blows that you
20	see, but they can just kind of spontaneously happen
21	under certain hydraulic conditions.
22	They are not volcanic phenomena. That is
23	why we didn't choose to do this.
24	CHAIR BLEY: Fair enough.
25	But if they can do damage, somebody else
	I

(202) 234-4433

	74
1	ought to be looking at this and
2	DR. HILL: I believe IAEA was putting it
3	in there because the methodology for looking at the
4	likelihood of a new mud volcano forming is very
5	similar to the methods that you would use for a new
6	volcano forming in, say, the Eastern Snake River
7	Plain.
8	CHAIR BLEY: Okay. Thanks.
9	MS. THOMPSON: And to address your
10	question about debris avalanches entering a body of
11	water and
12	CHAIR BLEY: Yeah.
13	MS. THOMPSON: resulting in a seiche or
14	tsunami, that is a consideration that our
15	counterparts, the hydrologists, would consider in
16	their review.
17	In the review of tsunami and seiche they
18	consider they consider landslide-induced, which
19	would include the collapse of a volcanic edifice.
20	CHAIR BLEY: That's some of the biggest
21	tsunamis have occurred
22	MS. THOMPSON: So, that is considered
23	within the hydrology review.
24	CHAIR BLEY: Hydrology, okay. Perfect.
25	MS. THOMPSON: Yeah. So, a debris flow,
I	I

(202) 234-4433

	75
1	for those who are unfamiliar with them, is a flow of
2	greater than 50 percent suspended solids.
3	As you can see from the photo, the
4	material that is carried in this debris flow can be
5	very large and, as you can see, they destroy a fair
6	amount of infrastructure in their path.
7	They're also capable of going over the
8	outside of their channels. So, although a flood may
9	stick to the channel and slightly over top of, a
10	debris flow often overtops the existing channels, yes.
11	And then we already discussed debris
12	avalanches as well as earthquakes. There are
13	additional interactions to consider from hydrothermal
14	systems, the emission of volcanic gas and then we also
15	mentioned lightning.
16	And, again, these are looking at hazards
17	that are close to the vent. So, within about ten
18	kilometers is where these would typically be
19	occurring.
20	So, now that we've given you a background
21	of the volcanic hazards, it's time to get to the meat
22	of the draft guide and the lovely flowchart outlining
23	the general approach for the volcanic hazards
24	assessment, or the VHA.
25	There are
	I

(202) 234-4433

76 1 CHAIR BLEY: I'm going to interrupt you 2 here --3 MS. THOMPSON: Okay. 4 CHAIR BLEY: -- because I want to say a 5 few things about this ---Okay. 6 MS. THOMPSON: -- and about the whole 7 CHAIR BLEY: 8 methodology. First is, and your words in the text kind 9 of acknowledge this, acceptable/unacceptable, U and A, 10 are kind of misnomers. 11 Especially the unacceptable really isn't 12 unacceptable. It's more likely it's not yet screened 13 14 or not yet dealt with. 15 acceptable isn't really defined The 16 anywhere except in the text, and it's really no 17 further analysis. So, those words at least set me off a little bit. 18 19 I'm going to just mention something to you. As I read through it all, it struck me one could 20 put labels on each of your stages. 21 And the first one is really an existence 22 is you're looking for, 23 issue, is what this а 24 possibility. 25 The second one, it says, screen, but

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	really all of them are kind of screening in different
2	ways below this, but it's really a distant screen on
3	that one.
4	The next one is really a "no damage
5	leading to release" kind of thing. It's sort of the
6	first risk-oriented thinking.
7	And then you get a couple that are really
8	frequency. They aren't risks, but they're saying just
9	the frequency is too low to matter.
10	And finally, you get down to No. 6, which
11	is really a real PRA by that point. And 7, the same
12	way. So, something to think about.
13	And then when you get into the details,
14	I'm going to ask you about your PE and your PH, the
15	probability of eruption and probability of the hazard
16	reaching the site, and what kind of criteria you have.
17	And as you move from one to the other,
18	you're attaching what you say is essentially the same
19	functional simplified PRA, and I think that's not
20	it's not clear to me, reading it, how the criteria for
21	acceptance change, as you go from having just a PE or
22	a PH and some associated damage, all the way down
23	through the others.
24	So, I'll raise that when you get to
25	particular places, but I just wanted to give an
ļ	1

(202) 234-4433

	78
1	overall comment on the layout.
2	I think it's a very sensible idea, it lets
3	you progress into more and more work as you need it,
4	and it lets you keep as simple as possible, but the
5	simplicity in the text is oversimplified.
6	I don't think it gives people the idea of
7	how to evaluate where they are.
8	DR. CORRADINI: I guess I wanted to ask
9	Dennis is much more astute about how you do this, but
10	I guess I was going to use your examples and ask how
11	far down the chain each of those would have been
12	analyzed.
13	In other words, pick Yucca Mountain. As
14	I understand the probabilistic analysis for Yucca
15	Mountain, it essentially went through all six of your
16	steps whereas Columbia or Trojan would not have.
17	They would have stopped somewhere in the
18	middle and done something that covered them enough
19	that they would they'd stop the process.
20	It strikes me that I would have some sort
21	of practical examples of how you pass through these.
22	MS. THOMPSON: Okay.
23	MEMBER DIMITRIJEVIC: Yeah. Actually, I
24	thought and I have similar comments to Dennis. I
25	don't think you need to have a six and, you know,
I	

(202) 234-4433

	79
1	develop because the six is the part of developing
2	the detailed risk insight.
3	But that's why, Dennis, there is no really
4	I mean, evaluating design basis would not be
5	separated from this.
6	The other thing which I just think, which
7	Mike just said, whenever we come to one step, let's
8	have an example of what that step will do.
9	And we can choose Columbia as an example
10	and say what would that mean for that site if they are
11	applying this reg guide.
12	MS. THOMPSON: All right.
13	MEMBER DIMITRIJEVIC: Something like that.
14	MS. THOMPSON: I will say that Columbia
15	got all the way to Step 7 because Columbia did
16	develop, and still has to this day, mitigating actions
17	that they take.
18	MEMBER DIMITRIJEVIC: Let me be specific.
19	We would just use as an example.
20	MS. THOMPSON: Okay.
21	MEMBER DIMITRIJEVIC: We don't need to
22	know what they did actually.
23	MS. THOMPSON: Okay.
24	MEMBER DIMITRIJEVIC: But use as an
25	example of
ļ	I

80 1 MS. THOMPSON: And we have some examples for the steps that I will walk through. None of them 2 3 are reactor examples because we were trying to be 4 neutral in --5 DR. CORRADINI: Sure. MS. THOMPSON: -- providing examples for 6 each of the steps, but we do have examples that --7 8 DR. CORRADINI: Okay. 9 -- I will share. MS. THOMPSON: 10 DR. CORRADINI: Good. MS. So, Dennis already 11 THOMPSON: mentioned that we have the off-ramps for each of the 12 -- most of these steps here. So, the steps are listed 13 14 on the slide here. 15 I'm not going to read them to you, but what I would like to point out is that most of these 16 steps allow for the application of risk insights and 17 then the option to determine if the hazard is 18 19 potentially significant. And if it is, to continue the analysis. 20 And if the hazard is not significant, to document the 21 results and end the analysis. 22 So, again, looking back to that goal that 23 24 we had set for the draft quide to make sure that the burden on an applicant using this VHA is commensurate 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	with the rest, so we've captured that through the
2	application of risk insights and these numerous off-
3	ramps so that the analysis can be complete before you
4	reach mitigation actions if the risk is deemed to be
5	not significant.
6	We will now walk through these initial
7	steps, which I think is what everybody is interested
8	in.
9	So, the first step is to gather the
10	initial information. This can be summarized as three
11	key points; and those are to consider the time period
12	of interest, the region of interest, and the tectono-
13	magmatic model.
14	For the time period of interest the draft
15	guide outlines the Quaternary period, or 2.6 million
16	years old, as sufficient.
17	This is consistent with the standard
18	review plan, SRP, Section 251 for the geologic site
19	characterization that we currently do for new
20	applications.
21	And the staff determined that the
22	Quaternary period would capture the uncertainties in
23	the timing and character of past volcanic events.
24	DR. CORRADINI: Well, there's nothing
25	there's nothing new about that.
ļ	I

(202) 234-4433

	82
1	MS. THOMPSON: No. The Quaternary period
2	for geologic site characterization is something that
3	we have been using and continue to use.
4	So, that was the working group's decision
5	that the 2.6 million year period of interest would be
6	sufficient for this as well.
7	DR. CORRADINI: Okay.
8	MEMBER DIMITRIJEVIC: So, do we have a map
9	of United States with that period showing all the
10	sites? Do we have a map like, you know.
11	MS. THOMPSON: A geologic map?
12	MEMBER DIMITRIJEVIC: Yeah, geologic
13	volcano-related map.
14	DR. CORRADINI: Yeah. I guess she's going
15	where I was
16	MS. THOMPSON: Oh.
17	DR. CORRADINI: going, which is now you
18	
19	MS. THOMPSON: Do we have a map of every
20	
21	MEMBER DIMITRIJEVIC: Yes.
22	MS. THOMPSON: Quaternary volcanic
23	feature in the United State?
24	MEMBER DIMITRIJEVIC: Yes.
25	DR. CORRADINI: Yes.
ļ	I

	83
1	MS. THOMPSON: I don't have one, but there
2	are I will say that Quaternary geology is captured
3	in geologic maps that are available for the entirety
4	of the United States.
5	So, a geologist would be able to obtain a
6	geologic map for a given area, and that geologic map
7	would have any Quaternary volcanic deposits mapped on
8	it.
9	MEMBER DIMITRIJEVIC: That's what I'm
10	asking you.
11	MS. THOMPSON: So, we
12	MEMBER DIMITRIJEVIC: So, somebody has to
13	go and find out
14	MS. THOMPSON: No. These are geologic
15	maps that are in existence, and we would be able to
16	identify the volcanic units on any geologic map
17	produced for the United States.
18	MEMBER DIMITRIJEVIC: Okay. In this
19	period, Quaternary
20	MS. THOMPSON: Yeah. They don't produce
21	specific maps just showing Quaternary volcanic
22	features in the United States, but those can be
23	deciphered from a geologic map.
24	MEMBER DIMITRIJEVIC: Okay.
25	MS. THOMPSON: So, that is a capability

(202) 234-4433

	84
1	that we have as the geologic staff here
2	MEMBER DIMITRIJEVIC: Whoever wants to
3	MS. THOMPSON: at NRC.
4	MEMBER DIMITRIJEVIC: site the nuclear
5	plant will be able to see, should we worry about
6	volcano or hazard.
7	MS. THOMPSON: Yes.
8	MEMBER DIMITRIJEVIC: All right.
9	MS. THOMPSON: Yes. So, the second
10	component of gathering initial information is to
11	consider the region of interest, or what we've been
12	calling the ROI, for this initial screening.
13	And, again, consistent with SRP Section
14	251 for geologic site characterization, the working
15	group determined that for surface hazards a 320-
16	kilometer radius from the site would be sufficient.
17	Recognizing that the ash fall hazard can
18	travel much further than 320 kilometers for ash fall
19	hazards, the draft guide recommends that the radius be
20	extended to capture the Quaternary volcanoes that
21	might affect the design or operation of the facility.
22	And this is consistent with what we do for
23	other hazards, how we would capture a large seismic
24	source outside of the 320-kilometer radius that may
25	have the ability to affect the design or operation of
l	I

(202) 234-4433

	85
1	the facility.
2	MEMBER MARCH-LEUBA: Yeah. I'm looking at
3	the ash cloud for the 2010 Iceland eruption.
4	MS. THOMPSON: Okay.
5	MEMBER MARCH-LEUBA: And it made it all
6	the way it came up from Iceland and made all the
7	way halfway to Siberia, to Italy, to I mean,
8	it covered half the world.
9	MS. THOMPSON: Mm-hmm.
10	MEMBER MARCH-LEUBA: So, the 320
11	kilometers looks a little small for
12	MS. THOMPSON: Which is why, for ash fall
13	hazards, we recommend the extension of that radius to
14	include
15	MEMBER MARCH-LEUBA: Yeah, but this is
16	MS. THOMPSON: the potential area.
17	MEMBER MARCH-LEUBA: like 5,000
18	kilometers.
19	MS. THOMPSON: And we will actually get to
20	that in Step 2 where an applicant would perform a
21	deterministic screening for the hazard that may affect
22	the site where they would consider the most
23	MEMBER MARCH-LEUBA: This was a problem
24	for flying airplanes, not for a stationary pump
25	MS. THOMPSON: Yes
I	I

(202) 234-4433

	86
1	(Simultaneous speaking.)
2	MEMBER MARCH-LEUBA: can't have a
3	filter, but 320 looks awfully small for something that
4	happen
5	MS. THOMPSON: Yeah.
6	PARTICIPANT: Well, 320 is surface.
7	MS. THOMPSON: Yeah. 320 is just for the
8	surface hazard. So, this is for things like
9	MEMBER MARCH-LEUBA: Okay.
10	MS. THOMPSON: lava flow, the new vent
11	opening, the debris flow.
12	MEMBER MARCH-LEUBA: I see.
13	MS. THOMPSON: So, we specifically call it
14	ash fall hazards as being separate and different from
15	this 320-kilometer radius.
16	MEMBER DIMITRIJEVIC: You have here
17	something which I strongly object in any PRA work. I
18	don't really like where they're short two decimal
19	places in high uncertainty.
20	You have here 320 kilometers because it
21	obviously comes from 200 miles.
22	MS. THOMPSON: Mm-hmm.
23	MEMBER DIMITRIJEVIC: This is a huge
24	uncertainty thing. We are showing like we know
25	something so it's 320.
	I

(202) 234-4433

87 1 And then if you put 322 kilometers, you will be absurd. 320 is absurd, too. Either put 300 2 3 kilometers or 200 miles. 4 MS. THOMPSON: Okay. 5 MEMBER DIMITRIJEVIC: Because 320 kilometers, it seems like we really know --6 7 CHAIR BLEY: But it's not PRA. It's significant figures --8 9 MEMBER DIMITRIJEVIC: Yeah. 10 CHAIR BLEY: -- which you did a long time 11 ago. Right. 12 MEMBER DIMITRIJEVIC: So, the other thing is like --13 14 MS. THOMPSON: Okay. MEMBER KIRCHNER: So, Vesna, the next time 15 16 we see 1.783 times 10 to the minus whatever, would you 17 correct those people? MEMBER DIMITRIJEVIC: Probably not. 18 19 (Simultaneous speaking.) 20 MEMBER BALLINGER: I call it the TI-89 syndrome. 21 MEMBER DIMITRIJEVIC: You know, like this 22 was about this dinosaurs, you know, million and six 23 24 vears ---MS. THOMPSON: Mm-hmm. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	88
1	MEMBER DIMITRIJEVIC: so, you know, old
2	because somebody is working
3	MS. THOMPSON: And I've made a note.
4	Okay. So, the
5	MEMBER DIMITRIJEVIC: You can use miles.
6	I mean, I don't see why you don't use the miles.
7	MS. THOMPSON: Okay.
8	MEMBER DIMITRIJEVIC: At least it's
9	probably 200 miles.
10	MS. THOMPSON: Yes.
11	MEMBER DIMITRIJEVIC: Yeah.
12	MS. THOMPSON: So, the third component in
13	gathering initial information is to consider the
14	tectono-magmatic model.
15	The tectono-magmatic model is a large-
16	scale understanding of the geologic processes that are
17	controlling volcanism in the region of interest over
18	the time period of interest.
19	The example shown here is from the
20	essential part of the Oregon Cascades. Each of the
21	stars represents a volcano. They're labeled as "N,"
22	"M," "S" and "BT."
23	For those familiar with the area, these
24	are North Sister, Middle Sister, South Sister and
25	Broken Top.
Į	I

(202) 234-4433

	89
1	The black dots are volcanic vents, and the
2	lines shown on this figure are fault lines.
3	DR. CORRADINI: This is by Sisters, the
4	town.
5	MS. THOMPSON: Yes.
6	Every feature shown on this figure is less
7	than half a million years old. So, all of them are
8	within the Quaternary period of interest, are a
9	hypothetical site, they are within the region of
10	interest.
11	But if we look at the tectono-magmatic
12	model for this region, it would show us that only the
13	two youngest volcanoes, those labeled as "M" and "S,"
14	or South and Middle Sister, are consistent with our
15	understanding of the processes driving volcanism in
16	this area.
17	So, if we were considering this potential
18	site, a VHA would only need to consider the two
19	volcanoes, Middle and South Sister, that are within
20	the region of interest, are of the age within the time
21	period of interest and are consistent with the
22	tectono-magmatic model.
23	CHAIR BLEY: I hate to ask you two
24	questions on the models. In the Reg Guide
25	MS. THOMPSON: Yes.
I	

	90
1	CHAIR BLEY: under Step 1
2	MS. THOMPSON: Uh-huh.
3	CHAIR BLEY: which is where you are,
4	there's two, to me, contradictory statements. The
5	first is, if there's evidence of the Quaternary
6	volcanism in the regions of interest, a conceptual
7	model of tectono-magmatic processes should be
8	developed.
9	The next paragraph says, if the hazard can
10	if you're not consistent with the model, screen it
11	out.
12	So, do we develop a model or do we believe
13	the one that's there or why do you have those two
14	statements?
15	You know, if you're going somewhere where
16	you don't have a model you believe in, I guess you'd
17	have to develop one, but then much of the rest of that
18	section keeps saying if you're not consistent with
19	that model, screen it out.
20	Nothing warns you to double-check the
21	model to see if it's right, to see if you've got some
22	problem.
23	MS. THOMPSON: I'm just reading the
24	section that you're referring to
25	CHAIR BLEY: Oh.
Į	

	91
1	MS. THOMPSON: so that I can
2	CHAIR BLEY: Okay. It's paragraph 3 and
3	4.
4	MS. THOMPSON: On page 12?
5	MEMBER DIMITRIJEVIC: Yes.
6	CHAIR BLEY: On page 12.
7	MS. THOMPSON: Okay.
8	CHAIR BLEY: And then it comes up three
9	paragraphs later
10	MS. THOMPSON: Okay.
11	CHAIR BLEY: in the last paragraph, but
12	it's just those two paragraphs that bothered me.
13	MS. THOMPSON: Okay.
14	CHAIR BLEY: Because I read the first one
15	that said, develop your model, and I read the next one
16	and it says, if you're not consistent with the model,
17	screen it out.
18	MS. THOMPSON: I'm going to take a note to
19	bring this back to the working group and
20	CHAIR BLEY: I think that's best.
21	MS. THOMPSON: determine whether this
22	was just an oversight or a typo, but we'll
23	CHAIR BLEY: What you really wanted to
24	say, yeah.
25	MS. THOMPSON: We'll confirm this.
I	I

```
(202) 234-4433
```

	92
1	CHAIR BLEY: Okay.
2	DR. CORRADINI: Is there I'll wait
3	until you're done.
4	MS. THOMPSON: Okay.
5	DR. CORRADINI: Is there something the
6	way you describe this, certain things are in and
7	certain things are out.
8	And that's because of age or because of
9	severity of the eruption known within the age limit?
10	MS. THOMPSON: It's because of the
11	processes that are resulting in the volcanism in the
12	area. So, in the tectono-magmatic model, another
13	example of this would be volcanism in Hawaii.
14	So, the hot spot there is currently on the
15	big island. So, on the island of Hawaii. You
16	wouldn't consider a new vent opening on Kaua'i because
17	although there is evidence of volcanism there, it's a
18	volcanic island arc, there is no active process under
19	the island of Kaua'i that would be consistent with
20	volcanism likely to occur in the future.
21	So, that's what the
22	DR. CORRADINI: That's based on a
23	geologist's judgment?
24	MS. THOMPSON: Yes.
25	DR. CORRADINI: Okay.
Į	1

93 1 CHAIR BLEY: Well, and the history, you 2 know --3 MS. THOMPSON: Yeah. 4 DR. CORRADINI: No, I understand. 5 CHAIR BLEY: -- that they started over here and ---6 7 DR. CORRADINI: I understand that. 8 CHAIR BLEY: -- now they're over here. 9 DR. CORRADINI: I understand that. But I 10 guess with all the little black dots, I first thought they were outside of the time span ---11 MS. THOMPSON: No. 12 DR. CORRADINI: -- but you're saying it's 13 14 not just outside of the time span, they're outside of --- they're not being considered because of something 15 about the physical mechanism ---16 17 MS. THOMPSON: Yes. DR. CORRADINI: -- which caused the event. 18 19 CHAIR BLEY: Uh-huh. MS. THOMPSON: So, eruption along any of 20 the vents to the east in this photo -- so, between BT, 21 or Broken Top, and the fault zone --- any of those 22 vents are not consistent with what 23 is driving 24 volcanics in that area. CHAIR BLEY: Within the time period of --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	MS. THOMPSON: Within the time period of
2	interest, yes.
3	DR. CORRADINI: Okay. That's fine.
4	MS. THOMPSON: So, we're looking at
5	it's a three-pronged consideration. It's what is
6	within the Quaternary period, what is within the
7	region of interest, and then what is consistent with
8	the geologic processes going on in that area for the
9	time period that we're considering.
10	MEMBER DIMITRIJEVIC: And how would one
11	know those geological processes?
12	DR. CORRADINI: You have to be a
13	geologist.
14	MS. THOMPSON: Yes.
15	DR. CORRADINI: You have to be a geologist
16	and studied it.
17	MEMBER DIMITRIJEVIC: Okay. All those
18	dots will be on the maps for the geological region,
19	right?
20	MS. THOMPSON: Yes. Yes.
21	DR. CORRADINI: But her point was only the
22	two or three to the
23	MEMBER DIMITRIJEVIC: No I know, but I just
24	try to see from the two like you want to screen all
25	these 300 kilometers.

	95
1	So, I was wondering can you screen without
2	having a geologist? That's my question.
3	MS. THOMPSON: It would be very difficult
4	to go through this process without a geologist. It
5	would be nearly impossible to
6	MEMBER DIMITRIJEVIC: If I am in
7	Massachusetts, would it be difficult if there is
8	nothing around I mean, there have to be areas of
9	the United States where you don't need the geologist.
10	DR. CORRADINI: I assume you have your
11	green light on.
12	MS. THOMPSON: There are regions of the US
13	where there are not volcanic hazards that would be
14	considered, and that would be a determination made by
15	the geologists as part of the geologic site
16	characterization.
17	If there are potential sources of
18	volcanism in the region, this would be the approach
19	that that geologist would then take to assess those
20	potential volcanic hazards.
21	But if we're looking at a hypothetical
22	site in Massachusetts, there are going to be other
23	geologic hazards to consider other than volcanism that
24	would be captured
25	MEMBER KIRCHNER: I could say firsthand I
l	

(202) 234-4433

	96
1	was in a Hyatt Regency
2	MS. THOMPSON: within the geologic site
3	characterization.
4	MEMBER KIRCHNER: in Cambridge and I
5	got a wake-up call one morning. The bed started going
6	back and forth.
7	So, you may not have any volcanic threats,
8	but the seismologists or geologists are going to point
9	to other
10	MEMBER DIMITRIJEVIC: You know, in seismic
11	we have that map of United States which clearly
12	defines region where there is high risk, low risk, you
13	know, and there is the four region of United States.
14	I was wondering if something like that
15	exists for
16	MS. THOMPSON: There are numerous geologic
17	hazard maps that the United States Geologic Survey
18	produces and updates.
19	There are earthquake hazard maps. There
20	are landslide hazard maps. There are floodplain maps.
21	There are I'm trying to think of the other ones
22	that I have seen.
23	There are many different geologic hazards
24	in geology. It's not just we're not just looking
25	at an earthquake or we're not just looking at a body
ļ	I

(202) 234-4433

	97
1	of water.
2	We're looking at sinkholes. We're looking
3	at rockslides. We're looking at rockfalls. We're
4	looking at volcanoes. We're looking at faults. We
5	are looking at a number of hazards that may occur
6	based on the geology at that specific site.
7	So, if the site has a potential source of
8	volcanism, this is an appropriate method. If there is
9	no source of volcanism, that site would still be
10	subject to the regular geologic site characterization
11	and review by the geology staff.
12	Did that answer your question?
13	MEMBER DIMITRIJEVIC: Yeah.
14	MS. THOMPSON: Okay. So, if after the
15	initial screening there are no sources of volcanism
16	that are within the time period of interest occurring
17	within the region of interest and that are consistent
18	with the tectono-magmatic model, an applicant using
19	the VHA would have the option to complete the analysis
20	and document their results.
21	if there are sources of volcanism that are
22	of Quaternary age, within the region of interest, and
23	consistent with the tectono-magmatic model, an
24	applicant would proceed to Step 2, which is to perform
25	a deterministic screening.
ļ	I

(202) 234-4433

98 1 This deterministic screening would consider the characteristics --2 3 CHAIR BLEY: I'm going to interrupt you 4 for two reasons. 5 MS. THOMPSON: Yes. 6 CHAIR BLEY: You're about halfway through. 7 MS. THOMPSON: Yes. 8 CHAIR BLEY: And we've only been here an 9 hour and a half, but the coffee shop closes at 3:00. 10 (Laughter.) CHAIR BLEY: So, why don' we take our 11 break now ---12 13 MS. THOMPSON: Okay. CHAIR BLEY: -- and then we can come back 14 15 and finish up the whole thing later because I think we're now moving into the meat of the ---16 17 MS. THOMPSON: Yes. CHAIR BLEY: -- methodology and it's kind 18 19 of different. So, if that's okay, we will recess until five til. 20 (Whereupon, the above-entitled matter went 21 off the record at 2:38 p.m. and resumed at 2:56 p.m.) 22 CHAIR BLEY: We are back in session. All 23 24 members, please come to your seats and you're back on. MS. THOMPSON: Okay. So, we left off at 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	Step 2, which is the performance of the deterministic
2	screening.
3	So, this is considering the
4	characteristics of the Quaternary volcanoes that are
5	within the region of interest and are consistent with
6	the tectono-magmatic model.
7	Within the deterministic screening an
8	applicant would evaluate uncertainties in the buried
9	or eroded record.
10	They can use information from analogs or
11	from numerical modeling to quantify and further reduce
12	uncertainties in the available information.
13	This may include how far a hazard could
14	credibly travel from the source to some distance and
15	whether that hazard would reach the site.
16	This may be used a bounding evaluation
17	may be used to determine that distance from the
18	volcano to the farthest extent of the hazard and
19	whether that would have effect on the site.
20	And if there is an associated uncertainty,
21	how uncertain is that credible distance?
22	CHAIR BLEY: That may involve some
23	atmospheric modeling as well as
24	MS. THOMPSON: Depending on the
25	CHAIR BLEY: volcanic.
l	I

(202) 234-4433

	100
1	MS. THOMPSON: Yeah.
2	CHAIR BLEY: Okay.
3	MS. THOMPSON: So, the example that I have
4	for a deterministic screening is from lava flows that
5	were measured off of Mt. Cameroon in the Republic of
6	Cameroon in Central Africa.
7	So, the measured flows are shown as the
8	lava flow length in kilometers on the x axis, and the
9	frequency of occurrence of a lava flow of that length
10	is shown on the y.
11	This data allows an analyst to fit a
12	statistical function to histogram data to develop a
13	likelihood estimate for the maximum length of the lava
14	flows from Mt. Cameroon.
15	So, if we were to consider a site near Mt.
16	Cameroon within ten kilometers, based on the data
17	shown here we would assume that the lava flow hazard
18	would most likely be considered in the VHA and
19	considered for additional analysis in the subsequent
20	steps.
21	Similarly, if we were considering a site
22	that was 20 kilometers or more away from Mt. Cameroon,
23	based on this data here our deterministic screening
24	may tell us well, would probably tell us that lava
25	flows from Mt. Cameroon do not pose a credible hazard
	I

(202) 234-4433

	101
1	to the proposed site assuming that the mechanisms that
2	were driving the lava flow lengths produced in the
3	mapped data are those same mechanisms that will
4	produce future lava flows.
5	MEMBER DIMITRIJEVIC: How about lava flow
6	for this site?
7	MS. THOMPSON: Huh?
8	MEMBER DIMITRIJEVIC: How about lava flow
9	for this site? Do we have information of that?
10	MS. THOMPSON: I do not have information
11	on that with me today, but
12	MEMBER DIMITRIJEVIC: I know, but does it
13	exist?
14	MS. THOMPSON: Yes.
15	MEMBER DIMITRIJEVIC: Lava flow
16	MS. THOMPSON: So, we would find lava
17	flow information, yes.
18	MEMBER DIMITRIJEVIC: Yes.
19	MS. THOMPSON: If it's available.
20	MEMBER DIMITRIJEVIC: And all other
21	hazards associated.
22	MS. THOMPSON: Yes. So, lava flows are a
23	hazard that I won't say that it's the easiest one
24	to find data for, but a field geologist would be able
25	to go out to the site and walk the area and determine
I	I

(202) 234-4433

	102
1	what are the flows.
2	There would also usually be geologic maps
3	available that would show the ages of those respective
4	flows that would be considered. And that is how the
5	data was obtained for this example here from Mt.
6	Cameroon.
7	MEMBER RICCARDELLA: Isn't lava flow
8	directionally dependent?
9	MS. THOMPSON: It can be. Lava flows will
10	be channelized based on topography. So, some of these
11	will be could be flow covering flow, which is why
12	something to be considered is the buried or eroded
13	record that may be missing.
14	MEMBER DIMITRIJEVIC: Do you know what
15	hazard was analyzed for the Columbia?
16	MS. THOMPSON: For Columbia, they
17	considered volcanic ash. So, that was the hazard that
18	screened in as credible for the site, while the flow
19	did not, because of its location far from a source.
20	So, in a deterministic screening for
21	Columbia given the location, a surface hazard like a
22	debris flow or a lava flow would not screen in because
23	of the distance that it's located from the source
24	volcano.
25	But an ash fall hazard would screen in
I	I

(202) 234-4433

103 1 because realistically in our geologic record, and from direct observation of the 1980 eruption of Mount St. 2 3 Helen's, we have seen volcanic ash reach the Columbia 4 site. 5 MEMBER DIMITRIJEVIC: Well, you have said that we have within 300 miles, but it's my feeling 6 7 that we deem these 300 miles like between hundred miles and 300 only thing to consider would be the ash 8 and everything -- all other hazards will be less than 9 10 maybe 50 or 100 miles. It is going to depend. 11 MS. THOMPSON: Because, as I discussed with the pyroclastic flows, 12 there is a possibility for larger volume pyroclastic 13 14 flows to travel further. 15 is what the deterministic So, that 16 screening would allow an applicant to do is to consider the spectrum of volcanic hazards that could 17 result from the volcanic source and whether those 18 19 volcanic hazards could credibly reach the proposed site. 20 DR. CORRADINI: So, to say it another way 21 -- I think I know where Vesna's going. 22 CHAIR BLEY: Uh-huh. 23 24 DR. CORRADINI: To say it another way, is -- to go back to your examples of the various 25 it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

104 1 hazards, each one of these hazards would have to have some sort of deterministic length scale to say either 2 you're in or you're out. 3 4 MEMBER DIMITRIJEVIC: Right. 5 MS. THOMPSON: Yes. And that would be 6 performed at this step. 7 DR. CORRADINI: And if all of them are 8 out, then you're out. MS. THOMPSON: Yes. 9 10 DR. CORRADINI: But if some are in, you have to consider that hazard. 11 MS. THOMPSON: Yes. 12 13 DR. CORRADINI: Okay. 14 MS. THOMPSON: Yes. 15 CHAIR BLEY: But if you don't have enough 16 data, then you take what you had and do a SSHAC 17 process with it? MS. THOMPSON: Yeah. And we will get to 18 19 that. PARTICIPANT: Do a what? 20 Do a SSHAC process, the 21 MS. THOMPSON: Senior Seismic Hazard ---22 PARTICIPANT: Oh, SSHAC. 23 24 MS. THOMPSON: -- Analysis Committee. PARTICIPANT: Oh, okay. Yeah. 25 Sure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	105
1	PARTICIPANT: Not seismic anymore
2	MS. THOMPSON: Yeah.
3	PARTICIPANT: but they're doing the
4	same thing for floods and
5	PARTICIPANT: Okay.
6	MS. THOMPSON: Yeah. And we'll get to
7	that in a later set, but that is the general idea that
8	assess whether a hazard potentially exists,
9	whether it's it has to be the Quaternary age, and
10	the region of interest consistent with the tectono-
11	magmatic model.
12	If the hazard does exist consistent with
13	those three factors, then you would perform the
14	deterministic screening.
15	For the example here, if you're within ten
16	
17	(Simultaneous speaking.)
18	MEMBER DIMITRIJEVIC: determine the
19	distance between those two because you already put 300
20	kilometers in the first one, right? So, now you want
21	to screen all that.
22	MS. THOMPSON: Yes.
23	MEMBER DIMITRIJEVIC: You have to find the
24	place where the ash will not get 300 kilometers from
25	the place.
Į	

(202) 234-4433

	106
1	MS. THOMPSON: Not necessarily not get
2	there. You can still move through the process with a
3	volcanic ash fall hazard, and then you reach either
4	Step 6 where you evaluate your design bases to see if
5	your facility could withstand the loads from that
6	volcanic ash, or you proceed to Step 7
7	MEMBER DIMITRIJEVIC: That makes sense.
8	MS. THOMPSON: and consider mitigation
9	actions, which is what was done for Columbia.
10	MEMBER DIMITRIJEVIC: I was only trying to
11	establish difference between 1 and 2 because that's
12	not really clear.
13	You already put some distance of 300
14	kilometers and now we are
15	MS. THOMPSON: So, the distance for 300 is
16	to capture the volcanic source. The screening here is
17	to consider individual hazard.
18	So, in the 320 or the 200-mile radius
19	we're looking at any source within that radius that is
20	of Quaternary age and consistent with the model.
21	And then based on that source at the
22	deterministic screening level, we consider the
23	individual volcanic hazards that may occur from that
24	source and consider their maximum credible distance
25	and whether the site is within that distance and would
ļ	I

(202) 234-4433

	107
1	be affected by that hazard.
2	So, if we wanted to use the Columbia
3	example, we would screen in the Cascade volcanoes like
4	Mount St. Helen's, we would then consider the volcanic
5	hazards from Mount St. Helen's with the pyroclastic
6	flow
7	MEMBER DIMITRIJEVIC: I understand that.
8	MS. THOMPSON: reach to the site.
9	MEMBER DIMITRIJEVIC: My question is, are
10	you going to screen anything in additional in Step 2?
11	Because you already putting within 300 kilometers
12	which assume that's average hazard longest hazard
13	distribution.
14	MS. THOMPSON: So, I think the key point
15	in the 320 or 200-mile radius is that is the source of
16	the hazard, and then the deterministic screening is
17	for the hazard itself.
18	So, we're looking at the source in Step 1,
19	and then we're looking at the likelihood of the hazard
20	reaching the site in the deterministic screening.
21	DR. CORRADINI: It makes sense.
22	CHAIR BLEY: Well, except for one thing.
23	If ash can go further
24	MS. THOMPSON: Uh-huh.
25	CHAIR BLEY: as your slide shows, than
I	1

	108
1	the 300 kilometers, then you ought to be looking
2	further away than that for a source.
3	DR. CORRADINI: But her point I
4	thought her point was that all the yeah, all the
5	volcanic hazards have to be individually assessed in
6	terms of distance out to not out to, beyond.
7	MS. THOMPSON: So, for surface hazards it
8	is the
9	DR. CORRADINI: Okay.
10	MS. THOMPSON: 200-mile radius. For
11	ash fall hazards we extend it beyond as to what is
12	credible for that volcano and for the distance that
13	the ash fall
14	DR. CORRADINI: Okay. But you got to
15	MS. THOMPSON: could credibly travel.
16	DR. CORRADINI: find that volcano,
17	yeah.
18	MS. THOMPSON: And that's what you do in
19	Step 1.
20	DR. CORRADINI: Okay. That's where I'm
21	kind of hanging because in Step 1 it kind of says look
22	out to 300
23	MEMBER DIMITRIJEVIC: Yeah.
24	DR. CORRADINI: kilometers.
25	MS. THOMPSON: Look out to 300 for surface
ļ	1

(202) 234-4433

	109
1	hazards. And then for ash fall
2	CHAIR BLEY: How far do you look?
3	MS. THOMPSON: consider further.
4	CHAIR BLEY: How far?
5	MS. THOMPSON: Well, that would be based
6	on site-specific considerations of volcanic sources
7	outside the 200-mile radius.
8	So, if you're looking
9	CHAIR BLEY: So, you've got to
10	MS. THOMPSON: So, if you're looking at a
11	site in Iowa
12	CHAIR BLEY: To do that, you have to find
13	them.
14	MS. THOMPSON: So, looking at a site in
15	Iowa, you would have to determine whether to extend
16	that region of interest to include Cascade volcanoes.
17	CHAIR BLEY: Yeah.
18	MS. THOMPSON: Could a Cascade volcano ash
19	fall reasonably arrive at a site in Iowa and
20	CHAIR BLEY: In sufficient quantities of
21	matter.
22	MS. THOMPSON: in sufficient quantity
23	to affect a facility.
24	DR. CORRADINI: If you find a presidential
25	candidate under the ash sorry.
	I

	110
1	MS. THOMPSON: So, for ash fault the 200-
2	mile radius is extended to what is credible.
3	MEMBER DIMITRIJEVIC: To 300?
4	MS. THOMPSON: Huh?
5	MEMBER DIMITRIJEVIC: To 300.
6	MS. THOMPSON: Well, to what is credible.
7	MEMBER DIMITRIJEVIC: Well, this is what
8	we if my the volcano is further from 300, I
9	will screen it in Step 1.
10	That's what you are saying? That's what
11	I am trying to tell you.
12	PARTICIPANT: Just for surface hazards.
13	MS. THOMPSON: Just for surface hazards.
14	MEMBER DIMITRIJEVIC: Oh. So, now I have
15	to look again in all volcanoes even I determine it
16	PARTICIPANT: Some distance further.
17	MEMBER DIMITRIJEVIC: That doesn't make
18	any sense that I have to look in all the country
19	again. That's totally senseless.
20	MS. THOMPSON: Well, it's based on our
21	geologic knowledge of the volcanic sources. So, the
22	surface hazards we consider those closest to the
23	proposed site, which is the 200-mile radius.
24	Many of those surface hazards, you think
25	about a debris flow or a
I	I

(202) 234-4433

111 1 MEMBER DIMITRIJEVIC: I understand you completely. 2 3 MS. THOMPSON: Yeah. Okay. 4 MEMBER DIMITRIJEVIC: So, there are things 5 that we understand. Let's talk about what I don't understand. 6 7 MS. THOMPSON: Okay. 8 MEMBER DIMITRIJEVIC: If I'm in Vogtle, 9 somewhere there is not any volcano on the site, right, 10 I'm already out in the first step because I don't have anything within 200 miles. 11 I'm out. Why would I go on Step 2? 12 13 MS. THOMPSON: If you were at the Vogtle 14 site, you --15 MEMBER DIMITRIJEVIC: Or on some site 16 there is --17 MS. THOMPSON: Yeah. MEMBER DIMITRIJEVIC: -- no volcano within 18 19 200 miles. I already exceed this process. MS. THOMPSON: Mm-hmm. 20 MEMBER DIMITRIJEVIC: So, why would I go 21 now and check for ashes? 22 MS. THOMPSON: Because within Step 1 we're 23 24 looking at the 200-mile radius for surface hazards and extending beyond that for the ash fall hazard. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	MEMBER DIMITRIJEVIC: But do you
2	understand if I am not within 200 miles of any
3	volcano, I will already exceed in the first step and
4	say no and here I am. I will never go to Step 2.
5	MEMBER REMPE: So, Vesna, if you look at
6	Slide 23, she's got two things. You got to go for not
7	only the surface hazards, you also got to look for ash
8	fall. You're not out of it.
9	MEMBER DIMITRIJEVIC: I understand all
10	these hazard perfectly. I already read that, I just
11	want to say I will never come to the Step 2.
12	CHAIR BLEY: You will. Read the text and
13	not the slide.
14	MEMBER DIMITRIJEVIC: Because I screen and
15	I am not within 200 miles.
16	MEMBER REMPE: The text for Step 1
17	MS. THOMPSON: I'm looking at Slide 23 and
18	I don't see that.
19	MEMBER DIMITRIJEVIC: Okay.
20	MEMBER REMPE: Yeah, but the slides are
21	cartoons for us. The text says, look out to 320
22	kilometers for
23	MS. THOMPSON: And then we say we should
24	extend that distance extend a sufficient distance
25	beyond 200 miles to encompass those Quaternary

```
(202) 234-4433
```

	113
1	volcanic systems that have the potential to effect the
2	design or operation of the proposed reactor.
3	CHAIR BLEY: So, just a simple question
4	that would help us get our arms around how far away do
5	you look.
6	When you get a giant volcano that puts
7	stuff up in the stratosphere, it messes up the air
8	everywhere, but you don't get substantial amounts of
9	ash coming down anywhere.
10	In Mount St. Helen's, for example, it
11	lofted over much of the State of Washington
12	MS. THOMPSON: Uh-huh.
13	CHAIR BLEY: and fell in large
14	quantities out getting toward the Idaho border.
15	MS. THOMPSON: Uh-huh.
16	CHAIR BLEY: There must be some level of
17	experience to say you never have to look beyond 300
18	miles, 500 miles, something like that.
19	MS. THOMPSON: So, I'm actually I see
20	Britt holding the microphone again.
21	CHAIR BLEY: Or do you have to look
22	everywhere and then say for that particular volcano,
23	can the ash
24	MS. THOMPSON: Well, you don't need to
25	look everywhere. We're looking at finding a
	I

(202) 234-4433

	114
1	reasonable distance based on the system-specific
2	characteristics of that particular volcano and that
3	particular site.
4	CHAIR BLEY: That volcano is the one you
5	have to find. That's why we're being a pest on it.
6	MS. THOMPSON: Okay. But did you have
7	more to add?
8	DR. HILL: We are trying to implement this
9	in a risk-informed framework and we're faced with an
10	information gap and having no real good understanding
11	about what's the minimum level of ash that could
12	affect the design and safe operation of any proposed
13	facility.
14	Now, if we had a technical basis to say
15	that, yeah, we are looking at one millimeter of ash
16	with a threshold below which we'd have no structures,
17	system or component that's important to safety would
18	be adversely perfected by the presence of one
19	millimeter of ash.
20	If we had that, we could develop some sort
21	of a more prescriptive screening criteria that said
22	credibly for US volcanoes X distance away seems very
23	unlikely to produce one millimeter of ash.
24	Unfortunately, we don't have that sort of
25	a design basis.
I	

(202) 234-4433

	115
1	DR. CORRADINI: But can't you work the
2	problem backwards?
3	Instead of worrying about how the source
4	loss this whole thing, ask the question for
5	structure, systems and components, at what point would
6	they start not performing.
7	DR. HILL: That's an excellent question.
8	We just don't have the technical information from
9	either in the US or around the world to make an
10	informed decision about that.
11	CHAIR BLEY: They didn't have systems
12	people oh, go ahead.
13	MEMBER DIMITRIJEVIC: But wouldn't the 200
14	miles be enough for one millimeter of ash?
15	DR. HILL: No, it would not.
16	MEMBER DIMITRIJEVIC: The only the
17	most I mean, you know, I don't think that the
18	I mean, you may lose offsite power, but we can say
19	that in data of loss of offsite power already.
20	I don't think the less than one millimeter
21	will affect anything, but we you know, subsystem
22	people can look at that.
23	That means different facility design,
24	right?
25	MEMBER MARCH-LEUBA: These generators are
ļ	I

(202) 234-4433

	116
1	sucking air through a big pump to make them work.
2	CHAIR BLEY: ISFSIs you plug up all the
3	vents.
4	MEMBER MARCH-LEUBA: Yeah.
5	CHAIR BLEY: You don't have natural
6	circulation anymore.
7	MEMBER MARCH-LEUBA: When we were in the
8	Framatome enrichment facility where they dump, I don't
9	know, a foot of ash at Mount St. Helens, they showed
10	us everything they put on their systems and they have
11	these oil filters that they have to replace every
12	three hours if there is a
13	MEMBER DIMITRIJEVIC: But this complicates
14	things so much more. It's just unbelievable because
15	a screening becomes so you know, just in these
16	first two locations screening becomes totally
17	MEMBER MARCH-LEUBA: If I was designing
18	_
19	MEMBER DIMITRIJEVIC: unpractical.
20	MEMBER MARCH-LEUBA: the plant, what
21	would be useful for me would be you tell me how much
22	ash is going to fall in my site. And then I'll design
23	the field just to protect against that.
24	And I'll decide, well, if you're sending
25	me three feet of ash, there ain't no way I can protect
I	1

(202) 234-4433

	117
1	it. If is half a millimeter, I may.
2	DR. HILL: And that is incredibly
3	straightforward problem to look at. Once you know
4	these are the volcanoes we have to consider, these
5	events, eruptive record, the science is sufficient to
6	do very good supportable modeling that can give you an
7	exceedance probability that counts for not only a
8	thickness being exceeded, but the annual likelihood of
9	it occurring due to eruption frequency, but that's a
10	more detailed analysis. It doesn't occur at the
11	screening stage.
12	MEMBER MARCH-LEUBA: But I cannot tell you
13	what my plant will be able to support because I
14	haven't decided yet.
15	If I put oil filters, I can support ten
16	times more.
17	DR. HILL: Yeah.
18	MEMBER MARCH-LEUBA: So, I think that from
19	a designer point of view, I want to know what I have
20	to design my diesel generators against, and then make
21	a decision can I make it or not, or is it not
22	workable, it's not economical to do it.
23	MS. THOMPSON: And I
24	MEMBER MARCH-LEUBA: You can filter
25	everything.
I	I

(202) 234-4433

	118
1	MS. THOMPSON: And I think something that
2	you touched on is you said that knowing for your
3	design, and this approach is designed for siting.
4	So and when it comes to design
5	factors, that will come in at a later step. But if
6	you were using this for design, you would still go
7	through this process to determine your design
8	characteristics
9	MEMBER MARCH-LEUBA: There is something
10	MS. THOMPSON: but you would still have
11	to do the siting consideration as well.
12	MEMBER MARCH-LEUBA: There is something
13	wrong with the approach. I cannot you cannot give
14	me criteria for siting if you don't know what I'm
15	putting there.
16	If I have if I'm driving a car into a
17	stream, okay, and I'm driving my car into a stream, I
18	can go in the stream this deep because the water will
19	start getting into the carburetor not that anybody
20	has carburetors anymore.
21	If I'm driving a high car with an intake
22	out here, I can drive into a stream that is this tall.
23	So, the issue of siting depends on what car I'm
24	driving.
25	Same with the fuel, those four diesel
I	

(202) 234-4433

	119
1	generators
2	DR. HILL: Wait a minute. But the same
3	MEMBER DIMITRIJEVIC: But the main comment
4	is you cannot screen from the first step. It maybe
5	makes sense for you guys to combine both steps.
6	DR. CORRADINI: Well, I think I thought
7	that's what I'm sorry, now I've forgotten you
8	keep identifying yourself for
9	MS. THOMPSON: Britt.
10	DR. CORRADINI: Britt, I thought that's
11	what you were saying, this is a screening first step.
12	You might have to do a more detailed one as you go
13	down two or three levels in the
14	MEMBER DIMITRIJEVIC: No. No. Already
15	here, they cannot screen based on 200 miles.
16	DR. CORRADINI: No. 200 miles is specific
17	
18	(Simultaneous speaking.)
19	MEMBER DIMITRIJEVIC: your screening
20	make that one step, yeah.
21	MS. THOMPSON: Okay.
22	DR. CORRADINI: If it's quiet, start
23	going.
24	MS. THOMPSON: Okay.
25	(Laughter.)

	120
1	MEMBER DIMITRIJEVIC: Yeah, you can grab
2	that chance.
3	MS. THOMPSON: Yes. All right.
4	MEMBER RICCARDELLA: Kind of making an
5	analogy to seismic, you know, it seems like we have a
6	seismic hazard something like a hazard probability
7	curve, but we don't have a fragility curve to compare
8	that against.
9	We need to maybe people need to do some
10	volcanic qualification testing of various types of
11	equipment.
12	(Laughter.)
13	MS. THOMPSON: So, if after performing
14	(Simultaneous speaking.)
15	MEMBER DIMITRIJEVIC: define safety
16	completely as ash-resistant.
17	MS. THOMPSON: So, if after performing the
18	deterministic screening the potential volcanic hazard
19	is determined to not present a credible hazard based
20	on some deterministic screening criteria or the
21	distance which the hazard could credibly travel from
22	the source and would not affect the site, an applicant
23	using this VHA would document their results and the
24	analysis is complete.
25	If not, the applicant would proceed to
I	I

(202) 234-4433

	121
1	Step 3 to consider initial risk insights. The initial
2	risk insights would include a suite of risk-informed
3	information, not just the plant's PRA, that would be
4	used to judge the safety significance of information.
5	This information may include the
6	sensitivity of the new information in the facility's
7	PRA, the degree of uncertainty in the new information,
8	the consideration of available alternatives and the
9	confidence in the supporting investigations.
10	For the initial risk insight step using
11	the plant's PRA, an applicant could assume that the
12	probability of an SSC failure or unacceptable
13	performance would be equal to one if the screened-in
14	volcanic hazard occurs at the site.
15	They would then evaluate the results in
16	the PRA and consider additional risk insight
17	information.
18	This would help to determine if the
19	volcanic hazard is significant to safety with no
20	credit for the likelihood or magnitude of occurrence
21	of that hazard.
22	If the insights show that the risk or the
23	hazard is not significant, the applicant would
24	document the rationale and complete the VHA.
25	Otherwise, they would proceed to the next step.
	I

(202) 234-4433

	122
1	DR. CORRADINI: So, basically the
2	consequence is failure.
3	MS. THOMPSON: Yes.
4	MEMBER DIMITRIJEVIC: This is where it's
5	important to add the SSC susceptible to identify
6	hazard.
7	MS. THOMPSON: Okay.
8	MEMBER DIMITRIJEVIC: If you put all SSCs
9	to be one, then, I mean, you know, you are just going
10	to
11	DR. CORRADINI: You're done.
12	MEMBER DIMITRIJEVIC: Yeah, you're done.
13	So, that's why it's very important to
14	understand susceptibility, you know.
15	MS. THOMPSON: Yes. I think that's a key
16	clarification to make.
17	CHAIR BLEY: But with all due deference to
18	my colleagues here, some hints about what kinds of
19	structures, what kinds of components are susceptible
20	to what kinds of
21	PARTICIPANT: Examples.
22	CHAIR BLEY: hazards would be very
23	helpful. Otherwise, you know, it's you're asking
24	people for a rock. And when it comes in you'll say,
25	eh, it's the wrong rock, go do it again.
I	

(202) 234-4433

	123
1	MS. THOMPSON: Okay.
2	MEMBER DIMITRIJEVIC: So, it could be
3	table a table of hazard and what type of components
4	could be susceptible to that.
5	MS. THOMPSON: Okay. I'll take that note
6	back to
7	(Simultaneous speaking.)
8	MEMBER DIMITRIJEVIC: plant.
9	CHAIR BLEY: And that requires you to
10	having some PRA people and, more importantly, some
11	real plant people who know what things are where and
12	what they're vulnerable to.
13	MEMBER DIMITRIJEVIC: And in addition to
14	SSCs, there should be human actions also. Because if
15	you have to get rid of operators because they have to
16	evacuate.
17	MS. THOMPSON: Okay.
18	CHAIR BLEY: And when you get to Step 6 or
19	7, you have to model
20	MS. THOMPSON: And that's something that
21	we have, as a working group, included in the
22	mitigating actions is being able to demonstrate or
23	show that the actions are practicable given the
24	hazard. So, we'll get to that.
25	So, if the applicant still has a hazard

(202) 234-4433

	124
1	that is significant to safety, they will proceed to
2	Step 4 where they will evaluate either the probability
3	of eruption, which is PE, or the probability of the
4	hazard reaching the site, which we call PH.
5	In a traditional VHA, an applicant would
6	calculate both of these probabilities; the probability
7	of the eruption and the probability of the hazard.
8	But in the draft guide
9	MEMBER DIMITRIJEVIC: The frequency of
10	eruption. Frequency of eruption, probability of
11	hazard.
12	That's a very important distinction
13	because eruption doesn't have a probability. It has
14	a frequency.
15	MEMBER BALLINGER: And shouldn't
16	evaluation of eruption be further up? Because if
17	there's no likelihood of an eruption, you're done,
18	right?
19	MEMBER DIMITRIJEVIC: What's the
20	probability to calculate that frequency accurately?
21	CHAIR BLEY: They've got an embedded
22	assumption that it's and they don't have PRA
23	people. They've got an embedded assumption that it's
24	easier to calculate the conditional probability of
25	core melt or release given failure of a set of SSCs
I	I

(202) 234-4433

	125
1	than it is to calculate either PH or PE.
2	And in a moment, Jenise will get to saying
3	whichever one's easiest to calculate, calculate that
4	one first and then see if you can pass, and then
5	calculate the other one.
6	So, that's kind of the
7	MEMBER DIMITRIJEVIC: Because it
8	CHAIR BLEY: assumption.
9	MEMBER DIMITRIJEVIC: You cannot say
10	probability of this eruption is one in million. What,
11	within a year, within ten years, within the next
12	thousand years, next million years. That's why it's
13	frequency. You cannot give probability.
14	However, you can tell probability of ash
15	getting in a given eruption because that's an event.
16	So, it's probability.
17	MS. THOMPSON: Okay.
18	MEMBER DIMITRIJEVIC: So, the various
19	frequency event. If you want to call it probability
20	for PE, you can say per year. Probability per year
21	and then it's the you know, then you are sort of
22	calling probability, but it's actually closer to
23	frequency.
24	MS. THOMPSON: All right. So, in the
25	draft guide the staff allows for the applicant to use
	I

(202) 234-4433

	126
1	or to calculate either PE or PH first, and then use
2	risk insights to determine if additional probability
3	calculations are warranted.
4	The justification for this is that the
5	staff recognizes that volcanic events, the character
6	of past volcanic events may be more certain than the
7	timing of these past volcanic events.
8	So, calculating PH, or the probability of
9	the hazard reaching the site, may produce results that
10	have lower uncertainties and, therefore, provide
11	higher confidence in any risk insight decisions that
12	are made based on that calculation.
13	CHAIR BLEY: I think I have to go back
14	and look real carefully. I think the guidance you
15	give the user on doing a simplified PRA given either
16	PE or PH is the same guidance you gave them before you
17	knew PE or PH. Then knowing this probability doesn't
18	help you.
19	So, I think you need to give a little more
20	thought to how you mix how you make use of this
21	frequency or this probability, whichever one you're
22	doing.
23	MEMBER DIMITRIJEVIC To make it risk-
24	informed.
25	CHAIR BLEY: And once you try to get to a
I	

(202) 234-4433

	127
1	simplified PRA, it probably needs to be a little more
2	than, you know.
3	And you get this somewhere, and somewhere
4	in there you imply if PH is small enough, you're done.
5	And then you say, and then if PE is small enough,
6	you're done.
7	MS. THOMPSON: So, if
8	CHAIR BLEY: And if the product of the two
9	is small enough, you're done. And then you do a
10	simplified PRA to go with it if it's not small enough,
11	but you don't give people a hint of how they use that
12	risk measure that's coming out that has a frequency
13	and a probability of failure to make a decision.
14	MS. THOMPSON: So, I think we're going to
15	get to that. We don't have an option in the
16	calculation of PE and PH to end the analysis.
17	Once this step is completed, an applicant
18	proceeds into the detailed risk insights where I
19	will get to this, but PE and PH, or both, are assumed
20	in the PRA to equal failure.
21	So, we'll get to that in
22	MEMBER DIMITRIJEVIC: But a comment that
23	Dennis
24	MS. THOMPSON: Step 5.
25	MEMBER DIMITRIJEVIC: is giving you is
ļ	1

	128
1	to
2	MEMBER RICCARDELLA: IS PH a conditional
3	probability?
4	MEMBER DIMITRIJEVIC: Yes.
5	MEMBER RICCARDELLA: Conditional
6	probability given
7	MEMBER DIMITRIJEVIC: Conditional
8	probability given eruption.
9	MEMBER RICCARDELLA: eruption. All
10	right.
11	CHAIR BLEY: And given the hazard you're
12	talking about.
13	MEMBER DIMITRIJEVIC: Right. And given
14	the hazard.
15	CHAIR BLEY: You have to do it for each
16	hazard.
17	MEMBER DIMITRIJEVIC: Jenise
18	MS. THOMPSON: Yes.
19	MEMBER DIMITRIJEVIC: what Dennis is
20	proposing, and this is how we become risk-informed,
21	you can also exit here if frequency of that occurs
22	once in hundred million years and, you know, it will
23	be a probability or hazard combined if that is smaller
24	than once in ten million years, you can exit here. No
25	need to go
I	

(202) 234-4433

	129
1	DR. CORRADINI: But I guess I'm kind of
2	with them. You would have never gotten this far if
3	what you just said is true because you already have
4	the time period and you already have the magnitude.
5	MEMBER DIMITRIJEVIC: But you know the
6	time period is 2.6 million years.
7	DR. CORRADINI: Yeah. So, it's already
8	been screened in based on that.
9	MEMBER DIMITRIJEVIC: Well, in that case
10	it can be screened out from the you know, a lot of
11	PRA
12	DR. CORRADINI: But if the frequency of
13	eruption is
14	CHAIR BLEY: You don't have the frequency
15	of eruption yet until you calculate this.
16	DR. CORRADINI: Oh.
17	MS. THOMPSON: That's the step we're at.
18	DR. CORRADINI: So, I apologize. I know
19	we're taking you off track, but you can save this one.
20	I want to know the level of when you fall out, whether
21	it's FE or PH or the product of FE and PH.
22	How low does it have to get when it
23	essentially says it's so low it's residual risk?
24	MS. THOMPSON: That
25	DR. CORRADINI: I didn't find that.
I	

(202) 234-4433

	130
1	MS. THOMPSON: So, that's because it's not
2	in there. So, we didn't provide a "this is your
3	limit."
4	There isn't a limit in here because we're
5	using the risk insights to create a risk-informed
6	approach to this volcanic hazards assessment.
7	DR. CORRADINI: But now that I'm risk-
8	informed, at some point I can ignore the risk because
9	it's so small as to be residual.
10	MS. THOMPSON: Correct. And that's in
11	going through the steps.
12	So, once we get into Step 5, the detailed
13	risk insights, that's where, as I mentioned before,
14	we're using the facility PRA to assume that PE, PH, or
15	both of them equal failure. And so, that is where
16	that stuff would be.
17	And if those results are not significant,
18	then an applicant would complete the analysis.
19	DR. CORRADINI: Okay. But that's what I'm
20	trying to understand if you tell me to wait, I'll
21	wait. Is there you're going to tell me what's
22	significant and what's not significant?
23	MS. THOMPSON: We don't have that
24	threshold in the draft guide.
25	DR. CORRADINI: Okay. Then let me offer
I	

(202) 234-4433

	131
1	you a threshold.
2	You already have a licensing modernization
3	program that says anything below 5, 10 to the minus
4	7th is residual risk.
5	Seems to me if this falls below 5, 10 to
6	the minus 7th of the thing, I ignore it.
7	CHAIR BLEY: They don't have that process
8	yet.
9	MEMBER DIMITRIJEVIC: No. That's not part
10	of
11	DR. CORRADINI: But if it's one of the
12	external hazards if it's one of the natural
13	external hazards you have to calculate anyway for
14	advance reactor, it's automatically in there based on
15	the logic of the LMP.
16	CHAIR BLEY: The LMP isn't real yet.
17	DR. CORRADINI: Well, it's getting close.
18	MEMBER RICCARDELLA: The LMP isn't what
19	yet?
20	CHAIR BLEY: Real.
21	DR. CORRADINI: Well, I thought commission
22	was approving it.
23	CHAIR BLEY: I certainly haven't heard
24	that no, I heard yesterday that they have not yet.
25	DR. CORRADINI: Okay. All right. But
I	I

(202) 234-4433

	132
1	that's where I was going, but thank you.
2	MS. THOMPSON: Okay.
3	DR. CORRADINI: Thank you very much.
4	MS. THOMPSON: So, in
5	MEMBER DIMITRIJEVIC: It's extremely
6	important actually for you guys since you are the PRA
7	people, when you are having risk-informed application,
8	doing PRA is last step.
9	So, you cannot really screen it through
10	the PRA because you are already doing PRA which is
11	very complex model.
12	So, you will try to screen it like
13	assuming everything failed, which is alright. But
14	normally when you failing everything, you have to have
15	some frequency of the "when" to analyze that.
16	Because if you are failing everything with
17	frequency of one, it's different than when you're
18	failing everything frequency of ten.
19	So, this type of thinking has to come
20	somewhere through, you know.
21	MS. THOMPSON: Okay.
22	MEMBER DIMITRIJEVIC: Because if you fail
23	everything and nothing happen, that's only way you can
24	screen, actually, if you fail everything in the
25	whatever that stack was, and then nothing happen in
I	I

(202) 234-4433

	133
1	the plant because you don't have a frequency.
2	So, screening I understand uncertainty
3	the frequency is I don't want to think about, I
4	have no clue, you know. It will be equally as
5	unlikely of predicting future volcanoes, but so,
6	it was very difficult, but maybe we can have some
7	threshold for definitely is not bigger than ten to the
8	minus four for the screening purpose or something.
9	MS. THOMPSON: Okay. I'll take that note
10	back to the working group. I'll take that note back.
11	MEMBER BROWN: How can you do all this
12	stuff that you're all talking no, not this is
13	a general question.
14	How can you do all this stuff when you
15	don't early site permit, you don't even know what
16	the plant's going to look like, and how do you screen
17	out a site without going through all this rigmarole.
18	I mean, is there a 100-mile radius from an
19	active a potentially active site? You say if
20	you're outside of 100-mile or 200-mile radius and you
21	just don't do any of it?
22	I'm just listening to the discussion and
23	worried that you apply this and we'll never build
24	another plant anywhere.
25	MS. THOMPSON: So
	1

(202) 234-4433

	134
1	MEMBER BROWN: It just it's becoming
2	complex, you got to do this, you got to have
3	probabilities to this and that and everything else.
4	You'll never get there.
5	DR. SCHULTZ: It also seems like
6	MEMBER BROWN: I'm being somewhat of a
7	skeptic right now.
8	DR. SCHULTZ: It also seems that rather
9	than have every applicant get started on Part 1, that
10	it could be done geographically across the United
11	States to identify places where vulnerabilities might
12	be important
13	MEMBER BROWN: Yeah. Exactly.
14	DR. SCHULTZ: and get that done right
15	off the bat
16	MEMBER BROWN: Exactly.
17	DR. SCHULTZ: so the map for Nos. 1 and
18	2
19	MEMBER BROWN: There's nothing that says,
20	how can I avoid this? One way of phrasing it.
21	DR. SCHULTZ: so that geologists don't
22	have to be hired by every applicant.
23	MEMBER BROWN: Exactly.
24	DR. SCHULTZ: I mean, the applicants you
25	had come to the meeting from the public sounded like
I	

(202) 234-4433

	135
1	they were the developers.
2	MS. THOMPSON: We also had several
3	DR. SCHULTZ: Geologists?
4	MS. THOMPSON: on the phone that were
5	doing siting.
6	DR. SCHULTZ: Geologists?
7	MS. THOMPSON: They're geologic
8	consultants.
9	DR. SCHULTZ: Uh-huh.
10	MS. THOMPSON: I'm not sure what their job
11	title is, but I have interacted with them in the past
12	in the capacity of
13	DR. SCHULTZ: It seems like that could be
14	
15	MS. THOMPSON: being a geologist at the
16	site.
17	DR. SCHULTZ: a onetime thing for the
18	United States and not an individual applicant's task
19	
20	MEMBER BROWN: Well, that's similar
21	DR. SCHULTZ: to get started, but.
22	MEMBER BROWN: I mean, with the seismic
23	when we do the ESPs, there's a the seismic issues
24	get addressed right up front based on the
25	configuration of
	I

```
(202) 234-4433
```

	136
1	DR. SCHULTZ: Correct.
2	MEMBER BROWN: land and you can do
3	that without knowing what the plant looks like. Here,
4	when you start are we going to just do safety
5	systems or is it everything on the plant site?
6	I mean, where do you screen where do
7	you draw that line?
8	PARTICIPANT: They're doing boundary
9	analysis up
10	MEMBER RICCARDELLA: But seismically you
11	just come up with a
12	MEMBER BROWN: Not with the PRAs you-all
13	want to do not that we're proposing.
14	PARTICIPANT: So, you're just
15	CHAIR BLEY: You're jumping way ahead of
16	yourself.
17	MEMBER BROWN: I'm just looking at
18	complexity and how do we ever get started.
19	CHAIR BLEY: It's not there yet.
20	MEMBER BROWN: Seismically it seems like
21	there's a process to go through for an early site
22	permit.
23	This sounds like another one of those
24	things where you want to try to discount it
25	immediately off the bat that you don't have a problem.
I	I

(202) 234-4433

	137
1	MEMBER RICCARDELLA: But seismically it
2	just comes up with a response spectra that you're
3	going to use that that's
4	MEMBER KIRCHNER: That's fine if you have
5	firm ground to design against.
6	MEMBER BROWN: You wouldn't build a plant
7	on the San Andreas Fault today. Regardless of what
8	you did with your seismic spectra, you would not build
9	one.
10	So, we did it the old days, but we
11	wouldn't do it today.
12	MEMBER BALLINGER: But in this case you
13	would have like a two-map problem. The eruption
14	problem is a good enough one you can do, but the
15	ash/plume problem, that's a different story.
16	MEMBER BROWN: But even that in the past
17	circumstances has been 100 miles
18	MEMBER BALLINGER: I don't know.
19	MEMBER BROWN: 150 miles.
20	CHAIR BLEY: We know more now.
21	MEMBER DIMITRIJEVIC: Charlie, let's not
22	be negative. They're trying to do something good.
23	MEMBER BROWN: No, I'm just I'm worried
24	I think the good is often the something nasty
25	for okay. And I'm not hearing any okay. It's just
I	

(202) 234-4433

	138
1	more analysis and more details.
2	CHAIR BLEY: I've heard several okays. If
3	there's no volcano near enough, it's okay. If there's
4	no volcano in the area
5	MEMBER BROWN: I would never
6	MS. THOMPSON: I would also add that for
7	geologic site
8	(Simultaneous speaking.)
9	MEMBER BROWN: I'd like to read the
10	transcript on this meeting.
11	MS. THOMPSON: So, for geologic site
12	MEMBER BROWN: I will, you won't.
13	MS. THOMPSON: characterization for
14	non-vocalic hazards for ESPs, the staff does have
15	experience with revisiting things once a site once
16	a site has been approved and after a technology has
17	been selected at the COL stage.
18	So, if we're in that position with respect
19	to volcanic hazards, it would not be unprecedented for
20	the staff to assess what can be assessed at the ESP
21	stage and defer what reactor or design-specific
22	information needs to be assessed at the more detailed
23	COL stage. So, there is that possibility.
24	PARTICIPANT: Jenise
25	MEMBER BROWN: Let me finish my last
	I

(202) 234-4433

139 1 thought that I didn't say. I went through --- I read the draft ---2 Uh-huh. 3 MS. THOMPSON: 4 MEMBER BROWN: -- and one of the things I 5 noted here was ---Charlie, is your mic on? 6 PARTICIPANT: 7 MEMBER BROWN: Oh, I'm sorry. I read he 8 draft and I --- the only words I ever saw were "safety 9 significance," not you need to take care of safety 10 systems, those necessary to take --- to shut down the plant, put it in a safe condition. 11 It was -- the "safety significance" had a 12 broader context, in my opinion, as I read through the 13 14 draft. 15 So, to me, our focus ought to be on shutting the plant down, safe condition, what are the 16 17 systems needed? Those are the ones you -- you know, you 18 19 start screening for the "how do you do that" or whatever it is. That's -- that was -- that's just a 20 thought, that's all. 21 And Mike's going to disagree with me again 22 because he doesn't like projectiles going --23 24 DR. CORRADINI: I don't think they're at 25 the system stage yet. I'm not sure --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	MEMBER BROWN: I'm just saying the reg
2	guide ought to provide a second level of screening
3	relative to saying, what do we expect them to look at
4	once they get there.
5	DR. CORRADINI: Okay.
6	MEMBER BROWN: That's all I'm trying to
7	say. It doesn't say that right it's very, very
8	broad.
9	MS. THOMPSON: Okay. And I made a note of
10	that here.
11	MEMBER KIRCHNER: Jenise
12	MS. THOMPSON: Yes.
13	MEMBER KIRCHNER: it seems to me,
14	though, that the problem really is not the surface
15	phenomena, but this ash issue because it could come
16	from anywhere, you know.
17	So, my question to you and the experts,
18	and I guess this would involve your meteorologist as
19	well, are there any maps that they've kind of rules
20	of thumb or something where they look at a volcano as
21	putting this much material in the air?
22	What are the dispersion characteristics?
23	Are there, you know, like plume maps or something that
24	would allow you to screen against that is more than
25	- more finite and look at every volcano that could
ļ	I

(202) 234-4433

	141
1	ever put up a lot of ash in the air
2	MS. THOMPSON: I believe that there
3	MEMBER KIRCHNER: and sort that out.
4	MS. THOMPSON: there are plume maps
5	available. I'm not sure to what extent they're
6	available for every volcano that may be within
7	MEMBER KIRCHNER: No, but I
8	MS. THOMPSON: But I know that
9	MEMBER KIRCHNER: I would think that
10	_
11	MS. THOMPSON: there are maps that
12	could be used. And that would be something that would
13	inform the deterministic screening in Step 2.
14	MEMBER KIRCHNER: But I'm still having a
15	problem with this because it seems to me there's
16	infinite variability out there in terms of how you do
17	a cutoff on where to expect the ash fall to be.
18	So, where I was going is, are there enough
19	has there been enough experience mapping the output
20	and results of a volcano to understand that, you know,
21	this deposition of ash is a 400-mile phenomenon, is it
22	whatever, you know.
23	So, it seems to me anything any
24	guidance along those lines would leave it less open-
25	ended about what how many volcanoes from how
	I

(202) 234-4433

	142
1	many sources do we have to worry about Iceland
2	volcanoes when we site a plant in the US?
3	My intuition says no
4	MS. THOMPSON: And that's a good
5	MEMBER KIRCHNER: but is
6	MS. THOMPSON: That's a good segue.
7	(Laughter.)
8	MS. THOMPSON: There are dispersion maps.
9	One of the ways that a lot of this can be addressed
10	and reach consensus on what is credible, what is not
11	credible, is through using the SSHAC process, which we
12	mentioned before.
13	The SSHAC process, the goal is to
14	determine the center body and range of the technically
15	defensible interpretations.
16	So, using the SSHAC process to consider
17	the extent to which ash fall should be considered from
18	a volcano 200 miles away versus 500 miles away could
19	be resolved using the expert elicitation in the SSHAC
20	process.
21	DR. SCHULTZ: Jenise, when does that get
22	done? I mean, you can't lay that process on top of
23	every licensee that is considering siting a nuclear
24	plant.
25	MS. THOMPSON: So, this would be this
	I

(202) 234-4433

	143
1	is where
2	DR. SCHULTZ: Yes, my light is on.
3	MS. THOMPSON: This step using the SSHAC
4	process is included in Step 4 specifically for
5	calculating the PE and PH so, the probability of
6	eruption or the frequency of eruption and the
7	probability of the hazard reaching the site.
8	So, if at this point you do have ash fall
9	as a hazard that you are considering, the SSHAC
10	process would help you determine what would be the
11	credible range for that ash fall.
12	MEMBER KIRCHNER: Can you move this up?
13	Because if you make the analogy with seismic hazards
14	analysis, you start almost right away with maps of the
15	seismic zones that you're in and then go from there.
16	Doing this so late in the process seems,
17	to me, to drive, as Charlie was concerned, a lot of
18	uncertainty, which opens you to a lot of intervention
19	and a lot of wasted effort if indeed you would screen
20	out with this step in the SSHAC process.
21	MEMBER DIMITRIJEVIC: I have a proposal.
22	I think that you should stay in 200 miles. That's it.
23	And then have a general consideration and say, if
24	design is specifically susceptible to ash-related type
25	failures, because ash can come from the big fires,
I	

(202) 234-4433

	144
1	blah, blah, blah, then, blah, blah, blah, the next
2	thing can be done.
3	Just stay in 200 miles, screen off the 200
4	miles, say that that's also things for ash, and then
5	have some paragraph to address if the specific design,
6	you know, is expected to be susceptible to ash-related
7	failure do additional analysis.
8	MEMBER BALLINGER: But isn't there a
9	parallel to this in severe accident analysis?
10	MEMBER KIRCHNER: No.
11	MEMBER BALLINGER: Don't we look at
12	PARTICIPANT: But there is a parallel in
13	seismic.
14	MEMBER BALLINGER: distributions of
15	wind and everything if we get a large, early release.
16	CHAIR BLEY: You have to analyze that.
17	I want to remind you of something I said
18	in the very beginning. The ACRS only speaks through
19	its letters.
20	(Laughter.)
21	CHAIR BLEY: You're hearing a bunch of
22	comments from individual members.
23	DR. CORRADINI: Yeah. So, don't write it
24	down necessarily.
25	MEMBER BROWN: Well, from wild-eyed
I	

	145
1	skeptics.
2	MEMBER MARCH-LEUBA: Let me qualify that.
3	You hear a bunch of uninformed comments.
4	(Laughter.)
5	MEMBER DIMITRIJEVIC: Everybody is very
6	opinionated.
7	CHAIR BLEY: And perhaps some informeds.
8	MS. THOMPSON: I'm just making notes of
9	_
10	CHAIR BLEY: Grain of salt.
11	MS. THOMPSON: some of the pertinent
12	points that you're making because not all of our
13	working group members are here today. So, I want to
14	be able to convey what the full scope of the
15	discussion was to them as well.
16	PARTICIPANT: You can get a copy of the
17	transcript, also.
18	MEMBER KIRCHNER: It seems to me that if
19	you move this up
20	MS. THOMPSON: Uh-huh.
21	MEMBER KIRCHNER: I'm wearing my hat as a
22	reactor designer. I'm not going to spend a lot of
23	money on oil filters and such unless I really convince
24	myself I have the hazard.
25	And to convince myself I need to protect
I	

(202) 234-4433

	146
1	against this particular hazard, I need to do this ash
2	fall analysis first.
3	Otherwise, I'm wasting my time because I
4	may design something and it may turn out to be
5	inadequate if I do the ash fall analysis later in the
6	process.
7	A lot of these advanced reactors are
8	cartoons early on. So, they may want to have a site
9	chosen, but they are not going to have the maturity to
10	do a full-blown PRA that shows them how vulnerable
11	they are to these kind of threats.
12	MS. THOMPSON: I will say that the SSHAC
13	process, we put it here in the presentation because we
14	recommend it for calculating PE and PH.
15	There's nothing in the draft guide that
16	would preclude an applicant from deciding to use a
17	SSHAC-like process to perform their deterministic
18	screening or even their initial characterization of
19	potential sources of volcanism.
20	So, the SSHAC could be used at any step
21	and I don't even think we listed it in the draft
22	guide. It's not even in the steps.
23	It's listed separately so that the SSHAC
24	process can be used at any step along the way to
25	inform the process.
	I

(202) 234-4433

	147
1	And maybe that's not clear in the draft
2	guide, but the SSHAC process could be used at any step
3	along the path.
4	DR. CORRADINI: I guess so, another
5	opinion you could not write down, I like how you've
6	done it.
7	MS. THOMPSON: Okay.
8	DR. CORRADINI: I think if I were the
9	engineer that had to worry about this or decide not to
10	worry about it, I would think Steps 1 through 3 ought
11	to be done quickly and efficiently and only spend the
12	money on bringing in a bunch of high-priced experts
13	that aren't really sure what they are doing until I
14	really need to do it.
15	So, I like the fact that you've waited
16	until whatever step we're on
17	MS. THOMPSON: 4. We're on Step 4.
18	DR. CORRADINI: before you bring in
19	what could be a cadre of individuals
20	MS. THOMPSON: Right.
21	DR. CORRADINI: that have to kind of
22	chew this over.
23	MS. THOMPSON: And that was the working
24	group's perspective as well that an initial screening
25	would be a relatively quick process for an informed
l	1

(202) 234-4433

	148
1	geologist to do. The same thing with a deterministic
2	screening.
3	But once you get to looking at PE and PH,
4	this is where you need to reach a wider consensus
5	based on the hazards that you have at your site.
6	And I have some examples that I can share
7	with you in the next flew slides of why this is
8	important, and why at this particular step the SSHAC
9	would be particularly appropriate to be used.
10	So, I will move along.
11	CHAIR BLEY: Actually, just to put you
12	squarely, you talk about SSHAC before you get to the
13	methodology.
14	MS. THOMPSON: Yeah.
15	CHAIR BLEY: It's an introductory section.
16	MS. THOMPSON: Yeah. It's not in Section
17	3 or Section C
18	CHAIR BLEY: That's right.
19	MS. THOMPSON: with the actual guidance
20	itself. It's separate. So, it can be used at any
21	step along the way.
22	So, one of the key challenges with the
23	probability of eruption or the frequency of
24	eruption would be defining what is an event.
25	An example is shown here on this slide
	I

(202) 234-4433

	149
1	from the 1955 eruption on the Kilauea East Rift. This
2	eruption occurred over an 88-day period along a 15-
3	kilometer rift with four major vents.
4	Because of direct observation, we know
5	that this was one event. But if this event had
6	occurred 100,000 years ago, it may not be as clear
7	based on the available data.
8	So, we would need to reach a consensus
9	within the VHA of what constitutes an event and how
10	each event would be interpreted.
11	Would this 1955 eruption be considered one
12	large event along four events effecting about 50
13	square kilometers, or would we consider this instead
14	to be four separate events?
15	The point is that the SSHAC process would
16	allow us to reach a consensus on what is considered an
17	event and then to ensure that that event definition is
18	applied consistently across the analysis.
19	Additional challenges with calculating the
20	PE include reaching a consensus on the goal, whether
21	we are looking for the probability of occurrence, the
22	probability of exceedance or both.
23	MEMBER DIMITRIJEVIC: How would you know
24	this was something happened million years ago?
25	MS. THOMPSON: We would have to consider
ļ	I

(202) 234-4433

	150
1	that within the SSHAC process.
2	PARTICIPANT: Called educated guessing.
3	CHAIR BLEY: You'd look at what material
4	is coming out, is it
5	MS. THOMPSON: Yes.
6	CHAIR BLEY: the same character all the
7	way along.
8	MS. THOMPSON: Yes. So, we would have to
9	look at the characteristics. We would look at field
10	interpretations. We could look at laboratory test
11	results.
12	There are a number of ways to characterize
13	past volcanic events and reaching consensus on how
14	similar does something need to be to be considered the
15	same event.
16	Additional uncertainties may be associated
17	with the timing and number of past events. And then
18	volcanic systems have the potential for non-stationary
19	recurrence rates.
20	So, the SSHAC process would also help
21	reach a consensus on what period of a volcano's
22	history should be considered representative of its
23	future potential activity.
24	We also see similar challenges in the
25	calculation of the probability of the hazard, or PH.
I	I

(202) 234-4433

	151
1	The example here is from modeling data, which is the
2	key challenge in the calculation of PH.
3	There's a general lack of accepted models
4	and there's also a need for robust model support. The
5	examples shown here are three different models of
6	pyroclastic flows on the Soufriere Hills volcano on
7	Montserrat. This was a 1997 eruption.
8	The black line outlines the actual
9	pyroclastic flow. The colored areas represent the
10	modeled areas for the pyroclastic flow.
11	And, as you can see, each model captures
12	some part of the flow relatively well, but there are
13	significant differences in places where the
14	pyroclastic flow was not adequately captured by each
15	model.
16	So, this is an illustration of the need
17	for the SSHAC process to evaluate these models to
18	determine which of them appropriately capture the
19	hazardous aspects of the volcanic phenomena that may
20	affect a site.
21	It also emphasizes the need for model
22	support so that the model uncertainties are
23	appropriately captured.
24	MEMBER RICCARDELLA: Where was you
25	mentioned where this
I	1

	152
1	MS. THOMPSON: This is the Soufriere Hills
2	volcano in Montserrat. It's a Caribbean island.
3	MEMBER RICCARDELLA: Oh, okay.
4	MEMBER KIRCHNER: Just for scaling
5	purposes, how many kilometers or miles are we looking
6	at in each box?
7	MS. THOMPSON: Oh, I think I cut the scale
8	off. Do we do you have the scale for this?
9	MEMBER KIRCHNER: It's not a big island.
10	DR. HILL: It's roughly 10 kilometers from
11	the source out to the northeast.
12	MEMBER KIRCHNER: That's what I was
13	saying.
14	So, here's an example where common
15	engineering sense would just tell you, I'm not going
16	to try and accurately model for these flows, I'm going
17	to stay outside a 10-kilometer radius and move on.
18	MS. THOMPSON: And that's a decision that
19	an applicant using the VHA could choose to make.
20	MEMBER KIRCHNER: Yeah.
21	CHAIR BLEY: Now, you haven't told us, and
22	I think some people would be it might help, for
23	different geologic structures and zones there are
24	different kinds of eruptions that might occur.
25	And some of those are more likely to
ļ	I

(202) 234-4433

	153
1	create a lot of ash, others are more likely to create
2	the other hazards.
3	MS. THOMPSON: Yes.
4	CHAIR BLEY: And you guys are able to
5	I mean, it's not just a blind shot what's going
6	MS. THOMPSON: Yeah.
7	CHAIR BLEY: to come out of the ground
8	at a particular
9	MS. THOMPSON: And that's a very good
10	point. Volcanic systems, while dynamic, they are also
11	variable depending on the setting.
12	Not every volcano is going to erupt a
13	pyroclastic flow. Not every volcano is going to
14	result in, you know, ash that reaches the
15	stratosphere.
16	So, that setting is something that will be
17	considered early on and the different volcanic hazards
18	are what will be considered at the deterministic
19	screening.
20	So, if you have a let's say you have
21	the Eastern Snake River Plain. If you have a basaltic
22	volcano source, you're probably not going to be
23	looking at catastrophic pyroclastic flows off of that
24	volcano source.
25	At the deterministic screening you most
ļ	I

(202) 234-4433

154 1 likely will not have any geologic evidence supporting of a pyroclastic flow occurring in that location. 2 So, you could screen that out very early on 3 in the 4 process. 5 CHAIR BLEY: Uh-huh. MS. THOMPSON: But if you get to a point 6 7 here where you have specific volcanic hazards that are 8 likely to occur given the volcanic setting, then we 9 could use this process. But that's a good point to make that the 10 hazards that I mentioned at the start are not a 11 comprehensive list that must be considered for every 12 location. 13 14 They are very site-specific and geologic-15 specific to what the processes that are driving 16 volcanism, which is why we consider that tectono-17 magmatic model at the very first step. MEMBER KIRCHNER: So, I hate to regress, 18 19 but you do have some examples and Columbia is one. Maybe there were no other plants 20 in a direct atmospheric flow pattern downstream of Columbia at 21 reasonable distances, but why was -- why were not 22 other commercial plants -- I don't know, I'll say 23 24 something ridiculous -- in Wisconsin required -- were they -- when you decide that Columbia had issues with 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	ash fall, why did that not have a much larger radius
2	of impact what do you call it?
3	MS. THOMPSON: Region of interest?
4	MEMBER KIRCHNER: Region of interest,
5	yeah.
6	MS. THOMPSON: Again, this would be
7	looking at the geologic information. If there is a
8	credible level of geologic information that would
9	suggest that ash falls from, let's say, a Cascade
10	volcano, would reach a facility in Wisconsin, then
11	that would be considered.
12	If there's not geologic information to
13	support the likelihood that there would be significant
14	ash fall deposits at a site, then that would screen
15	out.
16	MEMBER KIRCHNER: But I would wager that
17	what happened historically with the agency was even
18	though Columbia had to deal with a consideration of
19	ash fall
20	MS. THOMPSON: Uh-huh.
21	MEMBER KIRCHNER: the agency did not
22	ask the Midwest plants to worry about ash fall, that
23	I recall.
24	DR. CORRADINI: They made a judgment.
25	MS. THOMPSON: Yeah.
I	I

(202) 234-4433

	156
1	CHAIR BLEY: I sort of want to apologize
2	because I kind of got this thing I was hoping
3	there would be a way to get a clearer definition in
4	the guidance.
5	But I think if you sat down with one of
6	these people and looked at a site and looked at these
7	maps, it wouldn't be a great mystery how far out
8	beyond 200 miles you might have to go.
9	DR. CORRADINI: Okay. All right.
10	CHAIR BLEY: And if you look at yeah,
11	we don't know if it's a millimeter or a foot, but we
12	know that volcanoes like the Cascades have thrown ash
13	more well over 200 miles away and it ended up in
14	several feet, not just a few millimeters.
15	DR. CORRADINI: I know.
16	CHAIR BLEY: But not, you know, 2,000
17	miles away all plopping in one place, you know, unless
18	something really bizarre happens.
19	MS. THOMPSON: Something that the staff
20	discussed initially very early on in the process is
21	what could reasonably be excluded.
22	And so, what is reasonable to exclude as
23	a hazard and what is reasonable to include, which is
24	why we start with considering the region, the time
25	period of interest and the tectono-magmatic model.
I	

(202) 234-4433

And that example that Ι qave you, everything in that figure is less than half a million years old, but there are only two features in that figure that should be considered because they're the only two that could reasonably result in volcanic hazards at this site or at a proposed site in that area.

8 So, we're looking for -- we were looking 9 to focus on what could be reasonable, what would be credible, not what is in the realm of possibility as anything that may happen. 11

MEMBER KIRCHNER: Because I'm looking over 12 Jose's shoulder here, and he's showing a map with the 13 14 dispersion from the Iceland volcanoes. But the fact 15 is that although the dispersion is many thousands of kilometers, a reasonable analysis of the situation 16 17 would suggest that the ash fall problem is not that -it's an airplane issue, but it's not a credible threat 18 19 to a nuclear --

MS. THOMPSON: And there's a difference 20 between dispersion, where the ash could go in the 21 atmosphere, versus where the ash could be deposited on 22 the surface. So that's a consideration as well. 23 24 (Simultaneous speaking.) 25 MEMBER MARCH-LEUBA: -- not a mass release

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

10

	158
1	to cover all that area.
2	MEMBER KIRCHNER: No. No.
3	MEMBER MARCH-LEUBA: However, can be a
4	thunderstorm right here that deposits a lot while it's
5	raining. If you have a
6	CHAIR BLEY: If it goes that far, it's
7	much higher than a thunderstorm. I just want to make
8	a comment while you have this picture up here. Back
9	when SSHAC was dreamed up, one of the reasons was
10	and you can get a simple idea of it from this figure.
11	Suppose each of those models are three different
12	people who's developed them, and they believe in their
13	own model very strongly. And so they don't want to
14	give you much credit.
15	And now you sit down. How do we come up
16	with what's right? And I finally said two things.
17	Get the people together, but we don't just let them
18	say, my model's right. You come forward and you lay
19	out the evidence for why your model might be right,
20	and you seek not your own personal probabilities but
21	what you think is the what is a group, you think is
22	the state of knowledge of the community, the technical
23	community.
24	And they were able to then get through
25	this knot and weight each of these a reasonable
I	

(202) 234-4433

	159
1	amount. And everybody finally agreed on the joint
2	result that came out of the process. Now, that's the
3	kind of thing they would do here. And maybe somebody
4	really thought they were onto something, especially if
5	that bottom one, say, was separated a lot more. And
6	they really were pushing their model.
7	But when they finally talked about it,
8	yeah, the other ones are much more likely to happen.
9	But under rare conditions, mine could be the right
10	one. So you weight them appropriately, and that's
11	what the process is designed to do, to bring all the
12	evidence together, share it, and come up with a joint
13	view of what's most likely.
14	DR. SCHULTZ: But my question, Dennis, is
15	who are the they that are going to do this, and when
16	is it going to be done? Because the way it's written,
17	it sounds as if the licensee is going to get a SSHAC
18	team together and do the work for their local site.
19	CHAIR BLEY: The truth is very rarely.
20	Most people aren't going to build something right near
21	a volcano, even within a couple hundred miles of a
22	volcano. But it's going to happen rarely, and you do
23	it, and you need to.
24	DR. SCHULTZ: Washington state is 400
25	miles across. So
ļ	I

(202) 234-4433

	160
1	CHAIR BLEY: Well, and the ash went.
2	MEMBER RICCARDELLA: But it was a SSHAC
3	process that led to the CS report, right? The
4	seismic?
5	CHAIR BLEY: Yeah.
6	MEMBER RICCARDELLA: They came up with the
7	seismic map for the whole central and eastern United
8	States.
9	DR. SCHULTZ: That's what I was talking
10	about before. I think that's an appropriate way of
11	knowing.
12	CHAIR BLEY: There was a basis for looking
13	at all that together. Here, it's a little one, but I
14	think they're going to do it when they have to. I
15	would think their geologists may be able to do the
16	first several steps very quickly to a level they're
17	quite comfortable. Then you get to the step where you
18	say, what of my stuff if it breaks could get me in
19	trouble?
20	And that's not those people. That's
21	somebody else. And that might be released. It just
22	depends on what that hazard is that's likely to get
23	there. So I think we're over-stewing on this.
24	MEMBER DIMITRIJEVIC: Maybe doing this map
25	makes the most sense before the guy
I	

(202) 234-4433

	161
1	(Simultaneous speaking.)
2	MEMBER RICCARDELLA: I'm sorry. I didn't
3	hear what you said.
4	MEMBER DIMITRIJEVIC: I was saying maybe
5	building his volcano hazard map for United States will
6	make more sense before
7	MEMBER RICCARDELLA: Suppose I told you
8	one millimeter was the problem. One millimeter of ash
9	deposit is a problem. Could you make a map of the
10	United States with the probability of or frequency of
11	areas that would have one millimeter, maybe a color-
12	coded map like that with different frequencies of
13	getting one millimeter?
14	DR. HILL: Yes. The map currently exists.
15	The US Geological Survey is on its second revision of
16	it for ash fall hazards from Cascade volcanoes. So
17	you could easily go out and look at an exceedance
18	probability for one millimeter. I believe they did
19	110 and another thickness and an annual likelihood of
20	occurrence.
21	MEMBER RICCARDELLA: But does that map
22	include Wisconsin?
23	DR. HILL: I can't recall. I don't think
24	so. I'm not aware of recorded deposits for quaternary
25	volcanoes in Wisconsin of any kind. There's always a
ļ	1

(202) 234-4433

threshold of initial credibility. Come back to our initial siting criteria of phenomena that have been occurring at the site during the historical period with some uncertainty about the timing and uncertainty of the event, but it still is -- it happened in the past around here.

7 It's not speculating that it might be from the future that the Iceland volcano gave us a trace 8 9 It's possible, but really, do you see any amount. evidence of this occurring in the past at the site? 10 really starting an analysis 11 So we're not from speculative trace distribution of deposits. These are 12 deposits that have a really credible basis in being 13 14 there. They're either mapped or, in a broad-brush analysis by the US Geological Survey, have a credible 15 likelihood of occurring. 16

That's the initial step. Then you do the detailed analysis to look at the specific volcano near your site and see, well, rather than an order of magnitude, what are we really dealing with?

21 CHAIR BLEY: You remember when we were 22 doing seismic for various sites, Jerry was here. So 23 they do a lot of digging. They dig up old stuff 24 because he was there. I mean, they don't just guess 25 at it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	MS. THOMPSON: Yes. So
2	MEMBER DIMITRIJEVIC: But maybe
3	uncertainty is equal in both cases because that's not
4	going to represent any realistic frequency of seismic
5	beneath the volcano because we cannot predict the
6	future based on past events.
7	MEMBER RICCARDELLA: Well, that's why
8	you've got a series of tests.
9	MEMBER DIMITRIJEVIC: That's not really
10	the issue, right?
11	MS. THOMPSON: So that highlights another
12	set of challenges in calculating the probability of a
13	hazard reaching the site, which is that the character
14	of volcanic systems can or the character of
15	volcanic hazards can change with distance from the
16	source. So ash fall hazards, it's going to differ
17	whether you're on the slope of that mountain or if
18	you're 1,000 kilometers away.
19	There also are different interpretations,
20	or there may be different interpretations on the
21	preserved deposits that are in the geologic record.
22	And then, as I mentioned before, a challenge with PE
23	as well as PH is that the characteristics of volcanic
24	systems can change through time. So we're dealing
25	with non-stationary systems that should be considered,
	I

(202) 234-4433

	164
1	and reaching consensus on that is, like I mentioned,
2	something that can be accomplished using a SSHAC-like
3	process.
4	MEMBER DIMITRIJEVIC: The last eruption
5	was just New Zealand had all these whatever you
6	call it, explosion with no ashes.
7	MS. THOMPSON: So yeah. The White Island
8	eruption from last December, just a few months ago,
9	was preceded by a slight increase in earthquake
10	activity at the volcano before the eruption. And then
11	there was that pyroclastic flow off of that, off of
12	the cone, and unfortunately, lives were lost.
13	The following step for once PE and PH have
14	been determined, an applicant would proceed to step 5,
15	which is the Detailed Risk Insights. This uses a
16	similar approach to step 3, which were the Initial
17	Risk Insights. We're again using PRA, and we're
18	assuming that the probability of the SSC, having
19	unacceptable performance or failure, will be equal to
20	PE or PH or both.
21	We would then evaluate the results in the
22	PRA and determine if the resulting hazard is
23	potentially significant to safety, taking no credit
24	for the likelihood or magnitude of the occurrence. So
25	if these insights then show that the hazard is not
ļ	1

(202) 234-4433

Í	165
1	significant to safety, an applicant would document
2	their rationale and complete the assessment. If not,
3	they would proceed to step 6.
4	MEMBER DIMITRIJEVIC: This is very
5	mathematically incorrect. So and we can help you
6	put that so it makes sense because the fail
7	probability fail SSCs always probability. So it
8	cannot be PE. But PE can be considered if you are
9	satisfied with your uncertainty range. So this can be
10	definitely put in that one back there.
11	MS. THOMPSON: Okay. So at the Evaluate
12	Design Bases step, it's important to note this is the
13	only optional step in the Volcanic Hazards Analysis,
14	in the VHA. However, the working group encourages an
15	applicant to perform this step because this is the
16	step that could provide additional performance
17	insights from a focused evaluation of the SSCs'
18	individual design bases that would be considering the
19	unusual demands of the volcanic hazards that would be
20	affecting the site. However, an applicant could
21	decide not to consider their design bases and proceed
22	directly to Mitigation Actions.
23	So an applicant may come to a decision
24	that volcanic ash is still a credible hazard for their
25	site, and rather than reevaluating their design bases,
	I

(202) 234-4433

1 they've determined that they will move straight to Mitigating Actions and implement those. So instead of 2 3 reevaluating the design bases to determine if the ash 4 fall could be -- if the facility could withstand the 5 ash fall hazard, they may instead proceed directly to Mitigating Actions and determine that they're going to 6 7 install air filters and implement mitigation 8 procedures. 9 MEMBER RICCARDELLA: This is the Volcanic 10 Qualification Program. Just put a piece of equipment in the chamber and blow it back, and the chamber keeps 11 working. 12 (Off-microphone comments.) 13 14 CHAIR BLEY: It's not. Thank you. On 15 page 15, you get to the point of saying you've maybe calculated PH, maybe calculated PE, maybe calculated 16 both of them. If either PH or PE shows that potential 17 volcanic hazards did not significantly affect safety 18 19 $_{\rm PH}$ and PE, nothing else it's just _ _ then _ _ additional analysis would not be warranted. 20 I would say and the combination of the two. 21 So if your frequency's very low, you're 22 But then, if you're not done and you 23 kind of done. 24 have either PE or PH calculated, you tell people to do a simplified PRA using the same techniques you used in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

166

167 1 step 3. Well, that one assumed that the appropriate SSCs failed, and then you say either the plant's okay 2 or it's not. 3 4 Here, we've got now a likelihood. There, we assumed the stuff got there. Here, we're saying, 5 no, we don't assume it gets there. 6 There's some 7 likelihood that it gets there. And either we assume 8 it's guaranteed that we blew the thing up and now we 9 have a probability that it got there, or the frequency 10 was such we know that and we assume that it gets there, or we calculated them both and we multiply 11 them, and we have a likelihood that the stuff gets to 12 the site. 13 14 Now, if we do the same thing as we did in 15 step 3, we aren't taking advantage of having 16 calculated either of those two probabilities. So you 17 have to do something a little more once you get there, or you wouldn't have bothered to calculate PH and PE. 18 19 You don't use them. MS. THOMPSON: So we do use them. 20 So in the Initial Insights, we're assuming failure equals 21 one, and the Detailed Risk Insights, we're assuming 22 that the failure equals PE or PH. 23 24 CHAIR BLEY: Or you're doing both. But you're not using them. You've calculated them, but 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	168
1	you say now go do the same simplified theory you did
2	before? No. You need something a little more than
3	that now. Or you just need those frequencies and say
4	that's good enough. It's not going to happen at a
5	rate I care about.
6	(Simultaneous speaking.)
7	CHAIR BLEY: Somehow, I'm not
8	communicating to you. But
9	MEMBER DIMITRIJEVIC: There's an
10	additional problem which is very important. You
11	cannot do that because you cannot do even the first
12	screening, because you cannot put SSCs to run without
13	knowing what the initiating event is. If you're going
14	to put this to run and use the
15	(Simultaneous speaking.)
16	CHAIR BLEY: If you've got what it
17	means is and they didn't really say this. What it
18	means is you have a PRA model, and you know what the
19	SSCs are. And you've looked at the hazard coming
20	here, and you say that hazard can affect these two
21	SSCs.
22	MEMBER DIMITRIJEVIC: Causing what?
23	Transient? Loss of off-site power, that's very
24	different.
25	CHAIR BLEY: No, not causing. It can
	I

(202) 234-4433

	169
1	affect these. Now, I fail those and say, can I do
2	anything to the plan? If it doesn't do an initiating
3	event, nothing happens.
4	MEMBER DIMITRIJEVIC: Well, that's what
5	I'm saying.
6	CHAIR BLEY: So you need that whole PRA
7	model.
8	MEMBER DIMITRIJEVIC: Because I don't want
9	to challenge.
10	(Simultaneous speaking.)
11	CHAIR BLEY: a simplified one. But
12	none of that's spelled out. You assume somebody knows
13	how to use these probabilities you've just calculated
14	and how to come up with some meaningful pseudo-PRA
15	calculation without telling them how to do it.
16	MEMBER DIMITRIJEVIC: Well, they might
17	know the problem which we identified before, and
18	that's why much more discussions around the PRA label.
19	And you definitely need the PRA person on your team is
20	let's say that we assume that that all is going to
21	cause a loss of off-site power like we did in the
22	seismic.
23	In that case, if my diesel generators are
24	vulnerable, my risk is one because I have to assume
25	the loss of off-site power happened. Until you have

(202) 234-4433

	170
1	a frequency of occurrence, which is your PE, the thing
2	is I have to assume some type of challenge to the
3	plant operation. If there is nothing to challenge, we
4	can assume the operator will manually trip because
5	volcano exploded
6	MS. THOMPSON So in step 5, the assumption
7	is that instead of the failure at 1, the failure's at
8	PE, PH, or both. So
9	MEMBER DIMITRIJEVIC: Initiating event.
10	MS. THOMPSON: So yeah. We are using PE
11	and PH in step 5.
12	CHAIR BLEY: You don't tell people what to
13	do with it.
14	MEMBER DIMITRIJEVIC: Yeah. Yeah. That's
15	true.
16	MEMBER RICCARDELLA: I think in step 5,
17	they assume the probability of failure of the SSC is
18	one, the conditional probability given PE or PH.
19	CHAIR BLEY: That's what they did up
20	above.
21	MEMBER DIMITRIJEVIC: No, PE.
22	MEMBER RICCARDELLA: No, no, no,
23	because up above they didn't have a PE and a PH.
24	CHAIR BLEY: They assume those happened up
25	above.
ļ	1

```
(202) 234-4433
```

	171
1	MEMBER RICCARDELLA: Yeah.
2	CHAIR BLEY: In 3, they assume that both
3	happened. In 4, they calculate one or the other, and
4	in 5, they now start looking at the plant and saying,
5	gee, if this is going to affect these vents, do I need
6	to do a calculation on what the risk is, or can I
7	protect the vents somehow from the fallout?
8	So there's an engineering step there that
9	works very nicely, but there's no hint about what to
10	do with those numbers. Why do you calculate them if
11	you don't use them? You're not any better off than
12	you were. You could have gone right from step 3 to 2,
13	to the protective action.
14	MS. THOMPSON: So we're using them as the
15	assumption that if PE we're using PE or PH or both
16	to equal failure. That's what we're doing in step 5.
17	CHAIR BLEY: Right. So in the first
18	case
19	MEMBER RICCARDELLA: Yeah. That means
20	that the conditional probability of failure given that
21	is one.
22	CHAIR BLEY: Yeah. That's exactly right.
23	MEMBER RICCARDELLA: But then if that's
24	low enough, if it's below ten to the minus seventh,
25	you're
I	

(202) 234-4433

	172
1	CHAIR BLEY: You just made that up. But
2	show me in here.
3	DR. CORRADINI: They don't have a
4	threshold below which residual risk is ignored.
5	CHAIR BLEY: If it's ten to the minus
6	seventh, do they have a criteria? What if it's ten to
7	the minus fifth, and what do you do with it then?
8	What if it's ten to the minus three? What do you do
9	with it then? There's no hint about how to use it.
10	MEMBER RICCARDELLA: I would say if it's
11	greater than ten to the minus seventh, then you go on
12	to step 6. Right? Then you go to the PRA.
13	CHAIR BLEY: You'll have to. If you're
14	going to use that as a criteria
15	MEMBER KIRCHNER: Dennis has a point. You
16	don't have the do loop that you need. The first time
17	at 3, step 3, you assume it fails as one. Now, all of
18	a sudden, you come up with some measure of the
19	frequency which would reduce that one some percent.
20	You're saying use the PH and the what's the other?
21	MS. THOMPSON: The PE.
22	MEMBER KIRCHNER: PE. Then you do it
23	again. But where is the cutoff? How do you know?
24	Why can't you just stop then? Where's the point where
25	you say stop?

(202) 234-4433

	173
1	MS. THOMPSON: Well, through the use of
2	the risk insights, after you've determined your
3	results, you would then determine whether the result
4	is insignificant to safety or if it is significant to
5	safety. We're not providing a cutoff threshold
6	because, again, we're looking at a wide variety of
7	hazards. So what may be an acceptable threshold for
8	one volcanic hazard may not be the same threshold for
9	a different hazard.
10	This is not a one size will fit all for
11	all of the potential volcanic hazards that may occur
12	within the United States at varying locations. But we
13	don't have that threshold cutoff in here for that
14	reason.
15	MEMBER KIRCHNER: Does it go back in any
16	way to the safety goals or the Commission's policy?
17	MS. THOMPSON: We believe this is
18	consistent with the risk-informed performance-based
19	framework. So
20	MEMBER KIRCHNER: Yeah, but that's jargon.
21	Yeah. The thing is I guess I'm back in Charlie's camp
22	in the sense that if you're a designer, you want to
23	either change the plant design as a result of your PRA
24	informing you, and/or you come to a point in this
25	process where you just say, stop.
Į	1

(202) 234-4433

1741 MEMBER BALLINGER: Applicants are looking for finality --2 3 MEMBER KIRCHNER: Yeah. 4 MEMBER BALLINGER: -- period. 5 MEMBER KIRCHNER: There's uncertainty 6 here. 7 MEMBER BALLINGER: Yeah, and employees --8 there's a 9th Circuit for every plant. 9 MEMBER KIRCHNER: On the seismic side, you 10 can do all this, and then you can show what the probability is, say, of a core disruption or whatever 11 as a failure rate -- as a result of a failure in a SSC 12 or et cetera. Here, I don't see exiting the loop, the 13 14 do loop. 15 If I might interject --DR. HILL: 16 MEMBER RICCARDELLA: If we'll go back to 17 step 5, if we could, the second bullet says -- you make that assumption on the first bullet, and then the 18 19 second bullet says you evaluate the results from the So you got a PRA with initiating event, and you 20 PRA. okay, now I'm going to assume that certain 21 sav, equipment fails at the probability of PE and PH here, 22 or the frequency of PE and PH. What impact does that 23 have on the PRA? What's the delta risk? And if the 24 delta risk is small, then it's acceptable. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	DR. CORRADINI: But what's small enough?
2	MEMBER DIMITRIJEVIC: And you can
3	CHAIR BLEY: I think there's the
4	answers come.
5	DR. HILL: I just wanted to bring one or
6	two relevant points. First of all, I appreciate the
7	difficulty in trying to relate this to seismic
8	hazards. There's been decades' worth of engineering
9	analysis, both empirical and modeling, that has gone
10	into understand seismic demands and how structures
11	that are important to safety respond to these
12	different demands.
13	There is a wealth of engineering
14	information for, really, a demand that falls in a very
15	narrow physical window. We're trying to make a
16	technology-neutral approach for a demand, the volcanic
17	hazard, that spans orders of magnitude more variation
18	than the demands coming in from seismic.
19	Yet in the literature, we have almost
20	nothing about the engineering response of SSCs that
21	are important to safety and how they respond to
22	volcanic events. There's even the most common one
23	is volcanic ash, and there's an extremely limited
24	amount of information on the impacts of volcanic ash.
25	Most of that's occurred within the last five years.
I	

(202) 234-4433

So we're faced with this challenge of --I appreciate the need that it would be so nice if we could come up with a clean number that says, below this likelihood of occurrence, it's not significant to safety. But unfortunately, we lack a technical basis to make that safety kind of decision.

7 So we fall back on the risk insights, 8 which uses not just the sensitivity of the new 9 the existing PRA but additional information in 10 information considering the uncertainties, the confidence in the models, the overall scope of 11 information used to say whether this is significant to 12 safety or not. And as that metric for significance to 13 14 safety changes, as we're seeing right now, the 15 rationale can be easily marshalled by an applicant to 16 based on NRC's current view of what. is say, 17 significant, we believe these numbers for volcanic hazards are or are not significant. 18

DR. CORRADINI: But are you -- let me ask a question of the staff so that at least -- because I think we're all kind of troubled by the same thing. Are you saying you'd let the applicant come and suggest what's a residual risk that's ignorable and not provide them a suggestion as to what that level is?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	177
1	MEMBER DIMITRIJEVIC: Yes. That's good.
2	That's not bad. I'm
3	DR. CORRADINI: Let him answer. I want
4	them to answer.
5	DR. HILL: Yes. That's correct. So you
6	do not have an established criteria that says, this is
7	what would be the acceptable risk for volcanic hazards
8	for any facility in the United States.
9	DR. CORRADINI: Last time we did that was
10	risk significance in terms of a figure I can't
11	remember what those things are called when we had
12	Member Stetkar going crazy. The ESBWR had one level
13	of measure and AP1000 had another level of measure and
14	EPR had another level of measure, and I thought the
15	Committee was going nonlinear about that.
16	It strikes me that you want to have some
17	sort of at least straw-man level of significance below
18	which it's not necessary to look at it. Whether it's
19	PE or PH or the product of PE/PH, it strikes me if I
20	fall below some sort of level as a straw-man starting
21	point, then it's ignorable.
22	And the only one that's out there as a
23	straw man right now I'm back to my LMP is the
24	Licensing Modernization Program that they basically
25	said, with a series of frequencies, if the frequency
I	1

(202) 234-4433

	178
1	of this with uncertainty falls below some level, I
2	don't consider it.
3	MEMBER DIMITRIJEVIC: This is why I was
4	going to suggest that you remove SECY-98-144 because
5	it doesn't say anything about this inform, and you put
6	the reg guide 1.174, which will tell you about how to
7	consider the risk report.
8	There is something which I heard they will
9	update because there is a difference between relative
10	and the regulator didn't make decision about that.
11	We're just discussing ten to minus seven, which we
12	said is not really significant when it comes to the
13	value minus seven when you're talking about CDF or
14	value minus nine, that will become a most important
15	event. May not be significant from safety goal but it
16	may be significant from the risk insight.
17	So let's reference reg guide 1.174, and
18	then the NRC's going to keep up with their opinions on
19	that subject.
20	DR. CORRADINI: The only reason I just
21	want to make sure because I think Vesna's makes a
22	much more logical way of saying it than I did. What
23	only troubled me about when you said you leave it up
24	to the licensee is that you could have a multiplicity
25	of values that are all over the map, and we've seen
	I

(202) 234-4433

	179
1	this happen before with other things that you leave to
2	the licensee. And at least you want to provide them
3	some sort of guidance on how to attack it to begin
4	with. That's what
5	(Simultaneous speaking.)
6	MEMBER DIMITRIJEVIC: will do that for
7	them. Reg guide 1.174 will do that.
8	DR. HILL: One final comment just specific
9	to volcanic hazards. I have to reiterate that the
10	very large uncertainties that we're dealing with here
11	in calculating an eruption probability when we talk
12	about thresholds, the term that's commonly used is an
13	expected value of, say, ten to the minus seventh,
14	which implies you have an understanding of the central
15	tendency of the probability.
16	Now, I can make a number up for volcanic
17	hazards, but you really have to come through and do a
18	fair amount of work to have an understanding of
19	whether your expected value probability is going to be
20	at ten to the minus seventh, which to get to that
21	expected value means you're considering events that
22	are going to be down ten to the minus eighth and
23	potentially even ten to the minus ninth per year to
24	have an effective understanding of the mean value of
25	probability.
	I

(202) 234-4433

So this is a very significant challenge to use -- you can present a criterion of, let's say, the ten to the minus seventh threshold. But in this particular instance, the epistemic and aleatory uncertainties that have to be evaluated are going to be a very significant technical challenge to defend to say, I'm at a threshold; therefore, I do not need to go forward and multiply.

9 That's why the definition DR. SCHULTZ: 10 and the mechanism by which that uncertainty is going to be treated needs to be well defined as part of the 11 And it can't be something that is going to 12 process. be established by licensees A, B, C, D. 13 It has to be 14 well established as to how that's going to be treated. 15 Otherwise, we'll never get to agreement.

MEMBER KIRCHNER: Just not the licensee in terms of regulatory certainty. With all due respect to how uncertain this particular challenging problem is, you open the door for intervention that you may have a hard time closing.

21 DR. SCHULTZ: That's right, intervention 22 or just technical agreement.

23 CHAIR BLEY: This is akin to the SSHAC 24 process being used to come up with a seismic hazard 25 curve for an area that's not central and eastern US.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	181
1	I mean, they used it for that whole area, but and,
2	of course, it's not a plain estimate. The SSHAC thing
3	is designed to look at
4	MEMBER KIRCHNER: A whole series of
5	hazards there, not just one.
6	CHAIR BLEY: the things that could
7	drive it in different directions. So it's a
8	probability of frequency, which has a mean value as an
9	expected value. And the best you can probably do is
10	some sort of expert group looking at the kind of
11	pictures you have and then trying to assemble them
12	into an uncertainty distribution, come up with a mean.
13	MEMBER KIRCHNER: And is it better, in
14	your mind, Vesna because you deal in this space.
15	I don't normally deal in this space. Is it better
16	since there's as was very eloquently said, this
17	probability of eruption number is going to be
18	difficult to achieve or you have to appreciate it's
19	going to have large uncertainty. Can you do a better
20	job on probability of ash deposition and mapping
21	versus where do you put the
22	CHAIR BLEY: The experts in this area say
23	yes. That's what they say. And if that's the long-
24	range hazard, it seems to me that's where I would put
25	my efforts.
ļ	I

(202) 234-4433

182 1 MEMBER KIRCHNER: Yeah. That's where it's going. 2 MEMBER DIMITRIJEVIC: Yes, but the ash 3 distribution is given eruption. So, therefore, that's 4 5 going to be not able to be -- this is not going to be It's not going to be ten to minus 6 a small number. 7 five. It's given eruption. So that's not going to 8 stream. 9 MS. THOMPSON: It's also important to know 10 that not every ash eruption is going to be the same So what may be modeled may be the maximum 11 volume. credible extent of an ash fall hazard as opposed to 12 what actually occurs in the future in an eruption. 13 14 So, again, we're dealing with something that is very 15 nonstationary. It's a very dynamic system, and what 16 we model may not be what occurs. 17 So even if we reach that consensus, there's still a fair amount of uncertainty just 18 19 because of the nature and the changing nature of these volcanic systems. 20 MEMBER KIRCHNER: Let me press a little 21 I'm showing my deterministic side 22 further, then. today, determined to get an answer as an engineer so 23 24 I can design my plant. But seriously, if there are such good USGS maps for the Cascadian system, 25 how

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	would walk us through how we ought to use those
2	maps in this process.
3	MS. THOMPSON: Within this process?
4	MEMBER KIRCHNER: Yeah, within your
5	process.
6	MS. THOMPSON: Okay. So if we assume that
7	we have evidence of a quaternary volcano, it's within
8	our region of interest and it is within the time
9	period if interest, and it is consistent with our
10	tectonic magnetic model, and we look at the
11	distribution of ash fall, most of the the use of
12	that hazard map would be used at the Screen Volcanic
13	Hazard step. That's where we would first use it.
14	We would consider those maps with respect
15	to our site. Could the modeled ash fall from that map
16	reach our site? If we're considering a site in New
17	Jersey, the answer is probably no. If we're
18	considering a site in Montana, we'd have to look at
19	that.
20	So that's where we're at, the
21	deterministic screening, looking at what could
22	credibly reach the site. If we determine yes, it is
23	a credible it's credible that an ash fall deposit
24	would be reaching our site, we would move on to step
25	3, consider our Initial Risk Insights assuming that if
ļ	I

(202) 234-4433

184 1 the ash fall arrives at the site, we have failure of an SSC. 2 3 We continue on. If that result is that 4 the failure of that SSC from the arrival of ash fall 5 at the site would be significant to safety, then we would move on, calculate the PE and PH for the source 6 7 volcano of this ash fall, which would be step 4, and 8 then we would get into step 5, where our -- most 9 likely PH. The probability of the hazard reaching the site would be considered in our 10 Detailed Risk Insights, where we would assume that failure will 11 occur at PH in our system. 12 13 MEMBER KIRCHNER: Let me pursue this. 14 MS. THOMPSON: And then do you want me --15 MEMBER KIRCHNER: I'm sorry, Dennis. Ιf 16 I can go one more step. Okay, because I want to go 17 back to where Vesna might have been starting. Most of the plants are in the So okay. 18 19 eastern US, east of the Mississippi. So if we were to just take this reg guide right now and -- let me just 20 throw this out arbitrarily. Anything east of the 21 Mississippi, how quickly would we screen out 22 the volcanic hazard? 23 24 MS. THOMPSON: Most likely in step 1 or 2. I would say the --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	MEMBER KIRCHNER: And how much effort
2	would that take?
3	MS. THOMPSON: surface hazards would
4	screen out in step 1. So lava flows, pyroclastic
5	flows, those would all screen out at step 1. Ash
6	fall, we would consider the hazard map and look at our
7	deterministic screening and look at the geologic
8	record to see if there are ash deposits within the
9	quaternary period at that specific site.
10	And I would say, most likely, you would
11	screen out as well, and then you would be done. And
12	if it took a I'm trying to imagine how much time.
13	If you are familiar with the area that you are working
14	in
15	MEMBER KIRCHNER: You were part of the
16	Clinch River ESP.
17	MS. THOMPSON: Yes.
18	MEMBER KIRCHNER: So give us a feeling.
19	How quickly would we get through this for Clinch
20	River?
21	MS. THOMPSON: It would probably take me
22	more time to write the report than reach a conclusion.
23	MEMBER KIRCHNER: All right.
24	MS. THOMPSON: I don't mean to be funny,
25	but that's
I	

(202) 234-4433

	186
1	MEMBER KIRCHNER: No, I know. I'm just
2	MS. THOMPSON: It would take me more time
3	to document the results than to reach a conclusion.
4	MEMBER KIRCHNER: That's good to know.
5	MS. THOMPSON: Yeah. This is not a
6	burdensome thing if you are well removed from volcanic
7	hazards.
8	MEMBER KIRCHNER: That gives me a little
9	more certainty.
10	DR. CORRADINI: But I think we're
11	MEMBER DIMITRIJEVIC: Okay, but let's look
12	from the design perspective.
13	MS. THOMPSON: So that's actually what
14	we're stepping into next, which is step 6, to evaluate
15	the design bases once we have determined PE and PH and
16	moved in after our Detailed Risk Insights and we're at
17	the optional step of considering the design bases
18	where we are looking to develop a more accurate limit
19	state for the SSCs that would be affected by the
20	potential volcanic hazard reaching the site.
21	So, specifically, we're looking at
22	exceedance likelihoods given the demands of the
23	volcanic hazard that reaches the site. And if you
24	remember the range of different demands that may be
25	impacted on the site based on what the hazard is, the
	1

(202) 234-4433

187

demands of a lava flow are very different from the demands of an ash fall hazard.

We would also at this step consider the actual material properties that would be affected and looking at facility-specific information related to the SSCs that would be affected by the hazard. So this is the stage where we're looking at what can the actual facility withstand, and can it withstand the particular demand of that specific volcanic hazard?

10 And this is a place where the conclusion reached for ash fall may be different than the 11 conclusion reached for lava flow, 12 а so aqain considering the dynamic nature of volcanic hazards and 13 their varying demands. So once that is done, we would 14 15 look at reevaluating risk insights based on this new facility-specific information, and then this may allow 16 us to enhance the design bases if an applicant chooses 17 to go that route. 18

19 MEMBER DIMITRIJEVIC: This is -- sorry. I was trying to say something before for this design 20 similar to her hazard. So let's say that we want to 21 build NuScale next to Columbia. I would say go ahead. 22 There is nothing which can -- I mean because the only 23 24 important things are ECCS components and the passing There is absolutely nothing I can think from 25 cooling.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

volcano. So that would be example of a design that's not really vulnerable to this type of hazard. MS. THOMPSON: And that's exactly what would happen at this step where an applicant would consider the specific systems and the effect of the volcanic hazards on those specific systems. And if they do reach a conclusion that given the design of the facility, the volcanic hazard would not affect the site, they can at this point screen out or complete

the analysis because no further analysis is needed. 11 The volcanic hazard, although reaching the site, will 12 not affect the facility, given the site-specific and 13 14 facility-specific parameters. And they would be done with their analysis, and they would be complete. 15

16 DR. CORRADINI: Okay. So let's play this 17 one out. I think what you guys have done is very I just am looking for examples so that if I'm 18 qood. 19 an applicant, I would see an example for step 1, an example for step 2. So let's take an example here. 20 I've got all these supposed advanced reactors with 21 22 supposed passive decay heat removal systems that exchangers or water 23 either have air heat heat 24 exchangers that ash deposits will follow them.

So do I assume one millimeter thousand?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

25

(202) 234-4433

188

1 Do I do a parametric on that? At what point do I say that that's an unacceptably large amount of following 2 3 factor on these passive heat exchanger systems? 4 Strikes me I'm going to have to make a judgment. So 5 that judgment would be probably based on frequency, which is the chance of this happening compared to all 6 7 the other things I'm worrying about on getting rid of 8 my passive decay removal system is zero. 9 CHAIR BLEY: Yeah, but if you can't do it 10 on frequency, then you get some guy like you to evaluate how your heat exchangers will do in this 11 environment. 12 MS. THOMPSON: And that decision 13 to 14 determine what the effect would be, what the volume of 15 ash could be given the passive systems, that is another question that could be posed. And you could 16 17 use a SSHAC process to consider, what volume of ash could we reasonably expect to reach the site? 18 And 19 should we consider that to be our failure state, or is this amount of ash that we've come to a consensus on 20 -- let's say it's two millimeters. 21 Well, the engineers have decided that two 22 millimeters is something that this facility can 23 24 withstand, and that would be done at this stage, evaluating your design bases. So if you can make the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

189

190 justification and document the rationale for that 1 conclusion, you could end the volcanic hazards 2 analysis and be done. 3 4 DR. CORRADINI: I see where you're going. 5 I'll point to the empty chair. Now I'm starting to become like Charlie that I am imposing requirements on 6 7 this technology that I'm not imposing on any other 8 technology to a level that the uncertainty -- if I 9 started thinking about other ways to make electricity 10 and I say, well, I'm worried about a volcanic eruption on all these solar arrays and all these wind 11 turbines --12 CHAIR BLEY: Wait, wait. 13 No, no. Come 14 You don't -- so you lose production. on. That's different than having a nuclear release from a nuclear 15 That's why we've got all the regulation we 16 plant. 17 have. DR. CORRADINI: Okay. But if I go through 18 19 from a frequency standpoint, if it's a low enough frequency, it's still a residual risk. 20 CHAIR BLEY: Well, that's true. 21 DR. CORRADINI: But that's got nothing to 22 do with a coal plant or a solar plant. 23 24 MEMBER MARCH-LEUBA: The risk is a product of the frequency testing consequences. 25 I mean, a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	solar plant is supposed to
2	(Simultaneous speaking.)
3	CHAIR BLEY: Well, if the consequences of
4	losing electric power are higher than
5	(Simultaneous speaking.)
6	DR. CORRADINI: I'd probably kill more
7	people losing electric power and have a loss of
8	refrigeration than all the stuff I'm worried about
9	here.
10	MEMBER PETTI: If there's nothing else
11	you've learned from this almost three-and-a-half-hour
12	exercise is that some examples that are really
13	different, right, I think would help clarify all
14	these.
15	MEMBER DIMITRIJEVIC: You mean the
16	examples only on the
17	MEMBER PETTI: Of using the process.
18	MS. THOMPSON: Of using the process.
19	Okay.
20	MEMBER MARCH-LEUBA: By the way, I sent
21	you a link to the US Geological Survey of 160 US
22	volcanoes and the risk.
23	MEMBER DIMITRIJEVIC: They can only do
24	hazard analysis. They're not going to take some PRA
25	to run data.
ļ	

(202) 234-4433

	192
1	MS. THOMPSON: I'll take that note back to
2	the working group. Yeah.
3	MEMBER REMPE: Some of the examples with
4	the non-ash cases are perhaps less dependent on the
5	design. It's just the site. And so, then, in some of
6	the examples, you're going to have to say, this will
7	depend on the design details, and just cut it off.
8	Right?
9	MS. THOMPSON: Mm-hmm.
10	MEMBER REMPE: With all the work you've
11	done, we're I mean, this was started out because of
12	what's going on in Idaho. Can you even rule out the
13	surface ones, but you can't do the ash ones at this
14	time or at least give some insights for that site? I
15	mean, you've heard Steve and a bunch of people saying,
16	when does this get done? Have you gone far enough?
17	And you talked about on the East Coast,
18	you can just rule them out. Have you done enough that
19	you can say certain things are not ruled out?
20	MS. THOMPSON: It would depend on site.
21	Again, it's very site-specific. There are some
22	hazards that you can rule out almost immediately based
23	on geologic setting alone and the characterization of
24	the volcanic system. Whether we could as a staff put
25	together an appendix saying, if you're located here or
	I

(202) 234-4433

	193
1	there, you don't have to consider this, may take some
2	additional time as we move our way west. But
3	DR. SCHULTZ: I think it could be well
4	worth it.
5	MS. THOMPSON: Okay.
6	CHAIR BLEY: The other side of that is,
7	how many people are going to come up with a siting
8	requirement that's going to put them in need of
9	considering this? In 60 years, we've had 2 plants.
10	MEMBER REMPE: The other thing I guess I
11	was thinking about is, often, you refer to the PRA.
12	Some of these things are going to be so simple they're
13	just going to have a maximum or a hazard
14	assessment. Right? They're not going to have much of
15	a simplified yeah. And so those kind of questions,
16	I think are we need to broaden it a bit.
17	MS. THOMPSON: Okay. That's something
18	we'll take back, too. So if after evaluating the
19	design bases there is still a credible hazard, an
20	applicant can choose one of two actions. They can go
21	back and reevaluate again, or they can proceed to
22	Mitigating Actions. And this is kind of an iterative.
23	As we get towards the end, you can evaluate your
24	design bases, evaluate mitigation actions, and let's
25	say your mitigation actions still do not resolve the
	I

(202) 234-4433

	194
1	risk posed by the volcanic hazard.
2	You could then go back to step 6 several
3	times if you wanted to, to perform even more detailed
4	analyses to get additional information based on your
5	specific site and your specific design. So moving on
6	to Mitigation Actions doesn't necessarily mean that
7	you're committed to those actions. This is just an
8	iterative process that an applicant can take.
9	So, as I mentioned before, most volcanic
10	eruptions are preceded by precursory earthquakes or
11	other activity. This warning time can occur over
12	several hours. More commonly, you get several weeks
13	of elevated activity. And Mitigation Actions may be
14	practicable in the warning time that you have between
15	when there is a change to the volcanic system and when
16	the hazard arrives at the site.
17	An example of this is, again, the Columbia
18	Nuclear Generating Station. As I mentioned before,
19	it's the only current operating reactor that has
20	design bases volcanic hazard for ash fall. It's
21	located more than 200 kilometers away from the source
22	of that ash fall in the Cascades. So the Columbia
23	site has several hours to prepare for an ash fall
24	event.
25	And as I mentioned before, there are
I	1

(202) 234-4433

	195
1	maintenance procedures, and air filtration is
2	installed in that warning time, which the staff at the
3	time of licensing reviewed and determined that was
4	sufficient time to implement all of these mitigation
5	actions. It's also worth noting that volcanic ash
6	fall is a commonly mitigated hazard around the world.
7	So, as I mentioned before, we have more data for ash
8	fall than we have for any of the other volcanic
9	hazards with respect to mitigation and evaluation.
10	So
11	MEMBER MARCH-LEUBA: Would you say that
12	the other hazards are deadly? If you get caught in
13	the lava flow, forget it.
14	MS. THOMPSON: So that's the the next
15	thing I'm getting to is that, as you mentioned, some
16	surface flows, their properties are much different.
17	They are much more deadly, and but some of them
18	have been successfully mitigated worldwide. Other
19	attempts have not been successful.
20	The photo here shows one such attempt.
21	This is from the 1960 eruption on Kilauea. You can
22	see a little bulldozer in the center. That bulldozer
23	is constructing a five-meter-tall diversion for the
24	lava flow.
25	MEMBER MARCH-LEUBA: Which no longer
I	

(202) 234-4433

	196
1	exists.
2	MS. THOMPSON: Exactly. This barrier was
3	successful in diverting the lava flow for several
4	weeks, but it was ultimately overtopped. But if
5	you're considering several weeks of successful
6	mitigation of a flow hazard, if you're looking at
7	evacuation times for people or other factors, several
8	weeks can be very important for some of these
9	locations. So
10	MEMBER BALLINGER: My directive is don't
11	build a power nuclear plant on Hawaii.
12	MS. THOMPSON: I would say consider the
13	tectono-magnetic model when siting on the Hawaiian
14	Islands.
15	MEMBER BALLINGER: I'm looking at the
16	tectono-magnetic model right here.
17	MS. THOMPSON: So if mitigation actions
18	are proposed, there should be appropriate monitoring
19	in place so that there is forewarning or early warning
20	of an eruption. Any mitigation action should also
21	include clear criteria for when to start those actions
22	based on a change in the monitoring, and there should
23	be a basis to demonstrate that the mitigating actions
24	are practicable in the warning time between
25	notification of a potential event and the arrival of
	I

(202) 234-4433

	197
1	the hazard at the site.
2	CHAIR BLEY: Somebody at this table
3	brought up something that's happened with floods and
4	that when to protect the nuclear facility, they wanted
5	to drain water through a dam, people downstream of the
6	dam objected that they didn't want to be inundated.
7	And if you're going to have a plan for diverting the
8	stuff if you decide to live close enough to need it,
9	you might have other political problems that keep you
10	from carrying out your plan.
11	MS. THOMPSON: That's an excellent point.
12	CHAIR BLEY: Does NRC look at that? You
13	hadn't before the flood stuff came up.
14	MS. THOMPSON: I will take that back and
15	check on that for you.
16	CHAIR BLEY: Okay.
17	MS. THOMPSON: So the last step in
18	evaluating the mitigation actions is to reevaluate the
19	risk insights taking credit for the mitigation action.
20	So if after all of the steps have been
21	completed, a hazard is still not able to be mitigated
22	through design or operations, an applicant has two
23	choices. They can go back into the process and
24	continue to iterate, getting more and more detailed
25	analyses, or they can proceed to Siting
I	I

(202) 234-4433

198 1 Considerations, where an alternative site may need to be considered. 2 3 As we mentioned before, volcanic hazards 4 spatially restricted. So one site may be are 5 unsuitable while another site located several kilometers away would have less risk significance or 6 7 a more acceptable risk. 8 So now that we have been through the 9 staff's approach, I promised you I would address IAEA SSG-21, the Volcanic Hazards Guide, and how we have 10 harmonized with that. And we are there. 11 Specific Safety Guide 21 is for volcanic 12 hazards in site evaluation at nuclear installations. 13 14 This IAEA quide considered a range of facilities, from 15 fuel installations all the way up to light-water 16 reactors. The NRC's draft quide is consistent with the 17 IAEA approach, which includes an initial screening for volcanoes, although the IAEA guide uses 10 million 18 19 years instead of the quaternary period of 2.6, which NRC's 20 is consistent with the qeologic site characterization. 21 The IAEA approach also uses the tectono-22 magnetic model, and it stops at a detailed evaluation 23 24 of hazards at the site. And again, because it's covering a range of installations, the hazard approach 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	is scaled to those installations.
2	The NRC staff's VHA approach integrates
3	risk insights throughout the analysis, which is
4	consistent with the graded approach that the IAEA
5	guide uses, and it's also providing a practical and
6	transparent basis to determine if volcanic hazards are
7	significant to risk within the NRC's framework.
8	As I mentioned before, there are three key
9	differences with the IAEA safety guide, which is why
10	the staff did not choose alternative 3 in the
11	regulatory analysis, which was to adopt this guide.
12	The first is that the IAEA safety guide outlines
13	specific site exclusion criteria for some volcanic
14	hazards. So if the hazard were to occur at the site,
15	the site is deemed not suitable for use.
16	However, the NRC staff determined that
17	that is not consistent with our risk-informed,
18	performance-based framework, and we allow the
19	possibility for design basis or mitigation actions to
20	address the hazard.
21	DR. CORRADINI: Just so I understand, this
22	means after they look at step 1, if they didn't pass
23	step 1, they were out?
24	MS. THOMPSON: Yes.
25	DR. CORRADINI: Okay.
I	1

(202) 234-4433

200 MS. THOMPSON: So this would be -an example of this, one of the exclusion criteria for a site is a debris flow. So if a debris flow would occur at a site under the IAEA guidance, that site It does not consider whether would be not suitable. the depth of the debris flow that reaches the site is one inch or ten feet. It doesn't give consideration for the hazard significance. So --Let me springboard off of MEMBER BROWN: exclusion criteria Mike's comment. The site inconsistent with risk performance, does that mean the IAEA approach is more prescriptive or more restricted than what you're proposing in the --MS. THOMPSON: Yes. MEMBER BROWN: That's what it sounds like: MS. THOMPSON: Yes. Tt's more restrictive. So if a lava flow could occur at the site, the site is excluded. MEMBER BROWN: Within what? A tenmillion-year period? MS. THOMPSON: I don't recall the period It's just, if it occurs, the site is out. 22 of time. MEMBER BROWN: If it could, but for whatever --

> Exactly. Regardless of MS. THOMPSON:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

	201
1	magnitude. So a pyroclastic
2	MEMBER BROWN: Or time.
3	MS. THOMPSON: Yes. If it occurs, the
4	site is unsuitable.
5	MEMBER BROWN: You mean occurs or occurred
6	in the past?
7	MS. THOMPSON: Occurs. If it could reach
8	the site, if that hazard could occur at the site, the
9	site is unsuitable.
10	DR. HILL: If I could clarify, the IAEA
11	couches it in terms of a capable volcano, which has a
12	credible it could be a new volcano in the future or
13	an existing volcano. So if a capable volcano has the
14	potential to erupt a hazardous phenomena that reaches
15	the site, and that phenomena is a lava flow, the site
16	is not suitable for development.
17	So the capability has no probabilistic
18	connotation. It's just this is credible in the
19	island.
20	MEMBER BROWN: In other words, sometime,
21	somebody has determined it might have been there, and
22	it might be again, and therefore, we can consider it
23	credible, and therefore it's excluded.
24	DR. HILL: It sounds a little silly until
25	we're facing this exact problem in Japan right now

(202) 234-4433

1 where a nuclear power plant is being potentially shut down because of the danger from a pyroclastic flow 2 3 that may be from a volcano 150 kilometers away, even 4 though the best science would say by the time that 5 pyroclastic flow got to the site, it would be very dilute and you could probably stand up in it if you 6 7 had a respirator. It'd be low temperature. It'd be 8 like an ash fall more than anything else. But nevertheless, it meets the criteria of 9 10 -- it's a pyroclastic density current, or pyroclastic flow. Therefore, under IAEA quidelines, 11 any pyroclastic flow at the site means the site cannot be 12 So it's very restrictive in viewing it's all or 13 used. 14 nothing for some phenomena. 15 (Simultaneous speaking.) -- occurring now, but --16 MEMBER BROWN: That it could. 17 MS. THOMPSON: -- if it could. MEMBER BROWN: 18 19 DR. HILL: It has a credible potential to 20 occur. MEMBER BROWN: What has happened five 21 million years ago, it could still credibly. 22 23 MEMBER DIMITRIJEVIC: But does it apply 24 only for new plants? They're talking about 25 MEMBER BROWN: No.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

202

	203
1	shutting down a plant.
2	MEMBER DIMITRIJEVIC: I know he said that,
3	but the guide, I don't know what she's talking
4	MS. THOMPSON: It is for any nuclear
5	installation.
6	DR. CORRADINI: Current or future.
7	MEMBER DIMITRIJEVIC: Current or future.
8	DR. HILL: That depends on its use by a
9	member state.
10	(Simultaneous speaking.)
11	MEMBER DIMITRIJEVIC: the title of it?
12	MS. THOMPSON: So the title is just any
13	nuclear installation. And the application to new or
14	current facilities is a country-by-country basis.
15	MEMBER MARCH-LEUBA: But the new reg guide
16	from NRC, it applies to new plants?
17	MEMBER DIMITRIJEVIC: Only for new plants.
18	MS. THOMPSON: This draft guide would only
19	apply to new plants, new applications.
20	CHAIR BLEY: Reactors.
21	MS. THOMPSON: Reactors.
22	CHAIR BLEY: Jenise, I don't recall
23	another reg guide going to the extent you're going
24	here to harmonize with IAEA standards. Is this
25	something new, or do you just feel moved to
Į	I

(202) 234-4433

	204
1	MEMBER BROWN: I can I think a couple
2	of the reg guides we've done in our area have had
3	harmonization where they have springboarded out of
4	international standards.
5	CHAIR BLEY: And explain in detail why
6	they differ?
7	MEMBER BROWN: Or why they're similar.
8	I'm trying to remember which ones, but we've done
9	several of them over the last few years. And
10	harmonization has been they considered those things in
11	the development of the new reg guide, and they didn't
12	talk about exclusions. They didn't reference in
13	fact, it was on the which one is it?
14	CHAIR BLEY: You don't need to
15	MEMBER BROWN: Okay. There's one coming
16	up that says, hey, they're just incorporating the IAEA
17	or some international standard as the reference.
18	MS. THOMPSON: The harmonization section
19	with international standards is a requirement for new
20	regulatory guides that we're issuing. The reason that
21	we went to so much detail is because there is an
22	existing standard, and we do take certain exceptions
23	to some of the content, and we wanted to spell that
24	out clearly.
25	CHAIR BLEY: And you didn't have one to
	1

(202) 234-4433

205
start with.
MS. THOMPSON: Yes. Yeah. So we didn't
have a reg guide to update. So the new requirement
for reg guides includes this section, and we went to
the level of detail that we did to call out the
specific differences.
The second difference is that IAEA accepts
deterministic analyses for the detailed VHA, but for
the approach that we've outlined in the draft guide,
we only use deterministic for a screening and then use
probabilistic risk insights for the more detailed
analysis.
And, finally, the IAEA safety guide
requires licensees to conduct monitoring of the
sources of the potential volcanic hazards at their
sites. But the NRC concludes that the function of
monitoring and issuing eruption warnings is the
purview of the US Geological Survey as part of their
statutory role here in the US.
CHAIR BLEY: And you have some kind of
joint agreements or meetings with them, right?
MS. THOMPSON: We yes.
CHAIR BLEY: I mean, in a lot of areas
MS. THOMPSON: Yes.
CHAIR BLEY: The staff works with other

(202) 234-4433

agencies. Yes, and the key takeaway MS. THOMPSON: here is that an NRC licensee with a volcanic hazard would not need to implement their own independent volcano-monitoring program, which is what would be prescribed if they were following the SSG-21 issued by

1

2

3

4

5

6

7

IAEA.

8 Now that we've discussed the 9 harmonization, home stretch. Future plans. We will 10 be issuing the draft guide for public comment and interim use later this spring. The reason for this is 11 so that we can solicit both stakeholder feedback and 12 public comment but also get some feedback from 13 14 prospective applicants that are using the draft guide, 15 so getting some hands on the ground. This is what worked. This is where things weren't clear. Getting 16 some very critical feedback of the process outlined in 17 the draft quide. 18

So that is the key difference there.

We also have a staff member who's involved 19 the working group for ANS 2.34, which is a 20 in consensus standard under development for volcanic 21 And we also --22 hazards.

MEMBER REMPE: I haven't heard of that 23 24 one. Is that actually in process now?

> MS. THOMPSON: So the most recent

> > **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	207
1	information we have from our member on the working
2	group is that we anticipate a draft guide or not a
3	draft guide. Sorry. We anticipate the final
4	standards sometime in 2022, at which time the staff
5	will review.
6	CHAIR BLEY: Will this be one of the PRA
7	standards, or is it a completely separate standard?
8	MS. THOMPSON: It's a separate standard.
9	MEMBER REMPE: Is it applicable to all
10	plants or new facilities?
11	MS. THOMPSON: I am not the working group
12	representative, so I'm not sure where the current
13	scope is with the standard. So I can make a note and
14	get back to you.
15	MEMBER REMPE: Thank you.
16	MEMBER BROWN: What is ANS 2.34? I missed
17	that.
18	MS. THOMPSON: It is a consensus standard
19	under development for assessing volcanic hazards.
20	MEMBER BROWN: Oh.
21	DR. CORRADINI: I was just going to say if
22	Budnitz is not on it, let's nominate him.
23	MEMBER BROWN: I guess my question would
24	be, if ANS is going to issue a standard and you get
25	this reg guide out, are you then going to be faced
	I

(202) 234-4433

	208
1	with revising your standard for consistency or
2	whatever with the ANS standard? Why are you that far
3	in advance?
4	MS. THOMPSON: I'm actually going to get
5	to that. So part of the reason that we are this far
6	in advance is because we anticipated a prospective
7	applicant developing an application, and we wanted to
8	have some kind of draft guidance available for that
9	applicant to use in the development of an application
10	using what the NRC considers to be an acceptable
11	approach for assessing volcanic hazards. And I'll get
12	to some of that in the time line.
13	MEMBER BROWN: You answered my question.
14	MS. THOMPSON: Okay.
15	MEMBER BROWN: Thank you.
16	MS. THOMPSON: The staff also opened a
17	comment capture email so that regardless of where we
18	are in the reg guide development process, members of
19	the public can provide us their feedback. This is
20	especially true for stakeholders who may be
21	implementing the draft guide as they develop their
22	applications. And the staff will address any of the
23	comments received through this comment capture email
24	as though they were received as part of the formal
25	public comment period. And to date, we have already
I	

(202) 234-4433

	209
1	received two comments through our comment capture
2	email.
3	The comment capture email, we opened that
4	when we issued the draft outline to the public in
5	early October of last year in we did a public
6	meeting in October with the outline of the draft
7	guide, seeking initial comments and feedback from
8	interested stakeholders. And we've left the comment
9	capture box open, and we will continue to keep the
10	comment capture box open as long as the draft guide is
11	still in draft form.
12	DR. SCHULTZ: Is there a time schedule for
13	that?
14	(Off-microphone comments.)
15	
13	DR. SCHULTZ: No, but okay. I saw
16	DR. SCHULTZ: No, but okay. I saw that. I thought we might have a month somewhere in
16	that. I thought we might have a month somewhere in
16 17	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have
16 17 18	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a
16 17 18 19	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a digital exhibit at the Regulatory Information
16 17 18 19 20	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a digital exhibit at the Regulatory Information Conference. The purpose of that exhibit is to
16 17 18 19 20 21	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a digital exhibit at the Regulatory Information Conference. The purpose of that exhibit is to announce the hopefully imminent release in the Federal
16 17 18 19 20 21 22	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a digital exhibit at the Regulatory Information Conference. The purpose of that exhibit is to announce the hopefully imminent release in the Federal Register of the draft guide, and
16 17 18 19 20 21 22 23	that. I thought we might have a month somewhere in MS. THOMPSON: So some of these do have months. So next month, we will be presenting a digital exhibit at the Regulatory Information Conference. The purpose of that exhibit is to announce the hopefully imminent release in the Federal Register of the draft guide, and CHAIR BLEY: Digital exhibit's new to me.

(202) 234-4433

	210
1	MS. THOMPSON: Yes. The working group
2	took inspiration from a movie trailer. So ours has
3	videos and animations in it. So if you're at the RIC,
4	please stop by and see us. It'll be worth the two and
5	a half minutes of your time.
6	MEMBER KIRCHNER: Are the animations going
7	to scare the general public? You're going to put
8	illustrations of volcanoes erupting and nuclear plants
9	together?
10	MS. THOMPSON: We did not put nuclear
11	plants in the animations, but there are animated
12	examples of volcanic hazards.
13	CHAIR BLEY: Make sure you have the one
14	where people are touring the Icelandic magma flows
15	that are going into the water, and you can watch the
16	boat bounce around as the things go in the water.
17	MR. WIDMAYER: ACRS and two and a half
18	minutes don't go together in a sentence.
19	MS. THOMPSON: I'm just going to continue
20	on. Later this spring, we anticipate the issuance of
21	the draft guide for public comments, and we anticipate
22	receiving public comments throughout the remainder of
23	this year. Next year, in 2021, we look to address
24	these public comments, and we will at that time, we
25	hope, be receiving some initial feedback from
ļ	I

(202) 234-4433

	211
1	prospective applicants that are using the draft guide
2	to develop an application.
3	And then, based on the public comments
4	that we receive and any feedback from prospective
5	applicants implementing the guidance, we may decide to
6	revise the draft guide based on what we receive.
7	Looking ahead to 2022, and to ensure that
8	we remain consistent with the content of the ANS
9	standard currently under development, we anticipate
10	that that standard will be issued in 2022, at which
11	time the staff will review and then finalize and issue
12	the regulatory guide.
13	Last slide.
14	DR. SCHULTZ: Jenise, does that mean that
15	you're planning on considering the ANS input?
16	MS. THOMPSON: That is the working group's
17	current intention. Yes.
18	DR. SCHULTZ: Okay. Thank you.
19	MS. THOMPSON: So finally, at the start of
20	the presentation, I outlined several goals that the
21	working group set for the draft guide. Our
22	conclusions are that we've met these goals and we've
23	developed a draft guide on volcanic hazards that's
24	consistent with the risk-informed, performance-based
25	framework that we have here at the NRC.
ļ	I

(202) 234-4433

1 The draft guide provides opportunities for an applicant to evaluate the risk significance of 2 3 potential volcanic hazards and end the analysis if the 4 hazards are not significant. So, again, we were 5 considering the burden on an applicant as one of our goals, and we believe we've met that. 6 7 And, finally, the working group recognizes that although only a few sites in the US might need to 8 9 evaluate volcanic hazards, the draft guide provides a 10 practicable, open, and traceable approach that is appropriately protective of public health, safety, and 11 the environment. 12 That is all. 13 14 CHAIR BLEY: Thank you very much, Jenise. 15 Are there any more questions from the Committee? 16 17 Derek, would you get the phone line open We had a plan. I don't know if we still have for us? 18 19 it, and we don't get a hint. Just double-check, 20 please. Is there anybody in the room who would 21 like to make a comment? 22 If so, please come to a microphone. Nobody? 23 24 Is there anybody on the phone line who would like to make a comment? If so, please tell us 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	your name and what your comment is.
2	Derek? It's open?
3	It sounds like nobody's there. We'll go
4	around the table. But first, the staff has not asked
5	us for a letter at this time. I'd be interested in
6	any summary comments the members have and if any of
7	you think we ought to write a letter at this time or
8	wait until the public comment period is over, or maybe
9	write one during that time period.
10	I'm going to start with Vesna.
11	MEMBER DIMITRIJEVIC: You mean of a letter
12	or general comment?
13	CHAIR BLEY: General comments, and do you
14	think we ought to write a letter now or later or ever?
15	MEMBER DIMITRIJEVIC: I think we can
16	provide this is obviously written it's not
17	written by a nuclear PRA person, parts of it. So it
18	has some terminology which is not applicable to the
19	risk-informed nuclear things, and therefore, we can
20	propose some editing changes which will change that.
21	So from the point of the editing changes,
22	I don't know, how is it done in general? I mean, I
23	know that you said the data instead can use to provide
24	their own notes. I will be willing to provide those,
25	my motes, after we finish the PRA section or
I	

(202) 234-4433

	214
1	something. I mean
2	CHAIR BLEY: We don't know yet if that's
3	appropriate
4	MEMBER DIMITRIJEVIC: I think that is
5	appropriate. That would be my editorial notes. On
6	the high level, now I think I cannot really decide,
7	should we write the letter now or after? Maybe we can
8	give it some general direction if we can
9	CHAIR BLEY: We can't do that.
10	MEMBER DIMITRIJEVIC: No? So
11	CHAIR BLEY: As a committee, we either
12	write a letter or we don't.
13	MEMBER DIMITRIJEVIC: No, no, no. I know.
14	But meaning the letter, do you think we can write a
15	letter which will be useful for them?
16	CHAIR BLEY: I think we could write a
17	letter that we would think would be useful for this.
18	Any more?
19	MEMBER DIMITRIJEVIC: Well, the only other
20	things which I want to say which I learned through my
21	very old practice here is one of my one other
22	person I cooperate on my very complex application. If
23	things are more complex, more simple should we keep.
24	So instead of concentrating on things which we don't
25	know, and there are so many things which we don't know
I	1

(202) 234-4433

	215
1	how this will work, we can concentrate on the things
2	we know so we have a really good frame without making
3	it too complex.
4	So I will in general simplify and
5	concentrate on the things which we know. And you use
6	uncertainty so many times in this thing, so it's
7	taking in account uncertainty, taking account
8	uncertainty, taking account but that doesn't mean
9	too much, I mean other than if we don't say use 95
10	percent or something. But we take account uncertainty
11	how? We just acknowledge its presence. I mean, so I
12	think maybe we should actually write the letter.
13	CHAIR BLEY: Thank you.
14	Charlie?
15	MEMBER BROWN: Number one, I wouldn't
16	write a letter right now. It's very much in fluid.
17	That was a good meeting, a lot of good information.
18	But based on doing several of these myself, I've found
19	it useful to get the public comments, particularly
20	since the ANS standard is being developed as well as
21	the incorporate the public comments and see how
22	this thing moves.
23	The transcript is always available to this
24	team to see if they think if they deem any of our
25	suggestions and observations during the meeting are
	I

(202) 234-4433

	216
1	useful. But I would not write a letter right now.
2	It's just too fluid.
3	CHAIR BLEY: Thank you.
4	Pete?
5	MEMBER RICCARDELLA: That was a very, very
6	interesting presentation. I liked the analogy with
7	the seismic risk evaluation. And I'm kind of
8	uncertain as to whether to write the I think we
9	should eventually write a letter on this, but whether
10	we do it now or after the public comment, I'm not
11	I don't have a strong opinion.
12	CHAIR BLEY: Thank you.
13	Jose?
14	MEMBER MARCH-LEUBA: Yeah. I don't have
15	a truly informed opinion, but that hasn't stopped me
16	before. So just pointing out that since the RG is out
17	for public comments, any person interested can
18	provide
19	CHAIR BLEY: It's not out yet.
20	MEMBER MARCH-LEUBA: Whenever it's out.
21	I thought you provided the email.
22	MS. THOMPSON: It will be soon.
23	MEMBER DIMITRIJEVIC: You said that you
24	put it in October.
25	MS. THOMPSON: No. That was the draft
ļ	I

	217
1	outline of the guide. So we issued an outline to the
2	public along with a public meeting to solicit initial
3	comments just on what we were thinking of doing for
4	the draft guide. But the formal public comment period
5	has not started.
6	MEMBER MARCH-LEUBA: But you provided an
7	email where we could send you information.
8	MS. THOMPSON: Yes.
9	MEMBER MARCH-LEUBA: So as an interested
10	member of the public, I could send you anything I
11	want.
12	MS. THOMPSON: Yes.
13	MEMBER MARCH-LEUBA: And so I don't think
14	we need to write the letter if one member would like
15	to provide a comment.
16	On the long term, this has such limited
17	applicability. I mean, I've been looking at all the
18	volcanoes. Unless you want to go to Hawaii or Alaska,
19	that's about it. So I don't see a need to write a
20	letter.
21	CHAIR BLEY: Thank you.
22	Walt?
23	MEMBER KIRCHNER: Thank you for the
24	presentation, and I think we could wait until after
25	the public comment period. But I do appreciate the
I	

(202) 234-4433

	218
1	sentiment with Vesna to perhaps get the terminology
2	consistent with the PRA practice. Thank you.
3	CHAIR BLEY: Okay.
4	Matt?
5	MEMBER SUNSERI: So as I read through the
6	background material on this and the draft that already
7	got out, I was thinking to myself, gee, what an
8	eloquently straightforward seven-step approach to
9	address a very low-frequency event. This can't take
10	more than a couple hours to thank you for the
11	presentation. I found it very good and informative.
12	You all have done a lot of hard work. That's all.
13	And I don't think we need to write a letter at this
14	time. Maybe later.
15	CHAIR BLEY: Joy?
16	MEMBER REMPE: I'd like to sort of second
17	what Matt said. I think that the presentation and the
18	individuals involved with it were very well informed
19	and gave us some very good, helpful information, and
20	I appreciate their endurance and patience with our
21	questions. And so I think you deserve some
22	compliments on that.
23	I don't think we need to write a letter at
24	this time, but I do think that there were several
25	comments. Of course, they're just from individual
	I

(202) 234-4433

	219
1	members, and I hope you'll consider, if you can, some
2	of it before it's issued for public comment.
3	In particular, as one member who shouldn't
4	be taking too much credit, I'm interested in if the
5	reg guide could even comment about other nearby
6	hazards that might be posed that were not evaluated
7	for volcanic hazards if that exists. Thank you.
8	CHAIR BLEY: Thanks.
9	Dave?
10	MEMBER PETTI: Yeah, I want to thank them.
11	They did a great job. I learned a lot. But I tend to
12	agree with Charlie. I think it's too early to write
13	the letter now. I would wait to see what happens with
14	ANS, and then I wouldn't necessarily say yes. I'd
15	just reevaluate at that point whether we need to have
16	a letter.
17	CHAIR BLEY: Thank you.
18	Ronald?
19	MEMBER BALLINGER: I guess I'm a little
20	bit torn because on the one hand, I don't think this
21	has this has very limited applicability. Like Jose
22	was saying, unless you want to build a reactor in
23	Alaska or Washington or Oregon, it's not likely to be
24	an issue.
25	But on the other hand, if applicants
ļ	

(202) 234-4433

	220
1	perceive this to be an issue that they're going to
2	have to deal with, the public comment period could get
3	pretty interesting. So I think, based on the public
4	comments, we may or may not want to write a letter.
5	I'm ambivalent on that.
6	But I think the applicants are going to be
7	looking for off-ramps that are very well defined with
8	finality. If those aren't there, then your public
9	comment period will get very interesting.
10	CHAIR BLEY: Thank you.
11	Our consultant, Steve?
12	DR. SCHULTZ: I also appreciate the
13	presentations and all the work that went into the
14	development so far, as well as what you described as
15	your early involvement with both the public as well as
16	applicants in the overall process. That is very
17	important.
18	And in that regard, the comments that have
19	been made this afternoon about trying to develop
20	elements of examples, I think, would be very helpful
21	going forward. And I'd be surprised if the public
22	comments don't also ask for that. So if you've got
23	time to get a head start on that, it might be useful,
24	certainly.
25	The other thing I'd recommend, Jenise, is
ļ	

(202) 234-4433

1 that you stay in close-cut touch with the ANS Standards Committee because you've got them on your 2 they don't always complete 3 schedule, and their 4 standards when time is on calendar. So I think it's 5 important that that connection be made, but you might need to lean on the Standards Committee's to make sure 6 7 it gets done on your schedule. 8 CHAIR BLEY: Mike? I think the staff did a 9 DR. CORRADINI: 10 very nice job. I personally think that the draft reg quide is quite helpful in trying to screen it out. I 11 think the point about bringing examples into each of 12 those steps so that you can identify from a practical, 13 14 concrete basis what moves you on, what takes you off 15 steps, would be very useful. the And the more 16 specific those examples can be, whether they be 17 specific plants or specific installations, I think the better off it would be. 18 19 My personal view still is that somehow, somewhere in this, you're going to have to point to 20 some sort of qo/no-qo risk-informed value. 21 Even if you don't have one at this point, you at least should 22 recommend or at least acknowledge the fact something 23 24 at some time is going to have to be recommended, that level, it's either from a relative risk 25 some at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

221

	222
1	standpoint or an absolute risk standpoint. It's of no
2	consequence. Otherwise, this becomes a burdensome
3	activity.
4	CHAIR BLEY: Thank you. I'd appreciate if
5	any of the members or consultants have other things
6	that come to mind, drop me a note. I'd like to keep
7	them.
8	I'd like to thank you very much, and Brit
9	gave us a lot of good help along the way here. And
10	the whole staff who's been involved in this, I think
11	you've done a really great job of organizing it.
12	I think I'm concerned about the risk-
13	informed part of this, the risk side of this, and I'm
14	pretty nervous about it. And I myself was leaning
15	toward an early letter rather than a late one before
16	things get cast in concrete. The standard, Lord knows
17	when that will get done. The last one that was in a
18	new area was the shutdown risk, and that took ten
19	years before it got voted out, at least ten. And this
20	is a new area for most people, so it could take a very
21	long time. So I think going ahead with it is good.
22	The applicability is rather limited, but
23	if you're going to use the structure is right. The
24	ideas are right. The specific way you use those steps
25	is you begin to quantify the two probabilities that
ļ	I

(202) 234-4433

	223
1	you come up with. That's where it gets a little
2	fuzzy, and either I'll write something personally or
3	I'll circulate something, and we might want to write
4	a letter on this.
5	I'll play with my own notes and then see
6	what the subcommittee thinks later. And I'm not
7	turning loose of that just yet because I think there
8	are some things that just don't quite work right from
9	the risk-informed point of view and those steps 4, 5,
10	6 that just need a little polish.
11	In any case, thanks very much to everyone.
12	Thanks to the Committee and everyone else here. We
13	are adjourned.
14	(Whereupon, the above-entitled matter went
15	off the record at 5:09 p.m.)
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

DG-1364 - Volcanic Hazards Assessment for Proposed New and Advanced Nuclear Power Reactor Sites

NRC Staff Presentation to the ACRS Subcommittee February 20, 2020

Presentation Outline

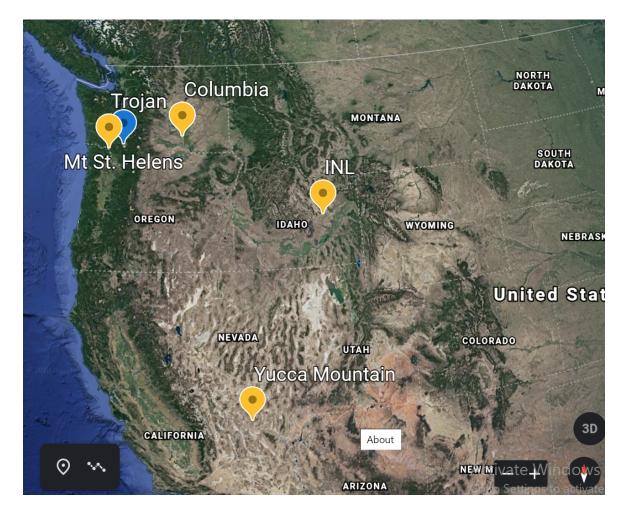
- Background
- Overview of Volcanic Hazards
- Discussion of proposed approach for Volcanic Hazard Analysis (VHA)
- Harmonization with International Guidance

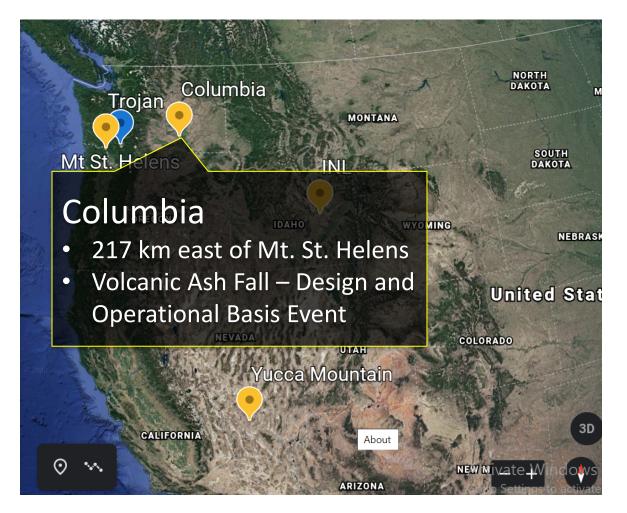
Volcanic Hazards Working Group

NRC Staff

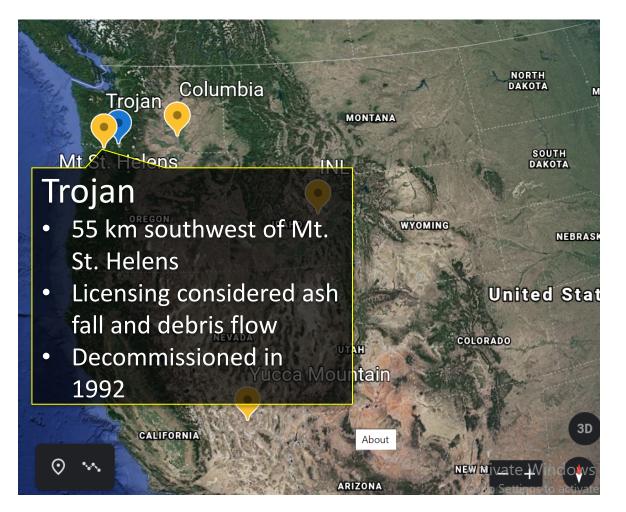
- Laurel Bauer, M.S.
- Luissette Candelario, M.E.
- Allen Fetter, Ph.D.
- Cliff Munson, Ph.D.
- Ed O'Donnell, Ph.D.
- James Rubenstone, Ph.D.
- Gerry Stirewalt, Ph.D., C.E.G., P.G.
- Jenise Thompson, M.S., PMP
- Contractor/Consultant
- Brittain Hill, Ph.D.
- Miriam Juckett, M.S. (SwRI)

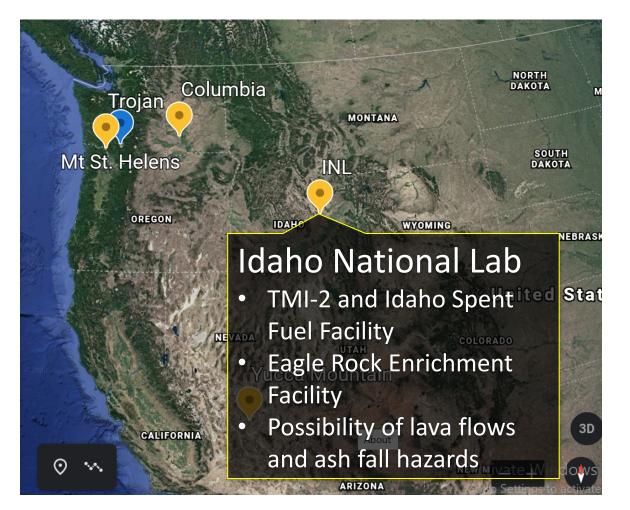
Why now?


- DOE was recently authorized to develop advanced reactor projects at the Idaho National Laboratory (INL); NRC will have licensing authority
- DOE and NRC recognized that there are volcanic hazards at INL
- NRC has regulatory requirements to assess geologic hazards at a proposed site but has no specific guidance on acceptable approaches to assess volcanic hazards


Regulatory Requirements

- 10 CFR Part 50, Appendix A, "General Design Criteria for Nuclear Power Plants," General Design Criterion 2
- 10 CFR 52.17(a)(1)(vi) for an early site permit and 10 CFR 52.79(a)(1)(iii) for a combined license
- 10 CFR 100.23, "Reactor Site Criteria"







Use of Prior Approach

- Staff questioned whether the past approach for volcanic hazards reflects NRC's principles of good regulation.
 - Openness
 - Efficiency
 - Independence
 - Clarity
 - Reliability

Regulatory Analysis

- Staff considered five alternatives to assess the regulatory need
- Schedule, cost-benefit analysis, technical content and document control were additional factors under consideration
- Principles of good regulation and riskinformed decision making

Optimal Path Forward

- Regulatory Guide was the optimal path forward
- Includes harmonization with existing IAEA Safety Guide
- Mechanism by which to consider endorsement of consensus standards under development
- Multiple opportunities for public interactions

Goals of the Regulatory Guide

- Protect public health, safety, and the environment
- Open and traceable basis for regulatory decision making
- Appropriate burden on applicants, commensurate with risk
- Consistent with NRC's risk-informed, performance-based framework and prior licensing actions

Regulatory Guide Challenges

- No generally accepted approach for VHA
- Support both siting decisions and potential design bases
- Rare events, appreciable uncertainties on event timing and nature
- Wide range of demands from volcanic events, limited design analysis (except ash fall).

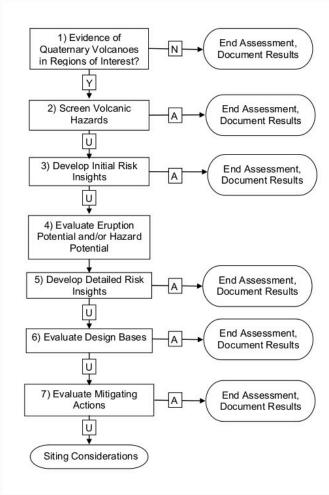
- Volcanic Ash
 - 0.001 to 2 mm
 - Hardness comparable to most metals and alloys
 - Conductive, esp. when damp
 - 0.1 to 100 mg/m³
 airborne common
 - Lingers days-weeks after eruption

www.librarieshawaii.org

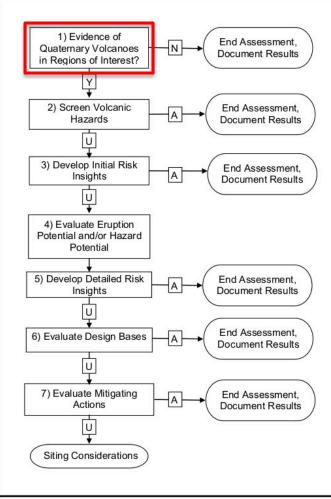
- New Vent Opening
 - Ground deformation
 - Lava flows
 - Ballistics
 - Tephra Fall

- Lava Flows
 - Dense (2,500 kg/m³, 156 lb/ft³)
 - Hot (1,000 to 1,200 C, 1,830 to 2,200 F)
 - Heat capacity comparable to metals
 - Flow rate can vary between 1 to 10 m/s
 - Follow topography, lateral break-outs common

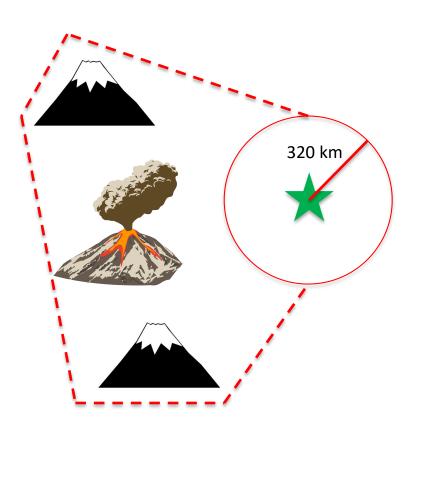
- Pyroclastic Flows
 - Hot (> 300 C (570 F))
 - Deposit densities from 1000 to 2000 kg/m³
 - Fast-moving (100s of m/s)
 - Can travel 10s to 100s
 of km from vent
 - Can overtop barriers
 100's m high if large
 volume



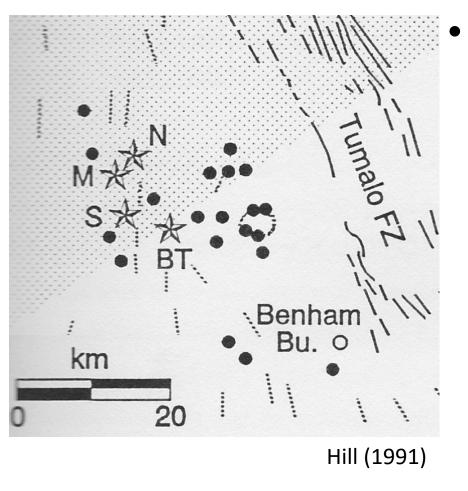
- Other hazards
 - Debris flows
 - Debris avalanches
 - Earthquakes <M5</p>
 - Hydrothermal systems
 - Volcanic gases
 - Lightning


General Approach for VHA

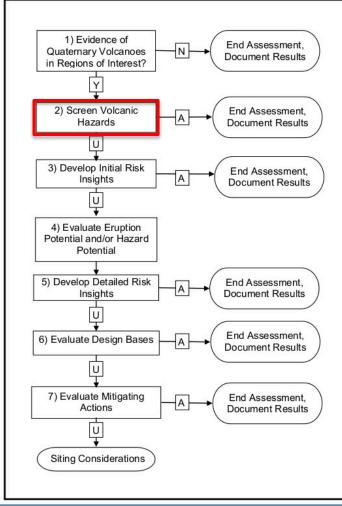
- Gather information
- Initial screening**
- Detailed analysis of relevant hazards**
- Evaluate design bases**
- Develop mitigation approaches**
- Siting considerations
 - **Apply risk insights


1) Gather Initial Information

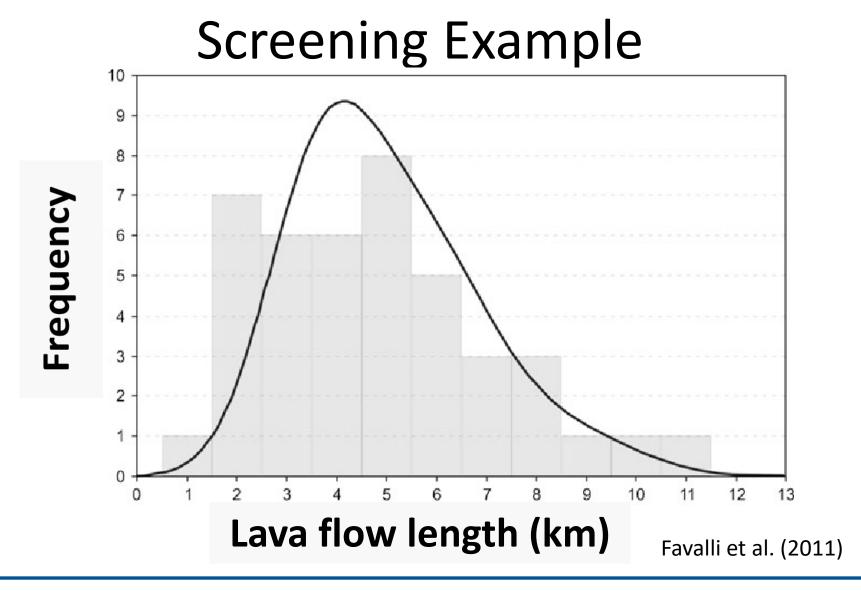
- Time Period of Interest
 - Last 2.6 Myr
 (Quaternary Period)
 - Consistent with
 Standard Review Plan
 (SRP) 2.5.1 (geologic site characterization)
 - Captures uncertainties in timing and character of past volcanic events


1) Gather Initial Information

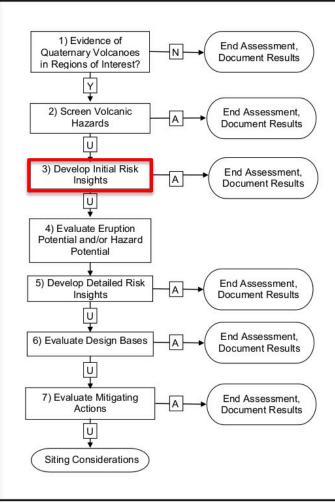
- Regions of Interest (ROI) for initial screening
 - 320 km for surface hazards (i.e., SRP 2.5.1)
 - For ash-fall hazards, extend to capture
 2.6 Myr volcanoes that might affect design or operation of facility (e.g., SRP 2.5.1)

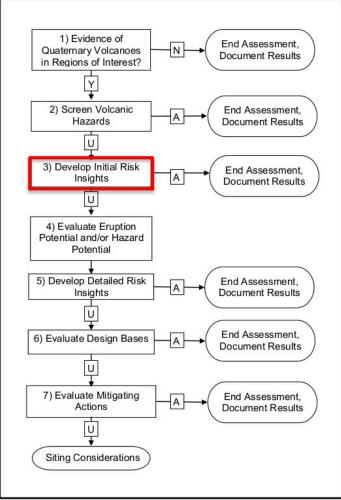

1) Gather Initial Information

- Tectono-magmatic Model
 - Large-scale processes that control volcanism
 - Only consider <2.6 Myr
 volcanoes that are
 consistent with model

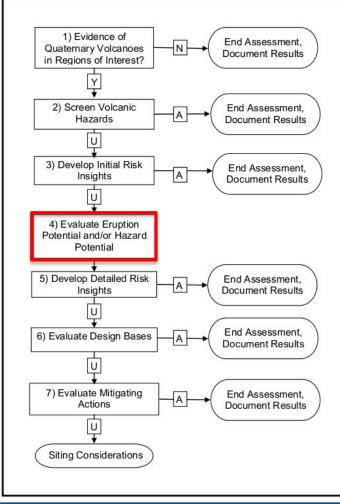


2) Deterministic Screening


- Volcano characteristics in ROI
- Analogues or models to reduce uncertainties
- Screen based on maximum distance hazard could travel from source


3) Initial Risk Insights

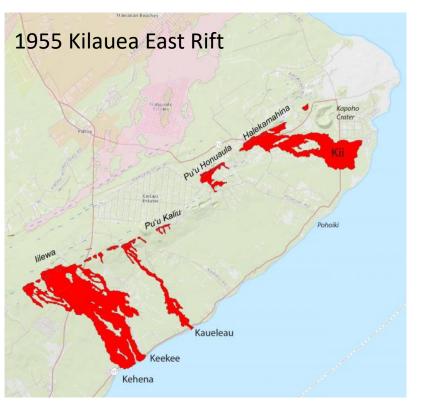
- Suite of information to support risk-informed safety decisions
- Risk-insight information
 - Sensitivity in plant PRA
 - Uncertainties
 - Available alternatives
 - Confidence in supporting investigations


3) Initial Risk Insights

- Assume SSC failure = 1 if hazard at site
- Evaluate results in PRA
- Consider risk-insight information, including uncertainty & alternatives
- If not significant to safety, document rationale and end VHA

4) Eruption or Hazard Likelihoods

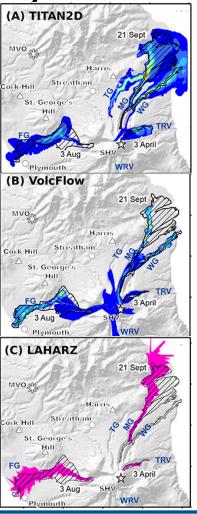
- Can first evaluate either
 Probability of eruption
 (PE) or of hazard (PH)
 - Character of past event may be more certain than timing
 - Uncertainties from erosion, burial, interpretation, modeling etc.



Applying the SSHAC Process

- Staff endorses the use of the Senior Seismic Hazards Analysis Committee (SSHAC) process to calculate PE and PH in the VHA
- Determine center, body and range of the technically defensible interpretations
- SSHAC study level based on
 - Source-term or fragility of proposed facility
 - Completeness and accuracy of geologic record
 - Number of hazards being considered
 - Significance of alternative hazards models

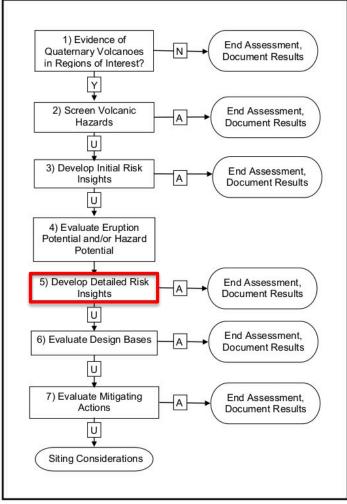
4) Evaluate Eruption Likelihoods



volcanoes.usgs.gov

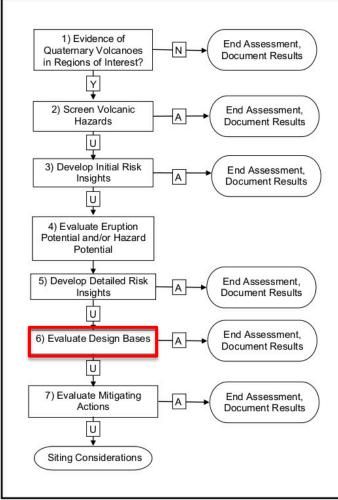
- Challenges for PE
 - Event definition
 - Probability of occurrence, exceedance, or both?
 - Uncertainties on timing and number of past events
 - Potential non-stationary recurrence rates

4) Evaluate Hazard Likelihoods

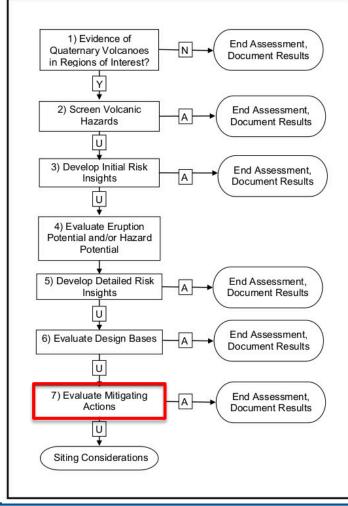


- Challenges for PH
 - Range of models, need for model support
 - Character changes with distance from source
 - Interpretations from preserved deposits
 - Characteristics can change through time

Ogburn & Calder (2017), fig. 7


5) Detailed Risk Insights

- Assume SSC failure = PE or PH, or both
- Evaluate results in PRA
- Consider risk-insight information, including uncertainty & alternatives
- If not significant to safety, document rationale and end VHA

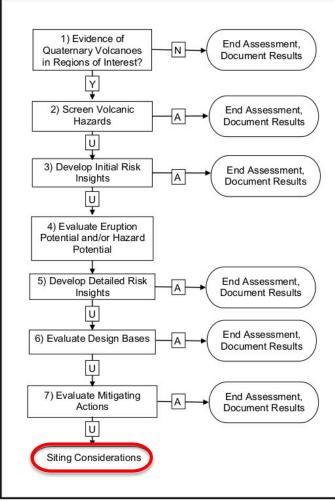

6) Evaluate Design Bases

- Optional Step
- Develop more accurate limit states for SSCs
 - Exceedance likelihoods for hazard demands
 - Actual material properties
 - Facility-specific SSCs
- Re-evaluate risk insights
- Allows for enhancing design basis

7) Evaluate Mitigation Actions

- Hours to weeks of warning before eruptions
- Columbia NGS, WA
 - Ash-fall hazard from
 Cascades, >200 km away
 - Hours to prepare
 - Air filtration, maintenance procedures
- Ash-fall is a commonly mitigated hazard worldwide

7) Evaluate Mitigation Actions



volcanoes.usgs.gov

- Some surface flows have been mitigated
- Proposed actions
 - Appropriate monitoring in place
 - Clear alert levels
 - Practicable actions in time available
- Re-evaluate risk insights with mitigation credit

Siting Considerations

- If hazard cannot be mitigated through design or operations, alternative sites should be investigated
- Volcanic hazards often are spatially restricted
 - Sites with acceptable risk might be located within several km or less

Harmonization

IAEA Safety Standards

for protecting people and the environment

Volcanic Hazards in Site Evaluation for Nuclear Installations

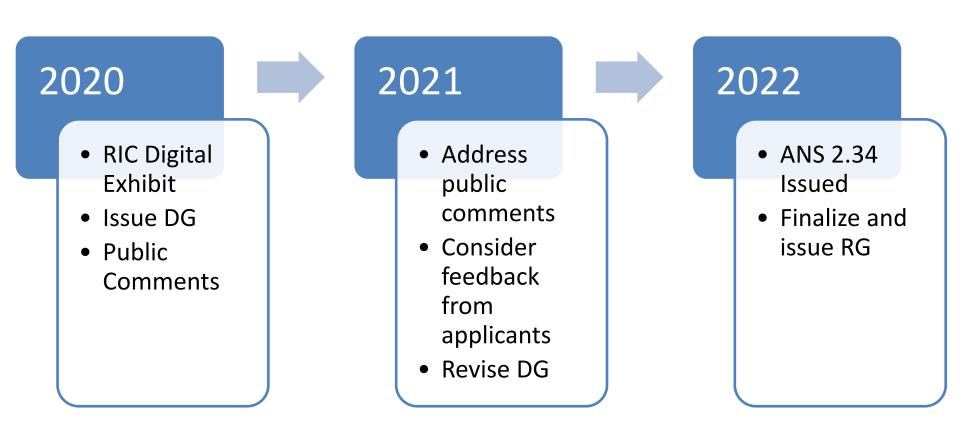
Specific Safety Guide No. SSG-21

IAEA (2012) SSG-21

- General consistency IAEA SSG-21
 - Staged approach
 - Screening
 - Detailed VHA
 - Graded to installation risk

Alternatives to IAEA Approach

- IAEA considers some volcanic hazards as "site exclusion criteria."
 - Inconsistent with a risk-informed, performance based framework
- IAEA accepts deterministic analyses for the detailed VHA
 - Inconsistent with probabilistic risk-insights
- IAEA requires licensees to conduct monitoring
 - Inconsistent with USGS statutory role in USA



Future Plans

- Issue draft guide for public comment and interim use
- Solicit feedback from stakeholders on content and use of guide to develop application
- Staff involvement in ANS 2.34 working group
- Comments will be received and addressed throughout the process – <u>VolcanicHazards-</u> <u>RG@nrc.gov</u>

Timeline

Conclusions

- The draft RG on volcanic hazards is consistent with NRC's risk-informed, performance-based regulatory framework.
- The draft RG provides appropriate opportunities to evaluate the risk significance of potential volcanic hazards, and end the analysis if hazards are not significant.
- Although only a few sites in the US might need to evaluate volcanic hazards, the draft RG provides a practicable, open, and traceable approach that is appropriately protective of public health, safety, and the environment.

